src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 29 Apr 2014 15:17:27 +0200

author
goetz
date
Tue, 29 Apr 2014 15:17:27 +0200
changeset 6911
ce8f6bb717c9
parent 6680
78bbf4d43a14
child 6912
c49dcaf78a65
permissions
-rw-r--r--

8042195: Introduce umbrella header orderAccess.inline.hpp.
Reviewed-by: dholmes, kvn, stefank, twisti

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "runtime/orderAccess.inline.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 int    HeapRegion::LogOfHRGrainBytes = 0;
    41 int    HeapRegion::LogOfHRGrainWords = 0;
    42 size_t HeapRegion::GrainBytes        = 0;
    43 size_t HeapRegion::GrainWords        = 0;
    44 size_t HeapRegion::CardsPerRegion    = 0;
    46 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    47                                  HeapRegion* hr, ExtendedOopClosure* cl,
    48                                  CardTableModRefBS::PrecisionStyle precision,
    49                                  FilterKind fk) :
    50   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    51   _hr(hr), _fk(fk), _g1(g1) { }
    53 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    54                                                    OopClosure* oc) :
    55   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    57 template<class ClosureType>
    58 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    59                                HeapRegion* hr,
    60                                HeapWord* cur, HeapWord* top) {
    61   oop cur_oop = oop(cur);
    62   int oop_size = cur_oop->size();
    63   HeapWord* next_obj = cur + oop_size;
    64   while (next_obj < top) {
    65     // Keep filtering the remembered set.
    66     if (!g1h->is_obj_dead(cur_oop, hr)) {
    67       // Bottom lies entirely below top, so we can call the
    68       // non-memRegion version of oop_iterate below.
    69       cur_oop->oop_iterate(cl);
    70     }
    71     cur = next_obj;
    72     cur_oop = oop(cur);
    73     oop_size = cur_oop->size();
    74     next_obj = cur + oop_size;
    75   }
    76   return cur;
    77 }
    79 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
    80                                               HeapWord* bottom,
    81                                               HeapWord* top,
    82                                               ExtendedOopClosure* cl) {
    83   G1CollectedHeap* g1h = _g1;
    84   int oop_size;
    85   ExtendedOopClosure* cl2 = NULL;
    87   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
    88   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
    90   switch (_fk) {
    91   case NoFilterKind:          cl2 = cl; break;
    92   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    93   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    94   default:                    ShouldNotReachHere();
    95   }
    97   // Start filtering what we add to the remembered set. If the object is
    98   // not considered dead, either because it is marked (in the mark bitmap)
    99   // or it was allocated after marking finished, then we add it. Otherwise
   100   // we can safely ignore the object.
   101   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   102     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   103   } else {
   104     oop_size = oop(bottom)->size();
   105   }
   107   bottom += oop_size;
   109   if (bottom < top) {
   110     // We replicate the loop below for several kinds of possible filters.
   111     switch (_fk) {
   112     case NoFilterKind:
   113       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   114       break;
   116     case IntoCSFilterKind: {
   117       FilterIntoCSClosure filt(this, g1h, cl);
   118       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   119       break;
   120     }
   122     case OutOfRegionFilterKind: {
   123       FilterOutOfRegionClosure filt(_hr, cl);
   124       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   125       break;
   126     }
   128     default:
   129       ShouldNotReachHere();
   130     }
   132     // Last object. Need to do dead-obj filtering here too.
   133     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   134       oop(bottom)->oop_iterate(cl2, mr);
   135     }
   136   }
   137 }
   139 // Minimum region size; we won't go lower than that.
   140 // We might want to decrease this in the future, to deal with small
   141 // heaps a bit more efficiently.
   142 #define MIN_REGION_SIZE  (      1024 * 1024 )
   144 // Maximum region size; we don't go higher than that. There's a good
   145 // reason for having an upper bound. We don't want regions to get too
   146 // large, otherwise cleanup's effectiveness would decrease as there
   147 // will be fewer opportunities to find totally empty regions after
   148 // marking.
   149 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   151 // The automatic region size calculation will try to have around this
   152 // many regions in the heap (based on the min heap size).
   153 #define TARGET_REGION_NUMBER          2048
   155 size_t HeapRegion::max_region_size() {
   156   return (size_t)MAX_REGION_SIZE;
   157 }
   159 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   160   uintx region_size = G1HeapRegionSize;
   161   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   162     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   163     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   164                        (uintx) MIN_REGION_SIZE);
   165   }
   167   int region_size_log = log2_long((jlong) region_size);
   168   // Recalculate the region size to make sure it's a power of
   169   // 2. This means that region_size is the largest power of 2 that's
   170   // <= what we've calculated so far.
   171   region_size = ((uintx)1 << region_size_log);
   173   // Now make sure that we don't go over or under our limits.
   174   if (region_size < MIN_REGION_SIZE) {
   175     region_size = MIN_REGION_SIZE;
   176   } else if (region_size > MAX_REGION_SIZE) {
   177     region_size = MAX_REGION_SIZE;
   178   }
   180   // And recalculate the log.
   181   region_size_log = log2_long((jlong) region_size);
   183   // Now, set up the globals.
   184   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   185   LogOfHRGrainBytes = region_size_log;
   187   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   188   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   190   guarantee(GrainBytes == 0, "we should only set it once");
   191   // The cast to int is safe, given that we've bounded region_size by
   192   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   193   GrainBytes = (size_t)region_size;
   195   guarantee(GrainWords == 0, "we should only set it once");
   196   GrainWords = GrainBytes >> LogHeapWordSize;
   197   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   199   guarantee(CardsPerRegion == 0, "we should only set it once");
   200   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   201 }
   203 void HeapRegion::reset_after_compaction() {
   204   G1OffsetTableContigSpace::reset_after_compaction();
   205   // After a compaction the mark bitmap is invalid, so we must
   206   // treat all objects as being inside the unmarked area.
   207   zero_marked_bytes();
   208   init_top_at_mark_start();
   209 }
   211 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   212   assert(_humongous_type == NotHumongous,
   213          "we should have already filtered out humongous regions");
   214   assert(_humongous_start_region == NULL,
   215          "we should have already filtered out humongous regions");
   216   assert(_end == _orig_end,
   217          "we should have already filtered out humongous regions");
   219   _in_collection_set = false;
   221   set_young_index_in_cset(-1);
   222   uninstall_surv_rate_group();
   223   set_young_type(NotYoung);
   224   reset_pre_dummy_top();
   226   if (!par) {
   227     // If this is parallel, this will be done later.
   228     HeapRegionRemSet* hrrs = rem_set();
   229     if (locked) {
   230       hrrs->clear_locked();
   231     } else {
   232       hrrs->clear();
   233     }
   234     _claimed = InitialClaimValue;
   235   }
   236   zero_marked_bytes();
   238   _offsets.resize(HeapRegion::GrainWords);
   239   init_top_at_mark_start();
   240   if (clear_space) clear(SpaceDecorator::Mangle);
   241 }
   243 void HeapRegion::par_clear() {
   244   assert(used() == 0, "the region should have been already cleared");
   245   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   246   HeapRegionRemSet* hrrs = rem_set();
   247   hrrs->clear();
   248   CardTableModRefBS* ct_bs =
   249                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   250   ct_bs->clear(MemRegion(bottom(), end()));
   251 }
   253 void HeapRegion::calc_gc_efficiency() {
   254   // GC efficiency is the ratio of how much space would be
   255   // reclaimed over how long we predict it would take to reclaim it.
   256   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   257   G1CollectorPolicy* g1p = g1h->g1_policy();
   259   // Retrieve a prediction of the elapsed time for this region for
   260   // a mixed gc because the region will only be evacuated during a
   261   // mixed gc.
   262   double region_elapsed_time_ms =
   263     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   264   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   265 }
   267 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   268   assert(!isHumongous(), "sanity / pre-condition");
   269   assert(end() == _orig_end,
   270          "Should be normal before the humongous object allocation");
   271   assert(top() == bottom(), "should be empty");
   272   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   274   _humongous_type = StartsHumongous;
   275   _humongous_start_region = this;
   277   set_end(new_end);
   278   _offsets.set_for_starts_humongous(new_top);
   279 }
   281 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   282   assert(!isHumongous(), "sanity / pre-condition");
   283   assert(end() == _orig_end,
   284          "Should be normal before the humongous object allocation");
   285   assert(top() == bottom(), "should be empty");
   286   assert(first_hr->startsHumongous(), "pre-condition");
   288   _humongous_type = ContinuesHumongous;
   289   _humongous_start_region = first_hr;
   290 }
   292 void HeapRegion::set_notHumongous() {
   293   assert(isHumongous(), "pre-condition");
   295   if (startsHumongous()) {
   296     assert(top() <= end(), "pre-condition");
   297     set_end(_orig_end);
   298     if (top() > end()) {
   299       // at least one "continues humongous" region after it
   300       set_top(end());
   301     }
   302   } else {
   303     // continues humongous
   304     assert(end() == _orig_end, "sanity");
   305   }
   307   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   308   _humongous_type = NotHumongous;
   309   _humongous_start_region = NULL;
   310 }
   312 bool HeapRegion::claimHeapRegion(jint claimValue) {
   313   jint current = _claimed;
   314   if (current != claimValue) {
   315     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   316     if (res == current) {
   317       return true;
   318     }
   319   }
   320   return false;
   321 }
   323 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   324   HeapWord* low = addr;
   325   HeapWord* high = end();
   326   while (low < high) {
   327     size_t diff = pointer_delta(high, low);
   328     // Must add one below to bias toward the high amount.  Otherwise, if
   329   // "high" were at the desired value, and "low" were one less, we
   330     // would not converge on "high".  This is not symmetric, because
   331     // we set "high" to a block start, which might be the right one,
   332     // which we don't do for "low".
   333     HeapWord* middle = low + (diff+1)/2;
   334     if (middle == high) return high;
   335     HeapWord* mid_bs = block_start_careful(middle);
   336     if (mid_bs < addr) {
   337       low = middle;
   338     } else {
   339       high = mid_bs;
   340     }
   341   }
   342   assert(low == high && low >= addr, "Didn't work.");
   343   return low;
   344 }
   346 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   347 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   348 #endif // _MSC_VER
   351 HeapRegion::HeapRegion(uint hrs_index,
   352                        G1BlockOffsetSharedArray* sharedOffsetArray,
   353                        MemRegion mr) :
   354     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   355     _hrs_index(hrs_index),
   356     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   357     _in_collection_set(false),
   358     _next_in_special_set(NULL), _orig_end(NULL),
   359     _claimed(InitialClaimValue), _evacuation_failed(false),
   360     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   361     _young_type(NotYoung), _next_young_region(NULL),
   362     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   363 #ifdef ASSERT
   364     _containing_set(NULL),
   365 #endif // ASSERT
   366      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   367     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   368     _predicted_bytes_to_copy(0)
   369 {
   370   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   371   _orig_end = mr.end();
   372   // Note that initialize() will set the start of the unmarked area of the
   373   // region.
   374   hr_clear(false /*par*/, false /*clear_space*/);
   375   set_top(bottom());
   376   set_saved_mark();
   378   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   379 }
   381 CompactibleSpace* HeapRegion::next_compaction_space() const {
   382   // We're not using an iterator given that it will wrap around when
   383   // it reaches the last region and this is not what we want here.
   384   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   385   uint index = hrs_index() + 1;
   386   while (index < g1h->n_regions()) {
   387     HeapRegion* hr = g1h->region_at(index);
   388     if (!hr->isHumongous()) {
   389       return hr;
   390     }
   391     index += 1;
   392   }
   393   return NULL;
   394 }
   396 void HeapRegion::save_marks() {
   397   set_saved_mark();
   398 }
   400 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   401   HeapWord* p = mr.start();
   402   HeapWord* e = mr.end();
   403   oop obj;
   404   while (p < e) {
   405     obj = oop(p);
   406     p += obj->oop_iterate(cl);
   407   }
   408   assert(p == e, "bad memregion: doesn't end on obj boundary");
   409 }
   411 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   412 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   413   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   414 }
   415 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   418 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   419   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   420 }
   422 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   423                                                     bool during_conc_mark) {
   424   // We always recreate the prev marking info and we'll explicitly
   425   // mark all objects we find to be self-forwarded on the prev
   426   // bitmap. So all objects need to be below PTAMS.
   427   _prev_top_at_mark_start = top();
   428   _prev_marked_bytes = 0;
   430   if (during_initial_mark) {
   431     // During initial-mark, we'll also explicitly mark all objects
   432     // we find to be self-forwarded on the next bitmap. So all
   433     // objects need to be below NTAMS.
   434     _next_top_at_mark_start = top();
   435     _next_marked_bytes = 0;
   436   } else if (during_conc_mark) {
   437     // During concurrent mark, all objects in the CSet (including
   438     // the ones we find to be self-forwarded) are implicitly live.
   439     // So all objects need to be above NTAMS.
   440     _next_top_at_mark_start = bottom();
   441     _next_marked_bytes = 0;
   442   }
   443 }
   445 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   446                                                   bool during_conc_mark,
   447                                                   size_t marked_bytes) {
   448   assert(0 <= marked_bytes && marked_bytes <= used(),
   449          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   450                  marked_bytes, used()));
   451   _prev_marked_bytes = marked_bytes;
   452 }
   454 HeapWord*
   455 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   456                                                  ObjectClosure* cl) {
   457   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   458   // We used to use "block_start_careful" here.  But we're actually happy
   459   // to update the BOT while we do this...
   460   HeapWord* cur = block_start(mr.start());
   461   mr = mr.intersection(used_region());
   462   if (mr.is_empty()) return NULL;
   463   // Otherwise, find the obj that extends onto mr.start().
   465   assert(cur <= mr.start()
   466          && (oop(cur)->klass_or_null() == NULL ||
   467              cur + oop(cur)->size() > mr.start()),
   468          "postcondition of block_start");
   469   oop obj;
   470   while (cur < mr.end()) {
   471     obj = oop(cur);
   472     if (obj->klass_or_null() == NULL) {
   473       // Ran into an unparseable point.
   474       return cur;
   475     } else if (!g1h->is_obj_dead(obj)) {
   476       cl->do_object(obj);
   477     }
   478     if (cl->abort()) return cur;
   479     // The check above must occur before the operation below, since an
   480     // abort might invalidate the "size" operation.
   481     cur += obj->size();
   482   }
   483   return NULL;
   484 }
   486 HeapWord*
   487 HeapRegion::
   488 oops_on_card_seq_iterate_careful(MemRegion mr,
   489                                  FilterOutOfRegionClosure* cl,
   490                                  bool filter_young,
   491                                  jbyte* card_ptr) {
   492   // Currently, we should only have to clean the card if filter_young
   493   // is true and vice versa.
   494   if (filter_young) {
   495     assert(card_ptr != NULL, "pre-condition");
   496   } else {
   497     assert(card_ptr == NULL, "pre-condition");
   498   }
   499   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   501   // If we're within a stop-world GC, then we might look at a card in a
   502   // GC alloc region that extends onto a GC LAB, which may not be
   503   // parseable.  Stop such at the "saved_mark" of the region.
   504   if (g1h->is_gc_active()) {
   505     mr = mr.intersection(used_region_at_save_marks());
   506   } else {
   507     mr = mr.intersection(used_region());
   508   }
   509   if (mr.is_empty()) return NULL;
   510   // Otherwise, find the obj that extends onto mr.start().
   512   // The intersection of the incoming mr (for the card) and the
   513   // allocated part of the region is non-empty. This implies that
   514   // we have actually allocated into this region. The code in
   515   // G1CollectedHeap.cpp that allocates a new region sets the
   516   // is_young tag on the region before allocating. Thus we
   517   // safely know if this region is young.
   518   if (is_young() && filter_young) {
   519     return NULL;
   520   }
   522   assert(!is_young(), "check value of filter_young");
   524   // We can only clean the card here, after we make the decision that
   525   // the card is not young. And we only clean the card if we have been
   526   // asked to (i.e., card_ptr != NULL).
   527   if (card_ptr != NULL) {
   528     *card_ptr = CardTableModRefBS::clean_card_val();
   529     // We must complete this write before we do any of the reads below.
   530     OrderAccess::storeload();
   531   }
   533   // Cache the boundaries of the memory region in some const locals
   534   HeapWord* const start = mr.start();
   535   HeapWord* const end = mr.end();
   537   // We used to use "block_start_careful" here.  But we're actually happy
   538   // to update the BOT while we do this...
   539   HeapWord* cur = block_start(start);
   540   assert(cur <= start, "Postcondition");
   542   oop obj;
   544   HeapWord* next = cur;
   545   while (next <= start) {
   546     cur = next;
   547     obj = oop(cur);
   548     if (obj->klass_or_null() == NULL) {
   549       // Ran into an unparseable point.
   550       return cur;
   551     }
   552     // Otherwise...
   553     next = (cur + obj->size());
   554   }
   556   // If we finish the above loop...We have a parseable object that
   557   // begins on or before the start of the memory region, and ends
   558   // inside or spans the entire region.
   560   assert(obj == oop(cur), "sanity");
   561   assert(cur <= start &&
   562          obj->klass_or_null() != NULL &&
   563          (cur + obj->size()) > start,
   564          "Loop postcondition");
   566   if (!g1h->is_obj_dead(obj)) {
   567     obj->oop_iterate(cl, mr);
   568   }
   570   while (cur < end) {
   571     obj = oop(cur);
   572     if (obj->klass_or_null() == NULL) {
   573       // Ran into an unparseable point.
   574       return cur;
   575     };
   577     // Otherwise:
   578     next = (cur + obj->size());
   580     if (!g1h->is_obj_dead(obj)) {
   581       if (next < end || !obj->is_objArray()) {
   582         // This object either does not span the MemRegion
   583         // boundary, or if it does it's not an array.
   584         // Apply closure to whole object.
   585         obj->oop_iterate(cl);
   586       } else {
   587         // This obj is an array that spans the boundary.
   588         // Stop at the boundary.
   589         obj->oop_iterate(cl, mr);
   590       }
   591     }
   592     cur = next;
   593   }
   594   return NULL;
   595 }
   597 // Code roots support
   599 void HeapRegion::add_strong_code_root(nmethod* nm) {
   600   HeapRegionRemSet* hrrs = rem_set();
   601   hrrs->add_strong_code_root(nm);
   602 }
   604 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   605   HeapRegionRemSet* hrrs = rem_set();
   606   hrrs->remove_strong_code_root(nm);
   607 }
   609 void HeapRegion::migrate_strong_code_roots() {
   610   assert(in_collection_set(), "only collection set regions");
   611   assert(!isHumongous(),
   612           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   613                   HR_FORMAT_PARAMS(this)));
   615   HeapRegionRemSet* hrrs = rem_set();
   616   hrrs->migrate_strong_code_roots();
   617 }
   619 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   620   HeapRegionRemSet* hrrs = rem_set();
   621   hrrs->strong_code_roots_do(blk);
   622 }
   624 class VerifyStrongCodeRootOopClosure: public OopClosure {
   625   const HeapRegion* _hr;
   626   nmethod* _nm;
   627   bool _failures;
   628   bool _has_oops_in_region;
   630   template <class T> void do_oop_work(T* p) {
   631     T heap_oop = oopDesc::load_heap_oop(p);
   632     if (!oopDesc::is_null(heap_oop)) {
   633       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   635       // Note: not all the oops embedded in the nmethod are in the
   636       // current region. We only look at those which are.
   637       if (_hr->is_in(obj)) {
   638         // Object is in the region. Check that its less than top
   639         if (_hr->top() <= (HeapWord*)obj) {
   640           // Object is above top
   641           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   642                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   643                                  "top "PTR_FORMAT,
   644                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   645           _failures = true;
   646           return;
   647         }
   648         // Nmethod has at least one oop in the current region
   649         _has_oops_in_region = true;
   650       }
   651     }
   652   }
   654 public:
   655   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   656     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   658   void do_oop(narrowOop* p) { do_oop_work(p); }
   659   void do_oop(oop* p)       { do_oop_work(p); }
   661   bool failures()           { return _failures; }
   662   bool has_oops_in_region() { return _has_oops_in_region; }
   663 };
   665 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   666   const HeapRegion* _hr;
   667   bool _failures;
   668 public:
   669   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   670     _hr(hr), _failures(false) {}
   672   void do_code_blob(CodeBlob* cb) {
   673     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   674     if (nm != NULL) {
   675       // Verify that the nemthod is live
   676       if (!nm->is_alive()) {
   677         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   678                                PTR_FORMAT" in its strong code roots",
   679                                _hr->bottom(), _hr->end(), nm);
   680         _failures = true;
   681       } else {
   682         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   683         nm->oops_do(&oop_cl);
   684         if (!oop_cl.has_oops_in_region()) {
   685           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   686                                  PTR_FORMAT" in its strong code roots "
   687                                  "with no pointers into region",
   688                                  _hr->bottom(), _hr->end(), nm);
   689           _failures = true;
   690         } else if (oop_cl.failures()) {
   691           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   692                                  "failures for nmethod "PTR_FORMAT,
   693                                  _hr->bottom(), _hr->end(), nm);
   694           _failures = true;
   695         }
   696       }
   697     }
   698   }
   700   bool failures()       { return _failures; }
   701 };
   703 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   704   if (!G1VerifyHeapRegionCodeRoots) {
   705     // We're not verifying code roots.
   706     return;
   707   }
   708   if (vo == VerifyOption_G1UseMarkWord) {
   709     // Marking verification during a full GC is performed after class
   710     // unloading, code cache unloading, etc so the strong code roots
   711     // attached to each heap region are in an inconsistent state. They won't
   712     // be consistent until the strong code roots are rebuilt after the
   713     // actual GC. Skip verifying the strong code roots in this particular
   714     // time.
   715     assert(VerifyDuringGC, "only way to get here");
   716     return;
   717   }
   719   HeapRegionRemSet* hrrs = rem_set();
   720   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   722   // if this region is empty then there should be no entries
   723   // on its strong code root list
   724   if (is_empty()) {
   725     if (strong_code_roots_length > 0) {
   726       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   727                              "but has "SIZE_FORMAT" code root entries",
   728                              bottom(), end(), strong_code_roots_length);
   729       *failures = true;
   730     }
   731     return;
   732   }
   734   if (continuesHumongous()) {
   735     if (strong_code_roots_length > 0) {
   736       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   737                              "region but has "SIZE_FORMAT" code root entries",
   738                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   739       *failures = true;
   740     }
   741     return;
   742   }
   744   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   745   strong_code_roots_do(&cb_cl);
   747   if (cb_cl.failures()) {
   748     *failures = true;
   749   }
   750 }
   752 void HeapRegion::print() const { print_on(gclog_or_tty); }
   753 void HeapRegion::print_on(outputStream* st) const {
   754   if (isHumongous()) {
   755     if (startsHumongous())
   756       st->print(" HS");
   757     else
   758       st->print(" HC");
   759   } else {
   760     st->print("   ");
   761   }
   762   if (in_collection_set())
   763     st->print(" CS");
   764   else
   765     st->print("   ");
   766   if (is_young())
   767     st->print(is_survivor() ? " SU" : " Y ");
   768   else
   769     st->print("   ");
   770   if (is_empty())
   771     st->print(" F");
   772   else
   773     st->print("  ");
   774   st->print(" TS %5d", _gc_time_stamp);
   775   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   776             prev_top_at_mark_start(), next_top_at_mark_start());
   777   G1OffsetTableContigSpace::print_on(st);
   778 }
   780 class VerifyLiveClosure: public OopClosure {
   781 private:
   782   G1CollectedHeap* _g1h;
   783   CardTableModRefBS* _bs;
   784   oop _containing_obj;
   785   bool _failures;
   786   int _n_failures;
   787   VerifyOption _vo;
   788 public:
   789   // _vo == UsePrevMarking -> use "prev" marking information,
   790   // _vo == UseNextMarking -> use "next" marking information,
   791   // _vo == UseMarkWord    -> use mark word from object header.
   792   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   793     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   794     _failures(false), _n_failures(0), _vo(vo)
   795   {
   796     BarrierSet* bs = _g1h->barrier_set();
   797     if (bs->is_a(BarrierSet::CardTableModRef))
   798       _bs = (CardTableModRefBS*)bs;
   799   }
   801   void set_containing_obj(oop obj) {
   802     _containing_obj = obj;
   803   }
   805   bool failures() { return _failures; }
   806   int n_failures() { return _n_failures; }
   808   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   809   virtual void do_oop(      oop* p) { do_oop_work(p); }
   811   void print_object(outputStream* out, oop obj) {
   812 #ifdef PRODUCT
   813     Klass* k = obj->klass();
   814     const char* class_name = InstanceKlass::cast(k)->external_name();
   815     out->print_cr("class name %s", class_name);
   816 #else // PRODUCT
   817     obj->print_on(out);
   818 #endif // PRODUCT
   819   }
   821   template <class T>
   822   void do_oop_work(T* p) {
   823     assert(_containing_obj != NULL, "Precondition");
   824     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   825            "Precondition");
   826     T heap_oop = oopDesc::load_heap_oop(p);
   827     if (!oopDesc::is_null(heap_oop)) {
   828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   829       bool failed = false;
   830       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   831         MutexLockerEx x(ParGCRareEvent_lock,
   832                         Mutex::_no_safepoint_check_flag);
   834         if (!_failures) {
   835           gclog_or_tty->cr();
   836           gclog_or_tty->print_cr("----------");
   837         }
   838         if (!_g1h->is_in_closed_subset(obj)) {
   839           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   840           gclog_or_tty->print_cr("Field "PTR_FORMAT
   841                                  " of live obj "PTR_FORMAT" in region "
   842                                  "["PTR_FORMAT", "PTR_FORMAT")",
   843                                  p, (void*) _containing_obj,
   844                                  from->bottom(), from->end());
   845           print_object(gclog_or_tty, _containing_obj);
   846           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   847                                  (void*) obj);
   848         } else {
   849           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   850           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   851           gclog_or_tty->print_cr("Field "PTR_FORMAT
   852                                  " of live obj "PTR_FORMAT" in region "
   853                                  "["PTR_FORMAT", "PTR_FORMAT")",
   854                                  p, (void*) _containing_obj,
   855                                  from->bottom(), from->end());
   856           print_object(gclog_or_tty, _containing_obj);
   857           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   858                                  "["PTR_FORMAT", "PTR_FORMAT")",
   859                                  (void*) obj, to->bottom(), to->end());
   860           print_object(gclog_or_tty, obj);
   861         }
   862         gclog_or_tty->print_cr("----------");
   863         gclog_or_tty->flush();
   864         _failures = true;
   865         failed = true;
   866         _n_failures++;
   867       }
   869       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   870         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   871         HeapRegion* to   = _g1h->heap_region_containing(obj);
   872         if (from != NULL && to != NULL &&
   873             from != to &&
   874             !to->isHumongous()) {
   875           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   876           jbyte cv_field = *_bs->byte_for_const(p);
   877           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   879           bool is_bad = !(from->is_young()
   880                           || to->rem_set()->contains_reference(p)
   881                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   882                               (_containing_obj->is_objArray() ?
   883                                   cv_field == dirty
   884                                : cv_obj == dirty || cv_field == dirty));
   885           if (is_bad) {
   886             MutexLockerEx x(ParGCRareEvent_lock,
   887                             Mutex::_no_safepoint_check_flag);
   889             if (!_failures) {
   890               gclog_or_tty->cr();
   891               gclog_or_tty->print_cr("----------");
   892             }
   893             gclog_or_tty->print_cr("Missing rem set entry:");
   894             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   895                                    "of obj "PTR_FORMAT", "
   896                                    "in region "HR_FORMAT,
   897                                    p, (void*) _containing_obj,
   898                                    HR_FORMAT_PARAMS(from));
   899             _containing_obj->print_on(gclog_or_tty);
   900             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   901                                    "in region "HR_FORMAT,
   902                                    (void*) obj,
   903                                    HR_FORMAT_PARAMS(to));
   904             obj->print_on(gclog_or_tty);
   905             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   906                           cv_obj, cv_field);
   907             gclog_or_tty->print_cr("----------");
   908             gclog_or_tty->flush();
   909             _failures = true;
   910             if (!failed) _n_failures++;
   911           }
   912         }
   913       }
   914     }
   915   }
   916 };
   918 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   919 // We would need a mechanism to make that code skip dead objects.
   921 void HeapRegion::verify(VerifyOption vo,
   922                         bool* failures) const {
   923   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   924   *failures = false;
   925   HeapWord* p = bottom();
   926   HeapWord* prev_p = NULL;
   927   VerifyLiveClosure vl_cl(g1, vo);
   928   bool is_humongous = isHumongous();
   929   bool do_bot_verify = !is_young();
   930   size_t object_num = 0;
   931   while (p < top()) {
   932     oop obj = oop(p);
   933     size_t obj_size = obj->size();
   934     object_num += 1;
   936     if (is_humongous != g1->isHumongous(obj_size)) {
   937       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   938                              SIZE_FORMAT" words) in a %shumongous region",
   939                              p, g1->isHumongous(obj_size) ? "" : "non-",
   940                              obj_size, is_humongous ? "" : "non-");
   941        *failures = true;
   942        return;
   943     }
   945     // If it returns false, verify_for_object() will output the
   946     // appropriate messasge.
   947     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   948       *failures = true;
   949       return;
   950     }
   952     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   953       if (obj->is_oop()) {
   954         Klass* klass = obj->klass();
   955         if (!klass->is_metaspace_object()) {
   956           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   957                                  "not metadata", klass, (void *)obj);
   958           *failures = true;
   959           return;
   960         } else if (!klass->is_klass()) {
   961           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   962                                  "not a klass", klass, (void *)obj);
   963           *failures = true;
   964           return;
   965         } else {
   966           vl_cl.set_containing_obj(obj);
   967           obj->oop_iterate_no_header(&vl_cl);
   968           if (vl_cl.failures()) {
   969             *failures = true;
   970           }
   971           if (G1MaxVerifyFailures >= 0 &&
   972               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   973             return;
   974           }
   975         }
   976       } else {
   977         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   978         *failures = true;
   979         return;
   980       }
   981     }
   982     prev_p = p;
   983     p += obj_size;
   984   }
   986   if (p != top()) {
   987     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   988                            "does not match top "PTR_FORMAT, p, top());
   989     *failures = true;
   990     return;
   991   }
   993   HeapWord* the_end = end();
   994   assert(p == top(), "it should still hold");
   995   // Do some extra BOT consistency checking for addresses in the
   996   // range [top, end). BOT look-ups in this range should yield
   997   // top. No point in doing that if top == end (there's nothing there).
   998   if (p < the_end) {
   999     // Look up top
  1000     HeapWord* addr_1 = p;
  1001     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
  1002     if (b_start_1 != p) {
  1003       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
  1004                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1005                              addr_1, b_start_1, p);
  1006       *failures = true;
  1007       return;
  1010     // Look up top + 1
  1011     HeapWord* addr_2 = p + 1;
  1012     if (addr_2 < the_end) {
  1013       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
  1014       if (b_start_2 != p) {
  1015         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
  1016                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1017                                addr_2, b_start_2, p);
  1018         *failures = true;
  1019         return;
  1023     // Look up an address between top and end
  1024     size_t diff = pointer_delta(the_end, p) / 2;
  1025     HeapWord* addr_3 = p + diff;
  1026     if (addr_3 < the_end) {
  1027       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1028       if (b_start_3 != p) {
  1029         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1030                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1031                                addr_3, b_start_3, p);
  1032         *failures = true;
  1033         return;
  1037     // Loook up end - 1
  1038     HeapWord* addr_4 = the_end - 1;
  1039     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1040     if (b_start_4 != p) {
  1041       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1042                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1043                              addr_4, b_start_4, p);
  1044       *failures = true;
  1045       return;
  1049   if (is_humongous && object_num > 1) {
  1050     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1051                            "but has "SIZE_FORMAT", objects",
  1052                            bottom(), end(), object_num);
  1053     *failures = true;
  1054     return;
  1057   verify_strong_code_roots(vo, failures);
  1060 void HeapRegion::verify() const {
  1061   bool dummy = false;
  1062   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1065 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1066 // away eventually.
  1068 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1069   ContiguousSpace::clear(mangle_space);
  1070   _offsets.zero_bottom_entry();
  1071   _offsets.initialize_threshold();
  1074 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1075   Space::set_bottom(new_bottom);
  1076   _offsets.set_bottom(new_bottom);
  1079 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1080   Space::set_end(new_end);
  1081   _offsets.resize(new_end - bottom());
  1084 void G1OffsetTableContigSpace::print() const {
  1085   print_short();
  1086   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1087                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1088                 bottom(), top(), _offsets.threshold(), end());
  1091 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1092   return _offsets.initialize_threshold();
  1095 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1096                                                     HeapWord* end) {
  1097   _offsets.alloc_block(start, end);
  1098   return _offsets.threshold();
  1101 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1102   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1103   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1104   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1105     return top();
  1106   else
  1107     return ContiguousSpace::saved_mark_word();
  1110 void G1OffsetTableContigSpace::set_saved_mark() {
  1111   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1112   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1114   if (_gc_time_stamp < curr_gc_time_stamp) {
  1115     // The order of these is important, as another thread might be
  1116     // about to start scanning this region. If it does so after
  1117     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1118     // will be false, and it will pick up top() as the high water mark
  1119     // of region. If it does so after _gc_time_stamp = ..., then it
  1120     // will pick up the right saved_mark_word() as the high water mark
  1121     // of the region. Either way, the behaviour will be correct.
  1122     ContiguousSpace::set_saved_mark();
  1123     OrderAccess::storestore();
  1124     _gc_time_stamp = curr_gc_time_stamp;
  1125     // No need to do another barrier to flush the writes above. If
  1126     // this is called in parallel with other threads trying to
  1127     // allocate into the region, the caller should call this while
  1128     // holding a lock and when the lock is released the writes will be
  1129     // flushed.
  1133 G1OffsetTableContigSpace::
  1134 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1135                          MemRegion mr) :
  1136   _offsets(sharedOffsetArray, mr),
  1137   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1138   _gc_time_stamp(0)
  1140   _offsets.set_space(this);
  1141   // false ==> we'll do the clearing if there's clearing to be done.
  1142   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1143   _offsets.zero_bottom_entry();
  1144   _offsets.initialize_threshold();

mercurial