src/cpu/sparc/vm/assembler_sparc.inline.hpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 1058
9adddb8c0fc8
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 // inlines for SPARC assembler -- dmu 5/97
    43 inline void Assembler::check_delay() {
    44 # ifdef CHECK_DELAY
    45   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    46   delay_state = no_delay;
    47 # endif
    48 }
    50 inline void Assembler::emit_long(int x) {
    51   check_delay();
    52   AbstractAssembler::emit_long(x);
    53 }
    55 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    56   relocate(rtype);
    57   emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    61   relocate(rspec);
    62   emit_long(x);
    63 }
    66 inline void Assembler::add(    Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    67 inline void Assembler::add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    68 inline void Assembler::add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    69 inline void Assembler::add(    const Address& a, Register d, int offset) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
    71 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    72 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    74 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    75 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    77 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    78 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    80 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    81 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    83 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    84 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    86 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    87 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    89 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    90 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    92 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    93 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    95 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
    96 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
    98 inline void Assembler::jmpl( Address& a, Register d, int offset) { jmpl( a.base(), a.disp() + offset, d, a.rspec(offset)); }
   101 inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   102 inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   104 inline void Assembler::ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   106 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   107 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   108 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   109 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   111 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   112 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   113 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   114 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   115 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   116 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   118 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   119 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   121 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   122 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   123 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   124 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   125 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   126 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   132 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   133 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   134 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   135 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   137 #ifdef _LP64
   138 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   139 inline void Assembler::ld(  Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
   140 inline void Assembler::ld(  Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
   141 #else
   142 inline void Assembler::ld(  Register s1, Register s2, Register d) { lduw( s1, s2, d); }
   143 inline void Assembler::ld(  Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
   144 #endif
   146 inline void Assembler::ldub(  Register s1, RegisterOrConstant s2, Register d) {
   147   if (s2.is_register())  ldsb(s1, s2.as_register(), d);
   148   else                   ldsb(s1, s2.as_constant(), d);
   149 }
   150 inline void Assembler::ldsb(  Register s1, RegisterOrConstant s2, Register d) {
   151   if (s2.is_register())  ldsb(s1, s2.as_register(), d);
   152   else                   ldsb(s1, s2.as_constant(), d);
   153 }
   154 inline void Assembler::lduh(  Register s1, RegisterOrConstant s2, Register d) {
   155   if (s2.is_register())  ldsh(s1, s2.as_register(), d);
   156   else                   ldsh(s1, s2.as_constant(), d);
   157 }
   158 inline void Assembler::ldsh(  Register s1, RegisterOrConstant s2, Register d) {
   159   if (s2.is_register())  ldsh(s1, s2.as_register(), d);
   160   else                   ldsh(s1, s2.as_constant(), d);
   161 }
   162 inline void Assembler::lduw(  Register s1, RegisterOrConstant s2, Register d) {
   163   if (s2.is_register())  ldsw(s1, s2.as_register(), d);
   164   else                   ldsw(s1, s2.as_constant(), d);
   165 }
   166 inline void Assembler::ldsw(  Register s1, RegisterOrConstant s2, Register d) {
   167   if (s2.is_register())  ldsw(s1, s2.as_register(), d);
   168   else                   ldsw(s1, s2.as_constant(), d);
   169 }
   170 inline void Assembler::ldx(   Register s1, RegisterOrConstant s2, Register d) {
   171   if (s2.is_register())  ldx(s1, s2.as_register(), d);
   172   else                   ldx(s1, s2.as_constant(), d);
   173 }
   174 inline void Assembler::ld(    Register s1, RegisterOrConstant s2, Register d) {
   175   if (s2.is_register())  ld(s1, s2.as_register(), d);
   176   else                   ld(s1, s2.as_constant(), d);
   177 }
   178 inline void Assembler::ldd(   Register s1, RegisterOrConstant s2, Register d) {
   179   if (s2.is_register())  ldd(s1, s2.as_register(), d);
   180   else                   ldd(s1, s2.as_constant(), d);
   181 }
   183 // form effective addresses this way:
   184 inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
   185   if (s2.is_register())  add(s1, s2.as_register(), d);
   186   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   187   if (offset != 0)       add(d,  offset,                    d);
   188 }
   190 inline void Assembler::ld(   const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ld(   a.base(), a.disp() + offset, d ); }
   191 inline void Assembler::ldsb( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsb( a.base(), a.disp() + offset, d ); }
   192 inline void Assembler::ldsh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsh( a.base(), a.disp() + offset, d ); }
   193 inline void Assembler::ldsw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsw( a.base(), a.disp() + offset, d ); }
   194 inline void Assembler::ldub( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldub( a.base(), a.disp() + offset, d ); }
   195 inline void Assembler::lduh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduh( a.base(), a.disp() + offset, d ); }
   196 inline void Assembler::lduw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduw( a.base(), a.disp() + offset, d ); }
   197 inline void Assembler::ldd(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldd(  a.base(), a.disp() + offset, d ); }
   198 inline void Assembler::ldx(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldx(  a.base(), a.disp() + offset, d ); }
   201 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   202 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   205 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   206 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   208 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   211 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   212 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   214 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   216   // pp 222
   218 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   219 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   221 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   223 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   224 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   225 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   226 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   228   // p 226
   230 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   231 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   232 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   233 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   234 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   235 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   238 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   239 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   240 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   241 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   243 inline void Assembler::st(  Register d, Register s1, Register s2) { stw(d, s1, s2); }
   244 inline void Assembler::st(  Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
   246 inline void Assembler::stb(  Register d, Register s1, RegisterOrConstant s2) {
   247   if (s2.is_register())  stb(d, s1, s2.as_register());
   248   else                   stb(d, s1, s2.as_constant());
   249 }
   250 inline void Assembler::sth(  Register d, Register s1, RegisterOrConstant s2) {
   251   if (s2.is_register())  sth(d, s1, s2.as_register());
   252   else                   sth(d, s1, s2.as_constant());
   253 }
   254 inline void Assembler::stx(  Register d, Register s1, RegisterOrConstant s2) {
   255   if (s2.is_register())  stx(d, s1, s2.as_register());
   256   else                   stx(d, s1, s2.as_constant());
   257 }
   258 inline void Assembler::std( Register d, Register s1, RegisterOrConstant s2) {
   259   if (s2.is_register())  std(d, s1, s2.as_register());
   260   else                   std(d, s1, s2.as_constant());
   261 }
   262 inline void Assembler::st(  Register d, Register s1, RegisterOrConstant s2) {
   263   if (s2.is_register())  st(d, s1, s2.as_register());
   264   else                   st(d, s1, s2.as_constant());
   265 }
   267 inline void Assembler::stb( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stb( d, a.base(), a.disp() + offset); }
   268 inline void Assembler::sth( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); sth( d, a.base(), a.disp() + offset); }
   269 inline void Assembler::stw( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stw( d, a.base(), a.disp() + offset); }
   270 inline void Assembler::st(  Register d, const Address& a, int offset) { relocate(a.rspec(offset)); st(  d, a.base(), a.disp() + offset); }
   271 inline void Assembler::std( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); std( d, a.base(), a.disp() + offset); }
   272 inline void Assembler::stx( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stx( d, a.base(), a.disp() + offset); }
   274 // v8 p 99
   276 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   277 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   278 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   279 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   280 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   281 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   282 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   283 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   286 // pp 231
   288 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   289 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   291 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   294 // Use the right loads/stores for the platform
   295 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   296 #ifdef _LP64
   297   Assembler::ldx( s1, s2, d);
   298 #else
   299   Assembler::ld(  s1, s2, d);
   300 #endif
   301 }
   303 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   304 #ifdef _LP64
   305   Assembler::ldx( s1, simm13a, d);
   306 #else
   307   Assembler::ld(  s1, simm13a, d);
   308 #endif
   309 }
   311 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   312 #ifdef _LP64
   313   Assembler::ldx( s1, s2, d);
   314 #else
   315   Assembler::ld(  s1, s2, d);
   316 #endif
   317 }
   319 inline void MacroAssembler::ld_ptr( const Address& a, Register d, int offset ) {
   320 #ifdef _LP64
   321   Assembler::ldx(  a, d, offset );
   322 #else
   323   Assembler::ld(   a, d, offset );
   324 #endif
   325 }
   327 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   328 #ifdef _LP64
   329   Assembler::stx( d, s1, s2);
   330 #else
   331   Assembler::st( d, s1, s2);
   332 #endif
   333 }
   335 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   336 #ifdef _LP64
   337   Assembler::stx( d, s1, simm13a);
   338 #else
   339   Assembler::st( d, s1, simm13a);
   340 #endif
   341 }
   343 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   344 #ifdef _LP64
   345   Assembler::stx( d, s1, s2);
   346 #else
   347   Assembler::st( d, s1, s2);
   348 #endif
   349 }
   351 inline void MacroAssembler::st_ptr(  Register d, const Address& a, int offset) {
   352 #ifdef _LP64
   353   Assembler::stx(  d, a, offset);
   354 #else
   355   Assembler::st(  d, a, offset);
   356 #endif
   357 }
   359 // Use the right loads/stores for the platform
   360 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   361 #ifdef _LP64
   362   Assembler::ldx(s1, s2, d);
   363 #else
   364   Assembler::ldd(s1, s2, d);
   365 #endif
   366 }
   368 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   369 #ifdef _LP64
   370   Assembler::ldx(s1, simm13a, d);
   371 #else
   372   Assembler::ldd(s1, simm13a, d);
   373 #endif
   374 }
   376 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   377 #ifdef _LP64
   378   Assembler::ldx(s1, s2, d);
   379 #else
   380   Assembler::ldd(s1, s2, d);
   381 #endif
   382 }
   384 inline void MacroAssembler::ld_long( const Address& a, Register d, int offset ) {
   385 #ifdef _LP64
   386   Assembler::ldx(a, d, offset );
   387 #else
   388   Assembler::ldd(a, d, offset );
   389 #endif
   390 }
   392 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   393 #ifdef _LP64
   394   Assembler::stx(d, s1, s2);
   395 #else
   396   Assembler::std(d, s1, s2);
   397 #endif
   398 }
   400 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   401 #ifdef _LP64
   402   Assembler::stx(d, s1, simm13a);
   403 #else
   404   Assembler::std(d, s1, simm13a);
   405 #endif
   406 }
   408 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   409 #ifdef _LP64
   410   Assembler::stx(d, s1, s2);
   411 #else
   412   Assembler::std(d, s1, s2);
   413 #endif
   414 }
   416 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   417 #ifdef _LP64
   418   Assembler::stx(d, a, offset);
   419 #else
   420   Assembler::std(d, a, offset);
   421 #endif
   422 }
   424 // Functions for isolating 64 bit shifts for LP64
   426 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   427 #ifdef _LP64
   428   Assembler::sllx(s1, s2, d);
   429 #else
   430   Assembler::sll(s1, s2, d);
   431 #endif
   432 }
   434 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   435 #ifdef _LP64
   436   Assembler::sllx(s1, imm6a, d);
   437 #else
   438   Assembler::sll(s1, imm6a, d);
   439 #endif
   440 }
   442 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   443 #ifdef _LP64
   444   Assembler::srlx(s1, s2, d);
   445 #else
   446   Assembler::srl(s1, s2, d);
   447 #endif
   448 }
   450 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   451 #ifdef _LP64
   452   Assembler::srlx(s1, imm6a, d);
   453 #else
   454   Assembler::srl(s1, imm6a, d);
   455 #endif
   456 }
   458 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   459   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   460   else                   sll_ptr(s1, s2.as_constant(), d);
   461 }
   463 // Use the right branch for the platform
   465 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   466   if (VM_Version::v9_instructions_work())
   467     Assembler::bp(c, a, icc, p, d, rt);
   468   else
   469     Assembler::br(c, a, d, rt);
   470 }
   472 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   473   br(c, a, p, target(L));
   474 }
   477 // Branch that tests either xcc or icc depending on the
   478 // architecture compiled (LP64 or not)
   479 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   480 #ifdef _LP64
   481     Assembler::bp(c, a, xcc, p, d, rt);
   482 #else
   483     MacroAssembler::br(c, a, p, d, rt);
   484 #endif
   485 }
   487 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   488   brx(c, a, p, target(L));
   489 }
   491 inline void MacroAssembler::ba( bool a, Label& L ) {
   492   br(always, a, pt, L);
   493 }
   495 // Warning: V9 only functions
   496 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   497   Assembler::bp(c, a, cc, p, d, rt);
   498 }
   500 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   501   Assembler::bp(c, a, cc, p, L);
   502 }
   504 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   505   if (VM_Version::v9_instructions_work())
   506     fbp(c, a, fcc0, p, d, rt);
   507   else
   508     Assembler::fb(c, a, d, rt);
   509 }
   511 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   512   fb(c, a, p, target(L));
   513 }
   515 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   516   Assembler::fbp(c, a, cc, p, d, rt);
   517 }
   519 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   520   Assembler::fbp(c, a, cc, p, L);
   521 }
   523 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   524 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   526 // Call with a check to see if we need to deal with the added
   527 // expense of relocation and if we overflow the displacement
   528 // of the quick call instruction./
   529 // Check to see if we have to deal with relocations
   530 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   531 #ifdef _LP64
   532   intptr_t disp;
   533   // NULL is ok because it will be relocated later.
   534   // Must change NULL to a reachable address in order to
   535   // pass asserts here and in wdisp.
   536   if ( d == NULL )
   537     d = pc();
   539   // Is this address within range of the call instruction?
   540   // If not, use the expensive instruction sequence
   541   disp = (intptr_t)d - (intptr_t)pc();
   542   if ( disp != (intptr_t)(int32_t)disp ) {
   543     relocate(rt);
   544     Address dest(O7, (address)d);
   545     sethi(dest, /*ForceRelocatable=*/ true);
   546     jmpl(dest, O7);
   547   }
   548   else {
   549     Assembler::call( d, rt );
   550   }
   551 #else
   552   Assembler::call( d, rt );
   553 #endif
   554 }
   556 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   557   MacroAssembler::call( target(L), rt);
   558 }
   562 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   563 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   565 // prefetch instruction
   566 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   567   if (VM_Version::v9_instructions_work())
   568     Assembler::bp( never, true, xcc, pt, d, rt );
   569 }
   570 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   573 // clobbers o7 on V8!!
   574 // returns delta from gotten pc to addr after
   575 inline int MacroAssembler::get_pc( Register d ) {
   576   int x = offset();
   577   if (VM_Version::v9_instructions_work())
   578     rdpc(d);
   579   else {
   580     Label lbl;
   581     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   582     if (d == O7)  delayed()->nop();
   583     else          delayed()->mov(O7, d);
   584     bind(lbl);
   585   }
   586   return offset() - x;
   587 }
   590 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   593 // Loads the current PC of the following instruction as an immediate value in
   594 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   595 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   596   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   597 #ifdef _LP64
   598   Unimplemented();
   599 #else
   600   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   601   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   602 #endif
   603   return thepc;
   604 }
   606 inline void MacroAssembler::load_address( Address& a, int offset ) {
   607   assert_not_delayed();
   608 #ifdef _LP64
   609   sethi(a);
   610   add(a, a.base(), offset);
   611 #else
   612   if (a.hi() == 0 && a.rtype() == relocInfo::none) {
   613     set(a.disp() + offset, a.base());
   614   }
   615   else {
   616     sethi(a);
   617     add(a, a.base(), offset);
   618   }
   619 #endif
   620 }
   623 inline void MacroAssembler::split_disp( Address& a, Register temp ) {
   624   assert_not_delayed();
   625   a = a.split_disp();
   626   Assembler::sethi(a.hi(), temp, a.rspec());
   627   add(a.base(), temp, a.base());
   628 }
   631 inline void MacroAssembler::load_contents( Address& a, Register d, int offset ) {
   632   assert_not_delayed();
   633   sethi(a);
   634   ld(a, d, offset);
   635 }
   638 inline void MacroAssembler::load_ptr_contents( Address& a, Register d, int offset ) {
   639   assert_not_delayed();
   640   sethi(a);
   641   ld_ptr(a, d, offset);
   642 }
   645 inline void MacroAssembler::store_contents( Register s, Address& a, int offset ) {
   646   assert_not_delayed();
   647   sethi(a);
   648   st(s, a, offset);
   649 }
   652 inline void MacroAssembler::store_ptr_contents( Register s, Address& a, int offset ) {
   653   assert_not_delayed();
   654   sethi(a);
   655   st_ptr(s, a, offset);
   656 }
   659 // This code sequence is relocatable to any address, even on LP64.
   660 inline void MacroAssembler::jumpl_to( Address& a, Register d, int offset ) {
   661   assert_not_delayed();
   662   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   663   // variable length instruction streams.
   664   sethi(a, /*ForceRelocatable=*/ true);
   665   jmpl(a, d, offset);
   666 }
   669 inline void MacroAssembler::jump_to( Address& a, int offset ) {
   670   jumpl_to( a, G0, offset );
   671 }
   674 inline void MacroAssembler::set_oop( jobject obj, Register d ) {
   675   set_oop(allocate_oop_address(obj, d));
   676 }
   679 inline void MacroAssembler::set_oop_constant( jobject obj, Register d ) {
   680   set_oop(constant_oop_address(obj, d));
   681 }
   684 inline void MacroAssembler::set_oop( Address obj_addr ) {
   685   assert(obj_addr.rspec().type()==relocInfo::oop_type, "must be an oop reloc");
   686   load_address(obj_addr);
   687 }
   690 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   691   if (a.is_register())
   692     mov(a.as_register(), d);
   693   else
   694     ld (a.as_address(),  d);
   695 }
   697 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   698   if (a.is_register())
   699     mov(s, a.as_register());
   700   else
   701     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   702 }
   704 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   705   if (a.is_register())
   706     mov(s, a.as_register());
   707   else
   708     st_ptr (s, a.as_address());
   709 }
   712 #ifdef _LP64
   713 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   714   if (a.is_float_register())
   715 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   716     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   717   else
   718     // Floats are stored in the high half of the stack entry
   719     // The low half is undefined per the ABI.
   720     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   721 }
   723 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   724   if (a.is_float_register())
   725 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   726     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   727   else
   728     stf(FloatRegisterImpl::D, s, a.as_address());
   729 }
   731 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   732   if (a.is_register())
   733     mov(s, a.as_register());
   734   else
   735     stx(s, a.as_address());
   736 }
   737 #endif
   739 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   740 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   741 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   742 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   744 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   745 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   746 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   747 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   749 // returns if membar generates anything, obviously this code should mirror
   750 // membar below.
   751 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   752   if( !os::is_MP() ) return false;  // Not needed on single CPU
   753   if( VM_Version::v9_instructions_work() ) {
   754     const Membar_mask_bits effective_mask =
   755         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   756     return (effective_mask != 0);
   757   } else {
   758     return true;
   759   }
   760 }
   762 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   763   // Uniprocessors do not need memory barriers
   764   if (!os::is_MP()) return;
   765   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   766   // 8.4.4.3, a.31 and a.50.
   767   if( VM_Version::v9_instructions_work() ) {
   768     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   769     // of the mmask subfield of const7a that does anything that isn't done
   770     // implicitly is StoreLoad.
   771     const Membar_mask_bits effective_mask =
   772         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   773     if ( effective_mask != 0 ) {
   774       Assembler::membar( effective_mask );
   775     }
   776   } else {
   777     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   778     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   779     // which guarantees that all stores behave as if an stbar were issued just after
   780     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   781     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   782     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   783     //
   784     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   785     // space.  Put one here to be on the safe side.
   786     Assembler::ldstub(SP, 0, G0);
   787   }
   788 }

mercurial