src/share/vm/opto/library_call.cpp

Wed, 24 Oct 2012 14:33:22 -0700

author
kvn
date
Wed, 24 Oct 2012 14:33:22 -0700
changeset 4205
a3ecd773a7b9
parent 4199
cfe522e6461c
child 4313
beebba0acc11
permissions
-rw-r--r--

7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   bool             _is_predicted;
    48   vmIntrinsics::ID _intrinsic_id;
    50  public:
    51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    52     : InlineCallGenerator(m),
    53       _is_virtual(is_virtual),
    54       _is_predicted(is_predicted),
    55       _intrinsic_id(id)
    56   {
    57   }
    58   virtual bool is_intrinsic() const { return true; }
    59   virtual bool is_virtual()   const { return _is_virtual; }
    60   virtual bool is_predicted()   const { return _is_predicted; }
    61   virtual JVMState* generate(JVMState* jvms);
    62   virtual Node* generate_predicate(JVMState* jvms);
    63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    64 };
    67 // Local helper class for LibraryIntrinsic:
    68 class LibraryCallKit : public GraphKit {
    69  private:
    70   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    72   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    74  public:
    75   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    76     : GraphKit(caller),
    77       _intrinsic(intrinsic)
    78   {
    79   }
    81   ciMethod*         caller()    const    { return jvms()->method(); }
    82   int               bci()       const    { return jvms()->bci(); }
    83   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    84   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    85   ciMethod*         callee()    const    { return _intrinsic->method(); }
    86   ciSignature*      signature() const    { return callee()->signature(); }
    87   int               arg_size()  const    { return callee()->arg_size(); }
    89   bool try_to_inline();
    90   Node* try_to_predicate();
    92   // Helper functions to inline natives
    93   void push_result(RegionNode* region, PhiNode* value);
    94   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    95   Node* generate_slow_guard(Node* test, RegionNode* region);
    96   Node* generate_fair_guard(Node* test, RegionNode* region);
    97   Node* generate_negative_guard(Node* index, RegionNode* region,
    98                                 // resulting CastII of index:
    99                                 Node* *pos_index = NULL);
   100   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   101                                    // resulting CastII of index:
   102                                    Node* *pos_index = NULL);
   103   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   104                              Node* array_length,
   105                              RegionNode* region);
   106   Node* generate_current_thread(Node* &tls_output);
   107   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   108                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   109   Node* load_mirror_from_klass(Node* klass);
   110   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   111                                       int nargs,
   112                                       RegionNode* region, int null_path,
   113                                       int offset);
   114   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   115                                RegionNode* region, int null_path) {
   116     int offset = java_lang_Class::klass_offset_in_bytes();
   117     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   118                                          region, null_path,
   119                                          offset);
   120   }
   121   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   122                                      int nargs,
   123                                      RegionNode* region, int null_path) {
   124     int offset = java_lang_Class::array_klass_offset_in_bytes();
   125     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   126                                          region, null_path,
   127                                          offset);
   128   }
   129   Node* generate_access_flags_guard(Node* kls,
   130                                     int modifier_mask, int modifier_bits,
   131                                     RegionNode* region);
   132   Node* generate_interface_guard(Node* kls, RegionNode* region);
   133   Node* generate_array_guard(Node* kls, RegionNode* region) {
   134     return generate_array_guard_common(kls, region, false, false);
   135   }
   136   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   137     return generate_array_guard_common(kls, region, false, true);
   138   }
   139   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   140     return generate_array_guard_common(kls, region, true, false);
   141   }
   142   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   143     return generate_array_guard_common(kls, region, true, true);
   144   }
   145   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   146                                     bool obj_array, bool not_array);
   147   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   148   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   149                                      bool is_virtual = false, bool is_static = false);
   150   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   151     return generate_method_call(method_id, false, true);
   152   }
   153   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   154     return generate_method_call(method_id, true, false);
   155   }
   156   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   158   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   159   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   160   bool inline_string_compareTo();
   161   bool inline_string_indexOf();
   162   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   163   bool inline_string_equals();
   164   Node* pop_math_arg();
   165   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   166   bool inline_math_native(vmIntrinsics::ID id);
   167   bool inline_trig(vmIntrinsics::ID id);
   168   bool inline_trans(vmIntrinsics::ID id);
   169   bool inline_abs(vmIntrinsics::ID id);
   170   bool inline_sqrt(vmIntrinsics::ID id);
   171   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   172   bool inline_pow(vmIntrinsics::ID id);
   173   bool inline_exp(vmIntrinsics::ID id);
   174   bool inline_min_max(vmIntrinsics::ID id);
   175   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   176   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   177   int classify_unsafe_addr(Node* &base, Node* &offset);
   178   Node* make_unsafe_address(Node* base, Node* offset);
   179   // Helper for inline_unsafe_access.
   180   // Generates the guards that check whether the result of
   181   // Unsafe.getObject should be recorded in an SATB log buffer.
   182   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, int nargs, bool need_mem_bar);
   183   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   184   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   185   bool inline_unsafe_allocate();
   186   bool inline_unsafe_copyMemory();
   187   bool inline_native_currentThread();
   188 #ifdef TRACE_HAVE_INTRINSICS
   189   bool inline_native_classID();
   190   bool inline_native_threadID();
   191 #endif
   192   bool inline_native_time_funcs(address method, const char* funcName);
   193   bool inline_native_isInterrupted();
   194   bool inline_native_Class_query(vmIntrinsics::ID id);
   195   bool inline_native_subtype_check();
   197   bool inline_native_newArray();
   198   bool inline_native_getLength();
   199   bool inline_array_copyOf(bool is_copyOfRange);
   200   bool inline_array_equals();
   201   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   202   bool inline_native_clone(bool is_virtual);
   203   bool inline_native_Reflection_getCallerClass();
   204   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   205   // Helper function for inlining native object hash method
   206   bool inline_native_hashcode(bool is_virtual, bool is_static);
   207   bool inline_native_getClass();
   209   // Helper functions for inlining arraycopy
   210   bool inline_arraycopy();
   211   void generate_arraycopy(const TypePtr* adr_type,
   212                           BasicType basic_elem_type,
   213                           Node* src,  Node* src_offset,
   214                           Node* dest, Node* dest_offset,
   215                           Node* copy_length,
   216                           bool disjoint_bases = false,
   217                           bool length_never_negative = false,
   218                           RegionNode* slow_region = NULL);
   219   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   220                                                 RegionNode* slow_region);
   221   void generate_clear_array(const TypePtr* adr_type,
   222                             Node* dest,
   223                             BasicType basic_elem_type,
   224                             Node* slice_off,
   225                             Node* slice_len,
   226                             Node* slice_end);
   227   bool generate_block_arraycopy(const TypePtr* adr_type,
   228                                 BasicType basic_elem_type,
   229                                 AllocateNode* alloc,
   230                                 Node* src,  Node* src_offset,
   231                                 Node* dest, Node* dest_offset,
   232                                 Node* dest_size, bool dest_uninitialized);
   233   void generate_slow_arraycopy(const TypePtr* adr_type,
   234                                Node* src,  Node* src_offset,
   235                                Node* dest, Node* dest_offset,
   236                                Node* copy_length, bool dest_uninitialized);
   237   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   238                                      Node* dest_elem_klass,
   239                                      Node* src,  Node* src_offset,
   240                                      Node* dest, Node* dest_offset,
   241                                      Node* copy_length, bool dest_uninitialized);
   242   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   243                                    Node* src,  Node* src_offset,
   244                                    Node* dest, Node* dest_offset,
   245                                    Node* copy_length, bool dest_uninitialized);
   246   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   247                                     BasicType basic_elem_type,
   248                                     bool disjoint_bases,
   249                                     Node* src,  Node* src_offset,
   250                                     Node* dest, Node* dest_offset,
   251                                     Node* copy_length, bool dest_uninitialized);
   252   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   253   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   254   bool inline_unsafe_ordered_store(BasicType type);
   255   bool inline_fp_conversions(vmIntrinsics::ID id);
   256   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   257   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   258   bool inline_bitCount(vmIntrinsics::ID id);
   259   bool inline_reverseBytes(vmIntrinsics::ID id);
   261   bool inline_reference_get();
   262   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   263   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   264   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   265   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   266 };
   269 //---------------------------make_vm_intrinsic----------------------------
   270 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   271   vmIntrinsics::ID id = m->intrinsic_id();
   272   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   274   if (DisableIntrinsic[0] != '\0'
   275       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   276     // disabled by a user request on the command line:
   277     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   278     return NULL;
   279   }
   281   if (!m->is_loaded()) {
   282     // do not attempt to inline unloaded methods
   283     return NULL;
   284   }
   286   // Only a few intrinsics implement a virtual dispatch.
   287   // They are expensive calls which are also frequently overridden.
   288   if (is_virtual) {
   289     switch (id) {
   290     case vmIntrinsics::_hashCode:
   291     case vmIntrinsics::_clone:
   292       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   293       break;
   294     default:
   295       return NULL;
   296     }
   297   }
   299   // -XX:-InlineNatives disables nearly all intrinsics:
   300   if (!InlineNatives) {
   301     switch (id) {
   302     case vmIntrinsics::_indexOf:
   303     case vmIntrinsics::_compareTo:
   304     case vmIntrinsics::_equals:
   305     case vmIntrinsics::_equalsC:
   306     case vmIntrinsics::_getAndAddInt:
   307     case vmIntrinsics::_getAndAddLong:
   308     case vmIntrinsics::_getAndSetInt:
   309     case vmIntrinsics::_getAndSetLong:
   310     case vmIntrinsics::_getAndSetObject:
   311       break;  // InlineNatives does not control String.compareTo
   312     case vmIntrinsics::_Reference_get:
   313       break;  // InlineNatives does not control Reference.get
   314     default:
   315       return NULL;
   316     }
   317   }
   319   bool is_predicted = false;
   321   switch (id) {
   322   case vmIntrinsics::_compareTo:
   323     if (!SpecialStringCompareTo)  return NULL;
   324     break;
   325   case vmIntrinsics::_indexOf:
   326     if (!SpecialStringIndexOf)  return NULL;
   327     break;
   328   case vmIntrinsics::_equals:
   329     if (!SpecialStringEquals)  return NULL;
   330     break;
   331   case vmIntrinsics::_equalsC:
   332     if (!SpecialArraysEquals)  return NULL;
   333     break;
   334   case vmIntrinsics::_arraycopy:
   335     if (!InlineArrayCopy)  return NULL;
   336     break;
   337   case vmIntrinsics::_copyMemory:
   338     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   339     if (!InlineArrayCopy)  return NULL;
   340     break;
   341   case vmIntrinsics::_hashCode:
   342     if (!InlineObjectHash)  return NULL;
   343     break;
   344   case vmIntrinsics::_clone:
   345   case vmIntrinsics::_copyOf:
   346   case vmIntrinsics::_copyOfRange:
   347     if (!InlineObjectCopy)  return NULL;
   348     // These also use the arraycopy intrinsic mechanism:
   349     if (!InlineArrayCopy)  return NULL;
   350     break;
   351   case vmIntrinsics::_checkIndex:
   352     // We do not intrinsify this.  The optimizer does fine with it.
   353     return NULL;
   355   case vmIntrinsics::_getCallerClass:
   356     if (!UseNewReflection)  return NULL;
   357     if (!InlineReflectionGetCallerClass)  return NULL;
   358     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   359     break;
   361   case vmIntrinsics::_bitCount_i:
   362     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   363     break;
   365   case vmIntrinsics::_bitCount_l:
   366     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   367     break;
   369   case vmIntrinsics::_numberOfLeadingZeros_i:
   370     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   371     break;
   373   case vmIntrinsics::_numberOfLeadingZeros_l:
   374     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   375     break;
   377   case vmIntrinsics::_numberOfTrailingZeros_i:
   378     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   379     break;
   381   case vmIntrinsics::_numberOfTrailingZeros_l:
   382     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   383     break;
   385   case vmIntrinsics::_Reference_get:
   386     // Use the intrinsic version of Reference.get() so that the value in
   387     // the referent field can be registered by the G1 pre-barrier code.
   388     // Also add memory barrier to prevent commoning reads from this field
   389     // across safepoint since GC can change it value.
   390     break;
   392   case vmIntrinsics::_compareAndSwapObject:
   393 #ifdef _LP64
   394     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   395 #endif
   396     break;
   398   case vmIntrinsics::_compareAndSwapLong:
   399     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   400     break;
   402   case vmIntrinsics::_getAndAddInt:
   403     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   404     break;
   406   case vmIntrinsics::_getAndAddLong:
   407     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   408     break;
   410   case vmIntrinsics::_getAndSetInt:
   411     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   412     break;
   414   case vmIntrinsics::_getAndSetLong:
   415     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   416     break;
   418   case vmIntrinsics::_getAndSetObject:
   419 #ifdef _LP64
   420     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   421     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   422     break;
   423 #else
   424     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   425     break;
   426 #endif
   428   case vmIntrinsics::_aescrypt_encryptBlock:
   429   case vmIntrinsics::_aescrypt_decryptBlock:
   430     if (!UseAESIntrinsics) return NULL;
   431     break;
   433   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   434   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   435     if (!UseAESIntrinsics) return NULL;
   436     // these two require the predicated logic
   437     is_predicted = true;
   438     break;
   440  default:
   441     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   442     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   443     break;
   444   }
   446   // -XX:-InlineClassNatives disables natives from the Class class.
   447   // The flag applies to all reflective calls, notably Array.newArray
   448   // (visible to Java programmers as Array.newInstance).
   449   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   450       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   451     if (!InlineClassNatives)  return NULL;
   452   }
   454   // -XX:-InlineThreadNatives disables natives from the Thread class.
   455   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   456     if (!InlineThreadNatives)  return NULL;
   457   }
   459   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   460   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   461       m->holder()->name() == ciSymbol::java_lang_Float() ||
   462       m->holder()->name() == ciSymbol::java_lang_Double()) {
   463     if (!InlineMathNatives)  return NULL;
   464   }
   466   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   467   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   468     if (!InlineUnsafeOps)  return NULL;
   469   }
   471   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   472 }
   474 //----------------------register_library_intrinsics-----------------------
   475 // Initialize this file's data structures, for each Compile instance.
   476 void Compile::register_library_intrinsics() {
   477   // Nothing to do here.
   478 }
   480 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   481   LibraryCallKit kit(jvms, this);
   482   Compile* C = kit.C;
   483   int nodes = C->unique();
   484 #ifndef PRODUCT
   485   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   486     char buf[1000];
   487     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   488     tty->print_cr("Intrinsic %s", str);
   489   }
   490 #endif
   492   if (kit.try_to_inline()) {
   493     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   494       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   495     }
   496     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   497     if (C->log()) {
   498       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   499                      vmIntrinsics::name_at(intrinsic_id()),
   500                      (is_virtual() ? " virtual='1'" : ""),
   501                      C->unique() - nodes);
   502     }
   503     return kit.transfer_exceptions_into_jvms();
   504   }
   506   // The intrinsic bailed out
   507   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   508     if (jvms->has_method()) {
   509       // Not a root compile.
   510       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   511       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   512     } else {
   513       // Root compile
   514       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   515                vmIntrinsics::name_at(intrinsic_id()),
   516                (is_virtual() ? " (virtual)" : ""), kit.bci());
   517     }
   518   }
   519   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   520   return NULL;
   521 }
   523 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   524   LibraryCallKit kit(jvms, this);
   525   Compile* C = kit.C;
   526   int nodes = C->unique();
   527 #ifndef PRODUCT
   528   assert(is_predicted(), "sanity");
   529   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   530     char buf[1000];
   531     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   532     tty->print_cr("Predicate for intrinsic %s", str);
   533   }
   534 #endif
   536   Node* slow_ctl = kit.try_to_predicate();
   537   if (!kit.failing()) {
   538     if (C->log()) {
   539       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   540                      vmIntrinsics::name_at(intrinsic_id()),
   541                      (is_virtual() ? " virtual='1'" : ""),
   542                      C->unique() - nodes);
   543     }
   544     return slow_ctl; // Could be NULL if the check folds.
   545   }
   547   // The intrinsic bailed out
   548   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   549     if (jvms->has_method()) {
   550       // Not a root compile.
   551       const char* msg = "failed to generate predicate for intrinsic";
   552       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   553     } else {
   554       // Root compile
   555       tty->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   556                vmIntrinsics::name_at(intrinsic_id()),
   557                (is_virtual() ? " (virtual)" : ""), kit.bci());
   558     }
   559   }
   560   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   561   return NULL;
   562 }
   564 bool LibraryCallKit::try_to_inline() {
   565   // Handle symbolic names for otherwise undistinguished boolean switches:
   566   const bool is_store       = true;
   567   const bool is_native_ptr  = true;
   568   const bool is_static      = true;
   570   if (!jvms()->has_method()) {
   571     // Root JVMState has a null method.
   572     assert(map()->memory()->Opcode() == Op_Parm, "");
   573     // Insert the memory aliasing node
   574     set_all_memory(reset_memory());
   575   }
   576   assert(merged_memory(), "");
   578   switch (intrinsic_id()) {
   579   case vmIntrinsics::_hashCode:
   580     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   581   case vmIntrinsics::_identityHashCode:
   582     return inline_native_hashcode(/*!virtual*/ false, is_static);
   583   case vmIntrinsics::_getClass:
   584     return inline_native_getClass();
   586   case vmIntrinsics::_dsin:
   587   case vmIntrinsics::_dcos:
   588   case vmIntrinsics::_dtan:
   589   case vmIntrinsics::_dabs:
   590   case vmIntrinsics::_datan2:
   591   case vmIntrinsics::_dsqrt:
   592   case vmIntrinsics::_dexp:
   593   case vmIntrinsics::_dlog:
   594   case vmIntrinsics::_dlog10:
   595   case vmIntrinsics::_dpow:
   596     return inline_math_native(intrinsic_id());
   598   case vmIntrinsics::_min:
   599   case vmIntrinsics::_max:
   600     return inline_min_max(intrinsic_id());
   602   case vmIntrinsics::_arraycopy:
   603     return inline_arraycopy();
   605   case vmIntrinsics::_compareTo:
   606     return inline_string_compareTo();
   607   case vmIntrinsics::_indexOf:
   608     return inline_string_indexOf();
   609   case vmIntrinsics::_equals:
   610     return inline_string_equals();
   612   case vmIntrinsics::_getObject:
   613     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   614   case vmIntrinsics::_getBoolean:
   615     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   616   case vmIntrinsics::_getByte:
   617     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   618   case vmIntrinsics::_getShort:
   619     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   620   case vmIntrinsics::_getChar:
   621     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   622   case vmIntrinsics::_getInt:
   623     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   624   case vmIntrinsics::_getLong:
   625     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   626   case vmIntrinsics::_getFloat:
   627     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   628   case vmIntrinsics::_getDouble:
   629     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   631   case vmIntrinsics::_putObject:
   632     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   633   case vmIntrinsics::_putBoolean:
   634     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   635   case vmIntrinsics::_putByte:
   636     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   637   case vmIntrinsics::_putShort:
   638     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   639   case vmIntrinsics::_putChar:
   640     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   641   case vmIntrinsics::_putInt:
   642     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   643   case vmIntrinsics::_putLong:
   644     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   645   case vmIntrinsics::_putFloat:
   646     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   647   case vmIntrinsics::_putDouble:
   648     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   650   case vmIntrinsics::_getByte_raw:
   651     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   652   case vmIntrinsics::_getShort_raw:
   653     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   654   case vmIntrinsics::_getChar_raw:
   655     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   656   case vmIntrinsics::_getInt_raw:
   657     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   658   case vmIntrinsics::_getLong_raw:
   659     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   660   case vmIntrinsics::_getFloat_raw:
   661     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   662   case vmIntrinsics::_getDouble_raw:
   663     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   664   case vmIntrinsics::_getAddress_raw:
   665     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   667   case vmIntrinsics::_putByte_raw:
   668     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   669   case vmIntrinsics::_putShort_raw:
   670     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   671   case vmIntrinsics::_putChar_raw:
   672     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   673   case vmIntrinsics::_putInt_raw:
   674     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   675   case vmIntrinsics::_putLong_raw:
   676     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   677   case vmIntrinsics::_putFloat_raw:
   678     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   679   case vmIntrinsics::_putDouble_raw:
   680     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   681   case vmIntrinsics::_putAddress_raw:
   682     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   684   case vmIntrinsics::_getObjectVolatile:
   685     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   686   case vmIntrinsics::_getBooleanVolatile:
   687     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   688   case vmIntrinsics::_getByteVolatile:
   689     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   690   case vmIntrinsics::_getShortVolatile:
   691     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   692   case vmIntrinsics::_getCharVolatile:
   693     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   694   case vmIntrinsics::_getIntVolatile:
   695     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   696   case vmIntrinsics::_getLongVolatile:
   697     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   698   case vmIntrinsics::_getFloatVolatile:
   699     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   700   case vmIntrinsics::_getDoubleVolatile:
   701     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   703   case vmIntrinsics::_putObjectVolatile:
   704     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   705   case vmIntrinsics::_putBooleanVolatile:
   706     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   707   case vmIntrinsics::_putByteVolatile:
   708     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   709   case vmIntrinsics::_putShortVolatile:
   710     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   711   case vmIntrinsics::_putCharVolatile:
   712     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   713   case vmIntrinsics::_putIntVolatile:
   714     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   715   case vmIntrinsics::_putLongVolatile:
   716     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   717   case vmIntrinsics::_putFloatVolatile:
   718     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   719   case vmIntrinsics::_putDoubleVolatile:
   720     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   722   case vmIntrinsics::_prefetchRead:
   723     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   724   case vmIntrinsics::_prefetchWrite:
   725     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   726   case vmIntrinsics::_prefetchReadStatic:
   727     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   728   case vmIntrinsics::_prefetchWriteStatic:
   729     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   731   case vmIntrinsics::_compareAndSwapObject:
   732     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   733   case vmIntrinsics::_compareAndSwapInt:
   734     return inline_unsafe_load_store(T_INT, LS_cmpxchg);
   735   case vmIntrinsics::_compareAndSwapLong:
   736     return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
   738   case vmIntrinsics::_putOrderedObject:
   739     return inline_unsafe_ordered_store(T_OBJECT);
   740   case vmIntrinsics::_putOrderedInt:
   741     return inline_unsafe_ordered_store(T_INT);
   742   case vmIntrinsics::_putOrderedLong:
   743     return inline_unsafe_ordered_store(T_LONG);
   745   case vmIntrinsics::_getAndAddInt:
   746     return inline_unsafe_load_store(T_INT, LS_xadd);
   747   case vmIntrinsics::_getAndAddLong:
   748     return inline_unsafe_load_store(T_LONG, LS_xadd);
   749   case vmIntrinsics::_getAndSetInt:
   750     return inline_unsafe_load_store(T_INT, LS_xchg);
   751   case vmIntrinsics::_getAndSetLong:
   752     return inline_unsafe_load_store(T_LONG, LS_xchg);
   753   case vmIntrinsics::_getAndSetObject:
   754     return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   756   case vmIntrinsics::_currentThread:
   757     return inline_native_currentThread();
   758   case vmIntrinsics::_isInterrupted:
   759     return inline_native_isInterrupted();
   761 #ifdef TRACE_HAVE_INTRINSICS
   762   case vmIntrinsics::_classID:
   763     return inline_native_classID();
   764   case vmIntrinsics::_threadID:
   765     return inline_native_threadID();
   766   case vmIntrinsics::_counterTime:
   767     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   768 #endif
   769   case vmIntrinsics::_currentTimeMillis:
   770     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   771   case vmIntrinsics::_nanoTime:
   772     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   773   case vmIntrinsics::_allocateInstance:
   774     return inline_unsafe_allocate();
   775   case vmIntrinsics::_copyMemory:
   776     return inline_unsafe_copyMemory();
   777   case vmIntrinsics::_newArray:
   778     return inline_native_newArray();
   779   case vmIntrinsics::_getLength:
   780     return inline_native_getLength();
   781   case vmIntrinsics::_copyOf:
   782     return inline_array_copyOf(false);
   783   case vmIntrinsics::_copyOfRange:
   784     return inline_array_copyOf(true);
   785   case vmIntrinsics::_equalsC:
   786     return inline_array_equals();
   787   case vmIntrinsics::_clone:
   788     return inline_native_clone(intrinsic()->is_virtual());
   790   case vmIntrinsics::_isAssignableFrom:
   791     return inline_native_subtype_check();
   793   case vmIntrinsics::_isInstance:
   794   case vmIntrinsics::_getModifiers:
   795   case vmIntrinsics::_isInterface:
   796   case vmIntrinsics::_isArray:
   797   case vmIntrinsics::_isPrimitive:
   798   case vmIntrinsics::_getSuperclass:
   799   case vmIntrinsics::_getComponentType:
   800   case vmIntrinsics::_getClassAccessFlags:
   801     return inline_native_Class_query(intrinsic_id());
   803   case vmIntrinsics::_floatToRawIntBits:
   804   case vmIntrinsics::_floatToIntBits:
   805   case vmIntrinsics::_intBitsToFloat:
   806   case vmIntrinsics::_doubleToRawLongBits:
   807   case vmIntrinsics::_doubleToLongBits:
   808   case vmIntrinsics::_longBitsToDouble:
   809     return inline_fp_conversions(intrinsic_id());
   811   case vmIntrinsics::_numberOfLeadingZeros_i:
   812   case vmIntrinsics::_numberOfLeadingZeros_l:
   813     return inline_numberOfLeadingZeros(intrinsic_id());
   815   case vmIntrinsics::_numberOfTrailingZeros_i:
   816   case vmIntrinsics::_numberOfTrailingZeros_l:
   817     return inline_numberOfTrailingZeros(intrinsic_id());
   819   case vmIntrinsics::_bitCount_i:
   820   case vmIntrinsics::_bitCount_l:
   821     return inline_bitCount(intrinsic_id());
   823   case vmIntrinsics::_reverseBytes_i:
   824   case vmIntrinsics::_reverseBytes_l:
   825   case vmIntrinsics::_reverseBytes_s:
   826   case vmIntrinsics::_reverseBytes_c:
   827     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   829   case vmIntrinsics::_getCallerClass:
   830     return inline_native_Reflection_getCallerClass();
   832   case vmIntrinsics::_Reference_get:
   833     return inline_reference_get();
   835   case vmIntrinsics::_aescrypt_encryptBlock:
   836   case vmIntrinsics::_aescrypt_decryptBlock:
   837     return inline_aescrypt_Block(intrinsic_id());
   839   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   840   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   841     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   843   default:
   844     // If you get here, it may be that someone has added a new intrinsic
   845     // to the list in vmSymbols.hpp without implementing it here.
   846 #ifndef PRODUCT
   847     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   848       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   849                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   850     }
   851 #endif
   852     return false;
   853   }
   854 }
   856 Node* LibraryCallKit::try_to_predicate() {
   857   if (!jvms()->has_method()) {
   858     // Root JVMState has a null method.
   859     assert(map()->memory()->Opcode() == Op_Parm, "");
   860     // Insert the memory aliasing node
   861     set_all_memory(reset_memory());
   862   }
   863   assert(merged_memory(), "");
   865   switch (intrinsic_id()) {
   866   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   867     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   868   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   869     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   871   default:
   872     // If you get here, it may be that someone has added a new intrinsic
   873     // to the list in vmSymbols.hpp without implementing it here.
   874 #ifndef PRODUCT
   875     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   876       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   877                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   878     }
   879 #endif
   880     Node* slow_ctl = control();
   881     set_control(top()); // No fast path instrinsic
   882     return slow_ctl;
   883   }
   884 }
   886 //------------------------------push_result------------------------------
   887 // Helper function for finishing intrinsics.
   888 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   889   record_for_igvn(region);
   890   set_control(_gvn.transform(region));
   891   BasicType value_type = value->type()->basic_type();
   892   push_node(value_type, _gvn.transform(value));
   893 }
   895 //------------------------------generate_guard---------------------------
   896 // Helper function for generating guarded fast-slow graph structures.
   897 // The given 'test', if true, guards a slow path.  If the test fails
   898 // then a fast path can be taken.  (We generally hope it fails.)
   899 // In all cases, GraphKit::control() is updated to the fast path.
   900 // The returned value represents the control for the slow path.
   901 // The return value is never 'top'; it is either a valid control
   902 // or NULL if it is obvious that the slow path can never be taken.
   903 // Also, if region and the slow control are not NULL, the slow edge
   904 // is appended to the region.
   905 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   906   if (stopped()) {
   907     // Already short circuited.
   908     return NULL;
   909   }
   911   // Build an if node and its projections.
   912   // If test is true we take the slow path, which we assume is uncommon.
   913   if (_gvn.type(test) == TypeInt::ZERO) {
   914     // The slow branch is never taken.  No need to build this guard.
   915     return NULL;
   916   }
   918   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   920   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
   921   if (if_slow == top()) {
   922     // The slow branch is never taken.  No need to build this guard.
   923     return NULL;
   924   }
   926   if (region != NULL)
   927     region->add_req(if_slow);
   929   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
   930   set_control(if_fast);
   932   return if_slow;
   933 }
   935 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   936   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   937 }
   938 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   939   return generate_guard(test, region, PROB_FAIR);
   940 }
   942 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   943                                                      Node* *pos_index) {
   944   if (stopped())
   945     return NULL;                // already stopped
   946   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   947     return NULL;                // index is already adequately typed
   948   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   949   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   950   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   951   if (is_neg != NULL && pos_index != NULL) {
   952     // Emulate effect of Parse::adjust_map_after_if.
   953     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   954     ccast->set_req(0, control());
   955     (*pos_index) = _gvn.transform(ccast);
   956   }
   957   return is_neg;
   958 }
   960 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   961                                                         Node* *pos_index) {
   962   if (stopped())
   963     return NULL;                // already stopped
   964   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   965     return NULL;                // index is already adequately typed
   966   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   967   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   968   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
   969   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   970   if (is_notp != NULL && pos_index != NULL) {
   971     // Emulate effect of Parse::adjust_map_after_if.
   972     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   973     ccast->set_req(0, control());
   974     (*pos_index) = _gvn.transform(ccast);
   975   }
   976   return is_notp;
   977 }
   979 // Make sure that 'position' is a valid limit index, in [0..length].
   980 // There are two equivalent plans for checking this:
   981 //   A. (offset + copyLength)  unsigned<=  arrayLength
   982 //   B. offset  <=  (arrayLength - copyLength)
   983 // We require that all of the values above, except for the sum and
   984 // difference, are already known to be non-negative.
   985 // Plan A is robust in the face of overflow, if offset and copyLength
   986 // are both hugely positive.
   987 //
   988 // Plan B is less direct and intuitive, but it does not overflow at
   989 // all, since the difference of two non-negatives is always
   990 // representable.  Whenever Java methods must perform the equivalent
   991 // check they generally use Plan B instead of Plan A.
   992 // For the moment we use Plan A.
   993 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   994                                                   Node* subseq_length,
   995                                                   Node* array_length,
   996                                                   RegionNode* region) {
   997   if (stopped())
   998     return NULL;                // already stopped
   999   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1000   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1001     return NULL;                // common case of whole-array copy
  1002   Node* last = subseq_length;
  1003   if (!zero_offset)             // last += offset
  1004     last = _gvn.transform( new (C) AddINode(last, offset));
  1005   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
  1006   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
  1007   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1008   return is_over;
  1012 //--------------------------generate_current_thread--------------------
  1013 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1014   ciKlass*    thread_klass = env()->Thread_klass();
  1015   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1016   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1017   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1018   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  1019   tls_output = thread;
  1020   return threadObj;
  1024 //------------------------------make_string_method_node------------------------
  1025 // Helper method for String intrinsic functions. This version is called
  1026 // with str1 and str2 pointing to String object nodes.
  1027 //
  1028 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1029   Node* no_ctrl = NULL;
  1031   // Get start addr of string
  1032   Node* str1_value   = load_String_value(no_ctrl, str1);
  1033   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1034   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1036   // Get length of string 1
  1037   Node* str1_len  = load_String_length(no_ctrl, str1);
  1039   Node* str2_value   = load_String_value(no_ctrl, str2);
  1040   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1041   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1043   Node* str2_len = NULL;
  1044   Node* result = NULL;
  1046   switch (opcode) {
  1047   case Op_StrIndexOf:
  1048     // Get length of string 2
  1049     str2_len = load_String_length(no_ctrl, str2);
  1051     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1052                                  str1_start, str1_len, str2_start, str2_len);
  1053     break;
  1054   case Op_StrComp:
  1055     // Get length of string 2
  1056     str2_len = load_String_length(no_ctrl, str2);
  1058     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1059                                  str1_start, str1_len, str2_start, str2_len);
  1060     break;
  1061   case Op_StrEquals:
  1062     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1063                                str1_start, str2_start, str1_len);
  1064     break;
  1065   default:
  1066     ShouldNotReachHere();
  1067     return NULL;
  1070   // All these intrinsics have checks.
  1071   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1073   return _gvn.transform(result);
  1076 // Helper method for String intrinsic functions. This version is called
  1077 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1078 // to Int nodes containing the lenghts of str1 and str2.
  1079 //
  1080 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1082   Node* result = NULL;
  1083   switch (opcode) {
  1084   case Op_StrIndexOf:
  1085     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1086                                  str1_start, cnt1, str2_start, cnt2);
  1087     break;
  1088   case Op_StrComp:
  1089     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1090                                  str1_start, cnt1, str2_start, cnt2);
  1091     break;
  1092   case Op_StrEquals:
  1093     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1094                                  str1_start, str2_start, cnt1);
  1095     break;
  1096   default:
  1097     ShouldNotReachHere();
  1098     return NULL;
  1101   // All these intrinsics have checks.
  1102   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1104   return _gvn.transform(result);
  1107 //------------------------------inline_string_compareTo------------------------
  1108 bool LibraryCallKit::inline_string_compareTo() {
  1110   if (!Matcher::has_match_rule(Op_StrComp)) return false;
  1112   _sp += 2;
  1113   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1114   Node *receiver = pop();
  1116   // Null check on self without removing any arguments.  The argument
  1117   // null check technically happens in the wrong place, which can lead to
  1118   // invalid stack traces when string compare is inlined into a method
  1119   // which handles NullPointerExceptions.
  1120   _sp += 2;
  1121   receiver = do_null_check(receiver, T_OBJECT);
  1122   argument = do_null_check(argument, T_OBJECT);
  1123   _sp -= 2;
  1124   if (stopped()) {
  1125     return true;
  1128   Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
  1129   push(compare);
  1130   return true;
  1133 //------------------------------inline_string_equals------------------------
  1134 bool LibraryCallKit::inline_string_equals() {
  1136   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
  1138   int nargs = 2;
  1139   _sp += nargs;
  1140   Node* argument = pop();  // pop non-receiver first:  it was pushed second
  1141   Node* receiver = pop();
  1143   // Null check on self without removing any arguments.  The argument
  1144   // null check technically happens in the wrong place, which can lead to
  1145   // invalid stack traces when string compare is inlined into a method
  1146   // which handles NullPointerExceptions.
  1147   _sp += nargs;
  1148   receiver = do_null_check(receiver, T_OBJECT);
  1149   //should not do null check for argument for String.equals(), because spec
  1150   //allows to specify NULL as argument.
  1151   _sp -= nargs;
  1153   if (stopped()) {
  1154     return true;
  1157   // paths (plus control) merge
  1158   RegionNode* region = new (C) RegionNode(5);
  1159   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1161   // does source == target string?
  1162   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1163   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1165   Node* if_eq = generate_slow_guard(bol, NULL);
  1166   if (if_eq != NULL) {
  1167     // receiver == argument
  1168     phi->init_req(2, intcon(1));
  1169     region->init_req(2, if_eq);
  1172   // get String klass for instanceOf
  1173   ciInstanceKlass* klass = env()->String_klass();
  1175   if (!stopped()) {
  1176     _sp += nargs;          // gen_instanceof might do an uncommon trap
  1177     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1178     _sp -= nargs;
  1179     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1180     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1182     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1183     //instanceOf == true, fallthrough
  1185     if (inst_false != NULL) {
  1186       phi->init_req(3, intcon(0));
  1187       region->init_req(3, inst_false);
  1191   if (!stopped()) {
  1192     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1194     // Properly cast the argument to String
  1195     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1196     // This path is taken only when argument's type is String:NotNull.
  1197     argument = cast_not_null(argument, false);
  1199     Node* no_ctrl = NULL;
  1201     // Get start addr of receiver
  1202     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1203     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1204     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1206     // Get length of receiver
  1207     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1209     // Get start addr of argument
  1210     Node* argument_val   = load_String_value(no_ctrl, argument);
  1211     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1212     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1214     // Get length of argument
  1215     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1217     // Check for receiver count != argument count
  1218     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
  1219     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
  1220     Node* if_ne = generate_slow_guard(bol, NULL);
  1221     if (if_ne != NULL) {
  1222       phi->init_req(4, intcon(0));
  1223       region->init_req(4, if_ne);
  1226     // Check for count == 0 is done by assembler code for StrEquals.
  1228     if (!stopped()) {
  1229       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1230       phi->init_req(1, equals);
  1231       region->init_req(1, control());
  1235   // post merge
  1236   set_control(_gvn.transform(region));
  1237   record_for_igvn(region);
  1239   push(_gvn.transform(phi));
  1241   return true;
  1244 //------------------------------inline_array_equals----------------------------
  1245 bool LibraryCallKit::inline_array_equals() {
  1247   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1249   _sp += 2;
  1250   Node *argument2 = pop();
  1251   Node *argument1 = pop();
  1253   Node* equals =
  1254     _gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1255                                         argument1, argument2) );
  1256   push(equals);
  1257   return true;
  1260 // Java version of String.indexOf(constant string)
  1261 // class StringDecl {
  1262 //   StringDecl(char[] ca) {
  1263 //     offset = 0;
  1264 //     count = ca.length;
  1265 //     value = ca;
  1266 //   }
  1267 //   int offset;
  1268 //   int count;
  1269 //   char[] value;
  1270 // }
  1271 //
  1272 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1273 //                             int targetOffset, int cache_i, int md2) {
  1274 //   int cache = cache_i;
  1275 //   int sourceOffset = string_object.offset;
  1276 //   int sourceCount = string_object.count;
  1277 //   int targetCount = target_object.length;
  1278 //
  1279 //   int targetCountLess1 = targetCount - 1;
  1280 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1281 //
  1282 //   char[] source = string_object.value;
  1283 //   char[] target = target_object;
  1284 //   int lastChar = target[targetCountLess1];
  1285 //
  1286 //  outer_loop:
  1287 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1288 //     int src = source[i + targetCountLess1];
  1289 //     if (src == lastChar) {
  1290 //       // With random strings and a 4-character alphabet,
  1291 //       // reverse matching at this point sets up 0.8% fewer
  1292 //       // frames, but (paradoxically) makes 0.3% more probes.
  1293 //       // Since those probes are nearer the lastChar probe,
  1294 //       // there is may be a net D$ win with reverse matching.
  1295 //       // But, reversing loop inhibits unroll of inner loop
  1296 //       // for unknown reason.  So, does running outer loop from
  1297 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1298 //       for (int j = 0; j < targetCountLess1; j++) {
  1299 //         if (target[targetOffset + j] != source[i+j]) {
  1300 //           if ((cache & (1 << source[i+j])) == 0) {
  1301 //             if (md2 < j+1) {
  1302 //               i += j+1;
  1303 //               continue outer_loop;
  1304 //             }
  1305 //           }
  1306 //           i += md2;
  1307 //           continue outer_loop;
  1308 //         }
  1309 //       }
  1310 //       return i - sourceOffset;
  1311 //     }
  1312 //     if ((cache & (1 << src)) == 0) {
  1313 //       i += targetCountLess1;
  1314 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1315 //     i++;
  1316 //   }
  1317 //   return -1;
  1318 // }
  1320 //------------------------------string_indexOf------------------------
  1321 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1322                                      jint cache_i, jint md2_i) {
  1324   Node* no_ctrl  = NULL;
  1325   float likely   = PROB_LIKELY(0.9);
  1326   float unlikely = PROB_UNLIKELY(0.9);
  1328   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1330   Node* source        = load_String_value(no_ctrl, string_object);
  1331   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1332   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1334   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1335   jint target_length = target_array->length();
  1336   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1337   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1339   IdealKit kit(this, false, true);
  1340 #define __ kit.
  1341   Node* zero             = __ ConI(0);
  1342   Node* one              = __ ConI(1);
  1343   Node* cache            = __ ConI(cache_i);
  1344   Node* md2              = __ ConI(md2_i);
  1345   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1346   Node* targetCount      = __ ConI(target_length);
  1347   Node* targetCountLess1 = __ ConI(target_length - 1);
  1348   Node* targetOffset     = __ ConI(targetOffset_i);
  1349   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1351   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1352   Node* outer_loop = __ make_label(2 /* goto */);
  1353   Node* return_    = __ make_label(1);
  1355   __ set(rtn,__ ConI(-1));
  1356   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1357        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1358        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1359        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1360        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1361          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1362               Node* tpj = __ AddI(targetOffset, __ value(j));
  1363               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1364               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1365               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1366               __ if_then(targ, BoolTest::ne, src2); {
  1367                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1368                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1369                     __ increment(i, __ AddI(__ value(j), one));
  1370                     __ goto_(outer_loop);
  1371                   } __ end_if(); __ dead(j);
  1372                 }__ end_if(); __ dead(j);
  1373                 __ increment(i, md2);
  1374                 __ goto_(outer_loop);
  1375               }__ end_if();
  1376               __ increment(j, one);
  1377          }__ end_loop(); __ dead(j);
  1378          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1379          __ goto_(return_);
  1380        }__ end_if();
  1381        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1382          __ increment(i, targetCountLess1);
  1383        }__ end_if();
  1384        __ increment(i, one);
  1385        __ bind(outer_loop);
  1386   }__ end_loop(); __ dead(i);
  1387   __ bind(return_);
  1389   // Final sync IdealKit and GraphKit.
  1390   final_sync(kit);
  1391   Node* result = __ value(rtn);
  1392 #undef __
  1393   C->set_has_loops(true);
  1394   return result;
  1397 //------------------------------inline_string_indexOf------------------------
  1398 bool LibraryCallKit::inline_string_indexOf() {
  1400   _sp += 2;
  1401   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1402   Node *receiver = pop();
  1404   Node* result;
  1405   // Disable the use of pcmpestri until it can be guaranteed that
  1406   // the load doesn't cross into the uncommited space.
  1407   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1408       UseSSE42Intrinsics) {
  1409     // Generate SSE4.2 version of indexOf
  1410     // We currently only have match rules that use SSE4.2
  1412     // Null check on self without removing any arguments.  The argument
  1413     // null check technically happens in the wrong place, which can lead to
  1414     // invalid stack traces when string compare is inlined into a method
  1415     // which handles NullPointerExceptions.
  1416     _sp += 2;
  1417     receiver = do_null_check(receiver, T_OBJECT);
  1418     argument = do_null_check(argument, T_OBJECT);
  1419     _sp -= 2;
  1421     if (stopped()) {
  1422       return true;
  1425     ciInstanceKlass* str_klass = env()->String_klass();
  1426     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1428     // Make the merge point
  1429     RegionNode* result_rgn = new (C) RegionNode(4);
  1430     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1431     Node* no_ctrl  = NULL;
  1433     // Get start addr of source string
  1434     Node* source = load_String_value(no_ctrl, receiver);
  1435     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1436     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1438     // Get length of source string
  1439     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1441     // Get start addr of substring
  1442     Node* substr = load_String_value(no_ctrl, argument);
  1443     Node* substr_offset = load_String_offset(no_ctrl, argument);
  1444     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1446     // Get length of source string
  1447     Node* substr_cnt  = load_String_length(no_ctrl, argument);
  1449     // Check for substr count > string count
  1450     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
  1451     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
  1452     Node* if_gt = generate_slow_guard(bol, NULL);
  1453     if (if_gt != NULL) {
  1454       result_phi->init_req(2, intcon(-1));
  1455       result_rgn->init_req(2, if_gt);
  1458     if (!stopped()) {
  1459       // Check for substr count == 0
  1460       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
  1461       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  1462       Node* if_zero = generate_slow_guard(bol, NULL);
  1463       if (if_zero != NULL) {
  1464         result_phi->init_req(3, intcon(0));
  1465         result_rgn->init_req(3, if_zero);
  1469     if (!stopped()) {
  1470       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1471       result_phi->init_req(1, result);
  1472       result_rgn->init_req(1, control());
  1474     set_control(_gvn.transform(result_rgn));
  1475     record_for_igvn(result_rgn);
  1476     result = _gvn.transform(result_phi);
  1478   } else { // Use LibraryCallKit::string_indexOf
  1479     // don't intrinsify if argument isn't a constant string.
  1480     if (!argument->is_Con()) {
  1481      return false;
  1483     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1484     if (str_type == NULL) {
  1485       return false;
  1487     ciInstanceKlass* klass = env()->String_klass();
  1488     ciObject* str_const = str_type->const_oop();
  1489     if (str_const == NULL || str_const->klass() != klass) {
  1490       return false;
  1492     ciInstance* str = str_const->as_instance();
  1493     assert(str != NULL, "must be instance");
  1495     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1496     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1498     int o;
  1499     int c;
  1500     if (java_lang_String::has_offset_field()) {
  1501       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1502       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1503     } else {
  1504       o = 0;
  1505       c = pat->length();
  1508     // constant strings have no offset and count == length which
  1509     // simplifies the resulting code somewhat so lets optimize for that.
  1510     if (o != 0 || c != pat->length()) {
  1511      return false;
  1514     // Null check on self without removing any arguments.  The argument
  1515     // null check technically happens in the wrong place, which can lead to
  1516     // invalid stack traces when string compare is inlined into a method
  1517     // which handles NullPointerExceptions.
  1518     _sp += 2;
  1519     receiver = do_null_check(receiver, T_OBJECT);
  1520     // No null check on the argument is needed since it's a constant String oop.
  1521     _sp -= 2;
  1522     if (stopped()) {
  1523       return true;
  1526     // The null string as a pattern always returns 0 (match at beginning of string)
  1527     if (c == 0) {
  1528       push(intcon(0));
  1529       return true;
  1532     // Generate default indexOf
  1533     jchar lastChar = pat->char_at(o + (c - 1));
  1534     int cache = 0;
  1535     int i;
  1536     for (i = 0; i < c - 1; i++) {
  1537       assert(i < pat->length(), "out of range");
  1538       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1541     int md2 = c;
  1542     for (i = 0; i < c - 1; i++) {
  1543       assert(i < pat->length(), "out of range");
  1544       if (pat->char_at(o + i) == lastChar) {
  1545         md2 = (c - 1) - i;
  1549     result = string_indexOf(receiver, pat, o, cache, md2);
  1552   push(result);
  1553   return true;
  1556 //--------------------------pop_math_arg--------------------------------
  1557 // Pop a double argument to a math function from the stack
  1558 // rounding it if necessary.
  1559 Node * LibraryCallKit::pop_math_arg() {
  1560   Node *arg = pop_pair();
  1561   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1562     arg = _gvn.transform( new (C) RoundDoubleNode(0, arg) );
  1563   return arg;
  1566 //------------------------------inline_trig----------------------------------
  1567 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1568 // argument reduction which will turn into a fast/slow diamond.
  1569 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1570   _sp += arg_size();            // restore stack pointer
  1571   Node* arg = pop_math_arg();
  1572   Node* trig = NULL;
  1574   switch (id) {
  1575   case vmIntrinsics::_dsin:
  1576     trig = _gvn.transform((Node*)new (C) SinDNode(arg));
  1577     break;
  1578   case vmIntrinsics::_dcos:
  1579     trig = _gvn.transform((Node*)new (C) CosDNode(arg));
  1580     break;
  1581   case vmIntrinsics::_dtan:
  1582     trig = _gvn.transform((Node*)new (C) TanDNode(arg));
  1583     break;
  1584   default:
  1585     assert(false, "bad intrinsic was passed in");
  1586     return false;
  1589   // Rounding required?  Check for argument reduction!
  1590   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1592     static const double     pi_4 =  0.7853981633974483;
  1593     static const double neg_pi_4 = -0.7853981633974483;
  1594     // pi/2 in 80-bit extended precision
  1595     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1596     // -pi/2 in 80-bit extended precision
  1597     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1598     // Cutoff value for using this argument reduction technique
  1599     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1600     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1602     // Pseudocode for sin:
  1603     // if (x <= Math.PI / 4.0) {
  1604     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1605     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1606     // } else {
  1607     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1608     // }
  1609     // return StrictMath.sin(x);
  1611     // Pseudocode for cos:
  1612     // if (x <= Math.PI / 4.0) {
  1613     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1614     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1615     // } else {
  1616     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1617     // }
  1618     // return StrictMath.cos(x);
  1620     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1621     // requires a special machine instruction to load it.  Instead we'll try
  1622     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1623     // probably do the math inside the SIN encoding.
  1625     // Make the merge point
  1626     RegionNode *r = new (C) RegionNode(3);
  1627     Node *phi = new (C) PhiNode(r,Type::DOUBLE);
  1629     // Flatten arg so we need only 1 test
  1630     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1631     // Node for PI/4 constant
  1632     Node *pi4 = makecon(TypeD::make(pi_4));
  1633     // Check PI/4 : abs(arg)
  1634     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1635     // Check: If PI/4 < abs(arg) then go slow
  1636     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
  1637     // Branch either way
  1638     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1639     set_control(opt_iff(r,iff));
  1641     // Set fast path result
  1642     phi->init_req(2,trig);
  1644     // Slow path - non-blocking leaf call
  1645     Node* call = NULL;
  1646     switch (id) {
  1647     case vmIntrinsics::_dsin:
  1648       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1649                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1650                                "Sin", NULL, arg, top());
  1651       break;
  1652     case vmIntrinsics::_dcos:
  1653       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1654                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1655                                "Cos", NULL, arg, top());
  1656       break;
  1657     case vmIntrinsics::_dtan:
  1658       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1659                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1660                                "Tan", NULL, arg, top());
  1661       break;
  1663     assert(control()->in(0) == call, "");
  1664     Node* slow_result = _gvn.transform(new (C) ProjNode(call,TypeFunc::Parms));
  1665     r->init_req(1,control());
  1666     phi->init_req(1,slow_result);
  1668     // Post-merge
  1669     set_control(_gvn.transform(r));
  1670     record_for_igvn(r);
  1671     trig = _gvn.transform(phi);
  1673     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1675   // Push result back on JVM stack
  1676   push_pair(trig);
  1677   return true;
  1680 //------------------------------inline_sqrt-------------------------------------
  1681 // Inline square root instruction, if possible.
  1682 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1683   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1684   _sp += arg_size();        // restore stack pointer
  1685   push_pair(_gvn.transform(new (C) SqrtDNode(0, pop_math_arg())));
  1686   return true;
  1689 //------------------------------inline_abs-------------------------------------
  1690 // Inline absolute value instruction, if possible.
  1691 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1692   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1693   _sp += arg_size();        // restore stack pointer
  1694   push_pair(_gvn.transform(new (C) AbsDNode(pop_math_arg())));
  1695   return true;
  1698 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1699   //-------------------
  1700   //result=(result.isNaN())? funcAddr():result;
  1701   // Check: If isNaN() by checking result!=result? then either trap
  1702   // or go to runtime
  1703   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result,result));
  1704   // Build the boolean node
  1705   Node* bolisnum = _gvn.transform( new (C) BoolNode(cmpisnan, BoolTest::eq) );
  1707   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1709       BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1710       // End the current control-flow path
  1711       push_pair(x);
  1712       if (y != NULL) {
  1713         push_pair(y);
  1715       // The pow or exp intrinsic returned a NaN, which requires a call
  1716       // to the runtime.  Recompile with the runtime call.
  1717       uncommon_trap(Deoptimization::Reason_intrinsic,
  1718                     Deoptimization::Action_make_not_entrant);
  1720     push_pair(result);
  1721   } else {
  1722     // If this inlining ever returned NaN in the past, we compile a call
  1723     // to the runtime to properly handle corner cases
  1725     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1726     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
  1727     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
  1729     if (!if_slow->is_top()) {
  1730       RegionNode* result_region = new(C) RegionNode(3);
  1731       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1733       result_region->init_req(1, if_fast);
  1734       result_val->init_req(1, result);
  1736       set_control(if_slow);
  1738       const TypePtr* no_memory_effects = NULL;
  1739       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1740                                    no_memory_effects,
  1741                                    x, top(), y, y ? top() : NULL);
  1742       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1743 #ifdef ASSERT
  1744       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1745       assert(value_top == top(), "second value must be top");
  1746 #endif
  1748       result_region->init_req(2, control());
  1749       result_val->init_req(2, value);
  1750       push_result(result_region, result_val);
  1751     } else {
  1752       push_pair(result);
  1757 //------------------------------inline_exp-------------------------------------
  1758 // Inline exp instructions, if possible.  The Intel hardware only misses
  1759 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1760 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1761   assert(id == vmIntrinsics::_dexp, "Not exp");
  1763   _sp += arg_size();        // restore stack pointer
  1764   Node *x = pop_math_arg();
  1765   Node *result = _gvn.transform(new (C) ExpDNode(0,x));
  1767   finish_pow_exp(result, x, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1769   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1771   return true;
  1774 //------------------------------inline_pow-------------------------------------
  1775 // Inline power instructions, if possible.
  1776 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1777   assert(id == vmIntrinsics::_dpow, "Not pow");
  1779   // Pseudocode for pow
  1780   // if (x <= 0.0) {
  1781   //   long longy = (long)y;
  1782   //   if ((double)longy == y) { // if y is long
  1783   //     if (y + 1 == y) longy = 0; // huge number: even
  1784   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1785   //   } else {
  1786   //     result = NaN;
  1787   //   }
  1788   // } else {
  1789   //   result = DPow(x,y);
  1790   // }
  1791   // if (result != result)?  {
  1792   //   result = uncommon_trap() or runtime_call();
  1793   // }
  1794   // return result;
  1796   _sp += arg_size();        // restore stack pointer
  1797   Node* y = pop_math_arg();
  1798   Node* x = pop_math_arg();
  1800   Node* result = NULL;
  1802   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1803     // Short form: skip the fancy tests and just check for NaN result.
  1804     result = _gvn.transform( new (C) PowDNode(0, x, y) );
  1805   } else {
  1806     // If this inlining ever returned NaN in the past, include all
  1807     // checks + call to the runtime.
  1809     // Set the merge point for If node with condition of (x <= 0.0)
  1810     // There are four possible paths to region node and phi node
  1811     RegionNode *r = new (C) RegionNode(4);
  1812     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1814     // Build the first if node: if (x <= 0.0)
  1815     // Node for 0 constant
  1816     Node *zeronode = makecon(TypeD::ZERO);
  1817     // Check x:0
  1818     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1819     // Check: If (x<=0) then go complex path
  1820     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
  1821     // Branch either way
  1822     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1823     // Fast path taken; set region slot 3
  1824     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
  1825     r->init_req(3,fast_taken); // Capture fast-control
  1827     // Fast path not-taken, i.e. slow path
  1828     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
  1830     // Set fast path result
  1831     Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
  1832     phi->init_req(3, fast_result);
  1834     // Complex path
  1835     // Build the second if node (if y is long)
  1836     // Node for (long)y
  1837     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
  1838     // Node for (double)((long) y)
  1839     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
  1840     // Check (double)((long) y) : y
  1841     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1842     // Check if (y isn't long) then go to slow path
  1844     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
  1845     // Branch either way
  1846     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1847     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
  1849     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
  1851     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1852     // Node for constant 1
  1853     Node *conone = longcon(1);
  1854     // 1& (long)y
  1855     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
  1857     // A huge number is always even. Detect a huge number by checking
  1858     // if y + 1 == y and set integer to be tested for parity to 0.
  1859     // Required for corner case:
  1860     // (long)9.223372036854776E18 = max_jlong
  1861     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1862     // max_jlong is odd but 9.223372036854776E18 is even
  1863     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
  1864     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1865     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
  1866     Node* correctedsign = NULL;
  1867     if (ConditionalMoveLimit != 0) {
  1868       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1869     } else {
  1870       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1871       RegionNode *r = new (C) RegionNode(3);
  1872       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1873       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
  1874       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
  1875       phi->init_req(1, signnode);
  1876       phi->init_req(2, longcon(0));
  1877       correctedsign = _gvn.transform(phi);
  1878       ylong_path = _gvn.transform(r);
  1879       record_for_igvn(r);
  1882     // zero node
  1883     Node *conzero = longcon(0);
  1884     // Check (1&(long)y)==0?
  1885     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1886     // Check if (1&(long)y)!=0?, if so the result is negative
  1887     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
  1888     // abs(x)
  1889     Node *absx=_gvn.transform( new (C) AbsDNode(x));
  1890     // abs(x)^y
  1891     Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
  1892     // -abs(x)^y
  1893     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1894     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1895     Node *signresult = NULL;
  1896     if (ConditionalMoveLimit != 0) {
  1897       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1898     } else {
  1899       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1900       RegionNode *r = new (C) RegionNode(3);
  1901       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1902       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
  1903       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
  1904       phi->init_req(1, absxpowy);
  1905       phi->init_req(2, negabsxpowy);
  1906       signresult = _gvn.transform(phi);
  1907       ylong_path = _gvn.transform(r);
  1908       record_for_igvn(r);
  1910     // Set complex path fast result
  1911     r->init_req(2, ylong_path);
  1912     phi->init_req(2, signresult);
  1914     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1915     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1916     r->init_req(1,slow_path);
  1917     phi->init_req(1,slow_result);
  1919     // Post merge
  1920     set_control(_gvn.transform(r));
  1921     record_for_igvn(r);
  1922     result=_gvn.transform(phi);
  1925   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1927   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1929   return true;
  1932 //------------------------------inline_trans-------------------------------------
  1933 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1934 // these right, no funny corner cases missed.
  1935 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1936   _sp += arg_size();        // restore stack pointer
  1937   Node* arg = pop_math_arg();
  1938   Node* trans = NULL;
  1940   switch (id) {
  1941   case vmIntrinsics::_dlog:
  1942     trans = _gvn.transform((Node*)new (C) LogDNode(arg));
  1943     break;
  1944   case vmIntrinsics::_dlog10:
  1945     trans = _gvn.transform((Node*)new (C) Log10DNode(arg));
  1946     break;
  1947   default:
  1948     assert(false, "bad intrinsic was passed in");
  1949     return false;
  1952   // Push result back on JVM stack
  1953   push_pair(trans);
  1954   return true;
  1957 //------------------------------runtime_math-----------------------------
  1958 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1959   Node* a = NULL;
  1960   Node* b = NULL;
  1962   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1963          "must be (DD)D or (D)D type");
  1965   // Inputs
  1966   _sp += arg_size();        // restore stack pointer
  1967   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1968     b = pop_math_arg();
  1970   a = pop_math_arg();
  1972   const TypePtr* no_memory_effects = NULL;
  1973   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1974                                  no_memory_effects,
  1975                                  a, top(), b, b ? top() : NULL);
  1976   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1977 #ifdef ASSERT
  1978   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1979   assert(value_top == top(), "second value must be top");
  1980 #endif
  1982   push_pair(value);
  1983   return true;
  1986 //------------------------------inline_math_native-----------------------------
  1987 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1988   switch (id) {
  1989     // These intrinsics are not properly supported on all hardware
  1990   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1991     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1992   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1993     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1994   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1995     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1997   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1998     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1999   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  2000     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  2002     // These intrinsics are supported on all hardware
  2003   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  2004   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  2006   case vmIntrinsics::_dexp:  return
  2007     Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
  2008     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  2009   case vmIntrinsics::_dpow:  return
  2010     Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
  2011     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  2013    // These intrinsics are not yet correctly implemented
  2014   case vmIntrinsics::_datan2:
  2015     return false;
  2017   default:
  2018     ShouldNotReachHere();
  2019     return false;
  2023 static bool is_simple_name(Node* n) {
  2024   return (n->req() == 1         // constant
  2025           || (n->is_Type() && n->as_Type()->type()->singleton())
  2026           || n->is_Proj()       // parameter or return value
  2027           || n->is_Phi()        // local of some sort
  2028           );
  2031 //----------------------------inline_min_max-----------------------------------
  2032 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2033   push(generate_min_max(id, argument(0), argument(1)));
  2035   return true;
  2038 Node*
  2039 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2040   // These are the candidate return value:
  2041   Node* xvalue = x0;
  2042   Node* yvalue = y0;
  2044   if (xvalue == yvalue) {
  2045     return xvalue;
  2048   bool want_max = (id == vmIntrinsics::_max);
  2050   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2051   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2052   if (txvalue == NULL || tyvalue == NULL)  return top();
  2053   // This is not really necessary, but it is consistent with a
  2054   // hypothetical MaxINode::Value method:
  2055   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2057   // %%% This folding logic should (ideally) be in a different place.
  2058   // Some should be inside IfNode, and there to be a more reliable
  2059   // transformation of ?: style patterns into cmoves.  We also want
  2060   // more powerful optimizations around cmove and min/max.
  2062   // Try to find a dominating comparison of these guys.
  2063   // It can simplify the index computation for Arrays.copyOf
  2064   // and similar uses of System.arraycopy.
  2065   // First, compute the normalized version of CmpI(x, y).
  2066   int   cmp_op = Op_CmpI;
  2067   Node* xkey = xvalue;
  2068   Node* ykey = yvalue;
  2069   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
  2070   if (ideal_cmpxy->is_Cmp()) {
  2071     // E.g., if we have CmpI(length - offset, count),
  2072     // it might idealize to CmpI(length, count + offset)
  2073     cmp_op = ideal_cmpxy->Opcode();
  2074     xkey = ideal_cmpxy->in(1);
  2075     ykey = ideal_cmpxy->in(2);
  2078   // Start by locating any relevant comparisons.
  2079   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2080   Node* cmpxy = NULL;
  2081   Node* cmpyx = NULL;
  2082   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2083     Node* cmp = start_from->fast_out(k);
  2084     if (cmp->outcnt() > 0 &&            // must have prior uses
  2085         cmp->in(0) == NULL &&           // must be context-independent
  2086         cmp->Opcode() == cmp_op) {      // right kind of compare
  2087       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2088       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2092   const int NCMPS = 2;
  2093   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2094   int cmpn;
  2095   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2096     if (cmps[cmpn] != NULL)  break;     // find a result
  2098   if (cmpn < NCMPS) {
  2099     // Look for a dominating test that tells us the min and max.
  2100     int depth = 0;                // Limit search depth for speed
  2101     Node* dom = control();
  2102     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2103       if (++depth >= 100)  break;
  2104       Node* ifproj = dom;
  2105       if (!ifproj->is_Proj())  continue;
  2106       Node* iff = ifproj->in(0);
  2107       if (!iff->is_If())  continue;
  2108       Node* bol = iff->in(1);
  2109       if (!bol->is_Bool())  continue;
  2110       Node* cmp = bol->in(1);
  2111       if (cmp == NULL)  continue;
  2112       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2113         if (cmps[cmpn] == cmp)  break;
  2114       if (cmpn == NCMPS)  continue;
  2115       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2116       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2117       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2118       // At this point, we know that 'x btest y' is true.
  2119       switch (btest) {
  2120       case BoolTest::eq:
  2121         // They are proven equal, so we can collapse the min/max.
  2122         // Either value is the answer.  Choose the simpler.
  2123         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2124           return yvalue;
  2125         return xvalue;
  2126       case BoolTest::lt:          // x < y
  2127       case BoolTest::le:          // x <= y
  2128         return (want_max ? yvalue : xvalue);
  2129       case BoolTest::gt:          // x > y
  2130       case BoolTest::ge:          // x >= y
  2131         return (want_max ? xvalue : yvalue);
  2136   // We failed to find a dominating test.
  2137   // Let's pick a test that might GVN with prior tests.
  2138   Node*          best_bol   = NULL;
  2139   BoolTest::mask best_btest = BoolTest::illegal;
  2140   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2141     Node* cmp = cmps[cmpn];
  2142     if (cmp == NULL)  continue;
  2143     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2144       Node* bol = cmp->fast_out(j);
  2145       if (!bol->is_Bool())  continue;
  2146       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2147       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2148       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2149       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2150         best_bol   = bol->as_Bool();
  2151         best_btest = btest;
  2156   Node* answer_if_true  = NULL;
  2157   Node* answer_if_false = NULL;
  2158   switch (best_btest) {
  2159   default:
  2160     if (cmpxy == NULL)
  2161       cmpxy = ideal_cmpxy;
  2162     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
  2163     // and fall through:
  2164   case BoolTest::lt:          // x < y
  2165   case BoolTest::le:          // x <= y
  2166     answer_if_true  = (want_max ? yvalue : xvalue);
  2167     answer_if_false = (want_max ? xvalue : yvalue);
  2168     break;
  2169   case BoolTest::gt:          // x > y
  2170   case BoolTest::ge:          // x >= y
  2171     answer_if_true  = (want_max ? xvalue : yvalue);
  2172     answer_if_false = (want_max ? yvalue : xvalue);
  2173     break;
  2176   jint hi, lo;
  2177   if (want_max) {
  2178     // We can sharpen the minimum.
  2179     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2180     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2181   } else {
  2182     // We can sharpen the maximum.
  2183     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2184     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2187   // Use a flow-free graph structure, to avoid creating excess control edges
  2188   // which could hinder other optimizations.
  2189   // Since Math.min/max is often used with arraycopy, we want
  2190   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2191   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2192                                answer_if_false, answer_if_true,
  2193                                TypeInt::make(lo, hi, widen));
  2195   return _gvn.transform(cmov);
  2197   /*
  2198   // This is not as desirable as it may seem, since Min and Max
  2199   // nodes do not have a full set of optimizations.
  2200   // And they would interfere, anyway, with 'if' optimizations
  2201   // and with CMoveI canonical forms.
  2202   switch (id) {
  2203   case vmIntrinsics::_min:
  2204     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2205   case vmIntrinsics::_max:
  2206     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2207   default:
  2208     ShouldNotReachHere();
  2210   */
  2213 inline int
  2214 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2215   const TypePtr* base_type = TypePtr::NULL_PTR;
  2216   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2217   if (base_type == NULL) {
  2218     // Unknown type.
  2219     return Type::AnyPtr;
  2220   } else if (base_type == TypePtr::NULL_PTR) {
  2221     // Since this is a NULL+long form, we have to switch to a rawptr.
  2222     base   = _gvn.transform( new (C) CastX2PNode(offset) );
  2223     offset = MakeConX(0);
  2224     return Type::RawPtr;
  2225   } else if (base_type->base() == Type::RawPtr) {
  2226     return Type::RawPtr;
  2227   } else if (base_type->isa_oopptr()) {
  2228     // Base is never null => always a heap address.
  2229     if (base_type->ptr() == TypePtr::NotNull) {
  2230       return Type::OopPtr;
  2232     // Offset is small => always a heap address.
  2233     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2234     if (offset_type != NULL &&
  2235         base_type->offset() == 0 &&     // (should always be?)
  2236         offset_type->_lo >= 0 &&
  2237         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2238       return Type::OopPtr;
  2240     // Otherwise, it might either be oop+off or NULL+addr.
  2241     return Type::AnyPtr;
  2242   } else {
  2243     // No information:
  2244     return Type::AnyPtr;
  2248 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2249   int kind = classify_unsafe_addr(base, offset);
  2250   if (kind == Type::RawPtr) {
  2251     return basic_plus_adr(top(), base, offset);
  2252   } else {
  2253     return basic_plus_adr(base, offset);
  2257 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2258 // inline int Integer.numberOfLeadingZeros(int)
  2259 // inline int Long.numberOfLeadingZeros(long)
  2260 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2261   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2262   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2263   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2264   _sp += arg_size();  // restore stack pointer
  2265   switch (id) {
  2266   case vmIntrinsics::_numberOfLeadingZeros_i:
  2267     push(_gvn.transform(new (C) CountLeadingZerosINode(pop())));
  2268     break;
  2269   case vmIntrinsics::_numberOfLeadingZeros_l:
  2270     push(_gvn.transform(new (C) CountLeadingZerosLNode(pop_pair())));
  2271     break;
  2272   default:
  2273     ShouldNotReachHere();
  2275   return true;
  2278 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2279 // inline int Integer.numberOfTrailingZeros(int)
  2280 // inline int Long.numberOfTrailingZeros(long)
  2281 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2282   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2283   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2284   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2285   _sp += arg_size();  // restore stack pointer
  2286   switch (id) {
  2287   case vmIntrinsics::_numberOfTrailingZeros_i:
  2288     push(_gvn.transform(new (C) CountTrailingZerosINode(pop())));
  2289     break;
  2290   case vmIntrinsics::_numberOfTrailingZeros_l:
  2291     push(_gvn.transform(new (C) CountTrailingZerosLNode(pop_pair())));
  2292     break;
  2293   default:
  2294     ShouldNotReachHere();
  2296   return true;
  2299 //----------------------------inline_bitCount_int/long-----------------------
  2300 // inline int Integer.bitCount(int)
  2301 // inline int Long.bitCount(long)
  2302 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2303   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2304   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2305   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2306   _sp += arg_size();  // restore stack pointer
  2307   switch (id) {
  2308   case vmIntrinsics::_bitCount_i:
  2309     push(_gvn.transform(new (C) PopCountINode(pop())));
  2310     break;
  2311   case vmIntrinsics::_bitCount_l:
  2312     push(_gvn.transform(new (C) PopCountLNode(pop_pair())));
  2313     break;
  2314   default:
  2315     ShouldNotReachHere();
  2317   return true;
  2320 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2321 // inline Integer.reverseBytes(int)
  2322 // inline Long.reverseBytes(long)
  2323 // inline Character.reverseBytes(char)
  2324 // inline Short.reverseBytes(short)
  2325 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2326   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2327          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2328          "not reverse Bytes");
  2329   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2330   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2331   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2332   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2333   _sp += arg_size();  // restore stack pointer
  2334   switch (id) {
  2335   case vmIntrinsics::_reverseBytes_i:
  2336     push(_gvn.transform(new (C) ReverseBytesINode(0, pop())));
  2337     break;
  2338   case vmIntrinsics::_reverseBytes_l:
  2339     push_pair(_gvn.transform(new (C) ReverseBytesLNode(0, pop_pair())));
  2340     break;
  2341   case vmIntrinsics::_reverseBytes_c:
  2342     push(_gvn.transform(new (C) ReverseBytesUSNode(0, pop())));
  2343     break;
  2344   case vmIntrinsics::_reverseBytes_s:
  2345     push(_gvn.transform(new (C) ReverseBytesSNode(0, pop())));
  2346     break;
  2347   default:
  2350   return true;
  2353 //----------------------------inline_unsafe_access----------------------------
  2355 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2357 // Helper that guards and inserts a pre-barrier.
  2358 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2359                                         Node* pre_val, int nargs, bool need_mem_bar) {
  2360   // We could be accessing the referent field of a reference object. If so, when G1
  2361   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2362   // This routine performs some compile time filters and generates suitable
  2363   // runtime filters that guard the pre-barrier code.
  2364   // Also add memory barrier for non volatile load from the referent field
  2365   // to prevent commoning of loads across safepoint.
  2366   if (!UseG1GC && !need_mem_bar)
  2367     return;
  2369   // Some compile time checks.
  2371   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2372   const TypeX* otype = offset->find_intptr_t_type();
  2373   if (otype != NULL && otype->is_con() &&
  2374       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2375     // Constant offset but not the reference_offset so just return
  2376     return;
  2379   // We only need to generate the runtime guards for instances.
  2380   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2381   if (btype != NULL) {
  2382     if (btype->isa_aryptr()) {
  2383       // Array type so nothing to do
  2384       return;
  2387     const TypeInstPtr* itype = btype->isa_instptr();
  2388     if (itype != NULL) {
  2389       // Can the klass of base_oop be statically determined to be
  2390       // _not_ a sub-class of Reference and _not_ Object?
  2391       ciKlass* klass = itype->klass();
  2392       if ( klass->is_loaded() &&
  2393           !klass->is_subtype_of(env()->Reference_klass()) &&
  2394           !env()->Object_klass()->is_subtype_of(klass)) {
  2395         return;
  2400   // The compile time filters did not reject base_oop/offset so
  2401   // we need to generate the following runtime filters
  2402   //
  2403   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2404   //   if (instance_of(base, java.lang.ref.Reference)) {
  2405   //     pre_barrier(_, pre_val, ...);
  2406   //   }
  2407   // }
  2409   float likely  = PROB_LIKELY(0.999);
  2410   float unlikely  = PROB_UNLIKELY(0.999);
  2412   IdealKit ideal(this);
  2413 #define __ ideal.
  2415   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2417   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2418       // Update graphKit memory and control from IdealKit.
  2419       sync_kit(ideal);
  2421       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2422       _sp += nargs;  // gen_instanceof might do an uncommon trap
  2423       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2424       _sp -= nargs;
  2426       // Update IdealKit memory and control from graphKit.
  2427       __ sync_kit(this);
  2429       Node* one = __ ConI(1);
  2430       // is_instof == 0 if base_oop == NULL
  2431       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2433         // Update graphKit from IdeakKit.
  2434         sync_kit(ideal);
  2436         // Use the pre-barrier to record the value in the referent field
  2437         pre_barrier(false /* do_load */,
  2438                     __ ctrl(),
  2439                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2440                     pre_val /* pre_val */,
  2441                     T_OBJECT);
  2442         if (need_mem_bar) {
  2443           // Add memory barrier to prevent commoning reads from this field
  2444           // across safepoint since GC can change its value.
  2445           insert_mem_bar(Op_MemBarCPUOrder);
  2447         // Update IdealKit from graphKit.
  2448         __ sync_kit(this);
  2450       } __ end_if(); // _ref_type != ref_none
  2451   } __ end_if(); // offset == referent_offset
  2453   // Final sync IdealKit and GraphKit.
  2454   final_sync(ideal);
  2455 #undef __
  2459 // Interpret Unsafe.fieldOffset cookies correctly:
  2460 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2462 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2463   // Attempt to infer a sharper value type from the offset and base type.
  2464   ciKlass* sharpened_klass = NULL;
  2466   // See if it is an instance field, with an object type.
  2467   if (alias_type->field() != NULL) {
  2468     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2469     if (alias_type->field()->type()->is_klass()) {
  2470       sharpened_klass = alias_type->field()->type()->as_klass();
  2474   // See if it is a narrow oop array.
  2475   if (adr_type->isa_aryptr()) {
  2476     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2477       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2478       if (elem_type != NULL) {
  2479         sharpened_klass = elem_type->klass();
  2484   // The sharpened class might be unloaded if there is no class loader
  2485   // contraint in place.
  2486   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2487     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2489 #ifndef PRODUCT
  2490     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2491       tty->print("  from base type: ");  adr_type->dump();
  2492       tty->print("  sharpened value: ");  tjp->dump();
  2494 #endif
  2495     // Sharpen the value type.
  2496     return tjp;
  2498   return NULL;
  2501 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2502   if (callee()->is_static())  return false;  // caller must have the capability!
  2504 #ifndef PRODUCT
  2506     ResourceMark rm;
  2507     // Check the signatures.
  2508     ciSignature* sig = signature();
  2509 #ifdef ASSERT
  2510     if (!is_store) {
  2511       // Object getObject(Object base, int/long offset), etc.
  2512       BasicType rtype = sig->return_type()->basic_type();
  2513       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2514           rtype = T_ADDRESS;  // it is really a C void*
  2515       assert(rtype == type, "getter must return the expected value");
  2516       if (!is_native_ptr) {
  2517         assert(sig->count() == 2, "oop getter has 2 arguments");
  2518         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2519         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2520       } else {
  2521         assert(sig->count() == 1, "native getter has 1 argument");
  2522         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2524     } else {
  2525       // void putObject(Object base, int/long offset, Object x), etc.
  2526       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2527       if (!is_native_ptr) {
  2528         assert(sig->count() == 3, "oop putter has 3 arguments");
  2529         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2530         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2531       } else {
  2532         assert(sig->count() == 2, "native putter has 2 arguments");
  2533         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2535       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2536       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2537         vtype = T_ADDRESS;  // it is really a C void*
  2538       assert(vtype == type, "putter must accept the expected value");
  2540 #endif // ASSERT
  2542 #endif //PRODUCT
  2544   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2546   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2548   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2549   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2550   assert(callee()->arg_size() == nargs, "must be");
  2552   debug_only(int saved_sp = _sp);
  2553   _sp += nargs;
  2555   Node* val;
  2556   debug_only(val = (Node*)(uintptr_t)-1);
  2559   if (is_store) {
  2560     // Get the value being stored.  (Pop it first; it was pushed last.)
  2561     switch (type) {
  2562     case T_DOUBLE:
  2563     case T_LONG:
  2564     case T_ADDRESS:
  2565       val = pop_pair();
  2566       break;
  2567     default:
  2568       val = pop();
  2572   // Build address expression.  See the code in inline_unsafe_prefetch.
  2573   Node *adr;
  2574   Node *heap_base_oop = top();
  2575   Node* offset = top();
  2577   if (!is_native_ptr) {
  2578     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2579     offset = pop_pair();
  2580     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2581     Node* base   = pop();
  2582     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2583     // to be plain byte offsets, which are also the same as those accepted
  2584     // by oopDesc::field_base.
  2585     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2586            "fieldOffset must be byte-scaled");
  2587     // 32-bit machines ignore the high half!
  2588     offset = ConvL2X(offset);
  2589     adr = make_unsafe_address(base, offset);
  2590     heap_base_oop = base;
  2591   } else {
  2592     Node* ptr = pop_pair();
  2593     // Adjust Java long to machine word:
  2594     ptr = ConvL2X(ptr);
  2595     adr = make_unsafe_address(NULL, ptr);
  2598   // Pop receiver last:  it was pushed first.
  2599   Node *receiver = pop();
  2601   assert(saved_sp == _sp, "must have correct argument count");
  2603   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2605   // First guess at the value type.
  2606   const Type *value_type = Type::get_const_basic_type(type);
  2608   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2609   // there was not enough information to nail it down.
  2610   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2611   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2613   // We will need memory barriers unless we can determine a unique
  2614   // alias category for this reference.  (Note:  If for some reason
  2615   // the barriers get omitted and the unsafe reference begins to "pollute"
  2616   // the alias analysis of the rest of the graph, either Compile::can_alias
  2617   // or Compile::must_alias will throw a diagnostic assert.)
  2618   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2620   // If we are reading the value of the referent field of a Reference
  2621   // object (either by using Unsafe directly or through reflection)
  2622   // then, if G1 is enabled, we need to record the referent in an
  2623   // SATB log buffer using the pre-barrier mechanism.
  2624   // Also we need to add memory barrier to prevent commoning reads
  2625   // from this field across safepoint since GC can change its value.
  2626   bool need_read_barrier = !is_native_ptr && !is_store &&
  2627                            offset != top() && heap_base_oop != top();
  2629   if (!is_store && type == T_OBJECT) {
  2630     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2631     if (tjp != NULL) {
  2632       value_type = tjp;
  2636   // Null check on self without removing any arguments.  The argument
  2637   // null check technically happens in the wrong place, which can lead to
  2638   // invalid stack traces when the primitive is inlined into a method
  2639   // which handles NullPointerExceptions.
  2640   _sp += nargs;
  2641   do_null_check(receiver, T_OBJECT);
  2642   _sp -= nargs;
  2643   if (stopped()) {
  2644     return true;
  2646   // Heap pointers get a null-check from the interpreter,
  2647   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2648   // and it is not possible to fully distinguish unintended nulls
  2649   // from intended ones in this API.
  2651   if (is_volatile) {
  2652     // We need to emit leading and trailing CPU membars (see below) in
  2653     // addition to memory membars when is_volatile. This is a little
  2654     // too strong, but avoids the need to insert per-alias-type
  2655     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2656     // we cannot do effectively here because we probably only have a
  2657     // rough approximation of type.
  2658     need_mem_bar = true;
  2659     // For Stores, place a memory ordering barrier now.
  2660     if (is_store)
  2661       insert_mem_bar(Op_MemBarRelease);
  2664   // Memory barrier to prevent normal and 'unsafe' accesses from
  2665   // bypassing each other.  Happens after null checks, so the
  2666   // exception paths do not take memory state from the memory barrier,
  2667   // so there's no problems making a strong assert about mixing users
  2668   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2669   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2670   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2672   if (!is_store) {
  2673     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2674     // load value and push onto stack
  2675     switch (type) {
  2676     case T_BOOLEAN:
  2677     case T_CHAR:
  2678     case T_BYTE:
  2679     case T_SHORT:
  2680     case T_INT:
  2681     case T_FLOAT:
  2682       push(p);
  2683       break;
  2684     case T_OBJECT:
  2685       if (need_read_barrier) {
  2686         insert_pre_barrier(heap_base_oop, offset, p, nargs, !(is_volatile || need_mem_bar));
  2688       push(p);
  2689       break;
  2690     case T_ADDRESS:
  2691       // Cast to an int type.
  2692       p = _gvn.transform( new (C) CastP2XNode(NULL,p) );
  2693       p = ConvX2L(p);
  2694       push_pair(p);
  2695       break;
  2696     case T_DOUBLE:
  2697     case T_LONG:
  2698       push_pair( p );
  2699       break;
  2700     default: ShouldNotReachHere();
  2702   } else {
  2703     // place effect of store into memory
  2704     switch (type) {
  2705     case T_DOUBLE:
  2706       val = dstore_rounding(val);
  2707       break;
  2708     case T_ADDRESS:
  2709       // Repackage the long as a pointer.
  2710       val = ConvL2X(val);
  2711       val = _gvn.transform( new (C) CastX2PNode(val) );
  2712       break;
  2715     if (type != T_OBJECT ) {
  2716       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2717     } else {
  2718       // Possibly an oop being stored to Java heap or native memory
  2719       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2720         // oop to Java heap.
  2721         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2722       } else {
  2723         // We can't tell at compile time if we are storing in the Java heap or outside
  2724         // of it. So we need to emit code to conditionally do the proper type of
  2725         // store.
  2727         IdealKit ideal(this);
  2728 #define __ ideal.
  2729         // QQQ who knows what probability is here??
  2730         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2731           // Sync IdealKit and graphKit.
  2732           sync_kit(ideal);
  2733           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2734           // Update IdealKit memory.
  2735           __ sync_kit(this);
  2736         } __ else_(); {
  2737           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2738         } __ end_if();
  2739         // Final sync IdealKit and GraphKit.
  2740         final_sync(ideal);
  2741 #undef __
  2746   if (is_volatile) {
  2747     if (!is_store)
  2748       insert_mem_bar(Op_MemBarAcquire);
  2749     else
  2750       insert_mem_bar(Op_MemBarVolatile);
  2753   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2755   return true;
  2758 //----------------------------inline_unsafe_prefetch----------------------------
  2760 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2761 #ifndef PRODUCT
  2763     ResourceMark rm;
  2764     // Check the signatures.
  2765     ciSignature* sig = signature();
  2766 #ifdef ASSERT
  2767     // Object getObject(Object base, int/long offset), etc.
  2768     BasicType rtype = sig->return_type()->basic_type();
  2769     if (!is_native_ptr) {
  2770       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2771       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2772       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2773     } else {
  2774       assert(sig->count() == 1, "native prefetch has 1 argument");
  2775       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2777 #endif // ASSERT
  2779 #endif // !PRODUCT
  2781   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2783   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2784   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2786   debug_only(int saved_sp = _sp);
  2787   _sp += nargs;
  2789   // Build address expression.  See the code in inline_unsafe_access.
  2790   Node *adr;
  2791   if (!is_native_ptr) {
  2792     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2793     Node* offset = pop_pair();
  2794     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2795     Node* base   = pop();
  2796     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2797     // to be plain byte offsets, which are also the same as those accepted
  2798     // by oopDesc::field_base.
  2799     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2800            "fieldOffset must be byte-scaled");
  2801     // 32-bit machines ignore the high half!
  2802     offset = ConvL2X(offset);
  2803     adr = make_unsafe_address(base, offset);
  2804   } else {
  2805     Node* ptr = pop_pair();
  2806     // Adjust Java long to machine word:
  2807     ptr = ConvL2X(ptr);
  2808     adr = make_unsafe_address(NULL, ptr);
  2811   if (is_static) {
  2812     assert(saved_sp == _sp, "must have correct argument count");
  2813   } else {
  2814     // Pop receiver last:  it was pushed first.
  2815     Node *receiver = pop();
  2816     assert(saved_sp == _sp, "must have correct argument count");
  2818     // Null check on self without removing any arguments.  The argument
  2819     // null check technically happens in the wrong place, which can lead to
  2820     // invalid stack traces when the primitive is inlined into a method
  2821     // which handles NullPointerExceptions.
  2822     _sp += nargs;
  2823     do_null_check(receiver, T_OBJECT);
  2824     _sp -= nargs;
  2825     if (stopped()) {
  2826       return true;
  2830   // Generate the read or write prefetch
  2831   Node *prefetch;
  2832   if (is_store) {
  2833     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2834   } else {
  2835     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2837   prefetch->init_req(0, control());
  2838   set_i_o(_gvn.transform(prefetch));
  2840   return true;
  2843 //----------------------------inline_unsafe_load_store----------------------------
  2845 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2846   // This basic scheme here is the same as inline_unsafe_access, but
  2847   // differs in enough details that combining them would make the code
  2848   // overly confusing.  (This is a true fact! I originally combined
  2849   // them, but even I was confused by it!) As much code/comments as
  2850   // possible are retained from inline_unsafe_access though to make
  2851   // the correspondences clearer. - dl
  2853   if (callee()->is_static())  return false;  // caller must have the capability!
  2855 #ifndef PRODUCT
  2856   BasicType rtype;
  2858     ResourceMark rm;
  2859     ciSignature* sig = signature();
  2860     rtype = sig->return_type()->basic_type();
  2861     if (kind == LS_xadd || kind == LS_xchg) {
  2862       // Check the signatures.
  2863 #ifdef ASSERT
  2864       assert(rtype == type, "get and set must return the expected type");
  2865       assert(sig->count() == 3, "get and set has 3 arguments");
  2866       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2867       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2868       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2869 #endif // ASSERT
  2870     } else if (kind == LS_cmpxchg) {
  2871       // Check the signatures.
  2872 #ifdef ASSERT
  2873       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2874       assert(sig->count() == 4, "CAS has 4 arguments");
  2875       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2876       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2877 #endif // ASSERT
  2878     } else {
  2879       ShouldNotReachHere();
  2882 #endif //PRODUCT
  2884   // number of stack slots per value argument (1 or 2)
  2885   int type_words = type2size[type];
  2887   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2889   // Argument words:  "this" plus oop plus offset (plus oldvalue) plus newvalue/delta;
  2890   int nargs = 1 + 1 + 2  + ((kind == LS_cmpxchg) ? type_words : 0) + type_words;
  2892   // pop arguments: newval, offset, base, and receiver
  2893   debug_only(int saved_sp = _sp);
  2894   _sp += nargs;
  2895   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2896   Node* oldval   = (kind == LS_cmpxchg) ? ((type_words == 1) ? pop() : pop_pair()) : NULL;
  2897   Node *offset   = pop_pair();
  2898   Node *base     = pop();
  2899   Node *receiver = pop();
  2900   assert(saved_sp == _sp, "must have correct argument count");
  2902   //  Null check receiver.
  2903   _sp += nargs;
  2904   do_null_check(receiver, T_OBJECT);
  2905   _sp -= nargs;
  2906   if (stopped()) {
  2907     return true;
  2910   // Build field offset expression.
  2911   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2912   // to be plain byte offsets, which are also the same as those accepted
  2913   // by oopDesc::field_base.
  2914   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2915   // 32-bit machines ignore the high half of long offsets
  2916   offset = ConvL2X(offset);
  2917   Node* adr = make_unsafe_address(base, offset);
  2918   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2920   // For CAS, unlike inline_unsafe_access, there seems no point in
  2921   // trying to refine types. Just use the coarse types here.
  2922   const Type *value_type = Type::get_const_basic_type(type);
  2923   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2924   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2926   if (kind == LS_xchg && type == T_OBJECT) {
  2927     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2928     if (tjp != NULL) {
  2929       value_type = tjp;
  2933   int alias_idx = C->get_alias_index(adr_type);
  2935   // Memory-model-wise, a LoadStore acts like a little synchronized
  2936   // block, so needs barriers on each side.  These don't translate
  2937   // into actual barriers on most machines, but we still need rest of
  2938   // compiler to respect ordering.
  2940   insert_mem_bar(Op_MemBarRelease);
  2941   insert_mem_bar(Op_MemBarCPUOrder);
  2943   // 4984716: MemBars must be inserted before this
  2944   //          memory node in order to avoid a false
  2945   //          dependency which will confuse the scheduler.
  2946   Node *mem = memory(alias_idx);
  2948   // For now, we handle only those cases that actually exist: ints,
  2949   // longs, and Object. Adding others should be straightforward.
  2950   Node* load_store;
  2951   switch(type) {
  2952   case T_INT:
  2953     if (kind == LS_xadd) {
  2954       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2955     } else if (kind == LS_xchg) {
  2956       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2957     } else if (kind == LS_cmpxchg) {
  2958       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2959     } else {
  2960       ShouldNotReachHere();
  2962     break;
  2963   case T_LONG:
  2964     if (kind == LS_xadd) {
  2965       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2966     } else if (kind == LS_xchg) {
  2967       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2968     } else if (kind == LS_cmpxchg) {
  2969       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2970     } else {
  2971       ShouldNotReachHere();
  2973     break;
  2974   case T_OBJECT:
  2975     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2976     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2977     // Execute transformation here to avoid barrier generation in such case.
  2978     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2979       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2981     // Reference stores need a store barrier.
  2982     pre_barrier(true /* do_load*/,
  2983                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2984                 NULL /* pre_val*/,
  2985                 T_OBJECT);
  2986 #ifdef _LP64
  2987     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2988       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2989       if (kind == LS_xchg) {
  2990         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2991                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2992       } else {
  2993         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2994         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2995         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2996                                                                    newval_enc, oldval_enc));
  2998     } else
  2999 #endif
  3001       if (kind == LS_xchg) {
  3002         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3003       } else {
  3004         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3005         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3008     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3009     break;
  3010   default:
  3011     ShouldNotReachHere();
  3012     break;
  3015   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3016   // main role is to prevent LoadStore nodes from being optimized away
  3017   // when their results aren't used.
  3018   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
  3019   set_memory(proj, alias_idx);
  3021   // Add the trailing membar surrounding the access
  3022   insert_mem_bar(Op_MemBarCPUOrder);
  3023   insert_mem_bar(Op_MemBarAcquire);
  3025 #ifdef _LP64
  3026   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  3027     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
  3029 #endif
  3031   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3032   push_node(load_store->bottom_type()->basic_type(), load_store);
  3033   return true;
  3036 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3037   // This is another variant of inline_unsafe_access, differing in
  3038   // that it always issues store-store ("release") barrier and ensures
  3039   // store-atomicity (which only matters for "long").
  3041   if (callee()->is_static())  return false;  // caller must have the capability!
  3043 #ifndef PRODUCT
  3045     ResourceMark rm;
  3046     // Check the signatures.
  3047     ciSignature* sig = signature();
  3048 #ifdef ASSERT
  3049     BasicType rtype = sig->return_type()->basic_type();
  3050     assert(rtype == T_VOID, "must return void");
  3051     assert(sig->count() == 3, "has 3 arguments");
  3052     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3053     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3054 #endif // ASSERT
  3056 #endif //PRODUCT
  3058   // number of stack slots per value argument (1 or 2)
  3059   int type_words = type2size[type];
  3061   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3063   // Argument words:  "this" plus oop plus offset plus value;
  3064   int nargs = 1 + 1 + 2 + type_words;
  3066   // pop arguments: val, offset, base, and receiver
  3067   debug_only(int saved_sp = _sp);
  3068   _sp += nargs;
  3069   Node* val      = (type_words == 1) ? pop() : pop_pair();
  3070   Node *offset   = pop_pair();
  3071   Node *base     = pop();
  3072   Node *receiver = pop();
  3073   assert(saved_sp == _sp, "must have correct argument count");
  3075   //  Null check receiver.
  3076   _sp += nargs;
  3077   do_null_check(receiver, T_OBJECT);
  3078   _sp -= nargs;
  3079   if (stopped()) {
  3080     return true;
  3083   // Build field offset expression.
  3084   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3085   // 32-bit machines ignore the high half of long offsets
  3086   offset = ConvL2X(offset);
  3087   Node* adr = make_unsafe_address(base, offset);
  3088   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3089   const Type *value_type = Type::get_const_basic_type(type);
  3090   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3092   insert_mem_bar(Op_MemBarRelease);
  3093   insert_mem_bar(Op_MemBarCPUOrder);
  3094   // Ensure that the store is atomic for longs:
  3095   bool require_atomic_access = true;
  3096   Node* store;
  3097   if (type == T_OBJECT) // reference stores need a store barrier.
  3098     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  3099   else {
  3100     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  3102   insert_mem_bar(Op_MemBarCPUOrder);
  3103   return true;
  3106 bool LibraryCallKit::inline_unsafe_allocate() {
  3107   if (callee()->is_static())  return false;  // caller must have the capability!
  3108   int nargs = 1 + 1;
  3109   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  3110   null_check_receiver(callee());  // check then ignore argument(0)
  3111   _sp += nargs;  // set original stack for use by uncommon_trap
  3112   Node* cls = do_null_check(argument(1), T_OBJECT);
  3113   _sp -= nargs;
  3114   if (stopped())  return true;
  3116   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  3117   _sp += nargs;  // set original stack for use by uncommon_trap
  3118   kls = do_null_check(kls, T_OBJECT);
  3119   _sp -= nargs;
  3120   if (stopped())  return true;  // argument was like int.class
  3122   // Note:  The argument might still be an illegal value like
  3123   // Serializable.class or Object[].class.   The runtime will handle it.
  3124   // But we must make an explicit check for initialization.
  3125   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3126   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3127   // can generate code to load it as unsigned byte.
  3128   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  3129   Node* bits = intcon(InstanceKlass::fully_initialized);
  3130   Node* test = _gvn.transform( new (C) SubINode(inst, bits) );
  3131   // The 'test' is non-zero if we need to take a slow path.
  3133   Node* obj = new_instance(kls, test);
  3134   push(obj);
  3136   return true;
  3139 #ifdef TRACE_HAVE_INTRINSICS
  3140 /*
  3141  * oop -> myklass
  3142  * myklass->trace_id |= USED
  3143  * return myklass->trace_id & ~0x3
  3144  */
  3145 bool LibraryCallKit::inline_native_classID() {
  3146   int nargs = 1 + 1;
  3147   null_check_receiver(callee());  // check then ignore argument(0)
  3148   _sp += nargs;
  3149   Node* cls = do_null_check(argument(1), T_OBJECT);
  3150   _sp -= nargs;
  3151   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  3152   _sp += nargs;
  3153   kls = do_null_check(kls, T_OBJECT);
  3154   _sp -= nargs;
  3155   ByteSize offset = TRACE_ID_OFFSET;
  3156   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3157   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  3158   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3159   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3160   Node* clsused = longcon(0x01l); // set the class bit
  3161   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3163   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3164   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  3165   push_pair(andl);
  3166   return true;
  3169 bool LibraryCallKit::inline_native_threadID() {
  3170   Node* tls_ptr = NULL;
  3171   Node* cur_thr = generate_current_thread(tls_ptr);
  3172   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3173   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3174   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3176   Node* threadid = NULL;
  3177   size_t thread_id_size = OSThread::thread_id_size();
  3178   if (thread_id_size == (size_t) BytesPerLong) {
  3179     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  3180     push(threadid);
  3181   } else if (thread_id_size == (size_t) BytesPerInt) {
  3182     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  3183     push(threadid);
  3184   } else {
  3185     ShouldNotReachHere();
  3187   return true;
  3189 #endif
  3191 //------------------------inline_native_time_funcs--------------
  3192 // inline code for System.currentTimeMillis() and System.nanoTime()
  3193 // these have the same type and signature
  3194 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3195   const TypeFunc *tf = OptoRuntime::void_long_Type();
  3196   const TypePtr* no_memory_effects = NULL;
  3197   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3198   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3199 #ifdef ASSERT
  3200   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms + 1));
  3201   assert(value_top == top(), "second value must be top");
  3202 #endif
  3203   push_pair(value);
  3204   return true;
  3207 //------------------------inline_native_currentThread------------------
  3208 bool LibraryCallKit::inline_native_currentThread() {
  3209   Node* junk = NULL;
  3210   push(generate_current_thread(junk));
  3211   return true;
  3214 //------------------------inline_native_isInterrupted------------------
  3215 bool LibraryCallKit::inline_native_isInterrupted() {
  3216   const int nargs = 1+1;  // receiver + boolean
  3217   assert(nargs == arg_size(), "sanity");
  3218   // Add a fast path to t.isInterrupted(clear_int):
  3219   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3220   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3221   // So, in the common case that the interrupt bit is false,
  3222   // we avoid making a call into the VM.  Even if the interrupt bit
  3223   // is true, if the clear_int argument is false, we avoid the VM call.
  3224   // However, if the receiver is not currentThread, we must call the VM,
  3225   // because there must be some locking done around the operation.
  3227   // We only go to the fast case code if we pass two guards.
  3228   // Paths which do not pass are accumulated in the slow_region.
  3229   RegionNode* slow_region = new (C) RegionNode(1);
  3230   record_for_igvn(slow_region);
  3231   RegionNode* result_rgn = new (C) RegionNode(1+3); // fast1, fast2, slow
  3232   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3233   enum { no_int_result_path   = 1,
  3234          no_clear_result_path = 2,
  3235          slow_result_path     = 3
  3236   };
  3238   // (a) Receiving thread must be the current thread.
  3239   Node* rec_thr = argument(0);
  3240   Node* tls_ptr = NULL;
  3241   Node* cur_thr = generate_current_thread(tls_ptr);
  3242   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
  3243   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
  3245   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  3246   if (!known_current_thread)
  3247     generate_slow_guard(bol_thr, slow_region);
  3249   // (b) Interrupt bit on TLS must be false.
  3250   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3251   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3252   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3253   // Set the control input on the field _interrupted read to prevent it floating up.
  3254   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3255   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
  3256   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
  3258   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3260   // First fast path:  if (!TLS._interrupted) return false;
  3261   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
  3262   result_rgn->init_req(no_int_result_path, false_bit);
  3263   result_val->init_req(no_int_result_path, intcon(0));
  3265   // drop through to next case
  3266   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
  3268   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3269   Node* clr_arg = argument(1);
  3270   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
  3271   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
  3272   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3274   // Second fast path:  ... else if (!clear_int) return true;
  3275   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
  3276   result_rgn->init_req(no_clear_result_path, false_arg);
  3277   result_val->init_req(no_clear_result_path, intcon(1));
  3279   // drop through to next case
  3280   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
  3282   // (d) Otherwise, go to the slow path.
  3283   slow_region->add_req(control());
  3284   set_control( _gvn.transform(slow_region) );
  3286   if (stopped()) {
  3287     // There is no slow path.
  3288     result_rgn->init_req(slow_result_path, top());
  3289     result_val->init_req(slow_result_path, top());
  3290   } else {
  3291     // non-virtual because it is a private non-static
  3292     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3294     Node* slow_val = set_results_for_java_call(slow_call);
  3295     // this->control() comes from set_results_for_java_call
  3297     // If we know that the result of the slow call will be true, tell the optimizer!
  3298     if (known_current_thread)  slow_val = intcon(1);
  3300     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3301     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3302     // These two phis are pre-filled with copies of of the fast IO and Memory
  3303     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3304     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3306     result_rgn->init_req(slow_result_path, control());
  3307     io_phi    ->init_req(slow_result_path, i_o());
  3308     mem_phi   ->init_req(slow_result_path, reset_memory());
  3309     result_val->init_req(slow_result_path, slow_val);
  3311     set_all_memory( _gvn.transform(mem_phi) );
  3312     set_i_o(        _gvn.transform(io_phi) );
  3315   push_result(result_rgn, result_val);
  3316   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3318   return true;
  3321 //---------------------------load_mirror_from_klass----------------------------
  3322 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3323 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3324   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3325   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3328 //-----------------------load_klass_from_mirror_common-------------------------
  3329 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3330 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3331 // and branch to the given path on the region.
  3332 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3333 // compile for the non-null case.
  3334 // If the region is NULL, force never_see_null = true.
  3335 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3336                                                     bool never_see_null,
  3337                                                     int nargs,
  3338                                                     RegionNode* region,
  3339                                                     int null_path,
  3340                                                     int offset) {
  3341   if (region == NULL)  never_see_null = true;
  3342   Node* p = basic_plus_adr(mirror, offset);
  3343   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3344   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3345   _sp += nargs; // any deopt will start just before call to enclosing method
  3346   Node* null_ctl = top();
  3347   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3348   if (region != NULL) {
  3349     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3350     region->init_req(null_path, null_ctl);
  3351   } else {
  3352     assert(null_ctl == top(), "no loose ends");
  3354   _sp -= nargs;
  3355   return kls;
  3358 //--------------------(inline_native_Class_query helpers)---------------------
  3359 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3360 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3361 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3362   // Branch around if the given klass has the given modifier bit set.
  3363   // Like generate_guard, adds a new path onto the region.
  3364   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3365   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3366   Node* mask = intcon(modifier_mask);
  3367   Node* bits = intcon(modifier_bits);
  3368   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
  3369   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
  3370   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
  3371   return generate_fair_guard(bol, region);
  3373 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3374   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3377 //-------------------------inline_native_Class_query-------------------
  3378 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3379   int nargs = 1+0;  // just the Class mirror, in most cases
  3380   const Type* return_type = TypeInt::BOOL;
  3381   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3382   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3383   bool expect_prim = false;     // most of these guys expect to work on refs
  3385   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3387   switch (id) {
  3388   case vmIntrinsics::_isInstance:
  3389     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3390     // nothing is an instance of a primitive type
  3391     prim_return_value = intcon(0);
  3392     break;
  3393   case vmIntrinsics::_getModifiers:
  3394     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3395     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3396     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3397     break;
  3398   case vmIntrinsics::_isInterface:
  3399     prim_return_value = intcon(0);
  3400     break;
  3401   case vmIntrinsics::_isArray:
  3402     prim_return_value = intcon(0);
  3403     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3404     break;
  3405   case vmIntrinsics::_isPrimitive:
  3406     prim_return_value = intcon(1);
  3407     expect_prim = true;  // obviously
  3408     break;
  3409   case vmIntrinsics::_getSuperclass:
  3410     prim_return_value = null();
  3411     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3412     break;
  3413   case vmIntrinsics::_getComponentType:
  3414     prim_return_value = null();
  3415     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3416     break;
  3417   case vmIntrinsics::_getClassAccessFlags:
  3418     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3419     return_type = TypeInt::INT;  // not bool!  6297094
  3420     break;
  3421   default:
  3422     ShouldNotReachHere();
  3425   Node* mirror =                      argument(0);
  3426   Node* obj    = (nargs <= 1)? top(): argument(1);
  3428   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3429   if (mirror_con == NULL)  return false;  // cannot happen?
  3431 #ifndef PRODUCT
  3432   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3433     ciType* k = mirror_con->java_mirror_type();
  3434     if (k) {
  3435       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3436       k->print_name();
  3437       tty->cr();
  3440 #endif
  3442   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3443   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3444   record_for_igvn(region);
  3445   PhiNode* phi = new (C) PhiNode(region, return_type);
  3447   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3448   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3449   // if it is. See bug 4774291.
  3451   // For Reflection.getClassAccessFlags(), the null check occurs in
  3452   // the wrong place; see inline_unsafe_access(), above, for a similar
  3453   // situation.
  3454   _sp += nargs;  // set original stack for use by uncommon_trap
  3455   mirror = do_null_check(mirror, T_OBJECT);
  3456   _sp -= nargs;
  3457   // If mirror or obj is dead, only null-path is taken.
  3458   if (stopped())  return true;
  3460   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3462   // Now load the mirror's klass metaobject, and null-check it.
  3463   // Side-effects region with the control path if the klass is null.
  3464   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3465                                      region, _prim_path);
  3466   // If kls is null, we have a primitive mirror.
  3467   phi->init_req(_prim_path, prim_return_value);
  3468   if (stopped()) { push_result(region, phi); return true; }
  3470   Node* p;  // handy temp
  3471   Node* null_ctl;
  3473   // Now that we have the non-null klass, we can perform the real query.
  3474   // For constant classes, the query will constant-fold in LoadNode::Value.
  3475   Node* query_value = top();
  3476   switch (id) {
  3477   case vmIntrinsics::_isInstance:
  3478     // nothing is an instance of a primitive type
  3479     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3480     query_value = gen_instanceof(obj, kls);
  3481     _sp -= nargs;
  3482     break;
  3484   case vmIntrinsics::_getModifiers:
  3485     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3486     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3487     break;
  3489   case vmIntrinsics::_isInterface:
  3490     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3491     if (generate_interface_guard(kls, region) != NULL)
  3492       // A guard was added.  If the guard is taken, it was an interface.
  3493       phi->add_req(intcon(1));
  3494     // If we fall through, it's a plain class.
  3495     query_value = intcon(0);
  3496     break;
  3498   case vmIntrinsics::_isArray:
  3499     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3500     if (generate_array_guard(kls, region) != NULL)
  3501       // A guard was added.  If the guard is taken, it was an array.
  3502       phi->add_req(intcon(1));
  3503     // If we fall through, it's a plain class.
  3504     query_value = intcon(0);
  3505     break;
  3507   case vmIntrinsics::_isPrimitive:
  3508     query_value = intcon(0); // "normal" path produces false
  3509     break;
  3511   case vmIntrinsics::_getSuperclass:
  3512     // The rules here are somewhat unfortunate, but we can still do better
  3513     // with random logic than with a JNI call.
  3514     // Interfaces store null or Object as _super, but must report null.
  3515     // Arrays store an intermediate super as _super, but must report Object.
  3516     // Other types can report the actual _super.
  3517     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3518     if (generate_interface_guard(kls, region) != NULL)
  3519       // A guard was added.  If the guard is taken, it was an interface.
  3520       phi->add_req(null());
  3521     if (generate_array_guard(kls, region) != NULL)
  3522       // A guard was added.  If the guard is taken, it was an array.
  3523       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3524     // If we fall through, it's a plain class.  Get its _super.
  3525     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3526     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3527     null_ctl = top();
  3528     kls = null_check_oop(kls, &null_ctl);
  3529     if (null_ctl != top()) {
  3530       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3531       region->add_req(null_ctl);
  3532       phi   ->add_req(null());
  3534     if (!stopped()) {
  3535       query_value = load_mirror_from_klass(kls);
  3537     break;
  3539   case vmIntrinsics::_getComponentType:
  3540     if (generate_array_guard(kls, region) != NULL) {
  3541       // Be sure to pin the oop load to the guard edge just created:
  3542       Node* is_array_ctrl = region->in(region->req()-1);
  3543       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3544       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3545       phi->add_req(cmo);
  3547     query_value = null();  // non-array case is null
  3548     break;
  3550   case vmIntrinsics::_getClassAccessFlags:
  3551     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3552     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3553     break;
  3555   default:
  3556     ShouldNotReachHere();
  3559   // Fall-through is the normal case of a query to a real class.
  3560   phi->init_req(1, query_value);
  3561   region->init_req(1, control());
  3563   push_result(region, phi);
  3564   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3566   return true;
  3569 //--------------------------inline_native_subtype_check------------------------
  3570 // This intrinsic takes the JNI calls out of the heart of
  3571 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3572 bool LibraryCallKit::inline_native_subtype_check() {
  3573   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3575   // Pull both arguments off the stack.
  3576   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3577   args[0] = argument(0);
  3578   args[1] = argument(1);
  3579   Node* klasses[2];             // corresponding Klasses: superk, subk
  3580   klasses[0] = klasses[1] = top();
  3582   enum {
  3583     // A full decision tree on {superc is prim, subc is prim}:
  3584     _prim_0_path = 1,           // {P,N} => false
  3585                                 // {P,P} & superc!=subc => false
  3586     _prim_same_path,            // {P,P} & superc==subc => true
  3587     _prim_1_path,               // {N,P} => false
  3588     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3589     _both_ref_path,             // {N,N} & subtype check loses => false
  3590     PATH_LIMIT
  3591   };
  3593   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3594   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3595   record_for_igvn(region);
  3597   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3598   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3599   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3601   // First null-check both mirrors and load each mirror's klass metaobject.
  3602   int which_arg;
  3603   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3604     Node* arg = args[which_arg];
  3605     _sp += nargs;  // set original stack for use by uncommon_trap
  3606     arg = do_null_check(arg, T_OBJECT);
  3607     _sp -= nargs;
  3608     if (stopped())  break;
  3609     args[which_arg] = _gvn.transform(arg);
  3611     Node* p = basic_plus_adr(arg, class_klass_offset);
  3612     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3613     klasses[which_arg] = _gvn.transform(kls);
  3616   // Having loaded both klasses, test each for null.
  3617   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3618   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3619     Node* kls = klasses[which_arg];
  3620     Node* null_ctl = top();
  3621     _sp += nargs;  // set original stack for use by uncommon_trap
  3622     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3623     _sp -= nargs;
  3624     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3625     region->init_req(prim_path, null_ctl);
  3626     if (stopped())  break;
  3627     klasses[which_arg] = kls;
  3630   if (!stopped()) {
  3631     // now we have two reference types, in klasses[0..1]
  3632     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3633     Node* superk = klasses[0];  // the receiver
  3634     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3635     // now we have a successful reference subtype check
  3636     region->set_req(_ref_subtype_path, control());
  3639   // If both operands are primitive (both klasses null), then
  3640   // we must return true when they are identical primitives.
  3641   // It is convenient to test this after the first null klass check.
  3642   set_control(region->in(_prim_0_path)); // go back to first null check
  3643   if (!stopped()) {
  3644     // Since superc is primitive, make a guard for the superc==subc case.
  3645     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
  3646     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
  3647     generate_guard(bol_eq, region, PROB_FAIR);
  3648     if (region->req() == PATH_LIMIT+1) {
  3649       // A guard was added.  If the added guard is taken, superc==subc.
  3650       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3651       region->del_req(PATH_LIMIT);
  3653     region->set_req(_prim_0_path, control()); // Not equal after all.
  3656   // these are the only paths that produce 'true':
  3657   phi->set_req(_prim_same_path,   intcon(1));
  3658   phi->set_req(_ref_subtype_path, intcon(1));
  3660   // pull together the cases:
  3661   assert(region->req() == PATH_LIMIT, "sane region");
  3662   for (uint i = 1; i < region->req(); i++) {
  3663     Node* ctl = region->in(i);
  3664     if (ctl == NULL || ctl == top()) {
  3665       region->set_req(i, top());
  3666       phi   ->set_req(i, top());
  3667     } else if (phi->in(i) == NULL) {
  3668       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3672   set_control(_gvn.transform(region));
  3673   push(_gvn.transform(phi));
  3675   return true;
  3678 //---------------------generate_array_guard_common------------------------
  3679 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3680                                                   bool obj_array, bool not_array) {
  3681   // If obj_array/non_array==false/false:
  3682   // Branch around if the given klass is in fact an array (either obj or prim).
  3683   // If obj_array/non_array==false/true:
  3684   // Branch around if the given klass is not an array klass of any kind.
  3685   // If obj_array/non_array==true/true:
  3686   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3687   // If obj_array/non_array==true/false:
  3688   // Branch around if the kls is an oop array (Object[] or subtype)
  3689   //
  3690   // Like generate_guard, adds a new path onto the region.
  3691   jint  layout_con = 0;
  3692   Node* layout_val = get_layout_helper(kls, layout_con);
  3693   if (layout_val == NULL) {
  3694     bool query = (obj_array
  3695                   ? Klass::layout_helper_is_objArray(layout_con)
  3696                   : Klass::layout_helper_is_array(layout_con));
  3697     if (query == not_array) {
  3698       return NULL;                       // never a branch
  3699     } else {                             // always a branch
  3700       Node* always_branch = control();
  3701       if (region != NULL)
  3702         region->add_req(always_branch);
  3703       set_control(top());
  3704       return always_branch;
  3707   // Now test the correct condition.
  3708   jint  nval = (obj_array
  3709                 ? ((jint)Klass::_lh_array_tag_type_value
  3710                    <<    Klass::_lh_array_tag_shift)
  3711                 : Klass::_lh_neutral_value);
  3712   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
  3713   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3714   // invert the test if we are looking for a non-array
  3715   if (not_array)  btest = BoolTest(btest).negate();
  3716   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
  3717   return generate_fair_guard(bol, region);
  3721 //-----------------------inline_native_newArray--------------------------
  3722 bool LibraryCallKit::inline_native_newArray() {
  3723   int nargs = 2;
  3724   Node* mirror    = argument(0);
  3725   Node* count_val = argument(1);
  3727   _sp += nargs;  // set original stack for use by uncommon_trap
  3728   mirror = do_null_check(mirror, T_OBJECT);
  3729   _sp -= nargs;
  3730   // If mirror or obj is dead, only null-path is taken.
  3731   if (stopped())  return true;
  3733   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3734   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3735   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3736                                           TypeInstPtr::NOTNULL);
  3737   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3738   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3739                                           TypePtr::BOTTOM);
  3741   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3742   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3743                                                   nargs,
  3744                                                   result_reg, _slow_path);
  3745   Node* normal_ctl   = control();
  3746   Node* no_array_ctl = result_reg->in(_slow_path);
  3748   // Generate code for the slow case.  We make a call to newArray().
  3749   set_control(no_array_ctl);
  3750   if (!stopped()) {
  3751     // Either the input type is void.class, or else the
  3752     // array klass has not yet been cached.  Either the
  3753     // ensuing call will throw an exception, or else it
  3754     // will cache the array klass for next time.
  3755     PreserveJVMState pjvms(this);
  3756     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3757     Node* slow_result = set_results_for_java_call(slow_call);
  3758     // this->control() comes from set_results_for_java_call
  3759     result_reg->set_req(_slow_path, control());
  3760     result_val->set_req(_slow_path, slow_result);
  3761     result_io ->set_req(_slow_path, i_o());
  3762     result_mem->set_req(_slow_path, reset_memory());
  3765   set_control(normal_ctl);
  3766   if (!stopped()) {
  3767     // Normal case:  The array type has been cached in the java.lang.Class.
  3768     // The following call works fine even if the array type is polymorphic.
  3769     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3770     Node* obj = new_array(klass_node, count_val, nargs);
  3771     result_reg->init_req(_normal_path, control());
  3772     result_val->init_req(_normal_path, obj);
  3773     result_io ->init_req(_normal_path, i_o());
  3774     result_mem->init_req(_normal_path, reset_memory());
  3777   // Return the combined state.
  3778   set_i_o(        _gvn.transform(result_io)  );
  3779   set_all_memory( _gvn.transform(result_mem) );
  3780   push_result(result_reg, result_val);
  3781   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3783   return true;
  3786 //----------------------inline_native_getLength--------------------------
  3787 bool LibraryCallKit::inline_native_getLength() {
  3788   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3790   int nargs = 1;
  3791   Node* array = argument(0);
  3793   _sp += nargs;  // set original stack for use by uncommon_trap
  3794   array = do_null_check(array, T_OBJECT);
  3795   _sp -= nargs;
  3797   // If array is dead, only null-path is taken.
  3798   if (stopped())  return true;
  3800   // Deoptimize if it is a non-array.
  3801   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3803   if (non_array != NULL) {
  3804     PreserveJVMState pjvms(this);
  3805     set_control(non_array);
  3806     _sp += nargs;  // push the arguments back on the stack
  3807     uncommon_trap(Deoptimization::Reason_intrinsic,
  3808                   Deoptimization::Action_maybe_recompile);
  3811   // If control is dead, only non-array-path is taken.
  3812   if (stopped())  return true;
  3814   // The works fine even if the array type is polymorphic.
  3815   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3816   push( load_array_length(array) );
  3818   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3820   return true;
  3823 //------------------------inline_array_copyOf----------------------------
  3824 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3825   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3827   // Restore the stack and pop off the arguments.
  3828   int nargs = 3 + (is_copyOfRange? 1: 0);
  3829   Node* original          = argument(0);
  3830   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3831   Node* end               = is_copyOfRange? argument(2): argument(1);
  3832   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3834   Node* newcopy;
  3836   //set the original stack and the reexecute bit for the interpreter to reexecute
  3837   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3838   { PreserveReexecuteState preexecs(this);
  3839     _sp += nargs;
  3840     jvms()->set_should_reexecute(true);
  3842     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3843     original          = do_null_check(original, T_OBJECT);
  3845     // Check if a null path was taken unconditionally.
  3846     if (stopped())  return true;
  3848     Node* orig_length = load_array_length(original);
  3850     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3851                                               NULL, 0);
  3852     klass_node = do_null_check(klass_node, T_OBJECT);
  3854     RegionNode* bailout = new (C) RegionNode(1);
  3855     record_for_igvn(bailout);
  3857     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3858     // Bail out if that is so.
  3859     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3860     if (not_objArray != NULL) {
  3861       // Improve the klass node's type from the new optimistic assumption:
  3862       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3863       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3864       Node* cast = new (C) CastPPNode(klass_node, akls);
  3865       cast->init_req(0, control());
  3866       klass_node = _gvn.transform(cast);
  3869     // Bail out if either start or end is negative.
  3870     generate_negative_guard(start, bailout, &start);
  3871     generate_negative_guard(end,   bailout, &end);
  3873     Node* length = end;
  3874     if (_gvn.type(start) != TypeInt::ZERO) {
  3875       length = _gvn.transform( new (C) SubINode(end, start) );
  3878     // Bail out if length is negative.
  3879     // Without this the new_array would throw
  3880     // NegativeArraySizeException but IllegalArgumentException is what
  3881     // should be thrown
  3882     generate_negative_guard(length, bailout, &length);
  3884     if (bailout->req() > 1) {
  3885       PreserveJVMState pjvms(this);
  3886       set_control( _gvn.transform(bailout) );
  3887       uncommon_trap(Deoptimization::Reason_intrinsic,
  3888                     Deoptimization::Action_maybe_recompile);
  3891     if (!stopped()) {
  3893       // How many elements will we copy from the original?
  3894       // The answer is MinI(orig_length - start, length).
  3895       Node* orig_tail = _gvn.transform( new(C) SubINode(orig_length, start) );
  3896       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3898       newcopy = new_array(klass_node, length, 0);
  3900       // Generate a direct call to the right arraycopy function(s).
  3901       // We know the copy is disjoint but we might not know if the
  3902       // oop stores need checking.
  3903       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3904       // This will fail a store-check if x contains any non-nulls.
  3905       bool disjoint_bases = true;
  3906       // if start > orig_length then the length of the copy may be
  3907       // negative.
  3908       bool length_never_negative = !is_copyOfRange;
  3909       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3910                          original, start, newcopy, intcon(0), moved,
  3911                          disjoint_bases, length_never_negative);
  3913   } //original reexecute and sp are set back here
  3915   if(!stopped()) {
  3916     push(newcopy);
  3919   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3921   return true;
  3925 //----------------------generate_virtual_guard---------------------------
  3926 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3927 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3928                                              RegionNode* slow_region) {
  3929   ciMethod* method = callee();
  3930   int vtable_index = method->vtable_index();
  3931   // Get the Method* out of the appropriate vtable entry.
  3932   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3933                      vtable_index*vtableEntry::size()) * wordSize +
  3934                      vtableEntry::method_offset_in_bytes();
  3935   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3936   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3938   // Compare the target method with the expected method (e.g., Object.hashCode).
  3939   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3941   Node* native_call = makecon(native_call_addr);
  3942   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
  3943   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
  3945   return generate_slow_guard(test_native, slow_region);
  3948 //-----------------------generate_method_call----------------------------
  3949 // Use generate_method_call to make a slow-call to the real
  3950 // method if the fast path fails.  An alternative would be to
  3951 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3952 // This only works for expanding the current library call,
  3953 // not another intrinsic.  (E.g., don't use this for making an
  3954 // arraycopy call inside of the copyOf intrinsic.)
  3955 CallJavaNode*
  3956 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3957   // When compiling the intrinsic method itself, do not use this technique.
  3958   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3960   ciMethod* method = callee();
  3961   // ensure the JVMS we have will be correct for this call
  3962   guarantee(method_id == method->intrinsic_id(), "must match");
  3964   const TypeFunc* tf = TypeFunc::make(method);
  3965   CallJavaNode* slow_call;
  3966   if (is_static) {
  3967     assert(!is_virtual, "");
  3968     slow_call = new(C) CallStaticJavaNode(tf,
  3969                            SharedRuntime::get_resolve_static_call_stub(),
  3970                            method, bci());
  3971   } else if (is_virtual) {
  3972     null_check_receiver(method);
  3973     int vtable_index = Method::invalid_vtable_index;
  3974     if (UseInlineCaches) {
  3975       // Suppress the vtable call
  3976     } else {
  3977       // hashCode and clone are not a miranda methods,
  3978       // so the vtable index is fixed.
  3979       // No need to use the linkResolver to get it.
  3980        vtable_index = method->vtable_index();
  3982     slow_call = new(C) CallDynamicJavaNode(tf,
  3983                           SharedRuntime::get_resolve_virtual_call_stub(),
  3984                           method, vtable_index, bci());
  3985   } else {  // neither virtual nor static:  opt_virtual
  3986     null_check_receiver(method);
  3987     slow_call = new(C) CallStaticJavaNode(tf,
  3988                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3989                                 method, bci());
  3990     slow_call->set_optimized_virtual(true);
  3992   set_arguments_for_java_call(slow_call);
  3993   set_edges_for_java_call(slow_call);
  3994   return slow_call;
  3998 //------------------------------inline_native_hashcode--------------------
  3999 // Build special case code for calls to hashCode on an object.
  4000 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4001   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4002   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4004   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4006   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4007   PhiNode*    result_val = new(C) PhiNode(result_reg,
  4008                                           TypeInt::INT);
  4009   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4010   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4011                                           TypePtr::BOTTOM);
  4012   Node* obj = NULL;
  4013   if (!is_static) {
  4014     // Check for hashing null object
  4015     obj = null_check_receiver(callee());
  4016     if (stopped())  return true;        // unconditionally null
  4017     result_reg->init_req(_null_path, top());
  4018     result_val->init_req(_null_path, top());
  4019   } else {
  4020     // Do a null check, and return zero if null.
  4021     // System.identityHashCode(null) == 0
  4022     obj = argument(0);
  4023     Node* null_ctl = top();
  4024     obj = null_check_oop(obj, &null_ctl);
  4025     result_reg->init_req(_null_path, null_ctl);
  4026     result_val->init_req(_null_path, _gvn.intcon(0));
  4029   // Unconditionally null?  Then return right away.
  4030   if (stopped()) {
  4031     set_control( result_reg->in(_null_path) );
  4032     if (!stopped())
  4033       push(      result_val ->in(_null_path) );
  4034     return true;
  4037   // After null check, get the object's klass.
  4038   Node* obj_klass = load_object_klass(obj);
  4040   // This call may be virtual (invokevirtual) or bound (invokespecial).
  4041   // For each case we generate slightly different code.
  4043   // We only go to the fast case code if we pass a number of guards.  The
  4044   // paths which do not pass are accumulated in the slow_region.
  4045   RegionNode* slow_region = new (C) RegionNode(1);
  4046   record_for_igvn(slow_region);
  4048   // If this is a virtual call, we generate a funny guard.  We pull out
  4049   // the vtable entry corresponding to hashCode() from the target object.
  4050   // If the target method which we are calling happens to be the native
  4051   // Object hashCode() method, we pass the guard.  We do not need this
  4052   // guard for non-virtual calls -- the caller is known to be the native
  4053   // Object hashCode().
  4054   if (is_virtual) {
  4055     generate_virtual_guard(obj_klass, slow_region);
  4058   // Get the header out of the object, use LoadMarkNode when available
  4059   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4060   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  4062   // Test the header to see if it is unlocked.
  4063   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4064   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
  4065   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4066   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
  4067   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
  4069   generate_slow_guard(test_unlocked, slow_region);
  4071   // Get the hash value and check to see that it has been properly assigned.
  4072   // We depend on hash_mask being at most 32 bits and avoid the use of
  4073   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4074   // vm: see markOop.hpp.
  4075   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4076   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4077   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
  4078   // This hack lets the hash bits live anywhere in the mark object now, as long
  4079   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4080   // Java spec says that HashCode is an int so there's no point in capturing
  4081   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4082   hshifted_header      = ConvX2I(hshifted_header);
  4083   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
  4085   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4086   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
  4087   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
  4089   generate_slow_guard(test_assigned, slow_region);
  4091   Node* init_mem = reset_memory();
  4092   // fill in the rest of the null path:
  4093   result_io ->init_req(_null_path, i_o());
  4094   result_mem->init_req(_null_path, init_mem);
  4096   result_val->init_req(_fast_path, hash_val);
  4097   result_reg->init_req(_fast_path, control());
  4098   result_io ->init_req(_fast_path, i_o());
  4099   result_mem->init_req(_fast_path, init_mem);
  4101   // Generate code for the slow case.  We make a call to hashCode().
  4102   set_control(_gvn.transform(slow_region));
  4103   if (!stopped()) {
  4104     // No need for PreserveJVMState, because we're using up the present state.
  4105     set_all_memory(init_mem);
  4106     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  4107     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  4108     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4109     Node* slow_result = set_results_for_java_call(slow_call);
  4110     // this->control() comes from set_results_for_java_call
  4111     result_reg->init_req(_slow_path, control());
  4112     result_val->init_req(_slow_path, slow_result);
  4113     result_io  ->set_req(_slow_path, i_o());
  4114     result_mem ->set_req(_slow_path, reset_memory());
  4117   // Return the combined state.
  4118   set_i_o(        _gvn.transform(result_io)  );
  4119   set_all_memory( _gvn.transform(result_mem) );
  4120   push_result(result_reg, result_val);
  4122   return true;
  4125 //---------------------------inline_native_getClass----------------------------
  4126 // Build special case code for calls to getClass on an object.
  4127 bool LibraryCallKit::inline_native_getClass() {
  4128   Node* obj = null_check_receiver(callee());
  4129   if (stopped())  return true;
  4130   push( load_mirror_from_klass(load_object_klass(obj)) );
  4131   return true;
  4134 //-----------------inline_native_Reflection_getCallerClass---------------------
  4135 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4136 //
  4137 // NOTE that this code must perform the same logic as
  4138 // vframeStream::security_get_caller_frame in that it must skip
  4139 // Method.invoke() and auxiliary frames.
  4144 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4145   ciMethod*       method = callee();
  4147 #ifndef PRODUCT
  4148   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4149     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4151 #endif
  4153   debug_only(int saved_sp = _sp);
  4155   // Argument words:  (int depth)
  4156   int nargs = 1;
  4158   _sp += nargs;
  4159   Node* caller_depth_node = pop();
  4161   assert(saved_sp == _sp, "must have correct argument count");
  4163   // The depth value must be a constant in order for the runtime call
  4164   // to be eliminated.
  4165   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  4166   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  4167 #ifndef PRODUCT
  4168     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4169       tty->print_cr("  Bailing out because caller depth was not a constant");
  4171 #endif
  4172     return false;
  4174   // Note that the JVM state at this point does not include the
  4175   // getCallerClass() frame which we are trying to inline. The
  4176   // semantics of getCallerClass(), however, are that the "first"
  4177   // frame is the getCallerClass() frame, so we subtract one from the
  4178   // requested depth before continuing. We don't inline requests of
  4179   // getCallerClass(0).
  4180   int caller_depth = caller_depth_type->get_con() - 1;
  4181   if (caller_depth < 0) {
  4182 #ifndef PRODUCT
  4183     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4184       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  4186 #endif
  4187     return false;
  4190   if (!jvms()->has_method()) {
  4191 #ifndef PRODUCT
  4192     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4193       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4195 #endif
  4196     return false;
  4198   int _depth = jvms()->depth();  // cache call chain depth
  4200   // Walk back up the JVM state to find the caller at the required
  4201   // depth. NOTE that this code must perform the same logic as
  4202   // vframeStream::security_get_caller_frame in that it must skip
  4203   // Method.invoke() and auxiliary frames. Note also that depth is
  4204   // 1-based (1 is the bottom of the inlining).
  4205   int inlining_depth = _depth;
  4206   JVMState* caller_jvms = NULL;
  4208   if (inlining_depth > 0) {
  4209     caller_jvms = jvms();
  4210     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  4211     do {
  4212       // The following if-tests should be performed in this order
  4213       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  4214         // Skip a Method.invoke() or auxiliary frame
  4215       } else if (caller_depth > 0) {
  4216         // Skip real frame
  4217         --caller_depth;
  4218       } else {
  4219         // We're done: reached desired caller after skipping.
  4220         break;
  4222       caller_jvms = caller_jvms->caller();
  4223       --inlining_depth;
  4224     } while (inlining_depth > 0);
  4227   if (inlining_depth == 0) {
  4228 #ifndef PRODUCT
  4229     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4230       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  4231       tty->print_cr("  JVM state at this point:");
  4232       for (int i = _depth; i >= 1; i--) {
  4233         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4236 #endif
  4237     return false; // Reached end of inlining
  4240   // Acquire method holder as java.lang.Class
  4241   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  4242   ciInstance*      caller_mirror = caller_klass->java_mirror();
  4243   // Push this as a constant
  4244   push(makecon(TypeInstPtr::make(caller_mirror)));
  4245 #ifndef PRODUCT
  4246   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4247     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  4248     tty->print_cr("  JVM state at this point:");
  4249     for (int i = _depth; i >= 1; i--) {
  4250       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4253 #endif
  4254   return true;
  4257 // Helper routine for above
  4258 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  4259   ciMethod* method = jvms->method();
  4261   // Is this the Method.invoke method itself?
  4262   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  4263     return true;
  4265   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  4266   ciKlass* k = method->holder();
  4267   if (k->is_instance_klass()) {
  4268     ciInstanceKlass* ik = k->as_instance_klass();
  4269     for (; ik != NULL; ik = ik->super()) {
  4270       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  4271           ik == env()->find_system_klass(ik->name())) {
  4272         return true;
  4276   else if (method->is_method_handle_intrinsic() ||
  4277            method->is_compiled_lambda_form()) {
  4278     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  4279     return true;
  4282   return false;
  4285 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4286   // restore the arguments
  4287   _sp += arg_size();
  4289   switch (id) {
  4290   case vmIntrinsics::_floatToRawIntBits:
  4291     push(_gvn.transform( new (C) MoveF2INode(pop())));
  4292     break;
  4294   case vmIntrinsics::_intBitsToFloat:
  4295     push(_gvn.transform( new (C) MoveI2FNode(pop())));
  4296     break;
  4298   case vmIntrinsics::_doubleToRawLongBits:
  4299     push_pair(_gvn.transform( new (C) MoveD2LNode(pop_pair())));
  4300     break;
  4302   case vmIntrinsics::_longBitsToDouble:
  4303     push_pair(_gvn.transform( new (C) MoveL2DNode(pop_pair())));
  4304     break;
  4306   case vmIntrinsics::_doubleToLongBits: {
  4307     Node* value = pop_pair();
  4309     // two paths (plus control) merge in a wood
  4310     RegionNode *r = new (C) RegionNode(3);
  4311     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4313     Node *cmpisnan = _gvn.transform( new (C) CmpDNode(value, value));
  4314     // Build the boolean node
  4315     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
  4317     // Branch either way.
  4318     // NaN case is less traveled, which makes all the difference.
  4319     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4320     Node *opt_isnan = _gvn.transform(ifisnan);
  4321     assert( opt_isnan->is_If(), "Expect an IfNode");
  4322     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4323     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4325     set_control(iftrue);
  4327     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4328     Node *slow_result = longcon(nan_bits); // return NaN
  4329     phi->init_req(1, _gvn.transform( slow_result ));
  4330     r->init_req(1, iftrue);
  4332     // Else fall through
  4333     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
  4334     set_control(iffalse);
  4336     phi->init_req(2, _gvn.transform( new (C) MoveD2LNode(value)));
  4337     r->init_req(2, iffalse);
  4339     // Post merge
  4340     set_control(_gvn.transform(r));
  4341     record_for_igvn(r);
  4343     Node* result = _gvn.transform(phi);
  4344     assert(result->bottom_type()->isa_long(), "must be");
  4345     push_pair(result);
  4347     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4349     break;
  4352   case vmIntrinsics::_floatToIntBits: {
  4353     Node* value = pop();
  4355     // two paths (plus control) merge in a wood
  4356     RegionNode *r = new (C) RegionNode(3);
  4357     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4359     Node *cmpisnan = _gvn.transform( new (C) CmpFNode(value, value));
  4360     // Build the boolean node
  4361     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
  4363     // Branch either way.
  4364     // NaN case is less traveled, which makes all the difference.
  4365     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4366     Node *opt_isnan = _gvn.transform(ifisnan);
  4367     assert( opt_isnan->is_If(), "Expect an IfNode");
  4368     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4369     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4371     set_control(iftrue);
  4373     static const jint nan_bits = 0x7fc00000;
  4374     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4375     phi->init_req(1, _gvn.transform( slow_result ));
  4376     r->init_req(1, iftrue);
  4378     // Else fall through
  4379     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
  4380     set_control(iffalse);
  4382     phi->init_req(2, _gvn.transform( new (C) MoveF2INode(value)));
  4383     r->init_req(2, iffalse);
  4385     // Post merge
  4386     set_control(_gvn.transform(r));
  4387     record_for_igvn(r);
  4389     Node* result = _gvn.transform(phi);
  4390     assert(result->bottom_type()->isa_int(), "must be");
  4391     push(result);
  4393     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4395     break;
  4398   default:
  4399     ShouldNotReachHere();
  4402   return true;
  4405 #ifdef _LP64
  4406 #define XTOP ,top() /*additional argument*/
  4407 #else  //_LP64
  4408 #define XTOP        /*no additional argument*/
  4409 #endif //_LP64
  4411 //----------------------inline_unsafe_copyMemory-------------------------
  4412 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4413   if (callee()->is_static())  return false;  // caller must have the capability!
  4414   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4415   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4416   null_check_receiver(callee());  // check then ignore argument(0)
  4417   if (stopped())  return true;
  4419   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4421   Node* src_ptr = argument(1);
  4422   Node* src_off = ConvL2X(argument(2));
  4423   assert(argument(3)->is_top(), "2nd half of long");
  4424   Node* dst_ptr = argument(4);
  4425   Node* dst_off = ConvL2X(argument(5));
  4426   assert(argument(6)->is_top(), "2nd half of long");
  4427   Node* size    = ConvL2X(argument(7));
  4428   assert(argument(8)->is_top(), "2nd half of long");
  4430   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4431          "fieldOffset must be byte-scaled");
  4433   Node* src = make_unsafe_address(src_ptr, src_off);
  4434   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4436   // Conservatively insert a memory barrier on all memory slices.
  4437   // Do not let writes of the copy source or destination float below the copy.
  4438   insert_mem_bar(Op_MemBarCPUOrder);
  4440   // Call it.  Note that the length argument is not scaled.
  4441   make_runtime_call(RC_LEAF|RC_NO_FP,
  4442                     OptoRuntime::fast_arraycopy_Type(),
  4443                     StubRoutines::unsafe_arraycopy(),
  4444                     "unsafe_arraycopy",
  4445                     TypeRawPtr::BOTTOM,
  4446                     src, dst, size XTOP);
  4448   // Do not let reads of the copy destination float above the copy.
  4449   insert_mem_bar(Op_MemBarCPUOrder);
  4451   return true;
  4454 //------------------------clone_coping-----------------------------------
  4455 // Helper function for inline_native_clone.
  4456 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4457   assert(obj_size != NULL, "");
  4458   Node* raw_obj = alloc_obj->in(1);
  4459   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4461   AllocateNode* alloc = NULL;
  4462   if (ReduceBulkZeroing) {
  4463     // We will be completely responsible for initializing this object -
  4464     // mark Initialize node as complete.
  4465     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4466     // The object was just allocated - there should be no any stores!
  4467     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4468     // Mark as complete_with_arraycopy so that on AllocateNode
  4469     // expansion, we know this AllocateNode is initialized by an array
  4470     // copy and a StoreStore barrier exists after the array copy.
  4471     alloc->initialization()->set_complete_with_arraycopy();
  4474   // Copy the fastest available way.
  4475   // TODO: generate fields copies for small objects instead.
  4476   Node* src  = obj;
  4477   Node* dest = alloc_obj;
  4478   Node* size = _gvn.transform(obj_size);
  4480   // Exclude the header but include array length to copy by 8 bytes words.
  4481   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4482   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4483                             instanceOopDesc::base_offset_in_bytes();
  4484   // base_off:
  4485   // 8  - 32-bit VM
  4486   // 12 - 64-bit VM, compressed klass
  4487   // 16 - 64-bit VM, normal klass
  4488   if (base_off % BytesPerLong != 0) {
  4489     assert(UseCompressedKlassPointers, "");
  4490     if (is_array) {
  4491       // Exclude length to copy by 8 bytes words.
  4492       base_off += sizeof(int);
  4493     } else {
  4494       // Include klass to copy by 8 bytes words.
  4495       base_off = instanceOopDesc::klass_offset_in_bytes();
  4497     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4499   src  = basic_plus_adr(src,  base_off);
  4500   dest = basic_plus_adr(dest, base_off);
  4502   // Compute the length also, if needed:
  4503   Node* countx = size;
  4504   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
  4505   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4507   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4508   bool disjoint_bases = true;
  4509   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4510                                src, NULL, dest, NULL, countx,
  4511                                /*dest_uninitialized*/true);
  4513   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4514   if (card_mark) {
  4515     assert(!is_array, "");
  4516     // Put in store barrier for any and all oops we are sticking
  4517     // into this object.  (We could avoid this if we could prove
  4518     // that the object type contains no oop fields at all.)
  4519     Node* no_particular_value = NULL;
  4520     Node* no_particular_field = NULL;
  4521     int raw_adr_idx = Compile::AliasIdxRaw;
  4522     post_barrier(control(),
  4523                  memory(raw_adr_type),
  4524                  alloc_obj,
  4525                  no_particular_field,
  4526                  raw_adr_idx,
  4527                  no_particular_value,
  4528                  T_OBJECT,
  4529                  false);
  4532   // Do not let reads from the cloned object float above the arraycopy.
  4533   if (alloc != NULL) {
  4534     // Do not let stores that initialize this object be reordered with
  4535     // a subsequent store that would make this object accessible by
  4536     // other threads.
  4537     // Record what AllocateNode this StoreStore protects so that
  4538     // escape analysis can go from the MemBarStoreStoreNode to the
  4539     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4540     // based on the escape status of the AllocateNode.
  4541     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4542   } else {
  4543     insert_mem_bar(Op_MemBarCPUOrder);
  4547 //------------------------inline_native_clone----------------------------
  4548 // Here are the simple edge cases:
  4549 //  null receiver => normal trap
  4550 //  virtual and clone was overridden => slow path to out-of-line clone
  4551 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4552 //
  4553 // The general case has two steps, allocation and copying.
  4554 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4555 //
  4556 // Copying also has two cases, oop arrays and everything else.
  4557 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4558 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4559 //
  4560 // These steps fold up nicely if and when the cloned object's klass
  4561 // can be sharply typed as an object array, a type array, or an instance.
  4562 //
  4563 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4564   int nargs = 1;
  4565   PhiNode* result_val;
  4567   //set the original stack and the reexecute bit for the interpreter to reexecute
  4568   //the bytecode that invokes Object.clone if deoptimization happens
  4569   { PreserveReexecuteState preexecs(this);
  4570     jvms()->set_should_reexecute(true);
  4572     //null_check_receiver will adjust _sp (push and pop)
  4573     Node* obj = null_check_receiver(callee());
  4574     if (stopped())  return true;
  4576     _sp += nargs;
  4578     Node* obj_klass = load_object_klass(obj);
  4579     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4580     const TypeOopPtr*   toop   = ((tklass != NULL)
  4581                                 ? tklass->as_instance_type()
  4582                                 : TypeInstPtr::NOTNULL);
  4584     // Conservatively insert a memory barrier on all memory slices.
  4585     // Do not let writes into the original float below the clone.
  4586     insert_mem_bar(Op_MemBarCPUOrder);
  4588     // paths into result_reg:
  4589     enum {
  4590       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4591       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4592       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4593       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4594       PATH_LIMIT
  4595     };
  4596     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4597     result_val             = new(C) PhiNode(result_reg,
  4598                                             TypeInstPtr::NOTNULL);
  4599     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4600     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4601                                             TypePtr::BOTTOM);
  4602     record_for_igvn(result_reg);
  4604     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4605     int raw_adr_idx = Compile::AliasIdxRaw;
  4607     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4608     if (array_ctl != NULL) {
  4609       // It's an array.
  4610       PreserveJVMState pjvms(this);
  4611       set_control(array_ctl);
  4612       Node* obj_length = load_array_length(obj);
  4613       Node* obj_size  = NULL;
  4614       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4616       if (!use_ReduceInitialCardMarks()) {
  4617         // If it is an oop array, it requires very special treatment,
  4618         // because card marking is required on each card of the array.
  4619         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4620         if (is_obja != NULL) {
  4621           PreserveJVMState pjvms2(this);
  4622           set_control(is_obja);
  4623           // Generate a direct call to the right arraycopy function(s).
  4624           bool disjoint_bases = true;
  4625           bool length_never_negative = true;
  4626           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4627                              obj, intcon(0), alloc_obj, intcon(0),
  4628                              obj_length,
  4629                              disjoint_bases, length_never_negative);
  4630           result_reg->init_req(_objArray_path, control());
  4631           result_val->init_req(_objArray_path, alloc_obj);
  4632           result_i_o ->set_req(_objArray_path, i_o());
  4633           result_mem ->set_req(_objArray_path, reset_memory());
  4636       // Otherwise, there are no card marks to worry about.
  4637       // (We can dispense with card marks if we know the allocation
  4638       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4639       //  causes the non-eden paths to take compensating steps to
  4640       //  simulate a fresh allocation, so that no further
  4641       //  card marks are required in compiled code to initialize
  4642       //  the object.)
  4644       if (!stopped()) {
  4645         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4647         // Present the results of the copy.
  4648         result_reg->init_req(_array_path, control());
  4649         result_val->init_req(_array_path, alloc_obj);
  4650         result_i_o ->set_req(_array_path, i_o());
  4651         result_mem ->set_req(_array_path, reset_memory());
  4655     // We only go to the instance fast case code if we pass a number of guards.
  4656     // The paths which do not pass are accumulated in the slow_region.
  4657     RegionNode* slow_region = new (C) RegionNode(1);
  4658     record_for_igvn(slow_region);
  4659     if (!stopped()) {
  4660       // It's an instance (we did array above).  Make the slow-path tests.
  4661       // If this is a virtual call, we generate a funny guard.  We grab
  4662       // the vtable entry corresponding to clone() from the target object.
  4663       // If the target method which we are calling happens to be the
  4664       // Object clone() method, we pass the guard.  We do not need this
  4665       // guard for non-virtual calls; the caller is known to be the native
  4666       // Object clone().
  4667       if (is_virtual) {
  4668         generate_virtual_guard(obj_klass, slow_region);
  4671       // The object must be cloneable and must not have a finalizer.
  4672       // Both of these conditions may be checked in a single test.
  4673       // We could optimize the cloneable test further, but we don't care.
  4674       generate_access_flags_guard(obj_klass,
  4675                                   // Test both conditions:
  4676                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4677                                   // Must be cloneable but not finalizer:
  4678                                   JVM_ACC_IS_CLONEABLE,
  4679                                   slow_region);
  4682     if (!stopped()) {
  4683       // It's an instance, and it passed the slow-path tests.
  4684       PreserveJVMState pjvms(this);
  4685       Node* obj_size  = NULL;
  4686       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4688       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4690       // Present the results of the slow call.
  4691       result_reg->init_req(_instance_path, control());
  4692       result_val->init_req(_instance_path, alloc_obj);
  4693       result_i_o ->set_req(_instance_path, i_o());
  4694       result_mem ->set_req(_instance_path, reset_memory());
  4697     // Generate code for the slow case.  We make a call to clone().
  4698     set_control(_gvn.transform(slow_region));
  4699     if (!stopped()) {
  4700       PreserveJVMState pjvms(this);
  4701       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4702       Node* slow_result = set_results_for_java_call(slow_call);
  4703       // this->control() comes from set_results_for_java_call
  4704       result_reg->init_req(_slow_path, control());
  4705       result_val->init_req(_slow_path, slow_result);
  4706       result_i_o ->set_req(_slow_path, i_o());
  4707       result_mem ->set_req(_slow_path, reset_memory());
  4710     // Return the combined state.
  4711     set_control(    _gvn.transform(result_reg) );
  4712     set_i_o(        _gvn.transform(result_i_o) );
  4713     set_all_memory( _gvn.transform(result_mem) );
  4714   } //original reexecute and sp are set back here
  4716   push(_gvn.transform(result_val));
  4718   return true;
  4721 //------------------------------basictype2arraycopy----------------------------
  4722 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4723                                             Node* src_offset,
  4724                                             Node* dest_offset,
  4725                                             bool disjoint_bases,
  4726                                             const char* &name,
  4727                                             bool dest_uninitialized) {
  4728   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4729   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4731   bool aligned = false;
  4732   bool disjoint = disjoint_bases;
  4734   // if the offsets are the same, we can treat the memory regions as
  4735   // disjoint, because either the memory regions are in different arrays,
  4736   // or they are identical (which we can treat as disjoint.)  We can also
  4737   // treat a copy with a destination index  less that the source index
  4738   // as disjoint since a low->high copy will work correctly in this case.
  4739   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4740       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4741     // both indices are constants
  4742     int s_offs = src_offset_inttype->get_con();
  4743     int d_offs = dest_offset_inttype->get_con();
  4744     int element_size = type2aelembytes(t);
  4745     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4746               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4747     if (s_offs >= d_offs)  disjoint = true;
  4748   } else if (src_offset == dest_offset && src_offset != NULL) {
  4749     // This can occur if the offsets are identical non-constants.
  4750     disjoint = true;
  4753   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4757 //------------------------------inline_arraycopy-----------------------
  4758 bool LibraryCallKit::inline_arraycopy() {
  4759   // Restore the stack and pop off the arguments.
  4760   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4761   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4763   Node *src         = argument(0);
  4764   Node *src_offset  = argument(1);
  4765   Node *dest        = argument(2);
  4766   Node *dest_offset = argument(3);
  4767   Node *length      = argument(4);
  4769   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4770   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4771   // is.  The checks we choose to mandate at compile time are:
  4772   //
  4773   // (1) src and dest are arrays.
  4774   const Type* src_type = src->Value(&_gvn);
  4775   const Type* dest_type = dest->Value(&_gvn);
  4776   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4777   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4778   if (top_src  == NULL || top_src->klass()  == NULL ||
  4779       top_dest == NULL || top_dest->klass() == NULL) {
  4780     // Conservatively insert a memory barrier on all memory slices.
  4781     // Do not let writes into the source float below the arraycopy.
  4782     insert_mem_bar(Op_MemBarCPUOrder);
  4784     // Call StubRoutines::generic_arraycopy stub.
  4785     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4786                        src, src_offset, dest, dest_offset, length);
  4788     // Do not let reads from the destination float above the arraycopy.
  4789     // Since we cannot type the arrays, we don't know which slices
  4790     // might be affected.  We could restrict this barrier only to those
  4791     // memory slices which pertain to array elements--but don't bother.
  4792     if (!InsertMemBarAfterArraycopy)
  4793       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4794       insert_mem_bar(Op_MemBarCPUOrder);
  4795     return true;
  4798   // (2) src and dest arrays must have elements of the same BasicType
  4799   // Figure out the size and type of the elements we will be copying.
  4800   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4801   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4802   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4803   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4805   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4806     // The component types are not the same or are not recognized.  Punt.
  4807     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4808     generate_slow_arraycopy(TypePtr::BOTTOM,
  4809                             src, src_offset, dest, dest_offset, length,
  4810                             /*dest_uninitialized*/false);
  4811     return true;
  4814   //---------------------------------------------------------------------------
  4815   // We will make a fast path for this call to arraycopy.
  4817   // We have the following tests left to perform:
  4818   //
  4819   // (3) src and dest must not be null.
  4820   // (4) src_offset must not be negative.
  4821   // (5) dest_offset must not be negative.
  4822   // (6) length must not be negative.
  4823   // (7) src_offset + length must not exceed length of src.
  4824   // (8) dest_offset + length must not exceed length of dest.
  4825   // (9) each element of an oop array must be assignable
  4827   RegionNode* slow_region = new (C) RegionNode(1);
  4828   record_for_igvn(slow_region);
  4830   // (3) operands must not be null
  4831   // We currently perform our null checks with the do_null_check routine.
  4832   // This means that the null exceptions will be reported in the caller
  4833   // rather than (correctly) reported inside of the native arraycopy call.
  4834   // This should be corrected, given time.  We do our null check with the
  4835   // stack pointer restored.
  4836   _sp += nargs;
  4837   src  = do_null_check(src,  T_ARRAY);
  4838   dest = do_null_check(dest, T_ARRAY);
  4839   _sp -= nargs;
  4841   // (4) src_offset must not be negative.
  4842   generate_negative_guard(src_offset, slow_region);
  4844   // (5) dest_offset must not be negative.
  4845   generate_negative_guard(dest_offset, slow_region);
  4847   // (6) length must not be negative (moved to generate_arraycopy()).
  4848   // generate_negative_guard(length, slow_region);
  4850   // (7) src_offset + length must not exceed length of src.
  4851   generate_limit_guard(src_offset, length,
  4852                        load_array_length(src),
  4853                        slow_region);
  4855   // (8) dest_offset + length must not exceed length of dest.
  4856   generate_limit_guard(dest_offset, length,
  4857                        load_array_length(dest),
  4858                        slow_region);
  4860   // (9) each element of an oop array must be assignable
  4861   // The generate_arraycopy subroutine checks this.
  4863   // This is where the memory effects are placed:
  4864   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4865   generate_arraycopy(adr_type, dest_elem,
  4866                      src, src_offset, dest, dest_offset, length,
  4867                      false, false, slow_region);
  4869   return true;
  4872 //-----------------------------generate_arraycopy----------------------
  4873 // Generate an optimized call to arraycopy.
  4874 // Caller must guard against non-arrays.
  4875 // Caller must determine a common array basic-type for both arrays.
  4876 // Caller must validate offsets against array bounds.
  4877 // The slow_region has already collected guard failure paths
  4878 // (such as out of bounds length or non-conformable array types).
  4879 // The generated code has this shape, in general:
  4880 //
  4881 //     if (length == 0)  return   // via zero_path
  4882 //     slowval = -1
  4883 //     if (types unknown) {
  4884 //       slowval = call generic copy loop
  4885 //       if (slowval == 0)  return  // via checked_path
  4886 //     } else if (indexes in bounds) {
  4887 //       if ((is object array) && !(array type check)) {
  4888 //         slowval = call checked copy loop
  4889 //         if (slowval == 0)  return  // via checked_path
  4890 //       } else {
  4891 //         call bulk copy loop
  4892 //         return  // via fast_path
  4893 //       }
  4894 //     }
  4895 //     // adjust params for remaining work:
  4896 //     if (slowval != -1) {
  4897 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4898 //     }
  4899 //   slow_region:
  4900 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4901 //     return  // via slow_call_path
  4902 //
  4903 // This routine is used from several intrinsics:  System.arraycopy,
  4904 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4905 //
  4906 void
  4907 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4908                                    BasicType basic_elem_type,
  4909                                    Node* src,  Node* src_offset,
  4910                                    Node* dest, Node* dest_offset,
  4911                                    Node* copy_length,
  4912                                    bool disjoint_bases,
  4913                                    bool length_never_negative,
  4914                                    RegionNode* slow_region) {
  4916   if (slow_region == NULL) {
  4917     slow_region = new(C) RegionNode(1);
  4918     record_for_igvn(slow_region);
  4921   Node* original_dest      = dest;
  4922   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4923   bool  dest_uninitialized = false;
  4925   // See if this is the initialization of a newly-allocated array.
  4926   // If so, we will take responsibility here for initializing it to zero.
  4927   // (Note:  Because tightly_coupled_allocation performs checks on the
  4928   // out-edges of the dest, we need to avoid making derived pointers
  4929   // from it until we have checked its uses.)
  4930   if (ReduceBulkZeroing
  4931       && !ZeroTLAB              // pointless if already zeroed
  4932       && basic_elem_type != T_CONFLICT // avoid corner case
  4933       && !src->eqv_uncast(dest)
  4934       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4935           != NULL)
  4936       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4937       && alloc->maybe_set_complete(&_gvn)) {
  4938     // "You break it, you buy it."
  4939     InitializeNode* init = alloc->initialization();
  4940     assert(init->is_complete(), "we just did this");
  4941     init->set_complete_with_arraycopy();
  4942     assert(dest->is_CheckCastPP(), "sanity");
  4943     assert(dest->in(0)->in(0) == init, "dest pinned");
  4944     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4945     // From this point on, every exit path is responsible for
  4946     // initializing any non-copied parts of the object to zero.
  4947     // Also, if this flag is set we make sure that arraycopy interacts properly
  4948     // with G1, eliding pre-barriers. See CR 6627983.
  4949     dest_uninitialized = true;
  4950   } else {
  4951     // No zeroing elimination here.
  4952     alloc             = NULL;
  4953     //original_dest   = dest;
  4954     //dest_uninitialized = false;
  4957   // Results are placed here:
  4958   enum { fast_path        = 1,  // normal void-returning assembly stub
  4959          checked_path     = 2,  // special assembly stub with cleanup
  4960          slow_call_path   = 3,  // something went wrong; call the VM
  4961          zero_path        = 4,  // bypass when length of copy is zero
  4962          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4963          PATH_LIMIT       = 6
  4964   };
  4965   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4966   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4967   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4968   record_for_igvn(result_region);
  4969   _gvn.set_type_bottom(result_i_o);
  4970   _gvn.set_type_bottom(result_memory);
  4971   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4973   // The slow_control path:
  4974   Node* slow_control;
  4975   Node* slow_i_o = i_o();
  4976   Node* slow_mem = memory(adr_type);
  4977   debug_only(slow_control = (Node*) badAddress);
  4979   // Checked control path:
  4980   Node* checked_control = top();
  4981   Node* checked_mem     = NULL;
  4982   Node* checked_i_o     = NULL;
  4983   Node* checked_value   = NULL;
  4985   if (basic_elem_type == T_CONFLICT) {
  4986     assert(!dest_uninitialized, "");
  4987     Node* cv = generate_generic_arraycopy(adr_type,
  4988                                           src, src_offset, dest, dest_offset,
  4989                                           copy_length, dest_uninitialized);
  4990     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4991     checked_control = control();
  4992     checked_i_o     = i_o();
  4993     checked_mem     = memory(adr_type);
  4994     checked_value   = cv;
  4995     set_control(top());         // no fast path
  4998   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4999   if (not_pos != NULL) {
  5000     PreserveJVMState pjvms(this);
  5001     set_control(not_pos);
  5003     // (6) length must not be negative.
  5004     if (!length_never_negative) {
  5005       generate_negative_guard(copy_length, slow_region);
  5008     // copy_length is 0.
  5009     if (!stopped() && dest_uninitialized) {
  5010       Node* dest_length = alloc->in(AllocateNode::ALength);
  5011       if (copy_length->eqv_uncast(dest_length)
  5012           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5013         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5014       } else {
  5015         // Clear the whole thing since there are no source elements to copy.
  5016         generate_clear_array(adr_type, dest, basic_elem_type,
  5017                              intcon(0), NULL,
  5018                              alloc->in(AllocateNode::AllocSize));
  5019         // Use a secondary InitializeNode as raw memory barrier.
  5020         // Currently it is needed only on this path since other
  5021         // paths have stub or runtime calls as raw memory barriers.
  5022         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5023                                                        Compile::AliasIdxRaw,
  5024                                                        top())->as_Initialize();
  5025         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5029     // Present the results of the fast call.
  5030     result_region->init_req(zero_path, control());
  5031     result_i_o   ->init_req(zero_path, i_o());
  5032     result_memory->init_req(zero_path, memory(adr_type));
  5035   if (!stopped() && dest_uninitialized) {
  5036     // We have to initialize the *uncopied* part of the array to zero.
  5037     // The copy destination is the slice dest[off..off+len].  The other slices
  5038     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5039     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5040     Node* dest_length = alloc->in(AllocateNode::ALength);
  5041     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
  5042                                                           copy_length) );
  5044     // If there is a head section that needs zeroing, do it now.
  5045     if (find_int_con(dest_offset, -1) != 0) {
  5046       generate_clear_array(adr_type, dest, basic_elem_type,
  5047                            intcon(0), dest_offset,
  5048                            NULL);
  5051     // Next, perform a dynamic check on the tail length.
  5052     // It is often zero, and we can win big if we prove this.
  5053     // There are two wins:  Avoid generating the ClearArray
  5054     // with its attendant messy index arithmetic, and upgrade
  5055     // the copy to a more hardware-friendly word size of 64 bits.
  5056     Node* tail_ctl = NULL;
  5057     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5058       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
  5059       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
  5060       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5061       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5064     // At this point, let's assume there is no tail.
  5065     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5066       // There is no tail.  Try an upgrade to a 64-bit copy.
  5067       bool didit = false;
  5068       { PreserveJVMState pjvms(this);
  5069         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5070                                          src, src_offset, dest, dest_offset,
  5071                                          dest_size, dest_uninitialized);
  5072         if (didit) {
  5073           // Present the results of the block-copying fast call.
  5074           result_region->init_req(bcopy_path, control());
  5075           result_i_o   ->init_req(bcopy_path, i_o());
  5076           result_memory->init_req(bcopy_path, memory(adr_type));
  5079       if (didit)
  5080         set_control(top());     // no regular fast path
  5083     // Clear the tail, if any.
  5084     if (tail_ctl != NULL) {
  5085       Node* notail_ctl = stopped() ? NULL : control();
  5086       set_control(tail_ctl);
  5087       if (notail_ctl == NULL) {
  5088         generate_clear_array(adr_type, dest, basic_elem_type,
  5089                              dest_tail, NULL,
  5090                              dest_size);
  5091       } else {
  5092         // Make a local merge.
  5093         Node* done_ctl = new(C) RegionNode(3);
  5094         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5095         done_ctl->init_req(1, notail_ctl);
  5096         done_mem->init_req(1, memory(adr_type));
  5097         generate_clear_array(adr_type, dest, basic_elem_type,
  5098                              dest_tail, NULL,
  5099                              dest_size);
  5100         done_ctl->init_req(2, control());
  5101         done_mem->init_req(2, memory(adr_type));
  5102         set_control( _gvn.transform(done_ctl) );
  5103         set_memory(  _gvn.transform(done_mem), adr_type );
  5108   BasicType copy_type = basic_elem_type;
  5109   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5110   if (!stopped() && copy_type == T_OBJECT) {
  5111     // If src and dest have compatible element types, we can copy bits.
  5112     // Types S[] and D[] are compatible if D is a supertype of S.
  5113     //
  5114     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5115     // which performs a fast optimistic per-oop check, and backs off
  5116     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5117     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5119     // Get the Klass* for both src and dest
  5120     Node* src_klass  = load_object_klass(src);
  5121     Node* dest_klass = load_object_klass(dest);
  5123     // Generate the subtype check.
  5124     // This might fold up statically, or then again it might not.
  5125     //
  5126     // Non-static example:  Copying List<String>.elements to a new String[].
  5127     // The backing store for a List<String> is always an Object[],
  5128     // but its elements are always type String, if the generic types
  5129     // are correct at the source level.
  5130     //
  5131     // Test S[] against D[], not S against D, because (probably)
  5132     // the secondary supertype cache is less busy for S[] than S.
  5133     // This usually only matters when D is an interface.
  5134     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5135     // Plug failing path into checked_oop_disjoint_arraycopy
  5136     if (not_subtype_ctrl != top()) {
  5137       PreserveJVMState pjvms(this);
  5138       set_control(not_subtype_ctrl);
  5139       // (At this point we can assume disjoint_bases, since types differ.)
  5140       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5141       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5142       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5143       Node* dest_elem_klass = _gvn.transform(n1);
  5144       Node* cv = generate_checkcast_arraycopy(adr_type,
  5145                                               dest_elem_klass,
  5146                                               src, src_offset, dest, dest_offset,
  5147                                               ConvI2X(copy_length), dest_uninitialized);
  5148       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5149       checked_control = control();
  5150       checked_i_o     = i_o();
  5151       checked_mem     = memory(adr_type);
  5152       checked_value   = cv;
  5154     // At this point we know we do not need type checks on oop stores.
  5156     // Let's see if we need card marks:
  5157     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5158       // If we do not need card marks, copy using the jint or jlong stub.
  5159       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5160       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5161              "sizes agree");
  5165   if (!stopped()) {
  5166     // Generate the fast path, if possible.
  5167     PreserveJVMState pjvms(this);
  5168     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5169                                  src, src_offset, dest, dest_offset,
  5170                                  ConvI2X(copy_length), dest_uninitialized);
  5172     // Present the results of the fast call.
  5173     result_region->init_req(fast_path, control());
  5174     result_i_o   ->init_req(fast_path, i_o());
  5175     result_memory->init_req(fast_path, memory(adr_type));
  5178   // Here are all the slow paths up to this point, in one bundle:
  5179   slow_control = top();
  5180   if (slow_region != NULL)
  5181     slow_control = _gvn.transform(slow_region);
  5182   debug_only(slow_region = (RegionNode*)badAddress);
  5184   set_control(checked_control);
  5185   if (!stopped()) {
  5186     // Clean up after the checked call.
  5187     // The returned value is either 0 or -1^K,
  5188     // where K = number of partially transferred array elements.
  5189     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
  5190     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  5191     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5193     // If it is 0, we are done, so transfer to the end.
  5194     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
  5195     result_region->init_req(checked_path, checks_done);
  5196     result_i_o   ->init_req(checked_path, checked_i_o);
  5197     result_memory->init_req(checked_path, checked_mem);
  5199     // If it is not zero, merge into the slow call.
  5200     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
  5201     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5202     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5203     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5204     record_for_igvn(slow_reg2);
  5205     slow_reg2  ->init_req(1, slow_control);
  5206     slow_i_o2  ->init_req(1, slow_i_o);
  5207     slow_mem2  ->init_req(1, slow_mem);
  5208     slow_reg2  ->init_req(2, control());
  5209     slow_i_o2  ->init_req(2, checked_i_o);
  5210     slow_mem2  ->init_req(2, checked_mem);
  5212     slow_control = _gvn.transform(slow_reg2);
  5213     slow_i_o     = _gvn.transform(slow_i_o2);
  5214     slow_mem     = _gvn.transform(slow_mem2);
  5216     if (alloc != NULL) {
  5217       // We'll restart from the very beginning, after zeroing the whole thing.
  5218       // This can cause double writes, but that's OK since dest is brand new.
  5219       // So we ignore the low 31 bits of the value returned from the stub.
  5220     } else {
  5221       // We must continue the copy exactly where it failed, or else
  5222       // another thread might see the wrong number of writes to dest.
  5223       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
  5224       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5225       slow_offset->init_req(1, intcon(0));
  5226       slow_offset->init_req(2, checked_offset);
  5227       slow_offset  = _gvn.transform(slow_offset);
  5229       // Adjust the arguments by the conditionally incoming offset.
  5230       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
  5231       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
  5232       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
  5234       // Tweak the node variables to adjust the code produced below:
  5235       src_offset  = src_off_plus;
  5236       dest_offset = dest_off_plus;
  5237       copy_length = length_minus;
  5241   set_control(slow_control);
  5242   if (!stopped()) {
  5243     // Generate the slow path, if needed.
  5244     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5246     set_memory(slow_mem, adr_type);
  5247     set_i_o(slow_i_o);
  5249     if (dest_uninitialized) {
  5250       generate_clear_array(adr_type, dest, basic_elem_type,
  5251                            intcon(0), NULL,
  5252                            alloc->in(AllocateNode::AllocSize));
  5255     generate_slow_arraycopy(adr_type,
  5256                             src, src_offset, dest, dest_offset,
  5257                             copy_length, /*dest_uninitialized*/false);
  5259     result_region->init_req(slow_call_path, control());
  5260     result_i_o   ->init_req(slow_call_path, i_o());
  5261     result_memory->init_req(slow_call_path, memory(adr_type));
  5264   // Remove unused edges.
  5265   for (uint i = 1; i < result_region->req(); i++) {
  5266     if (result_region->in(i) == NULL)
  5267       result_region->init_req(i, top());
  5270   // Finished; return the combined state.
  5271   set_control( _gvn.transform(result_region) );
  5272   set_i_o(     _gvn.transform(result_i_o)    );
  5273   set_memory(  _gvn.transform(result_memory), adr_type );
  5275   // The memory edges above are precise in order to model effects around
  5276   // array copies accurately to allow value numbering of field loads around
  5277   // arraycopy.  Such field loads, both before and after, are common in Java
  5278   // collections and similar classes involving header/array data structures.
  5279   //
  5280   // But with low number of register or when some registers are used or killed
  5281   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5282   // The next memory barrier is added to avoid it. If the arraycopy can be
  5283   // optimized away (which it can, sometimes) then we can manually remove
  5284   // the membar also.
  5285   //
  5286   // Do not let reads from the cloned object float above the arraycopy.
  5287   if (alloc != NULL) {
  5288     // Do not let stores that initialize this object be reordered with
  5289     // a subsequent store that would make this object accessible by
  5290     // other threads.
  5291     // Record what AllocateNode this StoreStore protects so that
  5292     // escape analysis can go from the MemBarStoreStoreNode to the
  5293     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5294     // based on the escape status of the AllocateNode.
  5295     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5296   } else if (InsertMemBarAfterArraycopy)
  5297     insert_mem_bar(Op_MemBarCPUOrder);
  5301 // Helper function which determines if an arraycopy immediately follows
  5302 // an allocation, with no intervening tests or other escapes for the object.
  5303 AllocateArrayNode*
  5304 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5305                                            RegionNode* slow_region) {
  5306   if (stopped())             return NULL;  // no fast path
  5307   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5309   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5310   if (alloc == NULL)  return NULL;
  5312   Node* rawmem = memory(Compile::AliasIdxRaw);
  5313   // Is the allocation's memory state untouched?
  5314   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5315     // Bail out if there have been raw-memory effects since the allocation.
  5316     // (Example:  There might have been a call or safepoint.)
  5317     return NULL;
  5319   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5320   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5321     return NULL;
  5324   // There must be no unexpected observers of this allocation.
  5325   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5326     Node* obs = ptr->fast_out(i);
  5327     if (obs != this->map()) {
  5328       return NULL;
  5332   // This arraycopy must unconditionally follow the allocation of the ptr.
  5333   Node* alloc_ctl = ptr->in(0);
  5334   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5336   Node* ctl = control();
  5337   while (ctl != alloc_ctl) {
  5338     // There may be guards which feed into the slow_region.
  5339     // Any other control flow means that we might not get a chance
  5340     // to finish initializing the allocated object.
  5341     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5342       IfNode* iff = ctl->in(0)->as_If();
  5343       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5344       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5345       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5346         ctl = iff->in(0);       // This test feeds the known slow_region.
  5347         continue;
  5349       // One more try:  Various low-level checks bottom out in
  5350       // uncommon traps.  If the debug-info of the trap omits
  5351       // any reference to the allocation, as we've already
  5352       // observed, then there can be no objection to the trap.
  5353       bool found_trap = false;
  5354       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5355         Node* obs = not_ctl->fast_out(j);
  5356         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5357             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5358           found_trap = true; break;
  5361       if (found_trap) {
  5362         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5363         continue;
  5366     return NULL;
  5369   // If we get this far, we have an allocation which immediately
  5370   // precedes the arraycopy, and we can take over zeroing the new object.
  5371   // The arraycopy will finish the initialization, and provide
  5372   // a new control state to which we will anchor the destination pointer.
  5374   return alloc;
  5377 // Helper for initialization of arrays, creating a ClearArray.
  5378 // It writes zero bits in [start..end), within the body of an array object.
  5379 // The memory effects are all chained onto the 'adr_type' alias category.
  5380 //
  5381 // Since the object is otherwise uninitialized, we are free
  5382 // to put a little "slop" around the edges of the cleared area,
  5383 // as long as it does not go back into the array's header,
  5384 // or beyond the array end within the heap.
  5385 //
  5386 // The lower edge can be rounded down to the nearest jint and the
  5387 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5388 //
  5389 // Arguments:
  5390 //   adr_type           memory slice where writes are generated
  5391 //   dest               oop of the destination array
  5392 //   basic_elem_type    element type of the destination
  5393 //   slice_idx          array index of first element to store
  5394 //   slice_len          number of elements to store (or NULL)
  5395 //   dest_size          total size in bytes of the array object
  5396 //
  5397 // Exactly one of slice_len or dest_size must be non-NULL.
  5398 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5399 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5400 void
  5401 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5402                                      Node* dest,
  5403                                      BasicType basic_elem_type,
  5404                                      Node* slice_idx,
  5405                                      Node* slice_len,
  5406                                      Node* dest_size) {
  5407   // one or the other but not both of slice_len and dest_size:
  5408   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5409   if (slice_len == NULL)  slice_len = top();
  5410   if (dest_size == NULL)  dest_size = top();
  5412   // operate on this memory slice:
  5413   Node* mem = memory(adr_type); // memory slice to operate on
  5415   // scaling and rounding of indexes:
  5416   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5417   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5418   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5419   int bump_bit  = (-1 << scale) & BytesPerInt;
  5421   // determine constant starts and ends
  5422   const intptr_t BIG_NEG = -128;
  5423   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5424   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5425   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5426   if (slice_len_con == 0) {
  5427     return;                     // nothing to do here
  5429   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5430   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5431   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5432     assert(end_con < 0, "not two cons");
  5433     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5434                        BytesPerLong);
  5437   if (start_con >= 0 && end_con >= 0) {
  5438     // Constant start and end.  Simple.
  5439     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5440                                        start_con, end_con, &_gvn);
  5441   } else if (start_con >= 0 && dest_size != top()) {
  5442     // Constant start, pre-rounded end after the tail of the array.
  5443     Node* end = dest_size;
  5444     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5445                                        start_con, end, &_gvn);
  5446   } else if (start_con >= 0 && slice_len != top()) {
  5447     // Constant start, non-constant end.  End needs rounding up.
  5448     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5449     intptr_t end_base  = abase + (slice_idx_con << scale);
  5450     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5451     Node*    end       = ConvI2X(slice_len);
  5452     if (scale != 0)
  5453       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
  5454     end_base += end_round;
  5455     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
  5456     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
  5457     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5458                                        start_con, end, &_gvn);
  5459   } else if (start_con < 0 && dest_size != top()) {
  5460     // Non-constant start, pre-rounded end after the tail of the array.
  5461     // This is almost certainly a "round-to-end" operation.
  5462     Node* start = slice_idx;
  5463     start = ConvI2X(start);
  5464     if (scale != 0)
  5465       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
  5466     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
  5467     if ((bump_bit | clear_low) != 0) {
  5468       int to_clear = (bump_bit | clear_low);
  5469       // Align up mod 8, then store a jint zero unconditionally
  5470       // just before the mod-8 boundary.
  5471       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5472           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5473         bump_bit = 0;
  5474         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5475       } else {
  5476         // Bump 'start' up to (or past) the next jint boundary:
  5477         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
  5478         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5480       // Round bumped 'start' down to jlong boundary in body of array.
  5481       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
  5482       if (bump_bit != 0) {
  5483         // Store a zero to the immediately preceding jint:
  5484         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
  5485         Node* p1 = basic_plus_adr(dest, x1);
  5486         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5487         mem = _gvn.transform(mem);
  5490     Node* end = dest_size; // pre-rounded
  5491     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5492                                        start, end, &_gvn);
  5493   } else {
  5494     // Non-constant start, unrounded non-constant end.
  5495     // (Nobody zeroes a random midsection of an array using this routine.)
  5496     ShouldNotReachHere();       // fix caller
  5499   // Done.
  5500   set_memory(mem, adr_type);
  5504 bool
  5505 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5506                                          BasicType basic_elem_type,
  5507                                          AllocateNode* alloc,
  5508                                          Node* src,  Node* src_offset,
  5509                                          Node* dest, Node* dest_offset,
  5510                                          Node* dest_size, bool dest_uninitialized) {
  5511   // See if there is an advantage from block transfer.
  5512   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5513   if (scale >= LogBytesPerLong)
  5514     return false;               // it is already a block transfer
  5516   // Look at the alignment of the starting offsets.
  5517   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5519   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5520   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5521   if (src_off_con < 0 || dest_off_con < 0)
  5522     // At present, we can only understand constants.
  5523     return false;
  5525   intptr_t src_off  = abase + (src_off_con  << scale);
  5526   intptr_t dest_off = abase + (dest_off_con << scale);
  5528   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5529     // Non-aligned; too bad.
  5530     // One more chance:  Pick off an initial 32-bit word.
  5531     // This is a common case, since abase can be odd mod 8.
  5532     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5533         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5534       Node* sptr = basic_plus_adr(src,  src_off);
  5535       Node* dptr = basic_plus_adr(dest, dest_off);
  5536       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5537       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5538       src_off += BytesPerInt;
  5539       dest_off += BytesPerInt;
  5540     } else {
  5541       return false;
  5544   assert(src_off % BytesPerLong == 0, "");
  5545   assert(dest_off % BytesPerLong == 0, "");
  5547   // Do this copy by giant steps.
  5548   Node* sptr  = basic_plus_adr(src,  src_off);
  5549   Node* dptr  = basic_plus_adr(dest, dest_off);
  5550   Node* countx = dest_size;
  5551   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
  5552   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5554   bool disjoint_bases = true;   // since alloc != NULL
  5555   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5556                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5558   return true;
  5562 // Helper function; generates code for the slow case.
  5563 // We make a call to a runtime method which emulates the native method,
  5564 // but without the native wrapper overhead.
  5565 void
  5566 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5567                                         Node* src,  Node* src_offset,
  5568                                         Node* dest, Node* dest_offset,
  5569                                         Node* copy_length, bool dest_uninitialized) {
  5570   assert(!dest_uninitialized, "Invariant");
  5571   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5572                                  OptoRuntime::slow_arraycopy_Type(),
  5573                                  OptoRuntime::slow_arraycopy_Java(),
  5574                                  "slow_arraycopy", adr_type,
  5575                                  src, src_offset, dest, dest_offset,
  5576                                  copy_length);
  5578   // Handle exceptions thrown by this fellow:
  5579   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5582 // Helper function; generates code for cases requiring runtime checks.
  5583 Node*
  5584 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5585                                              Node* dest_elem_klass,
  5586                                              Node* src,  Node* src_offset,
  5587                                              Node* dest, Node* dest_offset,
  5588                                              Node* copy_length, bool dest_uninitialized) {
  5589   if (stopped())  return NULL;
  5591   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5592   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5593     return NULL;
  5596   // Pick out the parameters required to perform a store-check
  5597   // for the target array.  This is an optimistic check.  It will
  5598   // look in each non-null element's class, at the desired klass's
  5599   // super_check_offset, for the desired klass.
  5600   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5601   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5602   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5603   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5604   Node* check_value  = dest_elem_klass;
  5606   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5607   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5609   // (We know the arrays are never conjoint, because their types differ.)
  5610   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5611                                  OptoRuntime::checkcast_arraycopy_Type(),
  5612                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5613                                  // five arguments, of which two are
  5614                                  // intptr_t (jlong in LP64)
  5615                                  src_start, dest_start,
  5616                                  copy_length XTOP,
  5617                                  check_offset XTOP,
  5618                                  check_value);
  5620   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5624 // Helper function; generates code for cases requiring runtime checks.
  5625 Node*
  5626 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5627                                            Node* src,  Node* src_offset,
  5628                                            Node* dest, Node* dest_offset,
  5629                                            Node* copy_length, bool dest_uninitialized) {
  5630   assert(!dest_uninitialized, "Invariant");
  5631   if (stopped())  return NULL;
  5632   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5633   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5634     return NULL;
  5637   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5638                     OptoRuntime::generic_arraycopy_Type(),
  5639                     copyfunc_addr, "generic_arraycopy", adr_type,
  5640                     src, src_offset, dest, dest_offset, copy_length);
  5642   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5645 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5646 void
  5647 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5648                                              BasicType basic_elem_type,
  5649                                              bool disjoint_bases,
  5650                                              Node* src,  Node* src_offset,
  5651                                              Node* dest, Node* dest_offset,
  5652                                              Node* copy_length, bool dest_uninitialized) {
  5653   if (stopped())  return;               // nothing to do
  5655   Node* src_start  = src;
  5656   Node* dest_start = dest;
  5657   if (src_offset != NULL || dest_offset != NULL) {
  5658     assert(src_offset != NULL && dest_offset != NULL, "");
  5659     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5660     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5663   // Figure out which arraycopy runtime method to call.
  5664   const char* copyfunc_name = "arraycopy";
  5665   address     copyfunc_addr =
  5666       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5667                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5669   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5670   make_runtime_call(RC_LEAF|RC_NO_FP,
  5671                     OptoRuntime::fast_arraycopy_Type(),
  5672                     copyfunc_addr, copyfunc_name, adr_type,
  5673                     src_start, dest_start, copy_length XTOP);
  5676 //----------------------------inline_reference_get----------------------------
  5678 bool LibraryCallKit::inline_reference_get() {
  5679   const int nargs = 1; // self
  5681   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5682             "should have already been set");
  5684   int referent_offset = java_lang_ref_Reference::referent_offset;
  5686   // Restore the stack and pop off the argument
  5687   _sp += nargs;
  5688   Node *reference_obj = pop();
  5690   // Null check on self without removing any arguments.
  5691   _sp += nargs;
  5692   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5693   _sp -= nargs;;
  5695   if (stopped()) return true;
  5697   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5699   ciInstanceKlass* klass = env()->Object_klass();
  5700   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5702   Node* no_ctrl = NULL;
  5703   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5705   // Use the pre-barrier to record the value in the referent field
  5706   pre_barrier(false /* do_load */,
  5707               control(),
  5708               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5709               result /* pre_val */,
  5710               T_OBJECT);
  5712   // Add memory barrier to prevent commoning reads from this field
  5713   // across safepoint since GC can change its value.
  5714   insert_mem_bar(Op_MemBarCPUOrder);
  5716   push(result);
  5717   return true;
  5721 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5722                                               bool is_exact=true, bool is_static=false) {
  5724   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5725   assert(tinst != NULL, "obj is null");
  5726   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5727   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5729   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5730                                                                           ciSymbol::make(fieldTypeString),
  5731                                                                           is_static);
  5732   if (field == NULL) return (Node *) NULL;
  5733   assert (field != NULL, "undefined field");
  5735   // Next code  copied from Parse::do_get_xxx():
  5737   // Compute address and memory type.
  5738   int offset  = field->offset_in_bytes();
  5739   bool is_vol = field->is_volatile();
  5740   ciType* field_klass = field->type();
  5741   assert(field_klass->is_loaded(), "should be loaded");
  5742   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5743   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5744   BasicType bt = field->layout_type();
  5746   // Build the resultant type of the load
  5747   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5749   // Build the load.
  5750   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5751   return loadedField;
  5755 //------------------------------inline_aescrypt_Block-----------------------
  5756 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5757   address stubAddr;
  5758   const char *stubName;
  5759   assert(UseAES, "need AES instruction support");
  5761   switch(id) {
  5762   case vmIntrinsics::_aescrypt_encryptBlock:
  5763     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5764     stubName = "aescrypt_encryptBlock";
  5765     break;
  5766   case vmIntrinsics::_aescrypt_decryptBlock:
  5767     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5768     stubName = "aescrypt_decryptBlock";
  5769     break;
  5771   if (stubAddr == NULL) return false;
  5773   // Restore the stack and pop off the arguments.
  5774   int nargs = 5;  // this + 2 oop/offset combos
  5775   assert(callee()->signature()->size() == nargs-1, "encryptBlock has 4 arguments");
  5777   Node *aescrypt_object  = argument(0);
  5778   Node *src         = argument(1);
  5779   Node *src_offset  = argument(2);
  5780   Node *dest        = argument(3);
  5781   Node *dest_offset = argument(4);
  5783   // (1) src and dest are arrays.
  5784   const Type* src_type = src->Value(&_gvn);
  5785   const Type* dest_type = dest->Value(&_gvn);
  5786   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5787   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5788   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5790   // for the quick and dirty code we will skip all the checks.
  5791   // we are just trying to get the call to be generated.
  5792   Node* src_start  = src;
  5793   Node* dest_start = dest;
  5794   if (src_offset != NULL || dest_offset != NULL) {
  5795     assert(src_offset != NULL && dest_offset != NULL, "");
  5796     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5797     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5800   // now need to get the start of its expanded key array
  5801   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5802   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5803   if (k_start == NULL) return false;
  5805   // Call the stub.
  5806   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5807                     stubAddr, stubName, TypePtr::BOTTOM,
  5808                     src_start, dest_start, k_start);
  5810   return true;
  5813 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5814 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5815   address stubAddr;
  5816   const char *stubName;
  5818   assert(UseAES, "need AES instruction support");
  5820   switch(id) {
  5821   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5822     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5823     stubName = "cipherBlockChaining_encryptAESCrypt";
  5824     break;
  5825   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5826     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5827     stubName = "cipherBlockChaining_decryptAESCrypt";
  5828     break;
  5830   if (stubAddr == NULL) return false;
  5833   // Restore the stack and pop off the arguments.
  5834   int nargs = 6;  // this + oop/offset + len + oop/offset
  5835   assert(callee()->signature()->size() == nargs-1, "wrong number of arguments");
  5836   Node *cipherBlockChaining_object  = argument(0);
  5837   Node *src         = argument(1);
  5838   Node *src_offset  = argument(2);
  5839   Node *len         = argument(3);
  5840   Node *dest        = argument(4);
  5841   Node *dest_offset = argument(5);
  5843   // (1) src and dest are arrays.
  5844   const Type* src_type = src->Value(&_gvn);
  5845   const Type* dest_type = dest->Value(&_gvn);
  5846   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5847   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5848   assert (top_src  != NULL && top_src->klass()  != NULL
  5849           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5851   // checks are the responsibility of the caller
  5852   Node* src_start  = src;
  5853   Node* dest_start = dest;
  5854   if (src_offset != NULL || dest_offset != NULL) {
  5855     assert(src_offset != NULL && dest_offset != NULL, "");
  5856     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5857     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5860   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5861   // (because of the predicated logic executed earlier).
  5862   // so we cast it here safely.
  5863   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5865   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5866   if (embeddedCipherObj == NULL) return false;
  5868   // cast it to what we know it will be at runtime
  5869   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5870   assert(tinst != NULL, "CBC obj is null");
  5871   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5872   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5873   if (!klass_AESCrypt->is_loaded()) return false;
  5875   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5876   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5877   const TypeOopPtr* xtype = aklass->as_instance_type();
  5878   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5879   aescrypt_object = _gvn.transform(aescrypt_object);
  5881   // we need to get the start of the aescrypt_object's expanded key array
  5882   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5883   if (k_start == NULL) return false;
  5885   // similarly, get the start address of the r vector
  5886   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5887   if (objRvec == NULL) return false;
  5888   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5890   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5891   make_runtime_call(RC_LEAF|RC_NO_FP,
  5892                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5893                     stubAddr, stubName, TypePtr::BOTTOM,
  5894                     src_start, dest_start, k_start, r_start, len);
  5896   // return is void so no result needs to be pushed
  5898   return true;
  5901 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5902 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5903   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5904   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5905   if (objAESCryptKey == NULL) return (Node *) NULL;
  5907   // now have the array, need to get the start address of the K array
  5908   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5909   return k_start;
  5912 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5913 // Return node representing slow path of predicate check.
  5914 // the pseudo code we want to emulate with this predicate is:
  5915 // for encryption:
  5916 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5917 // for decryption:
  5918 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5919 //    note cipher==plain is more conservative than the original java code but that's OK
  5920 //
  5921 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5922   // First, check receiver for NULL since it is virtual method.
  5923   int nargs = arg_size();
  5924   Node* objCBC = argument(0);
  5925   _sp += nargs;
  5926   objCBC = do_null_check(objCBC, T_OBJECT);
  5927   _sp -= nargs;
  5929   if (stopped()) return NULL; // Always NULL
  5931   // Load embeddedCipher field of CipherBlockChaining object.
  5932   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5934   // get AESCrypt klass for instanceOf check
  5935   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5936   // will have same classloader as CipherBlockChaining object
  5937   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5938   assert(tinst != NULL, "CBCobj is null");
  5939   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5941   // we want to do an instanceof comparison against the AESCrypt class
  5942   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5943   if (!klass_AESCrypt->is_loaded()) {
  5944     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5945     Node* ctrl = control();
  5946     set_control(top()); // no regular fast path
  5947     return ctrl;
  5949   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5951   _sp += nargs;          // gen_instanceof might do an uncommon trap
  5952   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5953   _sp -= nargs;
  5954   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5955   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5957   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5959   // for encryption, we are done
  5960   if (!decrypting)
  5961     return instof_false;  // even if it is NULL
  5963   // for decryption, we need to add a further check to avoid
  5964   // taking the intrinsic path when cipher and plain are the same
  5965   // see the original java code for why.
  5966   RegionNode* region = new(C) RegionNode(3);
  5967   region->init_req(1, instof_false);
  5968   Node* src = argument(1);
  5969   Node *dest = argument(4);
  5970   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5971   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5972   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5973   region->init_req(2, src_dest_conjoint);
  5975   record_for_igvn(region);
  5976   return _gvn.transform(region);

mercurial