src/share/vm/gc_implementation/g1/heapRegion.cpp

Thu, 08 May 2014 15:37:17 +0200

author
goetz
date
Thu, 08 May 2014 15:37:17 +0200
changeset 6912
c49dcaf78a65
parent 6911
ce8f6bb717c9
child 6986
e635a728f9da
permissions
-rw-r--r--

8042737: Introduce umbrella header prefetch.inline.hpp
Reviewed-by: twisti, stefank

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "runtime/orderAccess.inline.hpp"
    39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    41 int    HeapRegion::LogOfHRGrainBytes = 0;
    42 int    HeapRegion::LogOfHRGrainWords = 0;
    43 size_t HeapRegion::GrainBytes        = 0;
    44 size_t HeapRegion::GrainWords        = 0;
    45 size_t HeapRegion::CardsPerRegion    = 0;
    47 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    48                                  HeapRegion* hr, ExtendedOopClosure* cl,
    49                                  CardTableModRefBS::PrecisionStyle precision,
    50                                  FilterKind fk) :
    51   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    52   _hr(hr), _fk(fk), _g1(g1) { }
    54 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    55                                                    OopClosure* oc) :
    56   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    58 template<class ClosureType>
    59 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    60                                HeapRegion* hr,
    61                                HeapWord* cur, HeapWord* top) {
    62   oop cur_oop = oop(cur);
    63   int oop_size = cur_oop->size();
    64   HeapWord* next_obj = cur + oop_size;
    65   while (next_obj < top) {
    66     // Keep filtering the remembered set.
    67     if (!g1h->is_obj_dead(cur_oop, hr)) {
    68       // Bottom lies entirely below top, so we can call the
    69       // non-memRegion version of oop_iterate below.
    70       cur_oop->oop_iterate(cl);
    71     }
    72     cur = next_obj;
    73     cur_oop = oop(cur);
    74     oop_size = cur_oop->size();
    75     next_obj = cur + oop_size;
    76   }
    77   return cur;
    78 }
    80 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
    81                                               HeapWord* bottom,
    82                                               HeapWord* top,
    83                                               ExtendedOopClosure* cl) {
    84   G1CollectedHeap* g1h = _g1;
    85   int oop_size;
    86   ExtendedOopClosure* cl2 = NULL;
    88   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
    89   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
    91   switch (_fk) {
    92   case NoFilterKind:          cl2 = cl; break;
    93   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    94   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    95   default:                    ShouldNotReachHere();
    96   }
    98   // Start filtering what we add to the remembered set. If the object is
    99   // not considered dead, either because it is marked (in the mark bitmap)
   100   // or it was allocated after marking finished, then we add it. Otherwise
   101   // we can safely ignore the object.
   102   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   103     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   104   } else {
   105     oop_size = oop(bottom)->size();
   106   }
   108   bottom += oop_size;
   110   if (bottom < top) {
   111     // We replicate the loop below for several kinds of possible filters.
   112     switch (_fk) {
   113     case NoFilterKind:
   114       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   115       break;
   117     case IntoCSFilterKind: {
   118       FilterIntoCSClosure filt(this, g1h, cl);
   119       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   120       break;
   121     }
   123     case OutOfRegionFilterKind: {
   124       FilterOutOfRegionClosure filt(_hr, cl);
   125       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   126       break;
   127     }
   129     default:
   130       ShouldNotReachHere();
   131     }
   133     // Last object. Need to do dead-obj filtering here too.
   134     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   135       oop(bottom)->oop_iterate(cl2, mr);
   136     }
   137   }
   138 }
   140 // Minimum region size; we won't go lower than that.
   141 // We might want to decrease this in the future, to deal with small
   142 // heaps a bit more efficiently.
   143 #define MIN_REGION_SIZE  (      1024 * 1024 )
   145 // Maximum region size; we don't go higher than that. There's a good
   146 // reason for having an upper bound. We don't want regions to get too
   147 // large, otherwise cleanup's effectiveness would decrease as there
   148 // will be fewer opportunities to find totally empty regions after
   149 // marking.
   150 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   152 // The automatic region size calculation will try to have around this
   153 // many regions in the heap (based on the min heap size).
   154 #define TARGET_REGION_NUMBER          2048
   156 size_t HeapRegion::max_region_size() {
   157   return (size_t)MAX_REGION_SIZE;
   158 }
   160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   161   uintx region_size = G1HeapRegionSize;
   162   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   163     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   164     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   165                        (uintx) MIN_REGION_SIZE);
   166   }
   168   int region_size_log = log2_long((jlong) region_size);
   169   // Recalculate the region size to make sure it's a power of
   170   // 2. This means that region_size is the largest power of 2 that's
   171   // <= what we've calculated so far.
   172   region_size = ((uintx)1 << region_size_log);
   174   // Now make sure that we don't go over or under our limits.
   175   if (region_size < MIN_REGION_SIZE) {
   176     region_size = MIN_REGION_SIZE;
   177   } else if (region_size > MAX_REGION_SIZE) {
   178     region_size = MAX_REGION_SIZE;
   179   }
   181   // And recalculate the log.
   182   region_size_log = log2_long((jlong) region_size);
   184   // Now, set up the globals.
   185   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   186   LogOfHRGrainBytes = region_size_log;
   188   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   189   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   191   guarantee(GrainBytes == 0, "we should only set it once");
   192   // The cast to int is safe, given that we've bounded region_size by
   193   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   194   GrainBytes = (size_t)region_size;
   196   guarantee(GrainWords == 0, "we should only set it once");
   197   GrainWords = GrainBytes >> LogHeapWordSize;
   198   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   200   guarantee(CardsPerRegion == 0, "we should only set it once");
   201   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   202 }
   204 void HeapRegion::reset_after_compaction() {
   205   G1OffsetTableContigSpace::reset_after_compaction();
   206   // After a compaction the mark bitmap is invalid, so we must
   207   // treat all objects as being inside the unmarked area.
   208   zero_marked_bytes();
   209   init_top_at_mark_start();
   210 }
   212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   213   assert(_humongous_type == NotHumongous,
   214          "we should have already filtered out humongous regions");
   215   assert(_humongous_start_region == NULL,
   216          "we should have already filtered out humongous regions");
   217   assert(_end == _orig_end,
   218          "we should have already filtered out humongous regions");
   220   _in_collection_set = false;
   222   set_young_index_in_cset(-1);
   223   uninstall_surv_rate_group();
   224   set_young_type(NotYoung);
   225   reset_pre_dummy_top();
   227   if (!par) {
   228     // If this is parallel, this will be done later.
   229     HeapRegionRemSet* hrrs = rem_set();
   230     if (locked) {
   231       hrrs->clear_locked();
   232     } else {
   233       hrrs->clear();
   234     }
   235     _claimed = InitialClaimValue;
   236   }
   237   zero_marked_bytes();
   239   _offsets.resize(HeapRegion::GrainWords);
   240   init_top_at_mark_start();
   241   if (clear_space) clear(SpaceDecorator::Mangle);
   242 }
   244 void HeapRegion::par_clear() {
   245   assert(used() == 0, "the region should have been already cleared");
   246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   247   HeapRegionRemSet* hrrs = rem_set();
   248   hrrs->clear();
   249   CardTableModRefBS* ct_bs =
   250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   251   ct_bs->clear(MemRegion(bottom(), end()));
   252 }
   254 void HeapRegion::calc_gc_efficiency() {
   255   // GC efficiency is the ratio of how much space would be
   256   // reclaimed over how long we predict it would take to reclaim it.
   257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   258   G1CollectorPolicy* g1p = g1h->g1_policy();
   260   // Retrieve a prediction of the elapsed time for this region for
   261   // a mixed gc because the region will only be evacuated during a
   262   // mixed gc.
   263   double region_elapsed_time_ms =
   264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   266 }
   268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   269   assert(!isHumongous(), "sanity / pre-condition");
   270   assert(end() == _orig_end,
   271          "Should be normal before the humongous object allocation");
   272   assert(top() == bottom(), "should be empty");
   273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   275   _humongous_type = StartsHumongous;
   276   _humongous_start_region = this;
   278   set_end(new_end);
   279   _offsets.set_for_starts_humongous(new_top);
   280 }
   282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   283   assert(!isHumongous(), "sanity / pre-condition");
   284   assert(end() == _orig_end,
   285          "Should be normal before the humongous object allocation");
   286   assert(top() == bottom(), "should be empty");
   287   assert(first_hr->startsHumongous(), "pre-condition");
   289   _humongous_type = ContinuesHumongous;
   290   _humongous_start_region = first_hr;
   291 }
   293 void HeapRegion::set_notHumongous() {
   294   assert(isHumongous(), "pre-condition");
   296   if (startsHumongous()) {
   297     assert(top() <= end(), "pre-condition");
   298     set_end(_orig_end);
   299     if (top() > end()) {
   300       // at least one "continues humongous" region after it
   301       set_top(end());
   302     }
   303   } else {
   304     // continues humongous
   305     assert(end() == _orig_end, "sanity");
   306   }
   308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   309   _humongous_type = NotHumongous;
   310   _humongous_start_region = NULL;
   311 }
   313 bool HeapRegion::claimHeapRegion(jint claimValue) {
   314   jint current = _claimed;
   315   if (current != claimValue) {
   316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   317     if (res == current) {
   318       return true;
   319     }
   320   }
   321   return false;
   322 }
   324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   325   HeapWord* low = addr;
   326   HeapWord* high = end();
   327   while (low < high) {
   328     size_t diff = pointer_delta(high, low);
   329     // Must add one below to bias toward the high amount.  Otherwise, if
   330   // "high" were at the desired value, and "low" were one less, we
   331     // would not converge on "high".  This is not symmetric, because
   332     // we set "high" to a block start, which might be the right one,
   333     // which we don't do for "low".
   334     HeapWord* middle = low + (diff+1)/2;
   335     if (middle == high) return high;
   336     HeapWord* mid_bs = block_start_careful(middle);
   337     if (mid_bs < addr) {
   338       low = middle;
   339     } else {
   340       high = mid_bs;
   341     }
   342   }
   343   assert(low == high && low >= addr, "Didn't work.");
   344   return low;
   345 }
   347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   349 #endif // _MSC_VER
   352 HeapRegion::HeapRegion(uint hrs_index,
   353                        G1BlockOffsetSharedArray* sharedOffsetArray,
   354                        MemRegion mr) :
   355     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   356     _hrs_index(hrs_index),
   357     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   358     _in_collection_set(false),
   359     _next_in_special_set(NULL), _orig_end(NULL),
   360     _claimed(InitialClaimValue), _evacuation_failed(false),
   361     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   362     _young_type(NotYoung), _next_young_region(NULL),
   363     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   364 #ifdef ASSERT
   365     _containing_set(NULL),
   366 #endif // ASSERT
   367      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   368     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   369     _predicted_bytes_to_copy(0)
   370 {
   371   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   372   _orig_end = mr.end();
   373   // Note that initialize() will set the start of the unmarked area of the
   374   // region.
   375   hr_clear(false /*par*/, false /*clear_space*/);
   376   set_top(bottom());
   377   set_saved_mark();
   379   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   380 }
   382 CompactibleSpace* HeapRegion::next_compaction_space() const {
   383   // We're not using an iterator given that it will wrap around when
   384   // it reaches the last region and this is not what we want here.
   385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   386   uint index = hrs_index() + 1;
   387   while (index < g1h->n_regions()) {
   388     HeapRegion* hr = g1h->region_at(index);
   389     if (!hr->isHumongous()) {
   390       return hr;
   391     }
   392     index += 1;
   393   }
   394   return NULL;
   395 }
   397 void HeapRegion::save_marks() {
   398   set_saved_mark();
   399 }
   401 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   402   HeapWord* p = mr.start();
   403   HeapWord* e = mr.end();
   404   oop obj;
   405   while (p < e) {
   406     obj = oop(p);
   407     p += obj->oop_iterate(cl);
   408   }
   409   assert(p == e, "bad memregion: doesn't end on obj boundary");
   410 }
   412 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   413 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   414   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   415 }
   416 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   419 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   420   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   421 }
   423 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   424                                                     bool during_conc_mark) {
   425   // We always recreate the prev marking info and we'll explicitly
   426   // mark all objects we find to be self-forwarded on the prev
   427   // bitmap. So all objects need to be below PTAMS.
   428   _prev_top_at_mark_start = top();
   429   _prev_marked_bytes = 0;
   431   if (during_initial_mark) {
   432     // During initial-mark, we'll also explicitly mark all objects
   433     // we find to be self-forwarded on the next bitmap. So all
   434     // objects need to be below NTAMS.
   435     _next_top_at_mark_start = top();
   436     _next_marked_bytes = 0;
   437   } else if (during_conc_mark) {
   438     // During concurrent mark, all objects in the CSet (including
   439     // the ones we find to be self-forwarded) are implicitly live.
   440     // So all objects need to be above NTAMS.
   441     _next_top_at_mark_start = bottom();
   442     _next_marked_bytes = 0;
   443   }
   444 }
   446 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   447                                                   bool during_conc_mark,
   448                                                   size_t marked_bytes) {
   449   assert(0 <= marked_bytes && marked_bytes <= used(),
   450          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   451                  marked_bytes, used()));
   452   _prev_marked_bytes = marked_bytes;
   453 }
   455 HeapWord*
   456 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   457                                                  ObjectClosure* cl) {
   458   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   459   // We used to use "block_start_careful" here.  But we're actually happy
   460   // to update the BOT while we do this...
   461   HeapWord* cur = block_start(mr.start());
   462   mr = mr.intersection(used_region());
   463   if (mr.is_empty()) return NULL;
   464   // Otherwise, find the obj that extends onto mr.start().
   466   assert(cur <= mr.start()
   467          && (oop(cur)->klass_or_null() == NULL ||
   468              cur + oop(cur)->size() > mr.start()),
   469          "postcondition of block_start");
   470   oop obj;
   471   while (cur < mr.end()) {
   472     obj = oop(cur);
   473     if (obj->klass_or_null() == NULL) {
   474       // Ran into an unparseable point.
   475       return cur;
   476     } else if (!g1h->is_obj_dead(obj)) {
   477       cl->do_object(obj);
   478     }
   479     if (cl->abort()) return cur;
   480     // The check above must occur before the operation below, since an
   481     // abort might invalidate the "size" operation.
   482     cur += obj->size();
   483   }
   484   return NULL;
   485 }
   487 HeapWord*
   488 HeapRegion::
   489 oops_on_card_seq_iterate_careful(MemRegion mr,
   490                                  FilterOutOfRegionClosure* cl,
   491                                  bool filter_young,
   492                                  jbyte* card_ptr) {
   493   // Currently, we should only have to clean the card if filter_young
   494   // is true and vice versa.
   495   if (filter_young) {
   496     assert(card_ptr != NULL, "pre-condition");
   497   } else {
   498     assert(card_ptr == NULL, "pre-condition");
   499   }
   500   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   502   // If we're within a stop-world GC, then we might look at a card in a
   503   // GC alloc region that extends onto a GC LAB, which may not be
   504   // parseable.  Stop such at the "saved_mark" of the region.
   505   if (g1h->is_gc_active()) {
   506     mr = mr.intersection(used_region_at_save_marks());
   507   } else {
   508     mr = mr.intersection(used_region());
   509   }
   510   if (mr.is_empty()) return NULL;
   511   // Otherwise, find the obj that extends onto mr.start().
   513   // The intersection of the incoming mr (for the card) and the
   514   // allocated part of the region is non-empty. This implies that
   515   // we have actually allocated into this region. The code in
   516   // G1CollectedHeap.cpp that allocates a new region sets the
   517   // is_young tag on the region before allocating. Thus we
   518   // safely know if this region is young.
   519   if (is_young() && filter_young) {
   520     return NULL;
   521   }
   523   assert(!is_young(), "check value of filter_young");
   525   // We can only clean the card here, after we make the decision that
   526   // the card is not young. And we only clean the card if we have been
   527   // asked to (i.e., card_ptr != NULL).
   528   if (card_ptr != NULL) {
   529     *card_ptr = CardTableModRefBS::clean_card_val();
   530     // We must complete this write before we do any of the reads below.
   531     OrderAccess::storeload();
   532   }
   534   // Cache the boundaries of the memory region in some const locals
   535   HeapWord* const start = mr.start();
   536   HeapWord* const end = mr.end();
   538   // We used to use "block_start_careful" here.  But we're actually happy
   539   // to update the BOT while we do this...
   540   HeapWord* cur = block_start(start);
   541   assert(cur <= start, "Postcondition");
   543   oop obj;
   545   HeapWord* next = cur;
   546   while (next <= start) {
   547     cur = next;
   548     obj = oop(cur);
   549     if (obj->klass_or_null() == NULL) {
   550       // Ran into an unparseable point.
   551       return cur;
   552     }
   553     // Otherwise...
   554     next = (cur + obj->size());
   555   }
   557   // If we finish the above loop...We have a parseable object that
   558   // begins on or before the start of the memory region, and ends
   559   // inside or spans the entire region.
   561   assert(obj == oop(cur), "sanity");
   562   assert(cur <= start &&
   563          obj->klass_or_null() != NULL &&
   564          (cur + obj->size()) > start,
   565          "Loop postcondition");
   567   if (!g1h->is_obj_dead(obj)) {
   568     obj->oop_iterate(cl, mr);
   569   }
   571   while (cur < end) {
   572     obj = oop(cur);
   573     if (obj->klass_or_null() == NULL) {
   574       // Ran into an unparseable point.
   575       return cur;
   576     };
   578     // Otherwise:
   579     next = (cur + obj->size());
   581     if (!g1h->is_obj_dead(obj)) {
   582       if (next < end || !obj->is_objArray()) {
   583         // This object either does not span the MemRegion
   584         // boundary, or if it does it's not an array.
   585         // Apply closure to whole object.
   586         obj->oop_iterate(cl);
   587       } else {
   588         // This obj is an array that spans the boundary.
   589         // Stop at the boundary.
   590         obj->oop_iterate(cl, mr);
   591       }
   592     }
   593     cur = next;
   594   }
   595   return NULL;
   596 }
   598 // Code roots support
   600 void HeapRegion::add_strong_code_root(nmethod* nm) {
   601   HeapRegionRemSet* hrrs = rem_set();
   602   hrrs->add_strong_code_root(nm);
   603 }
   605 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   606   HeapRegionRemSet* hrrs = rem_set();
   607   hrrs->remove_strong_code_root(nm);
   608 }
   610 void HeapRegion::migrate_strong_code_roots() {
   611   assert(in_collection_set(), "only collection set regions");
   612   assert(!isHumongous(),
   613           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   614                   HR_FORMAT_PARAMS(this)));
   616   HeapRegionRemSet* hrrs = rem_set();
   617   hrrs->migrate_strong_code_roots();
   618 }
   620 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   621   HeapRegionRemSet* hrrs = rem_set();
   622   hrrs->strong_code_roots_do(blk);
   623 }
   625 class VerifyStrongCodeRootOopClosure: public OopClosure {
   626   const HeapRegion* _hr;
   627   nmethod* _nm;
   628   bool _failures;
   629   bool _has_oops_in_region;
   631   template <class T> void do_oop_work(T* p) {
   632     T heap_oop = oopDesc::load_heap_oop(p);
   633     if (!oopDesc::is_null(heap_oop)) {
   634       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   636       // Note: not all the oops embedded in the nmethod are in the
   637       // current region. We only look at those which are.
   638       if (_hr->is_in(obj)) {
   639         // Object is in the region. Check that its less than top
   640         if (_hr->top() <= (HeapWord*)obj) {
   641           // Object is above top
   642           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   643                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   644                                  "top "PTR_FORMAT,
   645                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   646           _failures = true;
   647           return;
   648         }
   649         // Nmethod has at least one oop in the current region
   650         _has_oops_in_region = true;
   651       }
   652     }
   653   }
   655 public:
   656   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   657     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   659   void do_oop(narrowOop* p) { do_oop_work(p); }
   660   void do_oop(oop* p)       { do_oop_work(p); }
   662   bool failures()           { return _failures; }
   663   bool has_oops_in_region() { return _has_oops_in_region; }
   664 };
   666 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   667   const HeapRegion* _hr;
   668   bool _failures;
   669 public:
   670   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   671     _hr(hr), _failures(false) {}
   673   void do_code_blob(CodeBlob* cb) {
   674     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   675     if (nm != NULL) {
   676       // Verify that the nemthod is live
   677       if (!nm->is_alive()) {
   678         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   679                                PTR_FORMAT" in its strong code roots",
   680                                _hr->bottom(), _hr->end(), nm);
   681         _failures = true;
   682       } else {
   683         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   684         nm->oops_do(&oop_cl);
   685         if (!oop_cl.has_oops_in_region()) {
   686           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   687                                  PTR_FORMAT" in its strong code roots "
   688                                  "with no pointers into region",
   689                                  _hr->bottom(), _hr->end(), nm);
   690           _failures = true;
   691         } else if (oop_cl.failures()) {
   692           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   693                                  "failures for nmethod "PTR_FORMAT,
   694                                  _hr->bottom(), _hr->end(), nm);
   695           _failures = true;
   696         }
   697       }
   698     }
   699   }
   701   bool failures()       { return _failures; }
   702 };
   704 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   705   if (!G1VerifyHeapRegionCodeRoots) {
   706     // We're not verifying code roots.
   707     return;
   708   }
   709   if (vo == VerifyOption_G1UseMarkWord) {
   710     // Marking verification during a full GC is performed after class
   711     // unloading, code cache unloading, etc so the strong code roots
   712     // attached to each heap region are in an inconsistent state. They won't
   713     // be consistent until the strong code roots are rebuilt after the
   714     // actual GC. Skip verifying the strong code roots in this particular
   715     // time.
   716     assert(VerifyDuringGC, "only way to get here");
   717     return;
   718   }
   720   HeapRegionRemSet* hrrs = rem_set();
   721   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   723   // if this region is empty then there should be no entries
   724   // on its strong code root list
   725   if (is_empty()) {
   726     if (strong_code_roots_length > 0) {
   727       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   728                              "but has "SIZE_FORMAT" code root entries",
   729                              bottom(), end(), strong_code_roots_length);
   730       *failures = true;
   731     }
   732     return;
   733   }
   735   if (continuesHumongous()) {
   736     if (strong_code_roots_length > 0) {
   737       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   738                              "region but has "SIZE_FORMAT" code root entries",
   739                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   740       *failures = true;
   741     }
   742     return;
   743   }
   745   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   746   strong_code_roots_do(&cb_cl);
   748   if (cb_cl.failures()) {
   749     *failures = true;
   750   }
   751 }
   753 void HeapRegion::print() const { print_on(gclog_or_tty); }
   754 void HeapRegion::print_on(outputStream* st) const {
   755   if (isHumongous()) {
   756     if (startsHumongous())
   757       st->print(" HS");
   758     else
   759       st->print(" HC");
   760   } else {
   761     st->print("   ");
   762   }
   763   if (in_collection_set())
   764     st->print(" CS");
   765   else
   766     st->print("   ");
   767   if (is_young())
   768     st->print(is_survivor() ? " SU" : " Y ");
   769   else
   770     st->print("   ");
   771   if (is_empty())
   772     st->print(" F");
   773   else
   774     st->print("  ");
   775   st->print(" TS %5d", _gc_time_stamp);
   776   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   777             prev_top_at_mark_start(), next_top_at_mark_start());
   778   G1OffsetTableContigSpace::print_on(st);
   779 }
   781 class VerifyLiveClosure: public OopClosure {
   782 private:
   783   G1CollectedHeap* _g1h;
   784   CardTableModRefBS* _bs;
   785   oop _containing_obj;
   786   bool _failures;
   787   int _n_failures;
   788   VerifyOption _vo;
   789 public:
   790   // _vo == UsePrevMarking -> use "prev" marking information,
   791   // _vo == UseNextMarking -> use "next" marking information,
   792   // _vo == UseMarkWord    -> use mark word from object header.
   793   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   794     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   795     _failures(false), _n_failures(0), _vo(vo)
   796   {
   797     BarrierSet* bs = _g1h->barrier_set();
   798     if (bs->is_a(BarrierSet::CardTableModRef))
   799       _bs = (CardTableModRefBS*)bs;
   800   }
   802   void set_containing_obj(oop obj) {
   803     _containing_obj = obj;
   804   }
   806   bool failures() { return _failures; }
   807   int n_failures() { return _n_failures; }
   809   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   810   virtual void do_oop(      oop* p) { do_oop_work(p); }
   812   void print_object(outputStream* out, oop obj) {
   813 #ifdef PRODUCT
   814     Klass* k = obj->klass();
   815     const char* class_name = InstanceKlass::cast(k)->external_name();
   816     out->print_cr("class name %s", class_name);
   817 #else // PRODUCT
   818     obj->print_on(out);
   819 #endif // PRODUCT
   820   }
   822   template <class T>
   823   void do_oop_work(T* p) {
   824     assert(_containing_obj != NULL, "Precondition");
   825     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   826            "Precondition");
   827     T heap_oop = oopDesc::load_heap_oop(p);
   828     if (!oopDesc::is_null(heap_oop)) {
   829       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   830       bool failed = false;
   831       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   832         MutexLockerEx x(ParGCRareEvent_lock,
   833                         Mutex::_no_safepoint_check_flag);
   835         if (!_failures) {
   836           gclog_or_tty->cr();
   837           gclog_or_tty->print_cr("----------");
   838         }
   839         if (!_g1h->is_in_closed_subset(obj)) {
   840           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   841           gclog_or_tty->print_cr("Field "PTR_FORMAT
   842                                  " of live obj "PTR_FORMAT" in region "
   843                                  "["PTR_FORMAT", "PTR_FORMAT")",
   844                                  p, (void*) _containing_obj,
   845                                  from->bottom(), from->end());
   846           print_object(gclog_or_tty, _containing_obj);
   847           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   848                                  (void*) obj);
   849         } else {
   850           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   851           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   852           gclog_or_tty->print_cr("Field "PTR_FORMAT
   853                                  " of live obj "PTR_FORMAT" in region "
   854                                  "["PTR_FORMAT", "PTR_FORMAT")",
   855                                  p, (void*) _containing_obj,
   856                                  from->bottom(), from->end());
   857           print_object(gclog_or_tty, _containing_obj);
   858           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   859                                  "["PTR_FORMAT", "PTR_FORMAT")",
   860                                  (void*) obj, to->bottom(), to->end());
   861           print_object(gclog_or_tty, obj);
   862         }
   863         gclog_or_tty->print_cr("----------");
   864         gclog_or_tty->flush();
   865         _failures = true;
   866         failed = true;
   867         _n_failures++;
   868       }
   870       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   871         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   872         HeapRegion* to   = _g1h->heap_region_containing(obj);
   873         if (from != NULL && to != NULL &&
   874             from != to &&
   875             !to->isHumongous()) {
   876           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   877           jbyte cv_field = *_bs->byte_for_const(p);
   878           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   880           bool is_bad = !(from->is_young()
   881                           || to->rem_set()->contains_reference(p)
   882                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   883                               (_containing_obj->is_objArray() ?
   884                                   cv_field == dirty
   885                                : cv_obj == dirty || cv_field == dirty));
   886           if (is_bad) {
   887             MutexLockerEx x(ParGCRareEvent_lock,
   888                             Mutex::_no_safepoint_check_flag);
   890             if (!_failures) {
   891               gclog_or_tty->cr();
   892               gclog_or_tty->print_cr("----------");
   893             }
   894             gclog_or_tty->print_cr("Missing rem set entry:");
   895             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   896                                    "of obj "PTR_FORMAT", "
   897                                    "in region "HR_FORMAT,
   898                                    p, (void*) _containing_obj,
   899                                    HR_FORMAT_PARAMS(from));
   900             _containing_obj->print_on(gclog_or_tty);
   901             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   902                                    "in region "HR_FORMAT,
   903                                    (void*) obj,
   904                                    HR_FORMAT_PARAMS(to));
   905             obj->print_on(gclog_or_tty);
   906             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   907                           cv_obj, cv_field);
   908             gclog_or_tty->print_cr("----------");
   909             gclog_or_tty->flush();
   910             _failures = true;
   911             if (!failed) _n_failures++;
   912           }
   913         }
   914       }
   915     }
   916   }
   917 };
   919 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   920 // We would need a mechanism to make that code skip dead objects.
   922 void HeapRegion::verify(VerifyOption vo,
   923                         bool* failures) const {
   924   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   925   *failures = false;
   926   HeapWord* p = bottom();
   927   HeapWord* prev_p = NULL;
   928   VerifyLiveClosure vl_cl(g1, vo);
   929   bool is_humongous = isHumongous();
   930   bool do_bot_verify = !is_young();
   931   size_t object_num = 0;
   932   while (p < top()) {
   933     oop obj = oop(p);
   934     size_t obj_size = obj->size();
   935     object_num += 1;
   937     if (is_humongous != g1->isHumongous(obj_size)) {
   938       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   939                              SIZE_FORMAT" words) in a %shumongous region",
   940                              p, g1->isHumongous(obj_size) ? "" : "non-",
   941                              obj_size, is_humongous ? "" : "non-");
   942        *failures = true;
   943        return;
   944     }
   946     // If it returns false, verify_for_object() will output the
   947     // appropriate messasge.
   948     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   949       *failures = true;
   950       return;
   951     }
   953     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   954       if (obj->is_oop()) {
   955         Klass* klass = obj->klass();
   956         if (!klass->is_metaspace_object()) {
   957           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   958                                  "not metadata", klass, (void *)obj);
   959           *failures = true;
   960           return;
   961         } else if (!klass->is_klass()) {
   962           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   963                                  "not a klass", klass, (void *)obj);
   964           *failures = true;
   965           return;
   966         } else {
   967           vl_cl.set_containing_obj(obj);
   968           obj->oop_iterate_no_header(&vl_cl);
   969           if (vl_cl.failures()) {
   970             *failures = true;
   971           }
   972           if (G1MaxVerifyFailures >= 0 &&
   973               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   974             return;
   975           }
   976         }
   977       } else {
   978         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   979         *failures = true;
   980         return;
   981       }
   982     }
   983     prev_p = p;
   984     p += obj_size;
   985   }
   987   if (p != top()) {
   988     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   989                            "does not match top "PTR_FORMAT, p, top());
   990     *failures = true;
   991     return;
   992   }
   994   HeapWord* the_end = end();
   995   assert(p == top(), "it should still hold");
   996   // Do some extra BOT consistency checking for addresses in the
   997   // range [top, end). BOT look-ups in this range should yield
   998   // top. No point in doing that if top == end (there's nothing there).
   999   if (p < the_end) {
  1000     // Look up top
  1001     HeapWord* addr_1 = p;
  1002     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
  1003     if (b_start_1 != p) {
  1004       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
  1005                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1006                              addr_1, b_start_1, p);
  1007       *failures = true;
  1008       return;
  1011     // Look up top + 1
  1012     HeapWord* addr_2 = p + 1;
  1013     if (addr_2 < the_end) {
  1014       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
  1015       if (b_start_2 != p) {
  1016         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
  1017                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1018                                addr_2, b_start_2, p);
  1019         *failures = true;
  1020         return;
  1024     // Look up an address between top and end
  1025     size_t diff = pointer_delta(the_end, p) / 2;
  1026     HeapWord* addr_3 = p + diff;
  1027     if (addr_3 < the_end) {
  1028       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1029       if (b_start_3 != p) {
  1030         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1031                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1032                                addr_3, b_start_3, p);
  1033         *failures = true;
  1034         return;
  1038     // Loook up end - 1
  1039     HeapWord* addr_4 = the_end - 1;
  1040     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1041     if (b_start_4 != p) {
  1042       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1043                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1044                              addr_4, b_start_4, p);
  1045       *failures = true;
  1046       return;
  1050   if (is_humongous && object_num > 1) {
  1051     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1052                            "but has "SIZE_FORMAT", objects",
  1053                            bottom(), end(), object_num);
  1054     *failures = true;
  1055     return;
  1058   verify_strong_code_roots(vo, failures);
  1061 void HeapRegion::verify() const {
  1062   bool dummy = false;
  1063   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1066 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1067 // away eventually.
  1069 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1070   ContiguousSpace::clear(mangle_space);
  1071   _offsets.zero_bottom_entry();
  1072   _offsets.initialize_threshold();
  1075 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1076   Space::set_bottom(new_bottom);
  1077   _offsets.set_bottom(new_bottom);
  1080 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1081   Space::set_end(new_end);
  1082   _offsets.resize(new_end - bottom());
  1085 void G1OffsetTableContigSpace::print() const {
  1086   print_short();
  1087   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1088                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1089                 bottom(), top(), _offsets.threshold(), end());
  1092 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1093   return _offsets.initialize_threshold();
  1096 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1097                                                     HeapWord* end) {
  1098   _offsets.alloc_block(start, end);
  1099   return _offsets.threshold();
  1102 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1103   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1104   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1105   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1106     return top();
  1107   else
  1108     return ContiguousSpace::saved_mark_word();
  1111 void G1OffsetTableContigSpace::set_saved_mark() {
  1112   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1113   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1115   if (_gc_time_stamp < curr_gc_time_stamp) {
  1116     // The order of these is important, as another thread might be
  1117     // about to start scanning this region. If it does so after
  1118     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1119     // will be false, and it will pick up top() as the high water mark
  1120     // of region. If it does so after _gc_time_stamp = ..., then it
  1121     // will pick up the right saved_mark_word() as the high water mark
  1122     // of the region. Either way, the behaviour will be correct.
  1123     ContiguousSpace::set_saved_mark();
  1124     OrderAccess::storestore();
  1125     _gc_time_stamp = curr_gc_time_stamp;
  1126     // No need to do another barrier to flush the writes above. If
  1127     // this is called in parallel with other threads trying to
  1128     // allocate into the region, the caller should call this while
  1129     // holding a lock and when the lock is released the writes will be
  1130     // flushed.
  1134 G1OffsetTableContigSpace::
  1135 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1136                          MemRegion mr) :
  1137   _offsets(sharedOffsetArray, mr),
  1138   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1139   _gc_time_stamp(0)
  1141   _offsets.set_space(this);
  1142   // false ==> we'll do the clearing if there's clearing to be done.
  1143   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1144   _offsets.zero_bottom_entry();
  1145   _offsets.initialize_threshold();

mercurial