src/cpu/x86/vm/c1_Runtime1_x86.cpp

Fri, 18 Mar 2011 16:00:34 -0700

author
never
date
Fri, 18 Mar 2011 16:00:34 -0700
changeset 2658
c7f3d0b4570f
parent 2603
1b4e6a5d98e0
child 2697
09f96c3ff1ad
permissions
-rw-r--r--

7017732: move static fields into Class to prepare for perm gen removal
Reviewed-by: kvn, coleenp, twisti, stefank

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Defs.hpp"
    27 #include "c1/c1_MacroAssembler.hpp"
    28 #include "c1/c1_Runtime1.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "nativeInst_x86.hpp"
    31 #include "oops/compiledICHolderOop.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "register_x86.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/signature.hpp"
    37 #include "runtime/vframeArray.hpp"
    38 #include "vmreg_x86.inline.hpp"
    41 // Implementation of StubAssembler
    43 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
    44   // setup registers
    45   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    46   assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
    47   assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
    48   assert(args_size >= 0, "illegal args_size");
    50 #ifdef _LP64
    51   mov(c_rarg0, thread);
    52   set_num_rt_args(0); // Nothing on stack
    53 #else
    54   set_num_rt_args(1 + args_size);
    56   // push java thread (becomes first argument of C function)
    57   get_thread(thread);
    58   push(thread);
    59 #endif // _LP64
    61   set_last_Java_frame(thread, noreg, rbp, NULL);
    63   // do the call
    64   call(RuntimeAddress(entry));
    65   int call_offset = offset();
    66   // verify callee-saved register
    67 #ifdef ASSERT
    68   guarantee(thread != rax, "change this code");
    69   push(rax);
    70   { Label L;
    71     get_thread(rax);
    72     cmpptr(thread, rax);
    73     jcc(Assembler::equal, L);
    74     int3();
    75     stop("StubAssembler::call_RT: rdi not callee saved?");
    76     bind(L);
    77   }
    78   pop(rax);
    79 #endif
    80   reset_last_Java_frame(thread, true, false);
    82   // discard thread and arguments
    83   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
    85   // check for pending exceptions
    86   { Label L;
    87     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
    88     jcc(Assembler::equal, L);
    89     // exception pending => remove activation and forward to exception handler
    90     movptr(rax, Address(thread, Thread::pending_exception_offset()));
    91     // make sure that the vm_results are cleared
    92     if (oop_result1->is_valid()) {
    93       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
    94     }
    95     if (oop_result2->is_valid()) {
    96       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
    97     }
    98     if (frame_size() == no_frame_size) {
    99       leave();
   100       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
   101     } else if (_stub_id == Runtime1::forward_exception_id) {
   102       should_not_reach_here();
   103     } else {
   104       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   105     }
   106     bind(L);
   107   }
   108   // get oop results if there are any and reset the values in the thread
   109   if (oop_result1->is_valid()) {
   110     movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
   111     movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   112     verify_oop(oop_result1);
   113   }
   114   if (oop_result2->is_valid()) {
   115     movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
   116     movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   117     verify_oop(oop_result2);
   118   }
   119   return call_offset;
   120 }
   123 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
   124 #ifdef _LP64
   125   mov(c_rarg1, arg1);
   126 #else
   127   push(arg1);
   128 #endif // _LP64
   129   return call_RT(oop_result1, oop_result2, entry, 1);
   130 }
   133 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
   134 #ifdef _LP64
   135   if (c_rarg1 == arg2) {
   136     if (c_rarg2 == arg1) {
   137       xchgq(arg1, arg2);
   138     } else {
   139       mov(c_rarg2, arg2);
   140       mov(c_rarg1, arg1);
   141     }
   142   } else {
   143     mov(c_rarg1, arg1);
   144     mov(c_rarg2, arg2);
   145   }
   146 #else
   147   push(arg2);
   148   push(arg1);
   149 #endif // _LP64
   150   return call_RT(oop_result1, oop_result2, entry, 2);
   151 }
   154 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
   155 #ifdef _LP64
   156   // if there is any conflict use the stack
   157   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   158       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   159       arg3 == c_rarg1 || arg1 == c_rarg2) {
   160     push(arg3);
   161     push(arg2);
   162     push(arg1);
   163     pop(c_rarg1);
   164     pop(c_rarg2);
   165     pop(c_rarg3);
   166   } else {
   167     mov(c_rarg1, arg1);
   168     mov(c_rarg2, arg2);
   169     mov(c_rarg3, arg3);
   170   }
   171 #else
   172   push(arg3);
   173   push(arg2);
   174   push(arg1);
   175 #endif // _LP64
   176   return call_RT(oop_result1, oop_result2, entry, 3);
   177 }
   180 // Implementation of StubFrame
   182 class StubFrame: public StackObj {
   183  private:
   184   StubAssembler* _sasm;
   186  public:
   187   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   188   void load_argument(int offset_in_words, Register reg);
   190   ~StubFrame();
   191 };
   194 #define __ _sasm->
   196 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   197   _sasm = sasm;
   198   __ set_info(name, must_gc_arguments);
   199   __ enter();
   200 }
   202 // load parameters that were stored with LIR_Assembler::store_parameter
   203 // Note: offsets for store_parameter and load_argument must match
   204 void StubFrame::load_argument(int offset_in_words, Register reg) {
   205   // rbp, + 0: link
   206   //     + 1: return address
   207   //     + 2: argument with offset 0
   208   //     + 3: argument with offset 1
   209   //     + 4: ...
   211   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   212 }
   215 StubFrame::~StubFrame() {
   216   __ leave();
   217   __ ret(0);
   218 }
   220 #undef __
   223 // Implementation of Runtime1
   225 #define __ sasm->
   227 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   228 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   230 // Stack layout for saving/restoring  all the registers needed during a runtime
   231 // call (this includes deoptimization)
   232 // Note: note that users of this frame may well have arguments to some runtime
   233 // while these values are on the stack. These positions neglect those arguments
   234 // but the code in save_live_registers will take the argument count into
   235 // account.
   236 //
   237 #ifdef _LP64
   238   #define SLOT2(x) x,
   239   #define SLOT_PER_WORD 2
   240 #else
   241   #define SLOT2(x)
   242   #define SLOT_PER_WORD 1
   243 #endif // _LP64
   245 enum reg_save_layout {
   246   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   247   // happen and will assert if the stack size we create is misaligned
   248 #ifdef _LP64
   249   align_dummy_0, align_dummy_1,
   250 #endif // _LP64
   251 #ifdef _WIN64
   252   // Windows always allocates space for it's argument registers (see
   253   // frame::arg_reg_save_area_bytes).
   254   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
   255   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
   256   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
   257   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
   258 #endif // _WIN64
   259   xmm_regs_as_doubles_off,                                                                  // 32
   260   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   261   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   262   // fpu_state_end_off is exclusive
   263   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   264   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   265   extra_space_offset,                                                                       // 360
   266 #ifdef _LP64
   267   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   268   r14_off, r14H_off,                                                                        // 368, 372
   269   r13_off, r13H_off,                                                                        // 376, 380
   270   r12_off, r12H_off,                                                                        // 384, 388
   271   r11_off, r11H_off,                                                                        // 392, 396
   272   r10_off, r10H_off,                                                                        // 400, 404
   273   r9_off, r9H_off,                                                                          // 408, 412
   274   r8_off, r8H_off,                                                                          // 416, 420
   275   rdi_off, rdiH_off,                                                                        // 424, 428
   276 #else
   277   rdi_off = extra_space_offset,
   278 #endif // _LP64
   279   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   280   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   281   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   282   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   283   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   284   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   285   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   286   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   287   return_off, SLOT2(returnH_off)                                                            // 496, 500
   288   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
   289 };
   293 // Save off registers which might be killed by calls into the runtime.
   294 // Tries to smart of about FP registers.  In particular we separate
   295 // saving and describing the FPU registers for deoptimization since we
   296 // have to save the FPU registers twice if we describe them and on P4
   297 // saving FPU registers which don't contain anything appears
   298 // expensive.  The deopt blob is the only thing which needs to
   299 // describe FPU registers.  In all other cases it should be sufficient
   300 // to simply save their current value.
   302 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   303                                 bool save_fpu_registers = true) {
   305   // In 64bit all the args are in regs so there are no additional stack slots
   306   LP64_ONLY(num_rt_args = 0);
   307   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   308   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   309   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   311   // record saved value locations in an OopMap
   312   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   313   OopMap* map = new OopMap(frame_size_in_slots, 0);
   314   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   315   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   316   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   317   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   318   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   319   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   320 #ifdef _LP64
   321   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   322   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   323   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   324   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   325   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   326   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   327   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   328   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   330   // This is stupid but needed.
   331   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   332   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   333   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   334   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   335   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   336   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   338   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   339   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   342   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   343   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   344   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   345   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   346 #endif // _LP64
   348   if (save_fpu_registers) {
   349     if (UseSSE < 2) {
   350       int fpu_off = float_regs_as_doubles_off;
   351       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   352         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   353         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   354         // %%% This is really a waste but we'll keep things as they were for now
   355         if (true) {
   356           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   357         }
   358         fpu_off += 2;
   359       }
   360       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   361     }
   363     if (UseSSE >= 2) {
   364       int xmm_off = xmm_regs_as_doubles_off;
   365       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   366         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   367         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   368         // %%% This is really a waste but we'll keep things as they were for now
   369         if (true) {
   370           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   371         }
   372         xmm_off += 2;
   373       }
   374       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   376     } else if (UseSSE == 1) {
   377       int xmm_off = xmm_regs_as_doubles_off;
   378       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   379         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   380         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   381         xmm_off += 2;
   382       }
   383       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   384     }
   385   }
   387   return map;
   388 }
   390 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   391                                    bool save_fpu_registers = true) {
   392   __ block_comment("save_live_registers");
   394   __ pusha();         // integer registers
   396   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   397   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   399   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   401 #ifdef ASSERT
   402   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   403 #endif
   405   if (save_fpu_registers) {
   406     if (UseSSE < 2) {
   407       // save FPU stack
   408       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   409       __ fwait();
   411 #ifdef ASSERT
   412       Label ok;
   413       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   414       __ jccb(Assembler::equal, ok);
   415       __ stop("corrupted control word detected");
   416       __ bind(ok);
   417 #endif
   419       // Reset the control word to guard against exceptions being unmasked
   420       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   421       // into the on stack copy and then reload that to make sure that the
   422       // current and future values are correct.
   423       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   424       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   426       // Save the FPU registers in de-opt-able form
   427       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   428       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   429       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   430       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   431       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   432       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   433       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   434       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   435     }
   437     if (UseSSE >= 2) {
   438       // save XMM registers
   439       // XMM registers can contain float or double values, but this is not known here,
   440       // so always save them as doubles.
   441       // note that float values are _not_ converted automatically, so for float values
   442       // the second word contains only garbage data.
   443       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   444       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   445       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   446       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   447       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   448       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   449       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   450       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   451 #ifdef _LP64
   452       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   453       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   454       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   455       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   456       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   458       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   460 #endif // _LP64
   461     } else if (UseSSE == 1) {
   462       // save XMM registers as float because double not supported without SSE2
   463       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   464       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   465       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   466       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   467       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   468       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   469       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   470       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   471     }
   472   }
   474   // FPU stack must be empty now
   475   __ verify_FPU(0, "save_live_registers");
   477   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   478 }
   481 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   482   if (restore_fpu_registers) {
   483     if (UseSSE >= 2) {
   484       // restore XMM registers
   485       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   486       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   487       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   488       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   489       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   490       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   491       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   492       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   493 #ifdef _LP64
   494       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   495       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   496       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   497       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   498       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   499       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   500       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   501       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   502 #endif // _LP64
   503     } else if (UseSSE == 1) {
   504       // restore XMM registers
   505       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   506       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   507       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   508       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   509       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   510       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   511       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   512       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   513     }
   515     if (UseSSE < 2) {
   516       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   517     } else {
   518       // check that FPU stack is really empty
   519       __ verify_FPU(0, "restore_live_registers");
   520     }
   522   } else {
   523     // check that FPU stack is really empty
   524     __ verify_FPU(0, "restore_live_registers");
   525   }
   527 #ifdef ASSERT
   528   {
   529     Label ok;
   530     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   531     __ jcc(Assembler::equal, ok);
   532     __ stop("bad offsets in frame");
   533     __ bind(ok);
   534   }
   535 #endif // ASSERT
   537   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   538 }
   541 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   542   __ block_comment("restore_live_registers");
   544   restore_fpu(sasm, restore_fpu_registers);
   545   __ popa();
   546 }
   549 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   550   __ block_comment("restore_live_registers_except_rax");
   552   restore_fpu(sasm, restore_fpu_registers);
   554 #ifdef _LP64
   555   __ movptr(r15, Address(rsp, 0));
   556   __ movptr(r14, Address(rsp, wordSize));
   557   __ movptr(r13, Address(rsp, 2 * wordSize));
   558   __ movptr(r12, Address(rsp, 3 * wordSize));
   559   __ movptr(r11, Address(rsp, 4 * wordSize));
   560   __ movptr(r10, Address(rsp, 5 * wordSize));
   561   __ movptr(r9,  Address(rsp, 6 * wordSize));
   562   __ movptr(r8,  Address(rsp, 7 * wordSize));
   563   __ movptr(rdi, Address(rsp, 8 * wordSize));
   564   __ movptr(rsi, Address(rsp, 9 * wordSize));
   565   __ movptr(rbp, Address(rsp, 10 * wordSize));
   566   // skip rsp
   567   __ movptr(rbx, Address(rsp, 12 * wordSize));
   568   __ movptr(rdx, Address(rsp, 13 * wordSize));
   569   __ movptr(rcx, Address(rsp, 14 * wordSize));
   571   __ addptr(rsp, 16 * wordSize);
   572 #else
   574   __ pop(rdi);
   575   __ pop(rsi);
   576   __ pop(rbp);
   577   __ pop(rbx); // skip this value
   578   __ pop(rbx);
   579   __ pop(rdx);
   580   __ pop(rcx);
   581   __ addptr(rsp, BytesPerWord);
   582 #endif // _LP64
   583 }
   586 void Runtime1::initialize_pd() {
   587   // nothing to do
   588 }
   591 // target: the entry point of the method that creates and posts the exception oop
   592 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   594 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   595   // preserve all registers
   596   int num_rt_args = has_argument ? 2 : 1;
   597   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   599   // now all registers are saved and can be used freely
   600   // verify that no old value is used accidentally
   601   __ invalidate_registers(true, true, true, true, true, true);
   603   // registers used by this stub
   604   const Register temp_reg = rbx;
   606   // load argument for exception that is passed as an argument into the stub
   607   if (has_argument) {
   608 #ifdef _LP64
   609     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   610 #else
   611     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   612     __ push(temp_reg);
   613 #endif // _LP64
   614   }
   615   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   617   OopMapSet* oop_maps = new OopMapSet();
   618   oop_maps->add_gc_map(call_offset, oop_map);
   620   __ stop("should not reach here");
   622   return oop_maps;
   623 }
   626 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
   627   __ block_comment("generate_handle_exception");
   629   // incoming parameters
   630   const Register exception_oop = rax;
   631   const Register exception_pc  = rdx;
   632   // other registers used in this stub
   633   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   635   // Save registers, if required.
   636   OopMapSet* oop_maps = new OopMapSet();
   637   OopMap* oop_map = NULL;
   638   switch (id) {
   639   case forward_exception_id:
   640     // We're handling an exception in the context of a compiled frame.
   641     // The registers have been saved in the standard places.  Perform
   642     // an exception lookup in the caller and dispatch to the handler
   643     // if found.  Otherwise unwind and dispatch to the callers
   644     // exception handler.
   645     oop_map = generate_oop_map(sasm, 1 /*thread*/);
   647     // load and clear pending exception oop into RAX
   648     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   649     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   651     // load issuing PC (the return address for this stub) into rdx
   652     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   654     // make sure that the vm_results are cleared (may be unnecessary)
   655     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
   656     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   657     break;
   658   case handle_exception_nofpu_id:
   659   case handle_exception_id:
   660     // At this point all registers MAY be live.
   661     oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
   662     break;
   663   case handle_exception_from_callee_id: {
   664     // At this point all registers except exception oop (RAX) and
   665     // exception pc (RDX) are dead.
   666     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
   667     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
   668     sasm->set_frame_size(frame_size);
   669     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
   670     break;
   671   }
   672   default:  ShouldNotReachHere();
   673   }
   675 #ifdef TIERED
   676   // C2 can leave the fpu stack dirty
   677   if (UseSSE < 2) {
   678     __ empty_FPU_stack();
   679   }
   680 #endif // TIERED
   682   // verify that only rax, and rdx is valid at this time
   683   __ invalidate_registers(false, true, true, false, true, true);
   684   // verify that rax, contains a valid exception
   685   __ verify_not_null_oop(exception_oop);
   687   // load address of JavaThread object for thread-local data
   688   NOT_LP64(__ get_thread(thread);)
   690 #ifdef ASSERT
   691   // check that fields in JavaThread for exception oop and issuing pc are
   692   // empty before writing to them
   693   Label oop_empty;
   694   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   695   __ jcc(Assembler::equal, oop_empty);
   696   __ stop("exception oop already set");
   697   __ bind(oop_empty);
   699   Label pc_empty;
   700   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   701   __ jcc(Assembler::equal, pc_empty);
   702   __ stop("exception pc already set");
   703   __ bind(pc_empty);
   704 #endif
   706   // save exception oop and issuing pc into JavaThread
   707   // (exception handler will load it from here)
   708   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   709   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
   711   // patch throwing pc into return address (has bci & oop map)
   712   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   714   // compute the exception handler.
   715   // the exception oop and the throwing pc are read from the fields in JavaThread
   716   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   717   oop_maps->add_gc_map(call_offset, oop_map);
   719   // rax: handler address
   720   //      will be the deopt blob if nmethod was deoptimized while we looked up
   721   //      handler regardless of whether handler existed in the nmethod.
   723   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   724   __ invalidate_registers(false, true, true, true, true, true);
   726   // patch the return address, this stub will directly return to the exception handler
   727   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   729   switch (id) {
   730   case forward_exception_id:
   731   case handle_exception_nofpu_id:
   732   case handle_exception_id:
   733     // Restore the registers that were saved at the beginning.
   734     restore_live_registers(sasm, id == handle_exception_nofpu_id);
   735     break;
   736   case handle_exception_from_callee_id:
   737     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
   738     // since we do a leave anyway.
   740     // Pop the return address since we are possibly changing SP (restoring from BP).
   741     __ leave();
   742     __ pop(rcx);
   744     // Restore SP from BP if the exception PC is a method handle call site.
   745     NOT_LP64(__ get_thread(thread);)
   746     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   747     __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   748     __ jmp(rcx);  // jump to exception handler
   749     break;
   750   default:  ShouldNotReachHere();
   751   }
   753   return oop_maps;
   754 }
   757 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   758   // incoming parameters
   759   const Register exception_oop = rax;
   760   // callee-saved copy of exception_oop during runtime call
   761   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
   762   // other registers used in this stub
   763   const Register exception_pc = rdx;
   764   const Register handler_addr = rbx;
   765   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   767   // verify that only rax, is valid at this time
   768   __ invalidate_registers(false, true, true, true, true, true);
   770 #ifdef ASSERT
   771   // check that fields in JavaThread for exception oop and issuing pc are empty
   772   NOT_LP64(__ get_thread(thread);)
   773   Label oop_empty;
   774   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   775   __ jcc(Assembler::equal, oop_empty);
   776   __ stop("exception oop must be empty");
   777   __ bind(oop_empty);
   779   Label pc_empty;
   780   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   781   __ jcc(Assembler::equal, pc_empty);
   782   __ stop("exception pc must be empty");
   783   __ bind(pc_empty);
   784 #endif
   786   // clear the FPU stack in case any FPU results are left behind
   787   __ empty_FPU_stack();
   789   // save exception_oop in callee-saved register to preserve it during runtime calls
   790   __ verify_not_null_oop(exception_oop);
   791   __ movptr(exception_oop_callee_saved, exception_oop);
   793   NOT_LP64(__ get_thread(thread);)
   794   // Get return address (is on top of stack after leave).
   795   __ movptr(exception_pc, Address(rsp, 0));
   797   // search the exception handler address of the caller (using the return address)
   798   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   799   // rax: exception handler address of the caller
   801   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
   802   __ invalidate_registers(false, true, true, true, false, true);
   804   // move result of call into correct register
   805   __ movptr(handler_addr, rax);
   807   // Restore exception oop to RAX (required convention of exception handler).
   808   __ movptr(exception_oop, exception_oop_callee_saved);
   810   // verify that there is really a valid exception in rax
   811   __ verify_not_null_oop(exception_oop);
   813   // get throwing pc (= return address).
   814   // rdx has been destroyed by the call, so it must be set again
   815   // the pop is also necessary to simulate the effect of a ret(0)
   816   __ pop(exception_pc);
   818   // Restore SP from BP if the exception PC is a method handle call site.
   819   NOT_LP64(__ get_thread(thread);)
   820   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   821   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   823   // continue at exception handler (return address removed)
   824   // note: do *not* remove arguments when unwinding the
   825   //       activation since the caller assumes having
   826   //       all arguments on the stack when entering the
   827   //       runtime to determine the exception handler
   828   //       (GC happens at call site with arguments!)
   829   // rax: exception oop
   830   // rdx: throwing pc
   831   // rbx: exception handler
   832   __ jmp(handler_addr);
   833 }
   836 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   837   // use the maximum number of runtime-arguments here because it is difficult to
   838   // distinguish each RT-Call.
   839   // Note: This number affects also the RT-Call in generate_handle_exception because
   840   //       the oop-map is shared for all calls.
   841   const int num_rt_args = 2;  // thread + dummy
   843   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   844   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   846   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   848 #ifdef _LP64
   849   const Register thread = r15_thread;
   850   // No need to worry about dummy
   851   __ mov(c_rarg0, thread);
   852 #else
   853   __ push(rax); // push dummy
   855   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   856   // push java thread (becomes first argument of C function)
   857   __ get_thread(thread);
   858   __ push(thread);
   859 #endif // _LP64
   860   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   861   // do the call
   862   __ call(RuntimeAddress(target));
   863   OopMapSet* oop_maps = new OopMapSet();
   864   oop_maps->add_gc_map(__ offset(), oop_map);
   865   // verify callee-saved register
   866 #ifdef ASSERT
   867   guarantee(thread != rax, "change this code");
   868   __ push(rax);
   869   { Label L;
   870     __ get_thread(rax);
   871     __ cmpptr(thread, rax);
   872     __ jcc(Assembler::equal, L);
   873     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   874     __ bind(L);
   875   }
   876   __ pop(rax);
   877 #endif
   878   __ reset_last_Java_frame(thread, true, false);
   879 #ifndef _LP64
   880   __ pop(rcx); // discard thread arg
   881   __ pop(rcx); // discard dummy
   882 #endif // _LP64
   884   // check for pending exceptions
   885   { Label L;
   886     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   887     __ jcc(Assembler::equal, L);
   888     // exception pending => remove activation and forward to exception handler
   890     __ testptr(rax, rax);                                   // have we deoptimized?
   891     __ jump_cc(Assembler::equal,
   892                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   894     // the deopt blob expects exceptions in the special fields of
   895     // JavaThread, so copy and clear pending exception.
   897     // load and clear pending exception
   898     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   899     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   901     // check that there is really a valid exception
   902     __ verify_not_null_oop(rax);
   904     // load throwing pc: this is the return address of the stub
   905     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   907 #ifdef ASSERT
   908     // check that fields in JavaThread for exception oop and issuing pc are empty
   909     Label oop_empty;
   910     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   911     __ jcc(Assembler::equal, oop_empty);
   912     __ stop("exception oop must be empty");
   913     __ bind(oop_empty);
   915     Label pc_empty;
   916     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   917     __ jcc(Assembler::equal, pc_empty);
   918     __ stop("exception pc must be empty");
   919     __ bind(pc_empty);
   920 #endif
   922     // store exception oop and throwing pc to JavaThread
   923     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   924     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   926     restore_live_registers(sasm);
   928     __ leave();
   929     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   931     // Forward the exception directly to deopt blob. We can blow no
   932     // registers and must leave throwing pc on the stack.  A patch may
   933     // have values live in registers so the entry point with the
   934     // exception in tls.
   935     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   937     __ bind(L);
   938   }
   941   // Runtime will return true if the nmethod has been deoptimized during
   942   // the patching process. In that case we must do a deopt reexecute instead.
   944   Label reexecuteEntry, cont;
   946   __ testptr(rax, rax);                                 // have we deoptimized?
   947   __ jcc(Assembler::equal, cont);                       // no
   949   // Will reexecute. Proper return address is already on the stack we just restore
   950   // registers, pop all of our frame but the return address and jump to the deopt blob
   951   restore_live_registers(sasm);
   952   __ leave();
   953   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   955   __ bind(cont);
   956   restore_live_registers(sasm);
   957   __ leave();
   958   __ ret(0);
   960   return oop_maps;
   961 }
   964 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   966   // for better readability
   967   const bool must_gc_arguments = true;
   968   const bool dont_gc_arguments = false;
   970   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   971   bool save_fpu_registers = true;
   973   // stub code & info for the different stubs
   974   OopMapSet* oop_maps = NULL;
   975   switch (id) {
   976     case forward_exception_id:
   977       {
   978         oop_maps = generate_handle_exception(id, sasm);
   979         __ leave();
   980         __ ret(0);
   981       }
   982       break;
   984     case new_instance_id:
   985     case fast_new_instance_id:
   986     case fast_new_instance_init_check_id:
   987       {
   988         Register klass = rdx; // Incoming
   989         Register obj   = rax; // Result
   991         if (id == new_instance_id) {
   992           __ set_info("new_instance", dont_gc_arguments);
   993         } else if (id == fast_new_instance_id) {
   994           __ set_info("fast new_instance", dont_gc_arguments);
   995         } else {
   996           assert(id == fast_new_instance_init_check_id, "bad StubID");
   997           __ set_info("fast new_instance init check", dont_gc_arguments);
   998         }
  1000         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
  1001             UseTLAB && FastTLABRefill) {
  1002           Label slow_path;
  1003           Register obj_size = rcx;
  1004           Register t1       = rbx;
  1005           Register t2       = rsi;
  1006           assert_different_registers(klass, obj, obj_size, t1, t2);
  1008           __ push(rdi);
  1009           __ push(rbx);
  1011           if (id == fast_new_instance_init_check_id) {
  1012             // make sure the klass is initialized
  1013             __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  1014             __ jcc(Assembler::notEqual, slow_path);
  1017 #ifdef ASSERT
  1018           // assert object can be fast path allocated
  1020             Label ok, not_ok;
  1021             __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1022             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1023             __ jcc(Assembler::lessEqual, not_ok);
  1024             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1025             __ jcc(Assembler::zero, ok);
  1026             __ bind(not_ok);
  1027             __ stop("assert(can be fast path allocated)");
  1028             __ should_not_reach_here();
  1029             __ bind(ok);
  1031 #endif // ASSERT
  1033           // if we got here then the TLAB allocation failed, so try
  1034           // refilling the TLAB or allocating directly from eden.
  1035           Label retry_tlab, try_eden;
  1036           const Register thread =
  1037             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
  1039           __ bind(retry_tlab);
  1041           // get the instance size (size is postive so movl is fine for 64bit)
  1042           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1044           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1046           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1047           __ verify_oop(obj);
  1048           __ pop(rbx);
  1049           __ pop(rdi);
  1050           __ ret(0);
  1052           __ bind(try_eden);
  1053           // get the instance size (size is postive so movl is fine for 64bit)
  1054           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1056           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1057           __ incr_allocated_bytes(thread, obj_size, 0);
  1059           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1060           __ verify_oop(obj);
  1061           __ pop(rbx);
  1062           __ pop(rdi);
  1063           __ ret(0);
  1065           __ bind(slow_path);
  1066           __ pop(rbx);
  1067           __ pop(rdi);
  1070         __ enter();
  1071         OopMap* map = save_live_registers(sasm, 2);
  1072         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1073         oop_maps = new OopMapSet();
  1074         oop_maps->add_gc_map(call_offset, map);
  1075         restore_live_registers_except_rax(sasm);
  1076         __ verify_oop(obj);
  1077         __ leave();
  1078         __ ret(0);
  1080         // rax,: new instance
  1083       break;
  1085     case counter_overflow_id:
  1087         Register bci = rax, method = rbx;
  1088         __ enter();
  1089         OopMap* map = save_live_registers(sasm, 3);
  1090         // Retrieve bci
  1091         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1092         // And a pointer to the methodOop
  1093         __ movptr(method, Address(rbp, 3*BytesPerWord));
  1094         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
  1095         oop_maps = new OopMapSet();
  1096         oop_maps->add_gc_map(call_offset, map);
  1097         restore_live_registers(sasm);
  1098         __ leave();
  1099         __ ret(0);
  1101       break;
  1103     case new_type_array_id:
  1104     case new_object_array_id:
  1106         Register length   = rbx; // Incoming
  1107         Register klass    = rdx; // Incoming
  1108         Register obj      = rax; // Result
  1110         if (id == new_type_array_id) {
  1111           __ set_info("new_type_array", dont_gc_arguments);
  1112         } else {
  1113           __ set_info("new_object_array", dont_gc_arguments);
  1116 #ifdef ASSERT
  1117         // assert object type is really an array of the proper kind
  1119           Label ok;
  1120           Register t0 = obj;
  1121           __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1122           __ sarl(t0, Klass::_lh_array_tag_shift);
  1123           int tag = ((id == new_type_array_id)
  1124                      ? Klass::_lh_array_tag_type_value
  1125                      : Klass::_lh_array_tag_obj_value);
  1126           __ cmpl(t0, tag);
  1127           __ jcc(Assembler::equal, ok);
  1128           __ stop("assert(is an array klass)");
  1129           __ should_not_reach_here();
  1130           __ bind(ok);
  1132 #endif // ASSERT
  1134         if (UseTLAB && FastTLABRefill) {
  1135           Register arr_size = rsi;
  1136           Register t1       = rcx;  // must be rcx for use as shift count
  1137           Register t2       = rdi;
  1138           Label slow_path;
  1139           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1141           // check that array length is small enough for fast path.
  1142           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1143           __ jcc(Assembler::above, slow_path);
  1145           // if we got here then the TLAB allocation failed, so try
  1146           // refilling the TLAB or allocating directly from eden.
  1147           Label retry_tlab, try_eden;
  1148           const Register thread =
  1149             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
  1151           __ bind(retry_tlab);
  1153           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1154           // since size is positive movl does right thing on 64bit
  1155           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1156           // since size is postive movl does right thing on 64bit
  1157           __ movl(arr_size, length);
  1158           assert(t1 == rcx, "fixed register usage");
  1159           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1160           __ shrptr(t1, Klass::_lh_header_size_shift);
  1161           __ andptr(t1, Klass::_lh_header_size_mask);
  1162           __ addptr(arr_size, t1);
  1163           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1164           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1166           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1168           __ initialize_header(obj, klass, length, t1, t2);
  1169           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1170           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1171           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1172           __ andptr(t1, Klass::_lh_header_size_mask);
  1173           __ subptr(arr_size, t1);  // body length
  1174           __ addptr(t1, obj);       // body start
  1175           __ initialize_body(t1, arr_size, 0, t2);
  1176           __ verify_oop(obj);
  1177           __ ret(0);
  1179           __ bind(try_eden);
  1180           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1181           // since size is positive movl does right thing on 64bit
  1182           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1183           // since size is postive movl does right thing on 64bit
  1184           __ movl(arr_size, length);
  1185           assert(t1 == rcx, "fixed register usage");
  1186           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1187           __ shrptr(t1, Klass::_lh_header_size_shift);
  1188           __ andptr(t1, Klass::_lh_header_size_mask);
  1189           __ addptr(arr_size, t1);
  1190           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1191           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1193           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1194           __ incr_allocated_bytes(thread, arr_size, 0);
  1196           __ initialize_header(obj, klass, length, t1, t2);
  1197           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1198           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1199           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1200           __ andptr(t1, Klass::_lh_header_size_mask);
  1201           __ subptr(arr_size, t1);  // body length
  1202           __ addptr(t1, obj);       // body start
  1203           __ initialize_body(t1, arr_size, 0, t2);
  1204           __ verify_oop(obj);
  1205           __ ret(0);
  1207           __ bind(slow_path);
  1210         __ enter();
  1211         OopMap* map = save_live_registers(sasm, 3);
  1212         int call_offset;
  1213         if (id == new_type_array_id) {
  1214           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1215         } else {
  1216           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1219         oop_maps = new OopMapSet();
  1220         oop_maps->add_gc_map(call_offset, map);
  1221         restore_live_registers_except_rax(sasm);
  1223         __ verify_oop(obj);
  1224         __ leave();
  1225         __ ret(0);
  1227         // rax,: new array
  1229       break;
  1231     case new_multi_array_id:
  1232       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1233         // rax,: klass
  1234         // rbx,: rank
  1235         // rcx: address of 1st dimension
  1236         OopMap* map = save_live_registers(sasm, 4);
  1237         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1239         oop_maps = new OopMapSet();
  1240         oop_maps->add_gc_map(call_offset, map);
  1241         restore_live_registers_except_rax(sasm);
  1243         // rax,: new multi array
  1244         __ verify_oop(rax);
  1246       break;
  1248     case register_finalizer_id:
  1250         __ set_info("register_finalizer", dont_gc_arguments);
  1252         // This is called via call_runtime so the arguments
  1253         // will be place in C abi locations
  1255 #ifdef _LP64
  1256         __ verify_oop(c_rarg0);
  1257         __ mov(rax, c_rarg0);
  1258 #else
  1259         // The object is passed on the stack and we haven't pushed a
  1260         // frame yet so it's one work away from top of stack.
  1261         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1262         __ verify_oop(rax);
  1263 #endif // _LP64
  1265         // load the klass and check the has finalizer flag
  1266         Label register_finalizer;
  1267         Register t = rsi;
  1268         __ load_klass(t, rax);
  1269         __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1270         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1271         __ jcc(Assembler::notZero, register_finalizer);
  1272         __ ret(0);
  1274         __ bind(register_finalizer);
  1275         __ enter();
  1276         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1277         int call_offset = __ call_RT(noreg, noreg,
  1278                                      CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1279         oop_maps = new OopMapSet();
  1280         oop_maps->add_gc_map(call_offset, oop_map);
  1282         // Now restore all the live registers
  1283         restore_live_registers(sasm);
  1285         __ leave();
  1286         __ ret(0);
  1288       break;
  1290     case throw_range_check_failed_id:
  1291       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1292         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1294       break;
  1296     case throw_index_exception_id:
  1297       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1298         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1300       break;
  1302     case throw_div0_exception_id:
  1303       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1304         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1306       break;
  1308     case throw_null_pointer_exception_id:
  1309       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1310         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1312       break;
  1314     case handle_exception_nofpu_id:
  1315     case handle_exception_id:
  1316       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1317         oop_maps = generate_handle_exception(id, sasm);
  1319       break;
  1321     case handle_exception_from_callee_id:
  1322       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
  1323         oop_maps = generate_handle_exception(id, sasm);
  1325       break;
  1327     case unwind_exception_id:
  1328       { __ set_info("unwind_exception", dont_gc_arguments);
  1329         // note: no stubframe since we are about to leave the current
  1330         //       activation and we are calling a leaf VM function only.
  1331         generate_unwind_exception(sasm);
  1333       break;
  1335     case throw_array_store_exception_id:
  1336       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1337         // tos + 0: link
  1338         //     + 1: return address
  1339         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
  1341       break;
  1343     case throw_class_cast_exception_id:
  1344       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1345         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1347       break;
  1349     case throw_incompatible_class_change_error_id:
  1350       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1351         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1353       break;
  1355     case slow_subtype_check_id:
  1357         // Typical calling sequence:
  1358         // __ push(klass_RInfo);  // object klass or other subclass
  1359         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1360         // __ call(slow_subtype_check);
  1361         // Note that the subclass is pushed first, and is therefore deepest.
  1362         // Previous versions of this code reversed the names 'sub' and 'super'.
  1363         // This was operationally harmless but made the code unreadable.
  1364         enum layout {
  1365           rax_off, SLOT2(raxH_off)
  1366           rcx_off, SLOT2(rcxH_off)
  1367           rsi_off, SLOT2(rsiH_off)
  1368           rdi_off, SLOT2(rdiH_off)
  1369           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1370           return_off, SLOT2(returnH_off)
  1371           sup_k_off, SLOT2(sup_kH_off)
  1372           klass_off, SLOT2(superH_off)
  1373           framesize,
  1374           result_off = klass_off  // deepest argument is also the return value
  1375         };
  1377         __ set_info("slow_subtype_check", dont_gc_arguments);
  1378         __ push(rdi);
  1379         __ push(rsi);
  1380         __ push(rcx);
  1381         __ push(rax);
  1383         // This is called by pushing args and not with C abi
  1384         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1385         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1387         Label miss;
  1388         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1390         // fallthrough on success:
  1391         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1392         __ pop(rax);
  1393         __ pop(rcx);
  1394         __ pop(rsi);
  1395         __ pop(rdi);
  1396         __ ret(0);
  1398         __ bind(miss);
  1399         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1400         __ pop(rax);
  1401         __ pop(rcx);
  1402         __ pop(rsi);
  1403         __ pop(rdi);
  1404         __ ret(0);
  1406       break;
  1408     case monitorenter_nofpu_id:
  1409       save_fpu_registers = false;
  1410       // fall through
  1411     case monitorenter_id:
  1413         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1414         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1416         // Called with store_parameter and not C abi
  1418         f.load_argument(1, rax); // rax,: object
  1419         f.load_argument(0, rbx); // rbx,: lock address
  1421         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1423         oop_maps = new OopMapSet();
  1424         oop_maps->add_gc_map(call_offset, map);
  1425         restore_live_registers(sasm, save_fpu_registers);
  1427       break;
  1429     case monitorexit_nofpu_id:
  1430       save_fpu_registers = false;
  1431       // fall through
  1432     case monitorexit_id:
  1434         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1435         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1437         // Called with store_parameter and not C abi
  1439         f.load_argument(0, rax); // rax,: lock address
  1441         // note: really a leaf routine but must setup last java sp
  1442         //       => use call_RT for now (speed can be improved by
  1443         //       doing last java sp setup manually)
  1444         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1446         oop_maps = new OopMapSet();
  1447         oop_maps->add_gc_map(call_offset, map);
  1448         restore_live_registers(sasm, save_fpu_registers);
  1451       break;
  1453     case access_field_patching_id:
  1454       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1455         // we should set up register map
  1456         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1458       break;
  1460     case load_klass_patching_id:
  1461       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1462         // we should set up register map
  1463         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1465       break;
  1467     case jvmti_exception_throw_id:
  1468       { // rax,: exception oop
  1469         StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
  1470         // Preserve all registers across this potentially blocking call
  1471         const int num_rt_args = 2;  // thread, exception oop
  1472         OopMap* map = save_live_registers(sasm, num_rt_args);
  1473         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
  1474         oop_maps = new OopMapSet();
  1475         oop_maps->add_gc_map(call_offset, map);
  1476         restore_live_registers(sasm);
  1478       break;
  1480     case dtrace_object_alloc_id:
  1481       { // rax,: object
  1482         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1483         // we can't gc here so skip the oopmap but make sure that all
  1484         // the live registers get saved.
  1485         save_live_registers(sasm, 1);
  1487         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1488         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1489         NOT_LP64(__ pop(rax));
  1491         restore_live_registers(sasm);
  1493       break;
  1495     case fpu2long_stub_id:
  1497         // rax, and rdx are destroyed, but should be free since the result is returned there
  1498         // preserve rsi,ecx
  1499         __ push(rsi);
  1500         __ push(rcx);
  1501         LP64_ONLY(__ push(rdx);)
  1503         // check for NaN
  1504         Label return0, do_return, return_min_jlong, do_convert;
  1506         Address value_high_word(rsp, wordSize + 4);
  1507         Address value_low_word(rsp, wordSize);
  1508         Address result_high_word(rsp, 3*wordSize + 4);
  1509         Address result_low_word(rsp, 3*wordSize);
  1511         __ subptr(rsp, 32);                    // more than enough on 32bit
  1512         __ fst_d(value_low_word);
  1513         __ movl(rax, value_high_word);
  1514         __ andl(rax, 0x7ff00000);
  1515         __ cmpl(rax, 0x7ff00000);
  1516         __ jcc(Assembler::notEqual, do_convert);
  1517         __ movl(rax, value_high_word);
  1518         __ andl(rax, 0xfffff);
  1519         __ orl(rax, value_low_word);
  1520         __ jcc(Assembler::notZero, return0);
  1522         __ bind(do_convert);
  1523         __ fnstcw(Address(rsp, 0));
  1524         __ movzwl(rax, Address(rsp, 0));
  1525         __ orl(rax, 0xc00);
  1526         __ movw(Address(rsp, 2), rax);
  1527         __ fldcw(Address(rsp, 2));
  1528         __ fwait();
  1529         __ fistp_d(result_low_word);
  1530         __ fldcw(Address(rsp, 0));
  1531         __ fwait();
  1532         // This gets the entire long in rax on 64bit
  1533         __ movptr(rax, result_low_word);
  1534         // testing of high bits
  1535         __ movl(rdx, result_high_word);
  1536         __ mov(rcx, rax);
  1537         // What the heck is the point of the next instruction???
  1538         __ xorl(rcx, 0x0);
  1539         __ movl(rsi, 0x80000000);
  1540         __ xorl(rsi, rdx);
  1541         __ orl(rcx, rsi);
  1542         __ jcc(Assembler::notEqual, do_return);
  1543         __ fldz();
  1544         __ fcomp_d(value_low_word);
  1545         __ fnstsw_ax();
  1546 #ifdef _LP64
  1547         __ testl(rax, 0x4100);  // ZF & CF == 0
  1548         __ jcc(Assembler::equal, return_min_jlong);
  1549 #else
  1550         __ sahf();
  1551         __ jcc(Assembler::above, return_min_jlong);
  1552 #endif // _LP64
  1553         // return max_jlong
  1554 #ifndef _LP64
  1555         __ movl(rdx, 0x7fffffff);
  1556         __ movl(rax, 0xffffffff);
  1557 #else
  1558         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1559 #endif // _LP64
  1560         __ jmp(do_return);
  1562         __ bind(return_min_jlong);
  1563 #ifndef _LP64
  1564         __ movl(rdx, 0x80000000);
  1565         __ xorl(rax, rax);
  1566 #else
  1567         __ mov64(rax, CONST64(0x8000000000000000));
  1568 #endif // _LP64
  1569         __ jmp(do_return);
  1571         __ bind(return0);
  1572         __ fpop();
  1573 #ifndef _LP64
  1574         __ xorptr(rdx,rdx);
  1575         __ xorptr(rax,rax);
  1576 #else
  1577         __ xorptr(rax, rax);
  1578 #endif // _LP64
  1580         __ bind(do_return);
  1581         __ addptr(rsp, 32);
  1582         LP64_ONLY(__ pop(rdx);)
  1583         __ pop(rcx);
  1584         __ pop(rsi);
  1585         __ ret(0);
  1587       break;
  1589 #ifndef SERIALGC
  1590     case g1_pre_barrier_slow_id:
  1592         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1593         // arg0 : previous value of memory
  1595         BarrierSet* bs = Universe::heap()->barrier_set();
  1596         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1597           __ movptr(rax, (int)id);
  1598           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1599           __ should_not_reach_here();
  1600           break;
  1602         __ push(rax);
  1603         __ push(rdx);
  1605         const Register pre_val = rax;
  1606         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1607         const Register tmp = rdx;
  1609         NOT_LP64(__ get_thread(thread);)
  1611         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1612                                              PtrQueue::byte_offset_of_active()));
  1614         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1615                                              PtrQueue::byte_offset_of_index()));
  1616         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1617                                         PtrQueue::byte_offset_of_buf()));
  1620         Label done;
  1621         Label runtime;
  1623         // Can we store original value in the thread's buffer?
  1625 #ifdef _LP64
  1626         __ movslq(tmp, queue_index);
  1627         __ cmpq(tmp, 0);
  1628 #else
  1629         __ cmpl(queue_index, 0);
  1630 #endif
  1631         __ jcc(Assembler::equal, runtime);
  1632 #ifdef _LP64
  1633         __ subq(tmp, wordSize);
  1634         __ movl(queue_index, tmp);
  1635         __ addq(tmp, buffer);
  1636 #else
  1637         __ subl(queue_index, wordSize);
  1638         __ movl(tmp, buffer);
  1639         __ addl(tmp, queue_index);
  1640 #endif
  1642         // prev_val (rax)
  1643         f.load_argument(0, pre_val);
  1644         __ movptr(Address(tmp, 0), pre_val);
  1645         __ jmp(done);
  1647         __ bind(runtime);
  1648         __ push(rcx);
  1649 #ifdef _LP64
  1650         __ push(r8);
  1651         __ push(r9);
  1652         __ push(r10);
  1653         __ push(r11);
  1654 #  ifndef _WIN64
  1655         __ push(rdi);
  1656         __ push(rsi);
  1657 #  endif
  1658 #endif
  1659         // load the pre-value
  1660         f.load_argument(0, rcx);
  1661         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1662 #ifdef _LP64
  1663 #  ifndef _WIN64
  1664         __ pop(rsi);
  1665         __ pop(rdi);
  1666 #  endif
  1667         __ pop(r11);
  1668         __ pop(r10);
  1669         __ pop(r9);
  1670         __ pop(r8);
  1671 #endif
  1672         __ pop(rcx);
  1673         __ bind(done);
  1675         __ pop(rdx);
  1676         __ pop(rax);
  1678       break;
  1680     case g1_post_barrier_slow_id:
  1682         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1685         // arg0: store_address
  1686         Address store_addr(rbp, 2*BytesPerWord);
  1688         BarrierSet* bs = Universe::heap()->barrier_set();
  1689         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1690         Label done;
  1691         Label runtime;
  1693         // At this point we know new_value is non-NULL and the new_value crosses regsion.
  1694         // Must check to see if card is already dirty
  1696         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1698         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1699                                              PtrQueue::byte_offset_of_index()));
  1700         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1701                                         PtrQueue::byte_offset_of_buf()));
  1703         __ push(rax);
  1704         __ push(rcx);
  1706         NOT_LP64(__ get_thread(thread);)
  1707         ExternalAddress cardtable((address)ct->byte_map_base);
  1708         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1710         const Register card_addr = rcx;
  1711 #ifdef _LP64
  1712         const Register tmp = rscratch1;
  1713         f.load_argument(0, card_addr);
  1714         __ shrq(card_addr, CardTableModRefBS::card_shift);
  1715         __ lea(tmp, cardtable);
  1716         // get the address of the card
  1717         __ addq(card_addr, tmp);
  1718 #else
  1719         const Register card_index = rcx;
  1720         f.load_argument(0, card_index);
  1721         __ shrl(card_index, CardTableModRefBS::card_shift);
  1723         Address index(noreg, card_index, Address::times_1);
  1724         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
  1725 #endif
  1727         __ cmpb(Address(card_addr, 0), 0);
  1728         __ jcc(Assembler::equal, done);
  1730         // storing region crossing non-NULL, card is clean.
  1731         // dirty card and log.
  1733         __ movb(Address(card_addr, 0), 0);
  1735         __ cmpl(queue_index, 0);
  1736         __ jcc(Assembler::equal, runtime);
  1737         __ subl(queue_index, wordSize);
  1739         const Register buffer_addr = rbx;
  1740         __ push(rbx);
  1742         __ movptr(buffer_addr, buffer);
  1744 #ifdef _LP64
  1745         __ movslq(rscratch1, queue_index);
  1746         __ addptr(buffer_addr, rscratch1);
  1747 #else
  1748         __ addptr(buffer_addr, queue_index);
  1749 #endif
  1750         __ movptr(Address(buffer_addr, 0), card_addr);
  1752         __ pop(rbx);
  1753         __ jmp(done);
  1755         __ bind(runtime);
  1756         __ push(rdx);
  1757 #ifdef _LP64
  1758         __ push(r8);
  1759         __ push(r9);
  1760         __ push(r10);
  1761         __ push(r11);
  1762 #  ifndef _WIN64
  1763         __ push(rdi);
  1764         __ push(rsi);
  1765 #  endif
  1766 #endif
  1767         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1768 #ifdef _LP64
  1769 #  ifndef _WIN64
  1770         __ pop(rsi);
  1771         __ pop(rdi);
  1772 #  endif
  1773         __ pop(r11);
  1774         __ pop(r10);
  1775         __ pop(r9);
  1776         __ pop(r8);
  1777 #endif
  1778         __ pop(rdx);
  1779         __ bind(done);
  1781         __ pop(rcx);
  1782         __ pop(rax);
  1785       break;
  1786 #endif // !SERIALGC
  1788     default:
  1789       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1790         __ movptr(rax, (int)id);
  1791         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1792         __ should_not_reach_here();
  1794       break;
  1796   return oop_maps;
  1799 #undef __
  1801 const char *Runtime1::pd_name_for_address(address entry) {
  1802   return "<unknown function>";

mercurial