src/cpu/x86/vm/x86_32.ad

Mon, 11 Jun 2012 16:47:41 -0700

author
twisti
date
Mon, 11 Jun 2012 16:47:41 -0700
changeset 3841
ccaa67adfe5b
parent 3787
6759698e3140
child 3846
8b0a4867acf0
permissions
-rw-r--r--

7063674: Wrong results from basic comparisons after calls to Long.bitCount(long)
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return 2;  // op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 // EMIT_RM()
   345 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   346   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   347   cbuf.insts()->emit_int8(c);
   348 }
   350 // EMIT_CC()
   351 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   352   unsigned char c = (unsigned char)( f1 | f2 );
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_OPCODE()
   357 void emit_opcode(CodeBuffer &cbuf, int code) {
   358   cbuf.insts()->emit_int8((unsigned char) code);
   359 }
   361 // EMIT_OPCODE() w/ relocation information
   362 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   363   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   364   emit_opcode(cbuf, code);
   365 }
   367 // EMIT_D8()
   368 void emit_d8(CodeBuffer &cbuf, int d8) {
   369   cbuf.insts()->emit_int8((unsigned char) d8);
   370 }
   372 // EMIT_D16()
   373 void emit_d16(CodeBuffer &cbuf, int d16) {
   374   cbuf.insts()->emit_int16(d16);
   375 }
   377 // EMIT_D32()
   378 void emit_d32(CodeBuffer &cbuf, int d32) {
   379   cbuf.insts()->emit_int32(d32);
   380 }
   382 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   383 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   384         int format) {
   385   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   386   cbuf.insts()->emit_int32(d32);
   387 }
   389 // emit 32 bit value and construct relocation entry from RelocationHolder
   390 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   391         int format) {
   392 #ifdef ASSERT
   393   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   394     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   395   }
   396 #endif
   397   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   398   cbuf.insts()->emit_int32(d32);
   399 }
   401 // Access stack slot for load or store
   402 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   403   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   404   if( -128 <= disp && disp <= 127 ) {
   405     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   406     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   407     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   408   } else {
   409     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   410     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   411     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   412   }
   413 }
   415    // eRegI ereg, memory mem) %{    // emit_reg_mem
   416 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   417   // There is no index & no scale, use form without SIB byte
   418   if ((index == 0x4) &&
   419       (scale == 0) && (base != ESP_enc)) {
   420     // If no displacement, mode is 0x0; unless base is [EBP]
   421     if ( (displace == 0) && (base != EBP_enc) ) {
   422       emit_rm(cbuf, 0x0, reg_encoding, base);
   423     }
   424     else {                    // If 8-bit displacement, mode 0x1
   425       if ((displace >= -128) && (displace <= 127)
   426           && !(displace_is_oop) ) {
   427         emit_rm(cbuf, 0x1, reg_encoding, base);
   428         emit_d8(cbuf, displace);
   429       }
   430       else {                  // If 32-bit displacement
   431         if (base == -1) { // Special flag for absolute address
   432           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   433           // (manual lies; no SIB needed here)
   434           if ( displace_is_oop ) {
   435             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   436           } else {
   437             emit_d32      (cbuf, displace);
   438           }
   439         }
   440         else {                // Normal base + offset
   441           emit_rm(cbuf, 0x2, reg_encoding, base);
   442           if ( displace_is_oop ) {
   443             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   444           } else {
   445             emit_d32      (cbuf, displace);
   446           }
   447         }
   448       }
   449     }
   450   }
   451   else {                      // Else, encode with the SIB byte
   452     // If no displacement, mode is 0x0; unless base is [EBP]
   453     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   454       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   455       emit_rm(cbuf, scale, index, base);
   456     }
   457     else {                    // If 8-bit displacement, mode 0x1
   458       if ((displace >= -128) && (displace <= 127)
   459           && !(displace_is_oop) ) {
   460         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   461         emit_rm(cbuf, scale, index, base);
   462         emit_d8(cbuf, displace);
   463       }
   464       else {                  // If 32-bit displacement
   465         if (base == 0x04 ) {
   466           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   467           emit_rm(cbuf, scale, index, 0x04);
   468         } else {
   469           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   470           emit_rm(cbuf, scale, index, base);
   471         }
   472         if ( displace_is_oop ) {
   473           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   474         } else {
   475           emit_d32      (cbuf, displace);
   476         }
   477       }
   478     }
   479   }
   480 }
   483 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   484   if( dst_encoding == src_encoding ) {
   485     // reg-reg copy, use an empty encoding
   486   } else {
   487     emit_opcode( cbuf, 0x8B );
   488     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   489   }
   490 }
   492 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   493   Label exit;
   494   __ jccb(Assembler::noParity, exit);
   495   __ pushf();
   496   //
   497   // comiss/ucomiss instructions set ZF,PF,CF flags and
   498   // zero OF,AF,SF for NaN values.
   499   // Fixup flags by zeroing ZF,PF so that compare of NaN
   500   // values returns 'less than' result (CF is set).
   501   // Leave the rest of flags unchanged.
   502   //
   503   //    7 6 5 4 3 2 1 0
   504   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   505   //    0 0 1 0 1 0 1 1   (0x2B)
   506   //
   507   __ andl(Address(rsp, 0), 0xffffff2b);
   508   __ popf();
   509   __ bind(exit);
   510 }
   512 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   513   Label done;
   514   __ movl(dst, -1);
   515   __ jcc(Assembler::parity, done);
   516   __ jcc(Assembler::below, done);
   517   __ setb(Assembler::notEqual, dst);
   518   __ movzbl(dst, dst);
   519   __ bind(done);
   520 }
   523 //=============================================================================
   524 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   526 int Compile::ConstantTable::calculate_table_base_offset() const {
   527   return 0;  // absolute addressing, no offset
   528 }
   530 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   531   // Empty encoding
   532 }
   534 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   535   return 0;
   536 }
   538 #ifndef PRODUCT
   539 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   540   st->print("# MachConstantBaseNode (empty encoding)");
   541 }
   542 #endif
   545 //=============================================================================
   546 #ifndef PRODUCT
   547 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   548   Compile* C = ra_->C;
   550   int framesize = C->frame_slots() << LogBytesPerInt;
   551   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   552   // Remove wordSize for return addr which is already pushed.
   553   framesize -= wordSize;
   555   if (C->need_stack_bang(framesize)) {
   556     framesize -= wordSize;
   557     st->print("# stack bang");
   558     st->print("\n\t");
   559     st->print("PUSH   EBP\t# Save EBP");
   560     if (framesize) {
   561       st->print("\n\t");
   562       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   563     }
   564   } else {
   565     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   566     st->print("\n\t");
   567     framesize -= wordSize;
   568     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   569   }
   571   if (VerifyStackAtCalls) {
   572     st->print("\n\t");
   573     framesize -= wordSize;
   574     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   575   }
   577   if( C->in_24_bit_fp_mode() ) {
   578     st->print("\n\t");
   579     st->print("FLDCW  \t# load 24 bit fpu control word");
   580   }
   581   if (UseSSE >= 2 && VerifyFPU) {
   582     st->print("\n\t");
   583     st->print("# verify FPU stack (must be clean on entry)");
   584   }
   586 #ifdef ASSERT
   587   if (VerifyStackAtCalls) {
   588     st->print("\n\t");
   589     st->print("# stack alignment check");
   590   }
   591 #endif
   592   st->cr();
   593 }
   594 #endif
   597 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   598   Compile* C = ra_->C;
   599   MacroAssembler _masm(&cbuf);
   601   int framesize = C->frame_slots() << LogBytesPerInt;
   603   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   605   C->set_frame_complete(cbuf.insts_size());
   607   if (C->has_mach_constant_base_node()) {
   608     // NOTE: We set the table base offset here because users might be
   609     // emitted before MachConstantBaseNode.
   610     Compile::ConstantTable& constant_table = C->constant_table();
   611     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   612   }
   613 }
   615 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_); // too many variables; just compute it the hard way
   617 }
   619 int MachPrologNode::reloc() const {
   620   return 0; // a large enough number
   621 }
   623 //=============================================================================
   624 #ifndef PRODUCT
   625 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   626   Compile *C = ra_->C;
   627   int framesize = C->frame_slots() << LogBytesPerInt;
   628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   629   // Remove two words for return addr and rbp,
   630   framesize -= 2*wordSize;
   632   if( C->in_24_bit_fp_mode() ) {
   633     st->print("FLDCW  standard control word");
   634     st->cr(); st->print("\t");
   635   }
   636   if( framesize ) {
   637     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   638     st->cr(); st->print("\t");
   639   }
   640   st->print_cr("POPL   EBP"); st->print("\t");
   641   if( do_polling() && C->is_method_compilation() ) {
   642     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   643     st->cr(); st->print("\t");
   644   }
   645 }
   646 #endif
   648 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   649   Compile *C = ra_->C;
   651   // If method set FPU control word, restore to standard control word
   652   if( C->in_24_bit_fp_mode() ) {
   653     MacroAssembler masm(&cbuf);
   654     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   655   }
   657   int framesize = C->frame_slots() << LogBytesPerInt;
   658   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   659   // Remove two words for return addr and rbp,
   660   framesize -= 2*wordSize;
   662   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   664   if( framesize >= 128 ) {
   665     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   666     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   667     emit_d32(cbuf, framesize);
   668   }
   669   else if( framesize ) {
   670     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   671     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   672     emit_d8(cbuf, framesize);
   673   }
   675   emit_opcode(cbuf, 0x58 | EBP_enc);
   677   if( do_polling() && C->is_method_compilation() ) {
   678     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   679     emit_opcode(cbuf,0x85);
   680     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   681     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   682   }
   683 }
   685 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   686   Compile *C = ra_->C;
   687   // If method set FPU control word, restore to standard control word
   688   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   689   if( do_polling() && C->is_method_compilation() ) size += 6;
   691   int framesize = C->frame_slots() << LogBytesPerInt;
   692   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   693   // Remove two words for return addr and rbp,
   694   framesize -= 2*wordSize;
   696   size++; // popl rbp,
   698   if( framesize >= 128 ) {
   699     size += 6;
   700   } else {
   701     size += framesize ? 3 : 0;
   702   }
   703   return size;
   704 }
   706 int MachEpilogNode::reloc() const {
   707   return 0; // a large enough number
   708 }
   710 const Pipeline * MachEpilogNode::pipeline() const {
   711   return MachNode::pipeline_class();
   712 }
   714 int MachEpilogNode::safepoint_offset() const { return 0; }
   716 //=============================================================================
   718 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   719 static enum RC rc_class( OptoReg::Name reg ) {
   721   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   722   if (OptoReg::is_stack(reg)) return rc_stack;
   724   VMReg r = OptoReg::as_VMReg(reg);
   725   if (r->is_Register()) return rc_int;
   726   if (r->is_FloatRegister()) {
   727     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   728     return rc_float;
   729   }
   730   assert(r->is_XMMRegister(), "must be");
   731   return rc_xmm;
   732 }
   734 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   735                         int opcode, const char *op_str, int size, outputStream* st ) {
   736   if( cbuf ) {
   737     emit_opcode  (*cbuf, opcode );
   738     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   739 #ifndef PRODUCT
   740   } else if( !do_size ) {
   741     if( size != 0 ) st->print("\n\t");
   742     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   743       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   744       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   745     } else { // FLD, FST, PUSH, POP
   746       st->print("%s [ESP + #%d]",op_str,offset);
   747     }
   748 #endif
   749   }
   750   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   751   return size+3+offset_size;
   752 }
   754 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   755 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   756                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   757   if (cbuf) {
   758     MacroAssembler _masm(cbuf);
   759     if (reg_lo+1 == reg_hi) { // double move?
   760       if (is_load) {
   761         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   762       } else {
   763         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   764       }
   765     } else {
   766       if (is_load) {
   767         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   768       } else {
   769         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   770       }
   771     }
   772 #ifndef PRODUCT
   773   } else if (!do_size) {
   774     if (size != 0) st->print("\n\t");
   775     if (reg_lo+1 == reg_hi) { // double move?
   776       if (is_load) st->print("%s %s,[ESP + #%d]",
   777                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   778                               Matcher::regName[reg_lo], offset);
   779       else         st->print("MOVSD  [ESP + #%d],%s",
   780                               offset, Matcher::regName[reg_lo]);
   781     } else {
   782       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   783                               Matcher::regName[reg_lo], offset);
   784       else         st->print("MOVSS  [ESP + #%d],%s",
   785                               offset, Matcher::regName[reg_lo]);
   786     }
   787 #endif
   788   }
   789   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   790   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes.
   791   return size+5+offset_size;
   792 }
   795 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   796                             int src_hi, int dst_hi, int size, outputStream* st ) {
   797   if (cbuf) {
   798     MacroAssembler _masm(cbuf);
   799     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   800       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   801                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   802     } else {
   803       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   804                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   805     }
   806 #ifndef PRODUCT
   807   } else if (!do_size) {
   808     if (size != 0) st->print("\n\t");
   809     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   810       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   811         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   812       } else {
   813         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   814       }
   815     } else {
   816       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   817         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   818       } else {
   819         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   820       }
   821     }
   822 #endif
   823   }
   824   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes.
   825   // Only MOVAPS SSE prefix uses 1 byte.
   826   int sz = 4;
   827   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   828       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   829   return size + sz;
   830 }
   832 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   833                             int src_hi, int dst_hi, int size, outputStream* st ) {
   834   // 32-bit
   835   if (cbuf) {
   836     MacroAssembler _masm(cbuf);
   837     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   838              as_Register(Matcher::_regEncode[src_lo]));
   839 #ifndef PRODUCT
   840   } else if (!do_size) {
   841     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   842 #endif
   843   }
   844   return 4;
   845 }
   848 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   849                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   850   // 32-bit
   851   if (cbuf) {
   852     MacroAssembler _masm(cbuf);
   853     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   854              as_XMMRegister(Matcher::_regEncode[src_lo]));
   855 #ifndef PRODUCT
   856   } else if (!do_size) {
   857     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   858 #endif
   859   }
   860   return 4;
   861 }
   863 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   864   if( cbuf ) {
   865     emit_opcode(*cbuf, 0x8B );
   866     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   867 #ifndef PRODUCT
   868   } else if( !do_size ) {
   869     if( size != 0 ) st->print("\n\t");
   870     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   871 #endif
   872   }
   873   return size+2;
   874 }
   876 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   877                                  int offset, int size, outputStream* st ) {
   878   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   879     if( cbuf ) {
   880       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   881       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   882 #ifndef PRODUCT
   883     } else if( !do_size ) {
   884       if( size != 0 ) st->print("\n\t");
   885       st->print("FLD    %s",Matcher::regName[src_lo]);
   886 #endif
   887     }
   888     size += 2;
   889   }
   891   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   892   const char *op_str;
   893   int op;
   894   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   895     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   896     op = 0xDD;
   897   } else {                   // 32-bit store
   898     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   899     op = 0xD9;
   900     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   901   }
   903   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   904 }
   906 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   907   // Get registers to move
   908   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   909   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   910   OptoReg::Name dst_second = ra_->get_reg_second(this );
   911   OptoReg::Name dst_first = ra_->get_reg_first(this );
   913   enum RC src_second_rc = rc_class(src_second);
   914   enum RC src_first_rc = rc_class(src_first);
   915   enum RC dst_second_rc = rc_class(dst_second);
   916   enum RC dst_first_rc = rc_class(dst_first);
   918   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   920   // Generate spill code!
   921   int size = 0;
   923   if( src_first == dst_first && src_second == dst_second )
   924     return size;            // Self copy, no move
   926   // --------------------------------------
   927   // Check for mem-mem move.  push/pop to move.
   928   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   929     if( src_second == dst_first ) { // overlapping stack copy ranges
   930       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   931       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   932       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   933       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   934     }
   935     // move low bits
   936     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   937     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   938     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   939       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   940       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   941     }
   942     return size;
   943   }
   945   // --------------------------------------
   946   // Check for integer reg-reg copy
   947   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   948     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   950   // Check for integer store
   951   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   952     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   954   // Check for integer load
   955   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   956     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   958   // Check for integer reg-xmm reg copy
   959   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   960     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   961             "no 64 bit integer-float reg moves" );
   962     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   963   }
   964   // --------------------------------------
   965   // Check for float reg-reg copy
   966   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   967     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   968             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   969     if( cbuf ) {
   971       // Note the mucking with the register encode to compensate for the 0/1
   972       // indexing issue mentioned in a comment in the reg_def sections
   973       // for FPR registers many lines above here.
   975       if( src_first != FPR1L_num ) {
   976         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   977         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   978         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   979         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   980      } else {
   981         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   982         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   983      }
   984 #ifndef PRODUCT
   985     } else if( !do_size ) {
   986       if( size != 0 ) st->print("\n\t");
   987       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   988       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   989 #endif
   990     }
   991     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   992   }
   994   // Check for float store
   995   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   996     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   997   }
   999   // Check for float load
  1000   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1001     int offset = ra_->reg2offset(src_first);
  1002     const char *op_str;
  1003     int op;
  1004     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1005       op_str = "FLD_D";
  1006       op = 0xDD;
  1007     } else {                   // 32-bit load
  1008       op_str = "FLD_S";
  1009       op = 0xD9;
  1010       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1012     if( cbuf ) {
  1013       emit_opcode  (*cbuf, op );
  1014       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1015       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1016       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1017 #ifndef PRODUCT
  1018     } else if( !do_size ) {
  1019       if( size != 0 ) st->print("\n\t");
  1020       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1021 #endif
  1023     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1024     return size + 3+offset_size+2;
  1027   // Check for xmm reg-reg copy
  1028   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1029     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1030             (src_first+1 == src_second && dst_first+1 == dst_second),
  1031             "no non-adjacent float-moves" );
  1032     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1035   // Check for xmm reg-integer reg copy
  1036   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1037     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1038             "no 64 bit float-integer reg moves" );
  1039     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1042   // Check for xmm store
  1043   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1044     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1047   // Check for float xmm load
  1048   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1049     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1052   // Copy from float reg to xmm reg
  1053   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1054     // copy to the top of stack from floating point reg
  1055     // and use LEA to preserve flags
  1056     if( cbuf ) {
  1057       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1058       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1059       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1060       emit_d8(*cbuf,0xF8);
  1061 #ifndef PRODUCT
  1062     } else if( !do_size ) {
  1063       if( size != 0 ) st->print("\n\t");
  1064       st->print("LEA    ESP,[ESP-8]");
  1065 #endif
  1067     size += 4;
  1069     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1071     // Copy from the temp memory to the xmm reg.
  1072     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1074     if( cbuf ) {
  1075       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1076       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1077       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1078       emit_d8(*cbuf,0x08);
  1079 #ifndef PRODUCT
  1080     } else if( !do_size ) {
  1081       if( size != 0 ) st->print("\n\t");
  1082       st->print("LEA    ESP,[ESP+8]");
  1083 #endif
  1085     size += 4;
  1086     return size;
  1089   assert( size > 0, "missed a case" );
  1091   // --------------------------------------------------------------------
  1092   // Check for second bits still needing moving.
  1093   if( src_second == dst_second )
  1094     return size;               // Self copy; no move
  1095   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1097   // Check for second word int-int move
  1098   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1099     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1101   // Check for second word integer store
  1102   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1103     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1105   // Check for second word integer load
  1106   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1107     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1110   Unimplemented();
  1113 #ifndef PRODUCT
  1114 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1115   implementation( NULL, ra_, false, st );
  1117 #endif
  1119 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1120   implementation( &cbuf, ra_, false, NULL );
  1123 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1124   return implementation( NULL, ra_, true, NULL );
  1128 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1131   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1132   int reg = ra_->get_reg_first(this);
  1133   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1135 #endif
  1137 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1138   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1139   int reg = ra_->get_encode(this);
  1140   if( offset >= 128 ) {
  1141     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1142     emit_rm(cbuf, 0x2, reg, 0x04);
  1143     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1144     emit_d32(cbuf, offset);
  1146   else {
  1147     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1148     emit_rm(cbuf, 0x1, reg, 0x04);
  1149     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1150     emit_d8(cbuf, offset);
  1154 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1155   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1156   if( offset >= 128 ) {
  1157     return 7;
  1159   else {
  1160     return 4;
  1164 //=============================================================================
  1166 // emit call stub, compiled java to interpreter
  1167 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1168   // Stub is fixed up when the corresponding call is converted from calling
  1169   // compiled code to calling interpreted code.
  1170   // mov rbx,0
  1171   // jmp -1
  1173   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1175   // Note that the code buffer's insts_mark is always relative to insts.
  1176   // That's why we must use the macroassembler to generate a stub.
  1177   MacroAssembler _masm(&cbuf);
  1179   address base =
  1180   __ start_a_stub(Compile::MAX_stubs_size);
  1181   if (base == NULL)  return;  // CodeBuffer::expand failed
  1182   // static stub relocation stores the instruction address of the call
  1183   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1184   // static stub relocation also tags the methodOop in the code-stream.
  1185   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1186   // This is recognized as unresolved by relocs/nativeInst/ic code
  1187   __ jump(RuntimeAddress(__ pc()));
  1189   __ end_a_stub();
  1190   // Update current stubs pointer and restore insts_end.
  1192 // size of call stub, compiled java to interpretor
  1193 uint size_java_to_interp() {
  1194   return 10;  // movl; jmp
  1196 // relocation entries for call stub, compiled java to interpretor
  1197 uint reloc_java_to_interp() {
  1198   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1201 //=============================================================================
  1202 #ifndef PRODUCT
  1203 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1204   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1205   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1206   st->print_cr("\tNOP");
  1207   st->print_cr("\tNOP");
  1208   if( !OptoBreakpoint )
  1209     st->print_cr("\tNOP");
  1211 #endif
  1213 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1214   MacroAssembler masm(&cbuf);
  1215 #ifdef ASSERT
  1216   uint insts_size = cbuf.insts_size();
  1217 #endif
  1218   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1219   masm.jump_cc(Assembler::notEqual,
  1220                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1221   /* WARNING these NOPs are critical so that verified entry point is properly
  1222      aligned for patching by NativeJump::patch_verified_entry() */
  1223   int nops_cnt = 2;
  1224   if( !OptoBreakpoint ) // Leave space for int3
  1225      nops_cnt += 1;
  1226   masm.nop(nops_cnt);
  1228   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1231 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1232   return OptoBreakpoint ? 11 : 12;
  1236 //=============================================================================
  1237 uint size_exception_handler() {
  1238   // NativeCall instruction size is the same as NativeJump.
  1239   // exception handler starts out as jump and can be patched to
  1240   // a call be deoptimization.  (4932387)
  1241   // Note that this value is also credited (in output.cpp) to
  1242   // the size of the code section.
  1243   return NativeJump::instruction_size;
  1246 // Emit exception handler code.  Stuff framesize into a register
  1247 // and call a VM stub routine.
  1248 int emit_exception_handler(CodeBuffer& cbuf) {
  1250   // Note that the code buffer's insts_mark is always relative to insts.
  1251   // That's why we must use the macroassembler to generate a handler.
  1252   MacroAssembler _masm(&cbuf);
  1253   address base =
  1254   __ start_a_stub(size_exception_handler());
  1255   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1256   int offset = __ offset();
  1257   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1258   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1259   __ end_a_stub();
  1260   return offset;
  1263 uint size_deopt_handler() {
  1264   // NativeCall instruction size is the same as NativeJump.
  1265   // exception handler starts out as jump and can be patched to
  1266   // a call be deoptimization.  (4932387)
  1267   // Note that this value is also credited (in output.cpp) to
  1268   // the size of the code section.
  1269   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1272 // Emit deopt handler code.
  1273 int emit_deopt_handler(CodeBuffer& cbuf) {
  1275   // Note that the code buffer's insts_mark is always relative to insts.
  1276   // That's why we must use the macroassembler to generate a handler.
  1277   MacroAssembler _masm(&cbuf);
  1278   address base =
  1279   __ start_a_stub(size_exception_handler());
  1280   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1281   int offset = __ offset();
  1282   InternalAddress here(__ pc());
  1283   __ pushptr(here.addr());
  1285   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1286   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1287   __ end_a_stub();
  1288   return offset;
  1292 const bool Matcher::match_rule_supported(int opcode) {
  1293   if (!has_match_rule(opcode))
  1294     return false;
  1296   switch (opcode) {
  1297     case Op_PopCountI:
  1298     case Op_PopCountL:
  1299       if (!UsePopCountInstruction)
  1300         return false;
  1301     break;
  1304   return true;  // Per default match rules are supported.
  1307 int Matcher::regnum_to_fpu_offset(int regnum) {
  1308   return regnum - 32; // The FP registers are in the second chunk
  1311 // This is UltraSparc specific, true just means we have fast l2f conversion
  1312 const bool Matcher::convL2FSupported(void) {
  1313   return true;
  1316 // Vector width in bytes
  1317 const uint Matcher::vector_width_in_bytes(void) {
  1318   return UseSSE >= 2 ? 8 : 0;
  1321 // Vector ideal reg
  1322 const uint Matcher::vector_ideal_reg(void) {
  1323   return Op_RegD;
  1326 // Is this branch offset short enough that a short branch can be used?
  1327 //
  1328 // NOTE: If the platform does not provide any short branch variants, then
  1329 //       this method should return false for offset 0.
  1330 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1331   // The passed offset is relative to address of the branch.
  1332   // On 86 a branch displacement is calculated relative to address
  1333   // of a next instruction.
  1334   offset -= br_size;
  1336   // the short version of jmpConUCF2 contains multiple branches,
  1337   // making the reach slightly less
  1338   if (rule == jmpConUCF2_rule)
  1339     return (-126 <= offset && offset <= 125);
  1340   return (-128 <= offset && offset <= 127);
  1343 const bool Matcher::isSimpleConstant64(jlong value) {
  1344   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1345   return false;
  1348 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1349 const bool Matcher::init_array_count_is_in_bytes = false;
  1351 // Threshold size for cleararray.
  1352 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1354 // Needs 2 CMOV's for longs.
  1355 const int Matcher::long_cmove_cost() { return 1; }
  1357 // No CMOVF/CMOVD with SSE/SSE2
  1358 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1360 // Should the Matcher clone shifts on addressing modes, expecting them to
  1361 // be subsumed into complex addressing expressions or compute them into
  1362 // registers?  True for Intel but false for most RISCs
  1363 const bool Matcher::clone_shift_expressions = true;
  1365 // Do we need to mask the count passed to shift instructions or does
  1366 // the cpu only look at the lower 5/6 bits anyway?
  1367 const bool Matcher::need_masked_shift_count = false;
  1369 bool Matcher::narrow_oop_use_complex_address() {
  1370   ShouldNotCallThis();
  1371   return true;
  1375 // Is it better to copy float constants, or load them directly from memory?
  1376 // Intel can load a float constant from a direct address, requiring no
  1377 // extra registers.  Most RISCs will have to materialize an address into a
  1378 // register first, so they would do better to copy the constant from stack.
  1379 const bool Matcher::rematerialize_float_constants = true;
  1381 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1382 // needed.  Else we split the double into 2 integer pieces and move it
  1383 // piece-by-piece.  Only happens when passing doubles into C code as the
  1384 // Java calling convention forces doubles to be aligned.
  1385 const bool Matcher::misaligned_doubles_ok = true;
  1388 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1389   // Get the memory operand from the node
  1390   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1391   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1392   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1393   uint opcnt     = 1;                 // First operand
  1394   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1395   while( idx >= skipped+num_edges ) {
  1396     skipped += num_edges;
  1397     opcnt++;                          // Bump operand count
  1398     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1399     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1402   MachOper *memory = node->_opnds[opcnt];
  1403   MachOper *new_memory = NULL;
  1404   switch (memory->opcode()) {
  1405   case DIRECT:
  1406   case INDOFFSET32X:
  1407     // No transformation necessary.
  1408     return;
  1409   case INDIRECT:
  1410     new_memory = new (C) indirect_win95_safeOper( );
  1411     break;
  1412   case INDOFFSET8:
  1413     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1414     break;
  1415   case INDOFFSET32:
  1416     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1417     break;
  1418   case INDINDEXOFFSET:
  1419     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1420     break;
  1421   case INDINDEXSCALE:
  1422     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1423     break;
  1424   case INDINDEXSCALEOFFSET:
  1425     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1426     break;
  1427   case LOAD_LONG_INDIRECT:
  1428   case LOAD_LONG_INDOFFSET32:
  1429     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1430     return;
  1431   default:
  1432     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1433     return;
  1435   node->_opnds[opcnt] = new_memory;
  1438 // Advertise here if the CPU requires explicit rounding operations
  1439 // to implement the UseStrictFP mode.
  1440 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1442 // Are floats conerted to double when stored to stack during deoptimization?
  1443 // On x32 it is stored with convertion only when FPU is used for floats.
  1444 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1446 // Do ints take an entire long register or just half?
  1447 const bool Matcher::int_in_long = false;
  1449 // Return whether or not this register is ever used as an argument.  This
  1450 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1451 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1452 // arguments in those registers not be available to the callee.
  1453 bool Matcher::can_be_java_arg( int reg ) {
  1454   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1455   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1456   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1457   return false;
  1460 bool Matcher::is_spillable_arg( int reg ) {
  1461   return can_be_java_arg(reg);
  1464 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1465   // Use hardware integer DIV instruction when
  1466   // it is faster than a code which use multiply.
  1467   // Only when constant divisor fits into 32 bit
  1468   // (min_jint is excluded to get only correct
  1469   // positive 32 bit values from negative).
  1470   return VM_Version::has_fast_idiv() &&
  1471          (divisor == (int)divisor && divisor != min_jint);
  1474 // Register for DIVI projection of divmodI
  1475 RegMask Matcher::divI_proj_mask() {
  1476   return EAX_REG_mask();
  1479 // Register for MODI projection of divmodI
  1480 RegMask Matcher::modI_proj_mask() {
  1481   return EDX_REG_mask();
  1484 // Register for DIVL projection of divmodL
  1485 RegMask Matcher::divL_proj_mask() {
  1486   ShouldNotReachHere();
  1487   return RegMask();
  1490 // Register for MODL projection of divmodL
  1491 RegMask Matcher::modL_proj_mask() {
  1492   ShouldNotReachHere();
  1493   return RegMask();
  1496 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1497   return EBP_REG_mask();
  1500 // Returns true if the high 32 bits of the value is known to be zero.
  1501 bool is_operand_hi32_zero(Node* n) {
  1502   int opc = n->Opcode();
  1503   if (opc == Op_LoadUI2L) {
  1504     return true;
  1506   if (opc == Op_AndL) {
  1507     Node* o2 = n->in(2);
  1508     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1509       return true;
  1512   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1513     return true;
  1515   return false;
  1518 %}
  1520 //----------ENCODING BLOCK-----------------------------------------------------
  1521 // This block specifies the encoding classes used by the compiler to output
  1522 // byte streams.  Encoding classes generate functions which are called by
  1523 // Machine Instruction Nodes in order to generate the bit encoding of the
  1524 // instruction.  Operands specify their base encoding interface with the
  1525 // interface keyword.  There are currently supported four interfaces,
  1526 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1527 // operand to generate a function which returns its register number when
  1528 // queried.   CONST_INTER causes an operand to generate a function which
  1529 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1530 // operand to generate four functions which return the Base Register, the
  1531 // Index Register, the Scale Value, and the Offset Value of the operand when
  1532 // queried.  COND_INTER causes an operand to generate six functions which
  1533 // return the encoding code (ie - encoding bits for the instruction)
  1534 // associated with each basic boolean condition for a conditional instruction.
  1535 // Instructions specify two basic values for encoding.  They use the
  1536 // ins_encode keyword to specify their encoding class (which must be one of
  1537 // the class names specified in the encoding block), and they use the
  1538 // opcode keyword to specify, in order, their primary, secondary, and
  1539 // tertiary opcode.  Only the opcode sections which a particular instruction
  1540 // needs for encoding need to be specified.
  1541 encode %{
  1542   // Build emit functions for each basic byte or larger field in the intel
  1543   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1544   // code in the enc_class source block.  Emit functions will live in the
  1545   // main source block for now.  In future, we can generalize this by
  1546   // adding a syntax that specifies the sizes of fields in an order,
  1547   // so that the adlc can build the emit functions automagically
  1549   // Emit primary opcode
  1550   enc_class OpcP %{
  1551     emit_opcode(cbuf, $primary);
  1552   %}
  1554   // Emit secondary opcode
  1555   enc_class OpcS %{
  1556     emit_opcode(cbuf, $secondary);
  1557   %}
  1559   // Emit opcode directly
  1560   enc_class Opcode(immI d8) %{
  1561     emit_opcode(cbuf, $d8$$constant);
  1562   %}
  1564   enc_class SizePrefix %{
  1565     emit_opcode(cbuf,0x66);
  1566   %}
  1568   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1569     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1570   %}
  1572   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1573     emit_opcode(cbuf,$opcode$$constant);
  1574     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1575   %}
  1577   enc_class mov_r32_imm0( eRegI dst ) %{
  1578     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1579     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1580   %}
  1582   enc_class cdq_enc %{
  1583     // Full implementation of Java idiv and irem; checks for
  1584     // special case as described in JVM spec., p.243 & p.271.
  1585     //
  1586     //         normal case                           special case
  1587     //
  1588     // input : rax,: dividend                         min_int
  1589     //         reg: divisor                          -1
  1590     //
  1591     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1592     //         rdx: remainder (= rax, irem reg)       0
  1593     //
  1594     //  Code sequnce:
  1595     //
  1596     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1597     //  0F 85 0B 00 00 00    jne         normal_case
  1598     //  33 D2                xor         rdx,edx
  1599     //  83 F9 FF             cmp         rcx,0FFh
  1600     //  0F 84 03 00 00 00    je          done
  1601     //                  normal_case:
  1602     //  99                   cdq
  1603     //  F7 F9                idiv        rax,ecx
  1604     //                  done:
  1605     //
  1606     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1607     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1608     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1609     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1610     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1611     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1612     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1613     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1614     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1615     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1616     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1617     // normal_case:
  1618     emit_opcode(cbuf,0x99);                                         // cdq
  1619     // idiv (note: must be emitted by the user of this rule)
  1620     // normal:
  1621   %}
  1623   // Dense encoding for older common ops
  1624   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1625     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1626   %}
  1629   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1630   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1631     // Check for 8-bit immediate, and set sign extend bit in opcode
  1632     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1633       emit_opcode(cbuf, $primary | 0x02);
  1635     else {                          // If 32-bit immediate
  1636       emit_opcode(cbuf, $primary);
  1638   %}
  1640   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1641     // Emit primary opcode and set sign-extend bit
  1642     // Check for 8-bit immediate, and set sign extend bit in opcode
  1643     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1644       emit_opcode(cbuf, $primary | 0x02);    }
  1645     else {                          // If 32-bit immediate
  1646       emit_opcode(cbuf, $primary);
  1648     // Emit r/m byte with secondary opcode, after primary opcode.
  1649     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1650   %}
  1652   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1653     // Check for 8-bit immediate, and set sign extend bit in opcode
  1654     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1655       $$$emit8$imm$$constant;
  1657     else {                          // If 32-bit immediate
  1658       // Output immediate
  1659       $$$emit32$imm$$constant;
  1661   %}
  1663   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1664     // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     int con = (int)$imm$$constant; // Throw away top bits
  1667     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1668     // Emit r/m byte with secondary opcode, after primary opcode.
  1669     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1670     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1671     else                               emit_d32(cbuf,con);
  1672   %}
  1674   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1675     // Emit primary opcode and set sign-extend bit
  1676     // Check for 8-bit immediate, and set sign extend bit in opcode
  1677     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1678     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1679     // Emit r/m byte with tertiary opcode, after primary opcode.
  1680     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1681     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1682     else                               emit_d32(cbuf,con);
  1683   %}
  1685   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1686     emit_cc(cbuf, $secondary, $dst$$reg );
  1687   %}
  1689   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1690     int destlo = $dst$$reg;
  1691     int desthi = HIGH_FROM_LOW(destlo);
  1692     // bswap lo
  1693     emit_opcode(cbuf, 0x0F);
  1694     emit_cc(cbuf, 0xC8, destlo);
  1695     // bswap hi
  1696     emit_opcode(cbuf, 0x0F);
  1697     emit_cc(cbuf, 0xC8, desthi);
  1698     // xchg lo and hi
  1699     emit_opcode(cbuf, 0x87);
  1700     emit_rm(cbuf, 0x3, destlo, desthi);
  1701   %}
  1703   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1704     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1705   %}
  1707   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1708     $$$emit8$primary;
  1709     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1710   %}
  1712   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1713     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1714     emit_d8(cbuf, op >> 8 );
  1715     emit_d8(cbuf, op & 255);
  1716   %}
  1718   // emulate a CMOV with a conditional branch around a MOV
  1719   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1720     // Invert sense of branch from sense of CMOV
  1721     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1722     emit_d8( cbuf, $brOffs$$constant );
  1723   %}
  1725   enc_class enc_PartialSubtypeCheck( ) %{
  1726     Register Redi = as_Register(EDI_enc); // result register
  1727     Register Reax = as_Register(EAX_enc); // super class
  1728     Register Recx = as_Register(ECX_enc); // killed
  1729     Register Resi = as_Register(ESI_enc); // sub class
  1730     Label miss;
  1732     MacroAssembler _masm(&cbuf);
  1733     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1734                                      NULL, &miss,
  1735                                      /*set_cond_codes:*/ true);
  1736     if ($primary) {
  1737       __ xorptr(Redi, Redi);
  1739     __ bind(miss);
  1740   %}
  1742   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1743     MacroAssembler masm(&cbuf);
  1744     int start = masm.offset();
  1745     if (UseSSE >= 2) {
  1746       if (VerifyFPU) {
  1747         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1749     } else {
  1750       // External c_calling_convention expects the FPU stack to be 'clean'.
  1751       // Compiled code leaves it dirty.  Do cleanup now.
  1752       masm.empty_FPU_stack();
  1754     if (sizeof_FFree_Float_Stack_All == -1) {
  1755       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1756     } else {
  1757       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1759   %}
  1761   enc_class Verify_FPU_For_Leaf %{
  1762     if( VerifyFPU ) {
  1763       MacroAssembler masm(&cbuf);
  1764       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1766   %}
  1768   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1769     // This is the instruction starting address for relocation info.
  1770     cbuf.set_insts_mark();
  1771     $$$emit8$primary;
  1772     // CALL directly to the runtime
  1773     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1774                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1776     if (UseSSE >= 2) {
  1777       MacroAssembler _masm(&cbuf);
  1778       BasicType rt = tf()->return_type();
  1780       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1781         // A C runtime call where the return value is unused.  In SSE2+
  1782         // mode the result needs to be removed from the FPU stack.  It's
  1783         // likely that this function call could be removed by the
  1784         // optimizer if the C function is a pure function.
  1785         __ ffree(0);
  1786       } else if (rt == T_FLOAT) {
  1787         __ lea(rsp, Address(rsp, -4));
  1788         __ fstp_s(Address(rsp, 0));
  1789         __ movflt(xmm0, Address(rsp, 0));
  1790         __ lea(rsp, Address(rsp,  4));
  1791       } else if (rt == T_DOUBLE) {
  1792         __ lea(rsp, Address(rsp, -8));
  1793         __ fstp_d(Address(rsp, 0));
  1794         __ movdbl(xmm0, Address(rsp, 0));
  1795         __ lea(rsp, Address(rsp,  8));
  1798   %}
  1801   enc_class pre_call_FPU %{
  1802     // If method sets FPU control word restore it here
  1803     debug_only(int off0 = cbuf.insts_size());
  1804     if( Compile::current()->in_24_bit_fp_mode() ) {
  1805       MacroAssembler masm(&cbuf);
  1806       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1808     debug_only(int off1 = cbuf.insts_size());
  1809     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1810   %}
  1812   enc_class post_call_FPU %{
  1813     // If method sets FPU control word do it here also
  1814     if( Compile::current()->in_24_bit_fp_mode() ) {
  1815       MacroAssembler masm(&cbuf);
  1816       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1818   %}
  1820   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1821     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1822     // who we intended to call.
  1823     cbuf.set_insts_mark();
  1824     $$$emit8$primary;
  1825     if ( !_method ) {
  1826       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1827                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1828     } else if(_optimized_virtual) {
  1829       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1830                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1831     } else {
  1832       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1833                      static_call_Relocation::spec(), RELOC_IMM32 );
  1835     if( _method ) {  // Emit stub for static call
  1836       emit_java_to_interp(cbuf);
  1838   %}
  1840   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1841     // !!!!!
  1842     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1843     // emit_call_dynamic_prologue( cbuf );
  1844     cbuf.set_insts_mark();
  1845     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1846     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1847     address  virtual_call_oop_addr = cbuf.insts_mark();
  1848     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1849     // who we intended to call.
  1850     cbuf.set_insts_mark();
  1851     $$$emit8$primary;
  1852     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1853                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1854   %}
  1856   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1857     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1858     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1860     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1861     cbuf.set_insts_mark();
  1862     $$$emit8$primary;
  1863     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1864     emit_d8(cbuf, disp);             // Displacement
  1866   %}
  1868 //   Following encoding is no longer used, but may be restored if calling
  1869 //   convention changes significantly.
  1870 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1871 //
  1872 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1873 //     // int ic_reg     = Matcher::inline_cache_reg();
  1874 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1875 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1876 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1877 //
  1878 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1879 //     // // so we load it immediately before the call
  1880 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1881 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1882 //
  1883 //     // xor rbp,ebp
  1884 //     emit_opcode(cbuf, 0x33);
  1885 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1886 //
  1887 //     // CALL to interpreter.
  1888 //     cbuf.set_insts_mark();
  1889 //     $$$emit8$primary;
  1890 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1891 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1892 //   %}
  1894   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1895     $$$emit8$primary;
  1896     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1897     $$$emit8$shift$$constant;
  1898   %}
  1900   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1901     // Load immediate does not have a zero or sign extended version
  1902     // for 8-bit immediates
  1903     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1904     $$$emit32$src$$constant;
  1905   %}
  1907   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1908     // Load immediate does not have a zero or sign extended version
  1909     // for 8-bit immediates
  1910     emit_opcode(cbuf, $primary + $dst$$reg);
  1911     $$$emit32$src$$constant;
  1912   %}
  1914   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1915     // Load immediate does not have a zero or sign extended version
  1916     // for 8-bit immediates
  1917     int dst_enc = $dst$$reg;
  1918     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1919     if (src_con == 0) {
  1920       // xor dst, dst
  1921       emit_opcode(cbuf, 0x33);
  1922       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1923     } else {
  1924       emit_opcode(cbuf, $primary + dst_enc);
  1925       emit_d32(cbuf, src_con);
  1927   %}
  1929   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1930     // Load immediate does not have a zero or sign extended version
  1931     // for 8-bit immediates
  1932     int dst_enc = $dst$$reg + 2;
  1933     int src_con = ((julong)($src$$constant)) >> 32;
  1934     if (src_con == 0) {
  1935       // xor dst, dst
  1936       emit_opcode(cbuf, 0x33);
  1937       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1938     } else {
  1939       emit_opcode(cbuf, $primary + dst_enc);
  1940       emit_d32(cbuf, src_con);
  1942   %}
  1945   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1946   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  1947     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1948   %}
  1950   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  1951     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1952   %}
  1954   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1955     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1956   %}
  1958   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1959     $$$emit8$primary;
  1960     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1961   %}
  1963   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1964     $$$emit8$secondary;
  1965     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1966   %}
  1968   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1969     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1970   %}
  1972   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1973     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1974   %}
  1976   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  1977     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  1978   %}
  1980   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  1981     // Output immediate
  1982     $$$emit32$src$$constant;
  1983   %}
  1985   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  1986     // Output Float immediate bits
  1987     jfloat jf = $src$$constant;
  1988     int    jf_as_bits = jint_cast( jf );
  1989     emit_d32(cbuf, jf_as_bits);
  1990   %}
  1992   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  1993     // Output Float immediate bits
  1994     jfloat jf = $src$$constant;
  1995     int    jf_as_bits = jint_cast( jf );
  1996     emit_d32(cbuf, jf_as_bits);
  1997   %}
  1999   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2000     // Output immediate
  2001     $$$emit16$src$$constant;
  2002   %}
  2004   enc_class Con_d32(immI src) %{
  2005     emit_d32(cbuf,$src$$constant);
  2006   %}
  2008   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2009     // Output immediate memory reference
  2010     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2011     emit_d32(cbuf, 0x00);
  2012   %}
  2014   enc_class lock_prefix( ) %{
  2015     if( os::is_MP() )
  2016       emit_opcode(cbuf,0xF0);         // [Lock]
  2017   %}
  2019   // Cmp-xchg long value.
  2020   // Note: we need to swap rbx, and rcx before and after the
  2021   //       cmpxchg8 instruction because the instruction uses
  2022   //       rcx as the high order word of the new value to store but
  2023   //       our register encoding uses rbx,.
  2024   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2026     // XCHG  rbx,ecx
  2027     emit_opcode(cbuf,0x87);
  2028     emit_opcode(cbuf,0xD9);
  2029     // [Lock]
  2030     if( os::is_MP() )
  2031       emit_opcode(cbuf,0xF0);
  2032     // CMPXCHG8 [Eptr]
  2033     emit_opcode(cbuf,0x0F);
  2034     emit_opcode(cbuf,0xC7);
  2035     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2036     // XCHG  rbx,ecx
  2037     emit_opcode(cbuf,0x87);
  2038     emit_opcode(cbuf,0xD9);
  2039   %}
  2041   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2042     // [Lock]
  2043     if( os::is_MP() )
  2044       emit_opcode(cbuf,0xF0);
  2046     // CMPXCHG [Eptr]
  2047     emit_opcode(cbuf,0x0F);
  2048     emit_opcode(cbuf,0xB1);
  2049     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2050   %}
  2052   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2053     int res_encoding = $res$$reg;
  2055     // MOV  res,0
  2056     emit_opcode( cbuf, 0xB8 + res_encoding);
  2057     emit_d32( cbuf, 0 );
  2058     // JNE,s  fail
  2059     emit_opcode(cbuf,0x75);
  2060     emit_d8(cbuf, 5 );
  2061     // MOV  res,1
  2062     emit_opcode( cbuf, 0xB8 + res_encoding);
  2063     emit_d32( cbuf, 1 );
  2064     // fail:
  2065   %}
  2067   enc_class set_instruction_start( ) %{
  2068     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2069   %}
  2071   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2072     int reg_encoding = $ereg$$reg;
  2073     int base  = $mem$$base;
  2074     int index = $mem$$index;
  2075     int scale = $mem$$scale;
  2076     int displace = $mem$$disp;
  2077     bool disp_is_oop = $mem->disp_is_oop();
  2078     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2079   %}
  2081   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2082     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2083     int base  = $mem$$base;
  2084     int index = $mem$$index;
  2085     int scale = $mem$$scale;
  2086     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2087     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2088     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2089   %}
  2091   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2092     int r1, r2;
  2093     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2094     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2095     emit_opcode(cbuf,0x0F);
  2096     emit_opcode(cbuf,$tertiary);
  2097     emit_rm(cbuf, 0x3, r1, r2);
  2098     emit_d8(cbuf,$cnt$$constant);
  2099     emit_d8(cbuf,$primary);
  2100     emit_rm(cbuf, 0x3, $secondary, r1);
  2101     emit_d8(cbuf,$cnt$$constant);
  2102   %}
  2104   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2105     emit_opcode( cbuf, 0x8B ); // Move
  2106     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2107     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2108       emit_d8(cbuf,$primary);
  2109       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2110       emit_d8(cbuf,$cnt$$constant-32);
  2112     emit_d8(cbuf,$primary);
  2113     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2114     emit_d8(cbuf,31);
  2115   %}
  2117   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2118     int r1, r2;
  2119     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2120     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2122     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2123     emit_rm(cbuf, 0x3, r1, r2);
  2124     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2125       emit_opcode(cbuf,$primary);
  2126       emit_rm(cbuf, 0x3, $secondary, r1);
  2127       emit_d8(cbuf,$cnt$$constant-32);
  2129     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2130     emit_rm(cbuf, 0x3, r2, r2);
  2131   %}
  2133   // Clone of RegMem but accepts an extra parameter to access each
  2134   // half of a double in memory; it never needs relocation info.
  2135   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2136     emit_opcode(cbuf,$opcode$$constant);
  2137     int reg_encoding = $rm_reg$$reg;
  2138     int base     = $mem$$base;
  2139     int index    = $mem$$index;
  2140     int scale    = $mem$$scale;
  2141     int displace = $mem$$disp + $disp_for_half$$constant;
  2142     bool disp_is_oop = false;
  2143     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2144   %}
  2146   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2147   //
  2148   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2149   // and it never needs relocation information.
  2150   // Frequently used to move data between FPU's Stack Top and memory.
  2151   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2152     int rm_byte_opcode = $rm_opcode$$constant;
  2153     int base     = $mem$$base;
  2154     int index    = $mem$$index;
  2155     int scale    = $mem$$scale;
  2156     int displace = $mem$$disp;
  2157     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2158     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2159   %}
  2161   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2162     int rm_byte_opcode = $rm_opcode$$constant;
  2163     int base     = $mem$$base;
  2164     int index    = $mem$$index;
  2165     int scale    = $mem$$scale;
  2166     int displace = $mem$$disp;
  2167     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2168     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2169   %}
  2171   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2172     int reg_encoding = $dst$$reg;
  2173     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2174     int index        = 0x04;            // 0x04 indicates no index
  2175     int scale        = 0x00;            // 0x00 indicates no scale
  2176     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2177     bool disp_is_oop = false;
  2178     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2179   %}
  2181   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2182     // Compare dst,src
  2183     emit_opcode(cbuf,0x3B);
  2184     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2185     // jmp dst < src around move
  2186     emit_opcode(cbuf,0x7C);
  2187     emit_d8(cbuf,2);
  2188     // move dst,src
  2189     emit_opcode(cbuf,0x8B);
  2190     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2191   %}
  2193   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2194     // Compare dst,src
  2195     emit_opcode(cbuf,0x3B);
  2196     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2197     // jmp dst > src around move
  2198     emit_opcode(cbuf,0x7F);
  2199     emit_d8(cbuf,2);
  2200     // move dst,src
  2201     emit_opcode(cbuf,0x8B);
  2202     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2203   %}
  2205   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2206     // If src is FPR1, we can just FST to store it.
  2207     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2208     int reg_encoding = 0x2; // Just store
  2209     int base  = $mem$$base;
  2210     int index = $mem$$index;
  2211     int scale = $mem$$scale;
  2212     int displace = $mem$$disp;
  2213     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2214     if( $src$$reg != FPR1L_enc ) {
  2215       reg_encoding = 0x3;  // Store & pop
  2216       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2217       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2219     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2220     emit_opcode(cbuf,$primary);
  2221     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2222   %}
  2224   enc_class neg_reg(eRegI dst) %{
  2225     // NEG $dst
  2226     emit_opcode(cbuf,0xF7);
  2227     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2228   %}
  2230   enc_class setLT_reg(eCXRegI dst) %{
  2231     // SETLT $dst
  2232     emit_opcode(cbuf,0x0F);
  2233     emit_opcode(cbuf,0x9C);
  2234     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2235   %}
  2237   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2238     int tmpReg = $tmp$$reg;
  2240     // SUB $p,$q
  2241     emit_opcode(cbuf,0x2B);
  2242     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2243     // SBB $tmp,$tmp
  2244     emit_opcode(cbuf,0x1B);
  2245     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2246     // AND $tmp,$y
  2247     emit_opcode(cbuf,0x23);
  2248     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2249     // ADD $p,$tmp
  2250     emit_opcode(cbuf,0x03);
  2251     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2252   %}
  2254   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2255     int tmpReg = $tmp$$reg;
  2257     // SUB $p,$q
  2258     emit_opcode(cbuf,0x2B);
  2259     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2260     // SBB $tmp,$tmp
  2261     emit_opcode(cbuf,0x1B);
  2262     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2263     // AND $tmp,$y
  2264     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2265     emit_opcode(cbuf,0x23);
  2266     int reg_encoding = tmpReg;
  2267     int base  = $mem$$base;
  2268     int index = $mem$$index;
  2269     int scale = $mem$$scale;
  2270     int displace = $mem$$disp;
  2271     bool disp_is_oop = $mem->disp_is_oop();
  2272     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2273     // ADD $p,$tmp
  2274     emit_opcode(cbuf,0x03);
  2275     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2276   %}
  2278   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2279     // TEST shift,32
  2280     emit_opcode(cbuf,0xF7);
  2281     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2282     emit_d32(cbuf,0x20);
  2283     // JEQ,s small
  2284     emit_opcode(cbuf, 0x74);
  2285     emit_d8(cbuf, 0x04);
  2286     // MOV    $dst.hi,$dst.lo
  2287     emit_opcode( cbuf, 0x8B );
  2288     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2289     // CLR    $dst.lo
  2290     emit_opcode(cbuf, 0x33);
  2291     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2292 // small:
  2293     // SHLD   $dst.hi,$dst.lo,$shift
  2294     emit_opcode(cbuf,0x0F);
  2295     emit_opcode(cbuf,0xA5);
  2296     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2297     // SHL    $dst.lo,$shift"
  2298     emit_opcode(cbuf,0xD3);
  2299     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2300   %}
  2302   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2303     // TEST shift,32
  2304     emit_opcode(cbuf,0xF7);
  2305     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2306     emit_d32(cbuf,0x20);
  2307     // JEQ,s small
  2308     emit_opcode(cbuf, 0x74);
  2309     emit_d8(cbuf, 0x04);
  2310     // MOV    $dst.lo,$dst.hi
  2311     emit_opcode( cbuf, 0x8B );
  2312     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2313     // CLR    $dst.hi
  2314     emit_opcode(cbuf, 0x33);
  2315     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2316 // small:
  2317     // SHRD   $dst.lo,$dst.hi,$shift
  2318     emit_opcode(cbuf,0x0F);
  2319     emit_opcode(cbuf,0xAD);
  2320     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2321     // SHR    $dst.hi,$shift"
  2322     emit_opcode(cbuf,0xD3);
  2323     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2324   %}
  2326   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2327     // TEST shift,32
  2328     emit_opcode(cbuf,0xF7);
  2329     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2330     emit_d32(cbuf,0x20);
  2331     // JEQ,s small
  2332     emit_opcode(cbuf, 0x74);
  2333     emit_d8(cbuf, 0x05);
  2334     // MOV    $dst.lo,$dst.hi
  2335     emit_opcode( cbuf, 0x8B );
  2336     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2337     // SAR    $dst.hi,31
  2338     emit_opcode(cbuf, 0xC1);
  2339     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2340     emit_d8(cbuf, 0x1F );
  2341 // small:
  2342     // SHRD   $dst.lo,$dst.hi,$shift
  2343     emit_opcode(cbuf,0x0F);
  2344     emit_opcode(cbuf,0xAD);
  2345     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2346     // SAR    $dst.hi,$shift"
  2347     emit_opcode(cbuf,0xD3);
  2348     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2349   %}
  2352   // ----------------- Encodings for floating point unit -----------------
  2353   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2354   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2355     $$$emit8$primary;
  2356     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2357   %}
  2359   // Pop argument in FPR0 with FSTP ST(0)
  2360   enc_class PopFPU() %{
  2361     emit_opcode( cbuf, 0xDD );
  2362     emit_d8( cbuf, 0xD8 );
  2363   %}
  2365   // !!!!! equivalent to Pop_Reg_F
  2366   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2367     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2368     emit_d8( cbuf, 0xD8+$dst$$reg );
  2369   %}
  2371   enc_class Push_Reg_DPR( regDPR dst ) %{
  2372     emit_opcode( cbuf, 0xD9 );
  2373     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2374   %}
  2376   enc_class strictfp_bias1( regDPR dst ) %{
  2377     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2378     emit_opcode( cbuf, 0x2D );
  2379     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2380     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2381     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2382   %}
  2384   enc_class strictfp_bias2( regDPR dst ) %{
  2385     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2386     emit_opcode( cbuf, 0x2D );
  2387     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2388     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2389     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2390   %}
  2392   // Special case for moving an integer register to a stack slot.
  2393   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2394     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2395   %}
  2397   // Special case for moving a register to a stack slot.
  2398   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2399     // Opcode already emitted
  2400     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2401     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2402     emit_d32(cbuf, $dst$$disp);   // Displacement
  2403   %}
  2405   // Push the integer in stackSlot 'src' onto FP-stack
  2406   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2407     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2408   %}
  2410   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2411   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2412     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2413   %}
  2415   // Same as Pop_Mem_F except for opcode
  2416   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2417   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2418     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2419   %}
  2421   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2422     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2423     emit_d8( cbuf, 0xD8+$dst$$reg );
  2424   %}
  2426   enc_class Push_Reg_FPR( regFPR dst ) %{
  2427     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2428     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2429   %}
  2431   // Push FPU's float to a stack-slot, and pop FPU-stack
  2432   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2433     int pop = 0x02;
  2434     if ($src$$reg != FPR1L_enc) {
  2435       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2436       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2437       pop = 0x03;
  2439     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2440   %}
  2442   // Push FPU's double to a stack-slot, and pop FPU-stack
  2443   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2444     int pop = 0x02;
  2445     if ($src$$reg != FPR1L_enc) {
  2446       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2447       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2448       pop = 0x03;
  2450     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2451   %}
  2453   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2454   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2455     int pop = 0xD0 - 1; // -1 since we skip FLD
  2456     if ($src$$reg != FPR1L_enc) {
  2457       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2458       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2459       pop = 0xD8;
  2461     emit_opcode( cbuf, 0xDD );
  2462     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2463   %}
  2466   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2467     // load dst in FPR0
  2468     emit_opcode( cbuf, 0xD9 );
  2469     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2470     if ($src$$reg != FPR1L_enc) {
  2471       // fincstp
  2472       emit_opcode (cbuf, 0xD9);
  2473       emit_opcode (cbuf, 0xF7);
  2474       // swap src with FPR1:
  2475       // FXCH FPR1 with src
  2476       emit_opcode(cbuf, 0xD9);
  2477       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2478       // fdecstp
  2479       emit_opcode (cbuf, 0xD9);
  2480       emit_opcode (cbuf, 0xF6);
  2482   %}
  2484   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2485     MacroAssembler _masm(&cbuf);
  2486     __ subptr(rsp, 8);
  2487     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2488     __ fld_d(Address(rsp, 0));
  2489     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2490     __ fld_d(Address(rsp, 0));
  2491   %}
  2493   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2494     MacroAssembler _masm(&cbuf);
  2495     __ subptr(rsp, 4);
  2496     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2497     __ fld_s(Address(rsp, 0));
  2498     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2499     __ fld_s(Address(rsp, 0));
  2500   %}
  2502   enc_class Push_ResultD(regD dst) %{
  2503     MacroAssembler _masm(&cbuf);
  2504     __ fstp_d(Address(rsp, 0));
  2505     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2506     __ addptr(rsp, 8);
  2507   %}
  2509   enc_class Push_ResultF(regF dst, immI d8) %{
  2510     MacroAssembler _masm(&cbuf);
  2511     __ fstp_s(Address(rsp, 0));
  2512     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2513     __ addptr(rsp, $d8$$constant);
  2514   %}
  2516   enc_class Push_SrcD(regD src) %{
  2517     MacroAssembler _masm(&cbuf);
  2518     __ subptr(rsp, 8);
  2519     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2520     __ fld_d(Address(rsp, 0));
  2521   %}
  2523   enc_class push_stack_temp_qword() %{
  2524     MacroAssembler _masm(&cbuf);
  2525     __ subptr(rsp, 8);
  2526   %}
  2528   enc_class pop_stack_temp_qword() %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ addptr(rsp, 8);
  2531   %}
  2533   enc_class push_xmm_to_fpr1(regD src) %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2536     __ fld_d(Address(rsp, 0));
  2537   %}
  2539   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2540     if ($src$$reg != FPR1L_enc) {
  2541       // fincstp
  2542       emit_opcode (cbuf, 0xD9);
  2543       emit_opcode (cbuf, 0xF7);
  2544       // FXCH FPR1 with src
  2545       emit_opcode(cbuf, 0xD9);
  2546       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2547       // fdecstp
  2548       emit_opcode (cbuf, 0xD9);
  2549       emit_opcode (cbuf, 0xF6);
  2551     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2552     // // FSTP   FPR$dst$$reg
  2553     // emit_opcode( cbuf, 0xDD );
  2554     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2555   %}
  2557   enc_class fnstsw_sahf_skip_parity() %{
  2558     // fnstsw ax
  2559     emit_opcode( cbuf, 0xDF );
  2560     emit_opcode( cbuf, 0xE0 );
  2561     // sahf
  2562     emit_opcode( cbuf, 0x9E );
  2563     // jnp  ::skip
  2564     emit_opcode( cbuf, 0x7B );
  2565     emit_opcode( cbuf, 0x05 );
  2566   %}
  2568   enc_class emitModDPR() %{
  2569     // fprem must be iterative
  2570     // :: loop
  2571     // fprem
  2572     emit_opcode( cbuf, 0xD9 );
  2573     emit_opcode( cbuf, 0xF8 );
  2574     // wait
  2575     emit_opcode( cbuf, 0x9b );
  2576     // fnstsw ax
  2577     emit_opcode( cbuf, 0xDF );
  2578     emit_opcode( cbuf, 0xE0 );
  2579     // sahf
  2580     emit_opcode( cbuf, 0x9E );
  2581     // jp  ::loop
  2582     emit_opcode( cbuf, 0x0F );
  2583     emit_opcode( cbuf, 0x8A );
  2584     emit_opcode( cbuf, 0xF4 );
  2585     emit_opcode( cbuf, 0xFF );
  2586     emit_opcode( cbuf, 0xFF );
  2587     emit_opcode( cbuf, 0xFF );
  2588   %}
  2590   enc_class fpu_flags() %{
  2591     // fnstsw_ax
  2592     emit_opcode( cbuf, 0xDF);
  2593     emit_opcode( cbuf, 0xE0);
  2594     // test ax,0x0400
  2595     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2596     emit_opcode( cbuf, 0xA9 );
  2597     emit_d16   ( cbuf, 0x0400 );
  2598     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2599     // // test rax,0x0400
  2600     // emit_opcode( cbuf, 0xA9 );
  2601     // emit_d32   ( cbuf, 0x00000400 );
  2602     //
  2603     // jz exit (no unordered comparison)
  2604     emit_opcode( cbuf, 0x74 );
  2605     emit_d8    ( cbuf, 0x02 );
  2606     // mov ah,1 - treat as LT case (set carry flag)
  2607     emit_opcode( cbuf, 0xB4 );
  2608     emit_d8    ( cbuf, 0x01 );
  2609     // sahf
  2610     emit_opcode( cbuf, 0x9E);
  2611   %}
  2613   enc_class cmpF_P6_fixup() %{
  2614     // Fixup the integer flags in case comparison involved a NaN
  2615     //
  2616     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2617     emit_opcode( cbuf, 0x7B );
  2618     emit_d8    ( cbuf, 0x03 );
  2619     // MOV AH,1 - treat as LT case (set carry flag)
  2620     emit_opcode( cbuf, 0xB4 );
  2621     emit_d8    ( cbuf, 0x01 );
  2622     // SAHF
  2623     emit_opcode( cbuf, 0x9E);
  2624     // NOP     // target for branch to avoid branch to branch
  2625     emit_opcode( cbuf, 0x90);
  2626   %}
  2628 //     fnstsw_ax();
  2629 //     sahf();
  2630 //     movl(dst, nan_result);
  2631 //     jcc(Assembler::parity, exit);
  2632 //     movl(dst, less_result);
  2633 //     jcc(Assembler::below, exit);
  2634 //     movl(dst, equal_result);
  2635 //     jcc(Assembler::equal, exit);
  2636 //     movl(dst, greater_result);
  2638 // less_result     =  1;
  2639 // greater_result  = -1;
  2640 // equal_result    = 0;
  2641 // nan_result      = -1;
  2643   enc_class CmpF_Result(eRegI dst) %{
  2644     // fnstsw_ax();
  2645     emit_opcode( cbuf, 0xDF);
  2646     emit_opcode( cbuf, 0xE0);
  2647     // sahf
  2648     emit_opcode( cbuf, 0x9E);
  2649     // movl(dst, nan_result);
  2650     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2651     emit_d32( cbuf, -1 );
  2652     // jcc(Assembler::parity, exit);
  2653     emit_opcode( cbuf, 0x7A );
  2654     emit_d8    ( cbuf, 0x13 );
  2655     // movl(dst, less_result);
  2656     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2657     emit_d32( cbuf, -1 );
  2658     // jcc(Assembler::below, exit);
  2659     emit_opcode( cbuf, 0x72 );
  2660     emit_d8    ( cbuf, 0x0C );
  2661     // movl(dst, equal_result);
  2662     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2663     emit_d32( cbuf, 0 );
  2664     // jcc(Assembler::equal, exit);
  2665     emit_opcode( cbuf, 0x74 );
  2666     emit_d8    ( cbuf, 0x05 );
  2667     // movl(dst, greater_result);
  2668     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2669     emit_d32( cbuf, 1 );
  2670   %}
  2673   // Compare the longs and set flags
  2674   // BROKEN!  Do Not use as-is
  2675   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2676     // CMP    $src1.hi,$src2.hi
  2677     emit_opcode( cbuf, 0x3B );
  2678     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2679     // JNE,s  done
  2680     emit_opcode(cbuf,0x75);
  2681     emit_d8(cbuf, 2 );
  2682     // CMP    $src1.lo,$src2.lo
  2683     emit_opcode( cbuf, 0x3B );
  2684     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2685 // done:
  2686   %}
  2688   enc_class convert_int_long( regL dst, eRegI src ) %{
  2689     // mov $dst.lo,$src
  2690     int dst_encoding = $dst$$reg;
  2691     int src_encoding = $src$$reg;
  2692     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2693     // mov $dst.hi,$src
  2694     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2695     // sar $dst.hi,31
  2696     emit_opcode( cbuf, 0xC1 );
  2697     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2698     emit_d8(cbuf, 0x1F );
  2699   %}
  2701   enc_class convert_long_double( eRegL src ) %{
  2702     // push $src.hi
  2703     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2704     // push $src.lo
  2705     emit_opcode(cbuf, 0x50+$src$$reg  );
  2706     // fild 64-bits at [SP]
  2707     emit_opcode(cbuf,0xdf);
  2708     emit_d8(cbuf, 0x6C);
  2709     emit_d8(cbuf, 0x24);
  2710     emit_d8(cbuf, 0x00);
  2711     // pop stack
  2712     emit_opcode(cbuf, 0x83); // add  SP, #8
  2713     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2714     emit_d8(cbuf, 0x8);
  2715   %}
  2717   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2718     // IMUL   EDX:EAX,$src1
  2719     emit_opcode( cbuf, 0xF7 );
  2720     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2721     // SAR    EDX,$cnt-32
  2722     int shift_count = ((int)$cnt$$constant) - 32;
  2723     if (shift_count > 0) {
  2724       emit_opcode(cbuf, 0xC1);
  2725       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2726       emit_d8(cbuf, shift_count);
  2728   %}
  2730   // this version doesn't have add sp, 8
  2731   enc_class convert_long_double2( eRegL src ) %{
  2732     // push $src.hi
  2733     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2734     // push $src.lo
  2735     emit_opcode(cbuf, 0x50+$src$$reg  );
  2736     // fild 64-bits at [SP]
  2737     emit_opcode(cbuf,0xdf);
  2738     emit_d8(cbuf, 0x6C);
  2739     emit_d8(cbuf, 0x24);
  2740     emit_d8(cbuf, 0x00);
  2741   %}
  2743   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2744     // Basic idea: long = (long)int * (long)int
  2745     // IMUL EDX:EAX, src
  2746     emit_opcode( cbuf, 0xF7 );
  2747     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2748   %}
  2750   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2751     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2752     // MUL EDX:EAX, src
  2753     emit_opcode( cbuf, 0xF7 );
  2754     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2755   %}
  2757   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2758     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2759     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2760     // MOV    $tmp,$src.lo
  2761     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2762     // IMUL   $tmp,EDX
  2763     emit_opcode( cbuf, 0x0F );
  2764     emit_opcode( cbuf, 0xAF );
  2765     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2766     // MOV    EDX,$src.hi
  2767     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2768     // IMUL   EDX,EAX
  2769     emit_opcode( cbuf, 0x0F );
  2770     emit_opcode( cbuf, 0xAF );
  2771     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2772     // ADD    $tmp,EDX
  2773     emit_opcode( cbuf, 0x03 );
  2774     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2775     // MUL   EDX:EAX,$src.lo
  2776     emit_opcode( cbuf, 0xF7 );
  2777     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2778     // ADD    EDX,ESI
  2779     emit_opcode( cbuf, 0x03 );
  2780     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2781   %}
  2783   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  2784     // Basic idea: lo(result) = lo(src * y_lo)
  2785     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2786     // IMUL   $tmp,EDX,$src
  2787     emit_opcode( cbuf, 0x6B );
  2788     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2789     emit_d8( cbuf, (int)$src$$constant );
  2790     // MOV    EDX,$src
  2791     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2792     emit_d32( cbuf, (int)$src$$constant );
  2793     // MUL   EDX:EAX,EDX
  2794     emit_opcode( cbuf, 0xF7 );
  2795     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2796     // ADD    EDX,ESI
  2797     emit_opcode( cbuf, 0x03 );
  2798     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2799   %}
  2801   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2802     // PUSH src1.hi
  2803     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2804     // PUSH src1.lo
  2805     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2806     // PUSH src2.hi
  2807     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2808     // PUSH src2.lo
  2809     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2810     // CALL directly to the runtime
  2811     cbuf.set_insts_mark();
  2812     emit_opcode(cbuf,0xE8);       // Call into runtime
  2813     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2814     // Restore stack
  2815     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2816     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2817     emit_d8(cbuf, 4*4);
  2818   %}
  2820   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2821     // PUSH src1.hi
  2822     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2823     // PUSH src1.lo
  2824     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2825     // PUSH src2.hi
  2826     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2827     // PUSH src2.lo
  2828     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2829     // CALL directly to the runtime
  2830     cbuf.set_insts_mark();
  2831     emit_opcode(cbuf,0xE8);       // Call into runtime
  2832     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2833     // Restore stack
  2834     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2835     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2836     emit_d8(cbuf, 4*4);
  2837   %}
  2839   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  2840     // MOV   $tmp,$src.lo
  2841     emit_opcode(cbuf, 0x8B);
  2842     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2843     // OR    $tmp,$src.hi
  2844     emit_opcode(cbuf, 0x0B);
  2845     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2846   %}
  2848   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2849     // CMP    $src1.lo,$src2.lo
  2850     emit_opcode( cbuf, 0x3B );
  2851     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2852     // JNE,s  skip
  2853     emit_cc(cbuf, 0x70, 0x5);
  2854     emit_d8(cbuf,2);
  2855     // CMP    $src1.hi,$src2.hi
  2856     emit_opcode( cbuf, 0x3B );
  2857     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2858   %}
  2860   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  2861     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2862     emit_opcode( cbuf, 0x3B );
  2863     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2864     // MOV    $tmp,$src1.hi
  2865     emit_opcode( cbuf, 0x8B );
  2866     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2867     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2868     emit_opcode( cbuf, 0x1B );
  2869     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2870   %}
  2872   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  2873     // XOR    $tmp,$tmp
  2874     emit_opcode(cbuf,0x33);  // XOR
  2875     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2876     // CMP    $tmp,$src.lo
  2877     emit_opcode( cbuf, 0x3B );
  2878     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2879     // SBB    $tmp,$src.hi
  2880     emit_opcode( cbuf, 0x1B );
  2881     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2882   %}
  2884  // Sniff, sniff... smells like Gnu Superoptimizer
  2885   enc_class neg_long( eRegL dst ) %{
  2886     emit_opcode(cbuf,0xF7);    // NEG hi
  2887     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2888     emit_opcode(cbuf,0xF7);    // NEG lo
  2889     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2890     emit_opcode(cbuf,0x83);    // SBB hi,0
  2891     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2892     emit_d8    (cbuf,0 );
  2893   %}
  2896   // Because the transitions from emitted code to the runtime
  2897   // monitorenter/exit helper stubs are so slow it's critical that
  2898   // we inline both the stack-locking fast-path and the inflated fast path.
  2899   //
  2900   // See also: cmpFastLock and cmpFastUnlock.
  2901   //
  2902   // What follows is a specialized inline transliteration of the code
  2903   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2904   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2905   // at startup-time.  These methods would accept arguments as
  2906   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2907   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2908   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2909   // In practice, however, the # of lock sites is bounded and is usually small.
  2910   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2911   // if the processor uses simple bimodal branch predictors keyed by EIP
  2912   // Since the helper routines would be called from multiple synchronization
  2913   // sites.
  2914   //
  2915   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2916   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2917   // to those specialized methods.  That'd give us a mostly platform-independent
  2918   // implementation that the JITs could optimize and inline at their pleasure.
  2919   // Done correctly, the only time we'd need to cross to native could would be
  2920   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2921   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2922   // (b) explicit barriers or fence operations.
  2923   //
  2924   // TODO:
  2925   //
  2926   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2927   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2928   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2929   //    the lock operators would typically be faster than reifying Self.
  2930   //
  2931   // *  Ideally I'd define the primitives as:
  2932   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2933   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2934   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2935   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2936   //    Furthermore the register assignments are overconstrained, possibly resulting in
  2937   //    sub-optimal code near the synchronization site.
  2938   //
  2939   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2940   //    Alternately, use a better sp-proximity test.
  2941   //
  2942   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2943   //    Either one is sufficient to uniquely identify a thread.
  2944   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2945   //
  2946   // *  Intrinsify notify() and notifyAll() for the common cases where the
  2947   //    object is locked by the calling thread but the waitlist is empty.
  2948   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2949   //
  2950   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2951   //    But beware of excessive branch density on AMD Opterons.
  2952   //
  2953   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2954   //    or failure of the fast-path.  If the fast-path fails then we pass
  2955   //    control to the slow-path, typically in C.  In Fast_Lock and
  2956   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2957   //    will emit a conditional branch immediately after the node.
  2958   //    So we have branches to branches and lots of ICC.ZF games.
  2959   //    Instead, it might be better to have C2 pass a "FailureLabel"
  2960   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2961   //    will drop through the node.  ICC.ZF is undefined at exit.
  2962   //    In the case of failure, the node will branch directly to the
  2963   //    FailureLabel
  2966   // obj: object to lock
  2967   // box: on-stack box address (displaced header location) - KILLED
  2968   // rax,: tmp -- KILLED
  2969   // scr: tmp -- KILLED
  2970   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  2972     Register objReg = as_Register($obj$$reg);
  2973     Register boxReg = as_Register($box$$reg);
  2974     Register tmpReg = as_Register($tmp$$reg);
  2975     Register scrReg = as_Register($scr$$reg);
  2977     // Ensure the register assignents are disjoint
  2978     guarantee (objReg != boxReg, "") ;
  2979     guarantee (objReg != tmpReg, "") ;
  2980     guarantee (objReg != scrReg, "") ;
  2981     guarantee (boxReg != tmpReg, "") ;
  2982     guarantee (boxReg != scrReg, "") ;
  2983     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  2985     MacroAssembler masm(&cbuf);
  2987     if (_counters != NULL) {
  2988       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  2990     if (EmitSync & 1) {
  2991         // set box->dhw = unused_mark (3)
  2992         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  2993         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  2994         masm.cmpptr (rsp, (int32_t)0) ;                        
  2995     } else 
  2996     if (EmitSync & 2) { 
  2997         Label DONE_LABEL ;           
  2998         if (UseBiasedLocking) {
  2999            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3000            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3003         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3004         masm.orptr (tmpReg, 0x1);
  3005         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3006         if (os::is_MP()) { masm.lock();  }
  3007         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3008         masm.jcc(Assembler::equal, DONE_LABEL);
  3009         // Recursive locking
  3010         masm.subptr(tmpReg, rsp);
  3011         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3012         masm.movptr(Address(boxReg, 0), tmpReg);
  3013         masm.bind(DONE_LABEL) ; 
  3014     } else {  
  3015       // Possible cases that we'll encounter in fast_lock 
  3016       // ------------------------------------------------
  3017       // * Inflated
  3018       //    -- unlocked
  3019       //    -- Locked
  3020       //       = by self
  3021       //       = by other
  3022       // * biased
  3023       //    -- by Self
  3024       //    -- by other
  3025       // * neutral
  3026       // * stack-locked
  3027       //    -- by self
  3028       //       = sp-proximity test hits
  3029       //       = sp-proximity test generates false-negative
  3030       //    -- by other
  3031       //
  3033       Label IsInflated, DONE_LABEL, PopDone ;
  3035       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3036       // order to reduce the number of conditional branches in the most common cases.
  3037       // Beware -- there's a subtle invariant that fetch of the markword
  3038       // at [FETCH], below, will never observe a biased encoding (*101b).
  3039       // If this invariant is not held we risk exclusion (safety) failure.
  3040       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3041         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3044       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3045       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3046       masm.jccb  (Assembler::notZero, IsInflated) ;
  3048       // Attempt stack-locking ...
  3049       masm.orptr (tmpReg, 0x1);
  3050       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3051       if (os::is_MP()) { masm.lock();  }
  3052       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3053       if (_counters != NULL) {
  3054         masm.cond_inc32(Assembler::equal,
  3055                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3057       masm.jccb (Assembler::equal, DONE_LABEL);
  3059       // Recursive locking
  3060       masm.subptr(tmpReg, rsp);
  3061       masm.andptr(tmpReg, 0xFFFFF003 );
  3062       masm.movptr(Address(boxReg, 0), tmpReg);
  3063       if (_counters != NULL) {
  3064         masm.cond_inc32(Assembler::equal,
  3065                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3067       masm.jmp  (DONE_LABEL) ;
  3069       masm.bind (IsInflated) ;
  3071       // The object is inflated.
  3072       //
  3073       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3074       //   Use markOopDesc::monitor_value instead of "2".
  3075       //   use markOop::unused_mark() instead of "3".
  3076       // The tmpReg value is an objectMonitor reference ORed with
  3077       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3078       // objectmonitor pointer by masking off the "2" bit or we can just
  3079       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3080       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3081       //
  3082       // I use the latter as it avoids AGI stalls.
  3083       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3084       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3085       //
  3086       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3088       // boxReg refers to the on-stack BasicLock in the current frame.
  3089       // We'd like to write:
  3090       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3091       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3092       // additional latency as we have another ST in the store buffer that must drain.
  3094       if (EmitSync & 8192) { 
  3095          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3096          masm.get_thread (scrReg) ; 
  3097          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3098          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3099          if (os::is_MP()) { masm.lock(); } 
  3100          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3101       } else 
  3102       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3103          masm.movptr(scrReg, boxReg) ; 
  3104          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3106          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3107          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3108             // prefetchw [eax + Offset(_owner)-2]
  3109             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3112          if ((EmitSync & 64) == 0) {
  3113            // Optimistic form: consider XORL tmpReg,tmpReg
  3114            masm.movptr(tmpReg, NULL_WORD) ; 
  3115          } else { 
  3116            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3117            // Test-And-CAS instead of CAS
  3118            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3119            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3120            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3123          // Appears unlocked - try to swing _owner from null to non-null.
  3124          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3125          // to CAS the register containing Self into m->Owner.
  3126          // But we don't have enough registers, so instead we can either try to CAS
  3127          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3128          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3129          // (rsp or the address of the box) into  m->owner is harmless.
  3130          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3131          if (os::is_MP()) { masm.lock();  }
  3132          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3133          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3134          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3135          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3136          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3137          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3139          // If the CAS fails we can either retry or pass control to the slow-path.  
  3140          // We use the latter tactic.  
  3141          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3142          // If the CAS was successful ...
  3143          //   Self has acquired the lock
  3144          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3145          // Intentional fall-through into DONE_LABEL ...
  3146       } else {
  3147          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3148          masm.movptr(boxReg, tmpReg) ; 
  3150          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3151          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3152             // prefetchw [eax + Offset(_owner)-2]
  3153             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3156          if ((EmitSync & 64) == 0) {
  3157            // Optimistic form
  3158            masm.xorptr  (tmpReg, tmpReg) ; 
  3159          } else { 
  3160            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3161            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3162            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3163            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3166          // Appears unlocked - try to swing _owner from null to non-null.
  3167          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3168          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3169          masm.get_thread (scrReg) ;
  3170          if (os::is_MP()) { masm.lock(); }
  3171          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3173          // If the CAS fails we can either retry or pass control to the slow-path.
  3174          // We use the latter tactic.
  3175          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3176          // If the CAS was successful ...
  3177          //   Self has acquired the lock
  3178          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3179          // Intentional fall-through into DONE_LABEL ...
  3182       // DONE_LABEL is a hot target - we'd really like to place it at the
  3183       // start of cache line by padding with NOPs.
  3184       // See the AMD and Intel software optimization manuals for the
  3185       // most efficient "long" NOP encodings.
  3186       // Unfortunately none of our alignment mechanisms suffice.
  3187       masm.bind(DONE_LABEL);
  3189       // Avoid branch-to-branch on AMD processors
  3190       // This appears to be superstition.
  3191       if (EmitSync & 32) masm.nop() ;
  3194       // At DONE_LABEL the icc ZFlag is set as follows ...
  3195       // Fast_Unlock uses the same protocol.
  3196       // ZFlag == 1 -> Success
  3197       // ZFlag == 0 -> Failure - force control through the slow-path
  3199   %}
  3201   // obj: object to unlock
  3202   // box: box address (displaced header location), killed.  Must be EAX.
  3203   // rbx,: killed tmp; cannot be obj nor box.
  3204   //
  3205   // Some commentary on balanced locking:
  3206   //
  3207   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3208   // Methods that don't have provably balanced locking are forced to run in the
  3209   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3210   // The interpreter provides two properties:
  3211   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3212   //      objects acquired the current activation (frame).  Recall that the
  3213   //      interpreter maintains an on-stack list of locks currently held by
  3214   //      a frame.
  3215   // I2:  If a method attempts to unlock an object that is not held by the
  3216   //      the frame the interpreter throws IMSX.
  3217   //
  3218   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3219   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3220   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3221   // is still locked by A().
  3222   //
  3223   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3224   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3225   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3226   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3228   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3230     Register objReg = as_Register($obj$$reg);
  3231     Register boxReg = as_Register($box$$reg);
  3232     Register tmpReg = as_Register($tmp$$reg);
  3234     guarantee (objReg != boxReg, "") ;
  3235     guarantee (objReg != tmpReg, "") ;
  3236     guarantee (boxReg != tmpReg, "") ;
  3237     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3238     MacroAssembler masm(&cbuf);
  3240     if (EmitSync & 4) {
  3241       // Disable - inhibit all inlining.  Force control through the slow-path
  3242       masm.cmpptr (rsp, 0) ; 
  3243     } else 
  3244     if (EmitSync & 8) {
  3245       Label DONE_LABEL ;
  3246       if (UseBiasedLocking) {
  3247          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3249       // classic stack-locking code ...
  3250       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3251       masm.testptr(tmpReg, tmpReg) ;
  3252       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3253       if (os::is_MP()) { masm.lock(); }
  3254       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3255       masm.bind(DONE_LABEL);
  3256     } else {
  3257       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3259       // Critically, the biased locking test must have precedence over
  3260       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3261       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3262          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3265       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3266       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3267       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3269       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3270       masm.jccb  (Assembler::zero, Stacked) ;
  3272       masm.bind  (Inflated) ;
  3273       // It's inflated.
  3274       // Despite our balanced locking property we still check that m->_owner == Self
  3275       // as java routines or native JNI code called by this thread might
  3276       // have released the lock.
  3277       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3278       // state in _succ so we can avoid fetching EntryList|cxq.
  3279       //
  3280       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3281       // such as recursive enter and exit -- but we have to be wary of
  3282       // I$ bloat, T$ effects and BP$ effects.
  3283       //
  3284       // If there's no contention try a 1-0 exit.  That is, exit without
  3285       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3286       // we detect and recover from the race that the 1-0 exit admits.
  3287       //
  3288       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3289       // before it STs null into _owner, releasing the lock.  Updates
  3290       // to data protected by the critical section must be visible before
  3291       // we drop the lock (and thus before any other thread could acquire
  3292       // the lock and observe the fields protected by the lock).
  3293       // IA32's memory-model is SPO, so STs are ordered with respect to
  3294       // each other and there's no need for an explicit barrier (fence).
  3295       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3297       masm.get_thread (boxReg) ;
  3298       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3299         // prefetchw [ebx + Offset(_owner)-2]
  3300         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3303       // Note that we could employ various encoding schemes to reduce
  3304       // the number of loads below (currently 4) to just 2 or 3.
  3305       // Refer to the comments in synchronizer.cpp.
  3306       // In practice the chain of fetches doesn't seem to impact performance, however.
  3307       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3308          // Attempt to reduce branch density - AMD's branch predictor.
  3309          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3310          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3311          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3312          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3313          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3314          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3315          masm.jmpb  (DONE_LABEL) ; 
  3316       } else { 
  3317          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3318          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3319          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3320          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3321          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3322          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3323          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3324          masm.jmpb  (DONE_LABEL) ; 
  3327       // The Following code fragment (EmitSync & 65536) improves the performance of
  3328       // contended applications and contended synchronization microbenchmarks.
  3329       // Unfortunately the emission of the code - even though not executed - causes regressions
  3330       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3331       // with an equal number of never-executed NOPs results in the same regression.
  3332       // We leave it off by default.
  3334       if ((EmitSync & 65536) != 0) {
  3335          Label LSuccess, LGoSlowPath ;
  3337          masm.bind  (CheckSucc) ;
  3339          // Optional pre-test ... it's safe to elide this
  3340          if ((EmitSync & 16) == 0) { 
  3341             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3342             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3345          // We have a classic Dekker-style idiom:
  3346          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3347          // There are a number of ways to implement the barrier:
  3348          // (1) lock:andl &m->_owner, 0
  3349          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3350          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3351          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3352          // (2) If supported, an explicit MFENCE is appealing.
  3353          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3354          //     particularly if the write-buffer is full as might be the case if
  3355          //     if stores closely precede the fence or fence-equivalent instruction.
  3356          //     In more modern implementations MFENCE appears faster, however.
  3357          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3358          //     The $lines underlying the top-of-stack should be in M-state.
  3359          //     The locked add instruction is serializing, of course.
  3360          // (4) Use xchg, which is serializing
  3361          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3362          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3363          //     The integer condition codes will tell us if succ was 0.
  3364          //     Since _succ and _owner should reside in the same $line and
  3365          //     we just stored into _owner, it's likely that the $line
  3366          //     remains in M-state for the lock:orl.
  3367          //
  3368          // We currently use (3), although it's likely that switching to (2)
  3369          // is correct for the future.
  3371          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3372          if (os::is_MP()) { 
  3373             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3374               masm.mfence();
  3375             } else { 
  3376               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3379          // Ratify _succ remains non-null
  3380          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3381          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3383          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3384          if (os::is_MP()) { masm.lock(); }
  3385          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3386          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3387          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3388          // Now install Self over rsp.  This is safe as we're transitioning from
  3389          // non-null to non=null
  3390          masm.get_thread (boxReg) ;
  3391          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3392          // Intentional fall-through into LGoSlowPath ...
  3394          masm.bind  (LGoSlowPath) ; 
  3395          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3396          masm.jmpb  (DONE_LABEL) ; 
  3398          masm.bind  (LSuccess) ; 
  3399          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3400          masm.jmpb  (DONE_LABEL) ; 
  3403       masm.bind (Stacked) ;
  3404       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3405       // It must be stack-locked.
  3406       // Try to reset the header to displaced header.
  3407       // The "box" value on the stack is stable, so we can reload
  3408       // and be assured we observe the same value as above.
  3409       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3410       if (os::is_MP()) {   masm.lock();    }
  3411       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3412       // Intention fall-thru into DONE_LABEL
  3415       // DONE_LABEL is a hot target - we'd really like to place it at the
  3416       // start of cache line by padding with NOPs.
  3417       // See the AMD and Intel software optimization manuals for the
  3418       // most efficient "long" NOP encodings.
  3419       // Unfortunately none of our alignment mechanisms suffice.
  3420       if ((EmitSync & 65536) == 0) {
  3421          masm.bind (CheckSucc) ;
  3423       masm.bind(DONE_LABEL);
  3425       // Avoid branch to branch on AMD processors
  3426       if (EmitSync & 32768) { masm.nop() ; }
  3428   %}
  3431   enc_class enc_pop_rdx() %{
  3432     emit_opcode(cbuf,0x5A);
  3433   %}
  3435   enc_class enc_rethrow() %{
  3436     cbuf.set_insts_mark();
  3437     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3438     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3439                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3440   %}
  3443   // Convert a double to an int.  Java semantics require we do complex
  3444   // manglelations in the corner cases.  So we set the rounding mode to
  3445   // 'zero', store the darned double down as an int, and reset the
  3446   // rounding mode to 'nearest'.  The hardware throws an exception which
  3447   // patches up the correct value directly to the stack.
  3448   enc_class DPR2I_encoding( regDPR src ) %{
  3449     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3450     // exceptions here, so that a NAN or other corner-case value will
  3451     // thrown an exception (but normal values get converted at full speed).
  3452     // However, I2C adapters and other float-stack manglers leave pending
  3453     // invalid-op exceptions hanging.  We would have to clear them before
  3454     // enabling them and that is more expensive than just testing for the
  3455     // invalid value Intel stores down in the corner cases.
  3456     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3457     emit_opcode(cbuf,0x2D);
  3458     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3459     // Allocate a word
  3460     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3461     emit_opcode(cbuf,0xEC);
  3462     emit_d8(cbuf,0x04);
  3463     // Encoding assumes a double has been pushed into FPR0.
  3464     // Store down the double as an int, popping the FPU stack
  3465     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3466     emit_opcode(cbuf,0x1C);
  3467     emit_d8(cbuf,0x24);
  3468     // Restore the rounding mode; mask the exception
  3469     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3470     emit_opcode(cbuf,0x2D);
  3471     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3472         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3473         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3475     // Load the converted int; adjust CPU stack
  3476     emit_opcode(cbuf,0x58);       // POP EAX
  3477     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3478     emit_d32   (cbuf,0x80000000); //         0x80000000
  3479     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3480     emit_d8    (cbuf,0x07);       // Size of slow_call
  3481     // Push src onto stack slow-path
  3482     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3483     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3484     // CALL directly to the runtime
  3485     cbuf.set_insts_mark();
  3486     emit_opcode(cbuf,0xE8);       // Call into runtime
  3487     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3488     // Carry on here...
  3489   %}
  3491   enc_class DPR2L_encoding( regDPR src ) %{
  3492     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3493     emit_opcode(cbuf,0x2D);
  3494     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3495     // Allocate a word
  3496     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3497     emit_opcode(cbuf,0xEC);
  3498     emit_d8(cbuf,0x08);
  3499     // Encoding assumes a double has been pushed into FPR0.
  3500     // Store down the double as a long, popping the FPU stack
  3501     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3502     emit_opcode(cbuf,0x3C);
  3503     emit_d8(cbuf,0x24);
  3504     // Restore the rounding mode; mask the exception
  3505     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3506     emit_opcode(cbuf,0x2D);
  3507     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3508         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3509         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3511     // Load the converted int; adjust CPU stack
  3512     emit_opcode(cbuf,0x58);       // POP EAX
  3513     emit_opcode(cbuf,0x5A);       // POP EDX
  3514     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3515     emit_d8    (cbuf,0xFA);       // rdx
  3516     emit_d32   (cbuf,0x80000000); //         0x80000000
  3517     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3518     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3519     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3520     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3521     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3522     emit_d8    (cbuf,0x07);       // Size of slow_call
  3523     // Push src onto stack slow-path
  3524     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3525     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3526     // CALL directly to the runtime
  3527     cbuf.set_insts_mark();
  3528     emit_opcode(cbuf,0xE8);       // Call into runtime
  3529     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3530     // Carry on here...
  3531   %}
  3533   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3534     // Operand was loaded from memory into fp ST (stack top)
  3535     // FMUL   ST,$src  /* D8 C8+i */
  3536     emit_opcode(cbuf, 0xD8);
  3537     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3538   %}
  3540   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3541     // FADDP  ST,src2  /* D8 C0+i */
  3542     emit_opcode(cbuf, 0xD8);
  3543     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3544     //could use FADDP  src2,fpST  /* DE C0+i */
  3545   %}
  3547   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3548     // FADDP  src2,ST  /* DE C0+i */
  3549     emit_opcode(cbuf, 0xDE);
  3550     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3551   %}
  3553   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3554     // Operand has been loaded into fp ST (stack top)
  3555       // FSUB   ST,$src1
  3556       emit_opcode(cbuf, 0xD8);
  3557       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3559       // FDIV
  3560       emit_opcode(cbuf, 0xD8);
  3561       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3562   %}
  3564   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3565     // Operand was loaded from memory into fp ST (stack top)
  3566     // FADD   ST,$src  /* D8 C0+i */
  3567     emit_opcode(cbuf, 0xD8);
  3568     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3570     // FMUL  ST,src2  /* D8 C*+i */
  3571     emit_opcode(cbuf, 0xD8);
  3572     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3573   %}
  3576   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3577     // Operand was loaded from memory into fp ST (stack top)
  3578     // FADD   ST,$src  /* D8 C0+i */
  3579     emit_opcode(cbuf, 0xD8);
  3580     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3582     // FMULP  src2,ST  /* DE C8+i */
  3583     emit_opcode(cbuf, 0xDE);
  3584     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3585   %}
  3587   // Atomically load the volatile long
  3588   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3589     emit_opcode(cbuf,0xDF);
  3590     int rm_byte_opcode = 0x05;
  3591     int base     = $mem$$base;
  3592     int index    = $mem$$index;
  3593     int scale    = $mem$$scale;
  3594     int displace = $mem$$disp;
  3595     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3596     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3597     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3598   %}
  3600   // Volatile Store Long.  Must be atomic, so move it into
  3601   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3602   // target address before the store (for null-ptr checks)
  3603   // so the memory operand is used twice in the encoding.
  3604   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3605     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3606     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3607     emit_opcode(cbuf,0xDF);
  3608     int rm_byte_opcode = 0x07;
  3609     int base     = $mem$$base;
  3610     int index    = $mem$$index;
  3611     int scale    = $mem$$scale;
  3612     int displace = $mem$$disp;
  3613     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3614     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3615   %}
  3617   // Safepoint Poll.  This polls the safepoint page, and causes an
  3618   // exception if it is not readable. Unfortunately, it kills the condition code
  3619   // in the process
  3620   // We current use TESTL [spp],EDI
  3621   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3623   enc_class Safepoint_Poll() %{
  3624     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3625     emit_opcode(cbuf,0x85);
  3626     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3627     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3628   %}
  3629 %}
  3632 //----------FRAME--------------------------------------------------------------
  3633 // Definition of frame structure and management information.
  3634 //
  3635 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3636 //                             |   (to get allocators register number
  3637 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3638 //  r   CALLER     |        |
  3639 //  o     |        +--------+      pad to even-align allocators stack-slot
  3640 //  w     V        |  pad0  |        numbers; owned by CALLER
  3641 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3642 //  h     ^        |   in   |  5
  3643 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3644 //  |     |        |        |  3
  3645 //  |     |        +--------+
  3646 //  V     |        | old out|      Empty on Intel, window on Sparc
  3647 //        |    old |preserve|      Must be even aligned.
  3648 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3649 //        |        |   in   |  3   area for Intel ret address
  3650 //     Owned by    |preserve|      Empty on Sparc.
  3651 //       SELF      +--------+
  3652 //        |        |  pad2  |  2   pad to align old SP
  3653 //        |        +--------+  1
  3654 //        |        | locks  |  0
  3655 //        |        +--------+----> OptoReg::stack0(), even aligned
  3656 //        |        |  pad1  | 11   pad to align new SP
  3657 //        |        +--------+
  3658 //        |        |        | 10
  3659 //        |        | spills |  9   spills
  3660 //        V        |        |  8   (pad0 slot for callee)
  3661 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3662 //        ^        |  out   |  7
  3663 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3664 //     Owned by    +--------+
  3665 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3666 //        |    new |preserve|      Must be even-aligned.
  3667 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3668 //        |        |        |
  3669 //
  3670 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3671 //         known from SELF's arguments and the Java calling convention.
  3672 //         Region 6-7 is determined per call site.
  3673 // Note 2: If the calling convention leaves holes in the incoming argument
  3674 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3675 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3676 //         incoming area, as the Java calling convention is completely under
  3677 //         the control of the AD file.  Doubles can be sorted and packed to
  3678 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3679 //         varargs C calling conventions.
  3680 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3681 //         even aligned with pad0 as needed.
  3682 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3683 //         region 6-11 is even aligned; it may be padded out more so that
  3684 //         the region from SP to FP meets the minimum stack alignment.
  3686 frame %{
  3687   // What direction does stack grow in (assumed to be same for C & Java)
  3688   stack_direction(TOWARDS_LOW);
  3690   // These three registers define part of the calling convention
  3691   // between compiled code and the interpreter.
  3692   inline_cache_reg(EAX);                // Inline Cache Register
  3693   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3695   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3696   cisc_spilling_operand_name(indOffset32);
  3698   // Number of stack slots consumed by locking an object
  3699   sync_stack_slots(1);
  3701   // Compiled code's Frame Pointer
  3702   frame_pointer(ESP);
  3703   // Interpreter stores its frame pointer in a register which is
  3704   // stored to the stack by I2CAdaptors.
  3705   // I2CAdaptors convert from interpreted java to compiled java.
  3706   interpreter_frame_pointer(EBP);
  3708   // Stack alignment requirement
  3709   // Alignment size in bytes (128-bit -> 16 bytes)
  3710   stack_alignment(StackAlignmentInBytes);
  3712   // Number of stack slots between incoming argument block and the start of
  3713   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3714   // EPILOG must remove this many slots.  Intel needs one slot for
  3715   // return address and one for rbp, (must save rbp)
  3716   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3718   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3719   // for calls to C.  Supports the var-args backing area for register parms.
  3720   varargs_C_out_slots_killed(0);
  3722   // The after-PROLOG location of the return address.  Location of
  3723   // return address specifies a type (REG or STACK) and a number
  3724   // representing the register number (i.e. - use a register name) or
  3725   // stack slot.
  3726   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3727   // Otherwise, it is above the locks and verification slot and alignment word
  3728   return_addr(STACK - 1 +
  3729               round_to((Compile::current()->in_preserve_stack_slots() +
  3730                         Compile::current()->fixed_slots()),
  3731                        stack_alignment_in_slots()));
  3733   // Body of function which returns an integer array locating
  3734   // arguments either in registers or in stack slots.  Passed an array
  3735   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3736   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3737   // arguments for a CALLEE.  Incoming stack arguments are
  3738   // automatically biased by the preserve_stack_slots field above.
  3739   calling_convention %{
  3740     // No difference between ingoing/outgoing just pass false
  3741     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3742   %}
  3745   // Body of function which returns an integer array locating
  3746   // arguments either in registers or in stack slots.  Passed an array
  3747   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3748   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3749   // arguments for a CALLEE.  Incoming stack arguments are
  3750   // automatically biased by the preserve_stack_slots field above.
  3751   c_calling_convention %{
  3752     // This is obviously always outgoing
  3753     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3754   %}
  3756   // Location of C & interpreter return values
  3757   c_return_value %{
  3758     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3759     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3760     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3762     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3763     // that C functions return float and double results in XMM0.
  3764     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3765       return OptoRegPair(XMM0b_num,XMM0a_num);
  3766     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3767       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3769     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3770   %}
  3772   // Location of return values
  3773   return_value %{
  3774     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3775     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3776     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3777     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3778       return OptoRegPair(XMM0b_num,XMM0a_num);
  3779     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3780       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3781     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3782   %}
  3784 %}
  3786 //----------ATTRIBUTES---------------------------------------------------------
  3787 //----------Operand Attributes-------------------------------------------------
  3788 op_attrib op_cost(0);        // Required cost attribute
  3790 //----------Instruction Attributes---------------------------------------------
  3791 ins_attrib ins_cost(100);       // Required cost attribute
  3792 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3793 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3794                                 // non-matching short branch variant of some
  3795                                                             // long branch?
  3796 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3797                                 // specifies the alignment that some part of the instruction (not
  3798                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3799                                 // function must be provided for the instruction
  3801 //----------OPERANDS-----------------------------------------------------------
  3802 // Operand definitions must precede instruction definitions for correct parsing
  3803 // in the ADLC because operands constitute user defined types which are used in
  3804 // instruction definitions.
  3806 //----------Simple Operands----------------------------------------------------
  3807 // Immediate Operands
  3808 // Integer Immediate
  3809 operand immI() %{
  3810   match(ConI);
  3812   op_cost(10);
  3813   format %{ %}
  3814   interface(CONST_INTER);
  3815 %}
  3817 // Constant for test vs zero
  3818 operand immI0() %{
  3819   predicate(n->get_int() == 0);
  3820   match(ConI);
  3822   op_cost(0);
  3823   format %{ %}
  3824   interface(CONST_INTER);
  3825 %}
  3827 // Constant for increment
  3828 operand immI1() %{
  3829   predicate(n->get_int() == 1);
  3830   match(ConI);
  3832   op_cost(0);
  3833   format %{ %}
  3834   interface(CONST_INTER);
  3835 %}
  3837 // Constant for decrement
  3838 operand immI_M1() %{
  3839   predicate(n->get_int() == -1);
  3840   match(ConI);
  3842   op_cost(0);
  3843   format %{ %}
  3844   interface(CONST_INTER);
  3845 %}
  3847 // Valid scale values for addressing modes
  3848 operand immI2() %{
  3849   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3850   match(ConI);
  3852   format %{ %}
  3853   interface(CONST_INTER);
  3854 %}
  3856 operand immI8() %{
  3857   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3858   match(ConI);
  3860   op_cost(5);
  3861   format %{ %}
  3862   interface(CONST_INTER);
  3863 %}
  3865 operand immI16() %{
  3866   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3867   match(ConI);
  3869   op_cost(10);
  3870   format %{ %}
  3871   interface(CONST_INTER);
  3872 %}
  3874 // Constant for long shifts
  3875 operand immI_32() %{
  3876   predicate( n->get_int() == 32 );
  3877   match(ConI);
  3879   op_cost(0);
  3880   format %{ %}
  3881   interface(CONST_INTER);
  3882 %}
  3884 operand immI_1_31() %{
  3885   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3886   match(ConI);
  3888   op_cost(0);
  3889   format %{ %}
  3890   interface(CONST_INTER);
  3891 %}
  3893 operand immI_32_63() %{
  3894   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3895   match(ConI);
  3896   op_cost(0);
  3898   format %{ %}
  3899   interface(CONST_INTER);
  3900 %}
  3902 operand immI_1() %{
  3903   predicate( n->get_int() == 1 );
  3904   match(ConI);
  3906   op_cost(0);
  3907   format %{ %}
  3908   interface(CONST_INTER);
  3909 %}
  3911 operand immI_2() %{
  3912   predicate( n->get_int() == 2 );
  3913   match(ConI);
  3915   op_cost(0);
  3916   format %{ %}
  3917   interface(CONST_INTER);
  3918 %}
  3920 operand immI_3() %{
  3921   predicate( n->get_int() == 3 );
  3922   match(ConI);
  3924   op_cost(0);
  3925   format %{ %}
  3926   interface(CONST_INTER);
  3927 %}
  3929 // Pointer Immediate
  3930 operand immP() %{
  3931   match(ConP);
  3933   op_cost(10);
  3934   format %{ %}
  3935   interface(CONST_INTER);
  3936 %}
  3938 // NULL Pointer Immediate
  3939 operand immP0() %{
  3940   predicate( n->get_ptr() == 0 );
  3941   match(ConP);
  3942   op_cost(0);
  3944   format %{ %}
  3945   interface(CONST_INTER);
  3946 %}
  3948 // Long Immediate
  3949 operand immL() %{
  3950   match(ConL);
  3952   op_cost(20);
  3953   format %{ %}
  3954   interface(CONST_INTER);
  3955 %}
  3957 // Long Immediate zero
  3958 operand immL0() %{
  3959   predicate( n->get_long() == 0L );
  3960   match(ConL);
  3961   op_cost(0);
  3963   format %{ %}
  3964   interface(CONST_INTER);
  3965 %}
  3967 // Long Immediate zero
  3968 operand immL_M1() %{
  3969   predicate( n->get_long() == -1L );
  3970   match(ConL);
  3971   op_cost(0);
  3973   format %{ %}
  3974   interface(CONST_INTER);
  3975 %}
  3977 // Long immediate from 0 to 127.
  3978 // Used for a shorter form of long mul by 10.
  3979 operand immL_127() %{
  3980   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3981   match(ConL);
  3982   op_cost(0);
  3984   format %{ %}
  3985   interface(CONST_INTER);
  3986 %}
  3988 // Long Immediate: low 32-bit mask
  3989 operand immL_32bits() %{
  3990   predicate(n->get_long() == 0xFFFFFFFFL);
  3991   match(ConL);
  3992   op_cost(0);
  3994   format %{ %}
  3995   interface(CONST_INTER);
  3996 %}
  3998 // Long Immediate: low 32-bit mask
  3999 operand immL32() %{
  4000   predicate(n->get_long() == (int)(n->get_long()));
  4001   match(ConL);
  4002   op_cost(20);
  4004   format %{ %}
  4005   interface(CONST_INTER);
  4006 %}
  4008 //Double Immediate zero
  4009 operand immDPR0() %{
  4010   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4011   // bug that generates code such that NaNs compare equal to 0.0
  4012   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4013   match(ConD);
  4015   op_cost(5);
  4016   format %{ %}
  4017   interface(CONST_INTER);
  4018 %}
  4020 // Double Immediate one
  4021 operand immDPR1() %{
  4022   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4023   match(ConD);
  4025   op_cost(5);
  4026   format %{ %}
  4027   interface(CONST_INTER);
  4028 %}
  4030 // Double Immediate
  4031 operand immDPR() %{
  4032   predicate(UseSSE<=1);
  4033   match(ConD);
  4035   op_cost(5);
  4036   format %{ %}
  4037   interface(CONST_INTER);
  4038 %}
  4040 operand immD() %{
  4041   predicate(UseSSE>=2);
  4042   match(ConD);
  4044   op_cost(5);
  4045   format %{ %}
  4046   interface(CONST_INTER);
  4047 %}
  4049 // Double Immediate zero
  4050 operand immD0() %{
  4051   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4052   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4053   // compare equal to -0.0.
  4054   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4055   match(ConD);
  4057   format %{ %}
  4058   interface(CONST_INTER);
  4059 %}
  4061 // Float Immediate zero
  4062 operand immFPR0() %{
  4063   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4064   match(ConF);
  4066   op_cost(5);
  4067   format %{ %}
  4068   interface(CONST_INTER);
  4069 %}
  4071 // Float Immediate one
  4072 operand immFPR1() %{
  4073   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4074   match(ConF);
  4076   op_cost(5);
  4077   format %{ %}
  4078   interface(CONST_INTER);
  4079 %}
  4081 // Float Immediate
  4082 operand immFPR() %{
  4083   predicate( UseSSE == 0 );
  4084   match(ConF);
  4086   op_cost(5);
  4087   format %{ %}
  4088   interface(CONST_INTER);
  4089 %}
  4091 // Float Immediate
  4092 operand immF() %{
  4093   predicate(UseSSE >= 1);
  4094   match(ConF);
  4096   op_cost(5);
  4097   format %{ %}
  4098   interface(CONST_INTER);
  4099 %}
  4101 // Float Immediate zero.  Zero and not -0.0
  4102 operand immF0() %{
  4103   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4104   match(ConF);
  4106   op_cost(5);
  4107   format %{ %}
  4108   interface(CONST_INTER);
  4109 %}
  4111 // Immediates for special shifts (sign extend)
  4113 // Constants for increment
  4114 operand immI_16() %{
  4115   predicate( n->get_int() == 16 );
  4116   match(ConI);
  4118   format %{ %}
  4119   interface(CONST_INTER);
  4120 %}
  4122 operand immI_24() %{
  4123   predicate( n->get_int() == 24 );
  4124   match(ConI);
  4126   format %{ %}
  4127   interface(CONST_INTER);
  4128 %}
  4130 // Constant for byte-wide masking
  4131 operand immI_255() %{
  4132   predicate( n->get_int() == 255 );
  4133   match(ConI);
  4135   format %{ %}
  4136   interface(CONST_INTER);
  4137 %}
  4139 // Constant for short-wide masking
  4140 operand immI_65535() %{
  4141   predicate(n->get_int() == 65535);
  4142   match(ConI);
  4144   format %{ %}
  4145   interface(CONST_INTER);
  4146 %}
  4148 // Register Operands
  4149 // Integer Register
  4150 operand eRegI() %{
  4151   constraint(ALLOC_IN_RC(e_reg));
  4152   match(RegI);
  4153   match(xRegI);
  4154   match(eAXRegI);
  4155   match(eBXRegI);
  4156   match(eCXRegI);
  4157   match(eDXRegI);
  4158   match(eDIRegI);
  4159   match(eSIRegI);
  4161   format %{ %}
  4162   interface(REG_INTER);
  4163 %}
  4165 // Subset of Integer Register
  4166 operand xRegI(eRegI reg) %{
  4167   constraint(ALLOC_IN_RC(x_reg));
  4168   match(reg);
  4169   match(eAXRegI);
  4170   match(eBXRegI);
  4171   match(eCXRegI);
  4172   match(eDXRegI);
  4174   format %{ %}
  4175   interface(REG_INTER);
  4176 %}
  4178 // Special Registers
  4179 operand eAXRegI(xRegI reg) %{
  4180   constraint(ALLOC_IN_RC(eax_reg));
  4181   match(reg);
  4182   match(eRegI);
  4184   format %{ "EAX" %}
  4185   interface(REG_INTER);
  4186 %}
  4188 // Special Registers
  4189 operand eBXRegI(xRegI reg) %{
  4190   constraint(ALLOC_IN_RC(ebx_reg));
  4191   match(reg);
  4192   match(eRegI);
  4194   format %{ "EBX" %}
  4195   interface(REG_INTER);
  4196 %}
  4198 operand eCXRegI(xRegI reg) %{
  4199   constraint(ALLOC_IN_RC(ecx_reg));
  4200   match(reg);
  4201   match(eRegI);
  4203   format %{ "ECX" %}
  4204   interface(REG_INTER);
  4205 %}
  4207 operand eDXRegI(xRegI reg) %{
  4208   constraint(ALLOC_IN_RC(edx_reg));
  4209   match(reg);
  4210   match(eRegI);
  4212   format %{ "EDX" %}
  4213   interface(REG_INTER);
  4214 %}
  4216 operand eDIRegI(xRegI reg) %{
  4217   constraint(ALLOC_IN_RC(edi_reg));
  4218   match(reg);
  4219   match(eRegI);
  4221   format %{ "EDI" %}
  4222   interface(REG_INTER);
  4223 %}
  4225 operand naxRegI() %{
  4226   constraint(ALLOC_IN_RC(nax_reg));
  4227   match(RegI);
  4228   match(eCXRegI);
  4229   match(eDXRegI);
  4230   match(eSIRegI);
  4231   match(eDIRegI);
  4233   format %{ %}
  4234   interface(REG_INTER);
  4235 %}
  4237 operand nadxRegI() %{
  4238   constraint(ALLOC_IN_RC(nadx_reg));
  4239   match(RegI);
  4240   match(eBXRegI);
  4241   match(eCXRegI);
  4242   match(eSIRegI);
  4243   match(eDIRegI);
  4245   format %{ %}
  4246   interface(REG_INTER);
  4247 %}
  4249 operand ncxRegI() %{
  4250   constraint(ALLOC_IN_RC(ncx_reg));
  4251   match(RegI);
  4252   match(eAXRegI);
  4253   match(eDXRegI);
  4254   match(eSIRegI);
  4255   match(eDIRegI);
  4257   format %{ %}
  4258   interface(REG_INTER);
  4259 %}
  4261 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4262 // //
  4263 operand eSIRegI(xRegI reg) %{
  4264    constraint(ALLOC_IN_RC(esi_reg));
  4265    match(reg);
  4266    match(eRegI);
  4268    format %{ "ESI" %}
  4269    interface(REG_INTER);
  4270 %}
  4272 // Pointer Register
  4273 operand anyRegP() %{
  4274   constraint(ALLOC_IN_RC(any_reg));
  4275   match(RegP);
  4276   match(eAXRegP);
  4277   match(eBXRegP);
  4278   match(eCXRegP);
  4279   match(eDIRegP);
  4280   match(eRegP);
  4282   format %{ %}
  4283   interface(REG_INTER);
  4284 %}
  4286 operand eRegP() %{
  4287   constraint(ALLOC_IN_RC(e_reg));
  4288   match(RegP);
  4289   match(eAXRegP);
  4290   match(eBXRegP);
  4291   match(eCXRegP);
  4292   match(eDIRegP);
  4294   format %{ %}
  4295   interface(REG_INTER);
  4296 %}
  4298 // On windows95, EBP is not safe to use for implicit null tests.
  4299 operand eRegP_no_EBP() %{
  4300   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4301   match(RegP);
  4302   match(eAXRegP);
  4303   match(eBXRegP);
  4304   match(eCXRegP);
  4305   match(eDIRegP);
  4307   op_cost(100);
  4308   format %{ %}
  4309   interface(REG_INTER);
  4310 %}
  4312 operand naxRegP() %{
  4313   constraint(ALLOC_IN_RC(nax_reg));
  4314   match(RegP);
  4315   match(eBXRegP);
  4316   match(eDXRegP);
  4317   match(eCXRegP);
  4318   match(eSIRegP);
  4319   match(eDIRegP);
  4321   format %{ %}
  4322   interface(REG_INTER);
  4323 %}
  4325 operand nabxRegP() %{
  4326   constraint(ALLOC_IN_RC(nabx_reg));
  4327   match(RegP);
  4328   match(eCXRegP);
  4329   match(eDXRegP);
  4330   match(eSIRegP);
  4331   match(eDIRegP);
  4333   format %{ %}
  4334   interface(REG_INTER);
  4335 %}
  4337 operand pRegP() %{
  4338   constraint(ALLOC_IN_RC(p_reg));
  4339   match(RegP);
  4340   match(eBXRegP);
  4341   match(eDXRegP);
  4342   match(eSIRegP);
  4343   match(eDIRegP);
  4345   format %{ %}
  4346   interface(REG_INTER);
  4347 %}
  4349 // Special Registers
  4350 // Return a pointer value
  4351 operand eAXRegP(eRegP reg) %{
  4352   constraint(ALLOC_IN_RC(eax_reg));
  4353   match(reg);
  4354   format %{ "EAX" %}
  4355   interface(REG_INTER);
  4356 %}
  4358 // Used in AtomicAdd
  4359 operand eBXRegP(eRegP reg) %{
  4360   constraint(ALLOC_IN_RC(ebx_reg));
  4361   match(reg);
  4362   format %{ "EBX" %}
  4363   interface(REG_INTER);
  4364 %}
  4366 // Tail-call (interprocedural jump) to interpreter
  4367 operand eCXRegP(eRegP reg) %{
  4368   constraint(ALLOC_IN_RC(ecx_reg));
  4369   match(reg);
  4370   format %{ "ECX" %}
  4371   interface(REG_INTER);
  4372 %}
  4374 operand eSIRegP(eRegP reg) %{
  4375   constraint(ALLOC_IN_RC(esi_reg));
  4376   match(reg);
  4377   format %{ "ESI" %}
  4378   interface(REG_INTER);
  4379 %}
  4381 // Used in rep stosw
  4382 operand eDIRegP(eRegP reg) %{
  4383   constraint(ALLOC_IN_RC(edi_reg));
  4384   match(reg);
  4385   format %{ "EDI" %}
  4386   interface(REG_INTER);
  4387 %}
  4389 operand eBPRegP() %{
  4390   constraint(ALLOC_IN_RC(ebp_reg));
  4391   match(RegP);
  4392   format %{ "EBP" %}
  4393   interface(REG_INTER);
  4394 %}
  4396 operand eRegL() %{
  4397   constraint(ALLOC_IN_RC(long_reg));
  4398   match(RegL);
  4399   match(eADXRegL);
  4401   format %{ %}
  4402   interface(REG_INTER);
  4403 %}
  4405 operand eADXRegL( eRegL reg ) %{
  4406   constraint(ALLOC_IN_RC(eadx_reg));
  4407   match(reg);
  4409   format %{ "EDX:EAX" %}
  4410   interface(REG_INTER);
  4411 %}
  4413 operand eBCXRegL( eRegL reg ) %{
  4414   constraint(ALLOC_IN_RC(ebcx_reg));
  4415   match(reg);
  4417   format %{ "EBX:ECX" %}
  4418   interface(REG_INTER);
  4419 %}
  4421 // Special case for integer high multiply
  4422 operand eADXRegL_low_only() %{
  4423   constraint(ALLOC_IN_RC(eadx_reg));
  4424   match(RegL);
  4426   format %{ "EAX" %}
  4427   interface(REG_INTER);
  4428 %}
  4430 // Flags register, used as output of compare instructions
  4431 operand eFlagsReg() %{
  4432   constraint(ALLOC_IN_RC(int_flags));
  4433   match(RegFlags);
  4435   format %{ "EFLAGS" %}
  4436   interface(REG_INTER);
  4437 %}
  4439 // Flags register, used as output of FLOATING POINT compare instructions
  4440 operand eFlagsRegU() %{
  4441   constraint(ALLOC_IN_RC(int_flags));
  4442   match(RegFlags);
  4444   format %{ "EFLAGS_U" %}
  4445   interface(REG_INTER);
  4446 %}
  4448 operand eFlagsRegUCF() %{
  4449   constraint(ALLOC_IN_RC(int_flags));
  4450   match(RegFlags);
  4451   predicate(false);
  4453   format %{ "EFLAGS_U_CF" %}
  4454   interface(REG_INTER);
  4455 %}
  4457 // Condition Code Register used by long compare
  4458 operand flagsReg_long_LTGE() %{
  4459   constraint(ALLOC_IN_RC(int_flags));
  4460   match(RegFlags);
  4461   format %{ "FLAGS_LTGE" %}
  4462   interface(REG_INTER);
  4463 %}
  4464 operand flagsReg_long_EQNE() %{
  4465   constraint(ALLOC_IN_RC(int_flags));
  4466   match(RegFlags);
  4467   format %{ "FLAGS_EQNE" %}
  4468   interface(REG_INTER);
  4469 %}
  4470 operand flagsReg_long_LEGT() %{
  4471   constraint(ALLOC_IN_RC(int_flags));
  4472   match(RegFlags);
  4473   format %{ "FLAGS_LEGT" %}
  4474   interface(REG_INTER);
  4475 %}
  4477 // Float register operands
  4478 operand regDPR() %{
  4479   predicate( UseSSE < 2 );
  4480   constraint(ALLOC_IN_RC(dbl_reg));
  4481   match(RegD);
  4482   match(regDPR1);
  4483   match(regDPR2);
  4484   format %{ %}
  4485   interface(REG_INTER);
  4486 %}
  4488 operand regDPR1(regDPR reg) %{
  4489   predicate( UseSSE < 2 );
  4490   constraint(ALLOC_IN_RC(dbl_reg0));
  4491   match(reg);
  4492   format %{ "FPR1" %}
  4493   interface(REG_INTER);
  4494 %}
  4496 operand regDPR2(regDPR reg) %{
  4497   predicate( UseSSE < 2 );
  4498   constraint(ALLOC_IN_RC(dbl_reg1));
  4499   match(reg);
  4500   format %{ "FPR2" %}
  4501   interface(REG_INTER);
  4502 %}
  4504 operand regnotDPR1(regDPR reg) %{
  4505   predicate( UseSSE < 2 );
  4506   constraint(ALLOC_IN_RC(dbl_notreg0));
  4507   match(reg);
  4508   format %{ %}
  4509   interface(REG_INTER);
  4510 %}
  4512 // XMM Double register operands
  4513 operand regD() %{
  4514   predicate( UseSSE>=2 );
  4515   constraint(ALLOC_IN_RC(xdb_reg));
  4516   match(RegD);
  4517   match(regD6);
  4518   match(regD7);
  4519   format %{ %}
  4520   interface(REG_INTER);
  4521 %}
  4523 // XMM6 double register operands
  4524 operand regD6(regD reg) %{
  4525   predicate( UseSSE>=2 );
  4526   constraint(ALLOC_IN_RC(xdb_reg6));
  4527   match(reg);
  4528   format %{ "XMM6" %}
  4529   interface(REG_INTER);
  4530 %}
  4532 // XMM7 double register operands
  4533 operand regD7(regD reg) %{
  4534   predicate( UseSSE>=2 );
  4535   constraint(ALLOC_IN_RC(xdb_reg7));
  4536   match(reg);
  4537   format %{ "XMM7" %}
  4538   interface(REG_INTER);
  4539 %}
  4541 // Float register operands
  4542 operand regFPR() %{
  4543   predicate( UseSSE < 2 );
  4544   constraint(ALLOC_IN_RC(flt_reg));
  4545   match(RegF);
  4546   match(regFPR1);
  4547   format %{ %}
  4548   interface(REG_INTER);
  4549 %}
  4551 // Float register operands
  4552 operand regFPR1(regFPR reg) %{
  4553   predicate( UseSSE < 2 );
  4554   constraint(ALLOC_IN_RC(flt_reg0));
  4555   match(reg);
  4556   format %{ "FPR1" %}
  4557   interface(REG_INTER);
  4558 %}
  4560 // XMM register operands
  4561 operand regF() %{
  4562   predicate( UseSSE>=1 );
  4563   constraint(ALLOC_IN_RC(xmm_reg));
  4564   match(RegF);
  4565   format %{ %}
  4566   interface(REG_INTER);
  4567 %}
  4570 //----------Memory Operands----------------------------------------------------
  4571 // Direct Memory Operand
  4572 operand direct(immP addr) %{
  4573   match(addr);
  4575   format %{ "[$addr]" %}
  4576   interface(MEMORY_INTER) %{
  4577     base(0xFFFFFFFF);
  4578     index(0x4);
  4579     scale(0x0);
  4580     disp($addr);
  4581   %}
  4582 %}
  4584 // Indirect Memory Operand
  4585 operand indirect(eRegP reg) %{
  4586   constraint(ALLOC_IN_RC(e_reg));
  4587   match(reg);
  4589   format %{ "[$reg]" %}
  4590   interface(MEMORY_INTER) %{
  4591     base($reg);
  4592     index(0x4);
  4593     scale(0x0);
  4594     disp(0x0);
  4595   %}
  4596 %}
  4598 // Indirect Memory Plus Short Offset Operand
  4599 operand indOffset8(eRegP reg, immI8 off) %{
  4600   match(AddP reg off);
  4602   format %{ "[$reg + $off]" %}
  4603   interface(MEMORY_INTER) %{
  4604     base($reg);
  4605     index(0x4);
  4606     scale(0x0);
  4607     disp($off);
  4608   %}
  4609 %}
  4611 // Indirect Memory Plus Long Offset Operand
  4612 operand indOffset32(eRegP reg, immI off) %{
  4613   match(AddP reg off);
  4615   format %{ "[$reg + $off]" %}
  4616   interface(MEMORY_INTER) %{
  4617     base($reg);
  4618     index(0x4);
  4619     scale(0x0);
  4620     disp($off);
  4621   %}
  4622 %}
  4624 // Indirect Memory Plus Long Offset Operand
  4625 operand indOffset32X(eRegI reg, immP off) %{
  4626   match(AddP off reg);
  4628   format %{ "[$reg + $off]" %}
  4629   interface(MEMORY_INTER) %{
  4630     base($reg);
  4631     index(0x4);
  4632     scale(0x0);
  4633     disp($off);
  4634   %}
  4635 %}
  4637 // Indirect Memory Plus Index Register Plus Offset Operand
  4638 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  4639   match(AddP (AddP reg ireg) off);
  4641   op_cost(10);
  4642   format %{"[$reg + $off + $ireg]" %}
  4643   interface(MEMORY_INTER) %{
  4644     base($reg);
  4645     index($ireg);
  4646     scale(0x0);
  4647     disp($off);
  4648   %}
  4649 %}
  4651 // Indirect Memory Plus Index Register Plus Offset Operand
  4652 operand indIndex(eRegP reg, eRegI ireg) %{
  4653   match(AddP reg ireg);
  4655   op_cost(10);
  4656   format %{"[$reg + $ireg]" %}
  4657   interface(MEMORY_INTER) %{
  4658     base($reg);
  4659     index($ireg);
  4660     scale(0x0);
  4661     disp(0x0);
  4662   %}
  4663 %}
  4665 // // -------------------------------------------------------------------------
  4666 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4667 // // -------------------------------------------------------------------------
  4668 // // Scaled Memory Operands
  4669 // // Indirect Memory Times Scale Plus Offset Operand
  4670 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  4671 //   match(AddP off (LShiftI ireg scale));
  4672 //
  4673 //   op_cost(10);
  4674 //   format %{"[$off + $ireg << $scale]" %}
  4675 //   interface(MEMORY_INTER) %{
  4676 //     base(0x4);
  4677 //     index($ireg);
  4678 //     scale($scale);
  4679 //     disp($off);
  4680 //   %}
  4681 // %}
  4683 // Indirect Memory Times Scale Plus Index Register
  4684 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  4685   match(AddP reg (LShiftI ireg scale));
  4687   op_cost(10);
  4688   format %{"[$reg + $ireg << $scale]" %}
  4689   interface(MEMORY_INTER) %{
  4690     base($reg);
  4691     index($ireg);
  4692     scale($scale);
  4693     disp(0x0);
  4694   %}
  4695 %}
  4697 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4698 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  4699   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4701   op_cost(10);
  4702   format %{"[$reg + $off + $ireg << $scale]" %}
  4703   interface(MEMORY_INTER) %{
  4704     base($reg);
  4705     index($ireg);
  4706     scale($scale);
  4707     disp($off);
  4708   %}
  4709 %}
  4711 //----------Load Long Memory Operands------------------------------------------
  4712 // The load-long idiom will use it's address expression again after loading
  4713 // the first word of the long.  If the load-long destination overlaps with
  4714 // registers used in the addressing expression, the 2nd half will be loaded
  4715 // from a clobbered address.  Fix this by requiring that load-long use
  4716 // address registers that do not overlap with the load-long target.
  4718 // load-long support
  4719 operand load_long_RegP() %{
  4720   constraint(ALLOC_IN_RC(esi_reg));
  4721   match(RegP);
  4722   match(eSIRegP);
  4723   op_cost(100);
  4724   format %{  %}
  4725   interface(REG_INTER);
  4726 %}
  4728 // Indirect Memory Operand Long
  4729 operand load_long_indirect(load_long_RegP reg) %{
  4730   constraint(ALLOC_IN_RC(esi_reg));
  4731   match(reg);
  4733   format %{ "[$reg]" %}
  4734   interface(MEMORY_INTER) %{
  4735     base($reg);
  4736     index(0x4);
  4737     scale(0x0);
  4738     disp(0x0);
  4739   %}
  4740 %}
  4742 // Indirect Memory Plus Long Offset Operand
  4743 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4744   match(AddP reg off);
  4746   format %{ "[$reg + $off]" %}
  4747   interface(MEMORY_INTER) %{
  4748     base($reg);
  4749     index(0x4);
  4750     scale(0x0);
  4751     disp($off);
  4752   %}
  4753 %}
  4755 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4758 //----------Special Memory Operands--------------------------------------------
  4759 // Stack Slot Operand - This operand is used for loading and storing temporary
  4760 //                      values on the stack where a match requires a value to
  4761 //                      flow through memory.
  4762 operand stackSlotP(sRegP reg) %{
  4763   constraint(ALLOC_IN_RC(stack_slots));
  4764   // No match rule because this operand is only generated in matching
  4765   format %{ "[$reg]" %}
  4766   interface(MEMORY_INTER) %{
  4767     base(0x4);   // ESP
  4768     index(0x4);  // No Index
  4769     scale(0x0);  // No Scale
  4770     disp($reg);  // Stack Offset
  4771   %}
  4772 %}
  4774 operand stackSlotI(sRegI reg) %{
  4775   constraint(ALLOC_IN_RC(stack_slots));
  4776   // No match rule because this operand is only generated in matching
  4777   format %{ "[$reg]" %}
  4778   interface(MEMORY_INTER) %{
  4779     base(0x4);   // ESP
  4780     index(0x4);  // No Index
  4781     scale(0x0);  // No Scale
  4782     disp($reg);  // Stack Offset
  4783   %}
  4784 %}
  4786 operand stackSlotF(sRegF reg) %{
  4787   constraint(ALLOC_IN_RC(stack_slots));
  4788   // No match rule because this operand is only generated in matching
  4789   format %{ "[$reg]" %}
  4790   interface(MEMORY_INTER) %{
  4791     base(0x4);   // ESP
  4792     index(0x4);  // No Index
  4793     scale(0x0);  // No Scale
  4794     disp($reg);  // Stack Offset
  4795   %}
  4796 %}
  4798 operand stackSlotD(sRegD reg) %{
  4799   constraint(ALLOC_IN_RC(stack_slots));
  4800   // No match rule because this operand is only generated in matching
  4801   format %{ "[$reg]" %}
  4802   interface(MEMORY_INTER) %{
  4803     base(0x4);   // ESP
  4804     index(0x4);  // No Index
  4805     scale(0x0);  // No Scale
  4806     disp($reg);  // Stack Offset
  4807   %}
  4808 %}
  4810 operand stackSlotL(sRegL reg) %{
  4811   constraint(ALLOC_IN_RC(stack_slots));
  4812   // No match rule because this operand is only generated in matching
  4813   format %{ "[$reg]" %}
  4814   interface(MEMORY_INTER) %{
  4815     base(0x4);   // ESP
  4816     index(0x4);  // No Index
  4817     scale(0x0);  // No Scale
  4818     disp($reg);  // Stack Offset
  4819   %}
  4820 %}
  4822 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4823 // Indirect Memory Operand
  4824 operand indirect_win95_safe(eRegP_no_EBP reg)
  4825 %{
  4826   constraint(ALLOC_IN_RC(e_reg));
  4827   match(reg);
  4829   op_cost(100);
  4830   format %{ "[$reg]" %}
  4831   interface(MEMORY_INTER) %{
  4832     base($reg);
  4833     index(0x4);
  4834     scale(0x0);
  4835     disp(0x0);
  4836   %}
  4837 %}
  4839 // Indirect Memory Plus Short Offset Operand
  4840 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4841 %{
  4842   match(AddP reg off);
  4844   op_cost(100);
  4845   format %{ "[$reg + $off]" %}
  4846   interface(MEMORY_INTER) %{
  4847     base($reg);
  4848     index(0x4);
  4849     scale(0x0);
  4850     disp($off);
  4851   %}
  4852 %}
  4854 // Indirect Memory Plus Long Offset Operand
  4855 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4856 %{
  4857   match(AddP reg off);
  4859   op_cost(100);
  4860   format %{ "[$reg + $off]" %}
  4861   interface(MEMORY_INTER) %{
  4862     base($reg);
  4863     index(0x4);
  4864     scale(0x0);
  4865     disp($off);
  4866   %}
  4867 %}
  4869 // Indirect Memory Plus Index Register Plus Offset Operand
  4870 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  4871 %{
  4872   match(AddP (AddP reg ireg) off);
  4874   op_cost(100);
  4875   format %{"[$reg + $off + $ireg]" %}
  4876   interface(MEMORY_INTER) %{
  4877     base($reg);
  4878     index($ireg);
  4879     scale(0x0);
  4880     disp($off);
  4881   %}
  4882 %}
  4884 // Indirect Memory Times Scale Plus Index Register
  4885 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  4886 %{
  4887   match(AddP reg (LShiftI ireg scale));
  4889   op_cost(100);
  4890   format %{"[$reg + $ireg << $scale]" %}
  4891   interface(MEMORY_INTER) %{
  4892     base($reg);
  4893     index($ireg);
  4894     scale($scale);
  4895     disp(0x0);
  4896   %}
  4897 %}
  4899 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4900 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  4901 %{
  4902   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4904   op_cost(100);
  4905   format %{"[$reg + $off + $ireg << $scale]" %}
  4906   interface(MEMORY_INTER) %{
  4907     base($reg);
  4908     index($ireg);
  4909     scale($scale);
  4910     disp($off);
  4911   %}
  4912 %}
  4914 //----------Conditional Branch Operands----------------------------------------
  4915 // Comparison Op  - This is the operation of the comparison, and is limited to
  4916 //                  the following set of codes:
  4917 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4918 //
  4919 // Other attributes of the comparison, such as unsignedness, are specified
  4920 // by the comparison instruction that sets a condition code flags register.
  4921 // That result is represented by a flags operand whose subtype is appropriate
  4922 // to the unsignedness (etc.) of the comparison.
  4923 //
  4924 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4925 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4926 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4928 // Comparision Code
  4929 operand cmpOp() %{
  4930   match(Bool);
  4932   format %{ "" %}
  4933   interface(COND_INTER) %{
  4934     equal(0x4, "e");
  4935     not_equal(0x5, "ne");
  4936     less(0xC, "l");
  4937     greater_equal(0xD, "ge");
  4938     less_equal(0xE, "le");
  4939     greater(0xF, "g");
  4940   %}
  4941 %}
  4943 // Comparison Code, unsigned compare.  Used by FP also, with
  4944 // C2 (unordered) turned into GT or LT already.  The other bits
  4945 // C0 and C3 are turned into Carry & Zero flags.
  4946 operand cmpOpU() %{
  4947   match(Bool);
  4949   format %{ "" %}
  4950   interface(COND_INTER) %{
  4951     equal(0x4, "e");
  4952     not_equal(0x5, "ne");
  4953     less(0x2, "b");
  4954     greater_equal(0x3, "nb");
  4955     less_equal(0x6, "be");
  4956     greater(0x7, "nbe");
  4957   %}
  4958 %}
  4960 // Floating comparisons that don't require any fixup for the unordered case
  4961 operand cmpOpUCF() %{
  4962   match(Bool);
  4963   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4964             n->as_Bool()->_test._test == BoolTest::ge ||
  4965             n->as_Bool()->_test._test == BoolTest::le ||
  4966             n->as_Bool()->_test._test == BoolTest::gt);
  4967   format %{ "" %}
  4968   interface(COND_INTER) %{
  4969     equal(0x4, "e");
  4970     not_equal(0x5, "ne");
  4971     less(0x2, "b");
  4972     greater_equal(0x3, "nb");
  4973     less_equal(0x6, "be");
  4974     greater(0x7, "nbe");
  4975   %}
  4976 %}
  4979 // Floating comparisons that can be fixed up with extra conditional jumps
  4980 operand cmpOpUCF2() %{
  4981   match(Bool);
  4982   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4983             n->as_Bool()->_test._test == BoolTest::eq);
  4984   format %{ "" %}
  4985   interface(COND_INTER) %{
  4986     equal(0x4, "e");
  4987     not_equal(0x5, "ne");
  4988     less(0x2, "b");
  4989     greater_equal(0x3, "nb");
  4990     less_equal(0x6, "be");
  4991     greater(0x7, "nbe");
  4992   %}
  4993 %}
  4995 // Comparison Code for FP conditional move
  4996 operand cmpOp_fcmov() %{
  4997   match(Bool);
  4999   format %{ "" %}
  5000   interface(COND_INTER) %{
  5001     equal        (0x0C8);
  5002     not_equal    (0x1C8);
  5003     less         (0x0C0);
  5004     greater_equal(0x1C0);
  5005     less_equal   (0x0D0);
  5006     greater      (0x1D0);
  5007   %}
  5008 %}
  5010 // Comparision Code used in long compares
  5011 operand cmpOp_commute() %{
  5012   match(Bool);
  5014   format %{ "" %}
  5015   interface(COND_INTER) %{
  5016     equal(0x4, "e");
  5017     not_equal(0x5, "ne");
  5018     less(0xF, "g");
  5019     greater_equal(0xE, "le");
  5020     less_equal(0xD, "ge");
  5021     greater(0xC, "l");
  5022   %}
  5023 %}
  5025 //----------OPERAND CLASSES----------------------------------------------------
  5026 // Operand Classes are groups of operands that are used as to simplify
  5027 // instruction definitions by not requiring the AD writer to specify separate
  5028 // instructions for every form of operand when the instruction accepts
  5029 // multiple operand types with the same basic encoding and format.  The classic
  5030 // case of this is memory operands.
  5032 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5033                indIndex, indIndexScale, indIndexScaleOffset);
  5035 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5036 // This means some kind of offset is always required and you cannot use
  5037 // an oop as the offset (done when working on static globals).
  5038 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5039                     indIndex, indIndexScale, indIndexScaleOffset);
  5042 //----------PIPELINE-----------------------------------------------------------
  5043 // Rules which define the behavior of the target architectures pipeline.
  5044 pipeline %{
  5046 //----------ATTRIBUTES---------------------------------------------------------
  5047 attributes %{
  5048   variable_size_instructions;        // Fixed size instructions
  5049   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5050   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5051   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5052   instruction_fetch_units = 1;       // of 16 bytes
  5054   // List of nop instructions
  5055   nops( MachNop );
  5056 %}
  5058 //----------RESOURCES----------------------------------------------------------
  5059 // Resources are the functional units available to the machine
  5061 // Generic P2/P3 pipeline
  5062 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5063 // 3 instructions decoded per cycle.
  5064 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5065 // 2 ALU op, only ALU0 handles mul/div instructions.
  5066 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5067            MS0, MS1, MEM = MS0 | MS1,
  5068            BR, FPU,
  5069            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5071 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5072 // Pipeline Description specifies the stages in the machine's pipeline
  5074 // Generic P2/P3 pipeline
  5075 pipe_desc(S0, S1, S2, S3, S4, S5);
  5077 //----------PIPELINE CLASSES---------------------------------------------------
  5078 // Pipeline Classes describe the stages in which input and output are
  5079 // referenced by the hardware pipeline.
  5081 // Naming convention: ialu or fpu
  5082 // Then: _reg
  5083 // Then: _reg if there is a 2nd register
  5084 // Then: _long if it's a pair of instructions implementing a long
  5085 // Then: _fat if it requires the big decoder
  5086 //   Or: _mem if it requires the big decoder and a memory unit.
  5088 // Integer ALU reg operation
  5089 pipe_class ialu_reg(eRegI dst) %{
  5090     single_instruction;
  5091     dst    : S4(write);
  5092     dst    : S3(read);
  5093     DECODE : S0;        // any decoder
  5094     ALU    : S3;        // any alu
  5095 %}
  5097 // Long ALU reg operation
  5098 pipe_class ialu_reg_long(eRegL dst) %{
  5099     instruction_count(2);
  5100     dst    : S4(write);
  5101     dst    : S3(read);
  5102     DECODE : S0(2);     // any 2 decoders
  5103     ALU    : S3(2);     // both alus
  5104 %}
  5106 // Integer ALU reg operation using big decoder
  5107 pipe_class ialu_reg_fat(eRegI dst) %{
  5108     single_instruction;
  5109     dst    : S4(write);
  5110     dst    : S3(read);
  5111     D0     : S0;        // big decoder only
  5112     ALU    : S3;        // any alu
  5113 %}
  5115 // Long ALU reg operation using big decoder
  5116 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5117     instruction_count(2);
  5118     dst    : S4(write);
  5119     dst    : S3(read);
  5120     D0     : S0(2);     // big decoder only; twice
  5121     ALU    : S3(2);     // any 2 alus
  5122 %}
  5124 // Integer ALU reg-reg operation
  5125 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5126     single_instruction;
  5127     dst    : S4(write);
  5128     src    : S3(read);
  5129     DECODE : S0;        // any decoder
  5130     ALU    : S3;        // any alu
  5131 %}
  5133 // Long ALU reg-reg operation
  5134 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5135     instruction_count(2);
  5136     dst    : S4(write);
  5137     src    : S3(read);
  5138     DECODE : S0(2);     // any 2 decoders
  5139     ALU    : S3(2);     // both alus
  5140 %}
  5142 // Integer ALU reg-reg operation
  5143 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5144     single_instruction;
  5145     dst    : S4(write);
  5146     src    : S3(read);
  5147     D0     : S0;        // big decoder only
  5148     ALU    : S3;        // any alu
  5149 %}
  5151 // Long ALU reg-reg operation
  5152 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5153     instruction_count(2);
  5154     dst    : S4(write);
  5155     src    : S3(read);
  5156     D0     : S0(2);     // big decoder only; twice
  5157     ALU    : S3(2);     // both alus
  5158 %}
  5160 // Integer ALU reg-mem operation
  5161 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5162     single_instruction;
  5163     dst    : S5(write);
  5164     mem    : S3(read);
  5165     D0     : S0;        // big decoder only
  5166     ALU    : S4;        // any alu
  5167     MEM    : S3;        // any mem
  5168 %}
  5170 // Long ALU reg-mem operation
  5171 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5172     instruction_count(2);
  5173     dst    : S5(write);
  5174     mem    : S3(read);
  5175     D0     : S0(2);     // big decoder only; twice
  5176     ALU    : S4(2);     // any 2 alus
  5177     MEM    : S3(2);     // both mems
  5178 %}
  5180 // Integer mem operation (prefetch)
  5181 pipe_class ialu_mem(memory mem)
  5182 %{
  5183     single_instruction;
  5184     mem    : S3(read);
  5185     D0     : S0;        // big decoder only
  5186     MEM    : S3;        // any mem
  5187 %}
  5189 // Integer Store to Memory
  5190 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5191     single_instruction;
  5192     mem    : S3(read);
  5193     src    : S5(read);
  5194     D0     : S0;        // big decoder only
  5195     ALU    : S4;        // any alu
  5196     MEM    : S3;
  5197 %}
  5199 // Long Store to Memory
  5200 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5201     instruction_count(2);
  5202     mem    : S3(read);
  5203     src    : S5(read);
  5204     D0     : S0(2);     // big decoder only; twice
  5205     ALU    : S4(2);     // any 2 alus
  5206     MEM    : S3(2);     // Both mems
  5207 %}
  5209 // Integer Store to Memory
  5210 pipe_class ialu_mem_imm(memory mem) %{
  5211     single_instruction;
  5212     mem    : S3(read);
  5213     D0     : S0;        // big decoder only
  5214     ALU    : S4;        // any alu
  5215     MEM    : S3;
  5216 %}
  5218 // Integer ALU0 reg-reg operation
  5219 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5220     single_instruction;
  5221     dst    : S4(write);
  5222     src    : S3(read);
  5223     D0     : S0;        // Big decoder only
  5224     ALU0   : S3;        // only alu0
  5225 %}
  5227 // Integer ALU0 reg-mem operation
  5228 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5229     single_instruction;
  5230     dst    : S5(write);
  5231     mem    : S3(read);
  5232     D0     : S0;        // big decoder only
  5233     ALU0   : S4;        // ALU0 only
  5234     MEM    : S3;        // any mem
  5235 %}
  5237 // Integer ALU reg-reg operation
  5238 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5239     single_instruction;
  5240     cr     : S4(write);
  5241     src1   : S3(read);
  5242     src2   : S3(read);
  5243     DECODE : S0;        // any decoder
  5244     ALU    : S3;        // any alu
  5245 %}
  5247 // Integer ALU reg-imm operation
  5248 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5249     single_instruction;
  5250     cr     : S4(write);
  5251     src1   : S3(read);
  5252     DECODE : S0;        // any decoder
  5253     ALU    : S3;        // any alu
  5254 %}
  5256 // Integer ALU reg-mem operation
  5257 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5258     single_instruction;
  5259     cr     : S4(write);
  5260     src1   : S3(read);
  5261     src2   : S3(read);
  5262     D0     : S0;        // big decoder only
  5263     ALU    : S4;        // any alu
  5264     MEM    : S3;
  5265 %}
  5267 // Conditional move reg-reg
  5268 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5269     instruction_count(4);
  5270     y      : S4(read);
  5271     q      : S3(read);
  5272     p      : S3(read);
  5273     DECODE : S0(4);     // any decoder
  5274 %}
  5276 // Conditional move reg-reg
  5277 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5278     single_instruction;
  5279     dst    : S4(write);
  5280     src    : S3(read);
  5281     cr     : S3(read);
  5282     DECODE : S0;        // any decoder
  5283 %}
  5285 // Conditional move reg-mem
  5286 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5287     single_instruction;
  5288     dst    : S4(write);
  5289     src    : S3(read);
  5290     cr     : S3(read);
  5291     DECODE : S0;        // any decoder
  5292     MEM    : S3;
  5293 %}
  5295 // Conditional move reg-reg long
  5296 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5297     single_instruction;
  5298     dst    : S4(write);
  5299     src    : S3(read);
  5300     cr     : S3(read);
  5301     DECODE : S0(2);     // any 2 decoders
  5302 %}
  5304 // Conditional move double reg-reg
  5305 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5306     single_instruction;
  5307     dst    : S4(write);
  5308     src    : S3(read);
  5309     cr     : S3(read);
  5310     DECODE : S0;        // any decoder
  5311 %}
  5313 // Float reg-reg operation
  5314 pipe_class fpu_reg(regDPR dst) %{
  5315     instruction_count(2);
  5316     dst    : S3(read);
  5317     DECODE : S0(2);     // any 2 decoders
  5318     FPU    : S3;
  5319 %}
  5321 // Float reg-reg operation
  5322 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5323     instruction_count(2);
  5324     dst    : S4(write);
  5325     src    : S3(read);
  5326     DECODE : S0(2);     // any 2 decoders
  5327     FPU    : S3;
  5328 %}
  5330 // Float reg-reg operation
  5331 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5332     instruction_count(3);
  5333     dst    : S4(write);
  5334     src1   : S3(read);
  5335     src2   : S3(read);
  5336     DECODE : S0(3);     // any 3 decoders
  5337     FPU    : S3(2);
  5338 %}
  5340 // Float reg-reg operation
  5341 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5342     instruction_count(4);
  5343     dst    : S4(write);
  5344     src1   : S3(read);
  5345     src2   : S3(read);
  5346     src3   : S3(read);
  5347     DECODE : S0(4);     // any 3 decoders
  5348     FPU    : S3(2);
  5349 %}
  5351 // Float reg-reg operation
  5352 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5353     instruction_count(4);
  5354     dst    : S4(write);
  5355     src1   : S3(read);
  5356     src2   : S3(read);
  5357     src3   : S3(read);
  5358     DECODE : S1(3);     // any 3 decoders
  5359     D0     : S0;        // Big decoder only
  5360     FPU    : S3(2);
  5361     MEM    : S3;
  5362 %}
  5364 // Float reg-mem operation
  5365 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5366     instruction_count(2);
  5367     dst    : S5(write);
  5368     mem    : S3(read);
  5369     D0     : S0;        // big decoder only
  5370     DECODE : S1;        // any decoder for FPU POP
  5371     FPU    : S4;
  5372     MEM    : S3;        // any mem
  5373 %}
  5375 // Float reg-mem operation
  5376 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5377     instruction_count(3);
  5378     dst    : S5(write);
  5379     src1   : S3(read);
  5380     mem    : S3(read);
  5381     D0     : S0;        // big decoder only
  5382     DECODE : S1(2);     // any decoder for FPU POP
  5383     FPU    : S4;
  5384     MEM    : S3;        // any mem
  5385 %}
  5387 // Float mem-reg operation
  5388 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5389     instruction_count(2);
  5390     src    : S5(read);
  5391     mem    : S3(read);
  5392     DECODE : S0;        // any decoder for FPU PUSH
  5393     D0     : S1;        // big decoder only
  5394     FPU    : S4;
  5395     MEM    : S3;        // any mem
  5396 %}
  5398 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5399     instruction_count(3);
  5400     src1   : S3(read);
  5401     src2   : S3(read);
  5402     mem    : S3(read);
  5403     DECODE : S0(2);     // any decoder for FPU PUSH
  5404     D0     : S1;        // big decoder only
  5405     FPU    : S4;
  5406     MEM    : S3;        // any mem
  5407 %}
  5409 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5410     instruction_count(3);
  5411     src1   : S3(read);
  5412     src2   : S3(read);
  5413     mem    : S4(read);
  5414     DECODE : S0;        // any decoder for FPU PUSH
  5415     D0     : S0(2);     // big decoder only
  5416     FPU    : S4;
  5417     MEM    : S3(2);     // any mem
  5418 %}
  5420 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5421     instruction_count(2);
  5422     src1   : S3(read);
  5423     dst    : S4(read);
  5424     D0     : S0(2);     // big decoder only
  5425     MEM    : S3(2);     // any mem
  5426 %}
  5428 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5429     instruction_count(3);
  5430     src1   : S3(read);
  5431     src2   : S3(read);
  5432     dst    : S4(read);
  5433     D0     : S0(3);     // big decoder only
  5434     FPU    : S4;
  5435     MEM    : S3(3);     // any mem
  5436 %}
  5438 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5439     instruction_count(3);
  5440     src1   : S4(read);
  5441     mem    : S4(read);
  5442     DECODE : S0;        // any decoder for FPU PUSH
  5443     D0     : S0(2);     // big decoder only
  5444     FPU    : S4;
  5445     MEM    : S3(2);     // any mem
  5446 %}
  5448 // Float load constant
  5449 pipe_class fpu_reg_con(regDPR dst) %{
  5450     instruction_count(2);
  5451     dst    : S5(write);
  5452     D0     : S0;        // big decoder only for the load
  5453     DECODE : S1;        // any decoder for FPU POP
  5454     FPU    : S4;
  5455     MEM    : S3;        // any mem
  5456 %}
  5458 // Float load constant
  5459 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5460     instruction_count(3);
  5461     dst    : S5(write);
  5462     src    : S3(read);
  5463     D0     : S0;        // big decoder only for the load
  5464     DECODE : S1(2);     // any decoder for FPU POP
  5465     FPU    : S4;
  5466     MEM    : S3;        // any mem
  5467 %}
  5469 // UnConditional branch
  5470 pipe_class pipe_jmp( label labl ) %{
  5471     single_instruction;
  5472     BR   : S3;
  5473 %}
  5475 // Conditional branch
  5476 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5477     single_instruction;
  5478     cr    : S1(read);
  5479     BR    : S3;
  5480 %}
  5482 // Allocation idiom
  5483 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5484     instruction_count(1); force_serialization;
  5485     fixed_latency(6);
  5486     heap_ptr : S3(read);
  5487     DECODE   : S0(3);
  5488     D0       : S2;
  5489     MEM      : S3;
  5490     ALU      : S3(2);
  5491     dst      : S5(write);
  5492     BR       : S5;
  5493 %}
  5495 // Generic big/slow expanded idiom
  5496 pipe_class pipe_slow(  ) %{
  5497     instruction_count(10); multiple_bundles; force_serialization;
  5498     fixed_latency(100);
  5499     D0  : S0(2);
  5500     MEM : S3(2);
  5501 %}
  5503 // The real do-nothing guy
  5504 pipe_class empty( ) %{
  5505     instruction_count(0);
  5506 %}
  5508 // Define the class for the Nop node
  5509 define %{
  5510    MachNop = empty;
  5511 %}
  5513 %}
  5515 //----------INSTRUCTIONS-------------------------------------------------------
  5516 //
  5517 // match      -- States which machine-independent subtree may be replaced
  5518 //               by this instruction.
  5519 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5520 //               selection to identify a minimum cost tree of machine
  5521 //               instructions that matches a tree of machine-independent
  5522 //               instructions.
  5523 // format     -- A string providing the disassembly for this instruction.
  5524 //               The value of an instruction's operand may be inserted
  5525 //               by referring to it with a '$' prefix.
  5526 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5527 //               to within an encode class as $primary, $secondary, and $tertiary
  5528 //               respectively.  The primary opcode is commonly used to
  5529 //               indicate the type of machine instruction, while secondary
  5530 //               and tertiary are often used for prefix options or addressing
  5531 //               modes.
  5532 // ins_encode -- A list of encode classes with parameters. The encode class
  5533 //               name must have been defined in an 'enc_class' specification
  5534 //               in the encode section of the architecture description.
  5536 //----------BSWAP-Instruction--------------------------------------------------
  5537 instruct bytes_reverse_int(eRegI dst) %{
  5538   match(Set dst (ReverseBytesI dst));
  5540   format %{ "BSWAP  $dst" %}
  5541   opcode(0x0F, 0xC8);
  5542   ins_encode( OpcP, OpcSReg(dst) );
  5543   ins_pipe( ialu_reg );
  5544 %}
  5546 instruct bytes_reverse_long(eRegL dst) %{
  5547   match(Set dst (ReverseBytesL dst));
  5549   format %{ "BSWAP  $dst.lo\n\t"
  5550             "BSWAP  $dst.hi\n\t"
  5551             "XCHG   $dst.lo $dst.hi" %}
  5553   ins_cost(125);
  5554   ins_encode( bswap_long_bytes(dst) );
  5555   ins_pipe( ialu_reg_reg);
  5556 %}
  5558 instruct bytes_reverse_unsigned_short(eRegI dst, eFlagsReg cr) %{
  5559   match(Set dst (ReverseBytesUS dst));
  5560   effect(KILL cr);
  5562   format %{ "BSWAP  $dst\n\t" 
  5563             "SHR    $dst,16\n\t" %}
  5564   ins_encode %{
  5565     __ bswapl($dst$$Register);
  5566     __ shrl($dst$$Register, 16); 
  5567   %}
  5568   ins_pipe( ialu_reg );
  5569 %}
  5571 instruct bytes_reverse_short(eRegI dst, eFlagsReg cr) %{
  5572   match(Set dst (ReverseBytesS dst));
  5573   effect(KILL cr);
  5575   format %{ "BSWAP  $dst\n\t" 
  5576             "SAR    $dst,16\n\t" %}
  5577   ins_encode %{
  5578     __ bswapl($dst$$Register);
  5579     __ sarl($dst$$Register, 16); 
  5580   %}
  5581   ins_pipe( ialu_reg );
  5582 %}
  5585 //---------- Zeros Count Instructions ------------------------------------------
  5587 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5588   predicate(UseCountLeadingZerosInstruction);
  5589   match(Set dst (CountLeadingZerosI src));
  5590   effect(KILL cr);
  5592   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5593   ins_encode %{
  5594     __ lzcntl($dst$$Register, $src$$Register);
  5595   %}
  5596   ins_pipe(ialu_reg);
  5597 %}
  5599 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  5600   predicate(!UseCountLeadingZerosInstruction);
  5601   match(Set dst (CountLeadingZerosI src));
  5602   effect(KILL cr);
  5604   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5605             "JNZ    skip\n\t"
  5606             "MOV    $dst, -1\n"
  5607       "skip:\n\t"
  5608             "NEG    $dst\n\t"
  5609             "ADD    $dst, 31" %}
  5610   ins_encode %{
  5611     Register Rdst = $dst$$Register;
  5612     Register Rsrc = $src$$Register;
  5613     Label skip;
  5614     __ bsrl(Rdst, Rsrc);
  5615     __ jccb(Assembler::notZero, skip);
  5616     __ movl(Rdst, -1);
  5617     __ bind(skip);
  5618     __ negl(Rdst);
  5619     __ addl(Rdst, BitsPerInt - 1);
  5620   %}
  5621   ins_pipe(ialu_reg);
  5622 %}
  5624 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5625   predicate(UseCountLeadingZerosInstruction);
  5626   match(Set dst (CountLeadingZerosL src));
  5627   effect(TEMP dst, KILL cr);
  5629   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5630             "JNC    done\n\t"
  5631             "LZCNT  $dst, $src.lo\n\t"
  5632             "ADD    $dst, 32\n"
  5633       "done:" %}
  5634   ins_encode %{
  5635     Register Rdst = $dst$$Register;
  5636     Register Rsrc = $src$$Register;
  5637     Label done;
  5638     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5639     __ jccb(Assembler::carryClear, done);
  5640     __ lzcntl(Rdst, Rsrc);
  5641     __ addl(Rdst, BitsPerInt);
  5642     __ bind(done);
  5643   %}
  5644   ins_pipe(ialu_reg);
  5645 %}
  5647 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  5648   predicate(!UseCountLeadingZerosInstruction);
  5649   match(Set dst (CountLeadingZerosL src));
  5650   effect(TEMP dst, KILL cr);
  5652   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5653             "JZ     msw_is_zero\n\t"
  5654             "ADD    $dst, 32\n\t"
  5655             "JMP    not_zero\n"
  5656       "msw_is_zero:\n\t"
  5657             "BSR    $dst, $src.lo\n\t"
  5658             "JNZ    not_zero\n\t"
  5659             "MOV    $dst, -1\n"
  5660       "not_zero:\n\t"
  5661             "NEG    $dst\n\t"
  5662             "ADD    $dst, 63\n" %}
  5663  ins_encode %{
  5664     Register Rdst = $dst$$Register;
  5665     Register Rsrc = $src$$Register;
  5666     Label msw_is_zero;
  5667     Label not_zero;
  5668     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5669     __ jccb(Assembler::zero, msw_is_zero);
  5670     __ addl(Rdst, BitsPerInt);
  5671     __ jmpb(not_zero);
  5672     __ bind(msw_is_zero);
  5673     __ bsrl(Rdst, Rsrc);
  5674     __ jccb(Assembler::notZero, not_zero);
  5675     __ movl(Rdst, -1);
  5676     __ bind(not_zero);
  5677     __ negl(Rdst);
  5678     __ addl(Rdst, BitsPerLong - 1);
  5679   %}
  5680   ins_pipe(ialu_reg);
  5681 %}
  5683 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5684   match(Set dst (CountTrailingZerosI src));
  5685   effect(KILL cr);
  5687   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5688             "JNZ    done\n\t"
  5689             "MOV    $dst, 32\n"
  5690       "done:" %}
  5691   ins_encode %{
  5692     Register Rdst = $dst$$Register;
  5693     Label done;
  5694     __ bsfl(Rdst, $src$$Register);
  5695     __ jccb(Assembler::notZero, done);
  5696     __ movl(Rdst, BitsPerInt);
  5697     __ bind(done);
  5698   %}
  5699   ins_pipe(ialu_reg);
  5700 %}
  5702 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5703   match(Set dst (CountTrailingZerosL src));
  5704   effect(TEMP dst, KILL cr);
  5706   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5707             "JNZ    done\n\t"
  5708             "BSF    $dst, $src.hi\n\t"
  5709             "JNZ    msw_not_zero\n\t"
  5710             "MOV    $dst, 32\n"
  5711       "msw_not_zero:\n\t"
  5712             "ADD    $dst, 32\n"
  5713       "done:" %}
  5714   ins_encode %{
  5715     Register Rdst = $dst$$Register;
  5716     Register Rsrc = $src$$Register;
  5717     Label msw_not_zero;
  5718     Label done;
  5719     __ bsfl(Rdst, Rsrc);
  5720     __ jccb(Assembler::notZero, done);
  5721     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5722     __ jccb(Assembler::notZero, msw_not_zero);
  5723     __ movl(Rdst, BitsPerInt);
  5724     __ bind(msw_not_zero);
  5725     __ addl(Rdst, BitsPerInt);
  5726     __ bind(done);
  5727   %}
  5728   ins_pipe(ialu_reg);
  5729 %}
  5732 //---------- Population Count Instructions -------------------------------------
  5734 instruct popCountI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5735   predicate(UsePopCountInstruction);
  5736   match(Set dst (PopCountI src));
  5737   effect(KILL cr);
  5739   format %{ "POPCNT $dst, $src" %}
  5740   ins_encode %{
  5741     __ popcntl($dst$$Register, $src$$Register);
  5742   %}
  5743   ins_pipe(ialu_reg);
  5744 %}
  5746 instruct popCountI_mem(eRegI dst, memory mem, eFlagsReg cr) %{
  5747   predicate(UsePopCountInstruction);
  5748   match(Set dst (PopCountI (LoadI mem)));
  5749   effect(KILL cr);
  5751   format %{ "POPCNT $dst, $mem" %}
  5752   ins_encode %{
  5753     __ popcntl($dst$$Register, $mem$$Address);
  5754   %}
  5755   ins_pipe(ialu_reg);
  5756 %}
  5758 // Note: Long.bitCount(long) returns an int.
  5759 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  5760   predicate(UsePopCountInstruction);
  5761   match(Set dst (PopCountL src));
  5762   effect(KILL cr, TEMP tmp, TEMP dst);
  5764   format %{ "POPCNT $dst, $src.lo\n\t"
  5765             "POPCNT $tmp, $src.hi\n\t"
  5766             "ADD    $dst, $tmp" %}
  5767   ins_encode %{
  5768     __ popcntl($dst$$Register, $src$$Register);
  5769     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5770     __ addl($dst$$Register, $tmp$$Register);
  5771   %}
  5772   ins_pipe(ialu_reg);
  5773 %}
  5775 // Note: Long.bitCount(long) returns an int.
  5776 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  5777   predicate(UsePopCountInstruction);
  5778   match(Set dst (PopCountL (LoadL mem)));
  5779   effect(KILL cr, TEMP tmp, TEMP dst);
  5781   format %{ "POPCNT $dst, $mem\n\t"
  5782             "POPCNT $tmp, $mem+4\n\t"
  5783             "ADD    $dst, $tmp" %}
  5784   ins_encode %{
  5785     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5786     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5787     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  5788     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  5789     __ addl($dst$$Register, $tmp$$Register);
  5790   %}
  5791   ins_pipe(ialu_reg);
  5792 %}
  5795 //----------Load/Store/Move Instructions---------------------------------------
  5796 //----------Load Instructions--------------------------------------------------
  5797 // Load Byte (8bit signed)
  5798 instruct loadB(xRegI dst, memory mem) %{
  5799   match(Set dst (LoadB mem));
  5801   ins_cost(125);
  5802   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5804   ins_encode %{
  5805     __ movsbl($dst$$Register, $mem$$Address);
  5806   %}
  5808   ins_pipe(ialu_reg_mem);
  5809 %}
  5811 // Load Byte (8bit signed) into Long Register
  5812 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5813   match(Set dst (ConvI2L (LoadB mem)));
  5814   effect(KILL cr);
  5816   ins_cost(375);
  5817   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5818             "MOV    $dst.hi,$dst.lo\n\t"
  5819             "SAR    $dst.hi,7" %}
  5821   ins_encode %{
  5822     __ movsbl($dst$$Register, $mem$$Address);
  5823     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5824     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5825   %}
  5827   ins_pipe(ialu_reg_mem);
  5828 %}
  5830 // Load Unsigned Byte (8bit UNsigned)
  5831 instruct loadUB(xRegI dst, memory mem) %{
  5832   match(Set dst (LoadUB mem));
  5834   ins_cost(125);
  5835   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5837   ins_encode %{
  5838     __ movzbl($dst$$Register, $mem$$Address);
  5839   %}
  5841   ins_pipe(ialu_reg_mem);
  5842 %}
  5844 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5845 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5846   match(Set dst (ConvI2L (LoadUB mem)));
  5847   effect(KILL cr);
  5849   ins_cost(250);
  5850   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5851             "XOR    $dst.hi,$dst.hi" %}
  5853   ins_encode %{
  5854     Register Rdst = $dst$$Register;
  5855     __ movzbl(Rdst, $mem$$Address);
  5856     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5857   %}
  5859   ins_pipe(ialu_reg_mem);
  5860 %}
  5862 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5863 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5864   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5865   effect(KILL cr);
  5867   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5868             "XOR    $dst.hi,$dst.hi\n\t"
  5869             "AND    $dst.lo,$mask" %}
  5870   ins_encode %{
  5871     Register Rdst = $dst$$Register;
  5872     __ movzbl(Rdst, $mem$$Address);
  5873     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5874     __ andl(Rdst, $mask$$constant);
  5875   %}
  5876   ins_pipe(ialu_reg_mem);
  5877 %}
  5879 // Load Short (16bit signed)
  5880 instruct loadS(eRegI dst, memory mem) %{
  5881   match(Set dst (LoadS mem));
  5883   ins_cost(125);
  5884   format %{ "MOVSX  $dst,$mem\t# short" %}
  5886   ins_encode %{
  5887     __ movswl($dst$$Register, $mem$$Address);
  5888   %}
  5890   ins_pipe(ialu_reg_mem);
  5891 %}
  5893 // Load Short (16 bit signed) to Byte (8 bit signed)
  5894 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  5895   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5897   ins_cost(125);
  5898   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5899   ins_encode %{
  5900     __ movsbl($dst$$Register, $mem$$Address);
  5901   %}
  5902   ins_pipe(ialu_reg_mem);
  5903 %}
  5905 // Load Short (16bit signed) into Long Register
  5906 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5907   match(Set dst (ConvI2L (LoadS mem)));
  5908   effect(KILL cr);
  5910   ins_cost(375);
  5911   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5912             "MOV    $dst.hi,$dst.lo\n\t"
  5913             "SAR    $dst.hi,15" %}
  5915   ins_encode %{
  5916     __ movswl($dst$$Register, $mem$$Address);
  5917     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5918     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5919   %}
  5921   ins_pipe(ialu_reg_mem);
  5922 %}
  5924 // Load Unsigned Short/Char (16bit unsigned)
  5925 instruct loadUS(eRegI dst, memory mem) %{
  5926   match(Set dst (LoadUS mem));
  5928   ins_cost(125);
  5929   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5931   ins_encode %{
  5932     __ movzwl($dst$$Register, $mem$$Address);
  5933   %}
  5935   ins_pipe(ialu_reg_mem);
  5936 %}
  5938 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5939 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  5940   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5942   ins_cost(125);
  5943   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5944   ins_encode %{
  5945     __ movsbl($dst$$Register, $mem$$Address);
  5946   %}
  5947   ins_pipe(ialu_reg_mem);
  5948 %}
  5950 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5951 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5952   match(Set dst (ConvI2L (LoadUS mem)));
  5953   effect(KILL cr);
  5955   ins_cost(250);
  5956   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5957             "XOR    $dst.hi,$dst.hi" %}
  5959   ins_encode %{
  5960     __ movzwl($dst$$Register, $mem$$Address);
  5961     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5962   %}
  5964   ins_pipe(ialu_reg_mem);
  5965 %}
  5967 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5968 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5969   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5970   effect(KILL cr);
  5972   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5973             "XOR    $dst.hi,$dst.hi" %}
  5974   ins_encode %{
  5975     Register Rdst = $dst$$Register;
  5976     __ movzbl(Rdst, $mem$$Address);
  5977     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5978   %}
  5979   ins_pipe(ialu_reg_mem);
  5980 %}
  5982 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5983 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5984   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5985   effect(KILL cr);
  5987   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5988             "XOR    $dst.hi,$dst.hi\n\t"
  5989             "AND    $dst.lo,$mask" %}
  5990   ins_encode %{
  5991     Register Rdst = $dst$$Register;
  5992     __ movzwl(Rdst, $mem$$Address);
  5993     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5994     __ andl(Rdst, $mask$$constant);
  5995   %}
  5996   ins_pipe(ialu_reg_mem);
  5997 %}
  5999 // Load Integer
  6000 instruct loadI(eRegI dst, memory mem) %{
  6001   match(Set dst (LoadI mem));
  6003   ins_cost(125);
  6004   format %{ "MOV    $dst,$mem\t# int" %}
  6006   ins_encode %{
  6007     __ movl($dst$$Register, $mem$$Address);
  6008   %}
  6010   ins_pipe(ialu_reg_mem);
  6011 %}
  6013 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6014 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6015   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6017   ins_cost(125);
  6018   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6019   ins_encode %{
  6020     __ movsbl($dst$$Register, $mem$$Address);
  6021   %}
  6022   ins_pipe(ialu_reg_mem);
  6023 %}
  6025 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6026 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6027   match(Set dst (AndI (LoadI mem) mask));
  6029   ins_cost(125);
  6030   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6031   ins_encode %{
  6032     __ movzbl($dst$$Register, $mem$$Address);
  6033   %}
  6034   ins_pipe(ialu_reg_mem);
  6035 %}
  6037 // Load Integer (32 bit signed) to Short (16 bit signed)
  6038 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6039   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6041   ins_cost(125);
  6042   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6043   ins_encode %{
  6044     __ movswl($dst$$Register, $mem$$Address);
  6045   %}
  6046   ins_pipe(ialu_reg_mem);
  6047 %}
  6049 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6050 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6051   match(Set dst (AndI (LoadI mem) mask));
  6053   ins_cost(125);
  6054   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6055   ins_encode %{
  6056     __ movzwl($dst$$Register, $mem$$Address);
  6057   %}
  6058   ins_pipe(ialu_reg_mem);
  6059 %}
  6061 // Load Integer into Long Register
  6062 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6063   match(Set dst (ConvI2L (LoadI mem)));
  6064   effect(KILL cr);
  6066   ins_cost(375);
  6067   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6068             "MOV    $dst.hi,$dst.lo\n\t"
  6069             "SAR    $dst.hi,31" %}
  6071   ins_encode %{
  6072     __ movl($dst$$Register, $mem$$Address);
  6073     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6074     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6075   %}
  6077   ins_pipe(ialu_reg_mem);
  6078 %}
  6080 // Load Integer with mask 0xFF into Long Register
  6081 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6082   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6083   effect(KILL cr);
  6085   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6086             "XOR    $dst.hi,$dst.hi" %}
  6087   ins_encode %{
  6088     Register Rdst = $dst$$Register;
  6089     __ movzbl(Rdst, $mem$$Address);
  6090     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6091   %}
  6092   ins_pipe(ialu_reg_mem);
  6093 %}
  6095 // Load Integer with mask 0xFFFF into Long Register
  6096 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6097   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6098   effect(KILL cr);
  6100   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6101             "XOR    $dst.hi,$dst.hi" %}
  6102   ins_encode %{
  6103     Register Rdst = $dst$$Register;
  6104     __ movzwl(Rdst, $mem$$Address);
  6105     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6106   %}
  6107   ins_pipe(ialu_reg_mem);
  6108 %}
  6110 // Load Integer with 32-bit mask into Long Register
  6111 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6112   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6113   effect(KILL cr);
  6115   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6116             "XOR    $dst.hi,$dst.hi\n\t"
  6117             "AND    $dst.lo,$mask" %}
  6118   ins_encode %{
  6119     Register Rdst = $dst$$Register;
  6120     __ movl(Rdst, $mem$$Address);
  6121     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6122     __ andl(Rdst, $mask$$constant);
  6123   %}
  6124   ins_pipe(ialu_reg_mem);
  6125 %}
  6127 // Load Unsigned Integer into Long Register
  6128 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6129   match(Set dst (LoadUI2L mem));
  6130   effect(KILL cr);
  6132   ins_cost(250);
  6133   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6134             "XOR    $dst.hi,$dst.hi" %}
  6136   ins_encode %{
  6137     __ movl($dst$$Register, $mem$$Address);
  6138     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6139   %}
  6141   ins_pipe(ialu_reg_mem);
  6142 %}
  6144 // Load Long.  Cannot clobber address while loading, so restrict address
  6145 // register to ESI
  6146 instruct loadL(eRegL dst, load_long_memory mem) %{
  6147   predicate(!((LoadLNode*)n)->require_atomic_access());
  6148   match(Set dst (LoadL mem));
  6150   ins_cost(250);
  6151   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6152             "MOV    $dst.hi,$mem+4" %}
  6154   ins_encode %{
  6155     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6156     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6157     __ movl($dst$$Register, Amemlo);
  6158     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6159   %}
  6161   ins_pipe(ialu_reg_long_mem);
  6162 %}
  6164 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6165 // then store it down to the stack and reload on the int
  6166 // side.
  6167 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6168   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6169   match(Set dst (LoadL mem));
  6171   ins_cost(200);
  6172   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6173             "FISTp  $dst" %}
  6174   ins_encode(enc_loadL_volatile(mem,dst));
  6175   ins_pipe( fpu_reg_mem );
  6176 %}
  6178 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6179   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6180   match(Set dst (LoadL mem));
  6181   effect(TEMP tmp);
  6182   ins_cost(180);
  6183   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6184             "MOVSD  $dst,$tmp" %}
  6185   ins_encode %{
  6186     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6187     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6188   %}
  6189   ins_pipe( pipe_slow );
  6190 %}
  6192 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6193   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6194   match(Set dst (LoadL mem));
  6195   effect(TEMP tmp);
  6196   ins_cost(160);
  6197   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6198             "MOVD   $dst.lo,$tmp\n\t"
  6199             "PSRLQ  $tmp,32\n\t"
  6200             "MOVD   $dst.hi,$tmp" %}
  6201   ins_encode %{
  6202     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6203     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6204     __ psrlq($tmp$$XMMRegister, 32);
  6205     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6206   %}
  6207   ins_pipe( pipe_slow );
  6208 %}
  6210 // Load Range
  6211 instruct loadRange(eRegI dst, memory mem) %{
  6212   match(Set dst (LoadRange mem));
  6214   ins_cost(125);
  6215   format %{ "MOV    $dst,$mem" %}
  6216   opcode(0x8B);
  6217   ins_encode( OpcP, RegMem(dst,mem));
  6218   ins_pipe( ialu_reg_mem );
  6219 %}
  6222 // Load Pointer
  6223 instruct loadP(eRegP dst, memory mem) %{
  6224   match(Set dst (LoadP mem));
  6226   ins_cost(125);
  6227   format %{ "MOV    $dst,$mem" %}
  6228   opcode(0x8B);
  6229   ins_encode( OpcP, RegMem(dst,mem));
  6230   ins_pipe( ialu_reg_mem );
  6231 %}
  6233 // Load Klass Pointer
  6234 instruct loadKlass(eRegP dst, memory mem) %{
  6235   match(Set dst (LoadKlass mem));
  6237   ins_cost(125);
  6238   format %{ "MOV    $dst,$mem" %}
  6239   opcode(0x8B);
  6240   ins_encode( OpcP, RegMem(dst,mem));
  6241   ins_pipe( ialu_reg_mem );
  6242 %}
  6244 // Load Double
  6245 instruct loadDPR(regDPR dst, memory mem) %{
  6246   predicate(UseSSE<=1);
  6247   match(Set dst (LoadD mem));
  6249   ins_cost(150);
  6250   format %{ "FLD_D  ST,$mem\n\t"
  6251             "FSTP   $dst" %}
  6252   opcode(0xDD);               /* DD /0 */
  6253   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6254               Pop_Reg_DPR(dst) );
  6255   ins_pipe( fpu_reg_mem );
  6256 %}
  6258 // Load Double to XMM
  6259 instruct loadD(regD dst, memory mem) %{
  6260   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6261   match(Set dst (LoadD mem));
  6262   ins_cost(145);
  6263   format %{ "MOVSD  $dst,$mem" %}
  6264   ins_encode %{
  6265     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6266   %}
  6267   ins_pipe( pipe_slow );
  6268 %}
  6270 instruct loadD_partial(regD dst, memory mem) %{
  6271   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6272   match(Set dst (LoadD mem));
  6273   ins_cost(145);
  6274   format %{ "MOVLPD $dst,$mem" %}
  6275   ins_encode %{
  6276     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6277   %}
  6278   ins_pipe( pipe_slow );
  6279 %}
  6281 // Load to XMM register (single-precision floating point)
  6282 // MOVSS instruction
  6283 instruct loadF(regF dst, memory mem) %{
  6284   predicate(UseSSE>=1);
  6285   match(Set dst (LoadF mem));
  6286   ins_cost(145);
  6287   format %{ "MOVSS  $dst,$mem" %}
  6288   ins_encode %{
  6289     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6290   %}
  6291   ins_pipe( pipe_slow );
  6292 %}
  6294 // Load Float
  6295 instruct loadFPR(regFPR dst, memory mem) %{
  6296   predicate(UseSSE==0);
  6297   match(Set dst (LoadF mem));
  6299   ins_cost(150);
  6300   format %{ "FLD_S  ST,$mem\n\t"
  6301             "FSTP   $dst" %}
  6302   opcode(0xD9);               /* D9 /0 */
  6303   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6304               Pop_Reg_FPR(dst) );
  6305   ins_pipe( fpu_reg_mem );
  6306 %}
  6308 // Load Aligned Packed Byte to XMM register
  6309 instruct loadA8B(regD dst, memory mem) %{
  6310   predicate(UseSSE>=1);
  6311   match(Set dst (Load8B mem));
  6312   ins_cost(125);
  6313   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6314   ins_encode %{
  6315     __ movq($dst$$XMMRegister, $mem$$Address);
  6316   %}
  6317   ins_pipe( pipe_slow );
  6318 %}
  6320 // Load Aligned Packed Short to XMM register
  6321 instruct loadA4S(regD dst, memory mem) %{
  6322   predicate(UseSSE>=1);
  6323   match(Set dst (Load4S mem));
  6324   ins_cost(125);
  6325   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6326   ins_encode %{
  6327     __ movq($dst$$XMMRegister, $mem$$Address);
  6328   %}
  6329   ins_pipe( pipe_slow );
  6330 %}
  6332 // Load Aligned Packed Char to XMM register
  6333 instruct loadA4C(regD dst, memory mem) %{
  6334   predicate(UseSSE>=1);
  6335   match(Set dst (Load4C mem));
  6336   ins_cost(125);
  6337   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6338   ins_encode %{
  6339     __ movq($dst$$XMMRegister, $mem$$Address);
  6340   %}
  6341   ins_pipe( pipe_slow );
  6342 %}
  6344 // Load Aligned Packed Integer to XMM register
  6345 instruct load2IU(regD dst, memory mem) %{
  6346   predicate(UseSSE>=1);
  6347   match(Set dst (Load2I mem));
  6348   ins_cost(125);
  6349   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6350   ins_encode %{
  6351     __ movq($dst$$XMMRegister, $mem$$Address);
  6352   %}
  6353   ins_pipe( pipe_slow );
  6354 %}
  6356 // Load Aligned Packed Single to XMM
  6357 instruct loadA2F(regD dst, memory mem) %{
  6358   predicate(UseSSE>=1);
  6359   match(Set dst (Load2F mem));
  6360   ins_cost(145);
  6361   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6362   ins_encode %{
  6363     __ movq($dst$$XMMRegister, $mem$$Address);
  6364   %}
  6365   ins_pipe( pipe_slow );
  6366 %}
  6368 // Load Effective Address
  6369 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6370   match(Set dst mem);
  6372   ins_cost(110);
  6373   format %{ "LEA    $dst,$mem" %}
  6374   opcode(0x8D);
  6375   ins_encode( OpcP, RegMem(dst,mem));
  6376   ins_pipe( ialu_reg_reg_fat );
  6377 %}
  6379 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6380   match(Set dst mem);
  6382   ins_cost(110);
  6383   format %{ "LEA    $dst,$mem" %}
  6384   opcode(0x8D);
  6385   ins_encode( OpcP, RegMem(dst,mem));
  6386   ins_pipe( ialu_reg_reg_fat );
  6387 %}
  6389 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6390   match(Set dst mem);
  6392   ins_cost(110);
  6393   format %{ "LEA    $dst,$mem" %}
  6394   opcode(0x8D);
  6395   ins_encode( OpcP, RegMem(dst,mem));
  6396   ins_pipe( ialu_reg_reg_fat );
  6397 %}
  6399 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6400   match(Set dst mem);
  6402   ins_cost(110);
  6403   format %{ "LEA    $dst,$mem" %}
  6404   opcode(0x8D);
  6405   ins_encode( OpcP, RegMem(dst,mem));
  6406   ins_pipe( ialu_reg_reg_fat );
  6407 %}
  6409 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6410   match(Set dst mem);
  6412   ins_cost(110);
  6413   format %{ "LEA    $dst,$mem" %}
  6414   opcode(0x8D);
  6415   ins_encode( OpcP, RegMem(dst,mem));
  6416   ins_pipe( ialu_reg_reg_fat );
  6417 %}
  6419 // Load Constant
  6420 instruct loadConI(eRegI dst, immI src) %{
  6421   match(Set dst src);
  6423   format %{ "MOV    $dst,$src" %}
  6424   ins_encode( LdImmI(dst, src) );
  6425   ins_pipe( ialu_reg_fat );
  6426 %}
  6428 // Load Constant zero
  6429 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6430   match(Set dst src);
  6431   effect(KILL cr);
  6433   ins_cost(50);
  6434   format %{ "XOR    $dst,$dst" %}
  6435   opcode(0x33);  /* + rd */
  6436   ins_encode( OpcP, RegReg( dst, dst ) );
  6437   ins_pipe( ialu_reg );
  6438 %}
  6440 instruct loadConP(eRegP dst, immP src) %{
  6441   match(Set dst src);
  6443   format %{ "MOV    $dst,$src" %}
  6444   opcode(0xB8);  /* + rd */
  6445   ins_encode( LdImmP(dst, src) );
  6446   ins_pipe( ialu_reg_fat );
  6447 %}
  6449 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6450   match(Set dst src);
  6451   effect(KILL cr);
  6452   ins_cost(200);
  6453   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6454             "MOV    $dst.hi,$src.hi" %}
  6455   opcode(0xB8);
  6456   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6457   ins_pipe( ialu_reg_long_fat );
  6458 %}
  6460 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6461   match(Set dst src);
  6462   effect(KILL cr);
  6463   ins_cost(150);
  6464   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6465             "XOR    $dst.hi,$dst.hi" %}
  6466   opcode(0x33,0x33);
  6467   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6468   ins_pipe( ialu_reg_long );
  6469 %}
  6471 // The instruction usage is guarded by predicate in operand immFPR().
  6472 instruct loadConFPR(regFPR dst, immFPR con) %{
  6473   match(Set dst con);
  6474   ins_cost(125);
  6475   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6476             "FSTP   $dst" %}
  6477   ins_encode %{
  6478     __ fld_s($constantaddress($con));
  6479     __ fstp_d($dst$$reg);
  6480   %}
  6481   ins_pipe(fpu_reg_con);
  6482 %}
  6484 // The instruction usage is guarded by predicate in operand immFPR0().
  6485 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6486   match(Set dst con);
  6487   ins_cost(125);
  6488   format %{ "FLDZ   ST\n\t"
  6489             "FSTP   $dst" %}
  6490   ins_encode %{
  6491     __ fldz();
  6492     __ fstp_d($dst$$reg);
  6493   %}
  6494   ins_pipe(fpu_reg_con);
  6495 %}
  6497 // The instruction usage is guarded by predicate in operand immFPR1().
  6498 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6499   match(Set dst con);
  6500   ins_cost(125);
  6501   format %{ "FLD1   ST\n\t"
  6502             "FSTP   $dst" %}
  6503   ins_encode %{
  6504     __ fld1();
  6505     __ fstp_d($dst$$reg);
  6506   %}
  6507   ins_pipe(fpu_reg_con);
  6508 %}
  6510 // The instruction usage is guarded by predicate in operand immF().
  6511 instruct loadConF(regF dst, immF con) %{
  6512   match(Set dst con);
  6513   ins_cost(125);
  6514   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6515   ins_encode %{
  6516     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6517   %}
  6518   ins_pipe(pipe_slow);
  6519 %}
  6521 // The instruction usage is guarded by predicate in operand immF0().
  6522 instruct loadConF0(regF dst, immF0 src) %{
  6523   match(Set dst src);
  6524   ins_cost(100);
  6525   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6526   ins_encode %{
  6527     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6528   %}
  6529   ins_pipe(pipe_slow);
  6530 %}
  6532 // The instruction usage is guarded by predicate in operand immDPR().
  6533 instruct loadConDPR(regDPR dst, immDPR con) %{
  6534   match(Set dst con);
  6535   ins_cost(125);
  6537   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6538             "FSTP   $dst" %}
  6539   ins_encode %{
  6540     __ fld_d($constantaddress($con));
  6541     __ fstp_d($dst$$reg);
  6542   %}
  6543   ins_pipe(fpu_reg_con);
  6544 %}
  6546 // The instruction usage is guarded by predicate in operand immDPR0().
  6547 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6548   match(Set dst con);
  6549   ins_cost(125);
  6551   format %{ "FLDZ   ST\n\t"
  6552             "FSTP   $dst" %}
  6553   ins_encode %{
  6554     __ fldz();
  6555     __ fstp_d($dst$$reg);
  6556   %}
  6557   ins_pipe(fpu_reg_con);
  6558 %}
  6560 // The instruction usage is guarded by predicate in operand immDPR1().
  6561 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6562   match(Set dst con);
  6563   ins_cost(125);
  6565   format %{ "FLD1   ST\n\t"
  6566             "FSTP   $dst" %}
  6567   ins_encode %{
  6568     __ fld1();
  6569     __ fstp_d($dst$$reg);
  6570   %}
  6571   ins_pipe(fpu_reg_con);
  6572 %}
  6574 // The instruction usage is guarded by predicate in operand immD().
  6575 instruct loadConD(regD dst, immD con) %{
  6576   match(Set dst con);
  6577   ins_cost(125);
  6578   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6579   ins_encode %{
  6580     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6581   %}
  6582   ins_pipe(pipe_slow);
  6583 %}
  6585 // The instruction usage is guarded by predicate in operand immD0().
  6586 instruct loadConD0(regD dst, immD0 src) %{
  6587   match(Set dst src);
  6588   ins_cost(100);
  6589   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6590   ins_encode %{
  6591     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6592   %}
  6593   ins_pipe( pipe_slow );
  6594 %}
  6596 // Load Stack Slot
  6597 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6598   match(Set dst src);
  6599   ins_cost(125);
  6601   format %{ "MOV    $dst,$src" %}
  6602   opcode(0x8B);
  6603   ins_encode( OpcP, RegMem(dst,src));
  6604   ins_pipe( ialu_reg_mem );
  6605 %}
  6607 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6608   match(Set dst src);
  6610   ins_cost(200);
  6611   format %{ "MOV    $dst,$src.lo\n\t"
  6612             "MOV    $dst+4,$src.hi" %}
  6613   opcode(0x8B, 0x8B);
  6614   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6615   ins_pipe( ialu_mem_long_reg );
  6616 %}
  6618 // Load Stack Slot
  6619 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6620   match(Set dst src);
  6621   ins_cost(125);
  6623   format %{ "MOV    $dst,$src" %}
  6624   opcode(0x8B);
  6625   ins_encode( OpcP, RegMem(dst,src));
  6626   ins_pipe( ialu_reg_mem );
  6627 %}
  6629 // Load Stack Slot
  6630 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6631   match(Set dst src);
  6632   ins_cost(125);
  6634   format %{ "FLD_S  $src\n\t"
  6635             "FSTP   $dst" %}
  6636   opcode(0xD9);               /* D9 /0, FLD m32real */
  6637   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6638               Pop_Reg_FPR(dst) );
  6639   ins_pipe( fpu_reg_mem );
  6640 %}
  6642 // Load Stack Slot
  6643 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6644   match(Set dst src);
  6645   ins_cost(125);
  6647   format %{ "FLD_D  $src\n\t"
  6648             "FSTP   $dst" %}
  6649   opcode(0xDD);               /* DD /0, FLD m64real */
  6650   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6651               Pop_Reg_DPR(dst) );
  6652   ins_pipe( fpu_reg_mem );
  6653 %}
  6655 // Prefetch instructions.
  6656 // Must be safe to execute with invalid address (cannot fault).
  6658 instruct prefetchr0( memory mem ) %{
  6659   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6660   match(PrefetchRead mem);
  6661   ins_cost(0);
  6662   size(0);
  6663   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6664   ins_encode();
  6665   ins_pipe(empty);
  6666 %}
  6668 instruct prefetchr( memory mem ) %{
  6669   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6670   match(PrefetchRead mem);
  6671   ins_cost(100);
  6673   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6674   ins_encode %{
  6675     __ prefetchr($mem$$Address);
  6676   %}
  6677   ins_pipe(ialu_mem);
  6678 %}
  6680 instruct prefetchrNTA( memory mem ) %{
  6681   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6682   match(PrefetchRead mem);
  6683   ins_cost(100);
  6685   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6686   ins_encode %{
  6687     __ prefetchnta($mem$$Address);
  6688   %}
  6689   ins_pipe(ialu_mem);
  6690 %}
  6692 instruct prefetchrT0( memory mem ) %{
  6693   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6694   match(PrefetchRead mem);
  6695   ins_cost(100);
  6697   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6698   ins_encode %{
  6699     __ prefetcht0($mem$$Address);
  6700   %}
  6701   ins_pipe(ialu_mem);
  6702 %}
  6704 instruct prefetchrT2( memory mem ) %{
  6705   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6706   match(PrefetchRead mem);
  6707   ins_cost(100);
  6709   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6710   ins_encode %{
  6711     __ prefetcht2($mem$$Address);
  6712   %}
  6713   ins_pipe(ialu_mem);
  6714 %}
  6716 instruct prefetchw0( memory mem ) %{
  6717   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6718   match(PrefetchWrite mem);
  6719   ins_cost(0);
  6720   size(0);
  6721   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6722   ins_encode();
  6723   ins_pipe(empty);
  6724 %}
  6726 instruct prefetchw( memory mem ) %{
  6727   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6728   match( PrefetchWrite mem );
  6729   ins_cost(100);
  6731   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6732   ins_encode %{
  6733     __ prefetchw($mem$$Address);
  6734   %}
  6735   ins_pipe(ialu_mem);
  6736 %}
  6738 instruct prefetchwNTA( memory mem ) %{
  6739   predicate(UseSSE>=1);
  6740   match(PrefetchWrite mem);
  6741   ins_cost(100);
  6743   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6744   ins_encode %{
  6745     __ prefetchnta($mem$$Address);
  6746   %}
  6747   ins_pipe(ialu_mem);
  6748 %}
  6750 // Prefetch instructions for allocation.
  6752 instruct prefetchAlloc0( memory mem ) %{
  6753   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6754   match(PrefetchAllocation mem);
  6755   ins_cost(0);
  6756   size(0);
  6757   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6758   ins_encode();
  6759   ins_pipe(empty);
  6760 %}
  6762 instruct prefetchAlloc( memory mem ) %{
  6763   predicate(AllocatePrefetchInstr==3);
  6764   match( PrefetchAllocation mem );
  6765   ins_cost(100);
  6767   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6768   ins_encode %{
  6769     __ prefetchw($mem$$Address);
  6770   %}
  6771   ins_pipe(ialu_mem);
  6772 %}
  6774 instruct prefetchAllocNTA( memory mem ) %{
  6775   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6776   match(PrefetchAllocation mem);
  6777   ins_cost(100);
  6779   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6780   ins_encode %{
  6781     __ prefetchnta($mem$$Address);
  6782   %}
  6783   ins_pipe(ialu_mem);
  6784 %}
  6786 instruct prefetchAllocT0( memory mem ) %{
  6787   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6788   match(PrefetchAllocation mem);
  6789   ins_cost(100);
  6791   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6792   ins_encode %{
  6793     __ prefetcht0($mem$$Address);
  6794   %}
  6795   ins_pipe(ialu_mem);
  6796 %}
  6798 instruct prefetchAllocT2( memory mem ) %{
  6799   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6800   match(PrefetchAllocation mem);
  6801   ins_cost(100);
  6803   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6804   ins_encode %{
  6805     __ prefetcht2($mem$$Address);
  6806   %}
  6807   ins_pipe(ialu_mem);
  6808 %}
  6810 //----------Store Instructions-------------------------------------------------
  6812 // Store Byte
  6813 instruct storeB(memory mem, xRegI src) %{
  6814   match(Set mem (StoreB mem src));
  6816   ins_cost(125);
  6817   format %{ "MOV8   $mem,$src" %}
  6818   opcode(0x88);
  6819   ins_encode( OpcP, RegMem( src, mem ) );
  6820   ins_pipe( ialu_mem_reg );
  6821 %}
  6823 // Store Char/Short
  6824 instruct storeC(memory mem, eRegI src) %{
  6825   match(Set mem (StoreC mem src));
  6827   ins_cost(125);
  6828   format %{ "MOV16  $mem,$src" %}
  6829   opcode(0x89, 0x66);
  6830   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6831   ins_pipe( ialu_mem_reg );
  6832 %}
  6834 // Store Integer
  6835 instruct storeI(memory mem, eRegI src) %{
  6836   match(Set mem (StoreI mem src));
  6838   ins_cost(125);
  6839   format %{ "MOV    $mem,$src" %}
  6840   opcode(0x89);
  6841   ins_encode( OpcP, RegMem( src, mem ) );
  6842   ins_pipe( ialu_mem_reg );
  6843 %}
  6845 // Store Long
  6846 instruct storeL(long_memory mem, eRegL src) %{
  6847   predicate(!((StoreLNode*)n)->require_atomic_access());
  6848   match(Set mem (StoreL mem src));
  6850   ins_cost(200);
  6851   format %{ "MOV    $mem,$src.lo\n\t"
  6852             "MOV    $mem+4,$src.hi" %}
  6853   opcode(0x89, 0x89);
  6854   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6855   ins_pipe( ialu_mem_long_reg );
  6856 %}
  6858 // Store Long to Integer
  6859 instruct storeL2I(memory mem, eRegL src) %{
  6860   match(Set mem (StoreI mem (ConvL2I src)));
  6862   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6863   ins_encode %{
  6864     __ movl($mem$$Address, $src$$Register);
  6865   %}
  6866   ins_pipe(ialu_mem_reg);
  6867 %}
  6869 // Volatile Store Long.  Must be atomic, so move it into
  6870 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6871 // target address before the store (for null-ptr checks)
  6872 // so the memory operand is used twice in the encoding.
  6873 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6874   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6875   match(Set mem (StoreL mem src));
  6876   effect( KILL cr );
  6877   ins_cost(400);
  6878   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6879             "FILD   $src\n\t"
  6880             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6881   opcode(0x3B);
  6882   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6883   ins_pipe( fpu_reg_mem );
  6884 %}
  6886 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6887   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6888   match(Set mem (StoreL mem src));
  6889   effect( TEMP tmp, KILL cr );
  6890   ins_cost(380);
  6891   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6892             "MOVSD  $tmp,$src\n\t"
  6893             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6894   ins_encode %{
  6895     __ cmpl(rax, $mem$$Address);
  6896     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6897     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6898   %}
  6899   ins_pipe( pipe_slow );
  6900 %}
  6902 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6903   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6904   match(Set mem (StoreL mem src));
  6905   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6906   ins_cost(360);
  6907   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6908             "MOVD   $tmp,$src.lo\n\t"
  6909             "MOVD   $tmp2,$src.hi\n\t"
  6910             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6911             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6912   ins_encode %{
  6913     __ cmpl(rax, $mem$$Address);
  6914     __ movdl($tmp$$XMMRegister, $src$$Register);
  6915     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6916     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6917     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6918   %}
  6919   ins_pipe( pipe_slow );
  6920 %}
  6922 // Store Pointer; for storing unknown oops and raw pointers
  6923 instruct storeP(memory mem, anyRegP src) %{
  6924   match(Set mem (StoreP mem src));
  6926   ins_cost(125);
  6927   format %{ "MOV    $mem,$src" %}
  6928   opcode(0x89);
  6929   ins_encode( OpcP, RegMem( src, mem ) );
  6930   ins_pipe( ialu_mem_reg );
  6931 %}
  6933 // Store Integer Immediate
  6934 instruct storeImmI(memory mem, immI src) %{
  6935   match(Set mem (StoreI mem src));
  6937   ins_cost(150);
  6938   format %{ "MOV    $mem,$src" %}
  6939   opcode(0xC7);               /* C7 /0 */
  6940   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6941   ins_pipe( ialu_mem_imm );
  6942 %}
  6944 // Store Short/Char Immediate
  6945 instruct storeImmI16(memory mem, immI16 src) %{
  6946   predicate(UseStoreImmI16);
  6947   match(Set mem (StoreC mem src));
  6949   ins_cost(150);
  6950   format %{ "MOV16  $mem,$src" %}
  6951   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6952   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6953   ins_pipe( ialu_mem_imm );
  6954 %}
  6956 // Store Pointer Immediate; null pointers or constant oops that do not
  6957 // need card-mark barriers.
  6958 instruct storeImmP(memory mem, immP src) %{
  6959   match(Set mem (StoreP mem src));
  6961   ins_cost(150);
  6962   format %{ "MOV    $mem,$src" %}
  6963   opcode(0xC7);               /* C7 /0 */
  6964   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6965   ins_pipe( ialu_mem_imm );
  6966 %}
  6968 // Store Byte Immediate
  6969 instruct storeImmB(memory mem, immI8 src) %{
  6970   match(Set mem (StoreB mem src));
  6972   ins_cost(150);
  6973   format %{ "MOV8   $mem,$src" %}
  6974   opcode(0xC6);               /* C6 /0 */
  6975   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6976   ins_pipe( ialu_mem_imm );
  6977 %}
  6979 // Store Aligned Packed Byte XMM register to memory
  6980 instruct storeA8B(memory mem, regD src) %{
  6981   predicate(UseSSE>=1);
  6982   match(Set mem (Store8B mem src));
  6983   ins_cost(145);
  6984   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  6985   ins_encode %{
  6986     __ movq($mem$$Address, $src$$XMMRegister);
  6987   %}
  6988   ins_pipe( pipe_slow );
  6989 %}
  6991 // Store Aligned Packed Char/Short XMM register to memory
  6992 instruct storeA4C(memory mem, regD src) %{
  6993   predicate(UseSSE>=1);
  6994   match(Set mem (Store4C mem src));
  6995   ins_cost(145);
  6996   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  6997   ins_encode %{
  6998     __ movq($mem$$Address, $src$$XMMRegister);
  6999   %}
  7000   ins_pipe( pipe_slow );
  7001 %}
  7003 // Store Aligned Packed Integer XMM register to memory
  7004 instruct storeA2I(memory mem, regD src) %{
  7005   predicate(UseSSE>=1);
  7006   match(Set mem (Store2I mem src));
  7007   ins_cost(145);
  7008   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7009   ins_encode %{
  7010     __ movq($mem$$Address, $src$$XMMRegister);
  7011   %}
  7012   ins_pipe( pipe_slow );
  7013 %}
  7015 // Store CMS card-mark Immediate
  7016 instruct storeImmCM(memory mem, immI8 src) %{
  7017   match(Set mem (StoreCM mem src));
  7019   ins_cost(150);
  7020   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7021   opcode(0xC6);               /* C6 /0 */
  7022   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7023   ins_pipe( ialu_mem_imm );
  7024 %}
  7026 // Store Double
  7027 instruct storeDPR( memory mem, regDPR1 src) %{
  7028   predicate(UseSSE<=1);
  7029   match(Set mem (StoreD mem src));
  7031   ins_cost(100);
  7032   format %{ "FST_D  $mem,$src" %}
  7033   opcode(0xDD);       /* DD /2 */
  7034   ins_encode( enc_FPR_store(mem,src) );
  7035   ins_pipe( fpu_mem_reg );
  7036 %}
  7038 // Store double does rounding on x86
  7039 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  7040   predicate(UseSSE<=1);
  7041   match(Set mem (StoreD mem (RoundDouble src)));
  7043   ins_cost(100);
  7044   format %{ "FST_D  $mem,$src\t# round" %}
  7045   opcode(0xDD);       /* DD /2 */
  7046   ins_encode( enc_FPR_store(mem,src) );
  7047   ins_pipe( fpu_mem_reg );
  7048 %}
  7050 // Store XMM register to memory (double-precision floating points)
  7051 // MOVSD instruction
  7052 instruct storeD(memory mem, regD src) %{
  7053   predicate(UseSSE>=2);
  7054   match(Set mem (StoreD mem src));
  7055   ins_cost(95);
  7056   format %{ "MOVSD  $mem,$src" %}
  7057   ins_encode %{
  7058     __ movdbl($mem$$Address, $src$$XMMRegister);
  7059   %}
  7060   ins_pipe( pipe_slow );
  7061 %}
  7063 // Store XMM register to memory (single-precision floating point)
  7064 // MOVSS instruction
  7065 instruct storeF(memory mem, regF src) %{
  7066   predicate(UseSSE>=1);
  7067   match(Set mem (StoreF mem src));
  7068   ins_cost(95);
  7069   format %{ "MOVSS  $mem,$src" %}
  7070   ins_encode %{
  7071     __ movflt($mem$$Address, $src$$XMMRegister);
  7072   %}
  7073   ins_pipe( pipe_slow );
  7074 %}
  7076 // Store Aligned Packed Single Float XMM register to memory
  7077 instruct storeA2F(memory mem, regD src) %{
  7078   predicate(UseSSE>=1);
  7079   match(Set mem (Store2F mem src));
  7080   ins_cost(145);
  7081   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7082   ins_encode %{
  7083     __ movq($mem$$Address, $src$$XMMRegister);
  7084   %}
  7085   ins_pipe( pipe_slow );
  7086 %}
  7088 // Store Float
  7089 instruct storeFPR( memory mem, regFPR1 src) %{
  7090   predicate(UseSSE==0);
  7091   match(Set mem (StoreF mem src));
  7093   ins_cost(100);
  7094   format %{ "FST_S  $mem,$src" %}
  7095   opcode(0xD9);       /* D9 /2 */
  7096   ins_encode( enc_FPR_store(mem,src) );
  7097   ins_pipe( fpu_mem_reg );
  7098 %}
  7100 // Store Float does rounding on x86
  7101 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7102   predicate(UseSSE==0);
  7103   match(Set mem (StoreF mem (RoundFloat src)));
  7105   ins_cost(100);
  7106   format %{ "FST_S  $mem,$src\t# round" %}
  7107   opcode(0xD9);       /* D9 /2 */
  7108   ins_encode( enc_FPR_store(mem,src) );
  7109   ins_pipe( fpu_mem_reg );
  7110 %}
  7112 // Store Float does rounding on x86
  7113 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7114   predicate(UseSSE<=1);
  7115   match(Set mem (StoreF mem (ConvD2F src)));
  7117   ins_cost(100);
  7118   format %{ "FST_S  $mem,$src\t# D-round" %}
  7119   opcode(0xD9);       /* D9 /2 */
  7120   ins_encode( enc_FPR_store(mem,src) );
  7121   ins_pipe( fpu_mem_reg );
  7122 %}
  7124 // Store immediate Float value (it is faster than store from FPU register)
  7125 // The instruction usage is guarded by predicate in operand immFPR().
  7126 instruct storeFPR_imm( memory mem, immFPR src) %{
  7127   match(Set mem (StoreF mem src));
  7129   ins_cost(50);
  7130   format %{ "MOV    $mem,$src\t# store float" %}
  7131   opcode(0xC7);               /* C7 /0 */
  7132   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7133   ins_pipe( ialu_mem_imm );
  7134 %}
  7136 // Store immediate Float value (it is faster than store from XMM register)
  7137 // The instruction usage is guarded by predicate in operand immF().
  7138 instruct storeF_imm( memory mem, immF src) %{
  7139   match(Set mem (StoreF mem src));
  7141   ins_cost(50);
  7142   format %{ "MOV    $mem,$src\t# store float" %}
  7143   opcode(0xC7);               /* C7 /0 */
  7144   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7145   ins_pipe( ialu_mem_imm );
  7146 %}
  7148 // Store Integer to stack slot
  7149 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7150   match(Set dst src);
  7152   ins_cost(100);
  7153   format %{ "MOV    $dst,$src" %}
  7154   opcode(0x89);
  7155   ins_encode( OpcPRegSS( dst, src ) );
  7156   ins_pipe( ialu_mem_reg );
  7157 %}
  7159 // Store Integer to stack slot
  7160 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7161   match(Set dst src);
  7163   ins_cost(100);
  7164   format %{ "MOV    $dst,$src" %}
  7165   opcode(0x89);
  7166   ins_encode( OpcPRegSS( dst, src ) );
  7167   ins_pipe( ialu_mem_reg );
  7168 %}
  7170 // Store Long to stack slot
  7171 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7172   match(Set dst src);
  7174   ins_cost(200);
  7175   format %{ "MOV    $dst,$src.lo\n\t"
  7176             "MOV    $dst+4,$src.hi" %}
  7177   opcode(0x89, 0x89);
  7178   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7179   ins_pipe( ialu_mem_long_reg );
  7180 %}
  7182 //----------MemBar Instructions-----------------------------------------------
  7183 // Memory barrier flavors
  7185 instruct membar_acquire() %{
  7186   match(MemBarAcquire);
  7187   ins_cost(400);
  7189   size(0);
  7190   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7191   ins_encode();
  7192   ins_pipe(empty);
  7193 %}
  7195 instruct membar_acquire_lock() %{
  7196   match(MemBarAcquireLock);
  7197   ins_cost(0);
  7199   size(0);
  7200   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7201   ins_encode( );
  7202   ins_pipe(empty);
  7203 %}
  7205 instruct membar_release() %{
  7206   match(MemBarRelease);
  7207   ins_cost(400);
  7209   size(0);
  7210   format %{ "MEMBAR-release ! (empty encoding)" %}
  7211   ins_encode( );
  7212   ins_pipe(empty);
  7213 %}
  7215 instruct membar_release_lock() %{
  7216   match(MemBarReleaseLock);
  7217   ins_cost(0);
  7219   size(0);
  7220   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7221   ins_encode( );
  7222   ins_pipe(empty);
  7223 %}
  7225 instruct membar_volatile(eFlagsReg cr) %{
  7226   match(MemBarVolatile);
  7227   effect(KILL cr);
  7228   ins_cost(400);
  7230   format %{ 
  7231     $$template
  7232     if (os::is_MP()) {
  7233       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7234     } else {
  7235       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7237   %}
  7238   ins_encode %{
  7239     __ membar(Assembler::StoreLoad);
  7240   %}
  7241   ins_pipe(pipe_slow);
  7242 %}
  7244 instruct unnecessary_membar_volatile() %{
  7245   match(MemBarVolatile);
  7246   predicate(Matcher::post_store_load_barrier(n));
  7247   ins_cost(0);
  7249   size(0);
  7250   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7251   ins_encode( );
  7252   ins_pipe(empty);
  7253 %}
  7255 instruct membar_storestore() %{
  7256   match(MemBarStoreStore);
  7257   ins_cost(0);
  7259   size(0);
  7260   format %{ "MEMBAR-storestore (empty encoding)" %}
  7261   ins_encode( );
  7262   ins_pipe(empty);
  7263 %}
  7265 //----------Move Instructions--------------------------------------------------
  7266 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7267   match(Set dst (CastX2P src));
  7268   format %{ "# X2P  $dst, $src" %}
  7269   ins_encode( /*empty encoding*/ );
  7270   ins_cost(0);
  7271   ins_pipe(empty);
  7272 %}
  7274 instruct castP2X(eRegI dst, eRegP src ) %{
  7275   match(Set dst (CastP2X src));
  7276   ins_cost(50);
  7277   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7278   ins_encode( enc_Copy( dst, src) );
  7279   ins_pipe( ialu_reg_reg );
  7280 %}
  7282 //----------Conditional Move---------------------------------------------------
  7283 // Conditional move
  7284 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, eRegI dst, eRegI src) %{
  7285   predicate(!VM_Version::supports_cmov() );
  7286   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7287   ins_cost(200);
  7288   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7289             "MOV    $dst,$src\n"
  7290       "skip:" %}
  7291   ins_encode %{
  7292     Label Lskip;
  7293     // Invert sense of branch from sense of CMOV
  7294     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7295     __ movl($dst$$Register, $src$$Register);
  7296     __ bind(Lskip);
  7297   %}
  7298   ins_pipe( pipe_cmov_reg );
  7299 %}
  7301 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src) %{
  7302   predicate(!VM_Version::supports_cmov() );
  7303   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7304   ins_cost(200);
  7305   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7306             "MOV    $dst,$src\n"
  7307       "skip:" %}
  7308   ins_encode %{
  7309     Label Lskip;
  7310     // Invert sense of branch from sense of CMOV
  7311     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7312     __ movl($dst$$Register, $src$$Register);
  7313     __ bind(Lskip);
  7314   %}
  7315   ins_pipe( pipe_cmov_reg );
  7316 %}
  7318 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7319   predicate(VM_Version::supports_cmov() );
  7320   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7321   ins_cost(200);
  7322   format %{ "CMOV$cop $dst,$src" %}
  7323   opcode(0x0F,0x40);
  7324   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7325   ins_pipe( pipe_cmov_reg );
  7326 %}
  7328 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7329   predicate(VM_Version::supports_cmov() );
  7330   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7331   ins_cost(200);
  7332   format %{ "CMOV$cop $dst,$src" %}
  7333   opcode(0x0F,0x40);
  7334   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7335   ins_pipe( pipe_cmov_reg );
  7336 %}
  7338 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7339   predicate(VM_Version::supports_cmov() );
  7340   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7341   ins_cost(200);
  7342   expand %{
  7343     cmovI_regU(cop, cr, dst, src);
  7344   %}
  7345 %}
  7347 // Conditional move
  7348 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7349   predicate(VM_Version::supports_cmov() );
  7350   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7351   ins_cost(250);
  7352   format %{ "CMOV$cop $dst,$src" %}
  7353   opcode(0x0F,0x40);
  7354   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7355   ins_pipe( pipe_cmov_mem );
  7356 %}
  7358 // Conditional move
  7359 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7360   predicate(VM_Version::supports_cmov() );
  7361   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7362   ins_cost(250);
  7363   format %{ "CMOV$cop $dst,$src" %}
  7364   opcode(0x0F,0x40);
  7365   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7366   ins_pipe( pipe_cmov_mem );
  7367 %}
  7369 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7370   predicate(VM_Version::supports_cmov() );
  7371   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7372   ins_cost(250);
  7373   expand %{
  7374     cmovI_memU(cop, cr, dst, src);
  7375   %}
  7376 %}
  7378 // Conditional move
  7379 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7380   predicate(VM_Version::supports_cmov() );
  7381   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7382   ins_cost(200);
  7383   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7384   opcode(0x0F,0x40);
  7385   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7386   ins_pipe( pipe_cmov_reg );
  7387 %}
  7389 // Conditional move (non-P6 version)
  7390 // Note:  a CMoveP is generated for  stubs and native wrappers
  7391 //        regardless of whether we are on a P6, so we
  7392 //        emulate a cmov here
  7393 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7394   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7395   ins_cost(300);
  7396   format %{ "Jn$cop   skip\n\t"
  7397           "MOV    $dst,$src\t# pointer\n"
  7398       "skip:" %}
  7399   opcode(0x8b);
  7400   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7401   ins_pipe( pipe_cmov_reg );
  7402 %}
  7404 // Conditional move
  7405 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7406   predicate(VM_Version::supports_cmov() );
  7407   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7408   ins_cost(200);
  7409   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7410   opcode(0x0F,0x40);
  7411   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7412   ins_pipe( pipe_cmov_reg );
  7413 %}
  7415 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7416   predicate(VM_Version::supports_cmov() );
  7417   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7418   ins_cost(200);
  7419   expand %{
  7420     cmovP_regU(cop, cr, dst, src);
  7421   %}
  7422 %}
  7424 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7425 // correctly meets the two pointer arguments; one is an incoming
  7426 // register but the other is a memory operand.  ALSO appears to
  7427 // be buggy with implicit null checks.
  7428 //
  7429 //// Conditional move
  7430 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7431 //  predicate(VM_Version::supports_cmov() );
  7432 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7433 //  ins_cost(250);
  7434 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7435 //  opcode(0x0F,0x40);
  7436 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7437 //  ins_pipe( pipe_cmov_mem );
  7438 //%}
  7439 //
  7440 //// Conditional move
  7441 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7442 //  predicate(VM_Version::supports_cmov() );
  7443 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7444 //  ins_cost(250);
  7445 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7446 //  opcode(0x0F,0x40);
  7447 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7448 //  ins_pipe( pipe_cmov_mem );
  7449 //%}
  7451 // Conditional move
  7452 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7453   predicate(UseSSE<=1);
  7454   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7455   ins_cost(200);
  7456   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7457   opcode(0xDA);
  7458   ins_encode( enc_cmov_dpr(cop,src) );
  7459   ins_pipe( pipe_cmovDPR_reg );
  7460 %}
  7462 // Conditional move
  7463 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7464   predicate(UseSSE==0);
  7465   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7466   ins_cost(200);
  7467   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7468   opcode(0xDA);
  7469   ins_encode( enc_cmov_dpr(cop,src) );
  7470   ins_pipe( pipe_cmovDPR_reg );
  7471 %}
  7473 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7474 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7475   predicate(UseSSE<=1);
  7476   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7477   ins_cost(200);
  7478   format %{ "Jn$cop   skip\n\t"
  7479             "MOV    $dst,$src\t# double\n"
  7480       "skip:" %}
  7481   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7482   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7483   ins_pipe( pipe_cmovDPR_reg );
  7484 %}
  7486 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7487 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7488   predicate(UseSSE==0);
  7489   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7490   ins_cost(200);
  7491   format %{ "Jn$cop    skip\n\t"
  7492             "MOV    $dst,$src\t# float\n"
  7493       "skip:" %}
  7494   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7495   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7496   ins_pipe( pipe_cmovDPR_reg );
  7497 %}
  7499 // No CMOVE with SSE/SSE2
  7500 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7501   predicate (UseSSE>=1);
  7502   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7503   ins_cost(200);
  7504   format %{ "Jn$cop   skip\n\t"
  7505             "MOVSS  $dst,$src\t# float\n"
  7506       "skip:" %}
  7507   ins_encode %{
  7508     Label skip;
  7509     // Invert sense of branch from sense of CMOV
  7510     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7511     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7512     __ bind(skip);
  7513   %}
  7514   ins_pipe( pipe_slow );
  7515 %}
  7517 // No CMOVE with SSE/SSE2
  7518 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7519   predicate (UseSSE>=2);
  7520   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7521   ins_cost(200);
  7522   format %{ "Jn$cop   skip\n\t"
  7523             "MOVSD  $dst,$src\t# float\n"
  7524       "skip:" %}
  7525   ins_encode %{
  7526     Label skip;
  7527     // Invert sense of branch from sense of CMOV
  7528     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7529     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7530     __ bind(skip);
  7531   %}
  7532   ins_pipe( pipe_slow );
  7533 %}
  7535 // unsigned version
  7536 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7537   predicate (UseSSE>=1);
  7538   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7539   ins_cost(200);
  7540   format %{ "Jn$cop   skip\n\t"
  7541             "MOVSS  $dst,$src\t# float\n"
  7542       "skip:" %}
  7543   ins_encode %{
  7544     Label skip;
  7545     // Invert sense of branch from sense of CMOV
  7546     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7547     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7548     __ bind(skip);
  7549   %}
  7550   ins_pipe( pipe_slow );
  7551 %}
  7553 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7554   predicate (UseSSE>=1);
  7555   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7556   ins_cost(200);
  7557   expand %{
  7558     fcmovF_regU(cop, cr, dst, src);
  7559   %}
  7560 %}
  7562 // unsigned version
  7563 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7564   predicate (UseSSE>=2);
  7565   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7566   ins_cost(200);
  7567   format %{ "Jn$cop   skip\n\t"
  7568             "MOVSD  $dst,$src\t# float\n"
  7569       "skip:" %}
  7570   ins_encode %{
  7571     Label skip;
  7572     // Invert sense of branch from sense of CMOV
  7573     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7574     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7575     __ bind(skip);
  7576   %}
  7577   ins_pipe( pipe_slow );
  7578 %}
  7580 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7581   predicate (UseSSE>=2);
  7582   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7583   ins_cost(200);
  7584   expand %{
  7585     fcmovD_regU(cop, cr, dst, src);
  7586   %}
  7587 %}
  7589 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7590   predicate(VM_Version::supports_cmov() );
  7591   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7592   ins_cost(200);
  7593   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7594             "CMOV$cop $dst.hi,$src.hi" %}
  7595   opcode(0x0F,0x40);
  7596   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7597   ins_pipe( pipe_cmov_reg_long );
  7598 %}
  7600 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7601   predicate(VM_Version::supports_cmov() );
  7602   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7603   ins_cost(200);
  7604   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7605             "CMOV$cop $dst.hi,$src.hi" %}
  7606   opcode(0x0F,0x40);
  7607   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7608   ins_pipe( pipe_cmov_reg_long );
  7609 %}
  7611 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7612   predicate(VM_Version::supports_cmov() );
  7613   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7614   ins_cost(200);
  7615   expand %{
  7616     cmovL_regU(cop, cr, dst, src);
  7617   %}
  7618 %}
  7620 //----------Arithmetic Instructions--------------------------------------------
  7621 //----------Addition Instructions----------------------------------------------
  7622 // Integer Addition Instructions
  7623 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7624   match(Set dst (AddI dst src));
  7625   effect(KILL cr);
  7627   size(2);
  7628   format %{ "ADD    $dst,$src" %}
  7629   opcode(0x03);
  7630   ins_encode( OpcP, RegReg( dst, src) );
  7631   ins_pipe( ialu_reg_reg );
  7632 %}
  7634 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7635   match(Set dst (AddI dst src));
  7636   effect(KILL cr);
  7638   format %{ "ADD    $dst,$src" %}
  7639   opcode(0x81, 0x00); /* /0 id */
  7640   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7641   ins_pipe( ialu_reg );
  7642 %}
  7644 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7645   predicate(UseIncDec);
  7646   match(Set dst (AddI dst src));
  7647   effect(KILL cr);
  7649   size(1);
  7650   format %{ "INC    $dst" %}
  7651   opcode(0x40); /*  */
  7652   ins_encode( Opc_plus( primary, dst ) );
  7653   ins_pipe( ialu_reg );
  7654 %}
  7656 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7657   match(Set dst (AddI src0 src1));
  7658   ins_cost(110);
  7660   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7661   opcode(0x8D); /* 0x8D /r */
  7662   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7663   ins_pipe( ialu_reg_reg );
  7664 %}
  7666 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7667   match(Set dst (AddP src0 src1));
  7668   ins_cost(110);
  7670   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7671   opcode(0x8D); /* 0x8D /r */
  7672   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7673   ins_pipe( ialu_reg_reg );
  7674 %}
  7676 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7677   predicate(UseIncDec);
  7678   match(Set dst (AddI dst src));
  7679   effect(KILL cr);
  7681   size(1);
  7682   format %{ "DEC    $dst" %}
  7683   opcode(0x48); /*  */
  7684   ins_encode( Opc_plus( primary, dst ) );
  7685   ins_pipe( ialu_reg );
  7686 %}
  7688 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7689   match(Set dst (AddP dst src));
  7690   effect(KILL cr);
  7692   size(2);
  7693   format %{ "ADD    $dst,$src" %}
  7694   opcode(0x03);
  7695   ins_encode( OpcP, RegReg( dst, src) );
  7696   ins_pipe( ialu_reg_reg );
  7697 %}
  7699 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7700   match(Set dst (AddP dst src));
  7701   effect(KILL cr);
  7703   format %{ "ADD    $dst,$src" %}
  7704   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7705   // ins_encode( RegImm( dst, src) );
  7706   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7707   ins_pipe( ialu_reg );
  7708 %}
  7710 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7711   match(Set dst (AddI dst (LoadI src)));
  7712   effect(KILL cr);
  7714   ins_cost(125);
  7715   format %{ "ADD    $dst,$src" %}
  7716   opcode(0x03);
  7717   ins_encode( OpcP, RegMem( dst, src) );
  7718   ins_pipe( ialu_reg_mem );
  7719 %}
  7721 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7722   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7723   effect(KILL cr);
  7725   ins_cost(150);
  7726   format %{ "ADD    $dst,$src" %}
  7727   opcode(0x01);  /* Opcode 01 /r */
  7728   ins_encode( OpcP, RegMem( src, dst ) );
  7729   ins_pipe( ialu_mem_reg );
  7730 %}
  7732 // Add Memory with Immediate
  7733 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7734   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7735   effect(KILL cr);
  7737   ins_cost(125);
  7738   format %{ "ADD    $dst,$src" %}
  7739   opcode(0x81);               /* Opcode 81 /0 id */
  7740   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7741   ins_pipe( ialu_mem_imm );
  7742 %}
  7744 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7745   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7746   effect(KILL cr);
  7748   ins_cost(125);
  7749   format %{ "INC    $dst" %}
  7750   opcode(0xFF);               /* Opcode FF /0 */
  7751   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7752   ins_pipe( ialu_mem_imm );
  7753 %}
  7755 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7756   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7757   effect(KILL cr);
  7759   ins_cost(125);
  7760   format %{ "DEC    $dst" %}
  7761   opcode(0xFF);               /* Opcode FF /1 */
  7762   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7763   ins_pipe( ialu_mem_imm );
  7764 %}
  7767 instruct checkCastPP( eRegP dst ) %{
  7768   match(Set dst (CheckCastPP dst));
  7770   size(0);
  7771   format %{ "#checkcastPP of $dst" %}
  7772   ins_encode( /*empty encoding*/ );
  7773   ins_pipe( empty );
  7774 %}
  7776 instruct castPP( eRegP dst ) %{
  7777   match(Set dst (CastPP dst));
  7778   format %{ "#castPP of $dst" %}
  7779   ins_encode( /*empty encoding*/ );
  7780   ins_pipe( empty );
  7781 %}
  7783 instruct castII( eRegI dst ) %{
  7784   match(Set dst (CastII dst));
  7785   format %{ "#castII of $dst" %}
  7786   ins_encode( /*empty encoding*/ );
  7787   ins_cost(0);
  7788   ins_pipe( empty );
  7789 %}
  7792 // Load-locked - same as a regular pointer load when used with compare-swap
  7793 instruct loadPLocked(eRegP dst, memory mem) %{
  7794   match(Set dst (LoadPLocked mem));
  7796   ins_cost(125);
  7797   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7798   opcode(0x8B);
  7799   ins_encode( OpcP, RegMem(dst,mem));
  7800   ins_pipe( ialu_reg_mem );
  7801 %}
  7803 // LoadLong-locked - same as a volatile long load when used with compare-swap
  7804 instruct loadLLocked(stackSlotL dst, memory mem) %{
  7805   predicate(UseSSE<=1);
  7806   match(Set dst (LoadLLocked mem));
  7808   ins_cost(200);
  7809   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  7810             "FISTp  $dst" %}
  7811   ins_encode(enc_loadL_volatile(mem,dst));
  7812   ins_pipe( fpu_reg_mem );
  7813 %}
  7815 instruct loadLX_Locked(stackSlotL dst, memory mem, regD tmp) %{
  7816   predicate(UseSSE>=2);
  7817   match(Set dst (LoadLLocked mem));
  7818   effect(TEMP tmp);
  7819   ins_cost(180);
  7820   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7821             "MOVSD  $dst,$tmp" %}
  7822   ins_encode %{
  7823     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7824     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  7825   %}
  7826   ins_pipe( pipe_slow );
  7827 %}
  7829 instruct loadLX_reg_Locked(eRegL dst, memory mem, regD tmp) %{
  7830   predicate(UseSSE>=2);
  7831   match(Set dst (LoadLLocked mem));
  7832   effect(TEMP tmp);
  7833   ins_cost(160);
  7834   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7835             "MOVD   $dst.lo,$tmp\n\t"
  7836             "PSRLQ  $tmp,32\n\t"
  7837             "MOVD   $dst.hi,$tmp" %}
  7838   ins_encode %{
  7839     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7840     __ movdl($dst$$Register, $tmp$$XMMRegister);
  7841     __ psrlq($tmp$$XMMRegister, 32);
  7842     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  7843   %}
  7844   ins_pipe( pipe_slow );
  7845 %}
  7847 // Conditional-store of the updated heap-top.
  7848 // Used during allocation of the shared heap.
  7849 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7850 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7851   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7852   // EAX is killed if there is contention, but then it's also unused.
  7853   // In the common case of no contention, EAX holds the new oop address.
  7854   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7855   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7856   ins_pipe( pipe_cmpxchg );
  7857 %}
  7859 // Conditional-store of an int value.
  7860 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7861 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  7862   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7863   effect(KILL oldval);
  7864   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7865   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7866   ins_pipe( pipe_cmpxchg );
  7867 %}
  7869 // Conditional-store of a long value.
  7870 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7871 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7872   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7873   effect(KILL oldval);
  7874   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7875             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7876             "XCHG   EBX,ECX"
  7877   %}
  7878   ins_encode %{
  7879     // Note: we need to swap rbx, and rcx before and after the
  7880     //       cmpxchg8 instruction because the instruction uses
  7881     //       rcx as the high order word of the new value to store but
  7882     //       our register encoding uses rbx.
  7883     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7884     if( os::is_MP() )
  7885       __ lock();
  7886     __ cmpxchg8($mem$$Address);
  7887     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7888   %}
  7889   ins_pipe( pipe_cmpxchg );
  7890 %}
  7892 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7894 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7895   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7896   effect(KILL cr, KILL oldval);
  7897   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7898             "MOV    $res,0\n\t"
  7899             "JNE,s  fail\n\t"
  7900             "MOV    $res,1\n"
  7901           "fail:" %}
  7902   ins_encode( enc_cmpxchg8(mem_ptr),
  7903               enc_flags_ne_to_boolean(res) );
  7904   ins_pipe( pipe_cmpxchg );
  7905 %}
  7907 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7908   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7909   effect(KILL cr, KILL oldval);
  7910   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7911             "MOV    $res,0\n\t"
  7912             "JNE,s  fail\n\t"
  7913             "MOV    $res,1\n"
  7914           "fail:" %}
  7915   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7916   ins_pipe( pipe_cmpxchg );
  7917 %}
  7919 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7920   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7921   effect(KILL cr, KILL oldval);
  7922   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7923             "MOV    $res,0\n\t"
  7924             "JNE,s  fail\n\t"
  7925             "MOV    $res,1\n"
  7926           "fail:" %}
  7927   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7928   ins_pipe( pipe_cmpxchg );
  7929 %}
  7931 //----------Subtraction Instructions-------------------------------------------
  7932 // Integer Subtraction Instructions
  7933 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7934   match(Set dst (SubI dst src));
  7935   effect(KILL cr);
  7937   size(2);
  7938   format %{ "SUB    $dst,$src" %}
  7939   opcode(0x2B);
  7940   ins_encode( OpcP, RegReg( dst, src) );
  7941   ins_pipe( ialu_reg_reg );
  7942 %}
  7944 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7945   match(Set dst (SubI dst src));
  7946   effect(KILL cr);
  7948   format %{ "SUB    $dst,$src" %}
  7949   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7950   // ins_encode( RegImm( dst, src) );
  7951   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7952   ins_pipe( ialu_reg );
  7953 %}
  7955 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7956   match(Set dst (SubI dst (LoadI src)));
  7957   effect(KILL cr);
  7959   ins_cost(125);
  7960   format %{ "SUB    $dst,$src" %}
  7961   opcode(0x2B);
  7962   ins_encode( OpcP, RegMem( dst, src) );
  7963   ins_pipe( ialu_reg_mem );
  7964 %}
  7966 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7967   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7968   effect(KILL cr);
  7970   ins_cost(150);
  7971   format %{ "SUB    $dst,$src" %}
  7972   opcode(0x29);  /* Opcode 29 /r */
  7973   ins_encode( OpcP, RegMem( src, dst ) );
  7974   ins_pipe( ialu_mem_reg );
  7975 %}
  7977 // Subtract from a pointer
  7978 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  7979   match(Set dst (AddP dst (SubI zero src)));
  7980   effect(KILL cr);
  7982   size(2);
  7983   format %{ "SUB    $dst,$src" %}
  7984   opcode(0x2B);
  7985   ins_encode( OpcP, RegReg( dst, src) );
  7986   ins_pipe( ialu_reg_reg );
  7987 %}
  7989 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  7990   match(Set dst (SubI zero dst));
  7991   effect(KILL cr);
  7993   size(2);
  7994   format %{ "NEG    $dst" %}
  7995   opcode(0xF7,0x03);  // Opcode F7 /3
  7996   ins_encode( OpcP, RegOpc( dst ) );
  7997   ins_pipe( ialu_reg );
  7998 %}
  8001 //----------Multiplication/Division Instructions-------------------------------
  8002 // Integer Multiplication Instructions
  8003 // Multiply Register
  8004 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8005   match(Set dst (MulI dst src));
  8006   effect(KILL cr);
  8008   size(3);
  8009   ins_cost(300);
  8010   format %{ "IMUL   $dst,$src" %}
  8011   opcode(0xAF, 0x0F);
  8012   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8013   ins_pipe( ialu_reg_reg_alu0 );
  8014 %}
  8016 // Multiply 32-bit Immediate
  8017 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8018   match(Set dst (MulI src imm));
  8019   effect(KILL cr);
  8021   ins_cost(300);
  8022   format %{ "IMUL   $dst,$src,$imm" %}
  8023   opcode(0x69);  /* 69 /r id */
  8024   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8025   ins_pipe( ialu_reg_reg_alu0 );
  8026 %}
  8028 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8029   match(Set dst src);
  8030   effect(KILL cr);
  8032   // Note that this is artificially increased to make it more expensive than loadConL
  8033   ins_cost(250);
  8034   format %{ "MOV    EAX,$src\t// low word only" %}
  8035   opcode(0xB8);
  8036   ins_encode( LdImmL_Lo(dst, src) );
  8037   ins_pipe( ialu_reg_fat );
  8038 %}
  8040 // Multiply by 32-bit Immediate, taking the shifted high order results
  8041 //  (special case for shift by 32)
  8042 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8043   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8044   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8045              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8046              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8047   effect(USE src1, KILL cr);
  8049   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8050   ins_cost(0*100 + 1*400 - 150);
  8051   format %{ "IMUL   EDX:EAX,$src1" %}
  8052   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8053   ins_pipe( pipe_slow );
  8054 %}
  8056 // Multiply by 32-bit Immediate, taking the shifted high order results
  8057 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8058   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8059   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8060              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8061              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8062   effect(USE src1, KILL cr);
  8064   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8065   ins_cost(1*100 + 1*400 - 150);
  8066   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8067             "SAR    EDX,$cnt-32" %}
  8068   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8069   ins_pipe( pipe_slow );
  8070 %}
  8072 // Multiply Memory 32-bit Immediate
  8073 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8074   match(Set dst (MulI (LoadI src) imm));
  8075   effect(KILL cr);
  8077   ins_cost(300);
  8078   format %{ "IMUL   $dst,$src,$imm" %}
  8079   opcode(0x69);  /* 69 /r id */
  8080   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8081   ins_pipe( ialu_reg_mem_alu0 );
  8082 %}
  8084 // Multiply Memory
  8085 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8086   match(Set dst (MulI dst (LoadI src)));
  8087   effect(KILL cr);
  8089   ins_cost(350);
  8090   format %{ "IMUL   $dst,$src" %}
  8091   opcode(0xAF, 0x0F);
  8092   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8093   ins_pipe( ialu_reg_mem_alu0 );
  8094 %}
  8096 // Multiply Register Int to Long
  8097 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8098   // Basic Idea: long = (long)int * (long)int
  8099   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8100   effect(DEF dst, USE src, USE src1, KILL flags);
  8102   ins_cost(300);
  8103   format %{ "IMUL   $dst,$src1" %}
  8105   ins_encode( long_int_multiply( dst, src1 ) );
  8106   ins_pipe( ialu_reg_reg_alu0 );
  8107 %}
  8109 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8110   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8111   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8112   effect(KILL flags);
  8114   ins_cost(300);
  8115   format %{ "MUL    $dst,$src1" %}
  8117   ins_encode( long_uint_multiply(dst, src1) );
  8118   ins_pipe( ialu_reg_reg_alu0 );
  8119 %}
  8121 // Multiply Register Long
  8122 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8123   match(Set dst (MulL dst src));
  8124   effect(KILL cr, TEMP tmp);
  8125   ins_cost(4*100+3*400);
  8126 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8127 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8128   format %{ "MOV    $tmp,$src.lo\n\t"
  8129             "IMUL   $tmp,EDX\n\t"
  8130             "MOV    EDX,$src.hi\n\t"
  8131             "IMUL   EDX,EAX\n\t"
  8132             "ADD    $tmp,EDX\n\t"
  8133             "MUL    EDX:EAX,$src.lo\n\t"
  8134             "ADD    EDX,$tmp" %}
  8135   ins_encode( long_multiply( dst, src, tmp ) );
  8136   ins_pipe( pipe_slow );
  8137 %}
  8139 // Multiply Register Long where the left operand's high 32 bits are zero
  8140 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8141   predicate(is_operand_hi32_zero(n->in(1)));
  8142   match(Set dst (MulL dst src));
  8143   effect(KILL cr, TEMP tmp);
  8144   ins_cost(2*100+2*400);
  8145 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8146 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8147   format %{ "MOV    $tmp,$src.hi\n\t"
  8148             "IMUL   $tmp,EAX\n\t"
  8149             "MUL    EDX:EAX,$src.lo\n\t"
  8150             "ADD    EDX,$tmp" %}
  8151   ins_encode %{
  8152     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8153     __ imull($tmp$$Register, rax);
  8154     __ mull($src$$Register);
  8155     __ addl(rdx, $tmp$$Register);
  8156   %}
  8157   ins_pipe( pipe_slow );
  8158 %}
  8160 // Multiply Register Long where the right operand's high 32 bits are zero
  8161 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8162   predicate(is_operand_hi32_zero(n->in(2)));
  8163   match(Set dst (MulL dst src));
  8164   effect(KILL cr, TEMP tmp);
  8165   ins_cost(2*100+2*400);
  8166 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8167 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8168   format %{ "MOV    $tmp,$src.lo\n\t"
  8169             "IMUL   $tmp,EDX\n\t"
  8170             "MUL    EDX:EAX,$src.lo\n\t"
  8171             "ADD    EDX,$tmp" %}
  8172   ins_encode %{
  8173     __ movl($tmp$$Register, $src$$Register);
  8174     __ imull($tmp$$Register, rdx);
  8175     __ mull($src$$Register);
  8176     __ addl(rdx, $tmp$$Register);
  8177   %}
  8178   ins_pipe( pipe_slow );
  8179 %}
  8181 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8182 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8183   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8184   match(Set dst (MulL dst src));
  8185   effect(KILL cr);
  8186   ins_cost(1*400);
  8187 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8188 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8189   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8190   ins_encode %{
  8191     __ mull($src$$Register);
  8192   %}
  8193   ins_pipe( pipe_slow );
  8194 %}
  8196 // Multiply Register Long by small constant
  8197 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8198   match(Set dst (MulL dst src));
  8199   effect(KILL cr, TEMP tmp);
  8200   ins_cost(2*100+2*400);
  8201   size(12);
  8202 // Basic idea: lo(result) = lo(src * EAX)
  8203 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8204   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8205             "MOV    EDX,$src\n\t"
  8206             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8207             "ADD    EDX,$tmp" %}
  8208   ins_encode( long_multiply_con( dst, src, tmp ) );
  8209   ins_pipe( pipe_slow );
  8210 %}
  8212 // Integer DIV with Register
  8213 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8214   match(Set rax (DivI rax div));
  8215   effect(KILL rdx, KILL cr);
  8216   size(26);
  8217   ins_cost(30*100+10*100);
  8218   format %{ "CMP    EAX,0x80000000\n\t"
  8219             "JNE,s  normal\n\t"
  8220             "XOR    EDX,EDX\n\t"
  8221             "CMP    ECX,-1\n\t"
  8222             "JE,s   done\n"
  8223     "normal: CDQ\n\t"
  8224             "IDIV   $div\n\t"
  8225     "done:"        %}
  8226   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8227   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8228   ins_pipe( ialu_reg_reg_alu0 );
  8229 %}
  8231 // Divide Register Long
  8232 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8233   match(Set dst (DivL src1 src2));
  8234   effect( KILL cr, KILL cx, KILL bx );
  8235   ins_cost(10000);
  8236   format %{ "PUSH   $src1.hi\n\t"
  8237             "PUSH   $src1.lo\n\t"
  8238             "PUSH   $src2.hi\n\t"
  8239             "PUSH   $src2.lo\n\t"
  8240             "CALL   SharedRuntime::ldiv\n\t"
  8241             "ADD    ESP,16" %}
  8242   ins_encode( long_div(src1,src2) );
  8243   ins_pipe( pipe_slow );
  8244 %}
  8246 // Integer DIVMOD with Register, both quotient and mod results
  8247 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8248   match(DivModI rax div);
  8249   effect(KILL cr);
  8250   size(26);
  8251   ins_cost(30*100+10*100);
  8252   format %{ "CMP    EAX,0x80000000\n\t"
  8253             "JNE,s  normal\n\t"
  8254             "XOR    EDX,EDX\n\t"
  8255             "CMP    ECX,-1\n\t"
  8256             "JE,s   done\n"
  8257     "normal: CDQ\n\t"
  8258             "IDIV   $div\n\t"
  8259     "done:"        %}
  8260   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8261   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8262   ins_pipe( pipe_slow );
  8263 %}
  8265 // Integer MOD with Register
  8266 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8267   match(Set rdx (ModI rax div));
  8268   effect(KILL rax, KILL cr);
  8270   size(26);
  8271   ins_cost(300);
  8272   format %{ "CDQ\n\t"
  8273             "IDIV   $div" %}
  8274   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8275   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8276   ins_pipe( ialu_reg_reg_alu0 );
  8277 %}
  8279 // Remainder Register Long
  8280 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8281   match(Set dst (ModL src1 src2));
  8282   effect( KILL cr, KILL cx, KILL bx );
  8283   ins_cost(10000);
  8284   format %{ "PUSH   $src1.hi\n\t"
  8285             "PUSH   $src1.lo\n\t"
  8286             "PUSH   $src2.hi\n\t"
  8287             "PUSH   $src2.lo\n\t"
  8288             "CALL   SharedRuntime::lrem\n\t"
  8289             "ADD    ESP,16" %}
  8290   ins_encode( long_mod(src1,src2) );
  8291   ins_pipe( pipe_slow );
  8292 %}
  8294 // Divide Register Long (no special case since divisor != -1)
  8295 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8296   match(Set dst (DivL dst imm));
  8297   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8298   ins_cost(1000);
  8299   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8300             "XOR    $tmp2,$tmp2\n\t"
  8301             "CMP    $tmp,EDX\n\t"
  8302             "JA,s   fast\n\t"
  8303             "MOV    $tmp2,EAX\n\t"
  8304             "MOV    EAX,EDX\n\t"
  8305             "MOV    EDX,0\n\t"
  8306             "JLE,s  pos\n\t"
  8307             "LNEG   EAX : $tmp2\n\t"
  8308             "DIV    $tmp # unsigned division\n\t"
  8309             "XCHG   EAX,$tmp2\n\t"
  8310             "DIV    $tmp\n\t"
  8311             "LNEG   $tmp2 : EAX\n\t"
  8312             "JMP,s  done\n"
  8313     "pos:\n\t"
  8314             "DIV    $tmp\n\t"
  8315             "XCHG   EAX,$tmp2\n"
  8316     "fast:\n\t"
  8317             "DIV    $tmp\n"
  8318     "done:\n\t"
  8319             "MOV    EDX,$tmp2\n\t"
  8320             "NEG    EDX:EAX # if $imm < 0" %}
  8321   ins_encode %{
  8322     int con = (int)$imm$$constant;
  8323     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8324     int pcon = (con > 0) ? con : -con;
  8325     Label Lfast, Lpos, Ldone;
  8327     __ movl($tmp$$Register, pcon);
  8328     __ xorl($tmp2$$Register,$tmp2$$Register);
  8329     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8330     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8332     __ movl($tmp2$$Register, $dst$$Register); // save
  8333     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8334     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8335     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8337     // Negative dividend.
  8338     // convert value to positive to use unsigned division
  8339     __ lneg($dst$$Register, $tmp2$$Register);
  8340     __ divl($tmp$$Register);
  8341     __ xchgl($dst$$Register, $tmp2$$Register);
  8342     __ divl($tmp$$Register);
  8343     // revert result back to negative
  8344     __ lneg($tmp2$$Register, $dst$$Register);
  8345     __ jmpb(Ldone);
  8347     __ bind(Lpos);
  8348     __ divl($tmp$$Register); // Use unsigned division
  8349     __ xchgl($dst$$Register, $tmp2$$Register);
  8350     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8352     __ bind(Lfast);
  8353     // fast path: src is positive
  8354     __ divl($tmp$$Register); // Use unsigned division
  8356     __ bind(Ldone);
  8357     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8358     if (con < 0) {
  8359       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8361   %}
  8362   ins_pipe( pipe_slow );
  8363 %}
  8365 // Remainder Register Long (remainder fit into 32 bits)
  8366 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8367   match(Set dst (ModL dst imm));
  8368   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8369   ins_cost(1000);
  8370   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8371             "CMP    $tmp,EDX\n\t"
  8372             "JA,s   fast\n\t"
  8373             "MOV    $tmp2,EAX\n\t"
  8374             "MOV    EAX,EDX\n\t"
  8375             "MOV    EDX,0\n\t"
  8376             "JLE,s  pos\n\t"
  8377             "LNEG   EAX : $tmp2\n\t"
  8378             "DIV    $tmp # unsigned division\n\t"
  8379             "MOV    EAX,$tmp2\n\t"
  8380             "DIV    $tmp\n\t"
  8381             "NEG    EDX\n\t"
  8382             "JMP,s  done\n"
  8383     "pos:\n\t"
  8384             "DIV    $tmp\n\t"
  8385             "MOV    EAX,$tmp2\n"
  8386     "fast:\n\t"
  8387             "DIV    $tmp\n"
  8388     "done:\n\t"
  8389             "MOV    EAX,EDX\n\t"
  8390             "SAR    EDX,31\n\t" %}
  8391   ins_encode %{
  8392     int con = (int)$imm$$constant;
  8393     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8394     int pcon = (con > 0) ? con : -con;
  8395     Label  Lfast, Lpos, Ldone;
  8397     __ movl($tmp$$Register, pcon);
  8398     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8399     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8401     __ movl($tmp2$$Register, $dst$$Register); // save
  8402     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8403     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8404     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8406     // Negative dividend.
  8407     // convert value to positive to use unsigned division
  8408     __ lneg($dst$$Register, $tmp2$$Register);
  8409     __ divl($tmp$$Register);
  8410     __ movl($dst$$Register, $tmp2$$Register);
  8411     __ divl($tmp$$Register);
  8412     // revert remainder back to negative
  8413     __ negl(HIGH_FROM_LOW($dst$$Register));
  8414     __ jmpb(Ldone);
  8416     __ bind(Lpos);
  8417     __ divl($tmp$$Register);
  8418     __ movl($dst$$Register, $tmp2$$Register);
  8420     __ bind(Lfast);
  8421     // fast path: src is positive
  8422     __ divl($tmp$$Register);
  8424     __ bind(Ldone);
  8425     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8426     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8428   %}
  8429   ins_pipe( pipe_slow );
  8430 %}
  8432 // Integer Shift Instructions
  8433 // Shift Left by one
  8434 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8435   match(Set dst (LShiftI dst shift));
  8436   effect(KILL cr);
  8438   size(2);
  8439   format %{ "SHL    $dst,$shift" %}
  8440   opcode(0xD1, 0x4);  /* D1 /4 */
  8441   ins_encode( OpcP, RegOpc( dst ) );
  8442   ins_pipe( ialu_reg );
  8443 %}
  8445 // Shift Left by 8-bit immediate
  8446 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8447   match(Set dst (LShiftI dst shift));
  8448   effect(KILL cr);
  8450   size(3);
  8451   format %{ "SHL    $dst,$shift" %}
  8452   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8453   ins_encode( RegOpcImm( dst, shift) );
  8454   ins_pipe( ialu_reg );
  8455 %}
  8457 // Shift Left by variable
  8458 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8459   match(Set dst (LShiftI dst shift));
  8460   effect(KILL cr);
  8462   size(2);
  8463   format %{ "SHL    $dst,$shift" %}
  8464   opcode(0xD3, 0x4);  /* D3 /4 */
  8465   ins_encode( OpcP, RegOpc( dst ) );
  8466   ins_pipe( ialu_reg_reg );
  8467 %}
  8469 // Arithmetic shift right by one
  8470 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8471   match(Set dst (RShiftI dst shift));
  8472   effect(KILL cr);
  8474   size(2);
  8475   format %{ "SAR    $dst,$shift" %}
  8476   opcode(0xD1, 0x7);  /* D1 /7 */
  8477   ins_encode( OpcP, RegOpc( dst ) );
  8478   ins_pipe( ialu_reg );
  8479 %}
  8481 // Arithmetic shift right by one
  8482 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8483   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8484   effect(KILL cr);
  8485   format %{ "SAR    $dst,$shift" %}
  8486   opcode(0xD1, 0x7);  /* D1 /7 */
  8487   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8488   ins_pipe( ialu_mem_imm );
  8489 %}
  8491 // Arithmetic Shift Right by 8-bit immediate
  8492 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8493   match(Set dst (RShiftI dst shift));
  8494   effect(KILL cr);
  8496   size(3);
  8497   format %{ "SAR    $dst,$shift" %}
  8498   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8499   ins_encode( RegOpcImm( dst, shift ) );
  8500   ins_pipe( ialu_mem_imm );
  8501 %}
  8503 // Arithmetic Shift Right by 8-bit immediate
  8504 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8505   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8506   effect(KILL cr);
  8508   format %{ "SAR    $dst,$shift" %}
  8509   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8510   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8511   ins_pipe( ialu_mem_imm );
  8512 %}
  8514 // Arithmetic Shift Right by variable
  8515 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8516   match(Set dst (RShiftI dst shift));
  8517   effect(KILL cr);
  8519   size(2);
  8520   format %{ "SAR    $dst,$shift" %}
  8521   opcode(0xD3, 0x7);  /* D3 /7 */
  8522   ins_encode( OpcP, RegOpc( dst ) );
  8523   ins_pipe( ialu_reg_reg );
  8524 %}
  8526 // Logical shift right by one
  8527 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8528   match(Set dst (URShiftI dst shift));
  8529   effect(KILL cr);
  8531   size(2);
  8532   format %{ "SHR    $dst,$shift" %}
  8533   opcode(0xD1, 0x5);  /* D1 /5 */
  8534   ins_encode( OpcP, RegOpc( dst ) );
  8535   ins_pipe( ialu_reg );
  8536 %}
  8538 // Logical Shift Right by 8-bit immediate
  8539 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8540   match(Set dst (URShiftI dst shift));
  8541   effect(KILL cr);
  8543   size(3);
  8544   format %{ "SHR    $dst,$shift" %}
  8545   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8546   ins_encode( RegOpcImm( dst, shift) );
  8547   ins_pipe( ialu_reg );
  8548 %}
  8551 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8552 // This idiom is used by the compiler for the i2b bytecode.
  8553 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8554   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8556   size(3);
  8557   format %{ "MOVSX  $dst,$src :8" %}
  8558   ins_encode %{
  8559     __ movsbl($dst$$Register, $src$$Register);
  8560   %}
  8561   ins_pipe(ialu_reg_reg);
  8562 %}
  8564 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8565 // This idiom is used by the compiler the i2s bytecode.
  8566 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8567   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8569   size(3);
  8570   format %{ "MOVSX  $dst,$src :16" %}
  8571   ins_encode %{
  8572     __ movswl($dst$$Register, $src$$Register);
  8573   %}
  8574   ins_pipe(ialu_reg_reg);
  8575 %}
  8578 // Logical Shift Right by variable
  8579 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8580   match(Set dst (URShiftI dst shift));
  8581   effect(KILL cr);
  8583   size(2);
  8584   format %{ "SHR    $dst,$shift" %}
  8585   opcode(0xD3, 0x5);  /* D3 /5 */
  8586   ins_encode( OpcP, RegOpc( dst ) );
  8587   ins_pipe( ialu_reg_reg );
  8588 %}
  8591 //----------Logical Instructions-----------------------------------------------
  8592 //----------Integer Logical Instructions---------------------------------------
  8593 // And Instructions
  8594 // And Register with Register
  8595 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8596   match(Set dst (AndI dst src));
  8597   effect(KILL cr);
  8599   size(2);
  8600   format %{ "AND    $dst,$src" %}
  8601   opcode(0x23);
  8602   ins_encode( OpcP, RegReg( dst, src) );
  8603   ins_pipe( ialu_reg_reg );
  8604 %}
  8606 // And Register with Immediate
  8607 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8608   match(Set dst (AndI dst src));
  8609   effect(KILL cr);
  8611   format %{ "AND    $dst,$src" %}
  8612   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8613   // ins_encode( RegImm( dst, src) );
  8614   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8615   ins_pipe( ialu_reg );
  8616 %}
  8618 // And Register with Memory
  8619 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8620   match(Set dst (AndI dst (LoadI src)));
  8621   effect(KILL cr);
  8623   ins_cost(125);
  8624   format %{ "AND    $dst,$src" %}
  8625   opcode(0x23);
  8626   ins_encode( OpcP, RegMem( dst, src) );
  8627   ins_pipe( ialu_reg_mem );
  8628 %}
  8630 // And Memory with Register
  8631 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8632   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8633   effect(KILL cr);
  8635   ins_cost(150);
  8636   format %{ "AND    $dst,$src" %}
  8637   opcode(0x21);  /* Opcode 21 /r */
  8638   ins_encode( OpcP, RegMem( src, dst ) );
  8639   ins_pipe( ialu_mem_reg );
  8640 %}
  8642 // And Memory with Immediate
  8643 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8644   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8645   effect(KILL cr);
  8647   ins_cost(125);
  8648   format %{ "AND    $dst,$src" %}
  8649   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8650   // ins_encode( MemImm( dst, src) );
  8651   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8652   ins_pipe( ialu_mem_imm );
  8653 %}
  8655 // Or Instructions
  8656 // Or Register with Register
  8657 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8658   match(Set dst (OrI dst src));
  8659   effect(KILL cr);
  8661   size(2);
  8662   format %{ "OR     $dst,$src" %}
  8663   opcode(0x0B);
  8664   ins_encode( OpcP, RegReg( dst, src) );
  8665   ins_pipe( ialu_reg_reg );
  8666 %}
  8668 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8669   match(Set dst (OrI dst (CastP2X src)));
  8670   effect(KILL cr);
  8672   size(2);
  8673   format %{ "OR     $dst,$src" %}
  8674   opcode(0x0B);
  8675   ins_encode( OpcP, RegReg( dst, src) );
  8676   ins_pipe( ialu_reg_reg );
  8677 %}
  8680 // Or Register with Immediate
  8681 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8682   match(Set dst (OrI dst src));
  8683   effect(KILL cr);
  8685   format %{ "OR     $dst,$src" %}
  8686   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8687   // ins_encode( RegImm( dst, src) );
  8688   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8689   ins_pipe( ialu_reg );
  8690 %}
  8692 // Or Register with Memory
  8693 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8694   match(Set dst (OrI dst (LoadI src)));
  8695   effect(KILL cr);
  8697   ins_cost(125);
  8698   format %{ "OR     $dst,$src" %}
  8699   opcode(0x0B);
  8700   ins_encode( OpcP, RegMem( dst, src) );
  8701   ins_pipe( ialu_reg_mem );
  8702 %}
  8704 // Or Memory with Register
  8705 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8706   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8707   effect(KILL cr);
  8709   ins_cost(150);
  8710   format %{ "OR     $dst,$src" %}
  8711   opcode(0x09);  /* Opcode 09 /r */
  8712   ins_encode( OpcP, RegMem( src, dst ) );
  8713   ins_pipe( ialu_mem_reg );
  8714 %}
  8716 // Or Memory with Immediate
  8717 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8718   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8719   effect(KILL cr);
  8721   ins_cost(125);
  8722   format %{ "OR     $dst,$src" %}
  8723   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8724   // ins_encode( MemImm( dst, src) );
  8725   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8726   ins_pipe( ialu_mem_imm );
  8727 %}
  8729 // ROL/ROR
  8730 // ROL expand
  8731 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8732   effect(USE_DEF dst, USE shift, KILL cr);
  8734   format %{ "ROL    $dst, $shift" %}
  8735   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8736   ins_encode( OpcP, RegOpc( dst ));
  8737   ins_pipe( ialu_reg );
  8738 %}
  8740 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8741   effect(USE_DEF dst, USE shift, KILL cr);
  8743   format %{ "ROL    $dst, $shift" %}
  8744   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8745   ins_encode( RegOpcImm(dst, shift) );
  8746   ins_pipe(ialu_reg);
  8747 %}
  8749 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8750   effect(USE_DEF dst, USE shift, KILL cr);
  8752   format %{ "ROL    $dst, $shift" %}
  8753   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8754   ins_encode(OpcP, RegOpc(dst));
  8755   ins_pipe( ialu_reg_reg );
  8756 %}
  8757 // end of ROL expand
  8759 // ROL 32bit by one once
  8760 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8761   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8763   expand %{
  8764     rolI_eReg_imm1(dst, lshift, cr);
  8765   %}
  8766 %}
  8768 // ROL 32bit var by imm8 once
  8769 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8770   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8771   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8773   expand %{
  8774     rolI_eReg_imm8(dst, lshift, cr);
  8775   %}
  8776 %}
  8778 // ROL 32bit var by var once
  8779 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8780   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8782   expand %{
  8783     rolI_eReg_CL(dst, shift, cr);
  8784   %}
  8785 %}
  8787 // ROL 32bit var by var once
  8788 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8789   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8791   expand %{
  8792     rolI_eReg_CL(dst, shift, cr);
  8793   %}
  8794 %}
  8796 // ROR expand
  8797 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8798   effect(USE_DEF dst, USE shift, KILL cr);
  8800   format %{ "ROR    $dst, $shift" %}
  8801   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8802   ins_encode( OpcP, RegOpc( dst ) );
  8803   ins_pipe( ialu_reg );
  8804 %}
  8806 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8807   effect (USE_DEF dst, USE shift, KILL cr);
  8809   format %{ "ROR    $dst, $shift" %}
  8810   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8811   ins_encode( RegOpcImm(dst, shift) );
  8812   ins_pipe( ialu_reg );
  8813 %}
  8815 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8816   effect(USE_DEF dst, USE shift, KILL cr);
  8818   format %{ "ROR    $dst, $shift" %}
  8819   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8820   ins_encode(OpcP, RegOpc(dst));
  8821   ins_pipe( ialu_reg_reg );
  8822 %}
  8823 // end of ROR expand
  8825 // ROR right once
  8826 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8827   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8829   expand %{
  8830     rorI_eReg_imm1(dst, rshift, cr);
  8831   %}
  8832 %}
  8834 // ROR 32bit by immI8 once
  8835 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8836   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8837   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8839   expand %{
  8840     rorI_eReg_imm8(dst, rshift, cr);
  8841   %}
  8842 %}
  8844 // ROR 32bit var by var once
  8845 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8846   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8848   expand %{
  8849     rorI_eReg_CL(dst, shift, cr);
  8850   %}
  8851 %}
  8853 // ROR 32bit var by var once
  8854 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8855   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8857   expand %{
  8858     rorI_eReg_CL(dst, shift, cr);
  8859   %}
  8860 %}
  8862 // Xor Instructions
  8863 // Xor Register with Register
  8864 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8865   match(Set dst (XorI dst src));
  8866   effect(KILL cr);
  8868   size(2);
  8869   format %{ "XOR    $dst,$src" %}
  8870   opcode(0x33);
  8871   ins_encode( OpcP, RegReg( dst, src) );
  8872   ins_pipe( ialu_reg_reg );
  8873 %}
  8875 // Xor Register with Immediate -1
  8876 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8877   match(Set dst (XorI dst imm));  
  8879   size(2);
  8880   format %{ "NOT    $dst" %}  
  8881   ins_encode %{
  8882      __ notl($dst$$Register);
  8883   %}
  8884   ins_pipe( ialu_reg );
  8885 %}
  8887 // Xor Register with Immediate
  8888 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8889   match(Set dst (XorI dst src));
  8890   effect(KILL cr);
  8892   format %{ "XOR    $dst,$src" %}
  8893   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8894   // ins_encode( RegImm( dst, src) );
  8895   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8896   ins_pipe( ialu_reg );
  8897 %}
  8899 // Xor Register with Memory
  8900 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8901   match(Set dst (XorI dst (LoadI src)));
  8902   effect(KILL cr);
  8904   ins_cost(125);
  8905   format %{ "XOR    $dst,$src" %}
  8906   opcode(0x33);
  8907   ins_encode( OpcP, RegMem(dst, src) );
  8908   ins_pipe( ialu_reg_mem );
  8909 %}
  8911 // Xor Memory with Register
  8912 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8913   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8914   effect(KILL cr);
  8916   ins_cost(150);
  8917   format %{ "XOR    $dst,$src" %}
  8918   opcode(0x31);  /* Opcode 31 /r */
  8919   ins_encode( OpcP, RegMem( src, dst ) );
  8920   ins_pipe( ialu_mem_reg );
  8921 %}
  8923 // Xor Memory with Immediate
  8924 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8925   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8926   effect(KILL cr);
  8928   ins_cost(125);
  8929   format %{ "XOR    $dst,$src" %}
  8930   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8931   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8932   ins_pipe( ialu_mem_imm );
  8933 %}
  8935 //----------Convert Int to Boolean---------------------------------------------
  8937 instruct movI_nocopy(eRegI dst, eRegI src) %{
  8938   effect( DEF dst, USE src );
  8939   format %{ "MOV    $dst,$src" %}
  8940   ins_encode( enc_Copy( dst, src) );
  8941   ins_pipe( ialu_reg_reg );
  8942 %}
  8944 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  8945   effect( USE_DEF dst, USE src, KILL cr );
  8947   size(4);
  8948   format %{ "NEG    $dst\n\t"
  8949             "ADC    $dst,$src" %}
  8950   ins_encode( neg_reg(dst),
  8951               OpcRegReg(0x13,dst,src) );
  8952   ins_pipe( ialu_reg_reg_long );
  8953 %}
  8955 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  8956   match(Set dst (Conv2B src));
  8958   expand %{
  8959     movI_nocopy(dst,src);
  8960     ci2b(dst,src,cr);
  8961   %}
  8962 %}
  8964 instruct movP_nocopy(eRegI dst, eRegP src) %{
  8965   effect( DEF dst, USE src );
  8966   format %{ "MOV    $dst,$src" %}
  8967   ins_encode( enc_Copy( dst, src) );
  8968   ins_pipe( ialu_reg_reg );
  8969 %}
  8971 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  8972   effect( USE_DEF dst, USE src, KILL cr );
  8973   format %{ "NEG    $dst\n\t"
  8974             "ADC    $dst,$src" %}
  8975   ins_encode( neg_reg(dst),
  8976               OpcRegReg(0x13,dst,src) );
  8977   ins_pipe( ialu_reg_reg_long );
  8978 %}
  8980 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  8981   match(Set dst (Conv2B src));
  8983   expand %{
  8984     movP_nocopy(dst,src);
  8985     cp2b(dst,src,cr);
  8986   %}
  8987 %}
  8989 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  8990   match(Set dst (CmpLTMask p q));
  8991   effect( KILL cr );
  8992   ins_cost(400);
  8994   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8995   format %{ "XOR    $dst,$dst\n\t"
  8996             "CMP    $p,$q\n\t"
  8997             "SETlt  $dst\n\t"
  8998             "NEG    $dst" %}
  8999   ins_encode( OpcRegReg(0x33,dst,dst),
  9000               OpcRegReg(0x3B,p,q),
  9001               setLT_reg(dst), neg_reg(dst) );
  9002   ins_pipe( pipe_slow );
  9003 %}
  9005 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9006   match(Set dst (CmpLTMask dst zero));
  9007   effect( DEF dst, KILL cr );
  9008   ins_cost(100);
  9010   format %{ "SAR    $dst,31" %}
  9011   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9012   ins_encode( RegOpcImm( dst, 0x1F ) );
  9013   ins_pipe( ialu_reg );
  9014 %}
  9017 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9018   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9019   effect( KILL tmp, KILL cr );
  9020   ins_cost(400);
  9021   // annoyingly, $tmp has no edges so you cant ask for it in
  9022   // any format or encoding
  9023   format %{ "SUB    $p,$q\n\t"
  9024             "SBB    ECX,ECX\n\t"
  9025             "AND    ECX,$y\n\t"
  9026             "ADD    $p,ECX" %}
  9027   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9028   ins_pipe( pipe_cmplt );
  9029 %}
  9031 /* If I enable this, I encourage spilling in the inner loop of compress.
  9032 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9033   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9034   effect( USE_KILL tmp, KILL cr );
  9035   ins_cost(400);
  9037   format %{ "SUB    $p,$q\n\t"
  9038             "SBB    ECX,ECX\n\t"
  9039             "AND    ECX,$y\n\t"
  9040             "ADD    $p,ECX" %}
  9041   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9042 %}
  9043 */
  9045 //----------Long Instructions------------------------------------------------
  9046 // Add Long Register with Register
  9047 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9048   match(Set dst (AddL dst src));
  9049   effect(KILL cr);
  9050   ins_cost(200);
  9051   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9052             "ADC    $dst.hi,$src.hi" %}
  9053   opcode(0x03, 0x13);
  9054   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9055   ins_pipe( ialu_reg_reg_long );
  9056 %}
  9058 // Add Long Register with Immediate
  9059 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9060   match(Set dst (AddL dst src));
  9061   effect(KILL cr);
  9062   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9063             "ADC    $dst.hi,$src.hi" %}
  9064   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9065   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9066   ins_pipe( ialu_reg_long );
  9067 %}
  9069 // Add Long Register with Memory
  9070 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9071   match(Set dst (AddL dst (LoadL mem)));
  9072   effect(KILL cr);
  9073   ins_cost(125);
  9074   format %{ "ADD    $dst.lo,$mem\n\t"
  9075             "ADC    $dst.hi,$mem+4" %}
  9076   opcode(0x03, 0x13);
  9077   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9078   ins_pipe( ialu_reg_long_mem );
  9079 %}
  9081 // Subtract Long Register with Register.
  9082 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9083   match(Set dst (SubL dst src));
  9084   effect(KILL cr);
  9085   ins_cost(200);
  9086   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9087             "SBB    $dst.hi,$src.hi" %}
  9088   opcode(0x2B, 0x1B);
  9089   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9090   ins_pipe( ialu_reg_reg_long );
  9091 %}
  9093 // Subtract Long Register with Immediate
  9094 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9095   match(Set dst (SubL dst src));
  9096   effect(KILL cr);
  9097   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9098             "SBB    $dst.hi,$src.hi" %}
  9099   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9100   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9101   ins_pipe( ialu_reg_long );
  9102 %}
  9104 // Subtract Long Register with Memory
  9105 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9106   match(Set dst (SubL dst (LoadL mem)));
  9107   effect(KILL cr);
  9108   ins_cost(125);
  9109   format %{ "SUB    $dst.lo,$mem\n\t"
  9110             "SBB    $dst.hi,$mem+4" %}
  9111   opcode(0x2B, 0x1B);
  9112   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9113   ins_pipe( ialu_reg_long_mem );
  9114 %}
  9116 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9117   match(Set dst (SubL zero dst));
  9118   effect(KILL cr);
  9119   ins_cost(300);
  9120   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9121   ins_encode( neg_long(dst) );
  9122   ins_pipe( ialu_reg_reg_long );
  9123 %}
  9125 // And Long Register with Register
  9126 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9127   match(Set dst (AndL dst src));
  9128   effect(KILL cr);
  9129   format %{ "AND    $dst.lo,$src.lo\n\t"
  9130             "AND    $dst.hi,$src.hi" %}
  9131   opcode(0x23,0x23);
  9132   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9133   ins_pipe( ialu_reg_reg_long );
  9134 %}
  9136 // And Long Register with Immediate
  9137 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9138   match(Set dst (AndL dst src));
  9139   effect(KILL cr);
  9140   format %{ "AND    $dst.lo,$src.lo\n\t"
  9141             "AND    $dst.hi,$src.hi" %}
  9142   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9143   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9144   ins_pipe( ialu_reg_long );
  9145 %}
  9147 // And Long Register with Memory
  9148 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9149   match(Set dst (AndL dst (LoadL mem)));
  9150   effect(KILL cr);
  9151   ins_cost(125);
  9152   format %{ "AND    $dst.lo,$mem\n\t"
  9153             "AND    $dst.hi,$mem+4" %}
  9154   opcode(0x23, 0x23);
  9155   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9156   ins_pipe( ialu_reg_long_mem );
  9157 %}
  9159 // Or Long Register with Register
  9160 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9161   match(Set dst (OrL dst src));
  9162   effect(KILL cr);
  9163   format %{ "OR     $dst.lo,$src.lo\n\t"
  9164             "OR     $dst.hi,$src.hi" %}
  9165   opcode(0x0B,0x0B);
  9166   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9167   ins_pipe( ialu_reg_reg_long );
  9168 %}
  9170 // Or Long Register with Immediate
  9171 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9172   match(Set dst (OrL dst src));
  9173   effect(KILL cr);
  9174   format %{ "OR     $dst.lo,$src.lo\n\t"
  9175             "OR     $dst.hi,$src.hi" %}
  9176   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9177   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9178   ins_pipe( ialu_reg_long );
  9179 %}
  9181 // Or Long Register with Memory
  9182 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9183   match(Set dst (OrL dst (LoadL mem)));
  9184   effect(KILL cr);
  9185   ins_cost(125);
  9186   format %{ "OR     $dst.lo,$mem\n\t"
  9187             "OR     $dst.hi,$mem+4" %}
  9188   opcode(0x0B,0x0B);
  9189   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9190   ins_pipe( ialu_reg_long_mem );
  9191 %}
  9193 // Xor Long Register with Register
  9194 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9195   match(Set dst (XorL dst src));
  9196   effect(KILL cr);
  9197   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9198             "XOR    $dst.hi,$src.hi" %}
  9199   opcode(0x33,0x33);
  9200   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9201   ins_pipe( ialu_reg_reg_long );
  9202 %}
  9204 // Xor Long Register with Immediate -1
  9205 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9206   match(Set dst (XorL dst imm));  
  9207   format %{ "NOT    $dst.lo\n\t"
  9208             "NOT    $dst.hi" %}
  9209   ins_encode %{
  9210      __ notl($dst$$Register);
  9211      __ notl(HIGH_FROM_LOW($dst$$Register));
  9212   %}
  9213   ins_pipe( ialu_reg_long );
  9214 %}
  9216 // Xor Long Register with Immediate
  9217 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9218   match(Set dst (XorL dst src));
  9219   effect(KILL cr);
  9220   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9221             "XOR    $dst.hi,$src.hi" %}
  9222   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9223   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9224   ins_pipe( ialu_reg_long );
  9225 %}
  9227 // Xor Long Register with Memory
  9228 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9229   match(Set dst (XorL dst (LoadL mem)));
  9230   effect(KILL cr);
  9231   ins_cost(125);
  9232   format %{ "XOR    $dst.lo,$mem\n\t"
  9233             "XOR    $dst.hi,$mem+4" %}
  9234   opcode(0x33,0x33);
  9235   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9236   ins_pipe( ialu_reg_long_mem );
  9237 %}
  9239 // Shift Left Long by 1
  9240 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9241   predicate(UseNewLongLShift);
  9242   match(Set dst (LShiftL dst cnt));
  9243   effect(KILL cr);
  9244   ins_cost(100);
  9245   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9246             "ADC    $dst.hi,$dst.hi" %}
  9247   ins_encode %{
  9248     __ addl($dst$$Register,$dst$$Register);
  9249     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9250   %}
  9251   ins_pipe( ialu_reg_long );
  9252 %}
  9254 // Shift Left Long by 2
  9255 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9256   predicate(UseNewLongLShift);
  9257   match(Set dst (LShiftL dst cnt));
  9258   effect(KILL cr);
  9259   ins_cost(100);
  9260   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9261             "ADC    $dst.hi,$dst.hi\n\t" 
  9262             "ADD    $dst.lo,$dst.lo\n\t"
  9263             "ADC    $dst.hi,$dst.hi" %}
  9264   ins_encode %{
  9265     __ addl($dst$$Register,$dst$$Register);
  9266     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9267     __ addl($dst$$Register,$dst$$Register);
  9268     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9269   %}
  9270   ins_pipe( ialu_reg_long );
  9271 %}
  9273 // Shift Left Long by 3
  9274 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9275   predicate(UseNewLongLShift);
  9276   match(Set dst (LShiftL dst cnt));
  9277   effect(KILL cr);
  9278   ins_cost(100);
  9279   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9280             "ADC    $dst.hi,$dst.hi\n\t" 
  9281             "ADD    $dst.lo,$dst.lo\n\t"
  9282             "ADC    $dst.hi,$dst.hi\n\t" 
  9283             "ADD    $dst.lo,$dst.lo\n\t"
  9284             "ADC    $dst.hi,$dst.hi" %}
  9285   ins_encode %{
  9286     __ addl($dst$$Register,$dst$$Register);
  9287     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9288     __ addl($dst$$Register,$dst$$Register);
  9289     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9290     __ addl($dst$$Register,$dst$$Register);
  9291     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9292   %}
  9293   ins_pipe( ialu_reg_long );
  9294 %}
  9296 // Shift Left Long by 1-31
  9297 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9298   match(Set dst (LShiftL dst cnt));
  9299   effect(KILL cr);
  9300   ins_cost(200);
  9301   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9302             "SHL    $dst.lo,$cnt" %}
  9303   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9304   ins_encode( move_long_small_shift(dst,cnt) );
  9305   ins_pipe( ialu_reg_long );
  9306 %}
  9308 // Shift Left Long by 32-63
  9309 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9310   match(Set dst (LShiftL dst cnt));
  9311   effect(KILL cr);
  9312   ins_cost(300);
  9313   format %{ "MOV    $dst.hi,$dst.lo\n"
  9314           "\tSHL    $dst.hi,$cnt-32\n"
  9315           "\tXOR    $dst.lo,$dst.lo" %}
  9316   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9317   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9318   ins_pipe( ialu_reg_long );
  9319 %}
  9321 // Shift Left Long by variable
  9322 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9323   match(Set dst (LShiftL dst shift));
  9324   effect(KILL cr);
  9325   ins_cost(500+200);
  9326   size(17);
  9327   format %{ "TEST   $shift,32\n\t"
  9328             "JEQ,s  small\n\t"
  9329             "MOV    $dst.hi,$dst.lo\n\t"
  9330             "XOR    $dst.lo,$dst.lo\n"
  9331     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9332             "SHL    $dst.lo,$shift" %}
  9333   ins_encode( shift_left_long( dst, shift ) );
  9334   ins_pipe( pipe_slow );
  9335 %}
  9337 // Shift Right Long by 1-31
  9338 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9339   match(Set dst (URShiftL dst cnt));
  9340   effect(KILL cr);
  9341   ins_cost(200);
  9342   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9343             "SHR    $dst.hi,$cnt" %}
  9344   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9345   ins_encode( move_long_small_shift(dst,cnt) );
  9346   ins_pipe( ialu_reg_long );
  9347 %}
  9349 // Shift Right Long by 32-63
  9350 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9351   match(Set dst (URShiftL dst cnt));
  9352   effect(KILL cr);
  9353   ins_cost(300);
  9354   format %{ "MOV    $dst.lo,$dst.hi\n"
  9355           "\tSHR    $dst.lo,$cnt-32\n"
  9356           "\tXOR    $dst.hi,$dst.hi" %}
  9357   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9358   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9359   ins_pipe( ialu_reg_long );
  9360 %}
  9362 // Shift Right Long by variable
  9363 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9364   match(Set dst (URShiftL dst shift));
  9365   effect(KILL cr);
  9366   ins_cost(600);
  9367   size(17);
  9368   format %{ "TEST   $shift,32\n\t"
  9369             "JEQ,s  small\n\t"
  9370             "MOV    $dst.lo,$dst.hi\n\t"
  9371             "XOR    $dst.hi,$dst.hi\n"
  9372     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9373             "SHR    $dst.hi,$shift" %}
  9374   ins_encode( shift_right_long( dst, shift ) );
  9375   ins_pipe( pipe_slow );
  9376 %}
  9378 // Shift Right Long by 1-31
  9379 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9380   match(Set dst (RShiftL dst cnt));
  9381   effect(KILL cr);
  9382   ins_cost(200);
  9383   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9384             "SAR    $dst.hi,$cnt" %}
  9385   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9386   ins_encode( move_long_small_shift(dst,cnt) );
  9387   ins_pipe( ialu_reg_long );
  9388 %}
  9390 // Shift Right Long by 32-63
  9391 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9392   match(Set dst (RShiftL dst cnt));
  9393   effect(KILL cr);
  9394   ins_cost(300);
  9395   format %{ "MOV    $dst.lo,$dst.hi\n"
  9396           "\tSAR    $dst.lo,$cnt-32\n"
  9397           "\tSAR    $dst.hi,31" %}
  9398   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9399   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9400   ins_pipe( ialu_reg_long );
  9401 %}
  9403 // Shift Right arithmetic Long by variable
  9404 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9405   match(Set dst (RShiftL dst shift));
  9406   effect(KILL cr);
  9407   ins_cost(600);
  9408   size(18);
  9409   format %{ "TEST   $shift,32\n\t"
  9410             "JEQ,s  small\n\t"
  9411             "MOV    $dst.lo,$dst.hi\n\t"
  9412             "SAR    $dst.hi,31\n"
  9413     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9414             "SAR    $dst.hi,$shift" %}
  9415   ins_encode( shift_right_arith_long( dst, shift ) );
  9416   ins_pipe( pipe_slow );
  9417 %}
  9420 //----------Double Instructions------------------------------------------------
  9421 // Double Math
  9423 // Compare & branch
  9425 // P6 version of float compare, sets condition codes in EFLAGS
  9426 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9427   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9428   match(Set cr (CmpD src1 src2));
  9429   effect(KILL rax);
  9430   ins_cost(150);
  9431   format %{ "FLD    $src1\n\t"
  9432             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9433             "JNP    exit\n\t"
  9434             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9435             "SAHF\n"
  9436      "exit:\tNOP               // avoid branch to branch" %}
  9437   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9438   ins_encode( Push_Reg_DPR(src1),
  9439               OpcP, RegOpc(src2),
  9440               cmpF_P6_fixup );
  9441   ins_pipe( pipe_slow );
  9442 %}
  9444 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9445   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9446   match(Set cr (CmpD src1 src2));
  9447   ins_cost(150);
  9448   format %{ "FLD    $src1\n\t"
  9449             "FUCOMIP ST,$src2  // P6 instruction" %}
  9450   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9451   ins_encode( Push_Reg_DPR(src1),
  9452               OpcP, RegOpc(src2));
  9453   ins_pipe( pipe_slow );
  9454 %}
  9456 // Compare & branch
  9457 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9458   predicate(UseSSE<=1);
  9459   match(Set cr (CmpD src1 src2));
  9460   effect(KILL rax);
  9461   ins_cost(200);
  9462   format %{ "FLD    $src1\n\t"
  9463             "FCOMp  $src2\n\t"
  9464             "FNSTSW AX\n\t"
  9465             "TEST   AX,0x400\n\t"
  9466             "JZ,s   flags\n\t"
  9467             "MOV    AH,1\t# unordered treat as LT\n"
  9468     "flags:\tSAHF" %}
  9469   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9470   ins_encode( Push_Reg_DPR(src1),
  9471               OpcP, RegOpc(src2),
  9472               fpu_flags);
  9473   ins_pipe( pipe_slow );
  9474 %}
  9476 // Compare vs zero into -1,0,1
  9477 instruct cmpDPR_0(eRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9478   predicate(UseSSE<=1);
  9479   match(Set dst (CmpD3 src1 zero));
  9480   effect(KILL cr, KILL rax);
  9481   ins_cost(280);
  9482   format %{ "FTSTD  $dst,$src1" %}
  9483   opcode(0xE4, 0xD9);
  9484   ins_encode( Push_Reg_DPR(src1),
  9485               OpcS, OpcP, PopFPU,
  9486               CmpF_Result(dst));
  9487   ins_pipe( pipe_slow );
  9488 %}
  9490 // Compare into -1,0,1
  9491 instruct cmpDPR_reg(eRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9492   predicate(UseSSE<=1);
  9493   match(Set dst (CmpD3 src1 src2));
  9494   effect(KILL cr, KILL rax);
  9495   ins_cost(300);
  9496   format %{ "FCMPD  $dst,$src1,$src2" %}
  9497   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9498   ins_encode( Push_Reg_DPR(src1),
  9499               OpcP, RegOpc(src2),
  9500               CmpF_Result(dst));
  9501   ins_pipe( pipe_slow );
  9502 %}
  9504 // float compare and set condition codes in EFLAGS by XMM regs
  9505 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9506   predicate(UseSSE>=2);
  9507   match(Set cr (CmpD src1 src2));
  9508   ins_cost(145);
  9509   format %{ "UCOMISD $src1,$src2\n\t"
  9510             "JNP,s   exit\n\t"
  9511             "PUSHF\t# saw NaN, set CF\n\t"
  9512             "AND     [rsp], #0xffffff2b\n\t"
  9513             "POPF\n"
  9514     "exit:" %}
  9515   ins_encode %{
  9516     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9517     emit_cmpfp_fixup(_masm);
  9518   %}
  9519   ins_pipe( pipe_slow );
  9520 %}
  9522 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9523   predicate(UseSSE>=2);
  9524   match(Set cr (CmpD src1 src2));
  9525   ins_cost(100);
  9526   format %{ "UCOMISD $src1,$src2" %}
  9527   ins_encode %{
  9528     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9529   %}
  9530   ins_pipe( pipe_slow );
  9531 %}
  9533 // float compare and set condition codes in EFLAGS by XMM regs
  9534 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9535   predicate(UseSSE>=2);
  9536   match(Set cr (CmpD src1 (LoadD src2)));
  9537   ins_cost(145);
  9538   format %{ "UCOMISD $src1,$src2\n\t"
  9539             "JNP,s   exit\n\t"
  9540             "PUSHF\t# saw NaN, set CF\n\t"
  9541             "AND     [rsp], #0xffffff2b\n\t"
  9542             "POPF\n"
  9543     "exit:" %}
  9544   ins_encode %{
  9545     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9546     emit_cmpfp_fixup(_masm);
  9547   %}
  9548   ins_pipe( pipe_slow );
  9549 %}
  9551 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9552   predicate(UseSSE>=2);
  9553   match(Set cr (CmpD src1 (LoadD src2)));
  9554   ins_cost(100);
  9555   format %{ "UCOMISD $src1,$src2" %}
  9556   ins_encode %{
  9557     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9558   %}
  9559   ins_pipe( pipe_slow );
  9560 %}
  9562 // Compare into -1,0,1 in XMM
  9563 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9564   predicate(UseSSE>=2);
  9565   match(Set dst (CmpD3 src1 src2));
  9566   effect(KILL cr);
  9567   ins_cost(255);
  9568   format %{ "UCOMISD $src1, $src2\n\t"
  9569             "MOV     $dst, #-1\n\t"
  9570             "JP,s    done\n\t"
  9571             "JB,s    done\n\t"
  9572             "SETNE   $dst\n\t"
  9573             "MOVZB   $dst, $dst\n"
  9574     "done:" %}
  9575   ins_encode %{
  9576     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9577     emit_cmpfp3(_masm, $dst$$Register);
  9578   %}
  9579   ins_pipe( pipe_slow );
  9580 %}
  9582 // Compare into -1,0,1 in XMM and memory
  9583 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9584   predicate(UseSSE>=2);
  9585   match(Set dst (CmpD3 src1 (LoadD src2)));
  9586   effect(KILL cr);
  9587   ins_cost(275);
  9588   format %{ "UCOMISD $src1, $src2\n\t"
  9589             "MOV     $dst, #-1\n\t"
  9590             "JP,s    done\n\t"
  9591             "JB,s    done\n\t"
  9592             "SETNE   $dst\n\t"
  9593             "MOVZB   $dst, $dst\n"
  9594     "done:" %}
  9595   ins_encode %{
  9596     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9597     emit_cmpfp3(_masm, $dst$$Register);
  9598   %}
  9599   ins_pipe( pipe_slow );
  9600 %}
  9603 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9604   predicate (UseSSE <=1);
  9605   match(Set dst (SubD dst src));
  9607   format %{ "FLD    $src\n\t"
  9608             "DSUBp  $dst,ST" %}
  9609   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9610   ins_cost(150);
  9611   ins_encode( Push_Reg_DPR(src),
  9612               OpcP, RegOpc(dst) );
  9613   ins_pipe( fpu_reg_reg );
  9614 %}
  9616 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9617   predicate (UseSSE <=1);
  9618   match(Set dst (RoundDouble (SubD src1 src2)));
  9619   ins_cost(250);
  9621   format %{ "FLD    $src2\n\t"
  9622             "DSUB   ST,$src1\n\t"
  9623             "FSTP_D $dst\t# D-round" %}
  9624   opcode(0xD8, 0x5);
  9625   ins_encode( Push_Reg_DPR(src2),
  9626               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9627   ins_pipe( fpu_mem_reg_reg );
  9628 %}
  9631 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9632   predicate (UseSSE <=1);
  9633   match(Set dst (SubD dst (LoadD src)));
  9634   ins_cost(150);
  9636   format %{ "FLD    $src\n\t"
  9637             "DSUBp  $dst,ST" %}
  9638   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9639   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9640               OpcP, RegOpc(dst) );
  9641   ins_pipe( fpu_reg_mem );
  9642 %}
  9644 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9645   predicate (UseSSE<=1);
  9646   match(Set dst (AbsD src));
  9647   ins_cost(100);
  9648   format %{ "FABS" %}
  9649   opcode(0xE1, 0xD9);
  9650   ins_encode( OpcS, OpcP );
  9651   ins_pipe( fpu_reg_reg );
  9652 %}
  9654 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9655   predicate(UseSSE<=1);
  9656   match(Set dst (NegD src));
  9657   ins_cost(100);
  9658   format %{ "FCHS" %}
  9659   opcode(0xE0, 0xD9);
  9660   ins_encode( OpcS, OpcP );
  9661   ins_pipe( fpu_reg_reg );
  9662 %}
  9664 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9665   predicate(UseSSE<=1);
  9666   match(Set dst (AddD dst src));
  9667   format %{ "FLD    $src\n\t"
  9668             "DADD   $dst,ST" %}
  9669   size(4);
  9670   ins_cost(150);
  9671   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9672   ins_encode( Push_Reg_DPR(src),
  9673               OpcP, RegOpc(dst) );
  9674   ins_pipe( fpu_reg_reg );
  9675 %}
  9678 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9679   predicate(UseSSE<=1);
  9680   match(Set dst (RoundDouble (AddD src1 src2)));
  9681   ins_cost(250);
  9683   format %{ "FLD    $src2\n\t"
  9684             "DADD   ST,$src1\n\t"
  9685             "FSTP_D $dst\t# D-round" %}
  9686   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9687   ins_encode( Push_Reg_DPR(src2),
  9688               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9689   ins_pipe( fpu_mem_reg_reg );
  9690 %}
  9693 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9694   predicate(UseSSE<=1);
  9695   match(Set dst (AddD dst (LoadD src)));
  9696   ins_cost(150);
  9698   format %{ "FLD    $src\n\t"
  9699             "DADDp  $dst,ST" %}
  9700   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9701   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9702               OpcP, RegOpc(dst) );
  9703   ins_pipe( fpu_reg_mem );
  9704 %}
  9706 // add-to-memory
  9707 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9708   predicate(UseSSE<=1);
  9709   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9710   ins_cost(150);
  9712   format %{ "FLD_D  $dst\n\t"
  9713             "DADD   ST,$src\n\t"
  9714             "FST_D  $dst" %}
  9715   opcode(0xDD, 0x0);
  9716   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9717               Opcode(0xD8), RegOpc(src),
  9718               set_instruction_start,
  9719               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9720   ins_pipe( fpu_reg_mem );
  9721 %}
  9723 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9724   predicate(UseSSE<=1);
  9725   match(Set dst (AddD dst con));
  9726   ins_cost(125);
  9727   format %{ "FLD1\n\t"
  9728             "DADDp  $dst,ST" %}
  9729   ins_encode %{
  9730     __ fld1();
  9731     __ faddp($dst$$reg);
  9732   %}
  9733   ins_pipe(fpu_reg);
  9734 %}
  9736 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9737   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9738   match(Set dst (AddD dst con));
  9739   ins_cost(200);
  9740   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9741             "DADDp  $dst,ST" %}
  9742   ins_encode %{
  9743     __ fld_d($constantaddress($con));
  9744     __ faddp($dst$$reg);
  9745   %}
  9746   ins_pipe(fpu_reg_mem);
  9747 %}
  9749 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9750   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9751   match(Set dst (RoundDouble (AddD src con)));
  9752   ins_cost(200);
  9753   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9754             "DADD   ST,$src\n\t"
  9755             "FSTP_D $dst\t# D-round" %}
  9756   ins_encode %{
  9757     __ fld_d($constantaddress($con));
  9758     __ fadd($src$$reg);
  9759     __ fstp_d(Address(rsp, $dst$$disp));
  9760   %}
  9761   ins_pipe(fpu_mem_reg_con);
  9762 %}
  9764 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9765   predicate(UseSSE<=1);
  9766   match(Set dst (MulD dst src));
  9767   format %{ "FLD    $src\n\t"
  9768             "DMULp  $dst,ST" %}
  9769   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9770   ins_cost(150);
  9771   ins_encode( Push_Reg_DPR(src),
  9772               OpcP, RegOpc(dst) );
  9773   ins_pipe( fpu_reg_reg );
  9774 %}
  9776 // Strict FP instruction biases argument before multiply then
  9777 // biases result to avoid double rounding of subnormals.
  9778 //
  9779 // scale arg1 by multiplying arg1 by 2^(-15360)
  9780 // load arg2
  9781 // multiply scaled arg1 by arg2
  9782 // rescale product by 2^(15360)
  9783 //
  9784 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9785   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9786   match(Set dst (MulD dst src));
  9787   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9789   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9790             "DMULp  $dst,ST\n\t"
  9791             "FLD    $src\n\t"
  9792             "DMULp  $dst,ST\n\t"
  9793             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9794             "DMULp  $dst,ST\n\t" %}
  9795   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9796   ins_encode( strictfp_bias1(dst),
  9797               Push_Reg_DPR(src),
  9798               OpcP, RegOpc(dst),
  9799               strictfp_bias2(dst) );
  9800   ins_pipe( fpu_reg_reg );
  9801 %}
  9803 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9804   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9805   match(Set dst (MulD dst con));
  9806   ins_cost(200);
  9807   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9808             "DMULp  $dst,ST" %}
  9809   ins_encode %{
  9810     __ fld_d($constantaddress($con));
  9811     __ fmulp($dst$$reg);
  9812   %}
  9813   ins_pipe(fpu_reg_mem);
  9814 %}
  9817 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9818   predicate( UseSSE<=1 );
  9819   match(Set dst (MulD dst (LoadD src)));
  9820   ins_cost(200);
  9821   format %{ "FLD_D  $src\n\t"
  9822             "DMULp  $dst,ST" %}
  9823   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9824   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9825               OpcP, RegOpc(dst) );
  9826   ins_pipe( fpu_reg_mem );
  9827 %}
  9829 //
  9830 // Cisc-alternate to reg-reg multiply
  9831 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9832   predicate( UseSSE<=1 );
  9833   match(Set dst (MulD src (LoadD mem)));
  9834   ins_cost(250);
  9835   format %{ "FLD_D  $mem\n\t"
  9836             "DMUL   ST,$src\n\t"
  9837             "FSTP_D $dst" %}
  9838   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9839   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9840               OpcReg_FPR(src),
  9841               Pop_Reg_DPR(dst) );
  9842   ins_pipe( fpu_reg_reg_mem );
  9843 %}
  9846 // MACRO3 -- addDPR a mulDPR
  9847 // This instruction is a '2-address' instruction in that the result goes
  9848 // back to src2.  This eliminates a move from the macro; possibly the
  9849 // register allocator will have to add it back (and maybe not).
  9850 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9851   predicate( UseSSE<=1 );
  9852   match(Set src2 (AddD (MulD src0 src1) src2));
  9853   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9854             "DMUL   ST,$src1\n\t"
  9855             "DADDp  $src2,ST" %}
  9856   ins_cost(250);
  9857   opcode(0xDD); /* LoadD DD /0 */
  9858   ins_encode( Push_Reg_FPR(src0),
  9859               FMul_ST_reg(src1),
  9860               FAddP_reg_ST(src2) );
  9861   ins_pipe( fpu_reg_reg_reg );
  9862 %}
  9865 // MACRO3 -- subDPR a mulDPR
  9866 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9867   predicate( UseSSE<=1 );
  9868   match(Set src2 (SubD (MulD src0 src1) src2));
  9869   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9870             "DMUL   ST,$src1\n\t"
  9871             "DSUBRp $src2,ST" %}
  9872   ins_cost(250);
  9873   ins_encode( Push_Reg_FPR(src0),
  9874               FMul_ST_reg(src1),
  9875               Opcode(0xDE), Opc_plus(0xE0,src2));
  9876   ins_pipe( fpu_reg_reg_reg );
  9877 %}
  9880 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9881   predicate( UseSSE<=1 );
  9882   match(Set dst (DivD dst src));
  9884   format %{ "FLD    $src\n\t"
  9885             "FDIVp  $dst,ST" %}
  9886   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9887   ins_cost(150);
  9888   ins_encode( Push_Reg_DPR(src),
  9889               OpcP, RegOpc(dst) );
  9890   ins_pipe( fpu_reg_reg );
  9891 %}
  9893 // Strict FP instruction biases argument before division then
  9894 // biases result, to avoid double rounding of subnormals.
  9895 //
  9896 // scale dividend by multiplying dividend by 2^(-15360)
  9897 // load divisor
  9898 // divide scaled dividend by divisor
  9899 // rescale quotient by 2^(15360)
  9900 //
  9901 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9902   predicate (UseSSE<=1);
  9903   match(Set dst (DivD dst src));
  9904   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9905   ins_cost(01);
  9907   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9908             "DMULp  $dst,ST\n\t"
  9909             "FLD    $src\n\t"
  9910             "FDIVp  $dst,ST\n\t"
  9911             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9912             "DMULp  $dst,ST\n\t" %}
  9913   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9914   ins_encode( strictfp_bias1(dst),
  9915               Push_Reg_DPR(src),
  9916               OpcP, RegOpc(dst),
  9917               strictfp_bias2(dst) );
  9918   ins_pipe( fpu_reg_reg );
  9919 %}
  9921 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9922   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9923   match(Set dst (RoundDouble (DivD src1 src2)));
  9925   format %{ "FLD    $src1\n\t"
  9926             "FDIV   ST,$src2\n\t"
  9927             "FSTP_D $dst\t# D-round" %}
  9928   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9929   ins_encode( Push_Reg_DPR(src1),
  9930               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9931   ins_pipe( fpu_mem_reg_reg );
  9932 %}
  9935 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9936   predicate(UseSSE<=1);
  9937   match(Set dst (ModD dst src));
  9938   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9940   format %{ "DMOD   $dst,$src" %}
  9941   ins_cost(250);
  9942   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9943               emitModDPR(),
  9944               Push_Result_Mod_DPR(src),
  9945               Pop_Reg_DPR(dst));
  9946   ins_pipe( pipe_slow );
  9947 %}
  9949 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9950   predicate(UseSSE>=2);
  9951   match(Set dst (ModD src0 src1));
  9952   effect(KILL rax, KILL cr);
  9954   format %{ "SUB    ESP,8\t # DMOD\n"
  9955           "\tMOVSD  [ESP+0],$src1\n"
  9956           "\tFLD_D  [ESP+0]\n"
  9957           "\tMOVSD  [ESP+0],$src0\n"
  9958           "\tFLD_D  [ESP+0]\n"
  9959      "loop:\tFPREM\n"
  9960           "\tFWAIT\n"
  9961           "\tFNSTSW AX\n"
  9962           "\tSAHF\n"
  9963           "\tJP     loop\n"
  9964           "\tFSTP_D [ESP+0]\n"
  9965           "\tMOVSD  $dst,[ESP+0]\n"
  9966           "\tADD    ESP,8\n"
  9967           "\tFSTP   ST0\t # Restore FPU Stack"
  9968     %}
  9969   ins_cost(250);
  9970   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9971   ins_pipe( pipe_slow );
  9972 %}
  9974 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9975   predicate (UseSSE<=1);
  9976   match(Set dst (SinD src));
  9977   ins_cost(1800);
  9978   format %{ "DSIN   $dst" %}
  9979   opcode(0xD9, 0xFE);
  9980   ins_encode( OpcP, OpcS );
  9981   ins_pipe( pipe_slow );
  9982 %}
  9984 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9985   predicate (UseSSE>=2);
  9986   match(Set dst (SinD dst));
  9987   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9988   ins_cost(1800);
  9989   format %{ "DSIN   $dst" %}
  9990   opcode(0xD9, 0xFE);
  9991   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9992   ins_pipe( pipe_slow );
  9993 %}
  9995 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9996   predicate (UseSSE<=1);
  9997   match(Set dst (CosD src));
  9998   ins_cost(1800);
  9999   format %{ "DCOS   $dst" %}
 10000   opcode(0xD9, 0xFF);
 10001   ins_encode( OpcP, OpcS );
 10002   ins_pipe( pipe_slow );
 10003 %}
 10005 instruct cosD_reg(regD dst, eFlagsReg cr) %{
 10006   predicate (UseSSE>=2);
 10007   match(Set dst (CosD dst));
 10008   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10009   ins_cost(1800);
 10010   format %{ "DCOS   $dst" %}
 10011   opcode(0xD9, 0xFF);
 10012   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10013   ins_pipe( pipe_slow );
 10014 %}
 10016 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
 10017   predicate (UseSSE<=1);
 10018   match(Set dst(TanD src));
 10019   format %{ "DTAN   $dst" %}
 10020   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10021               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10022   ins_pipe( pipe_slow );
 10023 %}
 10025 instruct tanD_reg(regD dst, eFlagsReg cr) %{
 10026   predicate (UseSSE>=2);
 10027   match(Set dst(TanD dst));
 10028   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10029   format %{ "DTAN   $dst" %}
 10030   ins_encode( Push_SrcD(dst),
 10031               Opcode(0xD9), Opcode(0xF2),    // fptan
 10032               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10033               Push_ResultD(dst) );
 10034   ins_pipe( pipe_slow );
 10035 %}
 10037 instruct atanDPR_reg(regDPR dst, regDPR src) %{
 10038   predicate (UseSSE<=1);
 10039   match(Set dst(AtanD dst src));
 10040   format %{ "DATA   $dst,$src" %}
 10041   opcode(0xD9, 0xF3);
 10042   ins_encode( Push_Reg_DPR(src),
 10043               OpcP, OpcS, RegOpc(dst) );
 10044   ins_pipe( pipe_slow );
 10045 %}
 10047 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
 10048   predicate (UseSSE>=2);
 10049   match(Set dst(AtanD dst src));
 10050   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10051   format %{ "DATA   $dst,$src" %}
 10052   opcode(0xD9, 0xF3);
 10053   ins_encode( Push_SrcD(src),
 10054               OpcP, OpcS, Push_ResultD(dst) );
 10055   ins_pipe( pipe_slow );
 10056 %}
 10058 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
 10059   predicate (UseSSE<=1);
 10060   match(Set dst (SqrtD src));
 10061   format %{ "DSQRT  $dst,$src" %}
 10062   opcode(0xFA, 0xD9);
 10063   ins_encode( Push_Reg_DPR(src),
 10064               OpcS, OpcP, Pop_Reg_DPR(dst) );
 10065   ins_pipe( pipe_slow );
 10066 %}
 10068 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10069   predicate (UseSSE<=1);
 10070   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10071   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
 10072   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
 10073   ins_encode %{
 10074     __ subptr(rsp, 8);
 10075     __ fld_s($X$$reg - 1);
 10076     __ fast_pow();
 10077     __ addptr(rsp, 8);
 10078   %}
 10079   ins_pipe( pipe_slow );
 10080 %}
 10082 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10083   predicate (UseSSE>=2);
 10084   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10085   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
 10086   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
 10087   ins_encode %{
 10088     __ subptr(rsp, 8);
 10089     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
 10090     __ fld_d(Address(rsp, 0));
 10091     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
 10092     __ fld_d(Address(rsp, 0));
 10093     __ fast_pow();
 10094     __ fstp_d(Address(rsp, 0));
 10095     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10096     __ addptr(rsp, 8);
 10097   %}
 10098   ins_pipe( pipe_slow );
 10099 %}
 10102 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10103   predicate (UseSSE<=1);
 10104   match(Set dpr1 (ExpD dpr1));
 10105   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10106   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
 10107   ins_encode %{
 10108     __ fast_exp();
 10109   %}
 10110   ins_pipe( pipe_slow );
 10111 %}
 10113 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10114   predicate (UseSSE>=2);
 10115   match(Set dst (ExpD src));
 10116   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10117   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
 10118   ins_encode %{
 10119     __ subptr(rsp, 8);
 10120     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10121     __ fld_d(Address(rsp, 0));
 10122     __ fast_exp();
 10123     __ fstp_d(Address(rsp, 0));
 10124     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10125     __ addptr(rsp, 8);
 10126   %}
 10127   ins_pipe( pipe_slow );
 10128 %}
 10130 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10131   predicate (UseSSE<=1);
 10132   // The source Double operand on FPU stack
 10133   match(Set dst (Log10D src));
 10134   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10135   // fxch         ; swap ST(0) with ST(1)
 10136   // fyl2x        ; compute log_10(2) * log_2(x)
 10137   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10138             "FXCH   \n\t"
 10139             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10140          %}
 10141   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10142               Opcode(0xD9), Opcode(0xC9),   // fxch
 10143               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10145   ins_pipe( pipe_slow );
 10146 %}
 10148 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10149   predicate (UseSSE>=2);
 10150   effect(KILL cr);
 10151   match(Set dst (Log10D src));
 10152   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10153   // fyl2x        ; compute log_10(2) * log_2(x)
 10154   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10155             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10156          %}
 10157   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10158               Push_SrcD(src),
 10159               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10160               Push_ResultD(dst));
 10162   ins_pipe( pipe_slow );
 10163 %}
 10165 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10166   predicate (UseSSE<=1);
 10167   // The source Double operand on FPU stack
 10168   match(Set dst (LogD src));
 10169   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10170   // fxch         ; swap ST(0) with ST(1)
 10171   // fyl2x        ; compute log_e(2) * log_2(x)
 10172   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10173             "FXCH   \n\t"
 10174             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10175          %}
 10176   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10177               Opcode(0xD9), Opcode(0xC9),   // fxch
 10178               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10180   ins_pipe( pipe_slow );
 10181 %}
 10183 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10184   predicate (UseSSE>=2);
 10185   effect(KILL cr);
 10186   // The source and result Double operands in XMM registers
 10187   match(Set dst (LogD src));
 10188   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10189   // fyl2x        ; compute log_e(2) * log_2(x)
 10190   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10191             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10192          %}
 10193   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10194               Push_SrcD(src),
 10195               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10196               Push_ResultD(dst));
 10197   ins_pipe( pipe_slow );
 10198 %}
 10200 //-------------Float Instructions-------------------------------
 10201 // Float Math
 10203 // Code for float compare:
 10204 //     fcompp();
 10205 //     fwait(); fnstsw_ax();
 10206 //     sahf();
 10207 //     movl(dst, unordered_result);
 10208 //     jcc(Assembler::parity, exit);
 10209 //     movl(dst, less_result);
 10210 //     jcc(Assembler::below, exit);
 10211 //     movl(dst, equal_result);
 10212 //     jcc(Assembler::equal, exit);
 10213 //     movl(dst, greater_result);
 10214 //   exit:
 10216 // P6 version of float compare, sets condition codes in EFLAGS
 10217 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10218   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10219   match(Set cr (CmpF src1 src2));
 10220   effect(KILL rax);
 10221   ins_cost(150);
 10222   format %{ "FLD    $src1\n\t"
 10223             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10224             "JNP    exit\n\t"
 10225             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10226             "SAHF\n"
 10227      "exit:\tNOP               // avoid branch to branch" %}
 10228   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10229   ins_encode( Push_Reg_DPR(src1),
 10230               OpcP, RegOpc(src2),
 10231               cmpF_P6_fixup );
 10232   ins_pipe( pipe_slow );
 10233 %}
 10235 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10236   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10237   match(Set cr (CmpF src1 src2));
 10238   ins_cost(100);
 10239   format %{ "FLD    $src1\n\t"
 10240             "FUCOMIP ST,$src2  // P6 instruction" %}
 10241   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10242   ins_encode( Push_Reg_DPR(src1),
 10243               OpcP, RegOpc(src2));
 10244   ins_pipe( pipe_slow );
 10245 %}
 10248 // Compare & branch
 10249 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10250   predicate(UseSSE == 0);
 10251   match(Set cr (CmpF src1 src2));
 10252   effect(KILL rax);
 10253   ins_cost(200);
 10254   format %{ "FLD    $src1\n\t"
 10255             "FCOMp  $src2\n\t"
 10256             "FNSTSW AX\n\t"
 10257             "TEST   AX,0x400\n\t"
 10258             "JZ,s   flags\n\t"
 10259             "MOV    AH,1\t# unordered treat as LT\n"
 10260     "flags:\tSAHF" %}
 10261   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10262   ins_encode( Push_Reg_DPR(src1),
 10263               OpcP, RegOpc(src2),
 10264               fpu_flags);
 10265   ins_pipe( pipe_slow );
 10266 %}
 10268 // Compare vs zero into -1,0,1
 10269 instruct cmpFPR_0(eRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10270   predicate(UseSSE == 0);
 10271   match(Set dst (CmpF3 src1 zero));
 10272   effect(KILL cr, KILL rax);
 10273   ins_cost(280);
 10274   format %{ "FTSTF  $dst,$src1" %}
 10275   opcode(0xE4, 0xD9);
 10276   ins_encode( Push_Reg_DPR(src1),
 10277               OpcS, OpcP, PopFPU,
 10278               CmpF_Result(dst));
 10279   ins_pipe( pipe_slow );
 10280 %}
 10282 // Compare into -1,0,1
 10283 instruct cmpFPR_reg(eRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10284   predicate(UseSSE == 0);
 10285   match(Set dst (CmpF3 src1 src2));
 10286   effect(KILL cr, KILL rax);
 10287   ins_cost(300);
 10288   format %{ "FCMPF  $dst,$src1,$src2" %}
 10289   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10290   ins_encode( Push_Reg_DPR(src1),
 10291               OpcP, RegOpc(src2),
 10292               CmpF_Result(dst));
 10293   ins_pipe( pipe_slow );
 10294 %}
 10296 // float compare and set condition codes in EFLAGS by XMM regs
 10297 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10298   predicate(UseSSE>=1);
 10299   match(Set cr (CmpF src1 src2));
 10300   ins_cost(145);
 10301   format %{ "UCOMISS $src1,$src2\n\t"
 10302             "JNP,s   exit\n\t"
 10303             "PUSHF\t# saw NaN, set CF\n\t"
 10304             "AND     [rsp], #0xffffff2b\n\t"
 10305             "POPF\n"
 10306     "exit:" %}
 10307   ins_encode %{
 10308     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10309     emit_cmpfp_fixup(_masm);
 10310   %}
 10311   ins_pipe( pipe_slow );
 10312 %}
 10314 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10315   predicate(UseSSE>=1);
 10316   match(Set cr (CmpF src1 src2));
 10317   ins_cost(100);
 10318   format %{ "UCOMISS $src1,$src2" %}
 10319   ins_encode %{
 10320     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10321   %}
 10322   ins_pipe( pipe_slow );
 10323 %}
 10325 // float compare and set condition codes in EFLAGS by XMM regs
 10326 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10327   predicate(UseSSE>=1);
 10328   match(Set cr (CmpF src1 (LoadF src2)));
 10329   ins_cost(165);
 10330   format %{ "UCOMISS $src1,$src2\n\t"
 10331             "JNP,s   exit\n\t"
 10332             "PUSHF\t# saw NaN, set CF\n\t"
 10333             "AND     [rsp], #0xffffff2b\n\t"
 10334             "POPF\n"
 10335     "exit:" %}
 10336   ins_encode %{
 10337     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10338     emit_cmpfp_fixup(_masm);
 10339   %}
 10340   ins_pipe( pipe_slow );
 10341 %}
 10343 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10344   predicate(UseSSE>=1);
 10345   match(Set cr (CmpF src1 (LoadF src2)));
 10346   ins_cost(100);
 10347   format %{ "UCOMISS $src1,$src2" %}
 10348   ins_encode %{
 10349     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10350   %}
 10351   ins_pipe( pipe_slow );
 10352 %}
 10354 // Compare into -1,0,1 in XMM
 10355 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10356   predicate(UseSSE>=1);
 10357   match(Set dst (CmpF3 src1 src2));
 10358   effect(KILL cr);
 10359   ins_cost(255);
 10360   format %{ "UCOMISS $src1, $src2\n\t"
 10361             "MOV     $dst, #-1\n\t"
 10362             "JP,s    done\n\t"
 10363             "JB,s    done\n\t"
 10364             "SETNE   $dst\n\t"
 10365             "MOVZB   $dst, $dst\n"
 10366     "done:" %}
 10367   ins_encode %{
 10368     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10369     emit_cmpfp3(_masm, $dst$$Register);
 10370   %}
 10371   ins_pipe( pipe_slow );
 10372 %}
 10374 // Compare into -1,0,1 in XMM and memory
 10375 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10376   predicate(UseSSE>=1);
 10377   match(Set dst (CmpF3 src1 (LoadF src2)));
 10378   effect(KILL cr);
 10379   ins_cost(275);
 10380   format %{ "UCOMISS $src1, $src2\n\t"
 10381             "MOV     $dst, #-1\n\t"
 10382             "JP,s    done\n\t"
 10383             "JB,s    done\n\t"
 10384             "SETNE   $dst\n\t"
 10385             "MOVZB   $dst, $dst\n"
 10386     "done:" %}
 10387   ins_encode %{
 10388     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10389     emit_cmpfp3(_masm, $dst$$Register);
 10390   %}
 10391   ins_pipe( pipe_slow );
 10392 %}
 10394 // Spill to obtain 24-bit precision
 10395 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10396   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10397   match(Set dst (SubF src1 src2));
 10399   format %{ "FSUB   $dst,$src1 - $src2" %}
 10400   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10401   ins_encode( Push_Reg_FPR(src1),
 10402               OpcReg_FPR(src2),
 10403               Pop_Mem_FPR(dst) );
 10404   ins_pipe( fpu_mem_reg_reg );
 10405 %}
 10406 //
 10407 // This instruction does not round to 24-bits
 10408 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10409   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10410   match(Set dst (SubF dst src));
 10412   format %{ "FSUB   $dst,$src" %}
 10413   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10414   ins_encode( Push_Reg_FPR(src),
 10415               OpcP, RegOpc(dst) );
 10416   ins_pipe( fpu_reg_reg );
 10417 %}
 10419 // Spill to obtain 24-bit precision
 10420 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10421   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10422   match(Set dst (AddF src1 src2));
 10424   format %{ "FADD   $dst,$src1,$src2" %}
 10425   opcode(0xD8, 0x0); /* D8 C0+i */
 10426   ins_encode( Push_Reg_FPR(src2),
 10427               OpcReg_FPR(src1),
 10428               Pop_Mem_FPR(dst) );
 10429   ins_pipe( fpu_mem_reg_reg );
 10430 %}
 10431 //
 10432 // This instruction does not round to 24-bits
 10433 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10434   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10435   match(Set dst (AddF dst src));
 10437   format %{ "FLD    $src\n\t"
 10438             "FADDp  $dst,ST" %}
 10439   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10440   ins_encode( Push_Reg_FPR(src),
 10441               OpcP, RegOpc(dst) );
 10442   ins_pipe( fpu_reg_reg );
 10443 %}
 10445 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10446   predicate(UseSSE==0);
 10447   match(Set dst (AbsF src));
 10448   ins_cost(100);
 10449   format %{ "FABS" %}
 10450   opcode(0xE1, 0xD9);
 10451   ins_encode( OpcS, OpcP );
 10452   ins_pipe( fpu_reg_reg );
 10453 %}
 10455 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10456   predicate(UseSSE==0);
 10457   match(Set dst (NegF src));
 10458   ins_cost(100);
 10459   format %{ "FCHS" %}
 10460   opcode(0xE0, 0xD9);
 10461   ins_encode( OpcS, OpcP );
 10462   ins_pipe( fpu_reg_reg );
 10463 %}
 10465 // Cisc-alternate to addFPR_reg
 10466 // Spill to obtain 24-bit precision
 10467 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10468   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10469   match(Set dst (AddF src1 (LoadF src2)));
 10471   format %{ "FLD    $src2\n\t"
 10472             "FADD   ST,$src1\n\t"
 10473             "FSTP_S $dst" %}
 10474   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10475   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10476               OpcReg_FPR(src1),
 10477               Pop_Mem_FPR(dst) );
 10478   ins_pipe( fpu_mem_reg_mem );
 10479 %}
 10480 //
 10481 // Cisc-alternate to addFPR_reg
 10482 // This instruction does not round to 24-bits
 10483 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10484   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10485   match(Set dst (AddF dst (LoadF src)));
 10487   format %{ "FADD   $dst,$src" %}
 10488   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10489   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10490               OpcP, RegOpc(dst) );
 10491   ins_pipe( fpu_reg_mem );
 10492 %}
 10494 // // Following two instructions for _222_mpegaudio
 10495 // Spill to obtain 24-bit precision
 10496 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10497   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10498   match(Set dst (AddF src1 src2));
 10500   format %{ "FADD   $dst,$src1,$src2" %}
 10501   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10502   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10503               OpcReg_FPR(src2),
 10504               Pop_Mem_FPR(dst) );
 10505   ins_pipe( fpu_mem_reg_mem );
 10506 %}
 10508 // Cisc-spill variant
 10509 // Spill to obtain 24-bit precision
 10510 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10511   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10512   match(Set dst (AddF src1 (LoadF src2)));
 10514   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10515   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10516   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10517               set_instruction_start,
 10518               OpcP, RMopc_Mem(secondary,src1),
 10519               Pop_Mem_FPR(dst) );
 10520   ins_pipe( fpu_mem_mem_mem );
 10521 %}
 10523 // Spill to obtain 24-bit precision
 10524 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10525   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10526   match(Set dst (AddF src1 src2));
 10528   format %{ "FADD   $dst,$src1,$src2" %}
 10529   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10530   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10531               set_instruction_start,
 10532               OpcP, RMopc_Mem(secondary,src1),
 10533               Pop_Mem_FPR(dst) );
 10534   ins_pipe( fpu_mem_mem_mem );
 10535 %}
 10538 // Spill to obtain 24-bit precision
 10539 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10540   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10541   match(Set dst (AddF src con));
 10542   format %{ "FLD    $src\n\t"
 10543             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10544             "FSTP_S $dst"  %}
 10545   ins_encode %{
 10546     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10547     __ fadd_s($constantaddress($con));
 10548     __ fstp_s(Address(rsp, $dst$$disp));
 10549   %}
 10550   ins_pipe(fpu_mem_reg_con);
 10551 %}
 10552 //
 10553 // This instruction does not round to 24-bits
 10554 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10555   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10556   match(Set dst (AddF src con));
 10557   format %{ "FLD    $src\n\t"
 10558             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10559             "FSTP   $dst"  %}
 10560   ins_encode %{
 10561     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10562     __ fadd_s($constantaddress($con));
 10563     __ fstp_d($dst$$reg);
 10564   %}
 10565   ins_pipe(fpu_reg_reg_con);
 10566 %}
 10568 // Spill to obtain 24-bit precision
 10569 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10570   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10571   match(Set dst (MulF src1 src2));
 10573   format %{ "FLD    $src1\n\t"
 10574             "FMUL   $src2\n\t"
 10575             "FSTP_S $dst"  %}
 10576   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10577   ins_encode( Push_Reg_FPR(src1),
 10578               OpcReg_FPR(src2),
 10579               Pop_Mem_FPR(dst) );
 10580   ins_pipe( fpu_mem_reg_reg );
 10581 %}
 10582 //
 10583 // This instruction does not round to 24-bits
 10584 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10585   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10586   match(Set dst (MulF src1 src2));
 10588   format %{ "FLD    $src1\n\t"
 10589             "FMUL   $src2\n\t"
 10590             "FSTP_S $dst"  %}
 10591   opcode(0xD8, 0x1); /* D8 C8+i */
 10592   ins_encode( Push_Reg_FPR(src2),
 10593               OpcReg_FPR(src1),
 10594               Pop_Reg_FPR(dst) );
 10595   ins_pipe( fpu_reg_reg_reg );
 10596 %}
 10599 // Spill to obtain 24-bit precision
 10600 // Cisc-alternate to reg-reg multiply
 10601 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10602   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10603   match(Set dst (MulF src1 (LoadF src2)));
 10605   format %{ "FLD_S  $src2\n\t"
 10606             "FMUL   $src1\n\t"
 10607             "FSTP_S $dst"  %}
 10608   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10609   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10610               OpcReg_FPR(src1),
 10611               Pop_Mem_FPR(dst) );
 10612   ins_pipe( fpu_mem_reg_mem );
 10613 %}
 10614 //
 10615 // This instruction does not round to 24-bits
 10616 // Cisc-alternate to reg-reg multiply
 10617 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10618   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10619   match(Set dst (MulF src1 (LoadF src2)));
 10621   format %{ "FMUL   $dst,$src1,$src2" %}
 10622   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10623   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10624               OpcReg_FPR(src1),
 10625               Pop_Reg_FPR(dst) );
 10626   ins_pipe( fpu_reg_reg_mem );
 10627 %}
 10629 // Spill to obtain 24-bit precision
 10630 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10631   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10632   match(Set dst (MulF src1 src2));
 10634   format %{ "FMUL   $dst,$src1,$src2" %}
 10635   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10636   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10637               set_instruction_start,
 10638               OpcP, RMopc_Mem(secondary,src1),
 10639               Pop_Mem_FPR(dst) );
 10640   ins_pipe( fpu_mem_mem_mem );
 10641 %}
 10643 // Spill to obtain 24-bit precision
 10644 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10645   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10646   match(Set dst (MulF src con));
 10648   format %{ "FLD    $src\n\t"
 10649             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10650             "FSTP_S $dst"  %}
 10651   ins_encode %{
 10652     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10653     __ fmul_s($constantaddress($con));
 10654     __ fstp_s(Address(rsp, $dst$$disp));
 10655   %}
 10656   ins_pipe(fpu_mem_reg_con);
 10657 %}
 10658 //
 10659 // This instruction does not round to 24-bits
 10660 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10661   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10662   match(Set dst (MulF src con));
 10664   format %{ "FLD    $src\n\t"
 10665             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10666             "FSTP   $dst"  %}
 10667   ins_encode %{
 10668     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10669     __ fmul_s($constantaddress($con));
 10670     __ fstp_d($dst$$reg);
 10671   %}
 10672   ins_pipe(fpu_reg_reg_con);
 10673 %}
 10676 //
 10677 // MACRO1 -- subsume unshared load into mulFPR
 10678 // This instruction does not round to 24-bits
 10679 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10680   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10681   match(Set dst (MulF (LoadF mem1) src));
 10683   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10684             "FMUL   ST,$src\n\t"
 10685             "FSTP   $dst" %}
 10686   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10687   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10688               OpcReg_FPR(src),
 10689               Pop_Reg_FPR(dst) );
 10690   ins_pipe( fpu_reg_reg_mem );
 10691 %}
 10692 //
 10693 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10694 // This instruction does not round to 24-bits
 10695 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10696   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10697   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10698   ins_cost(95);
 10700   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10701             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10702             "FADD   ST,$src2\n\t"
 10703             "FSTP   $dst" %}
 10704   opcode(0xD9); /* LoadF D9 /0 */
 10705   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10706               FMul_ST_reg(src1),
 10707               FAdd_ST_reg(src2),
 10708               Pop_Reg_FPR(dst) );
 10709   ins_pipe( fpu_reg_mem_reg_reg );
 10710 %}
 10712 // MACRO3 -- addFPR a mulFPR
 10713 // This instruction does not round to 24-bits.  It is a '2-address'
 10714 // instruction in that the result goes back to src2.  This eliminates
 10715 // a move from the macro; possibly the register allocator will have
 10716 // to add it back (and maybe not).
 10717 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10718   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10719   match(Set src2 (AddF (MulF src0 src1) src2));
 10721   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10722             "FMUL   ST,$src1\n\t"
 10723             "FADDP  $src2,ST" %}
 10724   opcode(0xD9); /* LoadF D9 /0 */
 10725   ins_encode( Push_Reg_FPR(src0),
 10726               FMul_ST_reg(src1),
 10727               FAddP_reg_ST(src2) );
 10728   ins_pipe( fpu_reg_reg_reg );
 10729 %}
 10731 // MACRO4 -- divFPR subFPR
 10732 // This instruction does not round to 24-bits
 10733 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10734   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10735   match(Set dst (DivF (SubF src2 src1) src3));
 10737   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10738             "FSUB   ST,$src1\n\t"
 10739             "FDIV   ST,$src3\n\t"
 10740             "FSTP  $dst" %}
 10741   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10742   ins_encode( Push_Reg_FPR(src2),
 10743               subFPR_divFPR_encode(src1,src3),
 10744               Pop_Reg_FPR(dst) );
 10745   ins_pipe( fpu_reg_reg_reg_reg );
 10746 %}
 10748 // Spill to obtain 24-bit precision
 10749 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10750   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10751   match(Set dst (DivF src1 src2));
 10753   format %{ "FDIV   $dst,$src1,$src2" %}
 10754   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10755   ins_encode( Push_Reg_FPR(src1),
 10756               OpcReg_FPR(src2),
 10757               Pop_Mem_FPR(dst) );
 10758   ins_pipe( fpu_mem_reg_reg );
 10759 %}
 10760 //
 10761 // This instruction does not round to 24-bits
 10762 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10763   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10764   match(Set dst (DivF dst src));
 10766   format %{ "FDIV   $dst,$src" %}
 10767   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10768   ins_encode( Push_Reg_FPR(src),
 10769               OpcP, RegOpc(dst) );
 10770   ins_pipe( fpu_reg_reg );
 10771 %}
 10774 // Spill to obtain 24-bit precision
 10775 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10776   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10777   match(Set dst (ModF src1 src2));
 10778   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10780   format %{ "FMOD   $dst,$src1,$src2" %}
 10781   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10782               emitModDPR(),
 10783               Push_Result_Mod_DPR(src2),
 10784               Pop_Mem_FPR(dst));
 10785   ins_pipe( pipe_slow );
 10786 %}
 10787 //
 10788 // This instruction does not round to 24-bits
 10789 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10790   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10791   match(Set dst (ModF dst src));
 10792   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10794   format %{ "FMOD   $dst,$src" %}
 10795   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10796               emitModDPR(),
 10797               Push_Result_Mod_DPR(src),
 10798               Pop_Reg_FPR(dst));
 10799   ins_pipe( pipe_slow );
 10800 %}
 10802 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10803   predicate(UseSSE>=1);
 10804   match(Set dst (ModF src0 src1));
 10805   effect(KILL rax, KILL cr);
 10806   format %{ "SUB    ESP,4\t # FMOD\n"
 10807           "\tMOVSS  [ESP+0],$src1\n"
 10808           "\tFLD_S  [ESP+0]\n"
 10809           "\tMOVSS  [ESP+0],$src0\n"
 10810           "\tFLD_S  [ESP+0]\n"
 10811      "loop:\tFPREM\n"
 10812           "\tFWAIT\n"
 10813           "\tFNSTSW AX\n"
 10814           "\tSAHF\n"
 10815           "\tJP     loop\n"
 10816           "\tFSTP_S [ESP+0]\n"
 10817           "\tMOVSS  $dst,[ESP+0]\n"
 10818           "\tADD    ESP,4\n"
 10819           "\tFSTP   ST0\t # Restore FPU Stack"
 10820     %}
 10821   ins_cost(250);
 10822   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10823   ins_pipe( pipe_slow );
 10824 %}
 10827 //----------Arithmetic Conversion Instructions---------------------------------
 10828 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10830 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10831   predicate(UseSSE==0);
 10832   match(Set dst (RoundFloat src));
 10833   ins_cost(125);
 10834   format %{ "FST_S  $dst,$src\t# F-round" %}
 10835   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10836   ins_pipe( fpu_mem_reg );
 10837 %}
 10839 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10840   predicate(UseSSE<=1);
 10841   match(Set dst (RoundDouble src));
 10842   ins_cost(125);
 10843   format %{ "FST_D  $dst,$src\t# D-round" %}
 10844   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10845   ins_pipe( fpu_mem_reg );
 10846 %}
 10848 // Force rounding to 24-bit precision and 6-bit exponent
 10849 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10850   predicate(UseSSE==0);
 10851   match(Set dst (ConvD2F src));
 10852   format %{ "FST_S  $dst,$src\t# F-round" %}
 10853   expand %{
 10854     roundFloat_mem_reg(dst,src);
 10855   %}
 10856 %}
 10858 // Force rounding to 24-bit precision and 6-bit exponent
 10859 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10860   predicate(UseSSE==1);
 10861   match(Set dst (ConvD2F src));
 10862   effect( KILL cr );
 10863   format %{ "SUB    ESP,4\n\t"
 10864             "FST_S  [ESP],$src\t# F-round\n\t"
 10865             "MOVSS  $dst,[ESP]\n\t"
 10866             "ADD ESP,4" %}
 10867   ins_encode %{
 10868     __ subptr(rsp, 4);
 10869     if ($src$$reg != FPR1L_enc) {
 10870       __ fld_s($src$$reg-1);
 10871       __ fstp_s(Address(rsp, 0));
 10872     } else {
 10873       __ fst_s(Address(rsp, 0));
 10875     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10876     __ addptr(rsp, 4);
 10877   %}
 10878   ins_pipe( pipe_slow );
 10879 %}
 10881 // Force rounding double precision to single precision
 10882 instruct convD2F_reg(regF dst, regD src) %{
 10883   predicate(UseSSE>=2);
 10884   match(Set dst (ConvD2F src));
 10885   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10886   ins_encode %{
 10887     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10888   %}
 10889   ins_pipe( pipe_slow );
 10890 %}
 10892 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10893   predicate(UseSSE==0);
 10894   match(Set dst (ConvF2D src));
 10895   format %{ "FST_S  $dst,$src\t# D-round" %}
 10896   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10897   ins_pipe( fpu_reg_reg );
 10898 %}
 10900 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10901   predicate(UseSSE==1);
 10902   match(Set dst (ConvF2D src));
 10903   format %{ "FST_D  $dst,$src\t# D-round" %}
 10904   expand %{
 10905     roundDouble_mem_reg(dst,src);
 10906   %}
 10907 %}
 10909 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10910   predicate(UseSSE==1);
 10911   match(Set dst (ConvF2D src));
 10912   effect( KILL cr );
 10913   format %{ "SUB    ESP,4\n\t"
 10914             "MOVSS  [ESP] $src\n\t"
 10915             "FLD_S  [ESP]\n\t"
 10916             "ADD    ESP,4\n\t"
 10917             "FSTP   $dst\t# D-round" %}
 10918   ins_encode %{
 10919     __ subptr(rsp, 4);
 10920     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10921     __ fld_s(Address(rsp, 0));
 10922     __ addptr(rsp, 4);
 10923     __ fstp_d($dst$$reg);
 10924   %}
 10925   ins_pipe( pipe_slow );
 10926 %}
 10928 instruct convF2D_reg(regD dst, regF src) %{
 10929   predicate(UseSSE>=2);
 10930   match(Set dst (ConvF2D src));
 10931   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10932   ins_encode %{
 10933     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10934   %}
 10935   ins_pipe( pipe_slow );
 10936 %}
 10938 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10939 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10940   predicate(UseSSE<=1);
 10941   match(Set dst (ConvD2I src));
 10942   effect( KILL tmp, KILL cr );
 10943   format %{ "FLD    $src\t# Convert double to int \n\t"
 10944             "FLDCW  trunc mode\n\t"
 10945             "SUB    ESP,4\n\t"
 10946             "FISTp  [ESP + #0]\n\t"
 10947             "FLDCW  std/24-bit mode\n\t"
 10948             "POP    EAX\n\t"
 10949             "CMP    EAX,0x80000000\n\t"
 10950             "JNE,s  fast\n\t"
 10951             "FLD_D  $src\n\t"
 10952             "CALL   d2i_wrapper\n"
 10953       "fast:" %}
 10954   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10955   ins_pipe( pipe_slow );
 10956 %}
 10958 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10959 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10960   predicate(UseSSE>=2);
 10961   match(Set dst (ConvD2I src));
 10962   effect( KILL tmp, KILL cr );
 10963   format %{ "CVTTSD2SI $dst, $src\n\t"
 10964             "CMP    $dst,0x80000000\n\t"
 10965             "JNE,s  fast\n\t"
 10966             "SUB    ESP, 8\n\t"
 10967             "MOVSD  [ESP], $src\n\t"
 10968             "FLD_D  [ESP]\n\t"
 10969             "ADD    ESP, 8\n\t"
 10970             "CALL   d2i_wrapper\n"
 10971       "fast:" %}
 10972   ins_encode %{
 10973     Label fast;
 10974     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10975     __ cmpl($dst$$Register, 0x80000000);
 10976     __ jccb(Assembler::notEqual, fast);
 10977     __ subptr(rsp, 8);
 10978     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10979     __ fld_d(Address(rsp, 0));
 10980     __ addptr(rsp, 8);
 10981     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10982     __ bind(fast);
 10983   %}
 10984   ins_pipe( pipe_slow );
 10985 %}
 10987 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10988   predicate(UseSSE<=1);
 10989   match(Set dst (ConvD2L src));
 10990   effect( KILL cr );
 10991   format %{ "FLD    $src\t# Convert double to long\n\t"
 10992             "FLDCW  trunc mode\n\t"
 10993             "SUB    ESP,8\n\t"
 10994             "FISTp  [ESP + #0]\n\t"
 10995             "FLDCW  std/24-bit mode\n\t"
 10996             "POP    EAX\n\t"
 10997             "POP    EDX\n\t"
 10998             "CMP    EDX,0x80000000\n\t"
 10999             "JNE,s  fast\n\t"
 11000             "TEST   EAX,EAX\n\t"
 11001             "JNE,s  fast\n\t"
 11002             "FLD    $src\n\t"
 11003             "CALL   d2l_wrapper\n"
 11004       "fast:" %}
 11005   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 11006   ins_pipe( pipe_slow );
 11007 %}
 11009 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11010 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11011   predicate (UseSSE>=2);
 11012   match(Set dst (ConvD2L src));
 11013   effect( KILL cr );
 11014   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11015             "MOVSD  [ESP],$src\n\t"
 11016             "FLD_D  [ESP]\n\t"
 11017             "FLDCW  trunc mode\n\t"
 11018             "FISTp  [ESP + #0]\n\t"
 11019             "FLDCW  std/24-bit mode\n\t"
 11020             "POP    EAX\n\t"
 11021             "POP    EDX\n\t"
 11022             "CMP    EDX,0x80000000\n\t"
 11023             "JNE,s  fast\n\t"
 11024             "TEST   EAX,EAX\n\t"
 11025             "JNE,s  fast\n\t"
 11026             "SUB    ESP,8\n\t"
 11027             "MOVSD  [ESP],$src\n\t"
 11028             "FLD_D  [ESP]\n\t"
 11029             "ADD    ESP,8\n\t"
 11030             "CALL   d2l_wrapper\n"
 11031       "fast:" %}
 11032   ins_encode %{
 11033     Label fast;
 11034     __ subptr(rsp, 8);
 11035     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11036     __ fld_d(Address(rsp, 0));
 11037     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11038     __ fistp_d(Address(rsp, 0));
 11039     // Restore the rounding mode, mask the exception
 11040     if (Compile::current()->in_24_bit_fp_mode()) {
 11041       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11042     } else {
 11043       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11045     // Load the converted long, adjust CPU stack
 11046     __ pop(rax);
 11047     __ pop(rdx);
 11048     __ cmpl(rdx, 0x80000000);
 11049     __ jccb(Assembler::notEqual, fast);
 11050     __ testl(rax, rax);
 11051     __ jccb(Assembler::notEqual, fast);
 11052     __ subptr(rsp, 8);
 11053     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11054     __ fld_d(Address(rsp, 0));
 11055     __ addptr(rsp, 8);
 11056     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11057     __ bind(fast);
 11058   %}
 11059   ins_pipe( pipe_slow );
 11060 %}
 11062 // Convert a double to an int.  Java semantics require we do complex
 11063 // manglations in the corner cases.  So we set the rounding mode to
 11064 // 'zero', store the darned double down as an int, and reset the
 11065 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11066 // if we would overflow or converted a NAN; we check for this and
 11067 // and go the slow path if needed.
 11068 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 11069   predicate(UseSSE==0);
 11070   match(Set dst (ConvF2I src));
 11071   effect( KILL tmp, KILL cr );
 11072   format %{ "FLD    $src\t# Convert float to int \n\t"
 11073             "FLDCW  trunc mode\n\t"
 11074             "SUB    ESP,4\n\t"
 11075             "FISTp  [ESP + #0]\n\t"
 11076             "FLDCW  std/24-bit mode\n\t"
 11077             "POP    EAX\n\t"
 11078             "CMP    EAX,0x80000000\n\t"
 11079             "JNE,s  fast\n\t"
 11080             "FLD    $src\n\t"
 11081             "CALL   d2i_wrapper\n"
 11082       "fast:" %}
 11083   // DPR2I_encoding works for FPR2I
 11084   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 11085   ins_pipe( pipe_slow );
 11086 %}
 11088 // Convert a float in xmm to an int reg.
 11089 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11090   predicate(UseSSE>=1);
 11091   match(Set dst (ConvF2I src));
 11092   effect( KILL tmp, KILL cr );
 11093   format %{ "CVTTSS2SI $dst, $src\n\t"
 11094             "CMP    $dst,0x80000000\n\t"
 11095             "JNE,s  fast\n\t"
 11096             "SUB    ESP, 4\n\t"
 11097             "MOVSS  [ESP], $src\n\t"
 11098             "FLD    [ESP]\n\t"
 11099             "ADD    ESP, 4\n\t"
 11100             "CALL   d2i_wrapper\n"
 11101       "fast:" %}
 11102   ins_encode %{
 11103     Label fast;
 11104     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11105     __ cmpl($dst$$Register, 0x80000000);
 11106     __ jccb(Assembler::notEqual, fast);
 11107     __ subptr(rsp, 4);
 11108     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11109     __ fld_s(Address(rsp, 0));
 11110     __ addptr(rsp, 4);
 11111     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11112     __ bind(fast);
 11113   %}
 11114   ins_pipe( pipe_slow );
 11115 %}
 11117 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11118   predicate(UseSSE==0);
 11119   match(Set dst (ConvF2L src));
 11120   effect( KILL cr );
 11121   format %{ "FLD    $src\t# Convert float to long\n\t"
 11122             "FLDCW  trunc mode\n\t"
 11123             "SUB    ESP,8\n\t"
 11124             "FISTp  [ESP + #0]\n\t"
 11125             "FLDCW  std/24-bit mode\n\t"
 11126             "POP    EAX\n\t"
 11127             "POP    EDX\n\t"
 11128             "CMP    EDX,0x80000000\n\t"
 11129             "JNE,s  fast\n\t"
 11130             "TEST   EAX,EAX\n\t"
 11131             "JNE,s  fast\n\t"
 11132             "FLD    $src\n\t"
 11133             "CALL   d2l_wrapper\n"
 11134       "fast:" %}
 11135   // DPR2L_encoding works for FPR2L
 11136   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11137   ins_pipe( pipe_slow );
 11138 %}
 11140 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11141 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11142   predicate (UseSSE>=1);
 11143   match(Set dst (ConvF2L src));
 11144   effect( KILL cr );
 11145   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11146             "MOVSS  [ESP],$src\n\t"
 11147             "FLD_S  [ESP]\n\t"
 11148             "FLDCW  trunc mode\n\t"
 11149             "FISTp  [ESP + #0]\n\t"
 11150             "FLDCW  std/24-bit mode\n\t"
 11151             "POP    EAX\n\t"
 11152             "POP    EDX\n\t"
 11153             "CMP    EDX,0x80000000\n\t"
 11154             "JNE,s  fast\n\t"
 11155             "TEST   EAX,EAX\n\t"
 11156             "JNE,s  fast\n\t"
 11157             "SUB    ESP,4\t# Convert float to long\n\t"
 11158             "MOVSS  [ESP],$src\n\t"
 11159             "FLD_S  [ESP]\n\t"
 11160             "ADD    ESP,4\n\t"
 11161             "CALL   d2l_wrapper\n"
 11162       "fast:" %}
 11163   ins_encode %{
 11164     Label fast;
 11165     __ subptr(rsp, 8);
 11166     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11167     __ fld_s(Address(rsp, 0));
 11168     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11169     __ fistp_d(Address(rsp, 0));
 11170     // Restore the rounding mode, mask the exception
 11171     if (Compile::current()->in_24_bit_fp_mode()) {
 11172       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11173     } else {
 11174       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11176     // Load the converted long, adjust CPU stack
 11177     __ pop(rax);
 11178     __ pop(rdx);
 11179     __ cmpl(rdx, 0x80000000);
 11180     __ jccb(Assembler::notEqual, fast);
 11181     __ testl(rax, rax);
 11182     __ jccb(Assembler::notEqual, fast);
 11183     __ subptr(rsp, 4);
 11184     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11185     __ fld_s(Address(rsp, 0));
 11186     __ addptr(rsp, 4);
 11187     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11188     __ bind(fast);
 11189   %}
 11190   ins_pipe( pipe_slow );
 11191 %}
 11193 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11194   predicate( UseSSE<=1 );
 11195   match(Set dst (ConvI2D src));
 11196   format %{ "FILD   $src\n\t"
 11197             "FSTP   $dst" %}
 11198   opcode(0xDB, 0x0);  /* DB /0 */
 11199   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11200   ins_pipe( fpu_reg_mem );
 11201 %}
 11203 instruct convI2D_reg(regD dst, eRegI src) %{
 11204   predicate( UseSSE>=2 && !UseXmmI2D );
 11205   match(Set dst (ConvI2D src));
 11206   format %{ "CVTSI2SD $dst,$src" %}
 11207   ins_encode %{
 11208     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11209   %}
 11210   ins_pipe( pipe_slow );
 11211 %}
 11213 instruct convI2D_mem(regD dst, memory mem) %{
 11214   predicate( UseSSE>=2 );
 11215   match(Set dst (ConvI2D (LoadI mem)));
 11216   format %{ "CVTSI2SD $dst,$mem" %}
 11217   ins_encode %{
 11218     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11219   %}
 11220   ins_pipe( pipe_slow );
 11221 %}
 11223 instruct convXI2D_reg(regD dst, eRegI src)
 11224 %{
 11225   predicate( UseSSE>=2 && UseXmmI2D );
 11226   match(Set dst (ConvI2D src));
 11228   format %{ "MOVD  $dst,$src\n\t"
 11229             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11230   ins_encode %{
 11231     __ movdl($dst$$XMMRegister, $src$$Register);
 11232     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11233   %}
 11234   ins_pipe(pipe_slow); // XXX
 11235 %}
 11237 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11238   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11239   match(Set dst (ConvI2D (LoadI mem)));
 11240   format %{ "FILD   $mem\n\t"
 11241             "FSTP   $dst" %}
 11242   opcode(0xDB);      /* DB /0 */
 11243   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11244               Pop_Reg_DPR(dst));
 11245   ins_pipe( fpu_reg_mem );
 11246 %}
 11248 // Convert a byte to a float; no rounding step needed.
 11249 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11250   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11251   match(Set dst (ConvI2F src));
 11252   format %{ "FILD   $src\n\t"
 11253             "FSTP   $dst" %}
 11255   opcode(0xDB, 0x0);  /* DB /0 */
 11256   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11257   ins_pipe( fpu_reg_mem );
 11258 %}
 11260 // In 24-bit mode, force exponent rounding by storing back out
 11261 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11262   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11263   match(Set dst (ConvI2F src));
 11264   ins_cost(200);
 11265   format %{ "FILD   $src\n\t"
 11266             "FSTP_S $dst" %}
 11267   opcode(0xDB, 0x0);  /* DB /0 */
 11268   ins_encode( Push_Mem_I(src),
 11269               Pop_Mem_FPR(dst));
 11270   ins_pipe( fpu_mem_mem );
 11271 %}
 11273 // In 24-bit mode, force exponent rounding by storing back out
 11274 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11275   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11276   match(Set dst (ConvI2F (LoadI mem)));
 11277   ins_cost(200);
 11278   format %{ "FILD   $mem\n\t"
 11279             "FSTP_S $dst" %}
 11280   opcode(0xDB);  /* DB /0 */
 11281   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11282               Pop_Mem_FPR(dst));
 11283   ins_pipe( fpu_mem_mem );
 11284 %}
 11286 // This instruction does not round to 24-bits
 11287 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11288   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11289   match(Set dst (ConvI2F src));
 11290   format %{ "FILD   $src\n\t"
 11291             "FSTP   $dst" %}
 11292   opcode(0xDB, 0x0);  /* DB /0 */
 11293   ins_encode( Push_Mem_I(src),
 11294               Pop_Reg_FPR(dst));
 11295   ins_pipe( fpu_reg_mem );
 11296 %}
 11298 // This instruction does not round to 24-bits
 11299 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11300   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11301   match(Set dst (ConvI2F (LoadI mem)));
 11302   format %{ "FILD   $mem\n\t"
 11303             "FSTP   $dst" %}
 11304   opcode(0xDB);      /* DB /0 */
 11305   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11306               Pop_Reg_FPR(dst));
 11307   ins_pipe( fpu_reg_mem );
 11308 %}
 11310 // Convert an int to a float in xmm; no rounding step needed.
 11311 instruct convI2F_reg(regF dst, eRegI src) %{
 11312   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11313   match(Set dst (ConvI2F src));
 11314   format %{ "CVTSI2SS $dst, $src" %}
 11315   ins_encode %{
 11316     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11317   %}
 11318   ins_pipe( pipe_slow );
 11319 %}
 11321  instruct convXI2F_reg(regF dst, eRegI src)
 11322 %{
 11323   predicate( UseSSE>=2 && UseXmmI2F );
 11324   match(Set dst (ConvI2F src));
 11326   format %{ "MOVD  $dst,$src\n\t"
 11327             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11328   ins_encode %{
 11329     __ movdl($dst$$XMMRegister, $src$$Register);
 11330     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11331   %}
 11332   ins_pipe(pipe_slow); // XXX
 11333 %}
 11335 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11336   match(Set dst (ConvI2L src));
 11337   effect(KILL cr);
 11338   ins_cost(375);
 11339   format %{ "MOV    $dst.lo,$src\n\t"
 11340             "MOV    $dst.hi,$src\n\t"
 11341             "SAR    $dst.hi,31" %}
 11342   ins_encode(convert_int_long(dst,src));
 11343   ins_pipe( ialu_reg_reg_long );
 11344 %}
 11346 // Zero-extend convert int to long
 11347 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11348   match(Set dst (AndL (ConvI2L src) mask) );
 11349   effect( KILL flags );
 11350   ins_cost(250);
 11351   format %{ "MOV    $dst.lo,$src\n\t"
 11352             "XOR    $dst.hi,$dst.hi" %}
 11353   opcode(0x33); // XOR
 11354   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11355   ins_pipe( ialu_reg_reg_long );
 11356 %}
 11358 // Zero-extend long
 11359 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11360   match(Set dst (AndL src mask) );
 11361   effect( KILL flags );
 11362   ins_cost(250);
 11363   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11364             "XOR    $dst.hi,$dst.hi\n\t" %}
 11365   opcode(0x33); // XOR
 11366   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11367   ins_pipe( ialu_reg_reg_long );
 11368 %}
 11370 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11371   predicate (UseSSE<=1);
 11372   match(Set dst (ConvL2D src));
 11373   effect( KILL cr );
 11374   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11375             "PUSH   $src.lo\n\t"
 11376             "FILD   ST,[ESP + #0]\n\t"
 11377             "ADD    ESP,8\n\t"
 11378             "FSTP_D $dst\t# D-round" %}
 11379   opcode(0xDF, 0x5);  /* DF /5 */
 11380   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11381   ins_pipe( pipe_slow );
 11382 %}
 11384 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11385   predicate (UseSSE>=2);
 11386   match(Set dst (ConvL2D src));
 11387   effect( KILL cr );
 11388   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11389             "PUSH   $src.lo\n\t"
 11390             "FILD_D [ESP]\n\t"
 11391             "FSTP_D [ESP]\n\t"
 11392             "MOVSD  $dst,[ESP]\n\t"
 11393             "ADD    ESP,8" %}
 11394   opcode(0xDF, 0x5);  /* DF /5 */
 11395   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11396   ins_pipe( pipe_slow );
 11397 %}
 11399 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11400   predicate (UseSSE>=1);
 11401   match(Set dst (ConvL2F src));
 11402   effect( KILL cr );
 11403   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11404             "PUSH   $src.lo\n\t"
 11405             "FILD_D [ESP]\n\t"
 11406             "FSTP_S [ESP]\n\t"
 11407             "MOVSS  $dst,[ESP]\n\t"
 11408             "ADD    ESP,8" %}
 11409   opcode(0xDF, 0x5);  /* DF /5 */
 11410   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11411   ins_pipe( pipe_slow );
 11412 %}
 11414 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11415   match(Set dst (ConvL2F src));
 11416   effect( KILL cr );
 11417   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11418             "PUSH   $src.lo\n\t"
 11419             "FILD   ST,[ESP + #0]\n\t"
 11420             "ADD    ESP,8\n\t"
 11421             "FSTP_S $dst\t# F-round" %}
 11422   opcode(0xDF, 0x5);  /* DF /5 */
 11423   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11424   ins_pipe( pipe_slow );
 11425 %}
 11427 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11428   match(Set dst (ConvL2I src));
 11429   effect( DEF dst, USE src );
 11430   format %{ "MOV    $dst,$src.lo" %}
 11431   ins_encode(enc_CopyL_Lo(dst,src));
 11432   ins_pipe( ialu_reg_reg );
 11433 %}
 11436 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11437   match(Set dst (MoveF2I src));
 11438   effect( DEF dst, USE src );
 11439   ins_cost(100);
 11440   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11441   ins_encode %{
 11442     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11443   %}
 11444   ins_pipe( ialu_reg_mem );
 11445 %}
 11447 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11448   predicate(UseSSE==0);
 11449   match(Set dst (MoveF2I src));
 11450   effect( DEF dst, USE src );
 11452   ins_cost(125);
 11453   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11454   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11455   ins_pipe( fpu_mem_reg );
 11456 %}
 11458 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11459   predicate(UseSSE>=1);
 11460   match(Set dst (MoveF2I src));
 11461   effect( DEF dst, USE src );
 11463   ins_cost(95);
 11464   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11465   ins_encode %{
 11466     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11467   %}
 11468   ins_pipe( pipe_slow );
 11469 %}
 11471 instruct MoveF2I_reg_reg_sse(eRegI dst, regF src) %{
 11472   predicate(UseSSE>=2);
 11473   match(Set dst (MoveF2I src));
 11474   effect( DEF dst, USE src );
 11475   ins_cost(85);
 11476   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11477   ins_encode %{
 11478     __ movdl($dst$$Register, $src$$XMMRegister);
 11479   %}
 11480   ins_pipe( pipe_slow );
 11481 %}
 11483 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11484   match(Set dst (MoveI2F src));
 11485   effect( DEF dst, USE src );
 11487   ins_cost(100);
 11488   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11489   ins_encode %{
 11490     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11491   %}
 11492   ins_pipe( ialu_mem_reg );
 11493 %}
 11496 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11497   predicate(UseSSE==0);
 11498   match(Set dst (MoveI2F src));
 11499   effect(DEF dst, USE src);
 11501   ins_cost(125);
 11502   format %{ "FLD_S  $src\n\t"
 11503             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11504   opcode(0xD9);               /* D9 /0, FLD m32real */
 11505   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11506               Pop_Reg_FPR(dst) );
 11507   ins_pipe( fpu_reg_mem );
 11508 %}
 11510 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11511   predicate(UseSSE>=1);
 11512   match(Set dst (MoveI2F src));
 11513   effect( DEF dst, USE src );
 11515   ins_cost(95);
 11516   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11517   ins_encode %{
 11518     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11519   %}
 11520   ins_pipe( pipe_slow );
 11521 %}
 11523 instruct MoveI2F_reg_reg_sse(regF dst, eRegI src) %{
 11524   predicate(UseSSE>=2);
 11525   match(Set dst (MoveI2F src));
 11526   effect( DEF dst, USE src );
 11528   ins_cost(85);
 11529   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11530   ins_encode %{
 11531     __ movdl($dst$$XMMRegister, $src$$Register);
 11532   %}
 11533   ins_pipe( pipe_slow );
 11534 %}
 11536 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11537   match(Set dst (MoveD2L src));
 11538   effect(DEF dst, USE src);
 11540   ins_cost(250);
 11541   format %{ "MOV    $dst.lo,$src\n\t"
 11542             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11543   opcode(0x8B, 0x8B);
 11544   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11545   ins_pipe( ialu_mem_long_reg );
 11546 %}
 11548 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11549   predicate(UseSSE<=1);
 11550   match(Set dst (MoveD2L src));
 11551   effect(DEF dst, USE src);
 11553   ins_cost(125);
 11554   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11555   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11556   ins_pipe( fpu_mem_reg );
 11557 %}
 11559 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11560   predicate(UseSSE>=2);
 11561   match(Set dst (MoveD2L src));
 11562   effect(DEF dst, USE src);
 11563   ins_cost(95);
 11564   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11565   ins_encode %{
 11566     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11567   %}
 11568   ins_pipe( pipe_slow );
 11569 %}
 11571 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11572   predicate(UseSSE>=2);
 11573   match(Set dst (MoveD2L src));
 11574   effect(DEF dst, USE src, TEMP tmp);
 11575   ins_cost(85);
 11576   format %{ "MOVD   $dst.lo,$src\n\t"
 11577             "PSHUFLW $tmp,$src,0x4E\n\t"
 11578             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11579   ins_encode %{
 11580     __ movdl($dst$$Register, $src$$XMMRegister);
 11581     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11582     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11583   %}
 11584   ins_pipe( pipe_slow );
 11585 %}
 11587 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11588   match(Set dst (MoveL2D src));
 11589   effect(DEF dst, USE src);
 11591   ins_cost(200);
 11592   format %{ "MOV    $dst,$src.lo\n\t"
 11593             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11594   opcode(0x89, 0x89);
 11595   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11596   ins_pipe( ialu_mem_long_reg );
 11597 %}
 11600 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11601   predicate(UseSSE<=1);
 11602   match(Set dst (MoveL2D src));
 11603   effect(DEF dst, USE src);
 11604   ins_cost(125);
 11606   format %{ "FLD_D  $src\n\t"
 11607             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11608   opcode(0xDD);               /* DD /0, FLD m64real */
 11609   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11610               Pop_Reg_DPR(dst) );
 11611   ins_pipe( fpu_reg_mem );
 11612 %}
 11615 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11616   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11617   match(Set dst (MoveL2D src));
 11618   effect(DEF dst, USE src);
 11620   ins_cost(95);
 11621   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11622   ins_encode %{
 11623     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11624   %}
 11625   ins_pipe( pipe_slow );
 11626 %}
 11628 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11629   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11630   match(Set dst (MoveL2D src));
 11631   effect(DEF dst, USE src);
 11633   ins_cost(95);
 11634   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11635   ins_encode %{
 11636     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11637   %}
 11638   ins_pipe( pipe_slow );
 11639 %}
 11641 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11642   predicate(UseSSE>=2);
 11643   match(Set dst (MoveL2D src));
 11644   effect(TEMP dst, USE src, TEMP tmp);
 11645   ins_cost(85);
 11646   format %{ "MOVD   $dst,$src.lo\n\t"
 11647             "MOVD   $tmp,$src.hi\n\t"
 11648             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11649   ins_encode %{
 11650     __ movdl($dst$$XMMRegister, $src$$Register);
 11651     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11652     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11653   %}
 11654   ins_pipe( pipe_slow );
 11655 %}
 11657 // Replicate scalar to packed byte (1 byte) values in xmm
 11658 instruct Repl8B_reg(regD dst, regD src) %{
 11659   predicate(UseSSE>=2);
 11660   match(Set dst (Replicate8B src));
 11661   format %{ "MOVDQA  $dst,$src\n\t"
 11662             "PUNPCKLBW $dst,$dst\n\t"
 11663             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11664   ins_encode %{
 11665     if ($dst$$reg != $src$$reg) {
 11666       __ movdqa($dst$$XMMRegister, $src$$XMMRegister);
 11668     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11669     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11670   %}
 11671   ins_pipe( pipe_slow );
 11672 %}
 11674 // Replicate scalar to packed byte (1 byte) values in xmm
 11675 instruct Repl8B_eRegI(regD dst, eRegI src) %{
 11676   predicate(UseSSE>=2);
 11677   match(Set dst (Replicate8B src));
 11678   format %{ "MOVD    $dst,$src\n\t"
 11679             "PUNPCKLBW $dst,$dst\n\t"
 11680             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11681   ins_encode %{
 11682     __ movdl($dst$$XMMRegister, $src$$Register);
 11683     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11684     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11685   %}
 11686   ins_pipe( pipe_slow );
 11687 %}
 11689 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11690 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11691   predicate(UseSSE>=2);
 11692   match(Set dst (Replicate8B zero));
 11693   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11694   ins_encode %{
 11695     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11696   %}
 11697   ins_pipe( fpu_reg_reg );
 11698 %}
 11700 // Replicate scalar to packed shore (2 byte) values in xmm
 11701 instruct Repl4S_reg(regD dst, regD src) %{
 11702   predicate(UseSSE>=2);
 11703   match(Set dst (Replicate4S src));
 11704   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11705   ins_encode %{
 11706     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11707   %}
 11708   ins_pipe( fpu_reg_reg );
 11709 %}
 11711 // Replicate scalar to packed shore (2 byte) values in xmm
 11712 instruct Repl4S_eRegI(regD dst, eRegI src) %{
 11713   predicate(UseSSE>=2);
 11714   match(Set dst (Replicate4S src));
 11715   format %{ "MOVD    $dst,$src\n\t"
 11716             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11717   ins_encode %{
 11718     __ movdl($dst$$XMMRegister, $src$$Register);
 11719     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11720   %}
 11721   ins_pipe( fpu_reg_reg );
 11722 %}
 11724 // Replicate scalar zero to packed short (2 byte) values in xmm
 11725 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11726   predicate(UseSSE>=2);
 11727   match(Set dst (Replicate4S zero));
 11728   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11729   ins_encode %{
 11730     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11731   %}
 11732   ins_pipe( fpu_reg_reg );
 11733 %}
 11735 // Replicate scalar to packed char (2 byte) values in xmm
 11736 instruct Repl4C_reg(regD dst, regD src) %{
 11737   predicate(UseSSE>=2);
 11738   match(Set dst (Replicate4C src));
 11739   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11740   ins_encode %{
 11741     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11742   %}
 11743   ins_pipe( fpu_reg_reg );
 11744 %}
 11746 // Replicate scalar to packed char (2 byte) values in xmm
 11747 instruct Repl4C_eRegI(regD dst, eRegI src) %{
 11748   predicate(UseSSE>=2);
 11749   match(Set dst (Replicate4C src));
 11750   format %{ "MOVD    $dst,$src\n\t"
 11751             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11752   ins_encode %{
 11753     __ movdl($dst$$XMMRegister, $src$$Register);
 11754     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11755   %}
 11756   ins_pipe( fpu_reg_reg );
 11757 %}
 11759 // Replicate scalar zero to packed char (2 byte) values in xmm
 11760 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11761   predicate(UseSSE>=2);
 11762   match(Set dst (Replicate4C zero));
 11763   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11764   ins_encode %{
 11765     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11766   %}
 11767   ins_pipe( fpu_reg_reg );
 11768 %}
 11770 // Replicate scalar to packed integer (4 byte) values in xmm
 11771 instruct Repl2I_reg(regD dst, regD src) %{
 11772   predicate(UseSSE>=2);
 11773   match(Set dst (Replicate2I src));
 11774   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11775   ins_encode %{
 11776     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11777   %}
 11778   ins_pipe( fpu_reg_reg );
 11779 %}
 11781 // Replicate scalar to packed integer (4 byte) values in xmm
 11782 instruct Repl2I_eRegI(regD dst, eRegI src) %{
 11783   predicate(UseSSE>=2);
 11784   match(Set dst (Replicate2I src));
 11785   format %{ "MOVD   $dst,$src\n\t"
 11786             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11787   ins_encode %{
 11788     __ movdl($dst$$XMMRegister, $src$$Register);
 11789     __ pshufd($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11790   %}
 11791   ins_pipe( fpu_reg_reg );
 11792 %}
 11794 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11795 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11796   predicate(UseSSE>=2);
 11797   match(Set dst (Replicate2I zero));
 11798   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11799   ins_encode %{
 11800     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11801   %}
 11802   ins_pipe( fpu_reg_reg );
 11803 %}
 11805 // Replicate scalar to packed single precision floating point values in xmm
 11806 instruct Repl2F_reg(regD dst, regD src) %{
 11807   predicate(UseSSE>=2);
 11808   match(Set dst (Replicate2F src));
 11809   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11810   ins_encode %{
 11811     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11812   %}
 11813   ins_pipe( fpu_reg_reg );
 11814 %}
 11816 // Replicate scalar to packed single precision floating point values in xmm
 11817 instruct Repl2F_regF(regD dst, regF src) %{
 11818   predicate(UseSSE>=2);
 11819   match(Set dst (Replicate2F src));
 11820   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11821   ins_encode %{
 11822     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11823   %}
 11824   ins_pipe( fpu_reg_reg );
 11825 %}
 11827 // Replicate scalar to packed single precision floating point values in xmm
 11828 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11829   predicate(UseSSE>=2);
 11830   match(Set dst (Replicate2F zero));
 11831   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11832   ins_encode %{
 11833     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11834   %}
 11835   ins_pipe( fpu_reg_reg );
 11836 %}
 11838 // =======================================================================
 11839 // fast clearing of an array
 11840 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11841   match(Set dummy (ClearArray cnt base));
 11842   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11843   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11844             "XOR    EAX,EAX\n\t"
 11845             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11846   opcode(0,0x4);
 11847   ins_encode( Opcode(0xD1), RegOpc(ECX),
 11848               OpcRegReg(0x33,EAX,EAX),
 11849               Opcode(0xF3), Opcode(0xAB) );
 11850   ins_pipe( pipe_slow );
 11851 %}
 11853 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11854                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11855   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11856   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11858   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11859   ins_encode %{
 11860     __ string_compare($str1$$Register, $str2$$Register,
 11861                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11862                       $tmp1$$XMMRegister);
 11863   %}
 11864   ins_pipe( pipe_slow );
 11865 %}
 11867 // fast string equals
 11868 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11869                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11870   match(Set result (StrEquals (Binary str1 str2) cnt));
 11871   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11873   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11874   ins_encode %{
 11875     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11876                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11877                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11878   %}
 11879   ins_pipe( pipe_slow );
 11880 %}
 11882 // fast search of substring with known size.
 11883 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11884                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11885   predicate(UseSSE42Intrinsics);
 11886   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11887   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11889   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11890   ins_encode %{
 11891     int icnt2 = (int)$int_cnt2$$constant;
 11892     if (icnt2 >= 8) {
 11893       // IndexOf for constant substrings with size >= 8 elements
 11894       // which don't need to be loaded through stack.
 11895       __ string_indexofC8($str1$$Register, $str2$$Register,
 11896                           $cnt1$$Register, $cnt2$$Register,
 11897                           icnt2, $result$$Register,
 11898                           $vec$$XMMRegister, $tmp$$Register);
 11899     } else {
 11900       // Small strings are loaded through stack if they cross page boundary.
 11901       __ string_indexof($str1$$Register, $str2$$Register,
 11902                         $cnt1$$Register, $cnt2$$Register,
 11903                         icnt2, $result$$Register,
 11904                         $vec$$XMMRegister, $tmp$$Register);
 11906   %}
 11907   ins_pipe( pipe_slow );
 11908 %}
 11910 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11911                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11912   predicate(UseSSE42Intrinsics);
 11913   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11914   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11916   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11917   ins_encode %{
 11918     __ string_indexof($str1$$Register, $str2$$Register,
 11919                       $cnt1$$Register, $cnt2$$Register,
 11920                       (-1), $result$$Register,
 11921                       $vec$$XMMRegister, $tmp$$Register);
 11922   %}
 11923   ins_pipe( pipe_slow );
 11924 %}
 11926 // fast array equals
 11927 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11928                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11929 %{
 11930   match(Set result (AryEq ary1 ary2));
 11931   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11932   //ins_cost(300);
 11934   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11935   ins_encode %{
 11936     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11937                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11938                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11939   %}
 11940   ins_pipe( pipe_slow );
 11941 %}
 11943 //----------Control Flow Instructions------------------------------------------
 11944 // Signed compare Instructions
 11945 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 11946   match(Set cr (CmpI op1 op2));
 11947   effect( DEF cr, USE op1, USE op2 );
 11948   format %{ "CMP    $op1,$op2" %}
 11949   opcode(0x3B);  /* Opcode 3B /r */
 11950   ins_encode( OpcP, RegReg( op1, op2) );
 11951   ins_pipe( ialu_cr_reg_reg );
 11952 %}
 11954 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 11955   match(Set cr (CmpI op1 op2));
 11956   effect( DEF cr, USE op1 );
 11957   format %{ "CMP    $op1,$op2" %}
 11958   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11959   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11960   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11961   ins_pipe( ialu_cr_reg_imm );
 11962 %}
 11964 // Cisc-spilled version of cmpI_eReg
 11965 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 11966   match(Set cr (CmpI op1 (LoadI op2)));
 11968   format %{ "CMP    $op1,$op2" %}
 11969   ins_cost(500);
 11970   opcode(0x3B);  /* Opcode 3B /r */
 11971   ins_encode( OpcP, RegMem( op1, op2) );
 11972   ins_pipe( ialu_cr_reg_mem );
 11973 %}
 11975 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 11976   match(Set cr (CmpI src zero));
 11977   effect( DEF cr, USE src );
 11979   format %{ "TEST   $src,$src" %}
 11980   opcode(0x85);
 11981   ins_encode( OpcP, RegReg( src, src ) );
 11982   ins_pipe( ialu_cr_reg_imm );
 11983 %}
 11985 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 11986   match(Set cr (CmpI (AndI src con) zero));
 11988   format %{ "TEST   $src,$con" %}
 11989   opcode(0xF7,0x00);
 11990   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11991   ins_pipe( ialu_cr_reg_imm );
 11992 %}
 11994 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 11995   match(Set cr (CmpI (AndI src mem) zero));
 11997   format %{ "TEST   $src,$mem" %}
 11998   opcode(0x85);
 11999   ins_encode( OpcP, RegMem( src, mem ) );
 12000   ins_pipe( ialu_cr_reg_mem );
 12001 %}
 12003 // Unsigned compare Instructions; really, same as signed except they
 12004 // produce an eFlagsRegU instead of eFlagsReg.
 12005 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12006   match(Set cr (CmpU op1 op2));
 12008   format %{ "CMPu   $op1,$op2" %}
 12009   opcode(0x3B);  /* Opcode 3B /r */
 12010   ins_encode( OpcP, RegReg( op1, op2) );
 12011   ins_pipe( ialu_cr_reg_reg );
 12012 %}
 12014 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12015   match(Set cr (CmpU op1 op2));
 12017   format %{ "CMPu   $op1,$op2" %}
 12018   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12019   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12020   ins_pipe( ialu_cr_reg_imm );
 12021 %}
 12023 // // Cisc-spilled version of cmpU_eReg
 12024 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12025   match(Set cr (CmpU op1 (LoadI op2)));
 12027   format %{ "CMPu   $op1,$op2" %}
 12028   ins_cost(500);
 12029   opcode(0x3B);  /* Opcode 3B /r */
 12030   ins_encode( OpcP, RegMem( op1, op2) );
 12031   ins_pipe( ialu_cr_reg_mem );
 12032 %}
 12034 // // Cisc-spilled version of cmpU_eReg
 12035 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12036 //  match(Set cr (CmpU (LoadI op1) op2));
 12037 //
 12038 //  format %{ "CMPu   $op1,$op2" %}
 12039 //  ins_cost(500);
 12040 //  opcode(0x39);  /* Opcode 39 /r */
 12041 //  ins_encode( OpcP, RegMem( op1, op2) );
 12042 //%}
 12044 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12045   match(Set cr (CmpU src zero));
 12047   format %{ "TESTu  $src,$src" %}
 12048   opcode(0x85);
 12049   ins_encode( OpcP, RegReg( src, src ) );
 12050   ins_pipe( ialu_cr_reg_imm );
 12051 %}
 12053 // Unsigned pointer compare Instructions
 12054 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12055   match(Set cr (CmpP op1 op2));
 12057   format %{ "CMPu   $op1,$op2" %}
 12058   opcode(0x3B);  /* Opcode 3B /r */
 12059   ins_encode( OpcP, RegReg( op1, op2) );
 12060   ins_pipe( ialu_cr_reg_reg );
 12061 %}
 12063 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12064   match(Set cr (CmpP op1 op2));
 12066   format %{ "CMPu   $op1,$op2" %}
 12067   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12068   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12069   ins_pipe( ialu_cr_reg_imm );
 12070 %}
 12072 // // Cisc-spilled version of cmpP_eReg
 12073 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12074   match(Set cr (CmpP op1 (LoadP op2)));
 12076   format %{ "CMPu   $op1,$op2" %}
 12077   ins_cost(500);
 12078   opcode(0x3B);  /* Opcode 3B /r */
 12079   ins_encode( OpcP, RegMem( op1, op2) );
 12080   ins_pipe( ialu_cr_reg_mem );
 12081 %}
 12083 // // Cisc-spilled version of cmpP_eReg
 12084 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12085 //  match(Set cr (CmpP (LoadP op1) op2));
 12086 //
 12087 //  format %{ "CMPu   $op1,$op2" %}
 12088 //  ins_cost(500);
 12089 //  opcode(0x39);  /* Opcode 39 /r */
 12090 //  ins_encode( OpcP, RegMem( op1, op2) );
 12091 //%}
 12093 // Compare raw pointer (used in out-of-heap check).
 12094 // Only works because non-oop pointers must be raw pointers
 12095 // and raw pointers have no anti-dependencies.
 12096 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12097   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12098   match(Set cr (CmpP op1 (LoadP op2)));
 12100   format %{ "CMPu   $op1,$op2" %}
 12101   opcode(0x3B);  /* Opcode 3B /r */
 12102   ins_encode( OpcP, RegMem( op1, op2) );
 12103   ins_pipe( ialu_cr_reg_mem );
 12104 %}
 12106 //
 12107 // This will generate a signed flags result. This should be ok
 12108 // since any compare to a zero should be eq/neq.
 12109 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12110   match(Set cr (CmpP src zero));
 12112   format %{ "TEST   $src,$src" %}
 12113   opcode(0x85);
 12114   ins_encode( OpcP, RegReg( src, src ) );
 12115   ins_pipe( ialu_cr_reg_imm );
 12116 %}
 12118 // Cisc-spilled version of testP_reg
 12119 // This will generate a signed flags result. This should be ok
 12120 // since any compare to a zero should be eq/neq.
 12121 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12122   match(Set cr (CmpP (LoadP op) zero));
 12124   format %{ "TEST   $op,0xFFFFFFFF" %}
 12125   ins_cost(500);
 12126   opcode(0xF7);               /* Opcode F7 /0 */
 12127   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12128   ins_pipe( ialu_cr_reg_imm );
 12129 %}
 12131 // Yanked all unsigned pointer compare operations.
 12132 // Pointer compares are done with CmpP which is already unsigned.
 12134 //----------Max and Min--------------------------------------------------------
 12135 // Min Instructions
 12136 ////
 12137 //   *** Min and Max using the conditional move are slower than the
 12138 //   *** branch version on a Pentium III.
 12139 // // Conditional move for min
 12140 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12141 //  effect( USE_DEF op2, USE op1, USE cr );
 12142 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12143 //  opcode(0x4C,0x0F);
 12144 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12145 //  ins_pipe( pipe_cmov_reg );
 12146 //%}
 12147 //
 12148 //// Min Register with Register (P6 version)
 12149 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12150 //  predicate(VM_Version::supports_cmov() );
 12151 //  match(Set op2 (MinI op1 op2));
 12152 //  ins_cost(200);
 12153 //  expand %{
 12154 //    eFlagsReg cr;
 12155 //    compI_eReg(cr,op1,op2);
 12156 //    cmovI_reg_lt(op2,op1,cr);
 12157 //  %}
 12158 //%}
 12160 // Min Register with Register (generic version)
 12161 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12162   match(Set dst (MinI dst src));
 12163   effect(KILL flags);
 12164   ins_cost(300);
 12166   format %{ "MIN    $dst,$src" %}
 12167   opcode(0xCC);
 12168   ins_encode( min_enc(dst,src) );
 12169   ins_pipe( pipe_slow );
 12170 %}
 12172 // Max Register with Register
 12173 //   *** Min and Max using the conditional move are slower than the
 12174 //   *** branch version on a Pentium III.
 12175 // // Conditional move for max
 12176 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12177 //  effect( USE_DEF op2, USE op1, USE cr );
 12178 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12179 //  opcode(0x4F,0x0F);
 12180 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12181 //  ins_pipe( pipe_cmov_reg );
 12182 //%}
 12183 //
 12184 // // Max Register with Register (P6 version)
 12185 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12186 //  predicate(VM_Version::supports_cmov() );
 12187 //  match(Set op2 (MaxI op1 op2));
 12188 //  ins_cost(200);
 12189 //  expand %{
 12190 //    eFlagsReg cr;
 12191 //    compI_eReg(cr,op1,op2);
 12192 //    cmovI_reg_gt(op2,op1,cr);
 12193 //  %}
 12194 //%}
 12196 // Max Register with Register (generic version)
 12197 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12198   match(Set dst (MaxI dst src));
 12199   effect(KILL flags);
 12200   ins_cost(300);
 12202   format %{ "MAX    $dst,$src" %}
 12203   opcode(0xCC);
 12204   ins_encode( max_enc(dst,src) );
 12205   ins_pipe( pipe_slow );
 12206 %}
 12208 // ============================================================================
 12209 // Counted Loop limit node which represents exact final iterator value.
 12210 // Note: the resulting value should fit into integer range since
 12211 // counted loops have limit check on overflow.
 12212 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12213   match(Set limit (LoopLimit (Binary init limit) stride));
 12214   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12215   ins_cost(300);
 12217   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12218   ins_encode %{
 12219     int strd = (int)$stride$$constant;
 12220     assert(strd != 1 && strd != -1, "sanity");
 12221     int m1 = (strd > 0) ? 1 : -1;
 12222     // Convert limit to long (EAX:EDX)
 12223     __ cdql();
 12224     // Convert init to long (init:tmp)
 12225     __ movl($tmp$$Register, $init$$Register);
 12226     __ sarl($tmp$$Register, 31);
 12227     // $limit - $init
 12228     __ subl($limit$$Register, $init$$Register);
 12229     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12230     // + ($stride - 1)
 12231     if (strd > 0) {
 12232       __ addl($limit$$Register, (strd - 1));
 12233       __ adcl($limit_hi$$Register, 0);
 12234       __ movl($tmp$$Register, strd);
 12235     } else {
 12236       __ addl($limit$$Register, (strd + 1));
 12237       __ adcl($limit_hi$$Register, -1);
 12238       __ lneg($limit_hi$$Register, $limit$$Register);
 12239       __ movl($tmp$$Register, -strd);
 12241     // signed devision: (EAX:EDX) / pos_stride
 12242     __ idivl($tmp$$Register);
 12243     if (strd < 0) {
 12244       // restore sign
 12245       __ negl($tmp$$Register);
 12247     // (EAX) * stride
 12248     __ mull($tmp$$Register);
 12249     // + init (ignore upper bits)
 12250     __ addl($limit$$Register, $init$$Register);
 12251   %}
 12252   ins_pipe( pipe_slow );
 12253 %}
 12255 // ============================================================================
 12256 // Branch Instructions
 12257 // Jump Table
 12258 instruct jumpXtnd(eRegI switch_val) %{
 12259   match(Jump switch_val);
 12260   ins_cost(350);
 12261   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12262   ins_encode %{
 12263     // Jump to Address(table_base + switch_reg)
 12264     Address index(noreg, $switch_val$$Register, Address::times_1);
 12265     __ jump(ArrayAddress($constantaddress, index));
 12266   %}
 12267   ins_pipe(pipe_jmp);
 12268 %}
 12270 // Jump Direct - Label defines a relative address from JMP+1
 12271 instruct jmpDir(label labl) %{
 12272   match(Goto);
 12273   effect(USE labl);
 12275   ins_cost(300);
 12276   format %{ "JMP    $labl" %}
 12277   size(5);
 12278   ins_encode %{
 12279     Label* L = $labl$$label;
 12280     __ jmp(*L, false); // Always long jump
 12281   %}
 12282   ins_pipe( pipe_jmp );
 12283 %}
 12285 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12286 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12287   match(If cop cr);
 12288   effect(USE labl);
 12290   ins_cost(300);
 12291   format %{ "J$cop    $labl" %}
 12292   size(6);
 12293   ins_encode %{
 12294     Label* L = $labl$$label;
 12295     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12296   %}
 12297   ins_pipe( pipe_jcc );
 12298 %}
 12300 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12301 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12302   match(CountedLoopEnd cop cr);
 12303   effect(USE labl);
 12305   ins_cost(300);
 12306   format %{ "J$cop    $labl\t# Loop end" %}
 12307   size(6);
 12308   ins_encode %{
 12309     Label* L = $labl$$label;
 12310     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12311   %}
 12312   ins_pipe( pipe_jcc );
 12313 %}
 12315 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12316 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12317   match(CountedLoopEnd cop cmp);
 12318   effect(USE labl);
 12320   ins_cost(300);
 12321   format %{ "J$cop,u  $labl\t# Loop end" %}
 12322   size(6);
 12323   ins_encode %{
 12324     Label* L = $labl$$label;
 12325     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12326   %}
 12327   ins_pipe( pipe_jcc );
 12328 %}
 12330 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12331   match(CountedLoopEnd cop cmp);
 12332   effect(USE labl);
 12334   ins_cost(200);
 12335   format %{ "J$cop,u  $labl\t# Loop end" %}
 12336   size(6);
 12337   ins_encode %{
 12338     Label* L = $labl$$label;
 12339     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12340   %}
 12341   ins_pipe( pipe_jcc );
 12342 %}
 12344 // Jump Direct Conditional - using unsigned comparison
 12345 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12346   match(If cop cmp);
 12347   effect(USE labl);
 12349   ins_cost(300);
 12350   format %{ "J$cop,u  $labl" %}
 12351   size(6);
 12352   ins_encode %{
 12353     Label* L = $labl$$label;
 12354     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12355   %}
 12356   ins_pipe(pipe_jcc);
 12357 %}
 12359 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12360   match(If cop cmp);
 12361   effect(USE labl);
 12363   ins_cost(200);
 12364   format %{ "J$cop,u  $labl" %}
 12365   size(6);
 12366   ins_encode %{
 12367     Label* L = $labl$$label;
 12368     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12369   %}
 12370   ins_pipe(pipe_jcc);
 12371 %}
 12373 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12374   match(If cop cmp);
 12375   effect(USE labl);
 12377   ins_cost(200);
 12378   format %{ $$template
 12379     if ($cop$$cmpcode == Assembler::notEqual) {
 12380       $$emit$$"JP,u   $labl\n\t"
 12381       $$emit$$"J$cop,u   $labl"
 12382     } else {
 12383       $$emit$$"JP,u   done\n\t"
 12384       $$emit$$"J$cop,u   $labl\n\t"
 12385       $$emit$$"done:"
 12387   %}
 12388   ins_encode %{
 12389     Label* l = $labl$$label;
 12390     if ($cop$$cmpcode == Assembler::notEqual) {
 12391       __ jcc(Assembler::parity, *l, false);
 12392       __ jcc(Assembler::notEqual, *l, false);
 12393     } else if ($cop$$cmpcode == Assembler::equal) {
 12394       Label done;
 12395       __ jccb(Assembler::parity, done);
 12396       __ jcc(Assembler::equal, *l, false);
 12397       __ bind(done);
 12398     } else {
 12399        ShouldNotReachHere();
 12401   %}
 12402   ins_pipe(pipe_jcc);
 12403 %}
 12405 // ============================================================================
 12406 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12407 // array for an instance of the superklass.  Set a hidden internal cache on a
 12408 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12409 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12410 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12411   match(Set result (PartialSubtypeCheck sub super));
 12412   effect( KILL rcx, KILL cr );
 12414   ins_cost(1100);  // slightly larger than the next version
 12415   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12416             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12417             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12418             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12419             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12420             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12421             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12422      "miss:\t" %}
 12424   opcode(0x1); // Force a XOR of EDI
 12425   ins_encode( enc_PartialSubtypeCheck() );
 12426   ins_pipe( pipe_slow );
 12427 %}
 12429 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12430   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12431   effect( KILL rcx, KILL result );
 12433   ins_cost(1000);
 12434   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12435             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12436             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12437             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12438             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12439             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12440      "miss:\t" %}
 12442   opcode(0x0);  // No need to XOR EDI
 12443   ins_encode( enc_PartialSubtypeCheck() );
 12444   ins_pipe( pipe_slow );
 12445 %}
 12447 // ============================================================================
 12448 // Branch Instructions -- short offset versions
 12449 //
 12450 // These instructions are used to replace jumps of a long offset (the default
 12451 // match) with jumps of a shorter offset.  These instructions are all tagged
 12452 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12453 // match rules in general matching.  Instead, the ADLC generates a conversion
 12454 // method in the MachNode which can be used to do in-place replacement of the
 12455 // long variant with the shorter variant.  The compiler will determine if a
 12456 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12457 // specific code section of the file.
 12459 // Jump Direct - Label defines a relative address from JMP+1
 12460 instruct jmpDir_short(label labl) %{
 12461   match(Goto);
 12462   effect(USE labl);
 12464   ins_cost(300);
 12465   format %{ "JMP,s  $labl" %}
 12466   size(2);
 12467   ins_encode %{
 12468     Label* L = $labl$$label;
 12469     __ jmpb(*L);
 12470   %}
 12471   ins_pipe( pipe_jmp );
 12472   ins_short_branch(1);
 12473 %}
 12475 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12476 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12477   match(If cop cr);
 12478   effect(USE labl);
 12480   ins_cost(300);
 12481   format %{ "J$cop,s  $labl" %}
 12482   size(2);
 12483   ins_encode %{
 12484     Label* L = $labl$$label;
 12485     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12486   %}
 12487   ins_pipe( pipe_jcc );
 12488   ins_short_branch(1);
 12489 %}
 12491 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12492 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12493   match(CountedLoopEnd cop cr);
 12494   effect(USE labl);
 12496   ins_cost(300);
 12497   format %{ "J$cop,s  $labl\t# Loop end" %}
 12498   size(2);
 12499   ins_encode %{
 12500     Label* L = $labl$$label;
 12501     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12502   %}
 12503   ins_pipe( pipe_jcc );
 12504   ins_short_branch(1);
 12505 %}
 12507 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12508 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12509   match(CountedLoopEnd cop cmp);
 12510   effect(USE labl);
 12512   ins_cost(300);
 12513   format %{ "J$cop,us $labl\t# Loop end" %}
 12514   size(2);
 12515   ins_encode %{
 12516     Label* L = $labl$$label;
 12517     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12518   %}
 12519   ins_pipe( pipe_jcc );
 12520   ins_short_branch(1);
 12521 %}
 12523 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12524   match(CountedLoopEnd cop cmp);
 12525   effect(USE labl);
 12527   ins_cost(300);
 12528   format %{ "J$cop,us $labl\t# Loop end" %}
 12529   size(2);
 12530   ins_encode %{
 12531     Label* L = $labl$$label;
 12532     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12533   %}
 12534   ins_pipe( pipe_jcc );
 12535   ins_short_branch(1);
 12536 %}
 12538 // Jump Direct Conditional - using unsigned comparison
 12539 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12540   match(If cop cmp);
 12541   effect(USE labl);
 12543   ins_cost(300);
 12544   format %{ "J$cop,us $labl" %}
 12545   size(2);
 12546   ins_encode %{
 12547     Label* L = $labl$$label;
 12548     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12549   %}
 12550   ins_pipe( pipe_jcc );
 12551   ins_short_branch(1);
 12552 %}
 12554 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12555   match(If cop cmp);
 12556   effect(USE labl);
 12558   ins_cost(300);
 12559   format %{ "J$cop,us $labl" %}
 12560   size(2);
 12561   ins_encode %{
 12562     Label* L = $labl$$label;
 12563     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12564   %}
 12565   ins_pipe( pipe_jcc );
 12566   ins_short_branch(1);
 12567 %}
 12569 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12570   match(If cop cmp);
 12571   effect(USE labl);
 12573   ins_cost(300);
 12574   format %{ $$template
 12575     if ($cop$$cmpcode == Assembler::notEqual) {
 12576       $$emit$$"JP,u,s   $labl\n\t"
 12577       $$emit$$"J$cop,u,s   $labl"
 12578     } else {
 12579       $$emit$$"JP,u,s   done\n\t"
 12580       $$emit$$"J$cop,u,s  $labl\n\t"
 12581       $$emit$$"done:"
 12583   %}
 12584   size(4);
 12585   ins_encode %{
 12586     Label* l = $labl$$label;
 12587     if ($cop$$cmpcode == Assembler::notEqual) {
 12588       __ jccb(Assembler::parity, *l);
 12589       __ jccb(Assembler::notEqual, *l);
 12590     } else if ($cop$$cmpcode == Assembler::equal) {
 12591       Label done;
 12592       __ jccb(Assembler::parity, done);
 12593       __ jccb(Assembler::equal, *l);
 12594       __ bind(done);
 12595     } else {
 12596        ShouldNotReachHere();
 12598   %}
 12599   ins_pipe(pipe_jcc);
 12600   ins_short_branch(1);
 12601 %}
 12603 // ============================================================================
 12604 // Long Compare
 12605 //
 12606 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12607 // is tricky.  The flavor of compare used depends on whether we are testing
 12608 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12609 // The GE test is the negated LT test.  The LE test can be had by commuting
 12610 // the operands (yielding a GE test) and then negating; negate again for the
 12611 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12612 // NE test is negated from that.
 12614 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12615 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12616 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12617 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12618 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12619 // foo match ends up with the wrong leaf.  One fix is to not match both
 12620 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12621 // both forms beat the trinary form of long-compare and both are very useful
 12622 // on Intel which has so few registers.
 12624 // Manifest a CmpL result in an integer register.  Very painful.
 12625 // This is the test to avoid.
 12626 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12627   match(Set dst (CmpL3 src1 src2));
 12628   effect( KILL flags );
 12629   ins_cost(1000);
 12630   format %{ "XOR    $dst,$dst\n\t"
 12631             "CMP    $src1.hi,$src2.hi\n\t"
 12632             "JLT,s  m_one\n\t"
 12633             "JGT,s  p_one\n\t"
 12634             "CMP    $src1.lo,$src2.lo\n\t"
 12635             "JB,s   m_one\n\t"
 12636             "JEQ,s  done\n"
 12637     "p_one:\tINC    $dst\n\t"
 12638             "JMP,s  done\n"
 12639     "m_one:\tDEC    $dst\n"
 12640      "done:" %}
 12641   ins_encode %{
 12642     Label p_one, m_one, done;
 12643     __ xorptr($dst$$Register, $dst$$Register);
 12644     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12645     __ jccb(Assembler::less,    m_one);
 12646     __ jccb(Assembler::greater, p_one);
 12647     __ cmpl($src1$$Register, $src2$$Register);
 12648     __ jccb(Assembler::below,   m_one);
 12649     __ jccb(Assembler::equal,   done);
 12650     __ bind(p_one);
 12651     __ incrementl($dst$$Register);
 12652     __ jmpb(done);
 12653     __ bind(m_one);
 12654     __ decrementl($dst$$Register);
 12655     __ bind(done);
 12656   %}
 12657   ins_pipe( pipe_slow );
 12658 %}
 12660 //======
 12661 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12662 // compares.  Can be used for LE or GT compares by reversing arguments.
 12663 // NOT GOOD FOR EQ/NE tests.
 12664 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12665   match( Set flags (CmpL src zero ));
 12666   ins_cost(100);
 12667   format %{ "TEST   $src.hi,$src.hi" %}
 12668   opcode(0x85);
 12669   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12670   ins_pipe( ialu_cr_reg_reg );
 12671 %}
 12673 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12674 // compares.  Can be used for LE or GT compares by reversing arguments.
 12675 // NOT GOOD FOR EQ/NE tests.
 12676 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12677   match( Set flags (CmpL src1 src2 ));
 12678   effect( TEMP tmp );
 12679   ins_cost(300);
 12680   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12681             "MOV    $tmp,$src1.hi\n\t"
 12682             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12683   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12684   ins_pipe( ialu_cr_reg_reg );
 12685 %}
 12687 // Long compares reg < zero/req OR reg >= zero/req.
 12688 // Just a wrapper for a normal branch, plus the predicate test.
 12689 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12690   match(If cmp flags);
 12691   effect(USE labl);
 12692   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12693   expand %{
 12694     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12695   %}
 12696 %}
 12698 // Compare 2 longs and CMOVE longs.
 12699 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12700   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12701   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12702   ins_cost(400);
 12703   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12704             "CMOV$cmp $dst.hi,$src.hi" %}
 12705   opcode(0x0F,0x40);
 12706   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12707   ins_pipe( pipe_cmov_reg_long );
 12708 %}
 12710 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12711   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12712   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12713   ins_cost(500);
 12714   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12715             "CMOV$cmp $dst.hi,$src.hi" %}
 12716   opcode(0x0F,0x40);
 12717   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12718   ins_pipe( pipe_cmov_reg_long );
 12719 %}
 12721 // Compare 2 longs and CMOVE ints.
 12722 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12723   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12724   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12725   ins_cost(200);
 12726   format %{ "CMOV$cmp $dst,$src" %}
 12727   opcode(0x0F,0x40);
 12728   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12729   ins_pipe( pipe_cmov_reg );
 12730 %}
 12732 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12733   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12734   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12735   ins_cost(250);
 12736   format %{ "CMOV$cmp $dst,$src" %}
 12737   opcode(0x0F,0x40);
 12738   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12739   ins_pipe( pipe_cmov_mem );
 12740 %}
 12742 // Compare 2 longs and CMOVE ints.
 12743 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12744   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12745   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12746   ins_cost(200);
 12747   format %{ "CMOV$cmp $dst,$src" %}
 12748   opcode(0x0F,0x40);
 12749   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12750   ins_pipe( pipe_cmov_reg );
 12751 %}
 12753 // Compare 2 longs and CMOVE doubles
 12754 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12755   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12756   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12757   ins_cost(200);
 12758   expand %{
 12759     fcmovDPR_regS(cmp,flags,dst,src);
 12760   %}
 12761 %}
 12763 // Compare 2 longs and CMOVE doubles
 12764 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12765   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12766   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12767   ins_cost(200);
 12768   expand %{
 12769     fcmovD_regS(cmp,flags,dst,src);
 12770   %}
 12771 %}
 12773 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12774   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12775   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12776   ins_cost(200);
 12777   expand %{
 12778     fcmovFPR_regS(cmp,flags,dst,src);
 12779   %}
 12780 %}
 12782 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12783   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12784   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12785   ins_cost(200);
 12786   expand %{
 12787     fcmovF_regS(cmp,flags,dst,src);
 12788   %}
 12789 %}
 12791 //======
 12792 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12793 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12794   match( Set flags (CmpL src zero ));
 12795   effect(TEMP tmp);
 12796   ins_cost(200);
 12797   format %{ "MOV    $tmp,$src.lo\n\t"
 12798             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12799   ins_encode( long_cmp_flags0( src, tmp ) );
 12800   ins_pipe( ialu_reg_reg_long );
 12801 %}
 12803 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12804 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12805   match( Set flags (CmpL src1 src2 ));
 12806   ins_cost(200+300);
 12807   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12808             "JNE,s  skip\n\t"
 12809             "CMP    $src1.hi,$src2.hi\n\t"
 12810      "skip:\t" %}
 12811   ins_encode( long_cmp_flags1( src1, src2 ) );
 12812   ins_pipe( ialu_cr_reg_reg );
 12813 %}
 12815 // Long compare reg == zero/reg OR reg != zero/reg
 12816 // Just a wrapper for a normal branch, plus the predicate test.
 12817 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12818   match(If cmp flags);
 12819   effect(USE labl);
 12820   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12821   expand %{
 12822     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12823   %}
 12824 %}
 12826 // Compare 2 longs and CMOVE longs.
 12827 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12828   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12829   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12830   ins_cost(400);
 12831   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12832             "CMOV$cmp $dst.hi,$src.hi" %}
 12833   opcode(0x0F,0x40);
 12834   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12835   ins_pipe( pipe_cmov_reg_long );
 12836 %}
 12838 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12839   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12840   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12841   ins_cost(500);
 12842   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12843             "CMOV$cmp $dst.hi,$src.hi" %}
 12844   opcode(0x0F,0x40);
 12845   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12846   ins_pipe( pipe_cmov_reg_long );
 12847 %}
 12849 // Compare 2 longs and CMOVE ints.
 12850 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 12851   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12852   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12853   ins_cost(200);
 12854   format %{ "CMOV$cmp $dst,$src" %}
 12855   opcode(0x0F,0x40);
 12856   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12857   ins_pipe( pipe_cmov_reg );
 12858 %}
 12860 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 12861   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12862   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12863   ins_cost(250);
 12864   format %{ "CMOV$cmp $dst,$src" %}
 12865   opcode(0x0F,0x40);
 12866   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12867   ins_pipe( pipe_cmov_mem );
 12868 %}
 12870 // Compare 2 longs and CMOVE ints.
 12871 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12872   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12873   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12874   ins_cost(200);
 12875   format %{ "CMOV$cmp $dst,$src" %}
 12876   opcode(0x0F,0x40);
 12877   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12878   ins_pipe( pipe_cmov_reg );
 12879 %}
 12881 // Compare 2 longs and CMOVE doubles
 12882 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12883   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12884   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12885   ins_cost(200);
 12886   expand %{
 12887     fcmovDPR_regS(cmp,flags,dst,src);
 12888   %}
 12889 %}
 12891 // Compare 2 longs and CMOVE doubles
 12892 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12893   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12894   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12895   ins_cost(200);
 12896   expand %{
 12897     fcmovD_regS(cmp,flags,dst,src);
 12898   %}
 12899 %}
 12901 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12902   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12903   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12904   ins_cost(200);
 12905   expand %{
 12906     fcmovFPR_regS(cmp,flags,dst,src);
 12907   %}
 12908 %}
 12910 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12911   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12912   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12913   ins_cost(200);
 12914   expand %{
 12915     fcmovF_regS(cmp,flags,dst,src);
 12916   %}
 12917 %}
 12919 //======
 12920 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12921 // Same as cmpL_reg_flags_LEGT except must negate src
 12922 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12923   match( Set flags (CmpL src zero ));
 12924   effect( TEMP tmp );
 12925   ins_cost(300);
 12926   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12927             "CMP    $tmp,$src.lo\n\t"
 12928             "SBB    $tmp,$src.hi\n\t" %}
 12929   ins_encode( long_cmp_flags3(src, tmp) );
 12930   ins_pipe( ialu_reg_reg_long );
 12931 %}
 12933 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12934 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12935 // requires a commuted test to get the same result.
 12936 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12937   match( Set flags (CmpL src1 src2 ));
 12938   effect( TEMP tmp );
 12939   ins_cost(300);
 12940   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12941             "MOV    $tmp,$src2.hi\n\t"
 12942             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12943   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12944   ins_pipe( ialu_cr_reg_reg );
 12945 %}
 12947 // Long compares reg < zero/req OR reg >= zero/req.
 12948 // Just a wrapper for a normal branch, plus the predicate test
 12949 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12950   match(If cmp flags);
 12951   effect(USE labl);
 12952   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12953   ins_cost(300);
 12954   expand %{
 12955     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12956   %}
 12957 %}
 12959 // Compare 2 longs and CMOVE longs.
 12960 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12961   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12962   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12963   ins_cost(400);
 12964   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12965             "CMOV$cmp $dst.hi,$src.hi" %}
 12966   opcode(0x0F,0x40);
 12967   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12968   ins_pipe( pipe_cmov_reg_long );
 12969 %}
 12971 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12972   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12973   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12974   ins_cost(500);
 12975   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12976             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12977   opcode(0x0F,0x40);
 12978   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12979   ins_pipe( pipe_cmov_reg_long );
 12980 %}
 12982 // Compare 2 longs and CMOVE ints.
 12983 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 12984   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12985   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12986   ins_cost(200);
 12987   format %{ "CMOV$cmp $dst,$src" %}
 12988   opcode(0x0F,0x40);
 12989   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12990   ins_pipe( pipe_cmov_reg );
 12991 %}
 12993 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 12994   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12995   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12996   ins_cost(250);
 12997   format %{ "CMOV$cmp $dst,$src" %}
 12998   opcode(0x0F,0x40);
 12999   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13000   ins_pipe( pipe_cmov_mem );
 13001 %}
 13003 // Compare 2 longs and CMOVE ptrs.
 13004 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13005   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13006   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13007   ins_cost(200);
 13008   format %{ "CMOV$cmp $dst,$src" %}
 13009   opcode(0x0F,0x40);
 13010   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13011   ins_pipe( pipe_cmov_reg );
 13012 %}
 13014 // Compare 2 longs and CMOVE doubles
 13015 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 13016   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13017   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13018   ins_cost(200);
 13019   expand %{
 13020     fcmovDPR_regS(cmp,flags,dst,src);
 13021   %}
 13022 %}
 13024 // Compare 2 longs and CMOVE doubles
 13025 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13026   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13027   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13028   ins_cost(200);
 13029   expand %{
 13030     fcmovD_regS(cmp,flags,dst,src);
 13031   %}
 13032 %}
 13034 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 13035   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13036   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13037   ins_cost(200);
 13038   expand %{
 13039     fcmovFPR_regS(cmp,flags,dst,src);
 13040   %}
 13041 %}
 13044 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13045   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13046   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13047   ins_cost(200);
 13048   expand %{
 13049     fcmovF_regS(cmp,flags,dst,src);
 13050   %}
 13051 %}
 13054 // ============================================================================
 13055 // Procedure Call/Return Instructions
 13056 // Call Java Static Instruction
 13057 // Note: If this code changes, the corresponding ret_addr_offset() and
 13058 //       compute_padding() functions will have to be adjusted.
 13059 instruct CallStaticJavaDirect(method meth) %{
 13060   match(CallStaticJava);
 13061   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13062   effect(USE meth);
 13064   ins_cost(300);
 13065   format %{ "CALL,static " %}
 13066   opcode(0xE8); /* E8 cd */
 13067   ins_encode( pre_call_FPU,
 13068               Java_Static_Call( meth ),
 13069               call_epilog,
 13070               post_call_FPU );
 13071   ins_pipe( pipe_slow );
 13072   ins_alignment(4);
 13073 %}
 13075 // Call Java Static Instruction (method handle version)
 13076 // Note: If this code changes, the corresponding ret_addr_offset() and
 13077 //       compute_padding() functions will have to be adjusted.
 13078 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13079   match(CallStaticJava);
 13080   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13081   effect(USE meth);
 13082   // EBP is saved by all callees (for interpreter stack correction).
 13083   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13085   ins_cost(300);
 13086   format %{ "CALL,static/MethodHandle " %}
 13087   opcode(0xE8); /* E8 cd */
 13088   ins_encode( pre_call_FPU,
 13089               preserve_SP,
 13090               Java_Static_Call( meth ),
 13091               restore_SP,
 13092               call_epilog,
 13093               post_call_FPU );
 13094   ins_pipe( pipe_slow );
 13095   ins_alignment(4);
 13096 %}
 13098 // Call Java Dynamic Instruction
 13099 // Note: If this code changes, the corresponding ret_addr_offset() and
 13100 //       compute_padding() functions will have to be adjusted.
 13101 instruct CallDynamicJavaDirect(method meth) %{
 13102   match(CallDynamicJava);
 13103   effect(USE meth);
 13105   ins_cost(300);
 13106   format %{ "MOV    EAX,(oop)-1\n\t"
 13107             "CALL,dynamic" %}
 13108   opcode(0xE8); /* E8 cd */
 13109   ins_encode( pre_call_FPU,
 13110               Java_Dynamic_Call( meth ),
 13111               call_epilog,
 13112               post_call_FPU );
 13113   ins_pipe( pipe_slow );
 13114   ins_alignment(4);
 13115 %}
 13117 // Call Runtime Instruction
 13118 instruct CallRuntimeDirect(method meth) %{
 13119   match(CallRuntime );
 13120   effect(USE meth);
 13122   ins_cost(300);
 13123   format %{ "CALL,runtime " %}
 13124   opcode(0xE8); /* E8 cd */
 13125   // Use FFREEs to clear entries in float stack
 13126   ins_encode( pre_call_FPU,
 13127               FFree_Float_Stack_All,
 13128               Java_To_Runtime( meth ),
 13129               post_call_FPU );
 13130   ins_pipe( pipe_slow );
 13131 %}
 13133 // Call runtime without safepoint
 13134 instruct CallLeafDirect(method meth) %{
 13135   match(CallLeaf);
 13136   effect(USE meth);
 13138   ins_cost(300);
 13139   format %{ "CALL_LEAF,runtime " %}
 13140   opcode(0xE8); /* E8 cd */
 13141   ins_encode( pre_call_FPU,
 13142               FFree_Float_Stack_All,
 13143               Java_To_Runtime( meth ),
 13144               Verify_FPU_For_Leaf, post_call_FPU );
 13145   ins_pipe( pipe_slow );
 13146 %}
 13148 instruct CallLeafNoFPDirect(method meth) %{
 13149   match(CallLeafNoFP);
 13150   effect(USE meth);
 13152   ins_cost(300);
 13153   format %{ "CALL_LEAF_NOFP,runtime " %}
 13154   opcode(0xE8); /* E8 cd */
 13155   ins_encode(Java_To_Runtime(meth));
 13156   ins_pipe( pipe_slow );
 13157 %}
 13160 // Return Instruction
 13161 // Remove the return address & jump to it.
 13162 instruct Ret() %{
 13163   match(Return);
 13164   format %{ "RET" %}
 13165   opcode(0xC3);
 13166   ins_encode(OpcP);
 13167   ins_pipe( pipe_jmp );
 13168 %}
 13170 // Tail Call; Jump from runtime stub to Java code.
 13171 // Also known as an 'interprocedural jump'.
 13172 // Target of jump will eventually return to caller.
 13173 // TailJump below removes the return address.
 13174 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13175   match(TailCall jump_target method_oop );
 13176   ins_cost(300);
 13177   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13178   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13179   ins_encode( OpcP, RegOpc(jump_target) );
 13180   ins_pipe( pipe_jmp );
 13181 %}
 13184 // Tail Jump; remove the return address; jump to target.
 13185 // TailCall above leaves the return address around.
 13186 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13187   match( TailJump jump_target ex_oop );
 13188   ins_cost(300);
 13189   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13190             "JMP    $jump_target " %}
 13191   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13192   ins_encode( enc_pop_rdx,
 13193               OpcP, RegOpc(jump_target) );
 13194   ins_pipe( pipe_jmp );
 13195 %}
 13197 // Create exception oop: created by stack-crawling runtime code.
 13198 // Created exception is now available to this handler, and is setup
 13199 // just prior to jumping to this handler.  No code emitted.
 13200 instruct CreateException( eAXRegP ex_oop )
 13201 %{
 13202   match(Set ex_oop (CreateEx));
 13204   size(0);
 13205   // use the following format syntax
 13206   format %{ "# exception oop is in EAX; no code emitted" %}
 13207   ins_encode();
 13208   ins_pipe( empty );
 13209 %}
 13212 // Rethrow exception:
 13213 // The exception oop will come in the first argument position.
 13214 // Then JUMP (not call) to the rethrow stub code.
 13215 instruct RethrowException()
 13216 %{
 13217   match(Rethrow);
 13219   // use the following format syntax
 13220   format %{ "JMP    rethrow_stub" %}
 13221   ins_encode(enc_rethrow);
 13222   ins_pipe( pipe_jmp );
 13223 %}
 13225 // inlined locking and unlocking
 13228 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 13229   match( Set cr (FastLock object box) );
 13230   effect( TEMP tmp, TEMP scr, USE_KILL box );
 13231   ins_cost(300);
 13232   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 13233   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13234   ins_pipe( pipe_slow );
 13235 %}
 13237 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13238   match( Set cr (FastUnlock object box) );
 13239   effect( TEMP tmp, USE_KILL box );
 13240   ins_cost(300);
 13241   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13242   ins_encode( Fast_Unlock(object,box,tmp) );
 13243   ins_pipe( pipe_slow );
 13244 %}
 13248 // ============================================================================
 13249 // Safepoint Instruction
 13250 instruct safePoint_poll(eFlagsReg cr) %{
 13251   match(SafePoint);
 13252   effect(KILL cr);
 13254   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13255   // On SPARC that might be acceptable as we can generate the address with
 13256   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13257   // putting additional pressure on the index-0 in the D$.  Because of
 13258   // alignment (just like the situation at hand) the lower indices tend
 13259   // to see more traffic.  It'd be better to change the polling address
 13260   // to offset 0 of the last $line in the polling page.
 13262   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13263   ins_cost(125);
 13264   size(6) ;
 13265   ins_encode( Safepoint_Poll() );
 13266   ins_pipe( ialu_reg_mem );
 13267 %}
 13270 // ============================================================================
 13271 // This name is KNOWN by the ADLC and cannot be changed.
 13272 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13273 // for this guy.
 13274 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13275   match(Set dst (ThreadLocal));
 13276   effect(DEF dst, KILL cr);
 13278   format %{ "MOV    $dst, Thread::current()" %}
 13279   ins_encode %{
 13280     Register dstReg = as_Register($dst$$reg);
 13281     __ get_thread(dstReg);
 13282   %}
 13283   ins_pipe( ialu_reg_fat );
 13284 %}
 13288 //----------PEEPHOLE RULES-----------------------------------------------------
 13289 // These must follow all instruction definitions as they use the names
 13290 // defined in the instructions definitions.
 13291 //
 13292 // peepmatch ( root_instr_name [preceding_instruction]* );
 13293 //
 13294 // peepconstraint %{
 13295 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13296 //  [, ...] );
 13297 // // instruction numbers are zero-based using left to right order in peepmatch
 13298 //
 13299 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13300 // // provide an instruction_number.operand_name for each operand that appears
 13301 // // in the replacement instruction's match rule
 13302 //
 13303 // ---------VM FLAGS---------------------------------------------------------
 13304 //
 13305 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13306 //
 13307 // Each peephole rule is given an identifying number starting with zero and
 13308 // increasing by one in the order seen by the parser.  An individual peephole
 13309 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13310 // on the command-line.
 13311 //
 13312 // ---------CURRENT LIMITATIONS----------------------------------------------
 13313 //
 13314 // Only match adjacent instructions in same basic block
 13315 // Only equality constraints
 13316 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13317 // Only one replacement instruction
 13318 //
 13319 // ---------EXAMPLE----------------------------------------------------------
 13320 //
 13321 // // pertinent parts of existing instructions in architecture description
 13322 // instruct movI(eRegI dst, eRegI src) %{
 13323 //   match(Set dst (CopyI src));
 13324 // %}
 13325 //
 13326 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13327 //   match(Set dst (AddI dst src));
 13328 //   effect(KILL cr);
 13329 // %}
 13330 //
 13331 // // Change (inc mov) to lea
 13332 // peephole %{
 13333 //   // increment preceeded by register-register move
 13334 //   peepmatch ( incI_eReg movI );
 13335 //   // require that the destination register of the increment
 13336 //   // match the destination register of the move
 13337 //   peepconstraint ( 0.dst == 1.dst );
 13338 //   // construct a replacement instruction that sets
 13339 //   // the destination to ( move's source register + one )
 13340 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13341 // %}
 13342 //
 13343 // Implementation no longer uses movX instructions since
 13344 // machine-independent system no longer uses CopyX nodes.
 13345 //
 13346 // peephole %{
 13347 //   peepmatch ( incI_eReg movI );
 13348 //   peepconstraint ( 0.dst == 1.dst );
 13349 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13350 // %}
 13351 //
 13352 // peephole %{
 13353 //   peepmatch ( decI_eReg movI );
 13354 //   peepconstraint ( 0.dst == 1.dst );
 13355 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13356 // %}
 13357 //
 13358 // peephole %{
 13359 //   peepmatch ( addI_eReg_imm movI );
 13360 //   peepconstraint ( 0.dst == 1.dst );
 13361 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13362 // %}
 13363 //
 13364 // peephole %{
 13365 //   peepmatch ( addP_eReg_imm movP );
 13366 //   peepconstraint ( 0.dst == 1.dst );
 13367 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13368 // %}
 13370 // // Change load of spilled value to only a spill
 13371 // instruct storeI(memory mem, eRegI src) %{
 13372 //   match(Set mem (StoreI mem src));
 13373 // %}
 13374 //
 13375 // instruct loadI(eRegI dst, memory mem) %{
 13376 //   match(Set dst (LoadI mem));
 13377 // %}
 13378 //
 13379 peephole %{
 13380   peepmatch ( loadI storeI );
 13381   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13382   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13383 %}
 13385 //----------SMARTSPILL RULES---------------------------------------------------
 13386 // These must follow all instruction definitions as they use the names
 13387 // defined in the instructions definitions.

mercurial