src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Mon, 29 Apr 2013 09:31:59 +0200

author
mgerdin
date
Mon, 29 Apr 2013 09:31:59 +0200
changeset 5022
caac22686b17
parent 4931
9aa8d8037ee3
child 5071
f14063dcd52a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_bytes_before_gc(0),
   128   _survivor_bytes_before_gc(0),
   129   _capacity_before_gc(0),
   131   _eden_cset_region_length(0),
   132   _survivor_cset_region_length(0),
   133   _old_cset_region_length(0),
   135   _collection_set(NULL),
   136   _collection_set_bytes_used_before(0),
   138   // Incremental CSet attributes
   139   _inc_cset_build_state(Inactive),
   140   _inc_cset_head(NULL),
   141   _inc_cset_tail(NULL),
   142   _inc_cset_bytes_used_before(0),
   143   _inc_cset_max_finger(NULL),
   144   _inc_cset_recorded_rs_lengths(0),
   145   _inc_cset_recorded_rs_lengths_diffs(0),
   146   _inc_cset_predicted_elapsed_time_ms(0.0),
   147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   151 #endif // _MSC_VER
   153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   154                                                  G1YoungSurvRateNumRegionsSummary)),
   155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   156                                               G1YoungSurvRateNumRegionsSummary)),
   157   // add here any more surv rate groups
   158   _recorded_survivor_regions(0),
   159   _recorded_survivor_head(NULL),
   160   _recorded_survivor_tail(NULL),
   161   _survivors_age_table(true),
   163   _gc_overhead_perc(0.0) {
   165   // Set up the region size and associated fields. Given that the
   166   // policy is created before the heap, we have to set this up here,
   167   // so it's done as soon as possible.
   168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   169   HeapRegionRemSet::setup_remset_size();
   171   G1ErgoVerbose::initialize();
   172   if (PrintAdaptiveSizePolicy) {
   173     // Currently, we only use a single switch for all the heuristics.
   174     G1ErgoVerbose::set_enabled(true);
   175     // Given that we don't currently have a verboseness level
   176     // parameter, we'll hardcode this to high. This can be easily
   177     // changed in the future.
   178     G1ErgoVerbose::set_level(ErgoHigh);
   179   } else {
   180     G1ErgoVerbose::set_enabled(false);
   181   }
   183   // Verify PLAB sizes
   184   const size_t region_size = HeapRegion::GrainWords;
   185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   186     char buffer[128];
   187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   189     vm_exit_during_initialization(buffer);
   190   }
   192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   197   int index = MIN2(_parallel_gc_threads - 1, 7);
   199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   201   _young_cards_per_entry_ratio_seq->add(
   202                                   young_cards_per_entry_ratio_defaults[index]);
   203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   206   _young_other_cost_per_region_ms_seq->add(
   207                                young_other_cost_per_region_ms_defaults[index]);
   208   _non_young_other_cost_per_region_ms_seq->add(
   209                            non_young_other_cost_per_region_ms_defaults[index]);
   211   // Below, we might need to calculate the pause time target based on
   212   // the pause interval. When we do so we are going to give G1 maximum
   213   // flexibility and allow it to do pauses when it needs to. So, we'll
   214   // arrange that the pause interval to be pause time target + 1 to
   215   // ensure that a) the pause time target is maximized with respect to
   216   // the pause interval and b) we maintain the invariant that pause
   217   // time target < pause interval. If the user does not want this
   218   // maximum flexibility, they will have to set the pause interval
   219   // explicitly.
   221   // First make sure that, if either parameter is set, its value is
   222   // reasonable.
   223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   224     if (MaxGCPauseMillis < 1) {
   225       vm_exit_during_initialization("MaxGCPauseMillis should be "
   226                                     "greater than 0");
   227     }
   228   }
   229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   230     if (GCPauseIntervalMillis < 1) {
   231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   232                                     "greater than 0");
   233     }
   234   }
   236   // Then, if the pause time target parameter was not set, set it to
   237   // the default value.
   238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   240       // The default pause time target in G1 is 200ms
   241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   242     } else {
   243       // We do not allow the pause interval to be set without the
   244       // pause time target
   245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   246                                     "without setting MaxGCPauseMillis");
   247     }
   248   }
   250   // Then, if the interval parameter was not set, set it according to
   251   // the pause time target (this will also deal with the case when the
   252   // pause time target is the default value).
   253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   255   }
   257   // Finally, make sure that the two parameters are consistent.
   258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   259     char buffer[256];
   260     jio_snprintf(buffer, 256,
   261                  "MaxGCPauseMillis (%u) should be less than "
   262                  "GCPauseIntervalMillis (%u)",
   263                  MaxGCPauseMillis, GCPauseIntervalMillis);
   264     vm_exit_during_initialization(buffer);
   265   }
   267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   271   uintx confidence_perc = G1ConfidencePercent;
   272   // Put an artificial ceiling on this so that it's not set to a silly value.
   273   if (confidence_perc > 100) {
   274     confidence_perc = 100;
   275     warning("G1ConfidencePercent is set to a value that is too large, "
   276             "it's been updated to %u", confidence_perc);
   277   }
   278   _sigma = (double) confidence_perc / 100.0;
   280   // start conservatively (around 50ms is about right)
   281   _concurrent_mark_remark_times_ms->add(0.05);
   282   _concurrent_mark_cleanup_times_ms->add(0.20);
   283   _tenuring_threshold = MaxTenuringThreshold;
   284   // _max_survivor_regions will be calculated by
   285   // update_young_list_target_length() during initialization.
   286   _max_survivor_regions = 0;
   288   assert(GCTimeRatio > 0,
   289          "we should have set it to a default value set_g1_gc_flags() "
   290          "if a user set it to 0");
   291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   293   uintx reserve_perc = G1ReservePercent;
   294   // Put an artificial ceiling on this so that it's not set to a silly value.
   295   if (reserve_perc > 50) {
   296     reserve_perc = 50;
   297     warning("G1ReservePercent is set to a value that is too large, "
   298             "it's been updated to %u", reserve_perc);
   299   }
   300   _reserve_factor = (double) reserve_perc / 100.0;
   301   // This will be set when the heap is expanded
   302   // for the first time during initialization.
   303   _reserve_regions = 0;
   305   initialize_all();
   306   _collectionSetChooser = new CollectionSetChooser();
   307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   308 }
   310 void G1CollectorPolicy::initialize_flags() {
   311   set_min_alignment(HeapRegion::GrainBytes);
   312   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   313   if (SurvivorRatio < 1) {
   314     vm_exit_during_initialization("Invalid survivor ratio specified");
   315   }
   316   CollectorPolicy::initialize_flags();
   317 }
   319 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   320   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   321   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   322   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   324   if (FLAG_IS_CMDLINE(NewRatio)) {
   325     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   326       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   327     } else {
   328       _sizer_kind = SizerNewRatio;
   329       _adaptive_size = false;
   330       return;
   331     }
   332   }
   334   if (FLAG_IS_CMDLINE(NewSize)) {
   335     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   336                                      1U);
   337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   338       _max_desired_young_length =
   339                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   340                                   1U);
   341       _sizer_kind = SizerMaxAndNewSize;
   342       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   343     } else {
   344       _sizer_kind = SizerNewSizeOnly;
   345     }
   346   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   347     _max_desired_young_length =
   348                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   349                                   1U);
   350     _sizer_kind = SizerMaxNewSizeOnly;
   351   }
   352 }
   354 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   355   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   356   return MAX2(1U, default_value);
   357 }
   359 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   360   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   361   return MAX2(1U, default_value);
   362 }
   364 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   365   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   367   switch (_sizer_kind) {
   368     case SizerDefaults:
   369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   370       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   371       break;
   372     case SizerNewSizeOnly:
   373       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   374       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   375       break;
   376     case SizerMaxNewSizeOnly:
   377       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   378       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   379       break;
   380     case SizerMaxAndNewSize:
   381       // Do nothing. Values set on the command line, don't update them at runtime.
   382       break;
   383     case SizerNewRatio:
   384       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   385       _max_desired_young_length = _min_desired_young_length;
   386       break;
   387     default:
   388       ShouldNotReachHere();
   389   }
   391   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   392 }
   394 void G1CollectorPolicy::init() {
   395   // Set aside an initial future to_space.
   396   _g1 = G1CollectedHeap::heap();
   398   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   400   initialize_gc_policy_counters();
   402   if (adaptive_young_list_length()) {
   403     _young_list_fixed_length = 0;
   404   } else {
   405     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   406   }
   407   _free_regions_at_end_of_collection = _g1->free_regions();
   408   update_young_list_target_length();
   410   // We may immediately start allocating regions and placing them on the
   411   // collection set list. Initialize the per-collection set info
   412   start_incremental_cset_building();
   413 }
   415 // Create the jstat counters for the policy.
   416 void G1CollectorPolicy::initialize_gc_policy_counters() {
   417   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   418 }
   420 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   421                                          double base_time_ms,
   422                                          uint base_free_regions,
   423                                          double target_pause_time_ms) {
   424   if (young_length >= base_free_regions) {
   425     // end condition 1: not enough space for the young regions
   426     return false;
   427   }
   429   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   430   size_t bytes_to_copy =
   431                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   432   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   433   double young_other_time_ms = predict_young_other_time_ms(young_length);
   434   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   435   if (pause_time_ms > target_pause_time_ms) {
   436     // end condition 2: prediction is over the target pause time
   437     return false;
   438   }
   440   size_t free_bytes =
   441                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   442   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   443     // end condition 3: out-of-space (conservatively!)
   444     return false;
   445   }
   447   // success!
   448   return true;
   449 }
   451 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   452   // re-calculate the necessary reserve
   453   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   454   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   455   // smaller than 1.0) we'll get 1.
   456   _reserve_regions = (uint) ceil(reserve_regions_d);
   458   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   459 }
   461 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   462                                                        uint base_min_length) {
   463   uint desired_min_length = 0;
   464   if (adaptive_young_list_length()) {
   465     if (_alloc_rate_ms_seq->num() > 3) {
   466       double now_sec = os::elapsedTime();
   467       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   468       double alloc_rate_ms = predict_alloc_rate_ms();
   469       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   470     } else {
   471       // otherwise we don't have enough info to make the prediction
   472     }
   473   }
   474   desired_min_length += base_min_length;
   475   // make sure we don't go below any user-defined minimum bound
   476   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   477 }
   479 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   480   // Here, we might want to also take into account any additional
   481   // constraints (i.e., user-defined minimum bound). Currently, we
   482   // effectively don't set this bound.
   483   return _young_gen_sizer->max_desired_young_length();
   484 }
   486 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   487   if (rs_lengths == (size_t) -1) {
   488     // if it's set to the default value (-1), we should predict it;
   489     // otherwise, use the given value.
   490     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   491   }
   493   // Calculate the absolute and desired min bounds.
   495   // This is how many young regions we already have (currently: the survivors).
   496   uint base_min_length = recorded_survivor_regions();
   497   // This is the absolute minimum young length, which ensures that we
   498   // can allocate one eden region in the worst-case.
   499   uint absolute_min_length = base_min_length + 1;
   500   uint desired_min_length =
   501                      calculate_young_list_desired_min_length(base_min_length);
   502   if (desired_min_length < absolute_min_length) {
   503     desired_min_length = absolute_min_length;
   504   }
   506   // Calculate the absolute and desired max bounds.
   508   // We will try our best not to "eat" into the reserve.
   509   uint absolute_max_length = 0;
   510   if (_free_regions_at_end_of_collection > _reserve_regions) {
   511     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   512   }
   513   uint desired_max_length = calculate_young_list_desired_max_length();
   514   if (desired_max_length > absolute_max_length) {
   515     desired_max_length = absolute_max_length;
   516   }
   518   uint young_list_target_length = 0;
   519   if (adaptive_young_list_length()) {
   520     if (gcs_are_young()) {
   521       young_list_target_length =
   522                         calculate_young_list_target_length(rs_lengths,
   523                                                            base_min_length,
   524                                                            desired_min_length,
   525                                                            desired_max_length);
   526       _rs_lengths_prediction = rs_lengths;
   527     } else {
   528       // Don't calculate anything and let the code below bound it to
   529       // the desired_min_length, i.e., do the next GC as soon as
   530       // possible to maximize how many old regions we can add to it.
   531     }
   532   } else {
   533     // The user asked for a fixed young gen so we'll fix the young gen
   534     // whether the next GC is young or mixed.
   535     young_list_target_length = _young_list_fixed_length;
   536   }
   538   // Make sure we don't go over the desired max length, nor under the
   539   // desired min length. In case they clash, desired_min_length wins
   540   // which is why that test is second.
   541   if (young_list_target_length > desired_max_length) {
   542     young_list_target_length = desired_max_length;
   543   }
   544   if (young_list_target_length < desired_min_length) {
   545     young_list_target_length = desired_min_length;
   546   }
   548   assert(young_list_target_length > recorded_survivor_regions(),
   549          "we should be able to allocate at least one eden region");
   550   assert(young_list_target_length >= absolute_min_length, "post-condition");
   551   _young_list_target_length = young_list_target_length;
   553   update_max_gc_locker_expansion();
   554 }
   556 uint
   557 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   558                                                      uint base_min_length,
   559                                                      uint desired_min_length,
   560                                                      uint desired_max_length) {
   561   assert(adaptive_young_list_length(), "pre-condition");
   562   assert(gcs_are_young(), "only call this for young GCs");
   564   // In case some edge-condition makes the desired max length too small...
   565   if (desired_max_length <= desired_min_length) {
   566     return desired_min_length;
   567   }
   569   // We'll adjust min_young_length and max_young_length not to include
   570   // the already allocated young regions (i.e., so they reflect the
   571   // min and max eden regions we'll allocate). The base_min_length
   572   // will be reflected in the predictions by the
   573   // survivor_regions_evac_time prediction.
   574   assert(desired_min_length > base_min_length, "invariant");
   575   uint min_young_length = desired_min_length - base_min_length;
   576   assert(desired_max_length > base_min_length, "invariant");
   577   uint max_young_length = desired_max_length - base_min_length;
   579   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   580   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   581   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   582   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   583   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   584   double base_time_ms =
   585     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   586     survivor_regions_evac_time;
   587   uint available_free_regions = _free_regions_at_end_of_collection;
   588   uint base_free_regions = 0;
   589   if (available_free_regions > _reserve_regions) {
   590     base_free_regions = available_free_regions - _reserve_regions;
   591   }
   593   // Here, we will make sure that the shortest young length that
   594   // makes sense fits within the target pause time.
   596   if (predict_will_fit(min_young_length, base_time_ms,
   597                        base_free_regions, target_pause_time_ms)) {
   598     // The shortest young length will fit into the target pause time;
   599     // we'll now check whether the absolute maximum number of young
   600     // regions will fit in the target pause time. If not, we'll do
   601     // a binary search between min_young_length and max_young_length.
   602     if (predict_will_fit(max_young_length, base_time_ms,
   603                          base_free_regions, target_pause_time_ms)) {
   604       // The maximum young length will fit into the target pause time.
   605       // We are done so set min young length to the maximum length (as
   606       // the result is assumed to be returned in min_young_length).
   607       min_young_length = max_young_length;
   608     } else {
   609       // The maximum possible number of young regions will not fit within
   610       // the target pause time so we'll search for the optimal
   611       // length. The loop invariants are:
   612       //
   613       // min_young_length < max_young_length
   614       // min_young_length is known to fit into the target pause time
   615       // max_young_length is known not to fit into the target pause time
   616       //
   617       // Going into the loop we know the above hold as we've just
   618       // checked them. Every time around the loop we check whether
   619       // the middle value between min_young_length and
   620       // max_young_length fits into the target pause time. If it
   621       // does, it becomes the new min. If it doesn't, it becomes
   622       // the new max. This way we maintain the loop invariants.
   624       assert(min_young_length < max_young_length, "invariant");
   625       uint diff = (max_young_length - min_young_length) / 2;
   626       while (diff > 0) {
   627         uint young_length = min_young_length + diff;
   628         if (predict_will_fit(young_length, base_time_ms,
   629                              base_free_regions, target_pause_time_ms)) {
   630           min_young_length = young_length;
   631         } else {
   632           max_young_length = young_length;
   633         }
   634         assert(min_young_length <  max_young_length, "invariant");
   635         diff = (max_young_length - min_young_length) / 2;
   636       }
   637       // The results is min_young_length which, according to the
   638       // loop invariants, should fit within the target pause time.
   640       // These are the post-conditions of the binary search above:
   641       assert(min_young_length < max_young_length,
   642              "otherwise we should have discovered that max_young_length "
   643              "fits into the pause target and not done the binary search");
   644       assert(predict_will_fit(min_young_length, base_time_ms,
   645                               base_free_regions, target_pause_time_ms),
   646              "min_young_length, the result of the binary search, should "
   647              "fit into the pause target");
   648       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   649                                base_free_regions, target_pause_time_ms),
   650              "min_young_length, the result of the binary search, should be "
   651              "optimal, so no larger length should fit into the pause target");
   652     }
   653   } else {
   654     // Even the minimum length doesn't fit into the pause time
   655     // target, return it as the result nevertheless.
   656   }
   657   return base_min_length + min_young_length;
   658 }
   660 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   661   double survivor_regions_evac_time = 0.0;
   662   for (HeapRegion * r = _recorded_survivor_head;
   663        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   664        r = r->get_next_young_region()) {
   665     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   666   }
   667   return survivor_regions_evac_time;
   668 }
   670 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   671   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   673   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   674   if (rs_lengths > _rs_lengths_prediction) {
   675     // add 10% to avoid having to recalculate often
   676     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   677     update_young_list_target_length(rs_lengths_prediction);
   678   }
   679 }
   683 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   684                                                bool is_tlab,
   685                                                bool* gc_overhead_limit_was_exceeded) {
   686   guarantee(false, "Not using this policy feature yet.");
   687   return NULL;
   688 }
   690 // This method controls how a collector handles one or more
   691 // of its generations being fully allocated.
   692 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   693                                                        bool is_tlab) {
   694   guarantee(false, "Not using this policy feature yet.");
   695   return NULL;
   696 }
   699 #ifndef PRODUCT
   700 bool G1CollectorPolicy::verify_young_ages() {
   701   HeapRegion* head = _g1->young_list()->first_region();
   702   return
   703     verify_young_ages(head, _short_lived_surv_rate_group);
   704   // also call verify_young_ages on any additional surv rate groups
   705 }
   707 bool
   708 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   709                                      SurvRateGroup *surv_rate_group) {
   710   guarantee( surv_rate_group != NULL, "pre-condition" );
   712   const char* name = surv_rate_group->name();
   713   bool ret = true;
   714   int prev_age = -1;
   716   for (HeapRegion* curr = head;
   717        curr != NULL;
   718        curr = curr->get_next_young_region()) {
   719     SurvRateGroup* group = curr->surv_rate_group();
   720     if (group == NULL && !curr->is_survivor()) {
   721       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   722       ret = false;
   723     }
   725     if (surv_rate_group == group) {
   726       int age = curr->age_in_surv_rate_group();
   728       if (age < 0) {
   729         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   730         ret = false;
   731       }
   733       if (age <= prev_age) {
   734         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   735                                "(%d, %d)", name, age, prev_age);
   736         ret = false;
   737       }
   738       prev_age = age;
   739     }
   740   }
   742   return ret;
   743 }
   744 #endif // PRODUCT
   746 void G1CollectorPolicy::record_full_collection_start() {
   747   _full_collection_start_sec = os::elapsedTime();
   748   record_heap_size_info_at_start();
   749   // Release the future to-space so that it is available for compaction into.
   750   _g1->set_full_collection();
   751 }
   753 void G1CollectorPolicy::record_full_collection_end() {
   754   // Consider this like a collection pause for the purposes of allocation
   755   // since last pause.
   756   double end_sec = os::elapsedTime();
   757   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   758   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   760   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   762   update_recent_gc_times(end_sec, full_gc_time_ms);
   764   _g1->clear_full_collection();
   766   // "Nuke" the heuristics that control the young/mixed GC
   767   // transitions and make sure we start with young GCs after the Full GC.
   768   set_gcs_are_young(true);
   769   _last_young_gc = false;
   770   clear_initiate_conc_mark_if_possible();
   771   clear_during_initial_mark_pause();
   772   _in_marking_window = false;
   773   _in_marking_window_im = false;
   775   _short_lived_surv_rate_group->start_adding_regions();
   776   // also call this on any additional surv rate groups
   778   record_survivor_regions(0, NULL, NULL);
   780   _free_regions_at_end_of_collection = _g1->free_regions();
   781   // Reset survivors SurvRateGroup.
   782   _survivor_surv_rate_group->reset();
   783   update_young_list_target_length();
   784   _collectionSetChooser->clear();
   785 }
   787 void G1CollectorPolicy::record_stop_world_start() {
   788   _stop_world_start = os::elapsedTime();
   789 }
   791 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
   792   // We only need to do this here as the policy will only be applied
   793   // to the GC we're about to start. so, no point is calculating this
   794   // every time we calculate / recalculate the target young length.
   795   update_survivors_policy();
   797   assert(_g1->used() == _g1->recalculate_used(),
   798          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   799                  _g1->used(), _g1->recalculate_used()));
   801   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   802   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   803   _stop_world_start = 0.0;
   805   record_heap_size_info_at_start();
   807   phase_times()->record_cur_collection_start_sec(start_time_sec);
   808   _pending_cards = _g1->pending_card_num();
   810   _collection_set_bytes_used_before = 0;
   811   _bytes_copied_during_gc = 0;
   813   _last_gc_was_young = false;
   815   // do that for any other surv rate groups
   816   _short_lived_surv_rate_group->stop_adding_regions();
   817   _survivors_age_table.clear();
   819   assert( verify_young_ages(), "region age verification" );
   820 }
   822 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   823                                                    mark_init_elapsed_time_ms) {
   824   _during_marking = true;
   825   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   826   clear_during_initial_mark_pause();
   827   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   828 }
   830 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   831   _mark_remark_start_sec = os::elapsedTime();
   832   _during_marking = false;
   833 }
   835 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   836   double end_time_sec = os::elapsedTime();
   837   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   838   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   839   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   840   _prev_collection_pause_end_ms += elapsed_time_ms;
   842   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   843 }
   845 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   846   _mark_cleanup_start_sec = os::elapsedTime();
   847 }
   849 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   850   _last_young_gc = true;
   851   _in_marking_window = false;
   852 }
   854 void G1CollectorPolicy::record_concurrent_pause() {
   855   if (_stop_world_start > 0.0) {
   856     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   857     _trace_gen0_time_data.record_yield_time(yield_ms);
   858   }
   859 }
   861 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   862   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   863     return false;
   864   }
   866   size_t marking_initiating_used_threshold =
   867     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   868   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   869   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   871   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   872     if (gcs_are_young()) {
   873       ergo_verbose5(ErgoConcCycles,
   874         "request concurrent cycle initiation",
   875         ergo_format_reason("occupancy higher than threshold")
   876         ergo_format_byte("occupancy")
   877         ergo_format_byte("allocation request")
   878         ergo_format_byte_perc("threshold")
   879         ergo_format_str("source"),
   880         cur_used_bytes,
   881         alloc_byte_size,
   882         marking_initiating_used_threshold,
   883         (double) InitiatingHeapOccupancyPercent,
   884         source);
   885       return true;
   886     } else {
   887       ergo_verbose5(ErgoConcCycles,
   888         "do not request concurrent cycle initiation",
   889         ergo_format_reason("still doing mixed collections")
   890         ergo_format_byte("occupancy")
   891         ergo_format_byte("allocation request")
   892         ergo_format_byte_perc("threshold")
   893         ergo_format_str("source"),
   894         cur_used_bytes,
   895         alloc_byte_size,
   896         marking_initiating_used_threshold,
   897         (double) InitiatingHeapOccupancyPercent,
   898         source);
   899     }
   900   }
   902   return false;
   903 }
   905 // Anything below that is considered to be zero
   906 #define MIN_TIMER_GRANULARITY 0.0000001
   908 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
   909   double end_time_sec = os::elapsedTime();
   910   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   911          "otherwise, the subtraction below does not make sense");
   912   size_t rs_size =
   913             _cur_collection_pause_used_regions_at_start - cset_region_length();
   914   size_t cur_used_bytes = _g1->used();
   915   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   916   bool last_pause_included_initial_mark = false;
   917   bool update_stats = !_g1->evacuation_failed();
   919 #ifndef PRODUCT
   920   if (G1YoungSurvRateVerbose) {
   921     gclog_or_tty->print_cr("");
   922     _short_lived_surv_rate_group->print();
   923     // do that for any other surv rate groups too
   924   }
   925 #endif // PRODUCT
   927   last_pause_included_initial_mark = during_initial_mark_pause();
   928   if (last_pause_included_initial_mark) {
   929     record_concurrent_mark_init_end(0.0);
   930   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
   931     // Note: this might have already been set, if during the last
   932     // pause we decided to start a cycle but at the beginning of
   933     // this pause we decided to postpone it. That's OK.
   934     set_initiate_conc_mark_if_possible();
   935   }
   937   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   938                           end_time_sec, false);
   940   size_t freed_bytes =
   941     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
   942   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
   944   double survival_fraction =
   945     (double)surviving_bytes/
   946     (double)_collection_set_bytes_used_before;
   948   if (update_stats) {
   949     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   950     // this is where we update the allocation rate of the application
   951     double app_time_ms =
   952       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   953     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   954       // This usually happens due to the timer not having the required
   955       // granularity. Some Linuxes are the usual culprits.
   956       // We'll just set it to something (arbitrarily) small.
   957       app_time_ms = 1.0;
   958     }
   959     // We maintain the invariant that all objects allocated by mutator
   960     // threads will be allocated out of eden regions. So, we can use
   961     // the eden region number allocated since the previous GC to
   962     // calculate the application's allocate rate. The only exception
   963     // to that is humongous objects that are allocated separately. But
   964     // given that humongous object allocations do not really affect
   965     // either the pause's duration nor when the next pause will take
   966     // place we can safely ignore them here.
   967     uint regions_allocated = eden_cset_region_length();
   968     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   969     _alloc_rate_ms_seq->add(alloc_rate_ms);
   971     double interval_ms =
   972       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   973     update_recent_gc_times(end_time_sec, pause_time_ms);
   974     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   975     if (recent_avg_pause_time_ratio() < 0.0 ||
   976         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   977 #ifndef PRODUCT
   978       // Dump info to allow post-facto debugging
   979       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   980       gclog_or_tty->print_cr("-------------------------------------------");
   981       gclog_or_tty->print_cr("Recent GC Times (ms):");
   982       _recent_gc_times_ms->dump();
   983       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   984       _recent_prev_end_times_for_all_gcs_sec->dump();
   985       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   986                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   987       // In debug mode, terminate the JVM if the user wants to debug at this point.
   988       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   989 #endif  // !PRODUCT
   990       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   991       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
   992       if (_recent_avg_pause_time_ratio < 0.0) {
   993         _recent_avg_pause_time_ratio = 0.0;
   994       } else {
   995         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
   996         _recent_avg_pause_time_ratio = 1.0;
   997       }
   998     }
   999   }
  1000   bool new_in_marking_window = _in_marking_window;
  1001   bool new_in_marking_window_im = false;
  1002   if (during_initial_mark_pause()) {
  1003     new_in_marking_window = true;
  1004     new_in_marking_window_im = true;
  1007   if (_last_young_gc) {
  1008     // This is supposed to to be the "last young GC" before we start
  1009     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1011     if (!last_pause_included_initial_mark) {
  1012       if (next_gc_should_be_mixed("start mixed GCs",
  1013                                   "do not start mixed GCs")) {
  1014         set_gcs_are_young(false);
  1016     } else {
  1017       ergo_verbose0(ErgoMixedGCs,
  1018                     "do not start mixed GCs",
  1019                     ergo_format_reason("concurrent cycle is about to start"));
  1021     _last_young_gc = false;
  1024   if (!_last_gc_was_young) {
  1025     // This is a mixed GC. Here we decide whether to continue doing
  1026     // mixed GCs or not.
  1028     if (!next_gc_should_be_mixed("continue mixed GCs",
  1029                                  "do not continue mixed GCs")) {
  1030       set_gcs_are_young(true);
  1034   _short_lived_surv_rate_group->start_adding_regions();
  1035   // do that for any other surv rate groupsx
  1037   if (update_stats) {
  1038     double cost_per_card_ms = 0.0;
  1039     if (_pending_cards > 0) {
  1040       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1041       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1044     size_t cards_scanned = _g1->cards_scanned();
  1046     double cost_per_entry_ms = 0.0;
  1047     if (cards_scanned > 10) {
  1048       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1049       if (_last_gc_was_young) {
  1050         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1051       } else {
  1052         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1056     if (_max_rs_lengths > 0) {
  1057       double cards_per_entry_ratio =
  1058         (double) cards_scanned / (double) _max_rs_lengths;
  1059       if (_last_gc_was_young) {
  1060         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1061       } else {
  1062         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1066     // This is defensive. For a while _max_rs_lengths could get
  1067     // smaller than _recorded_rs_lengths which was causing
  1068     // rs_length_diff to get very large and mess up the RSet length
  1069     // predictions. The reason was unsafe concurrent updates to the
  1070     // _inc_cset_recorded_rs_lengths field which the code below guards
  1071     // against (see CR 7118202). This bug has now been fixed (see CR
  1072     // 7119027). However, I'm still worried that
  1073     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1074     // inaccurate. The concurrent refinement thread calculates an
  1075     // RSet's length concurrently with other CR threads updating it
  1076     // which might cause it to calculate the length incorrectly (if,
  1077     // say, it's in mid-coarsening). So I'll leave in the defensive
  1078     // conditional below just in case.
  1079     size_t rs_length_diff = 0;
  1080     if (_max_rs_lengths > _recorded_rs_lengths) {
  1081       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1083     _rs_length_diff_seq->add((double) rs_length_diff);
  1085     size_t copied_bytes = surviving_bytes;
  1086     double cost_per_byte_ms = 0.0;
  1087     if (copied_bytes > 0) {
  1088       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1089       if (_in_marking_window) {
  1090         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1091       } else {
  1092         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1096     double all_other_time_ms = pause_time_ms -
  1097       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1098       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1100     double young_other_time_ms = 0.0;
  1101     if (young_cset_region_length() > 0) {
  1102       young_other_time_ms =
  1103         phase_times()->young_cset_choice_time_ms() +
  1104         phase_times()->young_free_cset_time_ms();
  1105       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1106                                           (double) young_cset_region_length());
  1108     double non_young_other_time_ms = 0.0;
  1109     if (old_cset_region_length() > 0) {
  1110       non_young_other_time_ms =
  1111         phase_times()->non_young_cset_choice_time_ms() +
  1112         phase_times()->non_young_free_cset_time_ms();
  1114       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1115                                             (double) old_cset_region_length());
  1118     double constant_other_time_ms = all_other_time_ms -
  1119       (young_other_time_ms + non_young_other_time_ms);
  1120     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1122     double survival_ratio = 0.0;
  1123     if (_collection_set_bytes_used_before > 0) {
  1124       survival_ratio = (double) _bytes_copied_during_gc /
  1125                                    (double) _collection_set_bytes_used_before;
  1128     _pending_cards_seq->add((double) _pending_cards);
  1129     _rs_lengths_seq->add((double) _max_rs_lengths);
  1132   _in_marking_window = new_in_marking_window;
  1133   _in_marking_window_im = new_in_marking_window_im;
  1134   _free_regions_at_end_of_collection = _g1->free_regions();
  1135   update_young_list_target_length();
  1137   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1138   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1139   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1140                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1142   _collectionSetChooser->verify();
  1145 #define EXT_SIZE_FORMAT "%.1f%s"
  1146 #define EXT_SIZE_PARAMS(bytes)                                  \
  1147   byte_size_in_proper_unit((double)(bytes)),                    \
  1148   proper_unit_for_byte_size((bytes))
  1150 void G1CollectorPolicy::record_heap_size_info_at_start() {
  1151   YoungList* young_list = _g1->young_list();
  1152   _eden_bytes_before_gc = young_list->eden_used_bytes();
  1153   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  1154   _capacity_before_gc = _g1->capacity();
  1156   _cur_collection_pause_used_at_start_bytes = _g1->used();
  1157   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1159   size_t eden_capacity_before_gc =
  1160          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_bytes_before_gc;
  1162   _prev_eden_capacity = eden_capacity_before_gc;
  1165 void G1CollectorPolicy::print_heap_transition() {
  1166   _g1->print_size_transition(gclog_or_tty,
  1167     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
  1170 void G1CollectorPolicy::print_detailed_heap_transition() {
  1171     YoungList* young_list = _g1->young_list();
  1172     size_t eden_bytes = young_list->eden_used_bytes();
  1173     size_t survivor_bytes = young_list->survivor_used_bytes();
  1174     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1175     size_t used = _g1->used();
  1176     size_t capacity = _g1->capacity();
  1177     size_t eden_capacity =
  1178       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1180     gclog_or_tty->print_cr(
  1181       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1182       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1183       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1184       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1185       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1186       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1187       EXT_SIZE_PARAMS(eden_bytes),
  1188       EXT_SIZE_PARAMS(eden_capacity),
  1189       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1190       EXT_SIZE_PARAMS(survivor_bytes),
  1191       EXT_SIZE_PARAMS(used_before_gc),
  1192       EXT_SIZE_PARAMS(_capacity_before_gc),
  1193       EXT_SIZE_PARAMS(used),
  1194       EXT_SIZE_PARAMS(capacity));
  1197 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1198                                                      double update_rs_processed_buffers,
  1199                                                      double goal_ms) {
  1200   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1201   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1203   if (G1UseAdaptiveConcRefinement) {
  1204     const int k_gy = 3, k_gr = 6;
  1205     const double inc_k = 1.1, dec_k = 0.9;
  1207     int g = cg1r->green_zone();
  1208     if (update_rs_time > goal_ms) {
  1209       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1210     } else {
  1211       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1212         g = (int)MAX2(g * inc_k, g + 1.0);
  1215     // Change the refinement threads params
  1216     cg1r->set_green_zone(g);
  1217     cg1r->set_yellow_zone(g * k_gy);
  1218     cg1r->set_red_zone(g * k_gr);
  1219     cg1r->reinitialize_threads();
  1221     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1222     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1223                                     cg1r->yellow_zone());
  1224     // Change the barrier params
  1225     dcqs.set_process_completed_threshold(processing_threshold);
  1226     dcqs.set_max_completed_queue(cg1r->red_zone());
  1229   int curr_queue_size = dcqs.completed_buffers_num();
  1230   if (curr_queue_size >= cg1r->yellow_zone()) {
  1231     dcqs.set_completed_queue_padding(curr_queue_size);
  1232   } else {
  1233     dcqs.set_completed_queue_padding(0);
  1235   dcqs.notify_if_necessary();
  1238 double
  1239 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1240                                                 size_t scanned_cards) {
  1241   return
  1242     predict_rs_update_time_ms(pending_cards) +
  1243     predict_rs_scan_time_ms(scanned_cards) +
  1244     predict_constant_other_time_ms();
  1247 double
  1248 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1249   size_t rs_length = predict_rs_length_diff();
  1250   size_t card_num;
  1251   if (gcs_are_young()) {
  1252     card_num = predict_young_card_num(rs_length);
  1253   } else {
  1254     card_num = predict_non_young_card_num(rs_length);
  1256   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1259 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1260   size_t bytes_to_copy;
  1261   if (hr->is_marked())
  1262     bytes_to_copy = hr->max_live_bytes();
  1263   else {
  1264     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1265     int age = hr->age_in_surv_rate_group();
  1266     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1267     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1269   return bytes_to_copy;
  1272 double
  1273 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1274                                                   bool for_young_gc) {
  1275   size_t rs_length = hr->rem_set()->occupied();
  1276   size_t card_num;
  1278   // Predicting the number of cards is based on which type of GC
  1279   // we're predicting for.
  1280   if (for_young_gc) {
  1281     card_num = predict_young_card_num(rs_length);
  1282   } else {
  1283     card_num = predict_non_young_card_num(rs_length);
  1285   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1287   double region_elapsed_time_ms =
  1288     predict_rs_scan_time_ms(card_num) +
  1289     predict_object_copy_time_ms(bytes_to_copy);
  1291   // The prediction of the "other" time for this region is based
  1292   // upon the region type and NOT the GC type.
  1293   if (hr->is_young()) {
  1294     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1295   } else {
  1296     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1298   return region_elapsed_time_ms;
  1301 void
  1302 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1303                                             uint survivor_cset_region_length) {
  1304   _eden_cset_region_length     = eden_cset_region_length;
  1305   _survivor_cset_region_length = survivor_cset_region_length;
  1306   _old_cset_region_length      = 0;
  1309 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1310   _recorded_rs_lengths = rs_lengths;
  1313 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1314                                                double elapsed_ms) {
  1315   _recent_gc_times_ms->add(elapsed_ms);
  1316   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1317   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1320 size_t G1CollectorPolicy::expansion_amount() {
  1321   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1322   double threshold = _gc_overhead_perc;
  1323   if (recent_gc_overhead > threshold) {
  1324     // We will double the existing space, or take
  1325     // G1ExpandByPercentOfAvailable % of the available expansion
  1326     // space, whichever is smaller, bounded below by a minimum
  1327     // expansion (unless that's all that's left.)
  1328     const size_t min_expand_bytes = 1*M;
  1329     size_t reserved_bytes = _g1->max_capacity();
  1330     size_t committed_bytes = _g1->capacity();
  1331     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1332     size_t expand_bytes;
  1333     size_t expand_bytes_via_pct =
  1334       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1335     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1336     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1337     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1339     ergo_verbose5(ErgoHeapSizing,
  1340                   "attempt heap expansion",
  1341                   ergo_format_reason("recent GC overhead higher than "
  1342                                      "threshold after GC")
  1343                   ergo_format_perc("recent GC overhead")
  1344                   ergo_format_perc("threshold")
  1345                   ergo_format_byte("uncommitted")
  1346                   ergo_format_byte_perc("calculated expansion amount"),
  1347                   recent_gc_overhead, threshold,
  1348                   uncommitted_bytes,
  1349                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1351     return expand_bytes;
  1352   } else {
  1353     return 0;
  1357 void G1CollectorPolicy::print_tracing_info() const {
  1358   _trace_gen0_time_data.print();
  1359   _trace_gen1_time_data.print();
  1362 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1363 #ifndef PRODUCT
  1364   _short_lived_surv_rate_group->print_surv_rate_summary();
  1365   // add this call for any other surv rate groups
  1366 #endif // PRODUCT
  1369 uint G1CollectorPolicy::max_regions(int purpose) {
  1370   switch (purpose) {
  1371     case GCAllocForSurvived:
  1372       return _max_survivor_regions;
  1373     case GCAllocForTenured:
  1374       return REGIONS_UNLIMITED;
  1375     default:
  1376       ShouldNotReachHere();
  1377       return REGIONS_UNLIMITED;
  1378   };
  1381 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1382   uint expansion_region_num = 0;
  1383   if (GCLockerEdenExpansionPercent > 0) {
  1384     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1385     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1386     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1387     // less than 1.0) we'll get 1.
  1388     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1389   } else {
  1390     assert(expansion_region_num == 0, "sanity");
  1392   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1393   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1396 // Calculates survivor space parameters.
  1397 void G1CollectorPolicy::update_survivors_policy() {
  1398   double max_survivor_regions_d =
  1399                  (double) _young_list_target_length / (double) SurvivorRatio;
  1400   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1401   // smaller than 1.0) we'll get 1.
  1402   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1404   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1405         HeapRegion::GrainWords * _max_survivor_regions);
  1408 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1409                                                      GCCause::Cause gc_cause) {
  1410   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1411   if (!during_cycle) {
  1412     ergo_verbose1(ErgoConcCycles,
  1413                   "request concurrent cycle initiation",
  1414                   ergo_format_reason("requested by GC cause")
  1415                   ergo_format_str("GC cause"),
  1416                   GCCause::to_string(gc_cause));
  1417     set_initiate_conc_mark_if_possible();
  1418     return true;
  1419   } else {
  1420     ergo_verbose1(ErgoConcCycles,
  1421                   "do not request concurrent cycle initiation",
  1422                   ergo_format_reason("concurrent cycle already in progress")
  1423                   ergo_format_str("GC cause"),
  1424                   GCCause::to_string(gc_cause));
  1425     return false;
  1429 void
  1430 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1431   // We are about to decide on whether this pause will be an
  1432   // initial-mark pause.
  1434   // First, during_initial_mark_pause() should not be already set. We
  1435   // will set it here if we have to. However, it should be cleared by
  1436   // the end of the pause (it's only set for the duration of an
  1437   // initial-mark pause).
  1438   assert(!during_initial_mark_pause(), "pre-condition");
  1440   if (initiate_conc_mark_if_possible()) {
  1441     // We had noticed on a previous pause that the heap occupancy has
  1442     // gone over the initiating threshold and we should start a
  1443     // concurrent marking cycle. So we might initiate one.
  1445     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1446     if (!during_cycle) {
  1447       // The concurrent marking thread is not "during a cycle", i.e.,
  1448       // it has completed the last one. So we can go ahead and
  1449       // initiate a new cycle.
  1451       set_during_initial_mark_pause();
  1452       // We do not allow mixed GCs during marking.
  1453       if (!gcs_are_young()) {
  1454         set_gcs_are_young(true);
  1455         ergo_verbose0(ErgoMixedGCs,
  1456                       "end mixed GCs",
  1457                       ergo_format_reason("concurrent cycle is about to start"));
  1460       // And we can now clear initiate_conc_mark_if_possible() as
  1461       // we've already acted on it.
  1462       clear_initiate_conc_mark_if_possible();
  1464       ergo_verbose0(ErgoConcCycles,
  1465                   "initiate concurrent cycle",
  1466                   ergo_format_reason("concurrent cycle initiation requested"));
  1467     } else {
  1468       // The concurrent marking thread is still finishing up the
  1469       // previous cycle. If we start one right now the two cycles
  1470       // overlap. In particular, the concurrent marking thread might
  1471       // be in the process of clearing the next marking bitmap (which
  1472       // we will use for the next cycle if we start one). Starting a
  1473       // cycle now will be bad given that parts of the marking
  1474       // information might get cleared by the marking thread. And we
  1475       // cannot wait for the marking thread to finish the cycle as it
  1476       // periodically yields while clearing the next marking bitmap
  1477       // and, if it's in a yield point, it's waiting for us to
  1478       // finish. So, at this point we will not start a cycle and we'll
  1479       // let the concurrent marking thread complete the last one.
  1480       ergo_verbose0(ErgoConcCycles,
  1481                     "do not initiate concurrent cycle",
  1482                     ergo_format_reason("concurrent cycle already in progress"));
  1487 class KnownGarbageClosure: public HeapRegionClosure {
  1488   G1CollectedHeap* _g1h;
  1489   CollectionSetChooser* _hrSorted;
  1491 public:
  1492   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1493     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1495   bool doHeapRegion(HeapRegion* r) {
  1496     // We only include humongous regions in collection
  1497     // sets when concurrent mark shows that their contained object is
  1498     // unreachable.
  1500     // Do we have any marking information for this region?
  1501     if (r->is_marked()) {
  1502       // We will skip any region that's currently used as an old GC
  1503       // alloc region (we should not consider those for collection
  1504       // before we fill them up).
  1505       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1506         _hrSorted->add_region(r);
  1509     return false;
  1511 };
  1513 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1514   G1CollectedHeap* _g1h;
  1515   CSetChooserParUpdater _cset_updater;
  1517 public:
  1518   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1519                            uint chunk_size) :
  1520     _g1h(G1CollectedHeap::heap()),
  1521     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1523   bool doHeapRegion(HeapRegion* r) {
  1524     // Do we have any marking information for this region?
  1525     if (r->is_marked()) {
  1526       // We will skip any region that's currently used as an old GC
  1527       // alloc region (we should not consider those for collection
  1528       // before we fill them up).
  1529       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1530         _cset_updater.add_region(r);
  1533     return false;
  1535 };
  1537 class ParKnownGarbageTask: public AbstractGangTask {
  1538   CollectionSetChooser* _hrSorted;
  1539   uint _chunk_size;
  1540   G1CollectedHeap* _g1;
  1541 public:
  1542   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1543     AbstractGangTask("ParKnownGarbageTask"),
  1544     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1545     _g1(G1CollectedHeap::heap()) { }
  1547   void work(uint worker_id) {
  1548     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1550     // Back to zero for the claim value.
  1551     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1552                                          _g1->workers()->active_workers(),
  1553                                          HeapRegion::InitialClaimValue);
  1555 };
  1557 void
  1558 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1559   _collectionSetChooser->clear();
  1561   uint region_num = _g1->n_regions();
  1562   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1563     const uint OverpartitionFactor = 4;
  1564     uint WorkUnit;
  1565     // The use of MinChunkSize = 8 in the original code
  1566     // causes some assertion failures when the total number of
  1567     // region is less than 8.  The code here tries to fix that.
  1568     // Should the original code also be fixed?
  1569     if (no_of_gc_threads > 0) {
  1570       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1571       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1572                       MinWorkUnit);
  1573     } else {
  1574       assert(no_of_gc_threads > 0,
  1575         "The active gc workers should be greater than 0");
  1576       // In a product build do something reasonable to avoid a crash.
  1577       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1578       WorkUnit =
  1579         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1580              MinWorkUnit);
  1582     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1583                                                            WorkUnit);
  1584     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1585                                             (int) WorkUnit);
  1586     _g1->workers()->run_task(&parKnownGarbageTask);
  1588     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1589            "sanity check");
  1590   } else {
  1591     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1592     _g1->heap_region_iterate(&knownGarbagecl);
  1595   _collectionSetChooser->sort_regions();
  1597   double end_sec = os::elapsedTime();
  1598   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1599   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1600   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1601   _prev_collection_pause_end_ms += elapsed_time_ms;
  1602   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1605 // Add the heap region at the head of the non-incremental collection set
  1606 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1607   assert(_inc_cset_build_state == Active, "Precondition");
  1608   assert(!hr->is_young(), "non-incremental add of young region");
  1610   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1611   hr->set_in_collection_set(true);
  1612   hr->set_next_in_collection_set(_collection_set);
  1613   _collection_set = hr;
  1614   _collection_set_bytes_used_before += hr->used();
  1615   _g1->register_region_with_in_cset_fast_test(hr);
  1616   size_t rs_length = hr->rem_set()->occupied();
  1617   _recorded_rs_lengths += rs_length;
  1618   _old_cset_region_length += 1;
  1621 // Initialize the per-collection-set information
  1622 void G1CollectorPolicy::start_incremental_cset_building() {
  1623   assert(_inc_cset_build_state == Inactive, "Precondition");
  1625   _inc_cset_head = NULL;
  1626   _inc_cset_tail = NULL;
  1627   _inc_cset_bytes_used_before = 0;
  1629   _inc_cset_max_finger = 0;
  1630   _inc_cset_recorded_rs_lengths = 0;
  1631   _inc_cset_recorded_rs_lengths_diffs = 0;
  1632   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1633   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1634   _inc_cset_build_state = Active;
  1637 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1638   assert(_inc_cset_build_state == Active, "Precondition");
  1639   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1641   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1642   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1643   // that adds a new region to the CSet. Further updates by the
  1644   // concurrent refinement thread that samples the young RSet lengths
  1645   // are accumulated in the *_diffs fields. Here we add the diffs to
  1646   // the "main" fields.
  1648   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1649     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1650   } else {
  1651     // This is defensive. The diff should in theory be always positive
  1652     // as RSets can only grow between GCs. However, given that we
  1653     // sample their size concurrently with other threads updating them
  1654     // it's possible that we might get the wrong size back, which
  1655     // could make the calculations somewhat inaccurate.
  1656     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1657     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1658       _inc_cset_recorded_rs_lengths -= diffs;
  1659     } else {
  1660       _inc_cset_recorded_rs_lengths = 0;
  1663   _inc_cset_predicted_elapsed_time_ms +=
  1664                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1666   _inc_cset_recorded_rs_lengths_diffs = 0;
  1667   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1670 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1671   // This routine is used when:
  1672   // * adding survivor regions to the incremental cset at the end of an
  1673   //   evacuation pause,
  1674   // * adding the current allocation region to the incremental cset
  1675   //   when it is retired, and
  1676   // * updating existing policy information for a region in the
  1677   //   incremental cset via young list RSet sampling.
  1678   // Therefore this routine may be called at a safepoint by the
  1679   // VM thread, or in-between safepoints by mutator threads (when
  1680   // retiring the current allocation region) or a concurrent
  1681   // refine thread (RSet sampling).
  1683   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1684   size_t used_bytes = hr->used();
  1685   _inc_cset_recorded_rs_lengths += rs_length;
  1686   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1687   _inc_cset_bytes_used_before += used_bytes;
  1689   // Cache the values we have added to the aggregated informtion
  1690   // in the heap region in case we have to remove this region from
  1691   // the incremental collection set, or it is updated by the
  1692   // rset sampling code
  1693   hr->set_recorded_rs_length(rs_length);
  1694   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1697 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1698                                                      size_t new_rs_length) {
  1699   // Update the CSet information that is dependent on the new RS length
  1700   assert(hr->is_young(), "Precondition");
  1701   assert(!SafepointSynchronize::is_at_safepoint(),
  1702                                                "should not be at a safepoint");
  1704   // We could have updated _inc_cset_recorded_rs_lengths and
  1705   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1706   // that atomically, as this code is executed by a concurrent
  1707   // refinement thread, potentially concurrently with a mutator thread
  1708   // allocating a new region and also updating the same fields. To
  1709   // avoid the atomic operations we accumulate these updates on two
  1710   // separate fields (*_diffs) and we'll just add them to the "main"
  1711   // fields at the start of a GC.
  1713   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1714   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1715   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1717   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1718   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1719   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1720   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1722   hr->set_recorded_rs_length(new_rs_length);
  1723   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1726 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1727   assert(hr->is_young(), "invariant");
  1728   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1729   assert(_inc_cset_build_state == Active, "Precondition");
  1731   // We need to clear and set the cached recorded/cached collection set
  1732   // information in the heap region here (before the region gets added
  1733   // to the collection set). An individual heap region's cached values
  1734   // are calculated, aggregated with the policy collection set info,
  1735   // and cached in the heap region here (initially) and (subsequently)
  1736   // by the Young List sampling code.
  1738   size_t rs_length = hr->rem_set()->occupied();
  1739   add_to_incremental_cset_info(hr, rs_length);
  1741   HeapWord* hr_end = hr->end();
  1742   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1744   assert(!hr->in_collection_set(), "invariant");
  1745   hr->set_in_collection_set(true);
  1746   assert( hr->next_in_collection_set() == NULL, "invariant");
  1748   _g1->register_region_with_in_cset_fast_test(hr);
  1751 // Add the region at the RHS of the incremental cset
  1752 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1753   // We should only ever be appending survivors at the end of a pause
  1754   assert( hr->is_survivor(), "Logic");
  1756   // Do the 'common' stuff
  1757   add_region_to_incremental_cset_common(hr);
  1759   // Now add the region at the right hand side
  1760   if (_inc_cset_tail == NULL) {
  1761     assert(_inc_cset_head == NULL, "invariant");
  1762     _inc_cset_head = hr;
  1763   } else {
  1764     _inc_cset_tail->set_next_in_collection_set(hr);
  1766   _inc_cset_tail = hr;
  1769 // Add the region to the LHS of the incremental cset
  1770 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1771   // Survivors should be added to the RHS at the end of a pause
  1772   assert(!hr->is_survivor(), "Logic");
  1774   // Do the 'common' stuff
  1775   add_region_to_incremental_cset_common(hr);
  1777   // Add the region at the left hand side
  1778   hr->set_next_in_collection_set(_inc_cset_head);
  1779   if (_inc_cset_head == NULL) {
  1780     assert(_inc_cset_tail == NULL, "Invariant");
  1781     _inc_cset_tail = hr;
  1783   _inc_cset_head = hr;
  1786 #ifndef PRODUCT
  1787 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1788   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1790   st->print_cr("\nCollection_set:");
  1791   HeapRegion* csr = list_head;
  1792   while (csr != NULL) {
  1793     HeapRegion* next = csr->next_in_collection_set();
  1794     assert(csr->in_collection_set(), "bad CS");
  1795     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1796                  HR_FORMAT_PARAMS(csr),
  1797                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1798                  csr->age_in_surv_rate_group_cond());
  1799     csr = next;
  1802 #endif // !PRODUCT
  1804 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1805   // Returns the given amount of reclaimable bytes (that represents
  1806   // the amount of reclaimable space still to be collected) as a
  1807   // percentage of the current heap capacity.
  1808   size_t capacity_bytes = _g1->capacity();
  1809   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1812 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1813                                                 const char* false_action_str) {
  1814   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1815   if (cset_chooser->is_empty()) {
  1816     ergo_verbose0(ErgoMixedGCs,
  1817                   false_action_str,
  1818                   ergo_format_reason("candidate old regions not available"));
  1819     return false;
  1822   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1823   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1824   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1825   double threshold = (double) G1HeapWastePercent;
  1826   if (reclaimable_perc <= threshold) {
  1827     ergo_verbose4(ErgoMixedGCs,
  1828               false_action_str,
  1829               ergo_format_reason("reclaimable percentage not over threshold")
  1830               ergo_format_region("candidate old regions")
  1831               ergo_format_byte_perc("reclaimable")
  1832               ergo_format_perc("threshold"),
  1833               cset_chooser->remaining_regions(),
  1834               reclaimable_bytes,
  1835               reclaimable_perc, threshold);
  1836     return false;
  1839   ergo_verbose4(ErgoMixedGCs,
  1840                 true_action_str,
  1841                 ergo_format_reason("candidate old regions available")
  1842                 ergo_format_region("candidate old regions")
  1843                 ergo_format_byte_perc("reclaimable")
  1844                 ergo_format_perc("threshold"),
  1845                 cset_chooser->remaining_regions(),
  1846                 reclaimable_bytes,
  1847                 reclaimable_perc, threshold);
  1848   return true;
  1851 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1852   // The min old CSet region bound is based on the maximum desired
  1853   // number of mixed GCs after a cycle. I.e., even if some old regions
  1854   // look expensive, we should add them to the CSet anyway to make
  1855   // sure we go through the available old regions in no more than the
  1856   // maximum desired number of mixed GCs.
  1857   //
  1858   // The calculation is based on the number of marked regions we added
  1859   // to the CSet chooser in the first place, not how many remain, so
  1860   // that the result is the same during all mixed GCs that follow a cycle.
  1862   const size_t region_num = (size_t) _collectionSetChooser->length();
  1863   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1864   size_t result = region_num / gc_num;
  1865   // emulate ceiling
  1866   if (result * gc_num < region_num) {
  1867     result += 1;
  1869   return (uint) result;
  1872 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1873   // The max old CSet region bound is based on the threshold expressed
  1874   // as a percentage of the heap size. I.e., it should bound the
  1875   // number of old regions added to the CSet irrespective of how many
  1876   // of them are available.
  1878   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1879   const size_t region_num = g1h->n_regions();
  1880   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1881   size_t result = region_num * perc / 100;
  1882   // emulate ceiling
  1883   if (100 * result < region_num * perc) {
  1884     result += 1;
  1886   return (uint) result;
  1890 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  1891   double young_start_time_sec = os::elapsedTime();
  1893   YoungList* young_list = _g1->young_list();
  1894   finalize_incremental_cset_building();
  1896   guarantee(target_pause_time_ms > 0.0,
  1897             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1898                     target_pause_time_ms));
  1899   guarantee(_collection_set == NULL, "Precondition");
  1901   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1902   double predicted_pause_time_ms = base_time_ms;
  1903   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1905   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1906                 "start choosing CSet",
  1907                 ergo_format_size("_pending_cards")
  1908                 ergo_format_ms("predicted base time")
  1909                 ergo_format_ms("remaining time")
  1910                 ergo_format_ms("target pause time"),
  1911                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1913   _last_gc_was_young = gcs_are_young() ? true : false;
  1915   if (_last_gc_was_young) {
  1916     _trace_gen0_time_data.increment_young_collection_count();
  1917   } else {
  1918     _trace_gen0_time_data.increment_mixed_collection_count();
  1921   // The young list is laid with the survivor regions from the previous
  1922   // pause are appended to the RHS of the young list, i.e.
  1923   //   [Newly Young Regions ++ Survivors from last pause].
  1925   uint survivor_region_length = young_list->survivor_length();
  1926   uint eden_region_length = young_list->length() - survivor_region_length;
  1927   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1929   HeapRegion* hr = young_list->first_survivor_region();
  1930   while (hr != NULL) {
  1931     assert(hr->is_survivor(), "badly formed young list");
  1932     hr->set_young();
  1933     hr = hr->get_next_young_region();
  1936   // Clear the fields that point to the survivor list - they are all young now.
  1937   young_list->clear_survivors();
  1939   _collection_set = _inc_cset_head;
  1940   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1941   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1942   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1944   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1945                 "add young regions to CSet",
  1946                 ergo_format_region("eden")
  1947                 ergo_format_region("survivors")
  1948                 ergo_format_ms("predicted young region time"),
  1949                 eden_region_length, survivor_region_length,
  1950                 _inc_cset_predicted_elapsed_time_ms);
  1952   // The number of recorded young regions is the incremental
  1953   // collection set's current size
  1954   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1956   double young_end_time_sec = os::elapsedTime();
  1957   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1959   // Set the start of the non-young choice time.
  1960   double non_young_start_time_sec = young_end_time_sec;
  1962   if (!gcs_are_young()) {
  1963     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1964     cset_chooser->verify();
  1965     const uint min_old_cset_length = calc_min_old_cset_length();
  1966     const uint max_old_cset_length = calc_max_old_cset_length();
  1968     uint expensive_region_num = 0;
  1969     bool check_time_remaining = adaptive_young_list_length();
  1971     HeapRegion* hr = cset_chooser->peek();
  1972     while (hr != NULL) {
  1973       if (old_cset_region_length() >= max_old_cset_length) {
  1974         // Added maximum number of old regions to the CSet.
  1975         ergo_verbose2(ErgoCSetConstruction,
  1976                       "finish adding old regions to CSet",
  1977                       ergo_format_reason("old CSet region num reached max")
  1978                       ergo_format_region("old")
  1979                       ergo_format_region("max"),
  1980                       old_cset_region_length(), max_old_cset_length);
  1981         break;
  1985       // Stop adding regions if the remaining reclaimable space is
  1986       // not above G1HeapWastePercent.
  1987       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1988       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1989       double threshold = (double) G1HeapWastePercent;
  1990       if (reclaimable_perc <= threshold) {
  1991         // We've added enough old regions that the amount of uncollected
  1992         // reclaimable space is at or below the waste threshold. Stop
  1993         // adding old regions to the CSet.
  1994         ergo_verbose5(ErgoCSetConstruction,
  1995                       "finish adding old regions to CSet",
  1996                       ergo_format_reason("reclaimable percentage not over threshold")
  1997                       ergo_format_region("old")
  1998                       ergo_format_region("max")
  1999                       ergo_format_byte_perc("reclaimable")
  2000                       ergo_format_perc("threshold"),
  2001                       old_cset_region_length(),
  2002                       max_old_cset_length,
  2003                       reclaimable_bytes,
  2004                       reclaimable_perc, threshold);
  2005         break;
  2008       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2009       if (check_time_remaining) {
  2010         if (predicted_time_ms > time_remaining_ms) {
  2011           // Too expensive for the current CSet.
  2013           if (old_cset_region_length() >= min_old_cset_length) {
  2014             // We have added the minimum number of old regions to the CSet,
  2015             // we are done with this CSet.
  2016             ergo_verbose4(ErgoCSetConstruction,
  2017                           "finish adding old regions to CSet",
  2018                           ergo_format_reason("predicted time is too high")
  2019                           ergo_format_ms("predicted time")
  2020                           ergo_format_ms("remaining time")
  2021                           ergo_format_region("old")
  2022                           ergo_format_region("min"),
  2023                           predicted_time_ms, time_remaining_ms,
  2024                           old_cset_region_length(), min_old_cset_length);
  2025             break;
  2028           // We'll add it anyway given that we haven't reached the
  2029           // minimum number of old regions.
  2030           expensive_region_num += 1;
  2032       } else {
  2033         if (old_cset_region_length() >= min_old_cset_length) {
  2034           // In the non-auto-tuning case, we'll finish adding regions
  2035           // to the CSet if we reach the minimum.
  2036           ergo_verbose2(ErgoCSetConstruction,
  2037                         "finish adding old regions to CSet",
  2038                         ergo_format_reason("old CSet region num reached min")
  2039                         ergo_format_region("old")
  2040                         ergo_format_region("min"),
  2041                         old_cset_region_length(), min_old_cset_length);
  2042           break;
  2046       // We will add this region to the CSet.
  2047       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2048       predicted_pause_time_ms += predicted_time_ms;
  2049       cset_chooser->remove_and_move_to_next(hr);
  2050       _g1->old_set_remove(hr);
  2051       add_old_region_to_cset(hr);
  2053       hr = cset_chooser->peek();
  2055     if (hr == NULL) {
  2056       ergo_verbose0(ErgoCSetConstruction,
  2057                     "finish adding old regions to CSet",
  2058                     ergo_format_reason("candidate old regions not available"));
  2061     if (expensive_region_num > 0) {
  2062       // We print the information once here at the end, predicated on
  2063       // whether we added any apparently expensive regions or not, to
  2064       // avoid generating output per region.
  2065       ergo_verbose4(ErgoCSetConstruction,
  2066                     "added expensive regions to CSet",
  2067                     ergo_format_reason("old CSet region num not reached min")
  2068                     ergo_format_region("old")
  2069                     ergo_format_region("expensive")
  2070                     ergo_format_region("min")
  2071                     ergo_format_ms("remaining time"),
  2072                     old_cset_region_length(),
  2073                     expensive_region_num,
  2074                     min_old_cset_length,
  2075                     time_remaining_ms);
  2078     cset_chooser->verify();
  2081   stop_incremental_cset_building();
  2083   ergo_verbose5(ErgoCSetConstruction,
  2084                 "finish choosing CSet",
  2085                 ergo_format_region("eden")
  2086                 ergo_format_region("survivors")
  2087                 ergo_format_region("old")
  2088                 ergo_format_ms("predicted pause time")
  2089                 ergo_format_ms("target pause time"),
  2090                 eden_region_length, survivor_region_length,
  2091                 old_cset_region_length(),
  2092                 predicted_pause_time_ms, target_pause_time_ms);
  2094   double non_young_end_time_sec = os::elapsedTime();
  2095   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2098 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2099   if(TraceGen0Time) {
  2100     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2104 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2105   if(TraceGen0Time) {
  2106     _all_yield_times_ms.add(yield_time_ms);
  2110 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2111   if(TraceGen0Time) {
  2112     _total.add(pause_time_ms);
  2113     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2114     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2115     _parallel.add(phase_times->cur_collection_par_time_ms());
  2116     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2117     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2118     _update_rs.add(phase_times->average_last_update_rs_time());
  2119     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2120     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2121     _termination.add(phase_times->average_last_termination_time());
  2123     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2124       phase_times->average_last_satb_filtering_times_ms() +
  2125       phase_times->average_last_update_rs_time() +
  2126       phase_times->average_last_scan_rs_time() +
  2127       phase_times->average_last_obj_copy_time() +
  2128       + phase_times->average_last_termination_time();
  2130     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2131     _parallel_other.add(parallel_other_time);
  2132     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2136 void TraceGen0TimeData::increment_young_collection_count() {
  2137   if(TraceGen0Time) {
  2138     ++_young_pause_num;
  2142 void TraceGen0TimeData::increment_mixed_collection_count() {
  2143   if(TraceGen0Time) {
  2144     ++_mixed_pause_num;
  2148 void TraceGen0TimeData::print_summary(const char* str,
  2149                                       const NumberSeq* seq) const {
  2150   double sum = seq->sum();
  2151   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2152                 str, sum / 1000.0, seq->avg());
  2155 void TraceGen0TimeData::print_summary_sd(const char* str,
  2156                                          const NumberSeq* seq) const {
  2157   print_summary(str, seq);
  2158   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2159                 "(num", seq->num(), seq->sd(), seq->maximum());
  2162 void TraceGen0TimeData::print() const {
  2163   if (!TraceGen0Time) {
  2164     return;
  2167   gclog_or_tty->print_cr("ALL PAUSES");
  2168   print_summary_sd("   Total", &_total);
  2169   gclog_or_tty->print_cr("");
  2170   gclog_or_tty->print_cr("");
  2171   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2172   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2173   gclog_or_tty->print_cr("");
  2175   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2177   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2178     gclog_or_tty->print_cr("none");
  2179   } else {
  2180     print_summary_sd("   Evacuation Pauses", &_total);
  2181     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2182     print_summary("      Parallel Time", &_parallel);
  2183     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2184     print_summary("         SATB Filtering", &_satb_filtering);
  2185     print_summary("         Update RS", &_update_rs);
  2186     print_summary("         Scan RS", &_scan_rs);
  2187     print_summary("         Object Copy", &_obj_copy);
  2188     print_summary("         Termination", &_termination);
  2189     print_summary("         Parallel Other", &_parallel_other);
  2190     print_summary("      Clear CT", &_clear_ct);
  2191     print_summary("      Other", &_other);
  2193   gclog_or_tty->print_cr("");
  2195   gclog_or_tty->print_cr("MISC");
  2196   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2197   print_summary_sd("   Yields", &_all_yield_times_ms);
  2200 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2201   if (TraceGen1Time) {
  2202     _all_full_gc_times.add(full_gc_time_ms);
  2206 void TraceGen1TimeData::print() const {
  2207   if (!TraceGen1Time) {
  2208     return;
  2211   if (_all_full_gc_times.num() > 0) {
  2212     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2213       _all_full_gc_times.num(),
  2214       _all_full_gc_times.sum() / 1000.0);
  2215     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2216     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2217       _all_full_gc_times.sd(),
  2218       _all_full_gc_times.maximum());

mercurial