src/share/vm/opto/loopTransform.cpp

Thu, 31 Mar 2011 13:22:34 -0700

author
kvn
date
Thu, 31 Mar 2011 13:22:34 -0700
changeset 2699
cb162b348743
parent 2694
f9424955eb18
child 2708
1d1603768966
child 2727
08eb13460b3a
permissions
-rw-r--r--

7032696: Fix for 7029152 broke VM
Summary: StrIntrinsicNode::Ideal() should not optimize memory during Parse.
Reviewed-by: jrose, never

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_profile_trip_cnt----------------------------
    67 // Compute loop trip count from profile data as
    68 //    (backedge_count + loop_exit_count) / loop_exit_count
    69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    70   if (!_head->is_CountedLoop()) {
    71     return;
    72   }
    73   CountedLoopNode* head = _head->as_CountedLoop();
    74   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    75     return; // Already computed
    76   }
    77   float trip_cnt = (float)max_jint; // default is big
    79   Node* back = head->in(LoopNode::LoopBackControl);
    80   while (back != head) {
    81     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82         back->in(0) &&
    83         back->in(0)->is_If() &&
    84         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    85         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    86       break;
    87     }
    88     back = phase->idom(back);
    89   }
    90   if (back != head) {
    91     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    92            back->in(0), "if-projection exists");
    93     IfNode* back_if = back->in(0)->as_If();
    94     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    96     // Now compute a loop exit count
    97     float loop_exit_cnt = 0.0f;
    98     for( uint i = 0; i < _body.size(); i++ ) {
    99       Node *n = _body[i];
   100       if( n->is_If() ) {
   101         IfNode *iff = n->as_If();
   102         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   103           Node *exit = is_loop_exit(iff);
   104           if( exit ) {
   105             float exit_prob = iff->_prob;
   106             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   107             if (exit_prob > PROB_MIN) {
   108               float exit_cnt = iff->_fcnt * exit_prob;
   109               loop_exit_cnt += exit_cnt;
   110             }
   111           }
   112         }
   113       }
   114     }
   115     if (loop_exit_cnt > 0.0f) {
   116       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   117     } else {
   118       // No exit count so use
   119       trip_cnt = loop_back_cnt;
   120     }
   121   }
   122 #ifndef PRODUCT
   123   if (TraceProfileTripCount) {
   124     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   125   }
   126 #endif
   127   head->set_profile_trip_cnt(trip_cnt);
   128 }
   130 //---------------------is_invariant_addition-----------------------------
   131 // Return nonzero index of invariant operand for an Add or Sub
   132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   134   int op = n->Opcode();
   135   if (op == Op_AddI || op == Op_SubI) {
   136     bool in1_invar = this->is_invariant(n->in(1));
   137     bool in2_invar = this->is_invariant(n->in(2));
   138     if (in1_invar && !in2_invar) return 1;
   139     if (!in1_invar && in2_invar) return 2;
   140   }
   141   return 0;
   142 }
   144 //---------------------reassociate_add_sub-----------------------------
   145 // Reassociate invariant add and subtract expressions:
   146 //
   147 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   148 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   149 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   150 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   151 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   152 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   153 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   154 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   155 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   156 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   157 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   158 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   159 //
   160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   161   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   162   if (is_invariant(n1)) return NULL;
   163   int inv1_idx = is_invariant_addition(n1, phase);
   164   if (!inv1_idx) return NULL;
   165   // Don't mess with add of constant (igvn moves them to expression tree root.)
   166   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   167   Node* inv1 = n1->in(inv1_idx);
   168   Node* n2 = n1->in(3 - inv1_idx);
   169   int inv2_idx = is_invariant_addition(n2, phase);
   170   if (!inv2_idx) return NULL;
   171   Node* x    = n2->in(3 - inv2_idx);
   172   Node* inv2 = n2->in(inv2_idx);
   174   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   175   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   176   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   177   if (n1->is_Sub() && inv1_idx == 1) {
   178     neg_x    = !neg_x;
   179     neg_inv2 = !neg_inv2;
   180   }
   181   Node* inv1_c = phase->get_ctrl(inv1);
   182   Node* inv2_c = phase->get_ctrl(inv2);
   183   Node* n_inv1;
   184   if (neg_inv1) {
   185     Node *zero = phase->_igvn.intcon(0);
   186     phase->set_ctrl(zero, phase->C->root());
   187     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   188     phase->register_new_node(n_inv1, inv1_c);
   189   } else {
   190     n_inv1 = inv1;
   191   }
   192   Node* inv;
   193   if (neg_inv2) {
   194     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   195   } else {
   196     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   197   }
   198   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   200   Node* addx;
   201   if (neg_x) {
   202     addx = new (phase->C, 3) SubINode(inv, x);
   203   } else {
   204     addx = new (phase->C, 3) AddINode(x, inv);
   205   }
   206   phase->register_new_node(addx, phase->get_ctrl(x));
   207   phase->_igvn.replace_node(n1, addx);
   208   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   209   _body.yank(n1);
   210   return addx;
   211 }
   213 //---------------------reassociate_invariants-----------------------------
   214 // Reassociate invariant expressions:
   215 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   216   for (int i = _body.size() - 1; i >= 0; i--) {
   217     Node *n = _body.at(i);
   218     for (int j = 0; j < 5; j++) {
   219       Node* nn = reassociate_add_sub(n, phase);
   220       if (nn == NULL) break;
   221       n = nn; // again
   222     };
   223   }
   224 }
   226 //------------------------------policy_peeling---------------------------------
   227 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   228 // make some loop-invariant test (usually a null-check) happen before the loop.
   229 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   230   Node *test = ((IdealLoopTree*)this)->tail();
   231   int  body_size = ((IdealLoopTree*)this)->_body.size();
   232   int  uniq      = phase->C->unique();
   233   // Peeling does loop cloning which can result in O(N^2) node construction
   234   if( body_size > 255 /* Prevent overflow for large body_size */
   235       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   236     return false;           // too large to safely clone
   237   }
   238   while( test != _head ) {      // Scan till run off top of loop
   239     if( test->is_If() ) {       // Test?
   240       Node *ctrl = phase->get_ctrl(test->in(1));
   241       if (ctrl->is_top())
   242         return false;           // Found dead test on live IF?  No peeling!
   243       // Standard IF only has one input value to check for loop invariance
   244       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   245       // Condition is not a member of this loop?
   246       if( !is_member(phase->get_loop(ctrl)) &&
   247           is_loop_exit(test) )
   248         return true;            // Found reason to peel!
   249     }
   250     // Walk up dominators to loop _head looking for test which is
   251     // executed on every path thru loop.
   252     test = phase->idom(test);
   253   }
   254   return false;
   255 }
   257 //------------------------------peeled_dom_test_elim---------------------------
   258 // If we got the effect of peeling, either by actually peeling or by making
   259 // a pre-loop which must execute at least once, we can remove all
   260 // loop-invariant dominated tests in the main body.
   261 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   262   bool progress = true;
   263   while( progress ) {
   264     progress = false;           // Reset for next iteration
   265     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   266     Node *test = prev->in(0);
   267     while( test != loop->_head ) { // Scan till run off top of loop
   269       int p_op = prev->Opcode();
   270       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   271           test->is_If() &&      // Test?
   272           !test->in(1)->is_Con() && // And not already obvious?
   273           // Condition is not a member of this loop?
   274           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   275         // Walk loop body looking for instances of this test
   276         for( uint i = 0; i < loop->_body.size(); i++ ) {
   277           Node *n = loop->_body.at(i);
   278           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   279             // IfNode was dominated by version in peeled loop body
   280             progress = true;
   281             dominated_by( old_new[prev->_idx], n );
   282           }
   283         }
   284       }
   285       prev = test;
   286       test = idom(test);
   287     } // End of scan tests in loop
   289   } // End of while( progress )
   290 }
   292 //------------------------------do_peeling-------------------------------------
   293 // Peel the first iteration of the given loop.
   294 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   295 //         The pre-loop illegally has 2 control users (old & new loops).
   296 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   297 //         Do this by making the old-loop fall-in edges act as if they came
   298 //         around the loopback from the prior iteration (follow the old-loop
   299 //         backedges) and then map to the new peeled iteration.  This leaves
   300 //         the pre-loop with only 1 user (the new peeled iteration), but the
   301 //         peeled-loop backedge has 2 users.
   302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   303 //         extra backedge user.
   304 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   306   C->set_major_progress();
   307   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   308   // 'pre' loop from the main and the 'pre' can no longer have it's
   309   // iterations adjusted.  Therefore, we need to declare this loop as
   310   // no longer a 'main' loop; it will need new pre and post loops before
   311   // we can do further RCE.
   312 #ifndef PRODUCT
   313   if (TraceLoopOpts) {
   314     tty->print("Peel         ");
   315     loop->dump_head();
   316   }
   317 #endif
   318   Node *h = loop->_head;
   319   if (h->is_CountedLoop()) {
   320     CountedLoopNode *cl = h->as_CountedLoop();
   321     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   322     cl->set_trip_count(cl->trip_count() - 1);
   323     if (cl->is_main_loop()) {
   324       cl->set_normal_loop();
   325 #ifndef PRODUCT
   326       if (PrintOpto && VerifyLoopOptimizations) {
   327         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   328         loop->dump_head();
   329       }
   330 #endif
   331     }
   332   }
   334   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335   //         The pre-loop illegally has 2 control users (old & new loops).
   336   clone_loop( loop, old_new, dom_depth(loop->_head) );
   339   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   340   //         Do this by making the old-loop fall-in edges act as if they came
   341   //         around the loopback from the prior iteration (follow the old-loop
   342   //         backedges) and then map to the new peeled iteration.  This leaves
   343   //         the pre-loop with only 1 user (the new peeled iteration), but the
   344   //         peeled-loop backedge has 2 users.
   345   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   346     Node* old = loop->_head->fast_out(j);
   347     if( old->in(0) == loop->_head && old->req() == 3 &&
   348         (old->is_Loop() || old->is_Phi()) ) {
   349       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   350       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   351         // Then loop body backedge value remains the same.
   352         new_exit_value = old->in(LoopNode::LoopBackControl);
   353       _igvn.hash_delete(old);
   354       old->set_req(LoopNode::EntryControl, new_exit_value);
   355     }
   356   }
   359   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   360   //         extra backedge user.
   361   Node *nnn = old_new[loop->_head->_idx];
   362   _igvn.hash_delete(nnn);
   363   nnn->set_req(LoopNode::LoopBackControl, C->top());
   364   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   365     Node* use = nnn->fast_out(j2);
   366     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   367       _igvn.hash_delete(use);
   368       use->set_req(LoopNode::LoopBackControl, C->top());
   369     }
   370   }
   373   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   374   int dd = dom_depth(loop->_head);
   375   set_idom(loop->_head, loop->_head->in(1), dd);
   376   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   377     Node *old = loop->_body.at(j3);
   378     Node *nnn = old_new[old->_idx];
   379     if (!has_ctrl(nnn))
   380       set_idom(nnn, idom(nnn), dd-1);
   381     // While we're at it, remove any SafePoints from the peeled code
   382     if( old->Opcode() == Op_SafePoint ) {
   383       Node *nnn = old_new[old->_idx];
   384       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   385     }
   386   }
   388   // Now force out all loop-invariant dominating tests.  The optimizer
   389   // finds some, but we _know_ they are all useless.
   390   peeled_dom_test_elim(loop,old_new);
   392   loop->record_for_igvn();
   393 }
   395 //------------------------------policy_maximally_unroll------------------------
   396 // Return exact loop trip count, or 0 if not maximally unrolling
   397 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   398   CountedLoopNode *cl = _head->as_CountedLoop();
   399   assert(cl->is_normal_loop(), "");
   401   Node *init_n = cl->init_trip();
   402   Node *limit_n = cl->limit();
   404   // Non-constant bounds
   405   if (init_n   == NULL || !init_n->is_Con()  ||
   406       limit_n  == NULL || !limit_n->is_Con() ||
   407       // protect against stride not being a constant
   408       !cl->stride_is_con()) {
   409     return false;
   410   }
   411   int init   = init_n->get_int();
   412   int limit  = limit_n->get_int();
   413   int span   = limit - init;
   414   int stride = cl->stride_con();
   416   if (init >= limit || stride > span) {
   417     // return a false (no maximally unroll) and the regular unroll/peel
   418     // route will make a small mess which CCP will fold away.
   419     return false;
   420   }
   421   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   422   assert( (int)trip_count*stride == span, "must divide evenly" );
   424   // Real policy: if we maximally unroll, does it get too big?
   425   // Allow the unrolled mess to get larger than standard loop
   426   // size.  After all, it will no longer be a loop.
   427   uint body_size    = _body.size();
   428   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   429   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   430   cl->set_trip_count(trip_count);
   431   if (trip_count > unroll_limit || body_size > unroll_limit) {
   432     return false;
   433   }
   435   // Currently we don't have policy to optimize one iteration loops.
   436   // Maximally unrolling transformation is used for that:
   437   // it is peeled and the original loop become non reachable (dead).
   438   if (trip_count == 1)
   439     return true;
   441   // Do not unroll a loop with String intrinsics code.
   442   // String intrinsics are large and have loops.
   443   for (uint k = 0; k < _body.size(); k++) {
   444     Node* n = _body.at(k);
   445     switch (n->Opcode()) {
   446       case Op_StrComp:
   447       case Op_StrEquals:
   448       case Op_StrIndexOf:
   449       case Op_AryEq: {
   450         return false;
   451       }
   452     } // switch
   453   }
   455   if (body_size <= unroll_limit) {
   456     uint new_body_size = body_size * trip_count;
   457     if (new_body_size <= unroll_limit &&
   458         body_size == new_body_size / trip_count &&
   459         // Unrolling can result in a large amount of node construction
   460         new_body_size < MaxNodeLimit - phase->C->unique()) {
   461       return true;    // maximally unroll
   462     }
   463   }
   465   return false;               // Do not maximally unroll
   466 }
   469 //------------------------------policy_unroll----------------------------------
   470 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   471 // the loop is a CountedLoop and the body is small enough.
   472 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   474   CountedLoopNode *cl = _head->as_CountedLoop();
   475   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   477   // protect against stride not being a constant
   478   if (!cl->stride_is_con()) return false;
   480   // protect against over-unrolling
   481   if (cl->trip_count() <= 1) return false;
   483   int future_unroll_ct = cl->unrolled_count() * 2;
   485   // Don't unroll if the next round of unrolling would push us
   486   // over the expected trip count of the loop.  One is subtracted
   487   // from the expected trip count because the pre-loop normally
   488   // executes 1 iteration.
   489   if (UnrollLimitForProfileCheck > 0 &&
   490       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   491       future_unroll_ct        > UnrollLimitForProfileCheck &&
   492       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   493     return false;
   494   }
   496   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   497   //   the residual iterations are more than 10% of the trip count
   498   //   and rounds of "unroll,optimize" are not making significant progress
   499   //   Progress defined as current size less than 20% larger than previous size.
   500   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   501       future_unroll_ct > LoopUnrollMin &&
   502       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   503       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   504     return false;
   505   }
   507   Node *init_n = cl->init_trip();
   508   Node *limit_n = cl->limit();
   509   // Non-constant bounds.
   510   // Protect against over-unrolling when init or/and limit are not constant
   511   // (so that trip_count's init value is maxint) but iv range is known.
   512   if (init_n   == NULL || !init_n->is_Con()  ||
   513       limit_n  == NULL || !limit_n->is_Con()) {
   514     Node* phi = cl->phi();
   515     if (phi != NULL) {
   516       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   517       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   518       int next_stride = cl->stride_con() * 2; // stride after this unroll
   519       if (next_stride > 0) {
   520         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   521             iv_type->_lo + next_stride >  iv_type->_hi) {
   522           return false;  // over-unrolling
   523         }
   524       } else if (next_stride < 0) {
   525         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   526             iv_type->_hi + next_stride <  iv_type->_lo) {
   527           return false;  // over-unrolling
   528         }
   529       }
   530     }
   531   }
   533   // Adjust body_size to determine if we unroll or not
   534   uint body_size = _body.size();
   535   // Key test to unroll CaffeineMark's Logic test
   536   int xors_in_loop = 0;
   537   // Also count ModL, DivL and MulL which expand mightly
   538   for (uint k = 0; k < _body.size(); k++) {
   539     Node* n = _body.at(k);
   540     switch (n->Opcode()) {
   541       case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   542       case Op_ModL: body_size += 30; break;
   543       case Op_DivL: body_size += 30; break;
   544       case Op_MulL: body_size += 10; break;
   545       case Op_StrComp:
   546       case Op_StrEquals:
   547       case Op_StrIndexOf:
   548       case Op_AryEq: {
   549         // Do not unroll a loop with String intrinsics code.
   550         // String intrinsics are large and have loops.
   551         return false;
   552       }
   553     } // switch
   554   }
   556   // Check for being too big
   557   if (body_size > (uint)LoopUnrollLimit) {
   558     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   559     // Normal case: loop too big
   560     return false;
   561   }
   563   // Check for stride being a small enough constant
   564   if (abs(cl->stride_con()) > (1<<3)) return false;
   566   // Unroll once!  (Each trip will soon do double iterations)
   567   return true;
   568 }
   570 //------------------------------policy_align-----------------------------------
   571 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   572 // expression that does the alignment.  Note that only one array base can be
   573 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   574 // if we vectorize short memory ops into longer memory ops, we may want to
   575 // increase alignment.
   576 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   577   return false;
   578 }
   580 //------------------------------policy_range_check-----------------------------
   581 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   582 // Actually we do iteration-splitting, a more powerful form of RCE.
   583 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   584   if( !RangeCheckElimination ) return false;
   586   CountedLoopNode *cl = _head->as_CountedLoop();
   587   // If we unrolled with no intention of doing RCE and we later
   588   // changed our minds, we got no pre-loop.  Either we need to
   589   // make a new pre-loop, or we gotta disallow RCE.
   590   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   591   Node *trip_counter = cl->phi();
   593   // Check loop body for tests of trip-counter plus loop-invariant vs
   594   // loop-invariant.
   595   for( uint i = 0; i < _body.size(); i++ ) {
   596     Node *iff = _body[i];
   597     if( iff->Opcode() == Op_If ) { // Test?
   599       // Comparing trip+off vs limit
   600       Node *bol = iff->in(1);
   601       if( bol->req() != 2 ) continue; // dead constant test
   602       if (!bol->is_Bool()) {
   603         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   604         continue;
   605       }
   606       Node *cmp = bol->in(1);
   608       Node *rc_exp = cmp->in(1);
   609       Node *limit = cmp->in(2);
   611       Node *limit_c = phase->get_ctrl(limit);
   612       if( limit_c == phase->C->top() )
   613         return false;           // Found dead test on live IF?  No RCE!
   614       if( is_member(phase->get_loop(limit_c) ) ) {
   615         // Compare might have operands swapped; commute them
   616         rc_exp = cmp->in(2);
   617         limit  = cmp->in(1);
   618         limit_c = phase->get_ctrl(limit);
   619         if( is_member(phase->get_loop(limit_c) ) )
   620           continue;             // Both inputs are loop varying; cannot RCE
   621       }
   623       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   624         continue;
   625       }
   626       // Yeah!  Found a test like 'trip+off vs limit'
   627       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   628       // we need loop unswitching instead of iteration splitting.
   629       if( is_loop_exit(iff) )
   630         return true;            // Found reason to split iterations
   631     } // End of is IF
   632   }
   634   return false;
   635 }
   637 //------------------------------policy_peel_only-------------------------------
   638 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   639 // for unrolling loops with NO array accesses.
   640 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   642   for( uint i = 0; i < _body.size(); i++ )
   643     if( _body[i]->is_Mem() )
   644       return false;
   646   // No memory accesses at all!
   647   return true;
   648 }
   650 //------------------------------clone_up_backedge_goo--------------------------
   651 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   652 // version of n in preheader_ctrl block and return that, otherwise return n.
   653 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   654   if( get_ctrl(n) != back_ctrl ) return n;
   656   Node *x = NULL;               // If required, a clone of 'n'
   657   // Check for 'n' being pinned in the backedge.
   658   if( n->in(0) && n->in(0) == back_ctrl ) {
   659     x = n->clone();             // Clone a copy of 'n' to preheader
   660     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   661   }
   663   // Recursive fixup any other input edges into x.
   664   // If there are no changes we can just return 'n', otherwise
   665   // we need to clone a private copy and change it.
   666   for( uint i = 1; i < n->req(); i++ ) {
   667     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   668     if( g != n->in(i) ) {
   669       if( !x )
   670         x = n->clone();
   671       x->set_req(i, g);
   672     }
   673   }
   674   if( x ) {                     // x can legally float to pre-header location
   675     register_new_node( x, preheader_ctrl );
   676     return x;
   677   } else {                      // raise n to cover LCA of uses
   678     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   679   }
   680   return n;
   681 }
   683 //------------------------------insert_pre_post_loops--------------------------
   684 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   685 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   686 // alignment.  Useful to unroll loops that do no array accesses.
   687 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   689 #ifndef PRODUCT
   690   if (TraceLoopOpts) {
   691     if (peel_only)
   692       tty->print("PeelMainPost ");
   693     else
   694       tty->print("PreMainPost  ");
   695     loop->dump_head();
   696   }
   697 #endif
   698   C->set_major_progress();
   700   // Find common pieces of the loop being guarded with pre & post loops
   701   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   702   assert( main_head->is_normal_loop(), "" );
   703   CountedLoopEndNode *main_end = main_head->loopexit();
   704   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   705   uint dd_main_head = dom_depth(main_head);
   706   uint max = main_head->outcnt();
   708   Node *pre_header= main_head->in(LoopNode::EntryControl);
   709   Node *init      = main_head->init_trip();
   710   Node *incr      = main_end ->incr();
   711   Node *limit     = main_end ->limit();
   712   Node *stride    = main_end ->stride();
   713   Node *cmp       = main_end ->cmp_node();
   714   BoolTest::mask b_test = main_end->test_trip();
   716   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   717   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   718   if( bol->outcnt() != 1 ) {
   719     bol = bol->clone();
   720     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   721     _igvn.hash_delete(main_end);
   722     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   723   }
   724   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   725   if( cmp->outcnt() != 1 ) {
   726     cmp = cmp->clone();
   727     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   728     _igvn.hash_delete(bol);
   729     bol->set_req(1, cmp);
   730   }
   732   //------------------------------
   733   // Step A: Create Post-Loop.
   734   Node* main_exit = main_end->proj_out(false);
   735   assert( main_exit->Opcode() == Op_IfFalse, "" );
   736   int dd_main_exit = dom_depth(main_exit);
   738   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   739   // loop pre-header illegally has 2 control users (old & new loops).
   740   clone_loop( loop, old_new, dd_main_exit );
   741   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   742   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   743   post_head->set_post_loop(main_head);
   745   // Reduce the post-loop trip count.
   746   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   747   post_end->_prob = PROB_FAIR;
   749   // Build the main-loop normal exit.
   750   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   751   _igvn.register_new_node_with_optimizer( new_main_exit );
   752   set_idom(new_main_exit, main_end, dd_main_exit );
   753   set_loop(new_main_exit, loop->_parent);
   755   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   756   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   757   // (the main-loop trip-counter exit value) because we will be changing
   758   // the exit value (via unrolling) so we cannot constant-fold away the zero
   759   // trip guard until all unrolling is done.
   760   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   761   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   762   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   763   register_new_node( zer_opaq, new_main_exit );
   764   register_new_node( zer_cmp , new_main_exit );
   765   register_new_node( zer_bol , new_main_exit );
   767   // Build the IfNode
   768   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   769   _igvn.register_new_node_with_optimizer( zer_iff );
   770   set_idom(zer_iff, new_main_exit, dd_main_exit);
   771   set_loop(zer_iff, loop->_parent);
   773   // Plug in the false-path, taken if we need to skip post-loop
   774   _igvn.hash_delete( main_exit );
   775   main_exit->set_req(0, zer_iff);
   776   _igvn._worklist.push(main_exit);
   777   set_idom(main_exit, zer_iff, dd_main_exit);
   778   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   779   // Make the true-path, must enter the post loop
   780   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   781   _igvn.register_new_node_with_optimizer( zer_taken );
   782   set_idom(zer_taken, zer_iff, dd_main_exit);
   783   set_loop(zer_taken, loop->_parent);
   784   // Plug in the true path
   785   _igvn.hash_delete( post_head );
   786   post_head->set_req(LoopNode::EntryControl, zer_taken);
   787   set_idom(post_head, zer_taken, dd_main_exit);
   789   // Step A3: Make the fall-in values to the post-loop come from the
   790   // fall-out values of the main-loop.
   791   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   792     Node* main_phi = main_head->fast_out(i);
   793     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   794       Node *post_phi = old_new[main_phi->_idx];
   795       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   796                                               post_head->init_control(),
   797                                               main_phi->in(LoopNode::LoopBackControl));
   798       _igvn.hash_delete(post_phi);
   799       post_phi->set_req( LoopNode::EntryControl, fallmain );
   800     }
   801   }
   803   // Update local caches for next stanza
   804   main_exit = new_main_exit;
   807   //------------------------------
   808   // Step B: Create Pre-Loop.
   810   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   811   // loop pre-header illegally has 2 control users (old & new loops).
   812   clone_loop( loop, old_new, dd_main_head );
   813   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   814   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   815   pre_head->set_pre_loop(main_head);
   816   Node *pre_incr = old_new[incr->_idx];
   818   // Reduce the pre-loop trip count.
   819   pre_end->_prob = PROB_FAIR;
   821   // Find the pre-loop normal exit.
   822   Node* pre_exit = pre_end->proj_out(false);
   823   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   824   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   825   _igvn.register_new_node_with_optimizer( new_pre_exit );
   826   set_idom(new_pre_exit, pre_end, dd_main_head);
   827   set_loop(new_pre_exit, loop->_parent);
   829   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   830   // pre-loop, the main-loop may not execute at all.  Later in life this
   831   // zero-trip guard will become the minimum-trip guard when we unroll
   832   // the main-loop.
   833   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   834   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   835   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   836   register_new_node( min_opaq, new_pre_exit );
   837   register_new_node( min_cmp , new_pre_exit );
   838   register_new_node( min_bol , new_pre_exit );
   840   // Build the IfNode (assume the main-loop is executed always).
   841   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   842   _igvn.register_new_node_with_optimizer( min_iff );
   843   set_idom(min_iff, new_pre_exit, dd_main_head);
   844   set_loop(min_iff, loop->_parent);
   846   // Plug in the false-path, taken if we need to skip main-loop
   847   _igvn.hash_delete( pre_exit );
   848   pre_exit->set_req(0, min_iff);
   849   set_idom(pre_exit, min_iff, dd_main_head);
   850   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   851   // Make the true-path, must enter the main loop
   852   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   853   _igvn.register_new_node_with_optimizer( min_taken );
   854   set_idom(min_taken, min_iff, dd_main_head);
   855   set_loop(min_taken, loop->_parent);
   856   // Plug in the true path
   857   _igvn.hash_delete( main_head );
   858   main_head->set_req(LoopNode::EntryControl, min_taken);
   859   set_idom(main_head, min_taken, dd_main_head);
   861   // Step B3: Make the fall-in values to the main-loop come from the
   862   // fall-out values of the pre-loop.
   863   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   864     Node* main_phi = main_head->fast_out(i2);
   865     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   866       Node *pre_phi = old_new[main_phi->_idx];
   867       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   868                                              main_head->init_control(),
   869                                              pre_phi->in(LoopNode::LoopBackControl));
   870       _igvn.hash_delete(main_phi);
   871       main_phi->set_req( LoopNode::EntryControl, fallpre );
   872     }
   873   }
   875   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   876   // RCE and alignment may change this later.
   877   Node *cmp_end = pre_end->cmp_node();
   878   assert( cmp_end->in(2) == limit, "" );
   879   Node *pre_limit = new (C, 3) AddINode( init, stride );
   881   // Save the original loop limit in this Opaque1 node for
   882   // use by range check elimination.
   883   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   885   register_new_node( pre_limit, pre_head->in(0) );
   886   register_new_node( pre_opaq , pre_head->in(0) );
   888   // Since no other users of pre-loop compare, I can hack limit directly
   889   assert( cmp_end->outcnt() == 1, "no other users" );
   890   _igvn.hash_delete(cmp_end);
   891   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   893   // Special case for not-equal loop bounds:
   894   // Change pre loop test, main loop test, and the
   895   // main loop guard test to use lt or gt depending on stride
   896   // direction:
   897   // positive stride use <
   898   // negative stride use >
   900   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   902     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   903     // Modify pre loop end condition
   904     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   905     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   906     register_new_node( new_bol0, pre_head->in(0) );
   907     _igvn.hash_delete(pre_end);
   908     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   909     // Modify main loop guard condition
   910     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   911     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   912     register_new_node( new_bol1, new_pre_exit );
   913     _igvn.hash_delete(min_iff);
   914     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   915     // Modify main loop end condition
   916     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   917     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   918     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   919     _igvn.hash_delete(main_end);
   920     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   921   }
   923   // Flag main loop
   924   main_head->set_main_loop();
   925   if( peel_only ) main_head->set_main_no_pre_loop();
   927   // It's difficult to be precise about the trip-counts
   928   // for the pre/post loops.  They are usually very short,
   929   // so guess that 4 trips is a reasonable value.
   930   post_head->set_profile_trip_cnt(4.0);
   931   pre_head->set_profile_trip_cnt(4.0);
   933   // Now force out all loop-invariant dominating tests.  The optimizer
   934   // finds some, but we _know_ they are all useless.
   935   peeled_dom_test_elim(loop,old_new);
   936 }
   938 //------------------------------is_invariant-----------------------------
   939 // Return true if n is invariant
   940 bool IdealLoopTree::is_invariant(Node* n) const {
   941   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
   942   if (n_c->is_top()) return false;
   943   return !is_member(_phase->get_loop(n_c));
   944 }
   947 //------------------------------do_unroll--------------------------------------
   948 // Unroll the loop body one step - make each trip do 2 iterations.
   949 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   950   assert(LoopUnrollLimit, "");
   951   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   952   CountedLoopEndNode *loop_end = loop_head->loopexit();
   953   assert(loop_end, "");
   954 #ifndef PRODUCT
   955   if (PrintOpto && VerifyLoopOptimizations) {
   956     tty->print("Unrolling ");
   957     loop->dump_head();
   958   } else if (TraceLoopOpts) {
   959     tty->print("Unroll     %d ", loop_head->unrolled_count()*2);
   960     loop->dump_head();
   961   }
   962 #endif
   964   // Remember loop node count before unrolling to detect
   965   // if rounds of unroll,optimize are making progress
   966   loop_head->set_node_count_before_unroll(loop->_body.size());
   968   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   969   Node *limit = loop_head->limit();
   970   Node *init  = loop_head->init_trip();
   971   Node *stride = loop_head->stride();
   973   Node *opaq = NULL;
   974   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   975     assert( loop_head->is_main_loop(), "" );
   976     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   977     Node *iff = ctrl->in(0);
   978     assert( iff->Opcode() == Op_If, "" );
   979     Node *bol = iff->in(1);
   980     assert( bol->Opcode() == Op_Bool, "" );
   981     Node *cmp = bol->in(1);
   982     assert( cmp->Opcode() == Op_CmpI, "" );
   983     opaq = cmp->in(2);
   984     // Occasionally it's possible for a pre-loop Opaque1 node to be
   985     // optimized away and then another round of loop opts attempted.
   986     // We can not optimize this particular loop in that case.
   987     if( opaq->Opcode() != Op_Opaque1 )
   988       return;                   // Cannot find pre-loop!  Bail out!
   989   }
   991   C->set_major_progress();
   993   // Adjust max trip count. The trip count is intentionally rounded
   994   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   995   // the main, unrolled, part of the loop will never execute as it is protected
   996   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   997   // and later determined that part of the unrolled loop was dead.
   998   loop_head->set_trip_count(loop_head->trip_count() / 2);
  1000   // Double the count of original iterations in the unrolled loop body.
  1001   loop_head->double_unrolled_count();
  1003   // -----------
  1004   // Step 2: Cut back the trip counter for an unroll amount of 2.
  1005   // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1006   // CountedLoop this is exact (stride divides limit-init exactly).
  1007   // We are going to double the loop body, so we want to knock off any
  1008   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1009   Node *span = new (C, 3) SubINode( limit, init );
  1010   register_new_node( span, ctrl );
  1011   Node *trip = new (C, 3) DivINode( 0, span, stride );
  1012   register_new_node( trip, ctrl );
  1013   Node *mtwo = _igvn.intcon(-2);
  1014   set_ctrl(mtwo, C->root());
  1015   Node *rond = new (C, 3) AndINode( trip, mtwo );
  1016   register_new_node( rond, ctrl );
  1017   Node *spn2 = new (C, 3) MulINode( rond, stride );
  1018   register_new_node( spn2, ctrl );
  1019   Node *lim2 = new (C, 3) AddINode( spn2, init );
  1020   register_new_node( lim2, ctrl );
  1022   // Hammer in the new limit
  1023   Node *ctrl2 = loop_end->in(0);
  1024   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
  1025   register_new_node( cmp2, ctrl2 );
  1026   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
  1027   register_new_node( bol2, ctrl2 );
  1028   _igvn.hash_delete(loop_end);
  1029   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1031   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1032   // Make it a 1-trip test (means at least 2 trips).
  1033   if( adjust_min_trip ) {
  1034     // Guard test uses an 'opaque' node which is not shared.  Hence I
  1035     // can edit it's inputs directly.  Hammer in the new limit for the
  1036     // minimum-trip guard.
  1037     assert( opaq->outcnt() == 1, "" );
  1038     _igvn.hash_delete(opaq);
  1039     opaq->set_req(1, lim2);
  1042   // ---------
  1043   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1044   // represents the odd iterations; since the loop trips an even number of
  1045   // times its backedge is never taken.  Kill the backedge.
  1046   uint dd = dom_depth(loop_head);
  1047   clone_loop( loop, old_new, dd );
  1049   // Make backedges of the clone equal to backedges of the original.
  1050   // Make the fall-in from the original come from the fall-out of the clone.
  1051   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1052     Node* phi = loop_head->fast_out(j);
  1053     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1054       Node *newphi = old_new[phi->_idx];
  1055       _igvn.hash_delete( phi );
  1056       _igvn.hash_delete( newphi );
  1058       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1059       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1060       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1063   Node *clone_head = old_new[loop_head->_idx];
  1064   _igvn.hash_delete( clone_head );
  1065   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1066   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1067   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1068   loop->_head = clone_head;     // New loop header
  1070   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1071   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1073   // Kill the clone's backedge
  1074   Node *newcle = old_new[loop_end->_idx];
  1075   _igvn.hash_delete( newcle );
  1076   Node *one = _igvn.intcon(1);
  1077   set_ctrl(one, C->root());
  1078   newcle->set_req(1, one);
  1079   // Force clone into same loop body
  1080   uint max = loop->_body.size();
  1081   for( uint k = 0; k < max; k++ ) {
  1082     Node *old = loop->_body.at(k);
  1083     Node *nnn = old_new[old->_idx];
  1084     loop->_body.push(nnn);
  1085     if (!has_ctrl(old))
  1086       set_loop(nnn, loop);
  1089   loop->record_for_igvn();
  1092 //------------------------------do_maximally_unroll----------------------------
  1094 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1095   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1096   assert(cl->trip_count() > 0, "");
  1097 #ifndef PRODUCT
  1098   if (TraceLoopOpts) {
  1099     tty->print("MaxUnroll  %d ", cl->trip_count());
  1100     loop->dump_head();
  1102 #endif
  1104   // If loop is tripping an odd number of times, peel odd iteration
  1105   if ((cl->trip_count() & 1) == 1) {
  1106     do_peeling(loop, old_new);
  1109   // Now its tripping an even number of times remaining.  Double loop body.
  1110   // Do not adjust pre-guards; they are not needed and do not exist.
  1111   if (cl->trip_count() > 0) {
  1112     do_unroll(loop, old_new, false);
  1116 //------------------------------dominates_backedge---------------------------------
  1117 // Returns true if ctrl is executed on every complete iteration
  1118 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1119   assert(ctrl->is_CFG(), "must be control");
  1120   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1121   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1124 //------------------------------add_constraint---------------------------------
  1125 // Constrain the main loop iterations so the condition:
  1126 //    scale_con * I + offset  <  limit
  1127 // always holds true.  That is, either increase the number of iterations in
  1128 // the pre-loop or the post-loop until the condition holds true in the main
  1129 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1130 // stride and scale are constants (offset and limit often are).
  1131 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1133   // Compute "I :: (limit-offset)/scale_con"
  1134   Node *con = new (C, 3) SubINode( limit, offset );
  1135   register_new_node( con, pre_ctrl );
  1136   Node *scale = _igvn.intcon(scale_con);
  1137   set_ctrl(scale, C->root());
  1138   Node *X = new (C, 3) DivINode( 0, con, scale );
  1139   register_new_node( X, pre_ctrl );
  1141   // For positive stride, the pre-loop limit always uses a MAX function
  1142   // and the main loop a MIN function.  For negative stride these are
  1143   // reversed.
  1145   // Also for positive stride*scale the affine function is increasing, so the
  1146   // pre-loop must check for underflow and the post-loop for overflow.
  1147   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1148   // post-loop for underflow.
  1149   if( stride_con*scale_con > 0 ) {
  1150     // Compute I < (limit-offset)/scale_con
  1151     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1152     *main_limit = (stride_con > 0)
  1153       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1154       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1155     register_new_node( *main_limit, pre_ctrl );
  1157   } else {
  1158     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1159     // Add the negation of the main-loop constraint to the pre-loop.
  1160     // See footnote [++] below for a derivation of the limit expression.
  1161     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1162     set_ctrl(incr, C->root());
  1163     Node *adj = new (C, 3) AddINode( X, incr );
  1164     register_new_node( adj, pre_ctrl );
  1165     *pre_limit = (scale_con > 0)
  1166       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1167       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1168     register_new_node( *pre_limit, pre_ctrl );
  1170 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1171 //
  1172 //   NOT( scale_con * I + offset  <  limit )
  1173 //      ==
  1174 //   scale_con * I + offset  >=  limit
  1175 //      ==
  1176 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1177 //      ==
  1178 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1179 //      ==
  1180 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1181 //      ==
  1182 //   ( if (scale_con > 0) /*common case*/
  1183 //       (limit-offset)/scale_con - 1  <  I
  1184 //     else
  1185 //       (limit-offset)/scale_con + 1  >  I
  1186 //    )
  1187 //   ( if (scale_con > 0) /*common case*/
  1188 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1189 //     else
  1190 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1195 //------------------------------is_scaled_iv---------------------------------
  1196 // Return true if exp is a constant times an induction var
  1197 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1198   if (exp == iv) {
  1199     if (p_scale != NULL) {
  1200       *p_scale = 1;
  1202     return true;
  1204   int opc = exp->Opcode();
  1205   if (opc == Op_MulI) {
  1206     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1207       if (p_scale != NULL) {
  1208         *p_scale = exp->in(2)->get_int();
  1210       return true;
  1212     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1213       if (p_scale != NULL) {
  1214         *p_scale = exp->in(1)->get_int();
  1216       return true;
  1218   } else if (opc == Op_LShiftI) {
  1219     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1220       if (p_scale != NULL) {
  1221         *p_scale = 1 << exp->in(2)->get_int();
  1223       return true;
  1226   return false;
  1229 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1230 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1231 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1232   if (is_scaled_iv(exp, iv, p_scale)) {
  1233     if (p_offset != NULL) {
  1234       Node *zero = _igvn.intcon(0);
  1235       set_ctrl(zero, C->root());
  1236       *p_offset = zero;
  1238     return true;
  1240   int opc = exp->Opcode();
  1241   if (opc == Op_AddI) {
  1242     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1243       if (p_offset != NULL) {
  1244         *p_offset = exp->in(2);
  1246       return true;
  1248     if (exp->in(2)->is_Con()) {
  1249       Node* offset2 = NULL;
  1250       if (depth < 2 &&
  1251           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1252                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1253         if (p_offset != NULL) {
  1254           Node *ctrl_off2 = get_ctrl(offset2);
  1255           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1256           register_new_node(offset, ctrl_off2);
  1257           *p_offset = offset;
  1259         return true;
  1262   } else if (opc == Op_SubI) {
  1263     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1264       if (p_offset != NULL) {
  1265         Node *zero = _igvn.intcon(0);
  1266         set_ctrl(zero, C->root());
  1267         Node *ctrl_off = get_ctrl(exp->in(2));
  1268         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1269         register_new_node(offset, ctrl_off);
  1270         *p_offset = offset;
  1272       return true;
  1274     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1275       if (p_offset != NULL) {
  1276         *p_scale *= -1;
  1277         *p_offset = exp->in(1);
  1279       return true;
  1282   return false;
  1285 //------------------------------do_range_check---------------------------------
  1286 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1287 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1288 #ifndef PRODUCT
  1289   if (PrintOpto && VerifyLoopOptimizations) {
  1290     tty->print("Range Check Elimination ");
  1291     loop->dump_head();
  1292   } else if (TraceLoopOpts) {
  1293     tty->print("RangeCheck   ");
  1294     loop->dump_head();
  1296 #endif
  1297   assert(RangeCheckElimination, "");
  1298   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1299   assert(cl->is_main_loop(), "");
  1301   // protect against stride not being a constant
  1302   if (!cl->stride_is_con())
  1303     return;
  1305   // Find the trip counter; we are iteration splitting based on it
  1306   Node *trip_counter = cl->phi();
  1307   // Find the main loop limit; we will trim it's iterations
  1308   // to not ever trip end tests
  1309   Node *main_limit = cl->limit();
  1311   // Need to find the main-loop zero-trip guard
  1312   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1313   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1314   Node *iffm = ctrl->in(0);
  1315   assert(iffm->Opcode() == Op_If, "");
  1316   Node *bolzm = iffm->in(1);
  1317   assert(bolzm->Opcode() == Op_Bool, "");
  1318   Node *cmpzm = bolzm->in(1);
  1319   assert(cmpzm->is_Cmp(), "");
  1320   Node *opqzm = cmpzm->in(2);
  1321   // Can not optimize a loop if pre-loop Opaque1 node is optimized
  1322   // away and then another round of loop opts attempted.
  1323   if (opqzm->Opcode() != Op_Opaque1)
  1324     return;
  1325   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1327   // Find the pre-loop limit; we will expand it's iterations to
  1328   // not ever trip low tests.
  1329   Node *p_f = iffm->in(0);
  1330   assert(p_f->Opcode() == Op_IfFalse, "");
  1331   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1332   assert(pre_end->loopnode()->is_pre_loop(), "");
  1333   Node *pre_opaq1 = pre_end->limit();
  1334   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1335   // optimized away and then another round of loop opts attempted.
  1336   // We can not optimize this particular loop in that case.
  1337   if (pre_opaq1->Opcode() != Op_Opaque1)
  1338     return;
  1339   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1340   Node *pre_limit = pre_opaq->in(1);
  1342   // Where do we put new limit calculations
  1343   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1345   // Ensure the original loop limit is available from the
  1346   // pre-loop Opaque1 node.
  1347   Node *orig_limit = pre_opaq->original_loop_limit();
  1348   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1349     return;
  1351   // Must know if its a count-up or count-down loop
  1353   int stride_con = cl->stride_con();
  1354   Node *zero = _igvn.intcon(0);
  1355   Node *one  = _igvn.intcon(1);
  1356   set_ctrl(zero, C->root());
  1357   set_ctrl(one,  C->root());
  1359   // Range checks that do not dominate the loop backedge (ie.
  1360   // conditionally executed) can lengthen the pre loop limit beyond
  1361   // the original loop limit. To prevent this, the pre limit is
  1362   // (for stride > 0) MINed with the original loop limit (MAXed
  1363   // stride < 0) when some range_check (rc) is conditionally
  1364   // executed.
  1365   bool conditional_rc = false;
  1367   // Check loop body for tests of trip-counter plus loop-invariant vs
  1368   // loop-invariant.
  1369   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1370     Node *iff = loop->_body[i];
  1371     if( iff->Opcode() == Op_If ) { // Test?
  1373       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1374       // we need loop unswitching instead of iteration splitting.
  1375       Node *exit = loop->is_loop_exit(iff);
  1376       if( !exit ) continue;
  1377       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1379       // Get boolean condition to test
  1380       Node *i1 = iff->in(1);
  1381       if( !i1->is_Bool() ) continue;
  1382       BoolNode *bol = i1->as_Bool();
  1383       BoolTest b_test = bol->_test;
  1384       // Flip sense of test if exit condition is flipped
  1385       if( flip )
  1386         b_test = b_test.negate();
  1388       // Get compare
  1389       Node *cmp = bol->in(1);
  1391       // Look for trip_counter + offset vs limit
  1392       Node *rc_exp = cmp->in(1);
  1393       Node *limit  = cmp->in(2);
  1394       jint scale_con= 1;        // Assume trip counter not scaled
  1396       Node *limit_c = get_ctrl(limit);
  1397       if( loop->is_member(get_loop(limit_c) ) ) {
  1398         // Compare might have operands swapped; commute them
  1399         b_test = b_test.commute();
  1400         rc_exp = cmp->in(2);
  1401         limit  = cmp->in(1);
  1402         limit_c = get_ctrl(limit);
  1403         if( loop->is_member(get_loop(limit_c) ) )
  1404           continue;             // Both inputs are loop varying; cannot RCE
  1406       // Here we know 'limit' is loop invariant
  1408       // 'limit' maybe pinned below the zero trip test (probably from a
  1409       // previous round of rce), in which case, it can't be used in the
  1410       // zero trip test expression which must occur before the zero test's if.
  1411       if( limit_c == ctrl ) {
  1412         continue;  // Don't rce this check but continue looking for other candidates.
  1415       // Check for scaled induction variable plus an offset
  1416       Node *offset = NULL;
  1418       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1419         continue;
  1422       Node *offset_c = get_ctrl(offset);
  1423       if( loop->is_member( get_loop(offset_c) ) )
  1424         continue;               // Offset is not really loop invariant
  1425       // Here we know 'offset' is loop invariant.
  1427       // As above for the 'limit', the 'offset' maybe pinned below the
  1428       // zero trip test.
  1429       if( offset_c == ctrl ) {
  1430         continue; // Don't rce this check but continue looking for other candidates.
  1433       // At this point we have the expression as:
  1434       //   scale_con * trip_counter + offset :: limit
  1435       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1436       // monotonically increases by stride_con, a constant.  Both (or either)
  1437       // stride_con and scale_con can be negative which will flip about the
  1438       // sense of the test.
  1440       // Adjust pre and main loop limits to guard the correct iteration set
  1441       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1442         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1443           // The overflow limit: scale*I+offset < limit
  1444           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1445           // The underflow limit: 0 <= scale*I+offset.
  1446           // Some math yields: -scale*I-(offset+1) < 0
  1447           Node *plus_one = new (C, 3) AddINode( offset, one );
  1448           register_new_node( plus_one, pre_ctrl );
  1449           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1450           register_new_node( neg_offset, pre_ctrl );
  1451           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1452           if (!conditional_rc) {
  1453             conditional_rc = !loop->dominates_backedge(iff);
  1455         } else {
  1456 #ifndef PRODUCT
  1457           if( PrintOpto )
  1458             tty->print_cr("missed RCE opportunity");
  1459 #endif
  1460           continue;             // In release mode, ignore it
  1462       } else {                  // Otherwise work on normal compares
  1463         switch( b_test._test ) {
  1464         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1465           scale_con = -scale_con;
  1466           offset = new (C, 3) SubINode( zero, offset );
  1467           register_new_node( offset, pre_ctrl );
  1468           limit  = new (C, 3) SubINode( zero, limit  );
  1469           register_new_node( limit, pre_ctrl );
  1470           // Fall into LE case
  1471         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1472           limit = new (C, 3) AddINode( limit, one );
  1473           register_new_node( limit, pre_ctrl );
  1474           // Fall into LT case
  1475         case BoolTest::lt:
  1476           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1477           if (!conditional_rc) {
  1478             conditional_rc = !loop->dominates_backedge(iff);
  1480           break;
  1481         default:
  1482 #ifndef PRODUCT
  1483           if( PrintOpto )
  1484             tty->print_cr("missed RCE opportunity");
  1485 #endif
  1486           continue;             // Unhandled case
  1490       // Kill the eliminated test
  1491       C->set_major_progress();
  1492       Node *kill_con = _igvn.intcon( 1-flip );
  1493       set_ctrl(kill_con, C->root());
  1494       _igvn.hash_delete(iff);
  1495       iff->set_req(1, kill_con);
  1496       _igvn._worklist.push(iff);
  1497       // Find surviving projection
  1498       assert(iff->is_If(), "");
  1499       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1500       // Find loads off the surviving projection; remove their control edge
  1501       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1502         Node* cd = dp->fast_out(i); // Control-dependent node
  1503         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1504           _igvn.hash_delete(cd);
  1505           // Allow the load to float around in the loop, or before it
  1506           // but NOT before the pre-loop.
  1507           cd->set_req(0, ctrl);   // ctrl, not NULL
  1508           _igvn._worklist.push(cd);
  1509           --i;
  1510           --imax;
  1514     } // End of is IF
  1518   // Update loop limits
  1519   if (conditional_rc) {
  1520     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1521                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1522     register_new_node(pre_limit, pre_ctrl);
  1524   _igvn.hash_delete(pre_opaq);
  1525   pre_opaq->set_req(1, pre_limit);
  1527   // Note:: we are making the main loop limit no longer precise;
  1528   // need to round up based on stride.
  1529   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1530     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1531     // Hopefully, compiler will optimize for powers of 2.
  1532     Node *ctrl = get_ctrl(main_limit);
  1533     Node *stride = cl->stride();
  1534     Node *init = cl->init_trip();
  1535     Node *span = new (C, 3) SubINode(main_limit,init);
  1536     register_new_node(span,ctrl);
  1537     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1538     Node *add = new (C, 3) AddINode(span,rndup);
  1539     register_new_node(add,ctrl);
  1540     Node *div = new (C, 3) DivINode(0,add,stride);
  1541     register_new_node(div,ctrl);
  1542     Node *mul = new (C, 3) MulINode(div,stride);
  1543     register_new_node(mul,ctrl);
  1544     Node *newlim = new (C, 3) AddINode(mul,init);
  1545     register_new_node(newlim,ctrl);
  1546     main_limit = newlim;
  1549   Node *main_cle = cl->loopexit();
  1550   Node *main_bol = main_cle->in(1);
  1551   // Hacking loop bounds; need private copies of exit test
  1552   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1553     _igvn.hash_delete(main_cle);
  1554     main_bol = main_bol->clone();// Clone a private BoolNode
  1555     register_new_node( main_bol, main_cle->in(0) );
  1556     main_cle->set_req(1,main_bol);
  1558   Node *main_cmp = main_bol->in(1);
  1559   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1560     _igvn.hash_delete(main_bol);
  1561     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1562     register_new_node( main_cmp, main_cle->in(0) );
  1563     main_bol->set_req(1,main_cmp);
  1565   // Hack the now-private loop bounds
  1566   _igvn.hash_delete(main_cmp);
  1567   main_cmp->set_req(2, main_limit);
  1568   _igvn._worklist.push(main_cmp);
  1569   // The OpaqueNode is unshared by design
  1570   _igvn.hash_delete(opqzm);
  1571   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1572   opqzm->set_req(1,main_limit);
  1573   _igvn._worklist.push(opqzm);
  1576 //------------------------------DCE_loop_body----------------------------------
  1577 // Remove simplistic dead code from loop body
  1578 void IdealLoopTree::DCE_loop_body() {
  1579   for( uint i = 0; i < _body.size(); i++ )
  1580     if( _body.at(i)->outcnt() == 0 )
  1581       _body.map( i--, _body.pop() );
  1585 //------------------------------adjust_loop_exit_prob--------------------------
  1586 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1587 // Replace with a 1-in-10 exit guess.
  1588 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1589   Node *test = tail();
  1590   while( test != _head ) {
  1591     uint top = test->Opcode();
  1592     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1593       int test_con = ((ProjNode*)test)->_con;
  1594       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1595       IfNode *iff = test->in(0)->as_If();
  1596       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1597         Node *bol = iff->in(1);
  1598         if( bol && bol->req() > 1 && bol->in(1) &&
  1599             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1600              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1601              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1602              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1603              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1604              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1605              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1606           return;               // Allocation loops RARELY take backedge
  1607         // Find the OTHER exit path from the IF
  1608         Node* ex = iff->proj_out(1-test_con);
  1609         float p = iff->_prob;
  1610         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1611           if( top == Op_IfTrue ) {
  1612             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1613               iff->_prob = PROB_STATIC_FREQUENT;
  1615           } else {
  1616             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1617               iff->_prob = PROB_STATIC_INFREQUENT;
  1623     test = phase->idom(test);
  1628 //------------------------------policy_do_remove_empty_loop--------------------
  1629 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1630 // The 'DO' part is to replace the trip counter with the value it will
  1631 // have on the last iteration.  This will break the loop.
  1632 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1633   // Minimum size must be empty loop
  1634   if (_body.size() > 7/*number of nodes in an empty loop*/)
  1635     return false;
  1637   if (!_head->is_CountedLoop())
  1638     return false;     // Dead loop
  1639   CountedLoopNode *cl = _head->as_CountedLoop();
  1640   if (!cl->loopexit())
  1641     return false; // Malformed loop
  1642   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  1643     return false;             // Infinite loop
  1645 #ifdef ASSERT
  1646   // Ensure only one phi which is the iv.
  1647   Node* iv = NULL;
  1648   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1649     Node* n = cl->fast_out(i);
  1650     if (n->Opcode() == Op_Phi) {
  1651       assert(iv == NULL, "Too many phis" );
  1652       iv = n;
  1655   assert(iv == cl->phi(), "Wrong phi" );
  1656 #endif
  1658   // main and post loops have explicitly created zero trip guard
  1659   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1660   if (needs_guard) {
  1661     // Check for an obvious zero trip guard.
  1662     Node* inctrl = cl->in(LoopNode::EntryControl);
  1663     if (inctrl->Opcode() == Op_IfTrue) {
  1664       // The test should look like just the backedge of a CountedLoop
  1665       Node* iff = inctrl->in(0);
  1666       if (iff->is_If()) {
  1667         Node* bol = iff->in(1);
  1668         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  1669           Node* cmp = bol->in(1);
  1670           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  1671             needs_guard = false;
  1678 #ifndef PRODUCT
  1679   if (PrintOpto) {
  1680     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  1681     this->dump_head();
  1682   } else if (TraceLoopOpts) {
  1683     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  1684     this->dump_head();
  1686 #endif
  1688   if (needs_guard) {
  1689     // Peel the loop to ensure there's a zero trip guard
  1690     Node_List old_new;
  1691     phase->do_peeling(this, old_new);
  1694   // Replace the phi at loop head with the final value of the last
  1695   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1696   // taken) and all loop-invariant uses of the exit values will be correct.
  1697   Node *phi = cl->phi();
  1698   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1699   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1700   phase->_igvn.replace_node(phi,final);
  1701   phase->C->set_major_progress();
  1702   return true;
  1706 //=============================================================================
  1707 //------------------------------iteration_split_impl---------------------------
  1708 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1709   // Check and remove empty loops (spam micro-benchmarks)
  1710   if( policy_do_remove_empty_loop(phase) )
  1711     return true;  // Here we removed an empty loop
  1713   bool should_peel = policy_peeling(phase); // Should we peel?
  1715   bool should_unswitch = policy_unswitching(phase);
  1717   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1718   // This removes loop-invariant tests (usually null checks).
  1719   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1720     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1721       // Partial peel succeeded so terminate this round of loop opts
  1722       return false;
  1724     if( should_peel ) {            // Should we peel?
  1725 #ifndef PRODUCT
  1726       if (PrintOpto) tty->print_cr("should_peel");
  1727 #endif
  1728       phase->do_peeling(this,old_new);
  1729     } else if( should_unswitch ) {
  1730       phase->do_unswitching(this, old_new);
  1732     return true;
  1734   CountedLoopNode *cl = _head->as_CountedLoop();
  1736   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1738   // Do nothing special to pre- and post- loops
  1739   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1741   // Compute loop trip count from profile data
  1742   compute_profile_trip_cnt(phase);
  1744   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1745   // to completely unroll this loop or do loop unswitching.
  1746   if( cl->is_normal_loop() ) {
  1747     if (should_unswitch) {
  1748       phase->do_unswitching(this, old_new);
  1749       return true;
  1751     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1752     if( should_maximally_unroll ) {
  1753       // Here we did some unrolling and peeling.  Eventually we will
  1754       // completely unroll this loop and it will no longer be a loop.
  1755       phase->do_maximally_unroll(this,old_new);
  1756       return true;
  1761   // Counted loops may be peeled, may need some iterations run up
  1762   // front for RCE, and may want to align loop refs to a cache
  1763   // line.  Thus we clone a full loop up front whose trip count is
  1764   // at least 1 (if peeling), but may be several more.
  1766   // The main loop will start cache-line aligned with at least 1
  1767   // iteration of the unrolled body (zero-trip test required) and
  1768   // will have some range checks removed.
  1770   // A post-loop will finish any odd iterations (leftover after
  1771   // unrolling), plus any needed for RCE purposes.
  1773   bool should_unroll = policy_unroll(phase);
  1775   bool should_rce = policy_range_check(phase);
  1777   bool should_align = policy_align(phase);
  1779   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1780   // need a pre-loop.  We may still need to peel an initial iteration but
  1781   // we will not be needing an unknown number of pre-iterations.
  1782   //
  1783   // Basically, if may_rce_align reports FALSE first time through,
  1784   // we will not be able to later do RCE or Aligning on this loop.
  1785   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1787   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1788   // we switch to the pre-/main-/post-loop model.  This model also covers
  1789   // peeling.
  1790   if( should_rce || should_align || should_unroll ) {
  1791     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1792       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1794     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1795     // with full checks, but the main-loop with no checks.  Remove said
  1796     // checks from the main body.
  1797     if( should_rce )
  1798       phase->do_range_check(this,old_new);
  1800     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1801     // twice as many iterations as before) and the main body limit (only do
  1802     // an even number of trips).  If we are peeling, we might enable some RCE
  1803     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1804     // peeling.
  1805       if( should_unroll && !should_peel )
  1806         phase->do_unroll(this,old_new, true);
  1808     // Adjust the pre-loop limits to align the main body
  1809     // iterations.
  1810     if( should_align )
  1811       Unimplemented();
  1813   } else {                      // Else we have an unchanged counted loop
  1814     if( should_peel )           // Might want to peel but do nothing else
  1815       phase->do_peeling(this,old_new);
  1817   return true;
  1821 //=============================================================================
  1822 //------------------------------iteration_split--------------------------------
  1823 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1824   // Recursively iteration split nested loops
  1825   if (_child && !_child->iteration_split(phase, old_new))
  1826     return false;
  1828   // Clean out prior deadwood
  1829   DCE_loop_body();
  1832   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1833   // Replace with a 1-in-10 exit guess.
  1834   if (_parent /*not the root loop*/ &&
  1835       !_irreducible &&
  1836       // Also ignore the occasional dead backedge
  1837       !tail()->is_top()) {
  1838     adjust_loop_exit_prob(phase);
  1841   // Gate unrolling, RCE and peeling efforts.
  1842   if (!_child &&                // If not an inner loop, do not split
  1843       !_irreducible &&
  1844       _allow_optimizations &&
  1845       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  1846     if (!_has_call) {
  1847         if (!iteration_split_impl(phase, old_new)) {
  1848           return false;
  1850     } else if (policy_unswitching(phase)) {
  1851       phase->do_unswitching(this, old_new);
  1855   // Minor offset re-organization to remove loop-fallout uses of
  1856   // trip counter when there was no major reshaping.
  1857   phase->reorg_offsets(this);
  1859   if (_next && !_next->iteration_split(phase, old_new))
  1860     return false;
  1861   return true;
  1864 //-------------------------------is_uncommon_trap_proj----------------------------
  1865 // Return true if proj is the form of "proj->[region->..]call_uct"
  1866 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason) {
  1867   int path_limit = 10;
  1868   assert(proj, "invalid argument");
  1869   Node* out = proj;
  1870   for (int ct = 0; ct < path_limit; ct++) {
  1871     out = out->unique_ctrl_out();
  1872     if (out == NULL || out->is_Root() || out->is_Start())
  1873       return false;
  1874     if (out->is_CallStaticJava()) {
  1875       int req = out->as_CallStaticJava()->uncommon_trap_request();
  1876       if (req != 0) {
  1877         Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
  1878         if (trap_reason == reason || reason == Deoptimization::Reason_none) {
  1879            return true;
  1882       return false; // don't do further after call
  1885   return false;
  1888 //-------------------------------is_uncommon_trap_if_pattern-------------------------
  1889 // Return true  for "if(test)-> proj -> ...
  1890 //                          |
  1891 //                          V
  1892 //                      other_proj->[region->..]call_uct"
  1893 //
  1894 // "must_reason_predicate" means the uct reason must be Reason_predicate
  1895 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, Deoptimization::DeoptReason reason) {
  1896   Node *in0 = proj->in(0);
  1897   if (!in0->is_If()) return false;
  1898   // Variation of a dead If node.
  1899   if (in0->outcnt() < 2)  return false;
  1900   IfNode* iff = in0->as_If();
  1902   // we need "If(Conv2B(Opaque1(...)))" pattern for reason_predicate
  1903   if (reason != Deoptimization::Reason_none) {
  1904     if (iff->in(1)->Opcode() != Op_Conv2B ||
  1905        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
  1906       return false;
  1910   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
  1911   return is_uncommon_trap_proj(other_proj, reason);
  1914 //-------------------------------register_control-------------------------
  1915 void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred) {
  1916   assert(n->is_CFG(), "must be control node");
  1917   _igvn.register_new_node_with_optimizer(n);
  1918   loop->_body.push(n);
  1919   set_loop(n, loop);
  1920   // When called from beautify_loops() idom is not constructed yet.
  1921   if (_idom != NULL) {
  1922     set_idom(n, pred, dom_depth(pred));
  1926 //------------------------------create_new_if_for_predicate------------------------
  1927 // create a new if above the uct_if_pattern for the predicate to be promoted.
  1928 //
  1929 //          before                                after
  1930 //        ----------                           ----------
  1931 //           ctrl                                 ctrl
  1932 //            |                                     |
  1933 //            |                                     |
  1934 //            v                                     v
  1935 //           iff                                 new_iff
  1936 //          /    \                                /      \
  1937 //         /      \                              /        \
  1938 //        v        v                            v          v
  1939 //  uncommon_proj cont_proj                   if_uct     if_cont
  1940 // \      |        |                           |          |
  1941 //  \     |        |                           |          |
  1942 //   v    v        v                           |          v
  1943 //     rgn       loop                          |         iff
  1944 //      |                                      |        /     \
  1945 //      |                                      |       /       \
  1946 //      v                                      |      v         v
  1947 // uncommon_trap                               | uncommon_proj cont_proj
  1948 //                                           \  \    |           |
  1949 //                                            \  \   |           |
  1950 //                                             v  v  v           v
  1951 //                                               rgn           loop
  1952 //                                                |
  1953 //                                                |
  1954 //                                                v
  1955 //                                           uncommon_trap
  1956 //
  1957 //
  1958 // We will create a region to guard the uct call if there is no one there.
  1959 // The true projecttion (if_cont) of the new_iff is returned.
  1960 // This code is also used to clone predicates to clonned loops.
  1961 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
  1962                                                       Deoptimization::DeoptReason reason) {
  1963   assert(is_uncommon_trap_if_pattern(cont_proj, reason), "must be a uct if pattern!");
  1964   IfNode* iff = cont_proj->in(0)->as_If();
  1966   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
  1967   Node     *rgn   = uncommon_proj->unique_ctrl_out();
  1968   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
  1970   if (!rgn->is_Region()) { // create a region to guard the call
  1971     assert(rgn->is_Call(), "must be call uct");
  1972     CallNode* call = rgn->as_Call();
  1973     IdealLoopTree* loop = get_loop(call);
  1974     rgn = new (C, 1) RegionNode(1);
  1975     rgn->add_req(uncommon_proj);
  1976     register_control(rgn, loop, uncommon_proj);
  1977     _igvn.hash_delete(call);
  1978     call->set_req(0, rgn);
  1979     // When called from beautify_loops() idom is not constructed yet.
  1980     if (_idom != NULL) {
  1981       set_idom(call, rgn, dom_depth(rgn));
  1985   Node* entry = iff->in(0);
  1986   if (new_entry != NULL) {
  1987     // Clonning the predicate to new location.
  1988     entry = new_entry;
  1990   // Create new_iff
  1991   IdealLoopTree* lp = get_loop(entry);
  1992   IfNode *new_iff = new (C, 2) IfNode(entry, NULL, iff->_prob, iff->_fcnt);
  1993   register_control(new_iff, lp, entry);
  1994   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
  1995   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
  1996   if (cont_proj->is_IfFalse()) {
  1997     // Swap
  1998     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
  2000   register_control(if_cont, lp, new_iff);
  2001   register_control(if_uct, get_loop(rgn), new_iff);
  2003   // if_uct to rgn
  2004   _igvn.hash_delete(rgn);
  2005   rgn->add_req(if_uct);
  2006   // When called from beautify_loops() idom is not constructed yet.
  2007   if (_idom != NULL) {
  2008     Node* ridom = idom(rgn);
  2009     Node* nrdom = dom_lca(ridom, new_iff);
  2010     set_idom(rgn, nrdom, dom_depth(rgn));
  2012   // rgn must have no phis
  2013   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
  2015   if (new_entry == NULL) {
  2016     // Attach if_cont to iff
  2017     _igvn.hash_delete(iff);
  2018     iff->set_req(0, if_cont);
  2019     if (_idom != NULL) {
  2020       set_idom(iff, if_cont, dom_depth(iff));
  2023   return if_cont->as_Proj();
  2026 //--------------------------find_predicate_insertion_point-------------------
  2027 // Find a good location to insert a predicate
  2028 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
  2029   if (start_c == NULL || !start_c->is_Proj())
  2030     return NULL;
  2031   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), reason)) {
  2032     return start_c->as_Proj();
  2034   return NULL;
  2037 //--------------------------find_predicate------------------------------------
  2038 // Find a predicate
  2039 Node* PhaseIdealLoop::find_predicate(Node* entry) {
  2040   Node* predicate = NULL;
  2041   if (UseLoopPredicate) {
  2042     predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  2043     if (predicate != NULL) { // right pattern that can be used by loop predication
  2044       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
  2045       return entry;
  2048   return NULL;
  2051 //------------------------------Invariance-----------------------------------
  2052 // Helper class for loop_predication_impl to compute invariance on the fly and
  2053 // clone invariants.
  2054 class Invariance : public StackObj {
  2055   VectorSet _visited, _invariant;
  2056   Node_Stack _stack;
  2057   VectorSet _clone_visited;
  2058   Node_List _old_new; // map of old to new (clone)
  2059   IdealLoopTree* _lpt;
  2060   PhaseIdealLoop* _phase;
  2062   // Helper function to set up the invariance for invariance computation
  2063   // If n is a known invariant, set up directly. Otherwise, look up the
  2064   // the possibility to push n onto the stack for further processing.
  2065   void visit(Node* use, Node* n) {
  2066     if (_lpt->is_invariant(n)) { // known invariant
  2067       _invariant.set(n->_idx);
  2068     } else if (!n->is_CFG()) {
  2069       Node *n_ctrl = _phase->ctrl_or_self(n);
  2070       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
  2071       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
  2072         _stack.push(n, n->in(0) == NULL ? 1 : 0);
  2077   // Compute invariance for "the_node" and (possibly) all its inputs recursively
  2078   // on the fly
  2079   void compute_invariance(Node* n) {
  2080     assert(_visited.test(n->_idx), "must be");
  2081     visit(n, n);
  2082     while (_stack.is_nonempty()) {
  2083       Node*  n = _stack.node();
  2084       uint idx = _stack.index();
  2085       if (idx == n->req()) { // all inputs are processed
  2086         _stack.pop();
  2087         // n is invariant if it's inputs are all invariant
  2088         bool all_inputs_invariant = true;
  2089         for (uint i = 0; i < n->req(); i++) {
  2090           Node* in = n->in(i);
  2091           if (in == NULL) continue;
  2092           assert(_visited.test(in->_idx), "must have visited input");
  2093           if (!_invariant.test(in->_idx)) { // bad guy
  2094             all_inputs_invariant = false;
  2095             break;
  2098         if (all_inputs_invariant) {
  2099           _invariant.set(n->_idx); // I am a invariant too
  2101       } else { // process next input
  2102         _stack.set_index(idx + 1);
  2103         Node* m = n->in(idx);
  2104         if (m != NULL && !_visited.test_set(m->_idx)) {
  2105           visit(n, m);
  2111   // Helper function to set up _old_new map for clone_nodes.
  2112   // If n is a known invariant, set up directly ("clone" of n == n).
  2113   // Otherwise, push n onto the stack for real cloning.
  2114   void clone_visit(Node* n) {
  2115     assert(_invariant.test(n->_idx), "must be invariant");
  2116     if (_lpt->is_invariant(n)) { // known invariant
  2117       _old_new.map(n->_idx, n);
  2118     } else{ // to be cloned
  2119       assert (!n->is_CFG(), "should not see CFG here");
  2120       _stack.push(n, n->in(0) == NULL ? 1 : 0);
  2124   // Clone "n" and (possibly) all its inputs recursively
  2125   void clone_nodes(Node* n, Node* ctrl) {
  2126     clone_visit(n);
  2127     while (_stack.is_nonempty()) {
  2128       Node*  n = _stack.node();
  2129       uint idx = _stack.index();
  2130       if (idx == n->req()) { // all inputs processed, clone n!
  2131         _stack.pop();
  2132         // clone invariant node
  2133         Node* n_cl = n->clone();
  2134         _old_new.map(n->_idx, n_cl);
  2135         _phase->register_new_node(n_cl, ctrl);
  2136         for (uint i = 0; i < n->req(); i++) {
  2137           Node* in = n_cl->in(i);
  2138           if (in == NULL) continue;
  2139           n_cl->set_req(i, _old_new[in->_idx]);
  2141       } else { // process next input
  2142         _stack.set_index(idx + 1);
  2143         Node* m = n->in(idx);
  2144         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
  2145           clone_visit(m); // visit the input
  2151  public:
  2152   Invariance(Arena* area, IdealLoopTree* lpt) :
  2153     _lpt(lpt), _phase(lpt->_phase),
  2154     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
  2155     _clone_visited(area), _old_new(area)
  2156   {}
  2158   // Map old to n for invariance computation and clone
  2159   void map_ctrl(Node* old, Node* n) {
  2160     assert(old->is_CFG() && n->is_CFG(), "must be");
  2161     _old_new.map(old->_idx, n); // "clone" of old is n
  2162     _invariant.set(old->_idx);  // old is invariant
  2163     _clone_visited.set(old->_idx);
  2166   // Driver function to compute invariance
  2167   bool is_invariant(Node* n) {
  2168     if (!_visited.test_set(n->_idx))
  2169       compute_invariance(n);
  2170     return (_invariant.test(n->_idx) != 0);
  2173   // Driver function to clone invariant
  2174   Node* clone(Node* n, Node* ctrl) {
  2175     assert(ctrl->is_CFG(), "must be");
  2176     assert(_invariant.test(n->_idx), "must be an invariant");
  2177     if (!_clone_visited.test(n->_idx))
  2178       clone_nodes(n, ctrl);
  2179     return _old_new[n->_idx];
  2181 };
  2183 //------------------------------is_range_check_if -----------------------------------
  2184 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
  2185 // Note: this function is particularly designed for loop predication. We require load_range
  2186 //       and offset to be loop invariant computed on the fly by "invar"
  2187 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
  2188   if (!is_loop_exit(iff)) {
  2189     return false;
  2191   if (!iff->in(1)->is_Bool()) {
  2192     return false;
  2194   const BoolNode *bol = iff->in(1)->as_Bool();
  2195   if (bol->_test._test != BoolTest::lt) {
  2196     return false;
  2198   if (!bol->in(1)->is_Cmp()) {
  2199     return false;
  2201   const CmpNode *cmp = bol->in(1)->as_Cmp();
  2202   if (cmp->Opcode() != Op_CmpU ) {
  2203     return false;
  2205   Node* range = cmp->in(2);
  2206   if (range->Opcode() != Op_LoadRange) {
  2207     const TypeInt* tint = phase->_igvn.type(range)->isa_int();
  2208     if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
  2209       // Allow predication on positive values that aren't LoadRanges.
  2210       // This allows optimization of loops where the length of the
  2211       // array is a known value and doesn't need to be loaded back
  2212       // from the array.
  2213       return false;
  2216   if (!invar.is_invariant(range)) {
  2217     return false;
  2219   Node *iv     = _head->as_CountedLoop()->phi();
  2220   int   scale  = 0;
  2221   Node *offset = NULL;
  2222   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
  2223     return false;
  2225   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
  2226     return false;
  2228   return true;
  2231 //------------------------------rc_predicate-----------------------------------
  2232 // Create a range check predicate
  2233 //
  2234 // for (i = init; i < limit; i += stride) {
  2235 //    a[scale*i+offset]
  2236 // }
  2237 //
  2238 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
  2239 // as "max(scale*i + offset) u< a.length".
  2240 //
  2241 // There are two cases for max(scale*i + offset):
  2242 // (1) stride*scale > 0
  2243 //   max(scale*i + offset) = scale*(limit-stride) + offset
  2244 // (2) stride*scale < 0
  2245 //   max(scale*i + offset) = scale*init + offset
  2246 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
  2247                                        int scale, Node* offset,
  2248                                        Node* init, Node* limit, Node* stride,
  2249                                        Node* range, bool upper) {
  2250   DEBUG_ONLY(ttyLocker ttyl);
  2251   if (TraceLoopPredicate) tty->print("rc_predicate ");
  2253   Node* max_idx_expr  = init;
  2254   int stride_con = stride->get_int();
  2255   if ((stride_con > 0) == (scale > 0) == upper) {
  2256     max_idx_expr = new (C, 3) SubINode(limit, stride);
  2257     register_new_node(max_idx_expr, ctrl);
  2258     if (TraceLoopPredicate) tty->print("(limit - stride) ");
  2259   } else {
  2260     if (TraceLoopPredicate) tty->print("init ");
  2263   if (scale != 1) {
  2264     ConNode* con_scale = _igvn.intcon(scale);
  2265     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
  2266     register_new_node(max_idx_expr, ctrl);
  2267     if (TraceLoopPredicate) tty->print("* %d ", scale);
  2270   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
  2271     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
  2272     register_new_node(max_idx_expr, ctrl);
  2273     if (TraceLoopPredicate)
  2274       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
  2275       else tty->print("+ offset ");
  2278   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
  2279   register_new_node(cmp, ctrl);
  2280   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
  2281   register_new_node(bol, ctrl);
  2283   if (TraceLoopPredicate) tty->print_cr("<u range");
  2284   return bol;
  2287 //------------------------------ loop_predication_impl--------------------------
  2288 // Insert loop predicates for null checks and range checks
  2289 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
  2290   if (!UseLoopPredicate) return false;
  2292   if (!loop->_head->is_Loop()) {
  2293     // Could be a simple region when irreducible loops are present.
  2294     return false;
  2297   if (loop->_head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
  2298     // do nothing for infinite loops
  2299     return false;
  2302   CountedLoopNode *cl = NULL;
  2303   if (loop->_head->is_CountedLoop()) {
  2304     cl = loop->_head->as_CountedLoop();
  2305     // do nothing for iteration-splitted loops
  2306     if (!cl->is_normal_loop()) return false;
  2309   LoopNode *lpn  = loop->_head->as_Loop();
  2310   Node* entry = lpn->in(LoopNode::EntryControl);
  2312   ProjNode *predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  2313   if (!predicate_proj) {
  2314 #ifndef PRODUCT
  2315     if (TraceLoopPredicate) {
  2316       tty->print("missing predicate:");
  2317       loop->dump_head();
  2318       lpn->dump(1);
  2320 #endif
  2321     return false;
  2323   ConNode* zero = _igvn.intcon(0);
  2324   set_ctrl(zero, C->root());
  2326   ResourceArea *area = Thread::current()->resource_area();
  2327   Invariance invar(area, loop);
  2329   // Create list of if-projs such that a newer proj dominates all older
  2330   // projs in the list, and they all dominate loop->tail()
  2331   Node_List if_proj_list(area);
  2332   LoopNode *head  = loop->_head->as_Loop();
  2333   Node *current_proj = loop->tail(); //start from tail
  2334   while ( current_proj != head ) {
  2335     if (loop == get_loop(current_proj) && // still in the loop ?
  2336         current_proj->is_Proj()        && // is a projection  ?
  2337         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
  2338       if_proj_list.push(current_proj);
  2340     current_proj = idom(current_proj);
  2343   bool hoisted = false; // true if at least one proj is promoted
  2344   while (if_proj_list.size() > 0) {
  2345     // Following are changed to nonnull when a predicate can be hoisted
  2346     ProjNode* new_predicate_proj = NULL;
  2348     ProjNode* proj = if_proj_list.pop()->as_Proj();
  2349     IfNode*   iff  = proj->in(0)->as_If();
  2351     if (!is_uncommon_trap_if_pattern(proj, Deoptimization::Reason_none)) {
  2352       if (loop->is_loop_exit(iff)) {
  2353         // stop processing the remaining projs in the list because the execution of them
  2354         // depends on the condition of "iff" (iff->in(1)).
  2355         break;
  2356       } else {
  2357         // Both arms are inside the loop. There are two cases:
  2358         // (1) there is one backward branch. In this case, any remaining proj
  2359         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
  2360         //     does not determine the execution the remining projs directly, and we
  2361         //     can safely continue.
  2362         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
  2363         //     does not dominate loop->tail(), so it can not be in the if_proj list.
  2364         continue;
  2368     Node*     test = iff->in(1);
  2369     if (!test->is_Bool()){ //Conv2B, ...
  2370       continue;
  2372     BoolNode* bol = test->as_Bool();
  2373     if (invar.is_invariant(bol)) {
  2374       // Invariant test
  2375       new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
  2376                                                        Deoptimization::Reason_predicate);
  2377       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2378       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
  2380       // Negate test if necessary
  2381       bool negated = false;
  2382       if (proj->_con != predicate_proj->_con) {
  2383         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
  2384         register_new_node(new_predicate_bol, ctrl);
  2385         negated = true;
  2387       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
  2388       _igvn.hash_delete(new_predicate_iff);
  2389       new_predicate_iff->set_req(1, new_predicate_bol);
  2390 #ifndef PRODUCT
  2391       if (TraceLoopPredicate) {
  2392         tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
  2393         loop->dump_head();
  2394       } else if (TraceLoopOpts) {
  2395         tty->print("Predicate IC ");
  2396         loop->dump_head();
  2398 #endif
  2399     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
  2400       assert(proj->_con == predicate_proj->_con, "must match");
  2402       // Range check for counted loops
  2403       const Node*    cmp    = bol->in(1)->as_Cmp();
  2404       Node*          idx    = cmp->in(1);
  2405       assert(!invar.is_invariant(idx), "index is variant");
  2406       assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
  2407       Node* rng = cmp->in(2);
  2408       assert(invar.is_invariant(rng), "range must be invariant");
  2409       int scale    = 1;
  2410       Node* offset = zero;
  2411       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
  2412       assert(ok, "must be index expression");
  2414       Node* init    = cl->init_trip();
  2415       Node* limit   = cl->limit();
  2416       Node* stride  = cl->stride();
  2418       // Build if's for the upper and lower bound tests.  The
  2419       // lower_bound test will dominate the upper bound test and all
  2420       // cloned or created nodes will use the lower bound test as
  2421       // their declared control.
  2422       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
  2423       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
  2424       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
  2425       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
  2427       // Perform cloning to keep Invariance state correct since the
  2428       // late schedule will place invariant things in the loop.
  2429       rng = invar.clone(rng, ctrl);
  2430       if (offset && offset != zero) {
  2431         assert(invar.is_invariant(offset), "offset must be loop invariant");
  2432         offset = invar.clone(offset, ctrl);
  2435       // Test the lower bound
  2436       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
  2437       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
  2438       _igvn.hash_delete(lower_bound_iff);
  2439       lower_bound_iff->set_req(1, lower_bound_bol);
  2440       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
  2442       // Test the upper bound
  2443       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
  2444       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
  2445       _igvn.hash_delete(upper_bound_iff);
  2446       upper_bound_iff->set_req(1, upper_bound_bol);
  2447       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
  2449       // Fall through into rest of the clean up code which will move
  2450       // any dependent nodes onto the upper bound test.
  2451       new_predicate_proj = upper_bound_proj;
  2453 #ifndef PRODUCT
  2454       if (TraceLoopOpts && !TraceLoopPredicate) {
  2455         tty->print("Predicate RC ");
  2456         loop->dump_head();
  2458 #endif
  2459     } else {
  2460       // Loop variant check (for example, range check in non-counted loop)
  2461       // with uncommon trap.
  2462       continue;
  2464     assert(new_predicate_proj != NULL, "sanity");
  2465     // Success - attach condition (new_predicate_bol) to predicate if
  2466     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
  2468     // Eliminate the old If in the loop body
  2469     dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
  2471     hoisted = true;
  2472     C->set_major_progress();
  2473   } // end while
  2475 #ifndef PRODUCT
  2476   // report that the loop predication has been actually performed
  2477   // for this loop
  2478   if (TraceLoopPredicate && hoisted) {
  2479     tty->print("Loop Predication Performed:");
  2480     loop->dump_head();
  2482 #endif
  2484   return hoisted;
  2487 //------------------------------loop_predication--------------------------------
  2488 // driver routine for loop predication optimization
  2489 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
  2490   bool hoisted = false;
  2491   // Recursively promote predicates
  2492   if ( _child ) {
  2493     hoisted = _child->loop_predication( phase);
  2496   // self
  2497   if (!_irreducible && !tail()->is_top()) {
  2498     hoisted |= phase->loop_predication_impl(this);
  2501   if ( _next ) { //sibling
  2502     hoisted |= _next->loop_predication( phase);
  2505   return hoisted;
  2509 // Process all the loops in the loop tree and replace any fill
  2510 // patterns with an intrisc version.
  2511 bool PhaseIdealLoop::do_intrinsify_fill() {
  2512   bool changed = false;
  2513   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2514     IdealLoopTree* lpt = iter.current();
  2515     changed |= intrinsify_fill(lpt);
  2517   return changed;
  2521 // Examine an inner loop looking for a a single store of an invariant
  2522 // value in a unit stride loop,
  2523 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2524                                      Node*& shift, Node*& con) {
  2525   const char* msg = NULL;
  2526   Node* msg_node = NULL;
  2528   store_value = NULL;
  2529   con = NULL;
  2530   shift = NULL;
  2532   // Process the loop looking for stores.  If there are multiple
  2533   // stores or extra control flow give at this point.
  2534   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2535   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2536     Node* n = lpt->_body.at(i);
  2537     if (n->outcnt() == 0) continue; // Ignore dead
  2538     if (n->is_Store()) {
  2539       if (store != NULL) {
  2540         msg = "multiple stores";
  2541         break;
  2543       int opc = n->Opcode();
  2544       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2545         msg = "oop fills not handled";
  2546         break;
  2548       Node* value = n->in(MemNode::ValueIn);
  2549       if (!lpt->is_invariant(value)) {
  2550         msg  = "variant store value";
  2551       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2552         msg = "not array address";
  2554       store = n;
  2555       store_value = value;
  2556     } else if (n->is_If() && n != head->loopexit()) {
  2557       msg = "extra control flow";
  2558       msg_node = n;
  2562   if (store == NULL) {
  2563     // No store in loop
  2564     return false;
  2567   if (msg == NULL && head->stride_con() != 1) {
  2568     // could handle negative strides too
  2569     if (head->stride_con() < 0) {
  2570       msg = "negative stride";
  2571     } else {
  2572       msg = "non-unit stride";
  2576   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2577     msg = "can't handle store address";
  2578     msg_node = store->in(MemNode::Address);
  2581   if (msg == NULL &&
  2582       (!store->in(MemNode::Memory)->is_Phi() ||
  2583        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2584     msg = "store memory isn't proper phi";
  2585     msg_node = store->in(MemNode::Memory);
  2588   // Make sure there is an appropriate fill routine
  2589   BasicType t = store->as_Mem()->memory_type();
  2590   const char* fill_name;
  2591   if (msg == NULL &&
  2592       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2593     msg = "unsupported store";
  2594     msg_node = store;
  2597   if (msg != NULL) {
  2598 #ifndef PRODUCT
  2599     if (TraceOptimizeFill) {
  2600       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2601       if (msg_node != NULL) msg_node->dump();
  2603 #endif
  2604     return false;
  2607   // Make sure the address expression can be handled.  It should be
  2608   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2609   Node* elements[4];
  2610   Node* conv = NULL;
  2611   bool found_index = false;
  2612   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2613   for (int e = 0; e < count; e++) {
  2614     Node* n = elements[e];
  2615     if (n->is_Con() && con == NULL) {
  2616       con = n;
  2617     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2618       Node* value = n->in(1);
  2619 #ifdef _LP64
  2620       if (value->Opcode() == Op_ConvI2L) {
  2621         conv = value;
  2622         value = value->in(1);
  2624 #endif
  2625       if (value != head->phi()) {
  2626         msg = "unhandled shift in address";
  2627       } else {
  2628         found_index = true;
  2629         shift = n;
  2630         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
  2632     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2633       if (n->in(1) == head->phi()) {
  2634         found_index = true;
  2635         conv = n;
  2636       } else {
  2637         msg = "unhandled input to ConvI2L";
  2639     } else if (n == head->phi()) {
  2640       // no shift, check below for allowed cases
  2641       found_index = true;
  2642     } else {
  2643       msg = "unhandled node in address";
  2644       msg_node = n;
  2648   if (count == -1) {
  2649     msg = "malformed address expression";
  2650     msg_node = store;
  2653   if (!found_index) {
  2654     msg = "missing use of index";
  2657   // byte sized items won't have a shift
  2658   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2659     msg = "can't find shift";
  2660     msg_node = store;
  2663   if (msg != NULL) {
  2664 #ifndef PRODUCT
  2665     if (TraceOptimizeFill) {
  2666       tty->print_cr("not fill intrinsic: %s", msg);
  2667       if (msg_node != NULL) msg_node->dump();
  2669 #endif
  2670     return false;
  2673   // No make sure all the other nodes in the loop can be handled
  2674   VectorSet ok(Thread::current()->resource_area());
  2676   // store related values are ok
  2677   ok.set(store->_idx);
  2678   ok.set(store->in(MemNode::Memory)->_idx);
  2680   // Loop structure is ok
  2681   ok.set(head->_idx);
  2682   ok.set(head->loopexit()->_idx);
  2683   ok.set(head->phi()->_idx);
  2684   ok.set(head->incr()->_idx);
  2685   ok.set(head->loopexit()->cmp_node()->_idx);
  2686   ok.set(head->loopexit()->in(1)->_idx);
  2688   // Address elements are ok
  2689   if (con)   ok.set(con->_idx);
  2690   if (shift) ok.set(shift->_idx);
  2691   if (conv)  ok.set(conv->_idx);
  2693   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2694     Node* n = lpt->_body.at(i);
  2695     if (n->outcnt() == 0) continue; // Ignore dead
  2696     if (ok.test(n->_idx)) continue;
  2697     // Backedge projection is ok
  2698     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2699     if (!n->is_AddP()) {
  2700       msg = "unhandled node";
  2701       msg_node = n;
  2702       break;
  2706   // Make sure no unexpected values are used outside the loop
  2707   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2708     Node* n = lpt->_body.at(i);
  2709     // These values can be replaced with other nodes if they are used
  2710     // outside the loop.
  2711     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2712     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2713       Node* use = iter.get();
  2714       if (!lpt->_body.contains(use)) {
  2715         msg = "node is used outside loop";
  2716         // lpt->_body.dump();
  2717         msg_node = n;
  2718         break;
  2723 #ifdef ASSERT
  2724   if (TraceOptimizeFill) {
  2725     if (msg != NULL) {
  2726       tty->print_cr("no fill intrinsic: %s", msg);
  2727       if (msg_node != NULL) msg_node->dump();
  2728     } else {
  2729       tty->print_cr("fill intrinsic for:");
  2731     store->dump();
  2732     if (Verbose) {
  2733       lpt->_body.dump();
  2736 #endif
  2738   return msg == NULL;
  2743 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2744   // Only for counted inner loops
  2745   if (!lpt->is_counted() || !lpt->is_inner()) {
  2746     return false;
  2749   // Must have constant stride
  2750   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2751   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2752     return false;
  2755   // Check that the body only contains a store of a loop invariant
  2756   // value that is indexed by the loop phi.
  2757   Node* store = NULL;
  2758   Node* store_value = NULL;
  2759   Node* shift = NULL;
  2760   Node* offset = NULL;
  2761   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2762     return false;
  2765   // Now replace the whole loop body by a call to a fill routine that
  2766   // covers the same region as the loop.
  2767   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2769   // Build an expression for the beginning of the copy region
  2770   Node* index = head->init_trip();
  2771 #ifdef _LP64
  2772   index = new (C, 2) ConvI2LNode(index);
  2773   _igvn.register_new_node_with_optimizer(index);
  2774 #endif
  2775   if (shift != NULL) {
  2776     // byte arrays don't require a shift but others do.
  2777     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2778     _igvn.register_new_node_with_optimizer(index);
  2780   index = new (C, 4) AddPNode(base, base, index);
  2781   _igvn.register_new_node_with_optimizer(index);
  2782   Node* from = new (C, 4) AddPNode(base, index, offset);
  2783   _igvn.register_new_node_with_optimizer(from);
  2784   // Compute the number of elements to copy
  2785   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2786   _igvn.register_new_node_with_optimizer(len);
  2788   BasicType t = store->as_Mem()->memory_type();
  2789   bool aligned = false;
  2790   if (offset != NULL && head->init_trip()->is_Con()) {
  2791     int element_size = type2aelembytes(t);
  2792     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2795   // Build a call to the fill routine
  2796   const char* fill_name;
  2797   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2798   assert(fill != NULL, "what?");
  2800   // Convert float/double to int/long for fill routines
  2801   if (t == T_FLOAT) {
  2802     store_value = new (C, 2) MoveF2INode(store_value);
  2803     _igvn.register_new_node_with_optimizer(store_value);
  2804   } else if (t == T_DOUBLE) {
  2805     store_value = new (C, 2) MoveD2LNode(store_value);
  2806     _igvn.register_new_node_with_optimizer(store_value);
  2809   Node* mem_phi = store->in(MemNode::Memory);
  2810   Node* result_ctrl;
  2811   Node* result_mem;
  2812   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2813   int size = call_type->domain()->cnt();
  2814   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2815                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2816   call->init_req(TypeFunc::Parms+0, from);
  2817   call->init_req(TypeFunc::Parms+1, store_value);
  2818 #ifdef _LP64
  2819   len = new (C, 2) ConvI2LNode(len);
  2820   _igvn.register_new_node_with_optimizer(len);
  2821 #endif
  2822   call->init_req(TypeFunc::Parms+2, len);
  2823 #ifdef _LP64
  2824   call->init_req(TypeFunc::Parms+3, C->top());
  2825 #endif
  2826   call->init_req( TypeFunc::Control, head->init_control());
  2827   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2828   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2829   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2830   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2831   _igvn.register_new_node_with_optimizer(call);
  2832   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2833   _igvn.register_new_node_with_optimizer(result_ctrl);
  2834   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2835   _igvn.register_new_node_with_optimizer(result_mem);
  2837   // If this fill is tightly coupled to an allocation and overwrites
  2838   // the whole body, allow it to take over the zeroing.
  2839   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2840   if (alloc != NULL && alloc->is_AllocateArray()) {
  2841     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2842     if (head->limit() == length &&
  2843         head->init_trip() == _igvn.intcon(0)) {
  2844       if (TraceOptimizeFill) {
  2845         tty->print_cr("Eliminated zeroing in allocation");
  2847       alloc->maybe_set_complete(&_igvn);
  2848     } else {
  2849 #ifdef ASSERT
  2850       if (TraceOptimizeFill) {
  2851         tty->print_cr("filling array but bounds don't match");
  2852         alloc->dump();
  2853         head->init_trip()->dump();
  2854         head->limit()->dump();
  2855         length->dump();
  2857 #endif
  2861   // Redirect the old control and memory edges that are outside the loop.
  2862   Node* exit = head->loopexit()->proj_out(0);
  2863   // Sometimes the memory phi of the head is used as the outgoing
  2864   // state of the loop.  It's safe in this case to replace it with the
  2865   // result_mem.
  2866   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2867   _igvn.replace_node(exit, result_ctrl);
  2868   _igvn.replace_node(store, result_mem);
  2869   // Any uses the increment outside of the loop become the loop limit.
  2870   _igvn.replace_node(head->incr(), head->limit());
  2872   // Disconnect the head from the loop.
  2873   for (uint i = 0; i < lpt->_body.size(); i++) {
  2874     Node* n = lpt->_body.at(i);
  2875     _igvn.replace_node(n, C->top());
  2878   return true;

mercurial