src/share/vm/opto/loopTransform.cpp

Sat, 02 Apr 2011 10:54:15 -0700

author
kvn
date
Sat, 02 Apr 2011 10:54:15 -0700
changeset 2727
08eb13460b3a
parent 2699
cb162b348743
child 2730
8b2317d732ec
permissions
-rw-r--r--

7004535: Clone loop predicate during loop unswitch
Summary: Clone loop predicate for clonned loops
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_profile_trip_cnt----------------------------
    67 // Compute loop trip count from profile data as
    68 //    (backedge_count + loop_exit_count) / loop_exit_count
    69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    70   if (!_head->is_CountedLoop()) {
    71     return;
    72   }
    73   CountedLoopNode* head = _head->as_CountedLoop();
    74   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    75     return; // Already computed
    76   }
    77   float trip_cnt = (float)max_jint; // default is big
    79   Node* back = head->in(LoopNode::LoopBackControl);
    80   while (back != head) {
    81     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82         back->in(0) &&
    83         back->in(0)->is_If() &&
    84         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    85         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    86       break;
    87     }
    88     back = phase->idom(back);
    89   }
    90   if (back != head) {
    91     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    92            back->in(0), "if-projection exists");
    93     IfNode* back_if = back->in(0)->as_If();
    94     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    96     // Now compute a loop exit count
    97     float loop_exit_cnt = 0.0f;
    98     for( uint i = 0; i < _body.size(); i++ ) {
    99       Node *n = _body[i];
   100       if( n->is_If() ) {
   101         IfNode *iff = n->as_If();
   102         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   103           Node *exit = is_loop_exit(iff);
   104           if( exit ) {
   105             float exit_prob = iff->_prob;
   106             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   107             if (exit_prob > PROB_MIN) {
   108               float exit_cnt = iff->_fcnt * exit_prob;
   109               loop_exit_cnt += exit_cnt;
   110             }
   111           }
   112         }
   113       }
   114     }
   115     if (loop_exit_cnt > 0.0f) {
   116       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   117     } else {
   118       // No exit count so use
   119       trip_cnt = loop_back_cnt;
   120     }
   121   }
   122 #ifndef PRODUCT
   123   if (TraceProfileTripCount) {
   124     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   125   }
   126 #endif
   127   head->set_profile_trip_cnt(trip_cnt);
   128 }
   130 //---------------------is_invariant_addition-----------------------------
   131 // Return nonzero index of invariant operand for an Add or Sub
   132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   134   int op = n->Opcode();
   135   if (op == Op_AddI || op == Op_SubI) {
   136     bool in1_invar = this->is_invariant(n->in(1));
   137     bool in2_invar = this->is_invariant(n->in(2));
   138     if (in1_invar && !in2_invar) return 1;
   139     if (!in1_invar && in2_invar) return 2;
   140   }
   141   return 0;
   142 }
   144 //---------------------reassociate_add_sub-----------------------------
   145 // Reassociate invariant add and subtract expressions:
   146 //
   147 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   148 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   149 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   150 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   151 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   152 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   153 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   154 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   155 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   156 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   157 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   158 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   159 //
   160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   161   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   162   if (is_invariant(n1)) return NULL;
   163   int inv1_idx = is_invariant_addition(n1, phase);
   164   if (!inv1_idx) return NULL;
   165   // Don't mess with add of constant (igvn moves them to expression tree root.)
   166   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   167   Node* inv1 = n1->in(inv1_idx);
   168   Node* n2 = n1->in(3 - inv1_idx);
   169   int inv2_idx = is_invariant_addition(n2, phase);
   170   if (!inv2_idx) return NULL;
   171   Node* x    = n2->in(3 - inv2_idx);
   172   Node* inv2 = n2->in(inv2_idx);
   174   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   175   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   176   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   177   if (n1->is_Sub() && inv1_idx == 1) {
   178     neg_x    = !neg_x;
   179     neg_inv2 = !neg_inv2;
   180   }
   181   Node* inv1_c = phase->get_ctrl(inv1);
   182   Node* inv2_c = phase->get_ctrl(inv2);
   183   Node* n_inv1;
   184   if (neg_inv1) {
   185     Node *zero = phase->_igvn.intcon(0);
   186     phase->set_ctrl(zero, phase->C->root());
   187     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   188     phase->register_new_node(n_inv1, inv1_c);
   189   } else {
   190     n_inv1 = inv1;
   191   }
   192   Node* inv;
   193   if (neg_inv2) {
   194     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   195   } else {
   196     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   197   }
   198   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   200   Node* addx;
   201   if (neg_x) {
   202     addx = new (phase->C, 3) SubINode(inv, x);
   203   } else {
   204     addx = new (phase->C, 3) AddINode(x, inv);
   205   }
   206   phase->register_new_node(addx, phase->get_ctrl(x));
   207   phase->_igvn.replace_node(n1, addx);
   208   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   209   _body.yank(n1);
   210   return addx;
   211 }
   213 //---------------------reassociate_invariants-----------------------------
   214 // Reassociate invariant expressions:
   215 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   216   for (int i = _body.size() - 1; i >= 0; i--) {
   217     Node *n = _body.at(i);
   218     for (int j = 0; j < 5; j++) {
   219       Node* nn = reassociate_add_sub(n, phase);
   220       if (nn == NULL) break;
   221       n = nn; // again
   222     };
   223   }
   224 }
   226 //------------------------------policy_peeling---------------------------------
   227 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   228 // make some loop-invariant test (usually a null-check) happen before the loop.
   229 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   230   Node *test = ((IdealLoopTree*)this)->tail();
   231   int  body_size = ((IdealLoopTree*)this)->_body.size();
   232   int  uniq      = phase->C->unique();
   233   // Peeling does loop cloning which can result in O(N^2) node construction
   234   if( body_size > 255 /* Prevent overflow for large body_size */
   235       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   236     return false;           // too large to safely clone
   237   }
   238   while( test != _head ) {      // Scan till run off top of loop
   239     if( test->is_If() ) {       // Test?
   240       Node *ctrl = phase->get_ctrl(test->in(1));
   241       if (ctrl->is_top())
   242         return false;           // Found dead test on live IF?  No peeling!
   243       // Standard IF only has one input value to check for loop invariance
   244       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   245       // Condition is not a member of this loop?
   246       if( !is_member(phase->get_loop(ctrl)) &&
   247           is_loop_exit(test) )
   248         return true;            // Found reason to peel!
   249     }
   250     // Walk up dominators to loop _head looking for test which is
   251     // executed on every path thru loop.
   252     test = phase->idom(test);
   253   }
   254   return false;
   255 }
   257 //------------------------------peeled_dom_test_elim---------------------------
   258 // If we got the effect of peeling, either by actually peeling or by making
   259 // a pre-loop which must execute at least once, we can remove all
   260 // loop-invariant dominated tests in the main body.
   261 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   262   bool progress = true;
   263   while( progress ) {
   264     progress = false;           // Reset for next iteration
   265     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   266     Node *test = prev->in(0);
   267     while( test != loop->_head ) { // Scan till run off top of loop
   269       int p_op = prev->Opcode();
   270       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   271           test->is_If() &&      // Test?
   272           !test->in(1)->is_Con() && // And not already obvious?
   273           // Condition is not a member of this loop?
   274           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   275         // Walk loop body looking for instances of this test
   276         for( uint i = 0; i < loop->_body.size(); i++ ) {
   277           Node *n = loop->_body.at(i);
   278           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   279             // IfNode was dominated by version in peeled loop body
   280             progress = true;
   281             dominated_by( old_new[prev->_idx], n );
   282           }
   283         }
   284       }
   285       prev = test;
   286       test = idom(test);
   287     } // End of scan tests in loop
   289   } // End of while( progress )
   290 }
   292 //------------------------------do_peeling-------------------------------------
   293 // Peel the first iteration of the given loop.
   294 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   295 //         The pre-loop illegally has 2 control users (old & new loops).
   296 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   297 //         Do this by making the old-loop fall-in edges act as if they came
   298 //         around the loopback from the prior iteration (follow the old-loop
   299 //         backedges) and then map to the new peeled iteration.  This leaves
   300 //         the pre-loop with only 1 user (the new peeled iteration), but the
   301 //         peeled-loop backedge has 2 users.
   302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   303 //         extra backedge user.
   304 //
   305 //                   orig
   306 //
   307 //                  stmt1
   308 //                    |
   309 //                    v
   310 //              loop predicate
   311 //                    |
   312 //                    v
   313 //                   loop<----+
   314 //                     |      |
   315 //                   stmt2    |
   316 //                     |      |
   317 //                     v      |
   318 //                    if      ^
   319 //                   / \      |
   320 //                  /   \     |
   321 //                 v     v    |
   322 //               false true   |
   323 //               /       \    |
   324 //              /         ----+
   325 //             |
   326 //             v
   327 //           exit
   328 //
   329 //
   330 //            after clone loop
   331 //
   332 //                   stmt1
   333 //                     |
   334 //                     v
   335 //               loop predicate
   336 //                 /       \
   337 //        clone   /         \   orig
   338 //               /           \
   339 //              /             \
   340 //             v               v
   341 //   +---->loop clone          loop<----+
   342 //   |      |                    |      |
   343 //   |    stmt2 clone          stmt2    |
   344 //   |      |                    |      |
   345 //   |      v                    v      |
   346 //   ^      if clone            If      ^
   347 //   |      / \                / \      |
   348 //   |     /   \              /   \     |
   349 //   |    v     v            v     v    |
   350 //   |    true  false      false true   |
   351 //   |    /         \      /       \    |
   352 //   +----           \    /         ----+
   353 //                    \  /
   354 //                    1v v2
   355 //                  region
   356 //                     |
   357 //                     v
   358 //                   exit
   359 //
   360 //
   361 //         after peel and predicate move
   362 //
   363 //                   stmt1
   364 //                    /
   365 //                   /
   366 //        clone     /            orig
   367 //                 /
   368 //                /              +----------+
   369 //               /               |          |
   370 //              /          loop predicate   |
   371 //             /                 |          |
   372 //            v                  v          |
   373 //   TOP-->loop clone          loop<----+   |
   374 //          |                    |      |   |
   375 //        stmt2 clone          stmt2    |   |
   376 //          |                    |      |   ^
   377 //          v                    v      |   |
   378 //          if clone            If      ^   |
   379 //          / \                / \      |   |
   380 //         /   \              /   \     |   |
   381 //        v     v            v     v    |   |
   382 //      true   false      false  true   |   |
   383 //        |         \      /       \    |   |
   384 //        |          \    /         ----+   ^
   385 //        |           \  /                  |
   386 //        |           1v v2                 |
   387 //        v         region                  |
   388 //        |            |                    |
   389 //        |            v                    |
   390 //        |          exit                   |
   391 //        |                                 |
   392 //        +--------------->-----------------+
   393 //
   394 //
   395 //              final graph
   396 //
   397 //                  stmt1
   398 //                    |
   399 //                    v
   400 //                  stmt2 clone
   401 //                    |
   402 //                    v
   403 //                   if clone
   404 //                  / |
   405 //                 /  |
   406 //                v   v
   407 //            false  true
   408 //             |      |
   409 //             |      v
   410 //             | loop predicate
   411 //             |      |
   412 //             |      v
   413 //             |     loop<----+
   414 //             |      |       |
   415 //             |    stmt2     |
   416 //             |      |       |
   417 //             |      v       |
   418 //             v      if      ^
   419 //             |     /  \     |
   420 //             |    /    \    |
   421 //             |   v     v    |
   422 //             | false  true  |
   423 //             |  |        \  |
   424 //             v  v         --+
   425 //            region
   426 //              |
   427 //              v
   428 //             exit
   429 //
   430 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   432   C->set_major_progress();
   433   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   434   // 'pre' loop from the main and the 'pre' can no longer have it's
   435   // iterations adjusted.  Therefore, we need to declare this loop as
   436   // no longer a 'main' loop; it will need new pre and post loops before
   437   // we can do further RCE.
   438 #ifndef PRODUCT
   439   if (TraceLoopOpts) {
   440     tty->print("Peel         ");
   441     loop->dump_head();
   442   }
   443 #endif
   444   Node* head = loop->_head;
   445   bool counted_loop = head->is_CountedLoop();
   446   if (counted_loop) {
   447     CountedLoopNode *cl = head->as_CountedLoop();
   448     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   449     cl->set_trip_count(cl->trip_count() - 1);
   450     if (cl->is_main_loop()) {
   451       cl->set_normal_loop();
   452 #ifndef PRODUCT
   453       if (PrintOpto && VerifyLoopOptimizations) {
   454         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   455         loop->dump_head();
   456       }
   457 #endif
   458     }
   459   }
   460   Node* entry = head->in(LoopNode::EntryControl);
   462   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   463   //         The pre-loop illegally has 2 control users (old & new loops).
   464   clone_loop( loop, old_new, dom_depth(head) );
   466   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   467   //         Do this by making the old-loop fall-in edges act as if they came
   468   //         around the loopback from the prior iteration (follow the old-loop
   469   //         backedges) and then map to the new peeled iteration.  This leaves
   470   //         the pre-loop with only 1 user (the new peeled iteration), but the
   471   //         peeled-loop backedge has 2 users.
   472   Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   473   new_exit_value = move_loop_predicates(entry, new_exit_value);
   474   _igvn.hash_delete(head);
   475   head->set_req(LoopNode::EntryControl, new_exit_value);
   476   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   477     Node* old = head->fast_out(j);
   478     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   479       new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   480       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   481         // Then loop body backedge value remains the same.
   482         new_exit_value = old->in(LoopNode::LoopBackControl);
   483       _igvn.hash_delete(old);
   484       old->set_req(LoopNode::EntryControl, new_exit_value);
   485     }
   486   }
   489   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   490   //         extra backedge user.
   491   Node* new_head = old_new[head->_idx];
   492   _igvn.hash_delete(new_head);
   493   new_head->set_req(LoopNode::LoopBackControl, C->top());
   494   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   495     Node* use = new_head->fast_out(j2);
   496     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   497       _igvn.hash_delete(use);
   498       use->set_req(LoopNode::LoopBackControl, C->top());
   499     }
   500   }
   503   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   504   int dd = dom_depth(head);
   505   set_idom(head, head->in(1), dd);
   506   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   507     Node *old = loop->_body.at(j3);
   508     Node *nnn = old_new[old->_idx];
   509     if (!has_ctrl(nnn))
   510       set_idom(nnn, idom(nnn), dd-1);
   511     // While we're at it, remove any SafePoints from the peeled code
   512     if (old->Opcode() == Op_SafePoint) {
   513       Node *nnn = old_new[old->_idx];
   514       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   515     }
   516   }
   518   // Now force out all loop-invariant dominating tests.  The optimizer
   519   // finds some, but we _know_ they are all useless.
   520   peeled_dom_test_elim(loop,old_new);
   522   loop->record_for_igvn();
   523 }
   525 //------------------------------policy_maximally_unroll------------------------
   526 // Return exact loop trip count, or 0 if not maximally unrolling
   527 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   528   CountedLoopNode *cl = _head->as_CountedLoop();
   529   assert(cl->is_normal_loop(), "");
   531   Node *init_n = cl->init_trip();
   532   Node *limit_n = cl->limit();
   534   // Non-constant bounds
   535   if (init_n   == NULL || !init_n->is_Con()  ||
   536       limit_n  == NULL || !limit_n->is_Con() ||
   537       // protect against stride not being a constant
   538       !cl->stride_is_con()) {
   539     return false;
   540   }
   541   int init   = init_n->get_int();
   542   int limit  = limit_n->get_int();
   543   int span   = limit - init;
   544   int stride = cl->stride_con();
   546   if (init >= limit || stride > span) {
   547     // return a false (no maximally unroll) and the regular unroll/peel
   548     // route will make a small mess which CCP will fold away.
   549     return false;
   550   }
   551   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   552   assert( (int)trip_count*stride == span, "must divide evenly" );
   554   // Real policy: if we maximally unroll, does it get too big?
   555   // Allow the unrolled mess to get larger than standard loop
   556   // size.  After all, it will no longer be a loop.
   557   uint body_size    = _body.size();
   558   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   559   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   560   cl->set_trip_count(trip_count);
   561   if (trip_count > unroll_limit || body_size > unroll_limit) {
   562     return false;
   563   }
   565   // Currently we don't have policy to optimize one iteration loops.
   566   // Maximally unrolling transformation is used for that:
   567   // it is peeled and the original loop become non reachable (dead).
   568   if (trip_count == 1)
   569     return true;
   571   // Do not unroll a loop with String intrinsics code.
   572   // String intrinsics are large and have loops.
   573   for (uint k = 0; k < _body.size(); k++) {
   574     Node* n = _body.at(k);
   575     switch (n->Opcode()) {
   576       case Op_StrComp:
   577       case Op_StrEquals:
   578       case Op_StrIndexOf:
   579       case Op_AryEq: {
   580         return false;
   581       }
   582     } // switch
   583   }
   585   if (body_size <= unroll_limit) {
   586     uint new_body_size = body_size * trip_count;
   587     if (new_body_size <= unroll_limit &&
   588         body_size == new_body_size / trip_count &&
   589         // Unrolling can result in a large amount of node construction
   590         new_body_size < MaxNodeLimit - phase->C->unique()) {
   591       return true;    // maximally unroll
   592     }
   593   }
   595   return false;               // Do not maximally unroll
   596 }
   599 //------------------------------policy_unroll----------------------------------
   600 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   601 // the loop is a CountedLoop and the body is small enough.
   602 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   604   CountedLoopNode *cl = _head->as_CountedLoop();
   605   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   607   // protect against stride not being a constant
   608   if (!cl->stride_is_con()) return false;
   610   // protect against over-unrolling
   611   if (cl->trip_count() <= 1) return false;
   613   int future_unroll_ct = cl->unrolled_count() * 2;
   615   // Don't unroll if the next round of unrolling would push us
   616   // over the expected trip count of the loop.  One is subtracted
   617   // from the expected trip count because the pre-loop normally
   618   // executes 1 iteration.
   619   if (UnrollLimitForProfileCheck > 0 &&
   620       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   621       future_unroll_ct        > UnrollLimitForProfileCheck &&
   622       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   623     return false;
   624   }
   626   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   627   //   the residual iterations are more than 10% of the trip count
   628   //   and rounds of "unroll,optimize" are not making significant progress
   629   //   Progress defined as current size less than 20% larger than previous size.
   630   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   631       future_unroll_ct > LoopUnrollMin &&
   632       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   633       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   634     return false;
   635   }
   637   Node *init_n = cl->init_trip();
   638   Node *limit_n = cl->limit();
   639   // Non-constant bounds.
   640   // Protect against over-unrolling when init or/and limit are not constant
   641   // (so that trip_count's init value is maxint) but iv range is known.
   642   if (init_n   == NULL || !init_n->is_Con()  ||
   643       limit_n  == NULL || !limit_n->is_Con()) {
   644     Node* phi = cl->phi();
   645     if (phi != NULL) {
   646       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   647       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   648       int next_stride = cl->stride_con() * 2; // stride after this unroll
   649       if (next_stride > 0) {
   650         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   651             iv_type->_lo + next_stride >  iv_type->_hi) {
   652           return false;  // over-unrolling
   653         }
   654       } else if (next_stride < 0) {
   655         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   656             iv_type->_hi + next_stride <  iv_type->_lo) {
   657           return false;  // over-unrolling
   658         }
   659       }
   660     }
   661   }
   663   // Adjust body_size to determine if we unroll or not
   664   uint body_size = _body.size();
   665   // Key test to unroll CaffeineMark's Logic test
   666   int xors_in_loop = 0;
   667   // Also count ModL, DivL and MulL which expand mightly
   668   for (uint k = 0; k < _body.size(); k++) {
   669     Node* n = _body.at(k);
   670     switch (n->Opcode()) {
   671       case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   672       case Op_ModL: body_size += 30; break;
   673       case Op_DivL: body_size += 30; break;
   674       case Op_MulL: body_size += 10; break;
   675       case Op_StrComp:
   676       case Op_StrEquals:
   677       case Op_StrIndexOf:
   678       case Op_AryEq: {
   679         // Do not unroll a loop with String intrinsics code.
   680         // String intrinsics are large and have loops.
   681         return false;
   682       }
   683     } // switch
   684   }
   686   // Check for being too big
   687   if (body_size > (uint)LoopUnrollLimit) {
   688     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   689     // Normal case: loop too big
   690     return false;
   691   }
   693   // Check for stride being a small enough constant
   694   if (abs(cl->stride_con()) > (1<<3)) return false;
   696   // Unroll once!  (Each trip will soon do double iterations)
   697   return true;
   698 }
   700 //------------------------------policy_align-----------------------------------
   701 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   702 // expression that does the alignment.  Note that only one array base can be
   703 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   704 // if we vectorize short memory ops into longer memory ops, we may want to
   705 // increase alignment.
   706 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   707   return false;
   708 }
   710 //------------------------------policy_range_check-----------------------------
   711 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   712 // Actually we do iteration-splitting, a more powerful form of RCE.
   713 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   714   if( !RangeCheckElimination ) return false;
   716   CountedLoopNode *cl = _head->as_CountedLoop();
   717   // If we unrolled with no intention of doing RCE and we later
   718   // changed our minds, we got no pre-loop.  Either we need to
   719   // make a new pre-loop, or we gotta disallow RCE.
   720   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   721   Node *trip_counter = cl->phi();
   723   // Check loop body for tests of trip-counter plus loop-invariant vs
   724   // loop-invariant.
   725   for( uint i = 0; i < _body.size(); i++ ) {
   726     Node *iff = _body[i];
   727     if( iff->Opcode() == Op_If ) { // Test?
   729       // Comparing trip+off vs limit
   730       Node *bol = iff->in(1);
   731       if( bol->req() != 2 ) continue; // dead constant test
   732       if (!bol->is_Bool()) {
   733         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   734         continue;
   735       }
   736       Node *cmp = bol->in(1);
   738       Node *rc_exp = cmp->in(1);
   739       Node *limit = cmp->in(2);
   741       Node *limit_c = phase->get_ctrl(limit);
   742       if( limit_c == phase->C->top() )
   743         return false;           // Found dead test on live IF?  No RCE!
   744       if( is_member(phase->get_loop(limit_c) ) ) {
   745         // Compare might have operands swapped; commute them
   746         rc_exp = cmp->in(2);
   747         limit  = cmp->in(1);
   748         limit_c = phase->get_ctrl(limit);
   749         if( is_member(phase->get_loop(limit_c) ) )
   750           continue;             // Both inputs are loop varying; cannot RCE
   751       }
   753       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   754         continue;
   755       }
   756       // Yeah!  Found a test like 'trip+off vs limit'
   757       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   758       // we need loop unswitching instead of iteration splitting.
   759       if( is_loop_exit(iff) )
   760         return true;            // Found reason to split iterations
   761     } // End of is IF
   762   }
   764   return false;
   765 }
   767 //------------------------------policy_peel_only-------------------------------
   768 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   769 // for unrolling loops with NO array accesses.
   770 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   772   for( uint i = 0; i < _body.size(); i++ )
   773     if( _body[i]->is_Mem() )
   774       return false;
   776   // No memory accesses at all!
   777   return true;
   778 }
   780 //------------------------------clone_up_backedge_goo--------------------------
   781 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   782 // version of n in preheader_ctrl block and return that, otherwise return n.
   783 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   784   if( get_ctrl(n) != back_ctrl ) return n;
   786   Node *x = NULL;               // If required, a clone of 'n'
   787   // Check for 'n' being pinned in the backedge.
   788   if( n->in(0) && n->in(0) == back_ctrl ) {
   789     x = n->clone();             // Clone a copy of 'n' to preheader
   790     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   791   }
   793   // Recursive fixup any other input edges into x.
   794   // If there are no changes we can just return 'n', otherwise
   795   // we need to clone a private copy and change it.
   796   for( uint i = 1; i < n->req(); i++ ) {
   797     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   798     if( g != n->in(i) ) {
   799       if( !x )
   800         x = n->clone();
   801       x->set_req(i, g);
   802     }
   803   }
   804   if( x ) {                     // x can legally float to pre-header location
   805     register_new_node( x, preheader_ctrl );
   806     return x;
   807   } else {                      // raise n to cover LCA of uses
   808     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   809   }
   810   return n;
   811 }
   813 //------------------------------insert_pre_post_loops--------------------------
   814 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   815 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   816 // alignment.  Useful to unroll loops that do no array accesses.
   817 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   819 #ifndef PRODUCT
   820   if (TraceLoopOpts) {
   821     if (peel_only)
   822       tty->print("PeelMainPost ");
   823     else
   824       tty->print("PreMainPost  ");
   825     loop->dump_head();
   826   }
   827 #endif
   828   C->set_major_progress();
   830   // Find common pieces of the loop being guarded with pre & post loops
   831   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   832   assert( main_head->is_normal_loop(), "" );
   833   CountedLoopEndNode *main_end = main_head->loopexit();
   834   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   835   uint dd_main_head = dom_depth(main_head);
   836   uint max = main_head->outcnt();
   838   Node *pre_header= main_head->in(LoopNode::EntryControl);
   839   Node *init      = main_head->init_trip();
   840   Node *incr      = main_end ->incr();
   841   Node *limit     = main_end ->limit();
   842   Node *stride    = main_end ->stride();
   843   Node *cmp       = main_end ->cmp_node();
   844   BoolTest::mask b_test = main_end->test_trip();
   846   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   847   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   848   if( bol->outcnt() != 1 ) {
   849     bol = bol->clone();
   850     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   851     _igvn.hash_delete(main_end);
   852     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   853   }
   854   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   855   if( cmp->outcnt() != 1 ) {
   856     cmp = cmp->clone();
   857     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   858     _igvn.hash_delete(bol);
   859     bol->set_req(1, cmp);
   860   }
   862   //------------------------------
   863   // Step A: Create Post-Loop.
   864   Node* main_exit = main_end->proj_out(false);
   865   assert( main_exit->Opcode() == Op_IfFalse, "" );
   866   int dd_main_exit = dom_depth(main_exit);
   868   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   869   // loop pre-header illegally has 2 control users (old & new loops).
   870   clone_loop( loop, old_new, dd_main_exit );
   871   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   872   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   873   post_head->set_post_loop(main_head);
   875   // Reduce the post-loop trip count.
   876   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   877   post_end->_prob = PROB_FAIR;
   879   // Build the main-loop normal exit.
   880   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   881   _igvn.register_new_node_with_optimizer( new_main_exit );
   882   set_idom(new_main_exit, main_end, dd_main_exit );
   883   set_loop(new_main_exit, loop->_parent);
   885   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   886   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   887   // (the main-loop trip-counter exit value) because we will be changing
   888   // the exit value (via unrolling) so we cannot constant-fold away the zero
   889   // trip guard until all unrolling is done.
   890   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   891   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   892   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   893   register_new_node( zer_opaq, new_main_exit );
   894   register_new_node( zer_cmp , new_main_exit );
   895   register_new_node( zer_bol , new_main_exit );
   897   // Build the IfNode
   898   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   899   _igvn.register_new_node_with_optimizer( zer_iff );
   900   set_idom(zer_iff, new_main_exit, dd_main_exit);
   901   set_loop(zer_iff, loop->_parent);
   903   // Plug in the false-path, taken if we need to skip post-loop
   904   _igvn.hash_delete( main_exit );
   905   main_exit->set_req(0, zer_iff);
   906   _igvn._worklist.push(main_exit);
   907   set_idom(main_exit, zer_iff, dd_main_exit);
   908   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   909   // Make the true-path, must enter the post loop
   910   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   911   _igvn.register_new_node_with_optimizer( zer_taken );
   912   set_idom(zer_taken, zer_iff, dd_main_exit);
   913   set_loop(zer_taken, loop->_parent);
   914   // Plug in the true path
   915   _igvn.hash_delete( post_head );
   916   post_head->set_req(LoopNode::EntryControl, zer_taken);
   917   set_idom(post_head, zer_taken, dd_main_exit);
   919   // Step A3: Make the fall-in values to the post-loop come from the
   920   // fall-out values of the main-loop.
   921   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   922     Node* main_phi = main_head->fast_out(i);
   923     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   924       Node *post_phi = old_new[main_phi->_idx];
   925       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   926                                               post_head->init_control(),
   927                                               main_phi->in(LoopNode::LoopBackControl));
   928       _igvn.hash_delete(post_phi);
   929       post_phi->set_req( LoopNode::EntryControl, fallmain );
   930     }
   931   }
   933   // Update local caches for next stanza
   934   main_exit = new_main_exit;
   937   //------------------------------
   938   // Step B: Create Pre-Loop.
   940   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   941   // loop pre-header illegally has 2 control users (old & new loops).
   942   clone_loop( loop, old_new, dd_main_head );
   943   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   944   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   945   pre_head->set_pre_loop(main_head);
   946   Node *pre_incr = old_new[incr->_idx];
   948   // Reduce the pre-loop trip count.
   949   pre_end->_prob = PROB_FAIR;
   951   // Find the pre-loop normal exit.
   952   Node* pre_exit = pre_end->proj_out(false);
   953   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   954   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   955   _igvn.register_new_node_with_optimizer( new_pre_exit );
   956   set_idom(new_pre_exit, pre_end, dd_main_head);
   957   set_loop(new_pre_exit, loop->_parent);
   959   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   960   // pre-loop, the main-loop may not execute at all.  Later in life this
   961   // zero-trip guard will become the minimum-trip guard when we unroll
   962   // the main-loop.
   963   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   964   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   965   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   966   register_new_node( min_opaq, new_pre_exit );
   967   register_new_node( min_cmp , new_pre_exit );
   968   register_new_node( min_bol , new_pre_exit );
   970   // Build the IfNode (assume the main-loop is executed always).
   971   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   972   _igvn.register_new_node_with_optimizer( min_iff );
   973   set_idom(min_iff, new_pre_exit, dd_main_head);
   974   set_loop(min_iff, loop->_parent);
   976   // Plug in the false-path, taken if we need to skip main-loop
   977   _igvn.hash_delete( pre_exit );
   978   pre_exit->set_req(0, min_iff);
   979   set_idom(pre_exit, min_iff, dd_main_head);
   980   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   981   // Make the true-path, must enter the main loop
   982   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   983   _igvn.register_new_node_with_optimizer( min_taken );
   984   set_idom(min_taken, min_iff, dd_main_head);
   985   set_loop(min_taken, loop->_parent);
   986   // Plug in the true path
   987   _igvn.hash_delete( main_head );
   988   main_head->set_req(LoopNode::EntryControl, min_taken);
   989   set_idom(main_head, min_taken, dd_main_head);
   991   // Step B3: Make the fall-in values to the main-loop come from the
   992   // fall-out values of the pre-loop.
   993   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   994     Node* main_phi = main_head->fast_out(i2);
   995     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   996       Node *pre_phi = old_new[main_phi->_idx];
   997       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   998                                              main_head->init_control(),
   999                                              pre_phi->in(LoopNode::LoopBackControl));
  1000       _igvn.hash_delete(main_phi);
  1001       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1005   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1006   // RCE and alignment may change this later.
  1007   Node *cmp_end = pre_end->cmp_node();
  1008   assert( cmp_end->in(2) == limit, "" );
  1009   Node *pre_limit = new (C, 3) AddINode( init, stride );
  1011   // Save the original loop limit in this Opaque1 node for
  1012   // use by range check elimination.
  1013   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
  1015   register_new_node( pre_limit, pre_head->in(0) );
  1016   register_new_node( pre_opaq , pre_head->in(0) );
  1018   // Since no other users of pre-loop compare, I can hack limit directly
  1019   assert( cmp_end->outcnt() == 1, "no other users" );
  1020   _igvn.hash_delete(cmp_end);
  1021   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1023   // Special case for not-equal loop bounds:
  1024   // Change pre loop test, main loop test, and the
  1025   // main loop guard test to use lt or gt depending on stride
  1026   // direction:
  1027   // positive stride use <
  1028   // negative stride use >
  1030   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1032     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1033     // Modify pre loop end condition
  1034     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1035     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
  1036     register_new_node( new_bol0, pre_head->in(0) );
  1037     _igvn.hash_delete(pre_end);
  1038     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1039     // Modify main loop guard condition
  1040     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1041     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
  1042     register_new_node( new_bol1, new_pre_exit );
  1043     _igvn.hash_delete(min_iff);
  1044     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1045     // Modify main loop end condition
  1046     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1047     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
  1048     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1049     _igvn.hash_delete(main_end);
  1050     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1053   // Flag main loop
  1054   main_head->set_main_loop();
  1055   if( peel_only ) main_head->set_main_no_pre_loop();
  1057   // It's difficult to be precise about the trip-counts
  1058   // for the pre/post loops.  They are usually very short,
  1059   // so guess that 4 trips is a reasonable value.
  1060   post_head->set_profile_trip_cnt(4.0);
  1061   pre_head->set_profile_trip_cnt(4.0);
  1063   // Now force out all loop-invariant dominating tests.  The optimizer
  1064   // finds some, but we _know_ they are all useless.
  1065   peeled_dom_test_elim(loop,old_new);
  1068 //------------------------------is_invariant-----------------------------
  1069 // Return true if n is invariant
  1070 bool IdealLoopTree::is_invariant(Node* n) const {
  1071   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1072   if (n_c->is_top()) return false;
  1073   return !is_member(_phase->get_loop(n_c));
  1077 //------------------------------do_unroll--------------------------------------
  1078 // Unroll the loop body one step - make each trip do 2 iterations.
  1079 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1080   assert(LoopUnrollLimit, "");
  1081   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1082   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1083   assert(loop_end, "");
  1084 #ifndef PRODUCT
  1085   if (PrintOpto && VerifyLoopOptimizations) {
  1086     tty->print("Unrolling ");
  1087     loop->dump_head();
  1088   } else if (TraceLoopOpts) {
  1089     tty->print("Unroll     %d ", loop_head->unrolled_count()*2);
  1090     loop->dump_head();
  1092 #endif
  1094   // Remember loop node count before unrolling to detect
  1095   // if rounds of unroll,optimize are making progress
  1096   loop_head->set_node_count_before_unroll(loop->_body.size());
  1098   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1099   Node *limit = loop_head->limit();
  1100   Node *init  = loop_head->init_trip();
  1101   Node *stride = loop_head->stride();
  1103   Node *opaq = NULL;
  1104   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
  1105     assert( loop_head->is_main_loop(), "" );
  1106     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1107     Node *iff = ctrl->in(0);
  1108     assert( iff->Opcode() == Op_If, "" );
  1109     Node *bol = iff->in(1);
  1110     assert( bol->Opcode() == Op_Bool, "" );
  1111     Node *cmp = bol->in(1);
  1112     assert( cmp->Opcode() == Op_CmpI, "" );
  1113     opaq = cmp->in(2);
  1114     // Occasionally it's possible for a pre-loop Opaque1 node to be
  1115     // optimized away and then another round of loop opts attempted.
  1116     // We can not optimize this particular loop in that case.
  1117     if( opaq->Opcode() != Op_Opaque1 )
  1118       return;                   // Cannot find pre-loop!  Bail out!
  1121   C->set_major_progress();
  1123   // Adjust max trip count. The trip count is intentionally rounded
  1124   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1125   // the main, unrolled, part of the loop will never execute as it is protected
  1126   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1127   // and later determined that part of the unrolled loop was dead.
  1128   loop_head->set_trip_count(loop_head->trip_count() / 2);
  1130   // Double the count of original iterations in the unrolled loop body.
  1131   loop_head->double_unrolled_count();
  1133   // -----------
  1134   // Step 2: Cut back the trip counter for an unroll amount of 2.
  1135   // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1136   // CountedLoop this is exact (stride divides limit-init exactly).
  1137   // We are going to double the loop body, so we want to knock off any
  1138   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1139   Node *span = new (C, 3) SubINode( limit, init );
  1140   register_new_node( span, ctrl );
  1141   Node *trip = new (C, 3) DivINode( 0, span, stride );
  1142   register_new_node( trip, ctrl );
  1143   Node *mtwo = _igvn.intcon(-2);
  1144   set_ctrl(mtwo, C->root());
  1145   Node *rond = new (C, 3) AndINode( trip, mtwo );
  1146   register_new_node( rond, ctrl );
  1147   Node *spn2 = new (C, 3) MulINode( rond, stride );
  1148   register_new_node( spn2, ctrl );
  1149   Node *lim2 = new (C, 3) AddINode( spn2, init );
  1150   register_new_node( lim2, ctrl );
  1152   // Hammer in the new limit
  1153   Node *ctrl2 = loop_end->in(0);
  1154   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
  1155   register_new_node( cmp2, ctrl2 );
  1156   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
  1157   register_new_node( bol2, ctrl2 );
  1158   _igvn.hash_delete(loop_end);
  1159   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1161   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1162   // Make it a 1-trip test (means at least 2 trips).
  1163   if( adjust_min_trip ) {
  1164     // Guard test uses an 'opaque' node which is not shared.  Hence I
  1165     // can edit it's inputs directly.  Hammer in the new limit for the
  1166     // minimum-trip guard.
  1167     assert( opaq->outcnt() == 1, "" );
  1168     _igvn.hash_delete(opaq);
  1169     opaq->set_req(1, lim2);
  1172   // ---------
  1173   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1174   // represents the odd iterations; since the loop trips an even number of
  1175   // times its backedge is never taken.  Kill the backedge.
  1176   uint dd = dom_depth(loop_head);
  1177   clone_loop( loop, old_new, dd );
  1179   // Make backedges of the clone equal to backedges of the original.
  1180   // Make the fall-in from the original come from the fall-out of the clone.
  1181   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1182     Node* phi = loop_head->fast_out(j);
  1183     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1184       Node *newphi = old_new[phi->_idx];
  1185       _igvn.hash_delete( phi );
  1186       _igvn.hash_delete( newphi );
  1188       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1189       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1190       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1193   Node *clone_head = old_new[loop_head->_idx];
  1194   _igvn.hash_delete( clone_head );
  1195   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1196   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1197   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1198   loop->_head = clone_head;     // New loop header
  1200   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1201   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1203   // Kill the clone's backedge
  1204   Node *newcle = old_new[loop_end->_idx];
  1205   _igvn.hash_delete( newcle );
  1206   Node *one = _igvn.intcon(1);
  1207   set_ctrl(one, C->root());
  1208   newcle->set_req(1, one);
  1209   // Force clone into same loop body
  1210   uint max = loop->_body.size();
  1211   for( uint k = 0; k < max; k++ ) {
  1212     Node *old = loop->_body.at(k);
  1213     Node *nnn = old_new[old->_idx];
  1214     loop->_body.push(nnn);
  1215     if (!has_ctrl(old))
  1216       set_loop(nnn, loop);
  1219   loop->record_for_igvn();
  1222 //------------------------------do_maximally_unroll----------------------------
  1224 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1225   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1226   assert(cl->trip_count() > 0, "");
  1227 #ifndef PRODUCT
  1228   if (TraceLoopOpts) {
  1229     tty->print("MaxUnroll  %d ", cl->trip_count());
  1230     loop->dump_head();
  1232 #endif
  1234   // If loop is tripping an odd number of times, peel odd iteration
  1235   if ((cl->trip_count() & 1) == 1) {
  1236     do_peeling(loop, old_new);
  1239   // Now its tripping an even number of times remaining.  Double loop body.
  1240   // Do not adjust pre-guards; they are not needed and do not exist.
  1241   if (cl->trip_count() > 0) {
  1242     do_unroll(loop, old_new, false);
  1246 //------------------------------dominates_backedge---------------------------------
  1247 // Returns true if ctrl is executed on every complete iteration
  1248 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1249   assert(ctrl->is_CFG(), "must be control");
  1250   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1251   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1254 //------------------------------add_constraint---------------------------------
  1255 // Constrain the main loop iterations so the condition:
  1256 //    scale_con * I + offset  <  limit
  1257 // always holds true.  That is, either increase the number of iterations in
  1258 // the pre-loop or the post-loop until the condition holds true in the main
  1259 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1260 // stride and scale are constants (offset and limit often are).
  1261 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1263   // Compute "I :: (limit-offset)/scale_con"
  1264   Node *con = new (C, 3) SubINode( limit, offset );
  1265   register_new_node( con, pre_ctrl );
  1266   Node *scale = _igvn.intcon(scale_con);
  1267   set_ctrl(scale, C->root());
  1268   Node *X = new (C, 3) DivINode( 0, con, scale );
  1269   register_new_node( X, pre_ctrl );
  1271   // For positive stride, the pre-loop limit always uses a MAX function
  1272   // and the main loop a MIN function.  For negative stride these are
  1273   // reversed.
  1275   // Also for positive stride*scale the affine function is increasing, so the
  1276   // pre-loop must check for underflow and the post-loop for overflow.
  1277   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1278   // post-loop for underflow.
  1279   if( stride_con*scale_con > 0 ) {
  1280     // Compute I < (limit-offset)/scale_con
  1281     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1282     *main_limit = (stride_con > 0)
  1283       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1284       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1285     register_new_node( *main_limit, pre_ctrl );
  1287   } else {
  1288     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1289     // Add the negation of the main-loop constraint to the pre-loop.
  1290     // See footnote [++] below for a derivation of the limit expression.
  1291     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1292     set_ctrl(incr, C->root());
  1293     Node *adj = new (C, 3) AddINode( X, incr );
  1294     register_new_node( adj, pre_ctrl );
  1295     *pre_limit = (scale_con > 0)
  1296       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1297       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1298     register_new_node( *pre_limit, pre_ctrl );
  1300 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1301 //
  1302 //   NOT( scale_con * I + offset  <  limit )
  1303 //      ==
  1304 //   scale_con * I + offset  >=  limit
  1305 //      ==
  1306 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1307 //      ==
  1308 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1309 //      ==
  1310 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1311 //      ==
  1312 //   ( if (scale_con > 0) /*common case*/
  1313 //       (limit-offset)/scale_con - 1  <  I
  1314 //     else
  1315 //       (limit-offset)/scale_con + 1  >  I
  1316 //    )
  1317 //   ( if (scale_con > 0) /*common case*/
  1318 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1319 //     else
  1320 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1325 //------------------------------is_scaled_iv---------------------------------
  1326 // Return true if exp is a constant times an induction var
  1327 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1328   if (exp == iv) {
  1329     if (p_scale != NULL) {
  1330       *p_scale = 1;
  1332     return true;
  1334   int opc = exp->Opcode();
  1335   if (opc == Op_MulI) {
  1336     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1337       if (p_scale != NULL) {
  1338         *p_scale = exp->in(2)->get_int();
  1340       return true;
  1342     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1343       if (p_scale != NULL) {
  1344         *p_scale = exp->in(1)->get_int();
  1346       return true;
  1348   } else if (opc == Op_LShiftI) {
  1349     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1350       if (p_scale != NULL) {
  1351         *p_scale = 1 << exp->in(2)->get_int();
  1353       return true;
  1356   return false;
  1359 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1360 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1361 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1362   if (is_scaled_iv(exp, iv, p_scale)) {
  1363     if (p_offset != NULL) {
  1364       Node *zero = _igvn.intcon(0);
  1365       set_ctrl(zero, C->root());
  1366       *p_offset = zero;
  1368     return true;
  1370   int opc = exp->Opcode();
  1371   if (opc == Op_AddI) {
  1372     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1373       if (p_offset != NULL) {
  1374         *p_offset = exp->in(2);
  1376       return true;
  1378     if (exp->in(2)->is_Con()) {
  1379       Node* offset2 = NULL;
  1380       if (depth < 2 &&
  1381           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1382                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1383         if (p_offset != NULL) {
  1384           Node *ctrl_off2 = get_ctrl(offset2);
  1385           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1386           register_new_node(offset, ctrl_off2);
  1387           *p_offset = offset;
  1389         return true;
  1392   } else if (opc == Op_SubI) {
  1393     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1394       if (p_offset != NULL) {
  1395         Node *zero = _igvn.intcon(0);
  1396         set_ctrl(zero, C->root());
  1397         Node *ctrl_off = get_ctrl(exp->in(2));
  1398         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1399         register_new_node(offset, ctrl_off);
  1400         *p_offset = offset;
  1402       return true;
  1404     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1405       if (p_offset != NULL) {
  1406         *p_scale *= -1;
  1407         *p_offset = exp->in(1);
  1409       return true;
  1412   return false;
  1415 //------------------------------do_range_check---------------------------------
  1416 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1417 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1418 #ifndef PRODUCT
  1419   if (PrintOpto && VerifyLoopOptimizations) {
  1420     tty->print("Range Check Elimination ");
  1421     loop->dump_head();
  1422   } else if (TraceLoopOpts) {
  1423     tty->print("RangeCheck   ");
  1424     loop->dump_head();
  1426 #endif
  1427   assert(RangeCheckElimination, "");
  1428   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1429   assert(cl->is_main_loop(), "");
  1431   // protect against stride not being a constant
  1432   if (!cl->stride_is_con())
  1433     return;
  1435   // Find the trip counter; we are iteration splitting based on it
  1436   Node *trip_counter = cl->phi();
  1437   // Find the main loop limit; we will trim it's iterations
  1438   // to not ever trip end tests
  1439   Node *main_limit = cl->limit();
  1441   // Need to find the main-loop zero-trip guard
  1442   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1443   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1444   Node *iffm = ctrl->in(0);
  1445   assert(iffm->Opcode() == Op_If, "");
  1446   Node *bolzm = iffm->in(1);
  1447   assert(bolzm->Opcode() == Op_Bool, "");
  1448   Node *cmpzm = bolzm->in(1);
  1449   assert(cmpzm->is_Cmp(), "");
  1450   Node *opqzm = cmpzm->in(2);
  1451   // Can not optimize a loop if pre-loop Opaque1 node is optimized
  1452   // away and then another round of loop opts attempted.
  1453   if (opqzm->Opcode() != Op_Opaque1)
  1454     return;
  1455   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1457   // Find the pre-loop limit; we will expand it's iterations to
  1458   // not ever trip low tests.
  1459   Node *p_f = iffm->in(0);
  1460   assert(p_f->Opcode() == Op_IfFalse, "");
  1461   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1462   assert(pre_end->loopnode()->is_pre_loop(), "");
  1463   Node *pre_opaq1 = pre_end->limit();
  1464   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1465   // optimized away and then another round of loop opts attempted.
  1466   // We can not optimize this particular loop in that case.
  1467   if (pre_opaq1->Opcode() != Op_Opaque1)
  1468     return;
  1469   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1470   Node *pre_limit = pre_opaq->in(1);
  1472   // Where do we put new limit calculations
  1473   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1475   // Ensure the original loop limit is available from the
  1476   // pre-loop Opaque1 node.
  1477   Node *orig_limit = pre_opaq->original_loop_limit();
  1478   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1479     return;
  1481   // Must know if its a count-up or count-down loop
  1483   int stride_con = cl->stride_con();
  1484   Node *zero = _igvn.intcon(0);
  1485   Node *one  = _igvn.intcon(1);
  1486   set_ctrl(zero, C->root());
  1487   set_ctrl(one,  C->root());
  1489   // Range checks that do not dominate the loop backedge (ie.
  1490   // conditionally executed) can lengthen the pre loop limit beyond
  1491   // the original loop limit. To prevent this, the pre limit is
  1492   // (for stride > 0) MINed with the original loop limit (MAXed
  1493   // stride < 0) when some range_check (rc) is conditionally
  1494   // executed.
  1495   bool conditional_rc = false;
  1497   // Check loop body for tests of trip-counter plus loop-invariant vs
  1498   // loop-invariant.
  1499   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1500     Node *iff = loop->_body[i];
  1501     if( iff->Opcode() == Op_If ) { // Test?
  1503       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1504       // we need loop unswitching instead of iteration splitting.
  1505       Node *exit = loop->is_loop_exit(iff);
  1506       if( !exit ) continue;
  1507       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1509       // Get boolean condition to test
  1510       Node *i1 = iff->in(1);
  1511       if( !i1->is_Bool() ) continue;
  1512       BoolNode *bol = i1->as_Bool();
  1513       BoolTest b_test = bol->_test;
  1514       // Flip sense of test if exit condition is flipped
  1515       if( flip )
  1516         b_test = b_test.negate();
  1518       // Get compare
  1519       Node *cmp = bol->in(1);
  1521       // Look for trip_counter + offset vs limit
  1522       Node *rc_exp = cmp->in(1);
  1523       Node *limit  = cmp->in(2);
  1524       jint scale_con= 1;        // Assume trip counter not scaled
  1526       Node *limit_c = get_ctrl(limit);
  1527       if( loop->is_member(get_loop(limit_c) ) ) {
  1528         // Compare might have operands swapped; commute them
  1529         b_test = b_test.commute();
  1530         rc_exp = cmp->in(2);
  1531         limit  = cmp->in(1);
  1532         limit_c = get_ctrl(limit);
  1533         if( loop->is_member(get_loop(limit_c) ) )
  1534           continue;             // Both inputs are loop varying; cannot RCE
  1536       // Here we know 'limit' is loop invariant
  1538       // 'limit' maybe pinned below the zero trip test (probably from a
  1539       // previous round of rce), in which case, it can't be used in the
  1540       // zero trip test expression which must occur before the zero test's if.
  1541       if( limit_c == ctrl ) {
  1542         continue;  // Don't rce this check but continue looking for other candidates.
  1545       // Check for scaled induction variable plus an offset
  1546       Node *offset = NULL;
  1548       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1549         continue;
  1552       Node *offset_c = get_ctrl(offset);
  1553       if( loop->is_member( get_loop(offset_c) ) )
  1554         continue;               // Offset is not really loop invariant
  1555       // Here we know 'offset' is loop invariant.
  1557       // As above for the 'limit', the 'offset' maybe pinned below the
  1558       // zero trip test.
  1559       if( offset_c == ctrl ) {
  1560         continue; // Don't rce this check but continue looking for other candidates.
  1563       // At this point we have the expression as:
  1564       //   scale_con * trip_counter + offset :: limit
  1565       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1566       // monotonically increases by stride_con, a constant.  Both (or either)
  1567       // stride_con and scale_con can be negative which will flip about the
  1568       // sense of the test.
  1570       // Adjust pre and main loop limits to guard the correct iteration set
  1571       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1572         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1573           // The overflow limit: scale*I+offset < limit
  1574           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1575           // The underflow limit: 0 <= scale*I+offset.
  1576           // Some math yields: -scale*I-(offset+1) < 0
  1577           Node *plus_one = new (C, 3) AddINode( offset, one );
  1578           register_new_node( plus_one, pre_ctrl );
  1579           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1580           register_new_node( neg_offset, pre_ctrl );
  1581           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1582           if (!conditional_rc) {
  1583             conditional_rc = !loop->dominates_backedge(iff);
  1585         } else {
  1586 #ifndef PRODUCT
  1587           if( PrintOpto )
  1588             tty->print_cr("missed RCE opportunity");
  1589 #endif
  1590           continue;             // In release mode, ignore it
  1592       } else {                  // Otherwise work on normal compares
  1593         switch( b_test._test ) {
  1594         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1595           scale_con = -scale_con;
  1596           offset = new (C, 3) SubINode( zero, offset );
  1597           register_new_node( offset, pre_ctrl );
  1598           limit  = new (C, 3) SubINode( zero, limit  );
  1599           register_new_node( limit, pre_ctrl );
  1600           // Fall into LE case
  1601         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1602           limit = new (C, 3) AddINode( limit, one );
  1603           register_new_node( limit, pre_ctrl );
  1604           // Fall into LT case
  1605         case BoolTest::lt:
  1606           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1607           if (!conditional_rc) {
  1608             conditional_rc = !loop->dominates_backedge(iff);
  1610           break;
  1611         default:
  1612 #ifndef PRODUCT
  1613           if( PrintOpto )
  1614             tty->print_cr("missed RCE opportunity");
  1615 #endif
  1616           continue;             // Unhandled case
  1620       // Kill the eliminated test
  1621       C->set_major_progress();
  1622       Node *kill_con = _igvn.intcon( 1-flip );
  1623       set_ctrl(kill_con, C->root());
  1624       _igvn.hash_delete(iff);
  1625       iff->set_req(1, kill_con);
  1626       _igvn._worklist.push(iff);
  1627       // Find surviving projection
  1628       assert(iff->is_If(), "");
  1629       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1630       // Find loads off the surviving projection; remove their control edge
  1631       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1632         Node* cd = dp->fast_out(i); // Control-dependent node
  1633         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1634           _igvn.hash_delete(cd);
  1635           // Allow the load to float around in the loop, or before it
  1636           // but NOT before the pre-loop.
  1637           cd->set_req(0, ctrl);   // ctrl, not NULL
  1638           _igvn._worklist.push(cd);
  1639           --i;
  1640           --imax;
  1644     } // End of is IF
  1648   // Update loop limits
  1649   if (conditional_rc) {
  1650     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1651                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1652     register_new_node(pre_limit, pre_ctrl);
  1654   _igvn.hash_delete(pre_opaq);
  1655   pre_opaq->set_req(1, pre_limit);
  1657   // Note:: we are making the main loop limit no longer precise;
  1658   // need to round up based on stride.
  1659   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1660     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1661     // Hopefully, compiler will optimize for powers of 2.
  1662     Node *ctrl = get_ctrl(main_limit);
  1663     Node *stride = cl->stride();
  1664     Node *init = cl->init_trip();
  1665     Node *span = new (C, 3) SubINode(main_limit,init);
  1666     register_new_node(span,ctrl);
  1667     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1668     Node *add = new (C, 3) AddINode(span,rndup);
  1669     register_new_node(add,ctrl);
  1670     Node *div = new (C, 3) DivINode(0,add,stride);
  1671     register_new_node(div,ctrl);
  1672     Node *mul = new (C, 3) MulINode(div,stride);
  1673     register_new_node(mul,ctrl);
  1674     Node *newlim = new (C, 3) AddINode(mul,init);
  1675     register_new_node(newlim,ctrl);
  1676     main_limit = newlim;
  1679   Node *main_cle = cl->loopexit();
  1680   Node *main_bol = main_cle->in(1);
  1681   // Hacking loop bounds; need private copies of exit test
  1682   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1683     _igvn.hash_delete(main_cle);
  1684     main_bol = main_bol->clone();// Clone a private BoolNode
  1685     register_new_node( main_bol, main_cle->in(0) );
  1686     main_cle->set_req(1,main_bol);
  1688   Node *main_cmp = main_bol->in(1);
  1689   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1690     _igvn.hash_delete(main_bol);
  1691     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1692     register_new_node( main_cmp, main_cle->in(0) );
  1693     main_bol->set_req(1,main_cmp);
  1695   // Hack the now-private loop bounds
  1696   _igvn.hash_delete(main_cmp);
  1697   main_cmp->set_req(2, main_limit);
  1698   _igvn._worklist.push(main_cmp);
  1699   // The OpaqueNode is unshared by design
  1700   _igvn.hash_delete(opqzm);
  1701   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1702   opqzm->set_req(1,main_limit);
  1703   _igvn._worklist.push(opqzm);
  1706 //------------------------------DCE_loop_body----------------------------------
  1707 // Remove simplistic dead code from loop body
  1708 void IdealLoopTree::DCE_loop_body() {
  1709   for( uint i = 0; i < _body.size(); i++ )
  1710     if( _body.at(i)->outcnt() == 0 )
  1711       _body.map( i--, _body.pop() );
  1715 //------------------------------adjust_loop_exit_prob--------------------------
  1716 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1717 // Replace with a 1-in-10 exit guess.
  1718 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1719   Node *test = tail();
  1720   while( test != _head ) {
  1721     uint top = test->Opcode();
  1722     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1723       int test_con = ((ProjNode*)test)->_con;
  1724       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1725       IfNode *iff = test->in(0)->as_If();
  1726       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1727         Node *bol = iff->in(1);
  1728         if( bol && bol->req() > 1 && bol->in(1) &&
  1729             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1730              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1731              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1732              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1733              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1734              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1735              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1736           return;               // Allocation loops RARELY take backedge
  1737         // Find the OTHER exit path from the IF
  1738         Node* ex = iff->proj_out(1-test_con);
  1739         float p = iff->_prob;
  1740         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1741           if( top == Op_IfTrue ) {
  1742             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1743               iff->_prob = PROB_STATIC_FREQUENT;
  1745           } else {
  1746             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1747               iff->_prob = PROB_STATIC_INFREQUENT;
  1753     test = phase->idom(test);
  1758 //------------------------------policy_do_remove_empty_loop--------------------
  1759 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1760 // The 'DO' part is to replace the trip counter with the value it will
  1761 // have on the last iteration.  This will break the loop.
  1762 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1763   // Minimum size must be empty loop
  1764   if (_body.size() > 7/*number of nodes in an empty loop*/)
  1765     return false;
  1767   if (!_head->is_CountedLoop())
  1768     return false;     // Dead loop
  1769   CountedLoopNode *cl = _head->as_CountedLoop();
  1770   if (!cl->loopexit())
  1771     return false; // Malformed loop
  1772   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  1773     return false;             // Infinite loop
  1775 #ifdef ASSERT
  1776   // Ensure only one phi which is the iv.
  1777   Node* iv = NULL;
  1778   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1779     Node* n = cl->fast_out(i);
  1780     if (n->Opcode() == Op_Phi) {
  1781       assert(iv == NULL, "Too many phis" );
  1782       iv = n;
  1785   assert(iv == cl->phi(), "Wrong phi" );
  1786 #endif
  1788   // main and post loops have explicitly created zero trip guard
  1789   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1790   if (needs_guard) {
  1791     // Check for an obvious zero trip guard.
  1792     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  1793     if (inctrl->Opcode() == Op_IfTrue) {
  1794       // The test should look like just the backedge of a CountedLoop
  1795       Node* iff = inctrl->in(0);
  1796       if (iff->is_If()) {
  1797         Node* bol = iff->in(1);
  1798         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  1799           Node* cmp = bol->in(1);
  1800           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  1801             needs_guard = false;
  1808 #ifndef PRODUCT
  1809   if (PrintOpto) {
  1810     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  1811     this->dump_head();
  1812   } else if (TraceLoopOpts) {
  1813     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  1814     this->dump_head();
  1816 #endif
  1818   if (needs_guard) {
  1819     // Peel the loop to ensure there's a zero trip guard
  1820     Node_List old_new;
  1821     phase->do_peeling(this, old_new);
  1824   // Replace the phi at loop head with the final value of the last
  1825   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1826   // taken) and all loop-invariant uses of the exit values will be correct.
  1827   Node *phi = cl->phi();
  1828   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1829   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1830   phase->_igvn.replace_node(phi,final);
  1831   phase->C->set_major_progress();
  1832   return true;
  1836 //=============================================================================
  1837 //------------------------------iteration_split_impl---------------------------
  1838 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1839   // Check and remove empty loops (spam micro-benchmarks)
  1840   if( policy_do_remove_empty_loop(phase) )
  1841     return true;  // Here we removed an empty loop
  1843   bool should_peel = policy_peeling(phase); // Should we peel?
  1845   bool should_unswitch = policy_unswitching(phase);
  1847   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1848   // This removes loop-invariant tests (usually null checks).
  1849   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1850     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1851       // Partial peel succeeded so terminate this round of loop opts
  1852       return false;
  1854     if( should_peel ) {            // Should we peel?
  1855 #ifndef PRODUCT
  1856       if (PrintOpto) tty->print_cr("should_peel");
  1857 #endif
  1858       phase->do_peeling(this,old_new);
  1859     } else if( should_unswitch ) {
  1860       phase->do_unswitching(this, old_new);
  1862     return true;
  1864   CountedLoopNode *cl = _head->as_CountedLoop();
  1866   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1868   // Do nothing special to pre- and post- loops
  1869   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1871   // Compute loop trip count from profile data
  1872   compute_profile_trip_cnt(phase);
  1874   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1875   // to completely unroll this loop or do loop unswitching.
  1876   if( cl->is_normal_loop() ) {
  1877     if (should_unswitch) {
  1878       phase->do_unswitching(this, old_new);
  1879       return true;
  1881     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1882     if( should_maximally_unroll ) {
  1883       // Here we did some unrolling and peeling.  Eventually we will
  1884       // completely unroll this loop and it will no longer be a loop.
  1885       phase->do_maximally_unroll(this,old_new);
  1886       return true;
  1891   // Counted loops may be peeled, may need some iterations run up
  1892   // front for RCE, and may want to align loop refs to a cache
  1893   // line.  Thus we clone a full loop up front whose trip count is
  1894   // at least 1 (if peeling), but may be several more.
  1896   // The main loop will start cache-line aligned with at least 1
  1897   // iteration of the unrolled body (zero-trip test required) and
  1898   // will have some range checks removed.
  1900   // A post-loop will finish any odd iterations (leftover after
  1901   // unrolling), plus any needed for RCE purposes.
  1903   bool should_unroll = policy_unroll(phase);
  1905   bool should_rce = policy_range_check(phase);
  1907   bool should_align = policy_align(phase);
  1909   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1910   // need a pre-loop.  We may still need to peel an initial iteration but
  1911   // we will not be needing an unknown number of pre-iterations.
  1912   //
  1913   // Basically, if may_rce_align reports FALSE first time through,
  1914   // we will not be able to later do RCE or Aligning on this loop.
  1915   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1917   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1918   // we switch to the pre-/main-/post-loop model.  This model also covers
  1919   // peeling.
  1920   if( should_rce || should_align || should_unroll ) {
  1921     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1922       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1924     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1925     // with full checks, but the main-loop with no checks.  Remove said
  1926     // checks from the main body.
  1927     if( should_rce )
  1928       phase->do_range_check(this,old_new);
  1930     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1931     // twice as many iterations as before) and the main body limit (only do
  1932     // an even number of trips).  If we are peeling, we might enable some RCE
  1933     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1934     // peeling.
  1935       if( should_unroll && !should_peel )
  1936         phase->do_unroll(this,old_new, true);
  1938     // Adjust the pre-loop limits to align the main body
  1939     // iterations.
  1940     if( should_align )
  1941       Unimplemented();
  1943   } else {                      // Else we have an unchanged counted loop
  1944     if( should_peel )           // Might want to peel but do nothing else
  1945       phase->do_peeling(this,old_new);
  1947   return true;
  1951 //=============================================================================
  1952 //------------------------------iteration_split--------------------------------
  1953 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1954   // Recursively iteration split nested loops
  1955   if (_child && !_child->iteration_split(phase, old_new))
  1956     return false;
  1958   // Clean out prior deadwood
  1959   DCE_loop_body();
  1962   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1963   // Replace with a 1-in-10 exit guess.
  1964   if (_parent /*not the root loop*/ &&
  1965       !_irreducible &&
  1966       // Also ignore the occasional dead backedge
  1967       !tail()->is_top()) {
  1968     adjust_loop_exit_prob(phase);
  1971   // Gate unrolling, RCE and peeling efforts.
  1972   if (!_child &&                // If not an inner loop, do not split
  1973       !_irreducible &&
  1974       _allow_optimizations &&
  1975       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  1976     if (!_has_call) {
  1977         if (!iteration_split_impl(phase, old_new)) {
  1978           return false;
  1980     } else if (policy_unswitching(phase)) {
  1981       phase->do_unswitching(this, old_new);
  1985   // Minor offset re-organization to remove loop-fallout uses of
  1986   // trip counter when there was no major reshaping.
  1987   phase->reorg_offsets(this);
  1989   if (_next && !_next->iteration_split(phase, old_new))
  1990     return false;
  1991   return true;
  1995 //=============================================================================
  1996 // Process all the loops in the loop tree and replace any fill
  1997 // patterns with an intrisc version.
  1998 bool PhaseIdealLoop::do_intrinsify_fill() {
  1999   bool changed = false;
  2000   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2001     IdealLoopTree* lpt = iter.current();
  2002     changed |= intrinsify_fill(lpt);
  2004   return changed;
  2008 // Examine an inner loop looking for a a single store of an invariant
  2009 // value in a unit stride loop,
  2010 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2011                                      Node*& shift, Node*& con) {
  2012   const char* msg = NULL;
  2013   Node* msg_node = NULL;
  2015   store_value = NULL;
  2016   con = NULL;
  2017   shift = NULL;
  2019   // Process the loop looking for stores.  If there are multiple
  2020   // stores or extra control flow give at this point.
  2021   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2022   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2023     Node* n = lpt->_body.at(i);
  2024     if (n->outcnt() == 0) continue; // Ignore dead
  2025     if (n->is_Store()) {
  2026       if (store != NULL) {
  2027         msg = "multiple stores";
  2028         break;
  2030       int opc = n->Opcode();
  2031       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2032         msg = "oop fills not handled";
  2033         break;
  2035       Node* value = n->in(MemNode::ValueIn);
  2036       if (!lpt->is_invariant(value)) {
  2037         msg  = "variant store value";
  2038       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2039         msg = "not array address";
  2041       store = n;
  2042       store_value = value;
  2043     } else if (n->is_If() && n != head->loopexit()) {
  2044       msg = "extra control flow";
  2045       msg_node = n;
  2049   if (store == NULL) {
  2050     // No store in loop
  2051     return false;
  2054   if (msg == NULL && head->stride_con() != 1) {
  2055     // could handle negative strides too
  2056     if (head->stride_con() < 0) {
  2057       msg = "negative stride";
  2058     } else {
  2059       msg = "non-unit stride";
  2063   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2064     msg = "can't handle store address";
  2065     msg_node = store->in(MemNode::Address);
  2068   if (msg == NULL &&
  2069       (!store->in(MemNode::Memory)->is_Phi() ||
  2070        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2071     msg = "store memory isn't proper phi";
  2072     msg_node = store->in(MemNode::Memory);
  2075   // Make sure there is an appropriate fill routine
  2076   BasicType t = store->as_Mem()->memory_type();
  2077   const char* fill_name;
  2078   if (msg == NULL &&
  2079       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2080     msg = "unsupported store";
  2081     msg_node = store;
  2084   if (msg != NULL) {
  2085 #ifndef PRODUCT
  2086     if (TraceOptimizeFill) {
  2087       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2088       if (msg_node != NULL) msg_node->dump();
  2090 #endif
  2091     return false;
  2094   // Make sure the address expression can be handled.  It should be
  2095   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2096   Node* elements[4];
  2097   Node* conv = NULL;
  2098   bool found_index = false;
  2099   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2100   for (int e = 0; e < count; e++) {
  2101     Node* n = elements[e];
  2102     if (n->is_Con() && con == NULL) {
  2103       con = n;
  2104     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2105       Node* value = n->in(1);
  2106 #ifdef _LP64
  2107       if (value->Opcode() == Op_ConvI2L) {
  2108         conv = value;
  2109         value = value->in(1);
  2111 #endif
  2112       if (value != head->phi()) {
  2113         msg = "unhandled shift in address";
  2114       } else {
  2115         found_index = true;
  2116         shift = n;
  2117         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
  2119     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2120       if (n->in(1) == head->phi()) {
  2121         found_index = true;
  2122         conv = n;
  2123       } else {
  2124         msg = "unhandled input to ConvI2L";
  2126     } else if (n == head->phi()) {
  2127       // no shift, check below for allowed cases
  2128       found_index = true;
  2129     } else {
  2130       msg = "unhandled node in address";
  2131       msg_node = n;
  2135   if (count == -1) {
  2136     msg = "malformed address expression";
  2137     msg_node = store;
  2140   if (!found_index) {
  2141     msg = "missing use of index";
  2144   // byte sized items won't have a shift
  2145   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2146     msg = "can't find shift";
  2147     msg_node = store;
  2150   if (msg != NULL) {
  2151 #ifndef PRODUCT
  2152     if (TraceOptimizeFill) {
  2153       tty->print_cr("not fill intrinsic: %s", msg);
  2154       if (msg_node != NULL) msg_node->dump();
  2156 #endif
  2157     return false;
  2160   // No make sure all the other nodes in the loop can be handled
  2161   VectorSet ok(Thread::current()->resource_area());
  2163   // store related values are ok
  2164   ok.set(store->_idx);
  2165   ok.set(store->in(MemNode::Memory)->_idx);
  2167   // Loop structure is ok
  2168   ok.set(head->_idx);
  2169   ok.set(head->loopexit()->_idx);
  2170   ok.set(head->phi()->_idx);
  2171   ok.set(head->incr()->_idx);
  2172   ok.set(head->loopexit()->cmp_node()->_idx);
  2173   ok.set(head->loopexit()->in(1)->_idx);
  2175   // Address elements are ok
  2176   if (con)   ok.set(con->_idx);
  2177   if (shift) ok.set(shift->_idx);
  2178   if (conv)  ok.set(conv->_idx);
  2180   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2181     Node* n = lpt->_body.at(i);
  2182     if (n->outcnt() == 0) continue; // Ignore dead
  2183     if (ok.test(n->_idx)) continue;
  2184     // Backedge projection is ok
  2185     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2186     if (!n->is_AddP()) {
  2187       msg = "unhandled node";
  2188       msg_node = n;
  2189       break;
  2193   // Make sure no unexpected values are used outside the loop
  2194   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2195     Node* n = lpt->_body.at(i);
  2196     // These values can be replaced with other nodes if they are used
  2197     // outside the loop.
  2198     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2199     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2200       Node* use = iter.get();
  2201       if (!lpt->_body.contains(use)) {
  2202         msg = "node is used outside loop";
  2203         // lpt->_body.dump();
  2204         msg_node = n;
  2205         break;
  2210 #ifdef ASSERT
  2211   if (TraceOptimizeFill) {
  2212     if (msg != NULL) {
  2213       tty->print_cr("no fill intrinsic: %s", msg);
  2214       if (msg_node != NULL) msg_node->dump();
  2215     } else {
  2216       tty->print_cr("fill intrinsic for:");
  2218     store->dump();
  2219     if (Verbose) {
  2220       lpt->_body.dump();
  2223 #endif
  2225   return msg == NULL;
  2230 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2231   // Only for counted inner loops
  2232   if (!lpt->is_counted() || !lpt->is_inner()) {
  2233     return false;
  2236   // Must have constant stride
  2237   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2238   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2239     return false;
  2242   // Check that the body only contains a store of a loop invariant
  2243   // value that is indexed by the loop phi.
  2244   Node* store = NULL;
  2245   Node* store_value = NULL;
  2246   Node* shift = NULL;
  2247   Node* offset = NULL;
  2248   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2249     return false;
  2252 #ifndef PRODUCT
  2253   if (TraceLoopOpts) {
  2254     tty->print("ArrayFill    ");
  2255     lpt->dump_head();
  2257 #endif
  2259   // Now replace the whole loop body by a call to a fill routine that
  2260   // covers the same region as the loop.
  2261   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2263   // Build an expression for the beginning of the copy region
  2264   Node* index = head->init_trip();
  2265 #ifdef _LP64
  2266   index = new (C, 2) ConvI2LNode(index);
  2267   _igvn.register_new_node_with_optimizer(index);
  2268 #endif
  2269   if (shift != NULL) {
  2270     // byte arrays don't require a shift but others do.
  2271     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2272     _igvn.register_new_node_with_optimizer(index);
  2274   index = new (C, 4) AddPNode(base, base, index);
  2275   _igvn.register_new_node_with_optimizer(index);
  2276   Node* from = new (C, 4) AddPNode(base, index, offset);
  2277   _igvn.register_new_node_with_optimizer(from);
  2278   // Compute the number of elements to copy
  2279   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2280   _igvn.register_new_node_with_optimizer(len);
  2282   BasicType t = store->as_Mem()->memory_type();
  2283   bool aligned = false;
  2284   if (offset != NULL && head->init_trip()->is_Con()) {
  2285     int element_size = type2aelembytes(t);
  2286     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2289   // Build a call to the fill routine
  2290   const char* fill_name;
  2291   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2292   assert(fill != NULL, "what?");
  2294   // Convert float/double to int/long for fill routines
  2295   if (t == T_FLOAT) {
  2296     store_value = new (C, 2) MoveF2INode(store_value);
  2297     _igvn.register_new_node_with_optimizer(store_value);
  2298   } else if (t == T_DOUBLE) {
  2299     store_value = new (C, 2) MoveD2LNode(store_value);
  2300     _igvn.register_new_node_with_optimizer(store_value);
  2303   Node* mem_phi = store->in(MemNode::Memory);
  2304   Node* result_ctrl;
  2305   Node* result_mem;
  2306   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2307   int size = call_type->domain()->cnt();
  2308   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2309                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2310   call->init_req(TypeFunc::Parms+0, from);
  2311   call->init_req(TypeFunc::Parms+1, store_value);
  2312 #ifdef _LP64
  2313   len = new (C, 2) ConvI2LNode(len);
  2314   _igvn.register_new_node_with_optimizer(len);
  2315 #endif
  2316   call->init_req(TypeFunc::Parms+2, len);
  2317 #ifdef _LP64
  2318   call->init_req(TypeFunc::Parms+3, C->top());
  2319 #endif
  2320   call->init_req( TypeFunc::Control, head->init_control());
  2321   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2322   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2323   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2324   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2325   _igvn.register_new_node_with_optimizer(call);
  2326   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2327   _igvn.register_new_node_with_optimizer(result_ctrl);
  2328   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2329   _igvn.register_new_node_with_optimizer(result_mem);
  2331   // If this fill is tightly coupled to an allocation and overwrites
  2332   // the whole body, allow it to take over the zeroing.
  2333   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2334   if (alloc != NULL && alloc->is_AllocateArray()) {
  2335     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2336     if (head->limit() == length &&
  2337         head->init_trip() == _igvn.intcon(0)) {
  2338       if (TraceOptimizeFill) {
  2339         tty->print_cr("Eliminated zeroing in allocation");
  2341       alloc->maybe_set_complete(&_igvn);
  2342     } else {
  2343 #ifdef ASSERT
  2344       if (TraceOptimizeFill) {
  2345         tty->print_cr("filling array but bounds don't match");
  2346         alloc->dump();
  2347         head->init_trip()->dump();
  2348         head->limit()->dump();
  2349         length->dump();
  2351 #endif
  2355   // Redirect the old control and memory edges that are outside the loop.
  2356   Node* exit = head->loopexit()->proj_out(0);
  2357   // Sometimes the memory phi of the head is used as the outgoing
  2358   // state of the loop.  It's safe in this case to replace it with the
  2359   // result_mem.
  2360   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2361   _igvn.replace_node(exit, result_ctrl);
  2362   _igvn.replace_node(store, result_mem);
  2363   // Any uses the increment outside of the loop become the loop limit.
  2364   _igvn.replace_node(head->incr(), head->limit());
  2366   // Disconnect the head from the loop.
  2367   for (uint i = 0; i < lpt->_body.size(); i++) {
  2368     Node* n = lpt->_body.at(i);
  2369     _igvn.replace_node(n, C->top());
  2372   return true;

mercurial