src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Mon, 06 May 2013 09:16:14 +0200

author
brutisso
date
Mon, 06 May 2013 09:16:14 +0200
changeset 5071
f14063dcd52a
parent 4931
9aa8d8037ee3
child 5123
48391ab0687e
permissions
-rw-r--r--

8013791: G1: G1CollectorPolicy::initialize_flags() may set min_alignment > max_alignment
Summary: Make sure max alignemnt is at least as large as min alignment
Reviewed-by: johnc, jmasa, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_bytes_before_gc(0),
   128   _survivor_bytes_before_gc(0),
   129   _capacity_before_gc(0),
   131   _eden_cset_region_length(0),
   132   _survivor_cset_region_length(0),
   133   _old_cset_region_length(0),
   135   _collection_set(NULL),
   136   _collection_set_bytes_used_before(0),
   138   // Incremental CSet attributes
   139   _inc_cset_build_state(Inactive),
   140   _inc_cset_head(NULL),
   141   _inc_cset_tail(NULL),
   142   _inc_cset_bytes_used_before(0),
   143   _inc_cset_max_finger(NULL),
   144   _inc_cset_recorded_rs_lengths(0),
   145   _inc_cset_recorded_rs_lengths_diffs(0),
   146   _inc_cset_predicted_elapsed_time_ms(0.0),
   147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   151 #endif // _MSC_VER
   153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   154                                                  G1YoungSurvRateNumRegionsSummary)),
   155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   156                                               G1YoungSurvRateNumRegionsSummary)),
   157   // add here any more surv rate groups
   158   _recorded_survivor_regions(0),
   159   _recorded_survivor_head(NULL),
   160   _recorded_survivor_tail(NULL),
   161   _survivors_age_table(true),
   163   _gc_overhead_perc(0.0) {
   165   // Set up the region size and associated fields. Given that the
   166   // policy is created before the heap, we have to set this up here,
   167   // so it's done as soon as possible.
   168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   169   HeapRegionRemSet::setup_remset_size();
   171   G1ErgoVerbose::initialize();
   172   if (PrintAdaptiveSizePolicy) {
   173     // Currently, we only use a single switch for all the heuristics.
   174     G1ErgoVerbose::set_enabled(true);
   175     // Given that we don't currently have a verboseness level
   176     // parameter, we'll hardcode this to high. This can be easily
   177     // changed in the future.
   178     G1ErgoVerbose::set_level(ErgoHigh);
   179   } else {
   180     G1ErgoVerbose::set_enabled(false);
   181   }
   183   // Verify PLAB sizes
   184   const size_t region_size = HeapRegion::GrainWords;
   185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   186     char buffer[128];
   187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   189     vm_exit_during_initialization(buffer);
   190   }
   192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   197   int index = MIN2(_parallel_gc_threads - 1, 7);
   199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   201   _young_cards_per_entry_ratio_seq->add(
   202                                   young_cards_per_entry_ratio_defaults[index]);
   203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   206   _young_other_cost_per_region_ms_seq->add(
   207                                young_other_cost_per_region_ms_defaults[index]);
   208   _non_young_other_cost_per_region_ms_seq->add(
   209                            non_young_other_cost_per_region_ms_defaults[index]);
   211   // Below, we might need to calculate the pause time target based on
   212   // the pause interval. When we do so we are going to give G1 maximum
   213   // flexibility and allow it to do pauses when it needs to. So, we'll
   214   // arrange that the pause interval to be pause time target + 1 to
   215   // ensure that a) the pause time target is maximized with respect to
   216   // the pause interval and b) we maintain the invariant that pause
   217   // time target < pause interval. If the user does not want this
   218   // maximum flexibility, they will have to set the pause interval
   219   // explicitly.
   221   // First make sure that, if either parameter is set, its value is
   222   // reasonable.
   223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   224     if (MaxGCPauseMillis < 1) {
   225       vm_exit_during_initialization("MaxGCPauseMillis should be "
   226                                     "greater than 0");
   227     }
   228   }
   229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   230     if (GCPauseIntervalMillis < 1) {
   231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   232                                     "greater than 0");
   233     }
   234   }
   236   // Then, if the pause time target parameter was not set, set it to
   237   // the default value.
   238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   240       // The default pause time target in G1 is 200ms
   241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   242     } else {
   243       // We do not allow the pause interval to be set without the
   244       // pause time target
   245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   246                                     "without setting MaxGCPauseMillis");
   247     }
   248   }
   250   // Then, if the interval parameter was not set, set it according to
   251   // the pause time target (this will also deal with the case when the
   252   // pause time target is the default value).
   253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   255   }
   257   // Finally, make sure that the two parameters are consistent.
   258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   259     char buffer[256];
   260     jio_snprintf(buffer, 256,
   261                  "MaxGCPauseMillis (%u) should be less than "
   262                  "GCPauseIntervalMillis (%u)",
   263                  MaxGCPauseMillis, GCPauseIntervalMillis);
   264     vm_exit_during_initialization(buffer);
   265   }
   267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   271   uintx confidence_perc = G1ConfidencePercent;
   272   // Put an artificial ceiling on this so that it's not set to a silly value.
   273   if (confidence_perc > 100) {
   274     confidence_perc = 100;
   275     warning("G1ConfidencePercent is set to a value that is too large, "
   276             "it's been updated to %u", confidence_perc);
   277   }
   278   _sigma = (double) confidence_perc / 100.0;
   280   // start conservatively (around 50ms is about right)
   281   _concurrent_mark_remark_times_ms->add(0.05);
   282   _concurrent_mark_cleanup_times_ms->add(0.20);
   283   _tenuring_threshold = MaxTenuringThreshold;
   284   // _max_survivor_regions will be calculated by
   285   // update_young_list_target_length() during initialization.
   286   _max_survivor_regions = 0;
   288   assert(GCTimeRatio > 0,
   289          "we should have set it to a default value set_g1_gc_flags() "
   290          "if a user set it to 0");
   291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   293   uintx reserve_perc = G1ReservePercent;
   294   // Put an artificial ceiling on this so that it's not set to a silly value.
   295   if (reserve_perc > 50) {
   296     reserve_perc = 50;
   297     warning("G1ReservePercent is set to a value that is too large, "
   298             "it's been updated to %u", reserve_perc);
   299   }
   300   _reserve_factor = (double) reserve_perc / 100.0;
   301   // This will be set when the heap is expanded
   302   // for the first time during initialization.
   303   _reserve_regions = 0;
   305   initialize_all();
   306   _collectionSetChooser = new CollectionSetChooser();
   307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   308 }
   310 void G1CollectorPolicy::initialize_flags() {
   311   set_min_alignment(HeapRegion::GrainBytes);
   312   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   313   set_max_alignment(MAX2(card_table_alignment, min_alignment()));
   314   if (SurvivorRatio < 1) {
   315     vm_exit_during_initialization("Invalid survivor ratio specified");
   316   }
   317   CollectorPolicy::initialize_flags();
   318 }
   320 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   321   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   322   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   323   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   325   if (FLAG_IS_CMDLINE(NewRatio)) {
   326     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   327       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   328     } else {
   329       _sizer_kind = SizerNewRatio;
   330       _adaptive_size = false;
   331       return;
   332     }
   333   }
   335   if (FLAG_IS_CMDLINE(NewSize)) {
   336     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   337                                      1U);
   338     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   339       _max_desired_young_length =
   340                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   341                                   1U);
   342       _sizer_kind = SizerMaxAndNewSize;
   343       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   344     } else {
   345       _sizer_kind = SizerNewSizeOnly;
   346     }
   347   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   348     _max_desired_young_length =
   349                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   350                                   1U);
   351     _sizer_kind = SizerMaxNewSizeOnly;
   352   }
   353 }
   355 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   356   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   357   return MAX2(1U, default_value);
   358 }
   360 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   361   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   362   return MAX2(1U, default_value);
   363 }
   365 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   366   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   368   switch (_sizer_kind) {
   369     case SizerDefaults:
   370       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   371       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   372       break;
   373     case SizerNewSizeOnly:
   374       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   375       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   376       break;
   377     case SizerMaxNewSizeOnly:
   378       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   379       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   380       break;
   381     case SizerMaxAndNewSize:
   382       // Do nothing. Values set on the command line, don't update them at runtime.
   383       break;
   384     case SizerNewRatio:
   385       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   386       _max_desired_young_length = _min_desired_young_length;
   387       break;
   388     default:
   389       ShouldNotReachHere();
   390   }
   392   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   393 }
   395 void G1CollectorPolicy::init() {
   396   // Set aside an initial future to_space.
   397   _g1 = G1CollectedHeap::heap();
   399   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   401   initialize_gc_policy_counters();
   403   if (adaptive_young_list_length()) {
   404     _young_list_fixed_length = 0;
   405   } else {
   406     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   407   }
   408   _free_regions_at_end_of_collection = _g1->free_regions();
   409   update_young_list_target_length();
   411   // We may immediately start allocating regions and placing them on the
   412   // collection set list. Initialize the per-collection set info
   413   start_incremental_cset_building();
   414 }
   416 // Create the jstat counters for the policy.
   417 void G1CollectorPolicy::initialize_gc_policy_counters() {
   418   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   419 }
   421 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   422                                          double base_time_ms,
   423                                          uint base_free_regions,
   424                                          double target_pause_time_ms) {
   425   if (young_length >= base_free_regions) {
   426     // end condition 1: not enough space for the young regions
   427     return false;
   428   }
   430   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   431   size_t bytes_to_copy =
   432                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   433   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   434   double young_other_time_ms = predict_young_other_time_ms(young_length);
   435   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   436   if (pause_time_ms > target_pause_time_ms) {
   437     // end condition 2: prediction is over the target pause time
   438     return false;
   439   }
   441   size_t free_bytes =
   442                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   443   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   444     // end condition 3: out-of-space (conservatively!)
   445     return false;
   446   }
   448   // success!
   449   return true;
   450 }
   452 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   453   // re-calculate the necessary reserve
   454   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   455   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   456   // smaller than 1.0) we'll get 1.
   457   _reserve_regions = (uint) ceil(reserve_regions_d);
   459   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   460 }
   462 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   463                                                        uint base_min_length) {
   464   uint desired_min_length = 0;
   465   if (adaptive_young_list_length()) {
   466     if (_alloc_rate_ms_seq->num() > 3) {
   467       double now_sec = os::elapsedTime();
   468       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   469       double alloc_rate_ms = predict_alloc_rate_ms();
   470       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   471     } else {
   472       // otherwise we don't have enough info to make the prediction
   473     }
   474   }
   475   desired_min_length += base_min_length;
   476   // make sure we don't go below any user-defined minimum bound
   477   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   478 }
   480 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   481   // Here, we might want to also take into account any additional
   482   // constraints (i.e., user-defined minimum bound). Currently, we
   483   // effectively don't set this bound.
   484   return _young_gen_sizer->max_desired_young_length();
   485 }
   487 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   488   if (rs_lengths == (size_t) -1) {
   489     // if it's set to the default value (-1), we should predict it;
   490     // otherwise, use the given value.
   491     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   492   }
   494   // Calculate the absolute and desired min bounds.
   496   // This is how many young regions we already have (currently: the survivors).
   497   uint base_min_length = recorded_survivor_regions();
   498   // This is the absolute minimum young length, which ensures that we
   499   // can allocate one eden region in the worst-case.
   500   uint absolute_min_length = base_min_length + 1;
   501   uint desired_min_length =
   502                      calculate_young_list_desired_min_length(base_min_length);
   503   if (desired_min_length < absolute_min_length) {
   504     desired_min_length = absolute_min_length;
   505   }
   507   // Calculate the absolute and desired max bounds.
   509   // We will try our best not to "eat" into the reserve.
   510   uint absolute_max_length = 0;
   511   if (_free_regions_at_end_of_collection > _reserve_regions) {
   512     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   513   }
   514   uint desired_max_length = calculate_young_list_desired_max_length();
   515   if (desired_max_length > absolute_max_length) {
   516     desired_max_length = absolute_max_length;
   517   }
   519   uint young_list_target_length = 0;
   520   if (adaptive_young_list_length()) {
   521     if (gcs_are_young()) {
   522       young_list_target_length =
   523                         calculate_young_list_target_length(rs_lengths,
   524                                                            base_min_length,
   525                                                            desired_min_length,
   526                                                            desired_max_length);
   527       _rs_lengths_prediction = rs_lengths;
   528     } else {
   529       // Don't calculate anything and let the code below bound it to
   530       // the desired_min_length, i.e., do the next GC as soon as
   531       // possible to maximize how many old regions we can add to it.
   532     }
   533   } else {
   534     // The user asked for a fixed young gen so we'll fix the young gen
   535     // whether the next GC is young or mixed.
   536     young_list_target_length = _young_list_fixed_length;
   537   }
   539   // Make sure we don't go over the desired max length, nor under the
   540   // desired min length. In case they clash, desired_min_length wins
   541   // which is why that test is second.
   542   if (young_list_target_length > desired_max_length) {
   543     young_list_target_length = desired_max_length;
   544   }
   545   if (young_list_target_length < desired_min_length) {
   546     young_list_target_length = desired_min_length;
   547   }
   549   assert(young_list_target_length > recorded_survivor_regions(),
   550          "we should be able to allocate at least one eden region");
   551   assert(young_list_target_length >= absolute_min_length, "post-condition");
   552   _young_list_target_length = young_list_target_length;
   554   update_max_gc_locker_expansion();
   555 }
   557 uint
   558 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   559                                                      uint base_min_length,
   560                                                      uint desired_min_length,
   561                                                      uint desired_max_length) {
   562   assert(adaptive_young_list_length(), "pre-condition");
   563   assert(gcs_are_young(), "only call this for young GCs");
   565   // In case some edge-condition makes the desired max length too small...
   566   if (desired_max_length <= desired_min_length) {
   567     return desired_min_length;
   568   }
   570   // We'll adjust min_young_length and max_young_length not to include
   571   // the already allocated young regions (i.e., so they reflect the
   572   // min and max eden regions we'll allocate). The base_min_length
   573   // will be reflected in the predictions by the
   574   // survivor_regions_evac_time prediction.
   575   assert(desired_min_length > base_min_length, "invariant");
   576   uint min_young_length = desired_min_length - base_min_length;
   577   assert(desired_max_length > base_min_length, "invariant");
   578   uint max_young_length = desired_max_length - base_min_length;
   580   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   581   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   582   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   583   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   584   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   585   double base_time_ms =
   586     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   587     survivor_regions_evac_time;
   588   uint available_free_regions = _free_regions_at_end_of_collection;
   589   uint base_free_regions = 0;
   590   if (available_free_regions > _reserve_regions) {
   591     base_free_regions = available_free_regions - _reserve_regions;
   592   }
   594   // Here, we will make sure that the shortest young length that
   595   // makes sense fits within the target pause time.
   597   if (predict_will_fit(min_young_length, base_time_ms,
   598                        base_free_regions, target_pause_time_ms)) {
   599     // The shortest young length will fit into the target pause time;
   600     // we'll now check whether the absolute maximum number of young
   601     // regions will fit in the target pause time. If not, we'll do
   602     // a binary search between min_young_length and max_young_length.
   603     if (predict_will_fit(max_young_length, base_time_ms,
   604                          base_free_regions, target_pause_time_ms)) {
   605       // The maximum young length will fit into the target pause time.
   606       // We are done so set min young length to the maximum length (as
   607       // the result is assumed to be returned in min_young_length).
   608       min_young_length = max_young_length;
   609     } else {
   610       // The maximum possible number of young regions will not fit within
   611       // the target pause time so we'll search for the optimal
   612       // length. The loop invariants are:
   613       //
   614       // min_young_length < max_young_length
   615       // min_young_length is known to fit into the target pause time
   616       // max_young_length is known not to fit into the target pause time
   617       //
   618       // Going into the loop we know the above hold as we've just
   619       // checked them. Every time around the loop we check whether
   620       // the middle value between min_young_length and
   621       // max_young_length fits into the target pause time. If it
   622       // does, it becomes the new min. If it doesn't, it becomes
   623       // the new max. This way we maintain the loop invariants.
   625       assert(min_young_length < max_young_length, "invariant");
   626       uint diff = (max_young_length - min_young_length) / 2;
   627       while (diff > 0) {
   628         uint young_length = min_young_length + diff;
   629         if (predict_will_fit(young_length, base_time_ms,
   630                              base_free_regions, target_pause_time_ms)) {
   631           min_young_length = young_length;
   632         } else {
   633           max_young_length = young_length;
   634         }
   635         assert(min_young_length <  max_young_length, "invariant");
   636         diff = (max_young_length - min_young_length) / 2;
   637       }
   638       // The results is min_young_length which, according to the
   639       // loop invariants, should fit within the target pause time.
   641       // These are the post-conditions of the binary search above:
   642       assert(min_young_length < max_young_length,
   643              "otherwise we should have discovered that max_young_length "
   644              "fits into the pause target and not done the binary search");
   645       assert(predict_will_fit(min_young_length, base_time_ms,
   646                               base_free_regions, target_pause_time_ms),
   647              "min_young_length, the result of the binary search, should "
   648              "fit into the pause target");
   649       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   650                                base_free_regions, target_pause_time_ms),
   651              "min_young_length, the result of the binary search, should be "
   652              "optimal, so no larger length should fit into the pause target");
   653     }
   654   } else {
   655     // Even the minimum length doesn't fit into the pause time
   656     // target, return it as the result nevertheless.
   657   }
   658   return base_min_length + min_young_length;
   659 }
   661 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   662   double survivor_regions_evac_time = 0.0;
   663   for (HeapRegion * r = _recorded_survivor_head;
   664        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   665        r = r->get_next_young_region()) {
   666     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   667   }
   668   return survivor_regions_evac_time;
   669 }
   671 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   672   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   674   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   675   if (rs_lengths > _rs_lengths_prediction) {
   676     // add 10% to avoid having to recalculate often
   677     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   678     update_young_list_target_length(rs_lengths_prediction);
   679   }
   680 }
   684 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   685                                                bool is_tlab,
   686                                                bool* gc_overhead_limit_was_exceeded) {
   687   guarantee(false, "Not using this policy feature yet.");
   688   return NULL;
   689 }
   691 // This method controls how a collector handles one or more
   692 // of its generations being fully allocated.
   693 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   694                                                        bool is_tlab) {
   695   guarantee(false, "Not using this policy feature yet.");
   696   return NULL;
   697 }
   700 #ifndef PRODUCT
   701 bool G1CollectorPolicy::verify_young_ages() {
   702   HeapRegion* head = _g1->young_list()->first_region();
   703   return
   704     verify_young_ages(head, _short_lived_surv_rate_group);
   705   // also call verify_young_ages on any additional surv rate groups
   706 }
   708 bool
   709 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   710                                      SurvRateGroup *surv_rate_group) {
   711   guarantee( surv_rate_group != NULL, "pre-condition" );
   713   const char* name = surv_rate_group->name();
   714   bool ret = true;
   715   int prev_age = -1;
   717   for (HeapRegion* curr = head;
   718        curr != NULL;
   719        curr = curr->get_next_young_region()) {
   720     SurvRateGroup* group = curr->surv_rate_group();
   721     if (group == NULL && !curr->is_survivor()) {
   722       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   723       ret = false;
   724     }
   726     if (surv_rate_group == group) {
   727       int age = curr->age_in_surv_rate_group();
   729       if (age < 0) {
   730         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   731         ret = false;
   732       }
   734       if (age <= prev_age) {
   735         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   736                                "(%d, %d)", name, age, prev_age);
   737         ret = false;
   738       }
   739       prev_age = age;
   740     }
   741   }
   743   return ret;
   744 }
   745 #endif // PRODUCT
   747 void G1CollectorPolicy::record_full_collection_start() {
   748   _full_collection_start_sec = os::elapsedTime();
   749   record_heap_size_info_at_start();
   750   // Release the future to-space so that it is available for compaction into.
   751   _g1->set_full_collection();
   752 }
   754 void G1CollectorPolicy::record_full_collection_end() {
   755   // Consider this like a collection pause for the purposes of allocation
   756   // since last pause.
   757   double end_sec = os::elapsedTime();
   758   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   759   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   761   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   763   update_recent_gc_times(end_sec, full_gc_time_ms);
   765   _g1->clear_full_collection();
   767   // "Nuke" the heuristics that control the young/mixed GC
   768   // transitions and make sure we start with young GCs after the Full GC.
   769   set_gcs_are_young(true);
   770   _last_young_gc = false;
   771   clear_initiate_conc_mark_if_possible();
   772   clear_during_initial_mark_pause();
   773   _in_marking_window = false;
   774   _in_marking_window_im = false;
   776   _short_lived_surv_rate_group->start_adding_regions();
   777   // also call this on any additional surv rate groups
   779   record_survivor_regions(0, NULL, NULL);
   781   _free_regions_at_end_of_collection = _g1->free_regions();
   782   // Reset survivors SurvRateGroup.
   783   _survivor_surv_rate_group->reset();
   784   update_young_list_target_length();
   785   _collectionSetChooser->clear();
   786 }
   788 void G1CollectorPolicy::record_stop_world_start() {
   789   _stop_world_start = os::elapsedTime();
   790 }
   792 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
   793   // We only need to do this here as the policy will only be applied
   794   // to the GC we're about to start. so, no point is calculating this
   795   // every time we calculate / recalculate the target young length.
   796   update_survivors_policy();
   798   assert(_g1->used() == _g1->recalculate_used(),
   799          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   800                  _g1->used(), _g1->recalculate_used()));
   802   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   803   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   804   _stop_world_start = 0.0;
   806   record_heap_size_info_at_start();
   808   phase_times()->record_cur_collection_start_sec(start_time_sec);
   809   _pending_cards = _g1->pending_card_num();
   811   _collection_set_bytes_used_before = 0;
   812   _bytes_copied_during_gc = 0;
   814   _last_gc_was_young = false;
   816   // do that for any other surv rate groups
   817   _short_lived_surv_rate_group->stop_adding_regions();
   818   _survivors_age_table.clear();
   820   assert( verify_young_ages(), "region age verification" );
   821 }
   823 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   824                                                    mark_init_elapsed_time_ms) {
   825   _during_marking = true;
   826   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   827   clear_during_initial_mark_pause();
   828   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   829 }
   831 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   832   _mark_remark_start_sec = os::elapsedTime();
   833   _during_marking = false;
   834 }
   836 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   837   double end_time_sec = os::elapsedTime();
   838   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   839   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   840   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   841   _prev_collection_pause_end_ms += elapsed_time_ms;
   843   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   844 }
   846 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   847   _mark_cleanup_start_sec = os::elapsedTime();
   848 }
   850 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   851   _last_young_gc = true;
   852   _in_marking_window = false;
   853 }
   855 void G1CollectorPolicy::record_concurrent_pause() {
   856   if (_stop_world_start > 0.0) {
   857     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   858     _trace_gen0_time_data.record_yield_time(yield_ms);
   859   }
   860 }
   862 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   863   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   864     return false;
   865   }
   867   size_t marking_initiating_used_threshold =
   868     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   869   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   870   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   872   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   873     if (gcs_are_young()) {
   874       ergo_verbose5(ErgoConcCycles,
   875         "request concurrent cycle initiation",
   876         ergo_format_reason("occupancy higher than threshold")
   877         ergo_format_byte("occupancy")
   878         ergo_format_byte("allocation request")
   879         ergo_format_byte_perc("threshold")
   880         ergo_format_str("source"),
   881         cur_used_bytes,
   882         alloc_byte_size,
   883         marking_initiating_used_threshold,
   884         (double) InitiatingHeapOccupancyPercent,
   885         source);
   886       return true;
   887     } else {
   888       ergo_verbose5(ErgoConcCycles,
   889         "do not request concurrent cycle initiation",
   890         ergo_format_reason("still doing mixed collections")
   891         ergo_format_byte("occupancy")
   892         ergo_format_byte("allocation request")
   893         ergo_format_byte_perc("threshold")
   894         ergo_format_str("source"),
   895         cur_used_bytes,
   896         alloc_byte_size,
   897         marking_initiating_used_threshold,
   898         (double) InitiatingHeapOccupancyPercent,
   899         source);
   900     }
   901   }
   903   return false;
   904 }
   906 // Anything below that is considered to be zero
   907 #define MIN_TIMER_GRANULARITY 0.0000001
   909 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
   910   double end_time_sec = os::elapsedTime();
   911   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   912          "otherwise, the subtraction below does not make sense");
   913   size_t rs_size =
   914             _cur_collection_pause_used_regions_at_start - cset_region_length();
   915   size_t cur_used_bytes = _g1->used();
   916   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   917   bool last_pause_included_initial_mark = false;
   918   bool update_stats = !_g1->evacuation_failed();
   920 #ifndef PRODUCT
   921   if (G1YoungSurvRateVerbose) {
   922     gclog_or_tty->print_cr("");
   923     _short_lived_surv_rate_group->print();
   924     // do that for any other surv rate groups too
   925   }
   926 #endif // PRODUCT
   928   last_pause_included_initial_mark = during_initial_mark_pause();
   929   if (last_pause_included_initial_mark) {
   930     record_concurrent_mark_init_end(0.0);
   931   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
   932     // Note: this might have already been set, if during the last
   933     // pause we decided to start a cycle but at the beginning of
   934     // this pause we decided to postpone it. That's OK.
   935     set_initiate_conc_mark_if_possible();
   936   }
   938   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   939                           end_time_sec, false);
   941   size_t freed_bytes =
   942     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
   943   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
   945   double survival_fraction =
   946     (double)surviving_bytes/
   947     (double)_collection_set_bytes_used_before;
   949   if (update_stats) {
   950     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   951     // this is where we update the allocation rate of the application
   952     double app_time_ms =
   953       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   954     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   955       // This usually happens due to the timer not having the required
   956       // granularity. Some Linuxes are the usual culprits.
   957       // We'll just set it to something (arbitrarily) small.
   958       app_time_ms = 1.0;
   959     }
   960     // We maintain the invariant that all objects allocated by mutator
   961     // threads will be allocated out of eden regions. So, we can use
   962     // the eden region number allocated since the previous GC to
   963     // calculate the application's allocate rate. The only exception
   964     // to that is humongous objects that are allocated separately. But
   965     // given that humongous object allocations do not really affect
   966     // either the pause's duration nor when the next pause will take
   967     // place we can safely ignore them here.
   968     uint regions_allocated = eden_cset_region_length();
   969     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   970     _alloc_rate_ms_seq->add(alloc_rate_ms);
   972     double interval_ms =
   973       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   974     update_recent_gc_times(end_time_sec, pause_time_ms);
   975     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   976     if (recent_avg_pause_time_ratio() < 0.0 ||
   977         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   978 #ifndef PRODUCT
   979       // Dump info to allow post-facto debugging
   980       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   981       gclog_or_tty->print_cr("-------------------------------------------");
   982       gclog_or_tty->print_cr("Recent GC Times (ms):");
   983       _recent_gc_times_ms->dump();
   984       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   985       _recent_prev_end_times_for_all_gcs_sec->dump();
   986       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   987                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   988       // In debug mode, terminate the JVM if the user wants to debug at this point.
   989       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   990 #endif  // !PRODUCT
   991       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   992       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
   993       if (_recent_avg_pause_time_ratio < 0.0) {
   994         _recent_avg_pause_time_ratio = 0.0;
   995       } else {
   996         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
   997         _recent_avg_pause_time_ratio = 1.0;
   998       }
   999     }
  1001   bool new_in_marking_window = _in_marking_window;
  1002   bool new_in_marking_window_im = false;
  1003   if (during_initial_mark_pause()) {
  1004     new_in_marking_window = true;
  1005     new_in_marking_window_im = true;
  1008   if (_last_young_gc) {
  1009     // This is supposed to to be the "last young GC" before we start
  1010     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1012     if (!last_pause_included_initial_mark) {
  1013       if (next_gc_should_be_mixed("start mixed GCs",
  1014                                   "do not start mixed GCs")) {
  1015         set_gcs_are_young(false);
  1017     } else {
  1018       ergo_verbose0(ErgoMixedGCs,
  1019                     "do not start mixed GCs",
  1020                     ergo_format_reason("concurrent cycle is about to start"));
  1022     _last_young_gc = false;
  1025   if (!_last_gc_was_young) {
  1026     // This is a mixed GC. Here we decide whether to continue doing
  1027     // mixed GCs or not.
  1029     if (!next_gc_should_be_mixed("continue mixed GCs",
  1030                                  "do not continue mixed GCs")) {
  1031       set_gcs_are_young(true);
  1035   _short_lived_surv_rate_group->start_adding_regions();
  1036   // do that for any other surv rate groupsx
  1038   if (update_stats) {
  1039     double cost_per_card_ms = 0.0;
  1040     if (_pending_cards > 0) {
  1041       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1042       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1045     size_t cards_scanned = _g1->cards_scanned();
  1047     double cost_per_entry_ms = 0.0;
  1048     if (cards_scanned > 10) {
  1049       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1050       if (_last_gc_was_young) {
  1051         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1052       } else {
  1053         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1057     if (_max_rs_lengths > 0) {
  1058       double cards_per_entry_ratio =
  1059         (double) cards_scanned / (double) _max_rs_lengths;
  1060       if (_last_gc_was_young) {
  1061         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1062       } else {
  1063         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1067     // This is defensive. For a while _max_rs_lengths could get
  1068     // smaller than _recorded_rs_lengths which was causing
  1069     // rs_length_diff to get very large and mess up the RSet length
  1070     // predictions. The reason was unsafe concurrent updates to the
  1071     // _inc_cset_recorded_rs_lengths field which the code below guards
  1072     // against (see CR 7118202). This bug has now been fixed (see CR
  1073     // 7119027). However, I'm still worried that
  1074     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1075     // inaccurate. The concurrent refinement thread calculates an
  1076     // RSet's length concurrently with other CR threads updating it
  1077     // which might cause it to calculate the length incorrectly (if,
  1078     // say, it's in mid-coarsening). So I'll leave in the defensive
  1079     // conditional below just in case.
  1080     size_t rs_length_diff = 0;
  1081     if (_max_rs_lengths > _recorded_rs_lengths) {
  1082       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1084     _rs_length_diff_seq->add((double) rs_length_diff);
  1086     size_t copied_bytes = surviving_bytes;
  1087     double cost_per_byte_ms = 0.0;
  1088     if (copied_bytes > 0) {
  1089       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1090       if (_in_marking_window) {
  1091         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1092       } else {
  1093         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1097     double all_other_time_ms = pause_time_ms -
  1098       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1099       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1101     double young_other_time_ms = 0.0;
  1102     if (young_cset_region_length() > 0) {
  1103       young_other_time_ms =
  1104         phase_times()->young_cset_choice_time_ms() +
  1105         phase_times()->young_free_cset_time_ms();
  1106       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1107                                           (double) young_cset_region_length());
  1109     double non_young_other_time_ms = 0.0;
  1110     if (old_cset_region_length() > 0) {
  1111       non_young_other_time_ms =
  1112         phase_times()->non_young_cset_choice_time_ms() +
  1113         phase_times()->non_young_free_cset_time_ms();
  1115       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1116                                             (double) old_cset_region_length());
  1119     double constant_other_time_ms = all_other_time_ms -
  1120       (young_other_time_ms + non_young_other_time_ms);
  1121     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1123     double survival_ratio = 0.0;
  1124     if (_collection_set_bytes_used_before > 0) {
  1125       survival_ratio = (double) _bytes_copied_during_gc /
  1126                                    (double) _collection_set_bytes_used_before;
  1129     _pending_cards_seq->add((double) _pending_cards);
  1130     _rs_lengths_seq->add((double) _max_rs_lengths);
  1133   _in_marking_window = new_in_marking_window;
  1134   _in_marking_window_im = new_in_marking_window_im;
  1135   _free_regions_at_end_of_collection = _g1->free_regions();
  1136   update_young_list_target_length();
  1138   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1139   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1140   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1141                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1143   _collectionSetChooser->verify();
  1146 #define EXT_SIZE_FORMAT "%.1f%s"
  1147 #define EXT_SIZE_PARAMS(bytes)                                  \
  1148   byte_size_in_proper_unit((double)(bytes)),                    \
  1149   proper_unit_for_byte_size((bytes))
  1151 void G1CollectorPolicy::record_heap_size_info_at_start() {
  1152   YoungList* young_list = _g1->young_list();
  1153   _eden_bytes_before_gc = young_list->eden_used_bytes();
  1154   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  1155   _capacity_before_gc = _g1->capacity();
  1157   _cur_collection_pause_used_at_start_bytes = _g1->used();
  1158   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1160   size_t eden_capacity_before_gc =
  1161          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_bytes_before_gc;
  1163   _prev_eden_capacity = eden_capacity_before_gc;
  1166 void G1CollectorPolicy::print_heap_transition() {
  1167   _g1->print_size_transition(gclog_or_tty,
  1168     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
  1171 void G1CollectorPolicy::print_detailed_heap_transition() {
  1172     YoungList* young_list = _g1->young_list();
  1173     size_t eden_bytes = young_list->eden_used_bytes();
  1174     size_t survivor_bytes = young_list->survivor_used_bytes();
  1175     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1176     size_t used = _g1->used();
  1177     size_t capacity = _g1->capacity();
  1178     size_t eden_capacity =
  1179       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1181     gclog_or_tty->print_cr(
  1182       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1183       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1184       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1185       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1186       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1187       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1188       EXT_SIZE_PARAMS(eden_bytes),
  1189       EXT_SIZE_PARAMS(eden_capacity),
  1190       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1191       EXT_SIZE_PARAMS(survivor_bytes),
  1192       EXT_SIZE_PARAMS(used_before_gc),
  1193       EXT_SIZE_PARAMS(_capacity_before_gc),
  1194       EXT_SIZE_PARAMS(used),
  1195       EXT_SIZE_PARAMS(capacity));
  1198 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1199                                                      double update_rs_processed_buffers,
  1200                                                      double goal_ms) {
  1201   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1202   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1204   if (G1UseAdaptiveConcRefinement) {
  1205     const int k_gy = 3, k_gr = 6;
  1206     const double inc_k = 1.1, dec_k = 0.9;
  1208     int g = cg1r->green_zone();
  1209     if (update_rs_time > goal_ms) {
  1210       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1211     } else {
  1212       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1213         g = (int)MAX2(g * inc_k, g + 1.0);
  1216     // Change the refinement threads params
  1217     cg1r->set_green_zone(g);
  1218     cg1r->set_yellow_zone(g * k_gy);
  1219     cg1r->set_red_zone(g * k_gr);
  1220     cg1r->reinitialize_threads();
  1222     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1223     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1224                                     cg1r->yellow_zone());
  1225     // Change the barrier params
  1226     dcqs.set_process_completed_threshold(processing_threshold);
  1227     dcqs.set_max_completed_queue(cg1r->red_zone());
  1230   int curr_queue_size = dcqs.completed_buffers_num();
  1231   if (curr_queue_size >= cg1r->yellow_zone()) {
  1232     dcqs.set_completed_queue_padding(curr_queue_size);
  1233   } else {
  1234     dcqs.set_completed_queue_padding(0);
  1236   dcqs.notify_if_necessary();
  1239 double
  1240 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1241                                                 size_t scanned_cards) {
  1242   return
  1243     predict_rs_update_time_ms(pending_cards) +
  1244     predict_rs_scan_time_ms(scanned_cards) +
  1245     predict_constant_other_time_ms();
  1248 double
  1249 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1250   size_t rs_length = predict_rs_length_diff();
  1251   size_t card_num;
  1252   if (gcs_are_young()) {
  1253     card_num = predict_young_card_num(rs_length);
  1254   } else {
  1255     card_num = predict_non_young_card_num(rs_length);
  1257   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1260 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1261   size_t bytes_to_copy;
  1262   if (hr->is_marked())
  1263     bytes_to_copy = hr->max_live_bytes();
  1264   else {
  1265     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1266     int age = hr->age_in_surv_rate_group();
  1267     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1268     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1270   return bytes_to_copy;
  1273 double
  1274 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1275                                                   bool for_young_gc) {
  1276   size_t rs_length = hr->rem_set()->occupied();
  1277   size_t card_num;
  1279   // Predicting the number of cards is based on which type of GC
  1280   // we're predicting for.
  1281   if (for_young_gc) {
  1282     card_num = predict_young_card_num(rs_length);
  1283   } else {
  1284     card_num = predict_non_young_card_num(rs_length);
  1286   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1288   double region_elapsed_time_ms =
  1289     predict_rs_scan_time_ms(card_num) +
  1290     predict_object_copy_time_ms(bytes_to_copy);
  1292   // The prediction of the "other" time for this region is based
  1293   // upon the region type and NOT the GC type.
  1294   if (hr->is_young()) {
  1295     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1296   } else {
  1297     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1299   return region_elapsed_time_ms;
  1302 void
  1303 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1304                                             uint survivor_cset_region_length) {
  1305   _eden_cset_region_length     = eden_cset_region_length;
  1306   _survivor_cset_region_length = survivor_cset_region_length;
  1307   _old_cset_region_length      = 0;
  1310 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1311   _recorded_rs_lengths = rs_lengths;
  1314 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1315                                                double elapsed_ms) {
  1316   _recent_gc_times_ms->add(elapsed_ms);
  1317   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1318   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1321 size_t G1CollectorPolicy::expansion_amount() {
  1322   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1323   double threshold = _gc_overhead_perc;
  1324   if (recent_gc_overhead > threshold) {
  1325     // We will double the existing space, or take
  1326     // G1ExpandByPercentOfAvailable % of the available expansion
  1327     // space, whichever is smaller, bounded below by a minimum
  1328     // expansion (unless that's all that's left.)
  1329     const size_t min_expand_bytes = 1*M;
  1330     size_t reserved_bytes = _g1->max_capacity();
  1331     size_t committed_bytes = _g1->capacity();
  1332     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1333     size_t expand_bytes;
  1334     size_t expand_bytes_via_pct =
  1335       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1336     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1337     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1338     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1340     ergo_verbose5(ErgoHeapSizing,
  1341                   "attempt heap expansion",
  1342                   ergo_format_reason("recent GC overhead higher than "
  1343                                      "threshold after GC")
  1344                   ergo_format_perc("recent GC overhead")
  1345                   ergo_format_perc("threshold")
  1346                   ergo_format_byte("uncommitted")
  1347                   ergo_format_byte_perc("calculated expansion amount"),
  1348                   recent_gc_overhead, threshold,
  1349                   uncommitted_bytes,
  1350                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1352     return expand_bytes;
  1353   } else {
  1354     return 0;
  1358 void G1CollectorPolicy::print_tracing_info() const {
  1359   _trace_gen0_time_data.print();
  1360   _trace_gen1_time_data.print();
  1363 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1364 #ifndef PRODUCT
  1365   _short_lived_surv_rate_group->print_surv_rate_summary();
  1366   // add this call for any other surv rate groups
  1367 #endif // PRODUCT
  1370 uint G1CollectorPolicy::max_regions(int purpose) {
  1371   switch (purpose) {
  1372     case GCAllocForSurvived:
  1373       return _max_survivor_regions;
  1374     case GCAllocForTenured:
  1375       return REGIONS_UNLIMITED;
  1376     default:
  1377       ShouldNotReachHere();
  1378       return REGIONS_UNLIMITED;
  1379   };
  1382 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1383   uint expansion_region_num = 0;
  1384   if (GCLockerEdenExpansionPercent > 0) {
  1385     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1386     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1387     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1388     // less than 1.0) we'll get 1.
  1389     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1390   } else {
  1391     assert(expansion_region_num == 0, "sanity");
  1393   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1394   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1397 // Calculates survivor space parameters.
  1398 void G1CollectorPolicy::update_survivors_policy() {
  1399   double max_survivor_regions_d =
  1400                  (double) _young_list_target_length / (double) SurvivorRatio;
  1401   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1402   // smaller than 1.0) we'll get 1.
  1403   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1405   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1406         HeapRegion::GrainWords * _max_survivor_regions);
  1409 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1410                                                      GCCause::Cause gc_cause) {
  1411   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1412   if (!during_cycle) {
  1413     ergo_verbose1(ErgoConcCycles,
  1414                   "request concurrent cycle initiation",
  1415                   ergo_format_reason("requested by GC cause")
  1416                   ergo_format_str("GC cause"),
  1417                   GCCause::to_string(gc_cause));
  1418     set_initiate_conc_mark_if_possible();
  1419     return true;
  1420   } else {
  1421     ergo_verbose1(ErgoConcCycles,
  1422                   "do not request concurrent cycle initiation",
  1423                   ergo_format_reason("concurrent cycle already in progress")
  1424                   ergo_format_str("GC cause"),
  1425                   GCCause::to_string(gc_cause));
  1426     return false;
  1430 void
  1431 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1432   // We are about to decide on whether this pause will be an
  1433   // initial-mark pause.
  1435   // First, during_initial_mark_pause() should not be already set. We
  1436   // will set it here if we have to. However, it should be cleared by
  1437   // the end of the pause (it's only set for the duration of an
  1438   // initial-mark pause).
  1439   assert(!during_initial_mark_pause(), "pre-condition");
  1441   if (initiate_conc_mark_if_possible()) {
  1442     // We had noticed on a previous pause that the heap occupancy has
  1443     // gone over the initiating threshold and we should start a
  1444     // concurrent marking cycle. So we might initiate one.
  1446     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1447     if (!during_cycle) {
  1448       // The concurrent marking thread is not "during a cycle", i.e.,
  1449       // it has completed the last one. So we can go ahead and
  1450       // initiate a new cycle.
  1452       set_during_initial_mark_pause();
  1453       // We do not allow mixed GCs during marking.
  1454       if (!gcs_are_young()) {
  1455         set_gcs_are_young(true);
  1456         ergo_verbose0(ErgoMixedGCs,
  1457                       "end mixed GCs",
  1458                       ergo_format_reason("concurrent cycle is about to start"));
  1461       // And we can now clear initiate_conc_mark_if_possible() as
  1462       // we've already acted on it.
  1463       clear_initiate_conc_mark_if_possible();
  1465       ergo_verbose0(ErgoConcCycles,
  1466                   "initiate concurrent cycle",
  1467                   ergo_format_reason("concurrent cycle initiation requested"));
  1468     } else {
  1469       // The concurrent marking thread is still finishing up the
  1470       // previous cycle. If we start one right now the two cycles
  1471       // overlap. In particular, the concurrent marking thread might
  1472       // be in the process of clearing the next marking bitmap (which
  1473       // we will use for the next cycle if we start one). Starting a
  1474       // cycle now will be bad given that parts of the marking
  1475       // information might get cleared by the marking thread. And we
  1476       // cannot wait for the marking thread to finish the cycle as it
  1477       // periodically yields while clearing the next marking bitmap
  1478       // and, if it's in a yield point, it's waiting for us to
  1479       // finish. So, at this point we will not start a cycle and we'll
  1480       // let the concurrent marking thread complete the last one.
  1481       ergo_verbose0(ErgoConcCycles,
  1482                     "do not initiate concurrent cycle",
  1483                     ergo_format_reason("concurrent cycle already in progress"));
  1488 class KnownGarbageClosure: public HeapRegionClosure {
  1489   G1CollectedHeap* _g1h;
  1490   CollectionSetChooser* _hrSorted;
  1492 public:
  1493   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1494     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1496   bool doHeapRegion(HeapRegion* r) {
  1497     // We only include humongous regions in collection
  1498     // sets when concurrent mark shows that their contained object is
  1499     // unreachable.
  1501     // Do we have any marking information for this region?
  1502     if (r->is_marked()) {
  1503       // We will skip any region that's currently used as an old GC
  1504       // alloc region (we should not consider those for collection
  1505       // before we fill them up).
  1506       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1507         _hrSorted->add_region(r);
  1510     return false;
  1512 };
  1514 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1515   G1CollectedHeap* _g1h;
  1516   CSetChooserParUpdater _cset_updater;
  1518 public:
  1519   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1520                            uint chunk_size) :
  1521     _g1h(G1CollectedHeap::heap()),
  1522     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1524   bool doHeapRegion(HeapRegion* r) {
  1525     // Do we have any marking information for this region?
  1526     if (r->is_marked()) {
  1527       // We will skip any region that's currently used as an old GC
  1528       // alloc region (we should not consider those for collection
  1529       // before we fill them up).
  1530       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1531         _cset_updater.add_region(r);
  1534     return false;
  1536 };
  1538 class ParKnownGarbageTask: public AbstractGangTask {
  1539   CollectionSetChooser* _hrSorted;
  1540   uint _chunk_size;
  1541   G1CollectedHeap* _g1;
  1542 public:
  1543   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1544     AbstractGangTask("ParKnownGarbageTask"),
  1545     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1546     _g1(G1CollectedHeap::heap()) { }
  1548   void work(uint worker_id) {
  1549     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1551     // Back to zero for the claim value.
  1552     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1553                                          _g1->workers()->active_workers(),
  1554                                          HeapRegion::InitialClaimValue);
  1556 };
  1558 void
  1559 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1560   _collectionSetChooser->clear();
  1562   uint region_num = _g1->n_regions();
  1563   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1564     const uint OverpartitionFactor = 4;
  1565     uint WorkUnit;
  1566     // The use of MinChunkSize = 8 in the original code
  1567     // causes some assertion failures when the total number of
  1568     // region is less than 8.  The code here tries to fix that.
  1569     // Should the original code also be fixed?
  1570     if (no_of_gc_threads > 0) {
  1571       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1572       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1573                       MinWorkUnit);
  1574     } else {
  1575       assert(no_of_gc_threads > 0,
  1576         "The active gc workers should be greater than 0");
  1577       // In a product build do something reasonable to avoid a crash.
  1578       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1579       WorkUnit =
  1580         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1581              MinWorkUnit);
  1583     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1584                                                            WorkUnit);
  1585     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1586                                             (int) WorkUnit);
  1587     _g1->workers()->run_task(&parKnownGarbageTask);
  1589     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1590            "sanity check");
  1591   } else {
  1592     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1593     _g1->heap_region_iterate(&knownGarbagecl);
  1596   _collectionSetChooser->sort_regions();
  1598   double end_sec = os::elapsedTime();
  1599   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1600   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1601   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1602   _prev_collection_pause_end_ms += elapsed_time_ms;
  1603   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1606 // Add the heap region at the head of the non-incremental collection set
  1607 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1608   assert(_inc_cset_build_state == Active, "Precondition");
  1609   assert(!hr->is_young(), "non-incremental add of young region");
  1611   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1612   hr->set_in_collection_set(true);
  1613   hr->set_next_in_collection_set(_collection_set);
  1614   _collection_set = hr;
  1615   _collection_set_bytes_used_before += hr->used();
  1616   _g1->register_region_with_in_cset_fast_test(hr);
  1617   size_t rs_length = hr->rem_set()->occupied();
  1618   _recorded_rs_lengths += rs_length;
  1619   _old_cset_region_length += 1;
  1622 // Initialize the per-collection-set information
  1623 void G1CollectorPolicy::start_incremental_cset_building() {
  1624   assert(_inc_cset_build_state == Inactive, "Precondition");
  1626   _inc_cset_head = NULL;
  1627   _inc_cset_tail = NULL;
  1628   _inc_cset_bytes_used_before = 0;
  1630   _inc_cset_max_finger = 0;
  1631   _inc_cset_recorded_rs_lengths = 0;
  1632   _inc_cset_recorded_rs_lengths_diffs = 0;
  1633   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1634   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1635   _inc_cset_build_state = Active;
  1638 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1639   assert(_inc_cset_build_state == Active, "Precondition");
  1640   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1642   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1643   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1644   // that adds a new region to the CSet. Further updates by the
  1645   // concurrent refinement thread that samples the young RSet lengths
  1646   // are accumulated in the *_diffs fields. Here we add the diffs to
  1647   // the "main" fields.
  1649   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1650     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1651   } else {
  1652     // This is defensive. The diff should in theory be always positive
  1653     // as RSets can only grow between GCs. However, given that we
  1654     // sample their size concurrently with other threads updating them
  1655     // it's possible that we might get the wrong size back, which
  1656     // could make the calculations somewhat inaccurate.
  1657     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1658     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1659       _inc_cset_recorded_rs_lengths -= diffs;
  1660     } else {
  1661       _inc_cset_recorded_rs_lengths = 0;
  1664   _inc_cset_predicted_elapsed_time_ms +=
  1665                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1667   _inc_cset_recorded_rs_lengths_diffs = 0;
  1668   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1671 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1672   // This routine is used when:
  1673   // * adding survivor regions to the incremental cset at the end of an
  1674   //   evacuation pause,
  1675   // * adding the current allocation region to the incremental cset
  1676   //   when it is retired, and
  1677   // * updating existing policy information for a region in the
  1678   //   incremental cset via young list RSet sampling.
  1679   // Therefore this routine may be called at a safepoint by the
  1680   // VM thread, or in-between safepoints by mutator threads (when
  1681   // retiring the current allocation region) or a concurrent
  1682   // refine thread (RSet sampling).
  1684   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1685   size_t used_bytes = hr->used();
  1686   _inc_cset_recorded_rs_lengths += rs_length;
  1687   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1688   _inc_cset_bytes_used_before += used_bytes;
  1690   // Cache the values we have added to the aggregated informtion
  1691   // in the heap region in case we have to remove this region from
  1692   // the incremental collection set, or it is updated by the
  1693   // rset sampling code
  1694   hr->set_recorded_rs_length(rs_length);
  1695   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1698 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1699                                                      size_t new_rs_length) {
  1700   // Update the CSet information that is dependent on the new RS length
  1701   assert(hr->is_young(), "Precondition");
  1702   assert(!SafepointSynchronize::is_at_safepoint(),
  1703                                                "should not be at a safepoint");
  1705   // We could have updated _inc_cset_recorded_rs_lengths and
  1706   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1707   // that atomically, as this code is executed by a concurrent
  1708   // refinement thread, potentially concurrently with a mutator thread
  1709   // allocating a new region and also updating the same fields. To
  1710   // avoid the atomic operations we accumulate these updates on two
  1711   // separate fields (*_diffs) and we'll just add them to the "main"
  1712   // fields at the start of a GC.
  1714   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1715   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1716   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1718   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1719   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1720   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1721   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1723   hr->set_recorded_rs_length(new_rs_length);
  1724   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1727 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1728   assert(hr->is_young(), "invariant");
  1729   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1730   assert(_inc_cset_build_state == Active, "Precondition");
  1732   // We need to clear and set the cached recorded/cached collection set
  1733   // information in the heap region here (before the region gets added
  1734   // to the collection set). An individual heap region's cached values
  1735   // are calculated, aggregated with the policy collection set info,
  1736   // and cached in the heap region here (initially) and (subsequently)
  1737   // by the Young List sampling code.
  1739   size_t rs_length = hr->rem_set()->occupied();
  1740   add_to_incremental_cset_info(hr, rs_length);
  1742   HeapWord* hr_end = hr->end();
  1743   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1745   assert(!hr->in_collection_set(), "invariant");
  1746   hr->set_in_collection_set(true);
  1747   assert( hr->next_in_collection_set() == NULL, "invariant");
  1749   _g1->register_region_with_in_cset_fast_test(hr);
  1752 // Add the region at the RHS of the incremental cset
  1753 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1754   // We should only ever be appending survivors at the end of a pause
  1755   assert( hr->is_survivor(), "Logic");
  1757   // Do the 'common' stuff
  1758   add_region_to_incremental_cset_common(hr);
  1760   // Now add the region at the right hand side
  1761   if (_inc_cset_tail == NULL) {
  1762     assert(_inc_cset_head == NULL, "invariant");
  1763     _inc_cset_head = hr;
  1764   } else {
  1765     _inc_cset_tail->set_next_in_collection_set(hr);
  1767   _inc_cset_tail = hr;
  1770 // Add the region to the LHS of the incremental cset
  1771 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1772   // Survivors should be added to the RHS at the end of a pause
  1773   assert(!hr->is_survivor(), "Logic");
  1775   // Do the 'common' stuff
  1776   add_region_to_incremental_cset_common(hr);
  1778   // Add the region at the left hand side
  1779   hr->set_next_in_collection_set(_inc_cset_head);
  1780   if (_inc_cset_head == NULL) {
  1781     assert(_inc_cset_tail == NULL, "Invariant");
  1782     _inc_cset_tail = hr;
  1784   _inc_cset_head = hr;
  1787 #ifndef PRODUCT
  1788 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1789   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1791   st->print_cr("\nCollection_set:");
  1792   HeapRegion* csr = list_head;
  1793   while (csr != NULL) {
  1794     HeapRegion* next = csr->next_in_collection_set();
  1795     assert(csr->in_collection_set(), "bad CS");
  1796     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1797                  HR_FORMAT_PARAMS(csr),
  1798                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1799                  csr->age_in_surv_rate_group_cond());
  1800     csr = next;
  1803 #endif // !PRODUCT
  1805 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1806   // Returns the given amount of reclaimable bytes (that represents
  1807   // the amount of reclaimable space still to be collected) as a
  1808   // percentage of the current heap capacity.
  1809   size_t capacity_bytes = _g1->capacity();
  1810   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1813 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1814                                                 const char* false_action_str) {
  1815   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1816   if (cset_chooser->is_empty()) {
  1817     ergo_verbose0(ErgoMixedGCs,
  1818                   false_action_str,
  1819                   ergo_format_reason("candidate old regions not available"));
  1820     return false;
  1823   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1824   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1825   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1826   double threshold = (double) G1HeapWastePercent;
  1827   if (reclaimable_perc <= threshold) {
  1828     ergo_verbose4(ErgoMixedGCs,
  1829               false_action_str,
  1830               ergo_format_reason("reclaimable percentage not over threshold")
  1831               ergo_format_region("candidate old regions")
  1832               ergo_format_byte_perc("reclaimable")
  1833               ergo_format_perc("threshold"),
  1834               cset_chooser->remaining_regions(),
  1835               reclaimable_bytes,
  1836               reclaimable_perc, threshold);
  1837     return false;
  1840   ergo_verbose4(ErgoMixedGCs,
  1841                 true_action_str,
  1842                 ergo_format_reason("candidate old regions available")
  1843                 ergo_format_region("candidate old regions")
  1844                 ergo_format_byte_perc("reclaimable")
  1845                 ergo_format_perc("threshold"),
  1846                 cset_chooser->remaining_regions(),
  1847                 reclaimable_bytes,
  1848                 reclaimable_perc, threshold);
  1849   return true;
  1852 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1853   // The min old CSet region bound is based on the maximum desired
  1854   // number of mixed GCs after a cycle. I.e., even if some old regions
  1855   // look expensive, we should add them to the CSet anyway to make
  1856   // sure we go through the available old regions in no more than the
  1857   // maximum desired number of mixed GCs.
  1858   //
  1859   // The calculation is based on the number of marked regions we added
  1860   // to the CSet chooser in the first place, not how many remain, so
  1861   // that the result is the same during all mixed GCs that follow a cycle.
  1863   const size_t region_num = (size_t) _collectionSetChooser->length();
  1864   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1865   size_t result = region_num / gc_num;
  1866   // emulate ceiling
  1867   if (result * gc_num < region_num) {
  1868     result += 1;
  1870   return (uint) result;
  1873 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1874   // The max old CSet region bound is based on the threshold expressed
  1875   // as a percentage of the heap size. I.e., it should bound the
  1876   // number of old regions added to the CSet irrespective of how many
  1877   // of them are available.
  1879   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1880   const size_t region_num = g1h->n_regions();
  1881   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1882   size_t result = region_num * perc / 100;
  1883   // emulate ceiling
  1884   if (100 * result < region_num * perc) {
  1885     result += 1;
  1887   return (uint) result;
  1891 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  1892   double young_start_time_sec = os::elapsedTime();
  1894   YoungList* young_list = _g1->young_list();
  1895   finalize_incremental_cset_building();
  1897   guarantee(target_pause_time_ms > 0.0,
  1898             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1899                     target_pause_time_ms));
  1900   guarantee(_collection_set == NULL, "Precondition");
  1902   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1903   double predicted_pause_time_ms = base_time_ms;
  1904   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1906   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1907                 "start choosing CSet",
  1908                 ergo_format_size("_pending_cards")
  1909                 ergo_format_ms("predicted base time")
  1910                 ergo_format_ms("remaining time")
  1911                 ergo_format_ms("target pause time"),
  1912                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1914   _last_gc_was_young = gcs_are_young() ? true : false;
  1916   if (_last_gc_was_young) {
  1917     _trace_gen0_time_data.increment_young_collection_count();
  1918   } else {
  1919     _trace_gen0_time_data.increment_mixed_collection_count();
  1922   // The young list is laid with the survivor regions from the previous
  1923   // pause are appended to the RHS of the young list, i.e.
  1924   //   [Newly Young Regions ++ Survivors from last pause].
  1926   uint survivor_region_length = young_list->survivor_length();
  1927   uint eden_region_length = young_list->length() - survivor_region_length;
  1928   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1930   HeapRegion* hr = young_list->first_survivor_region();
  1931   while (hr != NULL) {
  1932     assert(hr->is_survivor(), "badly formed young list");
  1933     hr->set_young();
  1934     hr = hr->get_next_young_region();
  1937   // Clear the fields that point to the survivor list - they are all young now.
  1938   young_list->clear_survivors();
  1940   _collection_set = _inc_cset_head;
  1941   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1942   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1943   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1945   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1946                 "add young regions to CSet",
  1947                 ergo_format_region("eden")
  1948                 ergo_format_region("survivors")
  1949                 ergo_format_ms("predicted young region time"),
  1950                 eden_region_length, survivor_region_length,
  1951                 _inc_cset_predicted_elapsed_time_ms);
  1953   // The number of recorded young regions is the incremental
  1954   // collection set's current size
  1955   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1957   double young_end_time_sec = os::elapsedTime();
  1958   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1960   // Set the start of the non-young choice time.
  1961   double non_young_start_time_sec = young_end_time_sec;
  1963   if (!gcs_are_young()) {
  1964     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1965     cset_chooser->verify();
  1966     const uint min_old_cset_length = calc_min_old_cset_length();
  1967     const uint max_old_cset_length = calc_max_old_cset_length();
  1969     uint expensive_region_num = 0;
  1970     bool check_time_remaining = adaptive_young_list_length();
  1972     HeapRegion* hr = cset_chooser->peek();
  1973     while (hr != NULL) {
  1974       if (old_cset_region_length() >= max_old_cset_length) {
  1975         // Added maximum number of old regions to the CSet.
  1976         ergo_verbose2(ErgoCSetConstruction,
  1977                       "finish adding old regions to CSet",
  1978                       ergo_format_reason("old CSet region num reached max")
  1979                       ergo_format_region("old")
  1980                       ergo_format_region("max"),
  1981                       old_cset_region_length(), max_old_cset_length);
  1982         break;
  1986       // Stop adding regions if the remaining reclaimable space is
  1987       // not above G1HeapWastePercent.
  1988       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1989       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1990       double threshold = (double) G1HeapWastePercent;
  1991       if (reclaimable_perc <= threshold) {
  1992         // We've added enough old regions that the amount of uncollected
  1993         // reclaimable space is at or below the waste threshold. Stop
  1994         // adding old regions to the CSet.
  1995         ergo_verbose5(ErgoCSetConstruction,
  1996                       "finish adding old regions to CSet",
  1997                       ergo_format_reason("reclaimable percentage not over threshold")
  1998                       ergo_format_region("old")
  1999                       ergo_format_region("max")
  2000                       ergo_format_byte_perc("reclaimable")
  2001                       ergo_format_perc("threshold"),
  2002                       old_cset_region_length(),
  2003                       max_old_cset_length,
  2004                       reclaimable_bytes,
  2005                       reclaimable_perc, threshold);
  2006         break;
  2009       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2010       if (check_time_remaining) {
  2011         if (predicted_time_ms > time_remaining_ms) {
  2012           // Too expensive for the current CSet.
  2014           if (old_cset_region_length() >= min_old_cset_length) {
  2015             // We have added the minimum number of old regions to the CSet,
  2016             // we are done with this CSet.
  2017             ergo_verbose4(ErgoCSetConstruction,
  2018                           "finish adding old regions to CSet",
  2019                           ergo_format_reason("predicted time is too high")
  2020                           ergo_format_ms("predicted time")
  2021                           ergo_format_ms("remaining time")
  2022                           ergo_format_region("old")
  2023                           ergo_format_region("min"),
  2024                           predicted_time_ms, time_remaining_ms,
  2025                           old_cset_region_length(), min_old_cset_length);
  2026             break;
  2029           // We'll add it anyway given that we haven't reached the
  2030           // minimum number of old regions.
  2031           expensive_region_num += 1;
  2033       } else {
  2034         if (old_cset_region_length() >= min_old_cset_length) {
  2035           // In the non-auto-tuning case, we'll finish adding regions
  2036           // to the CSet if we reach the minimum.
  2037           ergo_verbose2(ErgoCSetConstruction,
  2038                         "finish adding old regions to CSet",
  2039                         ergo_format_reason("old CSet region num reached min")
  2040                         ergo_format_region("old")
  2041                         ergo_format_region("min"),
  2042                         old_cset_region_length(), min_old_cset_length);
  2043           break;
  2047       // We will add this region to the CSet.
  2048       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2049       predicted_pause_time_ms += predicted_time_ms;
  2050       cset_chooser->remove_and_move_to_next(hr);
  2051       _g1->old_set_remove(hr);
  2052       add_old_region_to_cset(hr);
  2054       hr = cset_chooser->peek();
  2056     if (hr == NULL) {
  2057       ergo_verbose0(ErgoCSetConstruction,
  2058                     "finish adding old regions to CSet",
  2059                     ergo_format_reason("candidate old regions not available"));
  2062     if (expensive_region_num > 0) {
  2063       // We print the information once here at the end, predicated on
  2064       // whether we added any apparently expensive regions or not, to
  2065       // avoid generating output per region.
  2066       ergo_verbose4(ErgoCSetConstruction,
  2067                     "added expensive regions to CSet",
  2068                     ergo_format_reason("old CSet region num not reached min")
  2069                     ergo_format_region("old")
  2070                     ergo_format_region("expensive")
  2071                     ergo_format_region("min")
  2072                     ergo_format_ms("remaining time"),
  2073                     old_cset_region_length(),
  2074                     expensive_region_num,
  2075                     min_old_cset_length,
  2076                     time_remaining_ms);
  2079     cset_chooser->verify();
  2082   stop_incremental_cset_building();
  2084   ergo_verbose5(ErgoCSetConstruction,
  2085                 "finish choosing CSet",
  2086                 ergo_format_region("eden")
  2087                 ergo_format_region("survivors")
  2088                 ergo_format_region("old")
  2089                 ergo_format_ms("predicted pause time")
  2090                 ergo_format_ms("target pause time"),
  2091                 eden_region_length, survivor_region_length,
  2092                 old_cset_region_length(),
  2093                 predicted_pause_time_ms, target_pause_time_ms);
  2095   double non_young_end_time_sec = os::elapsedTime();
  2096   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2099 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2100   if(TraceGen0Time) {
  2101     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2105 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2106   if(TraceGen0Time) {
  2107     _all_yield_times_ms.add(yield_time_ms);
  2111 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2112   if(TraceGen0Time) {
  2113     _total.add(pause_time_ms);
  2114     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2115     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2116     _parallel.add(phase_times->cur_collection_par_time_ms());
  2117     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2118     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2119     _update_rs.add(phase_times->average_last_update_rs_time());
  2120     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2121     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2122     _termination.add(phase_times->average_last_termination_time());
  2124     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2125       phase_times->average_last_satb_filtering_times_ms() +
  2126       phase_times->average_last_update_rs_time() +
  2127       phase_times->average_last_scan_rs_time() +
  2128       phase_times->average_last_obj_copy_time() +
  2129       + phase_times->average_last_termination_time();
  2131     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2132     _parallel_other.add(parallel_other_time);
  2133     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2137 void TraceGen0TimeData::increment_young_collection_count() {
  2138   if(TraceGen0Time) {
  2139     ++_young_pause_num;
  2143 void TraceGen0TimeData::increment_mixed_collection_count() {
  2144   if(TraceGen0Time) {
  2145     ++_mixed_pause_num;
  2149 void TraceGen0TimeData::print_summary(const char* str,
  2150                                       const NumberSeq* seq) const {
  2151   double sum = seq->sum();
  2152   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2153                 str, sum / 1000.0, seq->avg());
  2156 void TraceGen0TimeData::print_summary_sd(const char* str,
  2157                                          const NumberSeq* seq) const {
  2158   print_summary(str, seq);
  2159   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2160                 "(num", seq->num(), seq->sd(), seq->maximum());
  2163 void TraceGen0TimeData::print() const {
  2164   if (!TraceGen0Time) {
  2165     return;
  2168   gclog_or_tty->print_cr("ALL PAUSES");
  2169   print_summary_sd("   Total", &_total);
  2170   gclog_or_tty->print_cr("");
  2171   gclog_or_tty->print_cr("");
  2172   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2173   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2174   gclog_or_tty->print_cr("");
  2176   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2178   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2179     gclog_or_tty->print_cr("none");
  2180   } else {
  2181     print_summary_sd("   Evacuation Pauses", &_total);
  2182     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2183     print_summary("      Parallel Time", &_parallel);
  2184     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2185     print_summary("         SATB Filtering", &_satb_filtering);
  2186     print_summary("         Update RS", &_update_rs);
  2187     print_summary("         Scan RS", &_scan_rs);
  2188     print_summary("         Object Copy", &_obj_copy);
  2189     print_summary("         Termination", &_termination);
  2190     print_summary("         Parallel Other", &_parallel_other);
  2191     print_summary("      Clear CT", &_clear_ct);
  2192     print_summary("      Other", &_other);
  2194   gclog_or_tty->print_cr("");
  2196   gclog_or_tty->print_cr("MISC");
  2197   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2198   print_summary_sd("   Yields", &_all_yield_times_ms);
  2201 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2202   if (TraceGen1Time) {
  2203     _all_full_gc_times.add(full_gc_time_ms);
  2207 void TraceGen1TimeData::print() const {
  2208   if (!TraceGen1Time) {
  2209     return;
  2212   if (_all_full_gc_times.num() > 0) {
  2213     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2214       _all_full_gc_times.num(),
  2215       _all_full_gc_times.sum() / 1000.0);
  2216     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2217     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2218       _all_full_gc_times.sd(),
  2219       _all_full_gc_times.maximum());

mercurial