src/cpu/x86/vm/c1_Runtime1_x86.cpp

Thu, 31 Mar 2011 00:27:08 -0700

author
twisti
date
Thu, 31 Mar 2011 00:27:08 -0700
changeset 2697
09f96c3ff1ad
parent 2603
1b4e6a5d98e0
child 3099
c124e2e7463e
permissions
-rw-r--r--

7032388: guarantee(VM_Version::supports_cmov()) failed: illegal instruction on i586 after 6919934
Summary: 6919934 added some unguarded cmov instructions which hit a guarantee on older hardware.
Reviewed-by: never, iveresov, kvn, phh

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Defs.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "nativeInst_x86.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/jvmtiExport.hpp"
    35 #include "register_x86.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/signature.hpp"
    38 #include "runtime/vframeArray.hpp"
    39 #include "vmreg_x86.inline.hpp"
    42 // Implementation of StubAssembler
    44 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
    45   // setup registers
    46   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    47   assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
    48   assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
    49   assert(args_size >= 0, "illegal args_size");
    51 #ifdef _LP64
    52   mov(c_rarg0, thread);
    53   set_num_rt_args(0); // Nothing on stack
    54 #else
    55   set_num_rt_args(1 + args_size);
    57   // push java thread (becomes first argument of C function)
    58   get_thread(thread);
    59   push(thread);
    60 #endif // _LP64
    62   set_last_Java_frame(thread, noreg, rbp, NULL);
    64   // do the call
    65   call(RuntimeAddress(entry));
    66   int call_offset = offset();
    67   // verify callee-saved register
    68 #ifdef ASSERT
    69   guarantee(thread != rax, "change this code");
    70   push(rax);
    71   { Label L;
    72     get_thread(rax);
    73     cmpptr(thread, rax);
    74     jcc(Assembler::equal, L);
    75     int3();
    76     stop("StubAssembler::call_RT: rdi not callee saved?");
    77     bind(L);
    78   }
    79   pop(rax);
    80 #endif
    81   reset_last_Java_frame(thread, true, false);
    83   // discard thread and arguments
    84   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
    86   // check for pending exceptions
    87   { Label L;
    88     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
    89     jcc(Assembler::equal, L);
    90     // exception pending => remove activation and forward to exception handler
    91     movptr(rax, Address(thread, Thread::pending_exception_offset()));
    92     // make sure that the vm_results are cleared
    93     if (oop_result1->is_valid()) {
    94       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
    95     }
    96     if (oop_result2->is_valid()) {
    97       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
    98     }
    99     if (frame_size() == no_frame_size) {
   100       leave();
   101       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
   102     } else if (_stub_id == Runtime1::forward_exception_id) {
   103       should_not_reach_here();
   104     } else {
   105       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   106     }
   107     bind(L);
   108   }
   109   // get oop results if there are any and reset the values in the thread
   110   if (oop_result1->is_valid()) {
   111     movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
   112     movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   113     verify_oop(oop_result1);
   114   }
   115   if (oop_result2->is_valid()) {
   116     movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
   117     movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   118     verify_oop(oop_result2);
   119   }
   120   return call_offset;
   121 }
   124 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
   125 #ifdef _LP64
   126   mov(c_rarg1, arg1);
   127 #else
   128   push(arg1);
   129 #endif // _LP64
   130   return call_RT(oop_result1, oop_result2, entry, 1);
   131 }
   134 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
   135 #ifdef _LP64
   136   if (c_rarg1 == arg2) {
   137     if (c_rarg2 == arg1) {
   138       xchgq(arg1, arg2);
   139     } else {
   140       mov(c_rarg2, arg2);
   141       mov(c_rarg1, arg1);
   142     }
   143   } else {
   144     mov(c_rarg1, arg1);
   145     mov(c_rarg2, arg2);
   146   }
   147 #else
   148   push(arg2);
   149   push(arg1);
   150 #endif // _LP64
   151   return call_RT(oop_result1, oop_result2, entry, 2);
   152 }
   155 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
   156 #ifdef _LP64
   157   // if there is any conflict use the stack
   158   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   159       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   160       arg3 == c_rarg1 || arg1 == c_rarg2) {
   161     push(arg3);
   162     push(arg2);
   163     push(arg1);
   164     pop(c_rarg1);
   165     pop(c_rarg2);
   166     pop(c_rarg3);
   167   } else {
   168     mov(c_rarg1, arg1);
   169     mov(c_rarg2, arg2);
   170     mov(c_rarg3, arg3);
   171   }
   172 #else
   173   push(arg3);
   174   push(arg2);
   175   push(arg1);
   176 #endif // _LP64
   177   return call_RT(oop_result1, oop_result2, entry, 3);
   178 }
   181 // Implementation of StubFrame
   183 class StubFrame: public StackObj {
   184  private:
   185   StubAssembler* _sasm;
   187  public:
   188   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   189   void load_argument(int offset_in_words, Register reg);
   191   ~StubFrame();
   192 };
   195 #define __ _sasm->
   197 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   198   _sasm = sasm;
   199   __ set_info(name, must_gc_arguments);
   200   __ enter();
   201 }
   203 // load parameters that were stored with LIR_Assembler::store_parameter
   204 // Note: offsets for store_parameter and load_argument must match
   205 void StubFrame::load_argument(int offset_in_words, Register reg) {
   206   // rbp, + 0: link
   207   //     + 1: return address
   208   //     + 2: argument with offset 0
   209   //     + 3: argument with offset 1
   210   //     + 4: ...
   212   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   213 }
   216 StubFrame::~StubFrame() {
   217   __ leave();
   218   __ ret(0);
   219 }
   221 #undef __
   224 // Implementation of Runtime1
   226 #define __ sasm->
   228 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   229 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   231 // Stack layout for saving/restoring  all the registers needed during a runtime
   232 // call (this includes deoptimization)
   233 // Note: note that users of this frame may well have arguments to some runtime
   234 // while these values are on the stack. These positions neglect those arguments
   235 // but the code in save_live_registers will take the argument count into
   236 // account.
   237 //
   238 #ifdef _LP64
   239   #define SLOT2(x) x,
   240   #define SLOT_PER_WORD 2
   241 #else
   242   #define SLOT2(x)
   243   #define SLOT_PER_WORD 1
   244 #endif // _LP64
   246 enum reg_save_layout {
   247   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   248   // happen and will assert if the stack size we create is misaligned
   249 #ifdef _LP64
   250   align_dummy_0, align_dummy_1,
   251 #endif // _LP64
   252 #ifdef _WIN64
   253   // Windows always allocates space for it's argument registers (see
   254   // frame::arg_reg_save_area_bytes).
   255   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
   256   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
   257   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
   258   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
   259 #endif // _WIN64
   260   xmm_regs_as_doubles_off,                                                                  // 32
   261   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   262   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   263   // fpu_state_end_off is exclusive
   264   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   265   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   266   extra_space_offset,                                                                       // 360
   267 #ifdef _LP64
   268   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   269   r14_off, r14H_off,                                                                        // 368, 372
   270   r13_off, r13H_off,                                                                        // 376, 380
   271   r12_off, r12H_off,                                                                        // 384, 388
   272   r11_off, r11H_off,                                                                        // 392, 396
   273   r10_off, r10H_off,                                                                        // 400, 404
   274   r9_off, r9H_off,                                                                          // 408, 412
   275   r8_off, r8H_off,                                                                          // 416, 420
   276   rdi_off, rdiH_off,                                                                        // 424, 428
   277 #else
   278   rdi_off = extra_space_offset,
   279 #endif // _LP64
   280   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   281   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   282   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   283   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   284   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   285   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   286   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   287   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   288   return_off, SLOT2(returnH_off)                                                            // 496, 500
   289   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
   290 };
   294 // Save off registers which might be killed by calls into the runtime.
   295 // Tries to smart of about FP registers.  In particular we separate
   296 // saving and describing the FPU registers for deoptimization since we
   297 // have to save the FPU registers twice if we describe them and on P4
   298 // saving FPU registers which don't contain anything appears
   299 // expensive.  The deopt blob is the only thing which needs to
   300 // describe FPU registers.  In all other cases it should be sufficient
   301 // to simply save their current value.
   303 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   304                                 bool save_fpu_registers = true) {
   306   // In 64bit all the args are in regs so there are no additional stack slots
   307   LP64_ONLY(num_rt_args = 0);
   308   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   309   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   310   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   312   // record saved value locations in an OopMap
   313   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   314   OopMap* map = new OopMap(frame_size_in_slots, 0);
   315   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   316   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   317   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   318   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   319   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   320   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   321 #ifdef _LP64
   322   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   323   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   324   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   325   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   326   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   327   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   328   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   329   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   331   // This is stupid but needed.
   332   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   333   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   334   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   335   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   336   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   337   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   339   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   342   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   343   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   344   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   345   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   346   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   347 #endif // _LP64
   349   if (save_fpu_registers) {
   350     if (UseSSE < 2) {
   351       int fpu_off = float_regs_as_doubles_off;
   352       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   353         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   354         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   355         // %%% This is really a waste but we'll keep things as they were for now
   356         if (true) {
   357           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   358         }
   359         fpu_off += 2;
   360       }
   361       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   362     }
   364     if (UseSSE >= 2) {
   365       int xmm_off = xmm_regs_as_doubles_off;
   366       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   367         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   368         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   369         // %%% This is really a waste but we'll keep things as they were for now
   370         if (true) {
   371           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   372         }
   373         xmm_off += 2;
   374       }
   375       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   377     } else if (UseSSE == 1) {
   378       int xmm_off = xmm_regs_as_doubles_off;
   379       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   380         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   381         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   382         xmm_off += 2;
   383       }
   384       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   385     }
   386   }
   388   return map;
   389 }
   391 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   392                                    bool save_fpu_registers = true) {
   393   __ block_comment("save_live_registers");
   395   __ pusha();         // integer registers
   397   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   398   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   400   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   402 #ifdef ASSERT
   403   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   404 #endif
   406   if (save_fpu_registers) {
   407     if (UseSSE < 2) {
   408       // save FPU stack
   409       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   410       __ fwait();
   412 #ifdef ASSERT
   413       Label ok;
   414       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   415       __ jccb(Assembler::equal, ok);
   416       __ stop("corrupted control word detected");
   417       __ bind(ok);
   418 #endif
   420       // Reset the control word to guard against exceptions being unmasked
   421       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   422       // into the on stack copy and then reload that to make sure that the
   423       // current and future values are correct.
   424       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   425       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   427       // Save the FPU registers in de-opt-able form
   428       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   429       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   430       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   431       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   432       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   433       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   434       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   435       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   436     }
   438     if (UseSSE >= 2) {
   439       // save XMM registers
   440       // XMM registers can contain float or double values, but this is not known here,
   441       // so always save them as doubles.
   442       // note that float values are _not_ converted automatically, so for float values
   443       // the second word contains only garbage data.
   444       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   445       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   446       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   447       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   448       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   449       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   450       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   451       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   452 #ifdef _LP64
   453       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   454       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   455       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   456       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   458       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   461 #endif // _LP64
   462     } else if (UseSSE == 1) {
   463       // save XMM registers as float because double not supported without SSE2
   464       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   465       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   466       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   467       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   468       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   469       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   470       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   471       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   472     }
   473   }
   475   // FPU stack must be empty now
   476   __ verify_FPU(0, "save_live_registers");
   478   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   479 }
   482 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   483   if (restore_fpu_registers) {
   484     if (UseSSE >= 2) {
   485       // restore XMM registers
   486       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   487       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   488       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   489       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   490       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   491       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   492       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   493       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   494 #ifdef _LP64
   495       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   496       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   497       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   498       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   499       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   500       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   501       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   502       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   503 #endif // _LP64
   504     } else if (UseSSE == 1) {
   505       // restore XMM registers
   506       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   507       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   508       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   509       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   510       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   511       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   512       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   513       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   514     }
   516     if (UseSSE < 2) {
   517       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   518     } else {
   519       // check that FPU stack is really empty
   520       __ verify_FPU(0, "restore_live_registers");
   521     }
   523   } else {
   524     // check that FPU stack is really empty
   525     __ verify_FPU(0, "restore_live_registers");
   526   }
   528 #ifdef ASSERT
   529   {
   530     Label ok;
   531     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   532     __ jcc(Assembler::equal, ok);
   533     __ stop("bad offsets in frame");
   534     __ bind(ok);
   535   }
   536 #endif // ASSERT
   538   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   539 }
   542 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   543   __ block_comment("restore_live_registers");
   545   restore_fpu(sasm, restore_fpu_registers);
   546   __ popa();
   547 }
   550 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   551   __ block_comment("restore_live_registers_except_rax");
   553   restore_fpu(sasm, restore_fpu_registers);
   555 #ifdef _LP64
   556   __ movptr(r15, Address(rsp, 0));
   557   __ movptr(r14, Address(rsp, wordSize));
   558   __ movptr(r13, Address(rsp, 2 * wordSize));
   559   __ movptr(r12, Address(rsp, 3 * wordSize));
   560   __ movptr(r11, Address(rsp, 4 * wordSize));
   561   __ movptr(r10, Address(rsp, 5 * wordSize));
   562   __ movptr(r9,  Address(rsp, 6 * wordSize));
   563   __ movptr(r8,  Address(rsp, 7 * wordSize));
   564   __ movptr(rdi, Address(rsp, 8 * wordSize));
   565   __ movptr(rsi, Address(rsp, 9 * wordSize));
   566   __ movptr(rbp, Address(rsp, 10 * wordSize));
   567   // skip rsp
   568   __ movptr(rbx, Address(rsp, 12 * wordSize));
   569   __ movptr(rdx, Address(rsp, 13 * wordSize));
   570   __ movptr(rcx, Address(rsp, 14 * wordSize));
   572   __ addptr(rsp, 16 * wordSize);
   573 #else
   575   __ pop(rdi);
   576   __ pop(rsi);
   577   __ pop(rbp);
   578   __ pop(rbx); // skip this value
   579   __ pop(rbx);
   580   __ pop(rdx);
   581   __ pop(rcx);
   582   __ addptr(rsp, BytesPerWord);
   583 #endif // _LP64
   584 }
   587 void Runtime1::initialize_pd() {
   588   // nothing to do
   589 }
   592 // target: the entry point of the method that creates and posts the exception oop
   593 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   595 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   596   // preserve all registers
   597   int num_rt_args = has_argument ? 2 : 1;
   598   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   600   // now all registers are saved and can be used freely
   601   // verify that no old value is used accidentally
   602   __ invalidate_registers(true, true, true, true, true, true);
   604   // registers used by this stub
   605   const Register temp_reg = rbx;
   607   // load argument for exception that is passed as an argument into the stub
   608   if (has_argument) {
   609 #ifdef _LP64
   610     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   611 #else
   612     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   613     __ push(temp_reg);
   614 #endif // _LP64
   615   }
   616   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   618   OopMapSet* oop_maps = new OopMapSet();
   619   oop_maps->add_gc_map(call_offset, oop_map);
   621   __ stop("should not reach here");
   623   return oop_maps;
   624 }
   627 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
   628   __ block_comment("generate_handle_exception");
   630   // incoming parameters
   631   const Register exception_oop = rax;
   632   const Register exception_pc  = rdx;
   633   // other registers used in this stub
   634   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   636   // Save registers, if required.
   637   OopMapSet* oop_maps = new OopMapSet();
   638   OopMap* oop_map = NULL;
   639   switch (id) {
   640   case forward_exception_id:
   641     // We're handling an exception in the context of a compiled frame.
   642     // The registers have been saved in the standard places.  Perform
   643     // an exception lookup in the caller and dispatch to the handler
   644     // if found.  Otherwise unwind and dispatch to the callers
   645     // exception handler.
   646     oop_map = generate_oop_map(sasm, 1 /*thread*/);
   648     // load and clear pending exception oop into RAX
   649     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   650     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   652     // load issuing PC (the return address for this stub) into rdx
   653     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   655     // make sure that the vm_results are cleared (may be unnecessary)
   656     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
   657     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   658     break;
   659   case handle_exception_nofpu_id:
   660   case handle_exception_id:
   661     // At this point all registers MAY be live.
   662     oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
   663     break;
   664   case handle_exception_from_callee_id: {
   665     // At this point all registers except exception oop (RAX) and
   666     // exception pc (RDX) are dead.
   667     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
   668     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
   669     sasm->set_frame_size(frame_size);
   670     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
   671     break;
   672   }
   673   default:  ShouldNotReachHere();
   674   }
   676 #ifdef TIERED
   677   // C2 can leave the fpu stack dirty
   678   if (UseSSE < 2) {
   679     __ empty_FPU_stack();
   680   }
   681 #endif // TIERED
   683   // verify that only rax, and rdx is valid at this time
   684   __ invalidate_registers(false, true, true, false, true, true);
   685   // verify that rax, contains a valid exception
   686   __ verify_not_null_oop(exception_oop);
   688   // load address of JavaThread object for thread-local data
   689   NOT_LP64(__ get_thread(thread);)
   691 #ifdef ASSERT
   692   // check that fields in JavaThread for exception oop and issuing pc are
   693   // empty before writing to them
   694   Label oop_empty;
   695   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   696   __ jcc(Assembler::equal, oop_empty);
   697   __ stop("exception oop already set");
   698   __ bind(oop_empty);
   700   Label pc_empty;
   701   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   702   __ jcc(Assembler::equal, pc_empty);
   703   __ stop("exception pc already set");
   704   __ bind(pc_empty);
   705 #endif
   707   // save exception oop and issuing pc into JavaThread
   708   // (exception handler will load it from here)
   709   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   710   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
   712   // patch throwing pc into return address (has bci & oop map)
   713   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   715   // compute the exception handler.
   716   // the exception oop and the throwing pc are read from the fields in JavaThread
   717   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   718   oop_maps->add_gc_map(call_offset, oop_map);
   720   // rax: handler address
   721   //      will be the deopt blob if nmethod was deoptimized while we looked up
   722   //      handler regardless of whether handler existed in the nmethod.
   724   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   725   __ invalidate_registers(false, true, true, true, true, true);
   727   // patch the return address, this stub will directly return to the exception handler
   728   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   730   switch (id) {
   731   case forward_exception_id:
   732   case handle_exception_nofpu_id:
   733   case handle_exception_id:
   734     // Restore the registers that were saved at the beginning.
   735     restore_live_registers(sasm, id == handle_exception_nofpu_id);
   736     break;
   737   case handle_exception_from_callee_id:
   738     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
   739     // since we do a leave anyway.
   741     // Pop the return address since we are possibly changing SP (restoring from BP).
   742     __ leave();
   743     __ pop(rcx);
   745     // Restore SP from BP if the exception PC is a method handle call site.
   746     NOT_LP64(__ get_thread(thread);)
   747     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   748     __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   749     __ jmp(rcx);  // jump to exception handler
   750     break;
   751   default:  ShouldNotReachHere();
   752   }
   754   return oop_maps;
   755 }
   758 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   759   // incoming parameters
   760   const Register exception_oop = rax;
   761   // callee-saved copy of exception_oop during runtime call
   762   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
   763   // other registers used in this stub
   764   const Register exception_pc = rdx;
   765   const Register handler_addr = rbx;
   766   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   768   // verify that only rax, is valid at this time
   769   __ invalidate_registers(false, true, true, true, true, true);
   771 #ifdef ASSERT
   772   // check that fields in JavaThread for exception oop and issuing pc are empty
   773   NOT_LP64(__ get_thread(thread);)
   774   Label oop_empty;
   775   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   776   __ jcc(Assembler::equal, oop_empty);
   777   __ stop("exception oop must be empty");
   778   __ bind(oop_empty);
   780   Label pc_empty;
   781   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   782   __ jcc(Assembler::equal, pc_empty);
   783   __ stop("exception pc must be empty");
   784   __ bind(pc_empty);
   785 #endif
   787   // clear the FPU stack in case any FPU results are left behind
   788   __ empty_FPU_stack();
   790   // save exception_oop in callee-saved register to preserve it during runtime calls
   791   __ verify_not_null_oop(exception_oop);
   792   __ movptr(exception_oop_callee_saved, exception_oop);
   794   NOT_LP64(__ get_thread(thread);)
   795   // Get return address (is on top of stack after leave).
   796   __ movptr(exception_pc, Address(rsp, 0));
   798   // search the exception handler address of the caller (using the return address)
   799   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   800   // rax: exception handler address of the caller
   802   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
   803   __ invalidate_registers(false, true, true, true, false, true);
   805   // move result of call into correct register
   806   __ movptr(handler_addr, rax);
   808   // Restore exception oop to RAX (required convention of exception handler).
   809   __ movptr(exception_oop, exception_oop_callee_saved);
   811   // verify that there is really a valid exception in rax
   812   __ verify_not_null_oop(exception_oop);
   814   // get throwing pc (= return address).
   815   // rdx has been destroyed by the call, so it must be set again
   816   // the pop is also necessary to simulate the effect of a ret(0)
   817   __ pop(exception_pc);
   819   // Restore SP from BP if the exception PC is a method handle call site.
   820   NOT_LP64(__ get_thread(thread);)
   821   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   822   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   824   // continue at exception handler (return address removed)
   825   // note: do *not* remove arguments when unwinding the
   826   //       activation since the caller assumes having
   827   //       all arguments on the stack when entering the
   828   //       runtime to determine the exception handler
   829   //       (GC happens at call site with arguments!)
   830   // rax: exception oop
   831   // rdx: throwing pc
   832   // rbx: exception handler
   833   __ jmp(handler_addr);
   834 }
   837 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   838   // use the maximum number of runtime-arguments here because it is difficult to
   839   // distinguish each RT-Call.
   840   // Note: This number affects also the RT-Call in generate_handle_exception because
   841   //       the oop-map is shared for all calls.
   842   const int num_rt_args = 2;  // thread + dummy
   844   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   845   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   847   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   849 #ifdef _LP64
   850   const Register thread = r15_thread;
   851   // No need to worry about dummy
   852   __ mov(c_rarg0, thread);
   853 #else
   854   __ push(rax); // push dummy
   856   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   857   // push java thread (becomes first argument of C function)
   858   __ get_thread(thread);
   859   __ push(thread);
   860 #endif // _LP64
   861   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   862   // do the call
   863   __ call(RuntimeAddress(target));
   864   OopMapSet* oop_maps = new OopMapSet();
   865   oop_maps->add_gc_map(__ offset(), oop_map);
   866   // verify callee-saved register
   867 #ifdef ASSERT
   868   guarantee(thread != rax, "change this code");
   869   __ push(rax);
   870   { Label L;
   871     __ get_thread(rax);
   872     __ cmpptr(thread, rax);
   873     __ jcc(Assembler::equal, L);
   874     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   875     __ bind(L);
   876   }
   877   __ pop(rax);
   878 #endif
   879   __ reset_last_Java_frame(thread, true, false);
   880 #ifndef _LP64
   881   __ pop(rcx); // discard thread arg
   882   __ pop(rcx); // discard dummy
   883 #endif // _LP64
   885   // check for pending exceptions
   886   { Label L;
   887     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   888     __ jcc(Assembler::equal, L);
   889     // exception pending => remove activation and forward to exception handler
   891     __ testptr(rax, rax);                                   // have we deoptimized?
   892     __ jump_cc(Assembler::equal,
   893                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   895     // the deopt blob expects exceptions in the special fields of
   896     // JavaThread, so copy and clear pending exception.
   898     // load and clear pending exception
   899     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   900     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   902     // check that there is really a valid exception
   903     __ verify_not_null_oop(rax);
   905     // load throwing pc: this is the return address of the stub
   906     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   908 #ifdef ASSERT
   909     // check that fields in JavaThread for exception oop and issuing pc are empty
   910     Label oop_empty;
   911     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   912     __ jcc(Assembler::equal, oop_empty);
   913     __ stop("exception oop must be empty");
   914     __ bind(oop_empty);
   916     Label pc_empty;
   917     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   918     __ jcc(Assembler::equal, pc_empty);
   919     __ stop("exception pc must be empty");
   920     __ bind(pc_empty);
   921 #endif
   923     // store exception oop and throwing pc to JavaThread
   924     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   925     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   927     restore_live_registers(sasm);
   929     __ leave();
   930     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   932     // Forward the exception directly to deopt blob. We can blow no
   933     // registers and must leave throwing pc on the stack.  A patch may
   934     // have values live in registers so the entry point with the
   935     // exception in tls.
   936     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   938     __ bind(L);
   939   }
   942   // Runtime will return true if the nmethod has been deoptimized during
   943   // the patching process. In that case we must do a deopt reexecute instead.
   945   Label reexecuteEntry, cont;
   947   __ testptr(rax, rax);                                 // have we deoptimized?
   948   __ jcc(Assembler::equal, cont);                       // no
   950   // Will reexecute. Proper return address is already on the stack we just restore
   951   // registers, pop all of our frame but the return address and jump to the deopt blob
   952   restore_live_registers(sasm);
   953   __ leave();
   954   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   956   __ bind(cont);
   957   restore_live_registers(sasm);
   958   __ leave();
   959   __ ret(0);
   961   return oop_maps;
   962 }
   965 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   967   // for better readability
   968   const bool must_gc_arguments = true;
   969   const bool dont_gc_arguments = false;
   971   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   972   bool save_fpu_registers = true;
   974   // stub code & info for the different stubs
   975   OopMapSet* oop_maps = NULL;
   976   switch (id) {
   977     case forward_exception_id:
   978       {
   979         oop_maps = generate_handle_exception(id, sasm);
   980         __ leave();
   981         __ ret(0);
   982       }
   983       break;
   985     case new_instance_id:
   986     case fast_new_instance_id:
   987     case fast_new_instance_init_check_id:
   988       {
   989         Register klass = rdx; // Incoming
   990         Register obj   = rax; // Result
   992         if (id == new_instance_id) {
   993           __ set_info("new_instance", dont_gc_arguments);
   994         } else if (id == fast_new_instance_id) {
   995           __ set_info("fast new_instance", dont_gc_arguments);
   996         } else {
   997           assert(id == fast_new_instance_init_check_id, "bad StubID");
   998           __ set_info("fast new_instance init check", dont_gc_arguments);
   999         }
  1001         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
  1002             UseTLAB && FastTLABRefill) {
  1003           Label slow_path;
  1004           Register obj_size = rcx;
  1005           Register t1       = rbx;
  1006           Register t2       = rsi;
  1007           assert_different_registers(klass, obj, obj_size, t1, t2);
  1009           __ push(rdi);
  1010           __ push(rbx);
  1012           if (id == fast_new_instance_init_check_id) {
  1013             // make sure the klass is initialized
  1014             __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  1015             __ jcc(Assembler::notEqual, slow_path);
  1018 #ifdef ASSERT
  1019           // assert object can be fast path allocated
  1021             Label ok, not_ok;
  1022             __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1023             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1024             __ jcc(Assembler::lessEqual, not_ok);
  1025             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1026             __ jcc(Assembler::zero, ok);
  1027             __ bind(not_ok);
  1028             __ stop("assert(can be fast path allocated)");
  1029             __ should_not_reach_here();
  1030             __ bind(ok);
  1032 #endif // ASSERT
  1034           // if we got here then the TLAB allocation failed, so try
  1035           // refilling the TLAB or allocating directly from eden.
  1036           Label retry_tlab, try_eden;
  1037           const Register thread =
  1038             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
  1040           __ bind(retry_tlab);
  1042           // get the instance size (size is postive so movl is fine for 64bit)
  1043           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1045           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1047           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1048           __ verify_oop(obj);
  1049           __ pop(rbx);
  1050           __ pop(rdi);
  1051           __ ret(0);
  1053           __ bind(try_eden);
  1054           // get the instance size (size is postive so movl is fine for 64bit)
  1055           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1057           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1058           __ incr_allocated_bytes(thread, obj_size, 0);
  1060           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1061           __ verify_oop(obj);
  1062           __ pop(rbx);
  1063           __ pop(rdi);
  1064           __ ret(0);
  1066           __ bind(slow_path);
  1067           __ pop(rbx);
  1068           __ pop(rdi);
  1071         __ enter();
  1072         OopMap* map = save_live_registers(sasm, 2);
  1073         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1074         oop_maps = new OopMapSet();
  1075         oop_maps->add_gc_map(call_offset, map);
  1076         restore_live_registers_except_rax(sasm);
  1077         __ verify_oop(obj);
  1078         __ leave();
  1079         __ ret(0);
  1081         // rax,: new instance
  1084       break;
  1086     case counter_overflow_id:
  1088         Register bci = rax, method = rbx;
  1089         __ enter();
  1090         OopMap* map = save_live_registers(sasm, 3);
  1091         // Retrieve bci
  1092         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1093         // And a pointer to the methodOop
  1094         __ movptr(method, Address(rbp, 3*BytesPerWord));
  1095         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
  1096         oop_maps = new OopMapSet();
  1097         oop_maps->add_gc_map(call_offset, map);
  1098         restore_live_registers(sasm);
  1099         __ leave();
  1100         __ ret(0);
  1102       break;
  1104     case new_type_array_id:
  1105     case new_object_array_id:
  1107         Register length   = rbx; // Incoming
  1108         Register klass    = rdx; // Incoming
  1109         Register obj      = rax; // Result
  1111         if (id == new_type_array_id) {
  1112           __ set_info("new_type_array", dont_gc_arguments);
  1113         } else {
  1114           __ set_info("new_object_array", dont_gc_arguments);
  1117 #ifdef ASSERT
  1118         // assert object type is really an array of the proper kind
  1120           Label ok;
  1121           Register t0 = obj;
  1122           __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1123           __ sarl(t0, Klass::_lh_array_tag_shift);
  1124           int tag = ((id == new_type_array_id)
  1125                      ? Klass::_lh_array_tag_type_value
  1126                      : Klass::_lh_array_tag_obj_value);
  1127           __ cmpl(t0, tag);
  1128           __ jcc(Assembler::equal, ok);
  1129           __ stop("assert(is an array klass)");
  1130           __ should_not_reach_here();
  1131           __ bind(ok);
  1133 #endif // ASSERT
  1135         if (UseTLAB && FastTLABRefill) {
  1136           Register arr_size = rsi;
  1137           Register t1       = rcx;  // must be rcx for use as shift count
  1138           Register t2       = rdi;
  1139           Label slow_path;
  1140           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1142           // check that array length is small enough for fast path.
  1143           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1144           __ jcc(Assembler::above, slow_path);
  1146           // if we got here then the TLAB allocation failed, so try
  1147           // refilling the TLAB or allocating directly from eden.
  1148           Label retry_tlab, try_eden;
  1149           const Register thread =
  1150             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
  1152           __ bind(retry_tlab);
  1154           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1155           // since size is positive movl does right thing on 64bit
  1156           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1157           // since size is postive movl does right thing on 64bit
  1158           __ movl(arr_size, length);
  1159           assert(t1 == rcx, "fixed register usage");
  1160           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1161           __ shrptr(t1, Klass::_lh_header_size_shift);
  1162           __ andptr(t1, Klass::_lh_header_size_mask);
  1163           __ addptr(arr_size, t1);
  1164           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1165           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1167           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1169           __ initialize_header(obj, klass, length, t1, t2);
  1170           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1171           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1172           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1173           __ andptr(t1, Klass::_lh_header_size_mask);
  1174           __ subptr(arr_size, t1);  // body length
  1175           __ addptr(t1, obj);       // body start
  1176           __ initialize_body(t1, arr_size, 0, t2);
  1177           __ verify_oop(obj);
  1178           __ ret(0);
  1180           __ bind(try_eden);
  1181           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1182           // since size is positive movl does right thing on 64bit
  1183           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1184           // since size is postive movl does right thing on 64bit
  1185           __ movl(arr_size, length);
  1186           assert(t1 == rcx, "fixed register usage");
  1187           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1188           __ shrptr(t1, Klass::_lh_header_size_shift);
  1189           __ andptr(t1, Klass::_lh_header_size_mask);
  1190           __ addptr(arr_size, t1);
  1191           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1192           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1194           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1195           __ incr_allocated_bytes(thread, arr_size, 0);
  1197           __ initialize_header(obj, klass, length, t1, t2);
  1198           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1199           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1200           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1201           __ andptr(t1, Klass::_lh_header_size_mask);
  1202           __ subptr(arr_size, t1);  // body length
  1203           __ addptr(t1, obj);       // body start
  1204           __ initialize_body(t1, arr_size, 0, t2);
  1205           __ verify_oop(obj);
  1206           __ ret(0);
  1208           __ bind(slow_path);
  1211         __ enter();
  1212         OopMap* map = save_live_registers(sasm, 3);
  1213         int call_offset;
  1214         if (id == new_type_array_id) {
  1215           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1216         } else {
  1217           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1220         oop_maps = new OopMapSet();
  1221         oop_maps->add_gc_map(call_offset, map);
  1222         restore_live_registers_except_rax(sasm);
  1224         __ verify_oop(obj);
  1225         __ leave();
  1226         __ ret(0);
  1228         // rax,: new array
  1230       break;
  1232     case new_multi_array_id:
  1233       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1234         // rax,: klass
  1235         // rbx,: rank
  1236         // rcx: address of 1st dimension
  1237         OopMap* map = save_live_registers(sasm, 4);
  1238         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1240         oop_maps = new OopMapSet();
  1241         oop_maps->add_gc_map(call_offset, map);
  1242         restore_live_registers_except_rax(sasm);
  1244         // rax,: new multi array
  1245         __ verify_oop(rax);
  1247       break;
  1249     case register_finalizer_id:
  1251         __ set_info("register_finalizer", dont_gc_arguments);
  1253         // This is called via call_runtime so the arguments
  1254         // will be place in C abi locations
  1256 #ifdef _LP64
  1257         __ verify_oop(c_rarg0);
  1258         __ mov(rax, c_rarg0);
  1259 #else
  1260         // The object is passed on the stack and we haven't pushed a
  1261         // frame yet so it's one work away from top of stack.
  1262         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1263         __ verify_oop(rax);
  1264 #endif // _LP64
  1266         // load the klass and check the has finalizer flag
  1267         Label register_finalizer;
  1268         Register t = rsi;
  1269         __ load_klass(t, rax);
  1270         __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1271         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1272         __ jcc(Assembler::notZero, register_finalizer);
  1273         __ ret(0);
  1275         __ bind(register_finalizer);
  1276         __ enter();
  1277         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1278         int call_offset = __ call_RT(noreg, noreg,
  1279                                      CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1280         oop_maps = new OopMapSet();
  1281         oop_maps->add_gc_map(call_offset, oop_map);
  1283         // Now restore all the live registers
  1284         restore_live_registers(sasm);
  1286         __ leave();
  1287         __ ret(0);
  1289       break;
  1291     case throw_range_check_failed_id:
  1292       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1293         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1295       break;
  1297     case throw_index_exception_id:
  1298       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1299         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1301       break;
  1303     case throw_div0_exception_id:
  1304       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1307       break;
  1309     case throw_null_pointer_exception_id:
  1310       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1311         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1313       break;
  1315     case handle_exception_nofpu_id:
  1316     case handle_exception_id:
  1317       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1318         oop_maps = generate_handle_exception(id, sasm);
  1320       break;
  1322     case handle_exception_from_callee_id:
  1323       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
  1324         oop_maps = generate_handle_exception(id, sasm);
  1326       break;
  1328     case unwind_exception_id:
  1329       { __ set_info("unwind_exception", dont_gc_arguments);
  1330         // note: no stubframe since we are about to leave the current
  1331         //       activation and we are calling a leaf VM function only.
  1332         generate_unwind_exception(sasm);
  1334       break;
  1336     case throw_array_store_exception_id:
  1337       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1338         // tos + 0: link
  1339         //     + 1: return address
  1340         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
  1342       break;
  1344     case throw_class_cast_exception_id:
  1345       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1346         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1348       break;
  1350     case throw_incompatible_class_change_error_id:
  1351       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1352         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1354       break;
  1356     case slow_subtype_check_id:
  1358         // Typical calling sequence:
  1359         // __ push(klass_RInfo);  // object klass or other subclass
  1360         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1361         // __ call(slow_subtype_check);
  1362         // Note that the subclass is pushed first, and is therefore deepest.
  1363         // Previous versions of this code reversed the names 'sub' and 'super'.
  1364         // This was operationally harmless but made the code unreadable.
  1365         enum layout {
  1366           rax_off, SLOT2(raxH_off)
  1367           rcx_off, SLOT2(rcxH_off)
  1368           rsi_off, SLOT2(rsiH_off)
  1369           rdi_off, SLOT2(rdiH_off)
  1370           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1371           return_off, SLOT2(returnH_off)
  1372           sup_k_off, SLOT2(sup_kH_off)
  1373           klass_off, SLOT2(superH_off)
  1374           framesize,
  1375           result_off = klass_off  // deepest argument is also the return value
  1376         };
  1378         __ set_info("slow_subtype_check", dont_gc_arguments);
  1379         __ push(rdi);
  1380         __ push(rsi);
  1381         __ push(rcx);
  1382         __ push(rax);
  1384         // This is called by pushing args and not with C abi
  1385         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1386         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1388         Label miss;
  1389         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1391         // fallthrough on success:
  1392         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1393         __ pop(rax);
  1394         __ pop(rcx);
  1395         __ pop(rsi);
  1396         __ pop(rdi);
  1397         __ ret(0);
  1399         __ bind(miss);
  1400         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1401         __ pop(rax);
  1402         __ pop(rcx);
  1403         __ pop(rsi);
  1404         __ pop(rdi);
  1405         __ ret(0);
  1407       break;
  1409     case monitorenter_nofpu_id:
  1410       save_fpu_registers = false;
  1411       // fall through
  1412     case monitorenter_id:
  1414         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1415         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1417         // Called with store_parameter and not C abi
  1419         f.load_argument(1, rax); // rax,: object
  1420         f.load_argument(0, rbx); // rbx,: lock address
  1422         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1424         oop_maps = new OopMapSet();
  1425         oop_maps->add_gc_map(call_offset, map);
  1426         restore_live_registers(sasm, save_fpu_registers);
  1428       break;
  1430     case monitorexit_nofpu_id:
  1431       save_fpu_registers = false;
  1432       // fall through
  1433     case monitorexit_id:
  1435         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1436         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1438         // Called with store_parameter and not C abi
  1440         f.load_argument(0, rax); // rax,: lock address
  1442         // note: really a leaf routine but must setup last java sp
  1443         //       => use call_RT for now (speed can be improved by
  1444         //       doing last java sp setup manually)
  1445         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1447         oop_maps = new OopMapSet();
  1448         oop_maps->add_gc_map(call_offset, map);
  1449         restore_live_registers(sasm, save_fpu_registers);
  1452       break;
  1454     case access_field_patching_id:
  1455       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1456         // we should set up register map
  1457         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1459       break;
  1461     case load_klass_patching_id:
  1462       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1463         // we should set up register map
  1464         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1466       break;
  1468     case jvmti_exception_throw_id:
  1469       { // rax,: exception oop
  1470         StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
  1471         // Preserve all registers across this potentially blocking call
  1472         const int num_rt_args = 2;  // thread, exception oop
  1473         OopMap* map = save_live_registers(sasm, num_rt_args);
  1474         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
  1475         oop_maps = new OopMapSet();
  1476         oop_maps->add_gc_map(call_offset, map);
  1477         restore_live_registers(sasm);
  1479       break;
  1481     case dtrace_object_alloc_id:
  1482       { // rax,: object
  1483         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1484         // we can't gc here so skip the oopmap but make sure that all
  1485         // the live registers get saved.
  1486         save_live_registers(sasm, 1);
  1488         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1489         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1490         NOT_LP64(__ pop(rax));
  1492         restore_live_registers(sasm);
  1494       break;
  1496     case fpu2long_stub_id:
  1498         // rax, and rdx are destroyed, but should be free since the result is returned there
  1499         // preserve rsi,ecx
  1500         __ push(rsi);
  1501         __ push(rcx);
  1502         LP64_ONLY(__ push(rdx);)
  1504         // check for NaN
  1505         Label return0, do_return, return_min_jlong, do_convert;
  1507         Address value_high_word(rsp, wordSize + 4);
  1508         Address value_low_word(rsp, wordSize);
  1509         Address result_high_word(rsp, 3*wordSize + 4);
  1510         Address result_low_word(rsp, 3*wordSize);
  1512         __ subptr(rsp, 32);                    // more than enough on 32bit
  1513         __ fst_d(value_low_word);
  1514         __ movl(rax, value_high_word);
  1515         __ andl(rax, 0x7ff00000);
  1516         __ cmpl(rax, 0x7ff00000);
  1517         __ jcc(Assembler::notEqual, do_convert);
  1518         __ movl(rax, value_high_word);
  1519         __ andl(rax, 0xfffff);
  1520         __ orl(rax, value_low_word);
  1521         __ jcc(Assembler::notZero, return0);
  1523         __ bind(do_convert);
  1524         __ fnstcw(Address(rsp, 0));
  1525         __ movzwl(rax, Address(rsp, 0));
  1526         __ orl(rax, 0xc00);
  1527         __ movw(Address(rsp, 2), rax);
  1528         __ fldcw(Address(rsp, 2));
  1529         __ fwait();
  1530         __ fistp_d(result_low_word);
  1531         __ fldcw(Address(rsp, 0));
  1532         __ fwait();
  1533         // This gets the entire long in rax on 64bit
  1534         __ movptr(rax, result_low_word);
  1535         // testing of high bits
  1536         __ movl(rdx, result_high_word);
  1537         __ mov(rcx, rax);
  1538         // What the heck is the point of the next instruction???
  1539         __ xorl(rcx, 0x0);
  1540         __ movl(rsi, 0x80000000);
  1541         __ xorl(rsi, rdx);
  1542         __ orl(rcx, rsi);
  1543         __ jcc(Assembler::notEqual, do_return);
  1544         __ fldz();
  1545         __ fcomp_d(value_low_word);
  1546         __ fnstsw_ax();
  1547 #ifdef _LP64
  1548         __ testl(rax, 0x4100);  // ZF & CF == 0
  1549         __ jcc(Assembler::equal, return_min_jlong);
  1550 #else
  1551         __ sahf();
  1552         __ jcc(Assembler::above, return_min_jlong);
  1553 #endif // _LP64
  1554         // return max_jlong
  1555 #ifndef _LP64
  1556         __ movl(rdx, 0x7fffffff);
  1557         __ movl(rax, 0xffffffff);
  1558 #else
  1559         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1560 #endif // _LP64
  1561         __ jmp(do_return);
  1563         __ bind(return_min_jlong);
  1564 #ifndef _LP64
  1565         __ movl(rdx, 0x80000000);
  1566         __ xorl(rax, rax);
  1567 #else
  1568         __ mov64(rax, CONST64(0x8000000000000000));
  1569 #endif // _LP64
  1570         __ jmp(do_return);
  1572         __ bind(return0);
  1573         __ fpop();
  1574 #ifndef _LP64
  1575         __ xorptr(rdx,rdx);
  1576         __ xorptr(rax,rax);
  1577 #else
  1578         __ xorptr(rax, rax);
  1579 #endif // _LP64
  1581         __ bind(do_return);
  1582         __ addptr(rsp, 32);
  1583         LP64_ONLY(__ pop(rdx);)
  1584         __ pop(rcx);
  1585         __ pop(rsi);
  1586         __ ret(0);
  1588       break;
  1590 #ifndef SERIALGC
  1591     case g1_pre_barrier_slow_id:
  1593         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1594         // arg0 : previous value of memory
  1596         BarrierSet* bs = Universe::heap()->barrier_set();
  1597         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1598           __ movptr(rax, (int)id);
  1599           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1600           __ should_not_reach_here();
  1601           break;
  1603         __ push(rax);
  1604         __ push(rdx);
  1606         const Register pre_val = rax;
  1607         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1608         const Register tmp = rdx;
  1610         NOT_LP64(__ get_thread(thread);)
  1612         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1613                                              PtrQueue::byte_offset_of_active()));
  1615         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1616                                              PtrQueue::byte_offset_of_index()));
  1617         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1618                                         PtrQueue::byte_offset_of_buf()));
  1621         Label done;
  1622         Label runtime;
  1624         // Can we store original value in the thread's buffer?
  1626 #ifdef _LP64
  1627         __ movslq(tmp, queue_index);
  1628         __ cmpq(tmp, 0);
  1629 #else
  1630         __ cmpl(queue_index, 0);
  1631 #endif
  1632         __ jcc(Assembler::equal, runtime);
  1633 #ifdef _LP64
  1634         __ subq(tmp, wordSize);
  1635         __ movl(queue_index, tmp);
  1636         __ addq(tmp, buffer);
  1637 #else
  1638         __ subl(queue_index, wordSize);
  1639         __ movl(tmp, buffer);
  1640         __ addl(tmp, queue_index);
  1641 #endif
  1643         // prev_val (rax)
  1644         f.load_argument(0, pre_val);
  1645         __ movptr(Address(tmp, 0), pre_val);
  1646         __ jmp(done);
  1648         __ bind(runtime);
  1649         __ push(rcx);
  1650 #ifdef _LP64
  1651         __ push(r8);
  1652         __ push(r9);
  1653         __ push(r10);
  1654         __ push(r11);
  1655 #  ifndef _WIN64
  1656         __ push(rdi);
  1657         __ push(rsi);
  1658 #  endif
  1659 #endif
  1660         // load the pre-value
  1661         f.load_argument(0, rcx);
  1662         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1663 #ifdef _LP64
  1664 #  ifndef _WIN64
  1665         __ pop(rsi);
  1666         __ pop(rdi);
  1667 #  endif
  1668         __ pop(r11);
  1669         __ pop(r10);
  1670         __ pop(r9);
  1671         __ pop(r8);
  1672 #endif
  1673         __ pop(rcx);
  1674         __ bind(done);
  1676         __ pop(rdx);
  1677         __ pop(rax);
  1679       break;
  1681     case g1_post_barrier_slow_id:
  1683         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1686         // arg0: store_address
  1687         Address store_addr(rbp, 2*BytesPerWord);
  1689         BarrierSet* bs = Universe::heap()->barrier_set();
  1690         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1691         Label done;
  1692         Label runtime;
  1694         // At this point we know new_value is non-NULL and the new_value crosses regsion.
  1695         // Must check to see if card is already dirty
  1697         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1699         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1700                                              PtrQueue::byte_offset_of_index()));
  1701         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1702                                         PtrQueue::byte_offset_of_buf()));
  1704         __ push(rax);
  1705         __ push(rcx);
  1707         NOT_LP64(__ get_thread(thread);)
  1708         ExternalAddress cardtable((address)ct->byte_map_base);
  1709         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1711         const Register card_addr = rcx;
  1712 #ifdef _LP64
  1713         const Register tmp = rscratch1;
  1714         f.load_argument(0, card_addr);
  1715         __ shrq(card_addr, CardTableModRefBS::card_shift);
  1716         __ lea(tmp, cardtable);
  1717         // get the address of the card
  1718         __ addq(card_addr, tmp);
  1719 #else
  1720         const Register card_index = rcx;
  1721         f.load_argument(0, card_index);
  1722         __ shrl(card_index, CardTableModRefBS::card_shift);
  1724         Address index(noreg, card_index, Address::times_1);
  1725         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
  1726 #endif
  1728         __ cmpb(Address(card_addr, 0), 0);
  1729         __ jcc(Assembler::equal, done);
  1731         // storing region crossing non-NULL, card is clean.
  1732         // dirty card and log.
  1734         __ movb(Address(card_addr, 0), 0);
  1736         __ cmpl(queue_index, 0);
  1737         __ jcc(Assembler::equal, runtime);
  1738         __ subl(queue_index, wordSize);
  1740         const Register buffer_addr = rbx;
  1741         __ push(rbx);
  1743         __ movptr(buffer_addr, buffer);
  1745 #ifdef _LP64
  1746         __ movslq(rscratch1, queue_index);
  1747         __ addptr(buffer_addr, rscratch1);
  1748 #else
  1749         __ addptr(buffer_addr, queue_index);
  1750 #endif
  1751         __ movptr(Address(buffer_addr, 0), card_addr);
  1753         __ pop(rbx);
  1754         __ jmp(done);
  1756         __ bind(runtime);
  1757         __ push(rdx);
  1758 #ifdef _LP64
  1759         __ push(r8);
  1760         __ push(r9);
  1761         __ push(r10);
  1762         __ push(r11);
  1763 #  ifndef _WIN64
  1764         __ push(rdi);
  1765         __ push(rsi);
  1766 #  endif
  1767 #endif
  1768         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1769 #ifdef _LP64
  1770 #  ifndef _WIN64
  1771         __ pop(rsi);
  1772         __ pop(rdi);
  1773 #  endif
  1774         __ pop(r11);
  1775         __ pop(r10);
  1776         __ pop(r9);
  1777         __ pop(r8);
  1778 #endif
  1779         __ pop(rdx);
  1780         __ bind(done);
  1782         __ pop(rcx);
  1783         __ pop(rax);
  1786       break;
  1787 #endif // !SERIALGC
  1789     default:
  1790       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1791         __ movptr(rax, (int)id);
  1792         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1793         __ should_not_reach_here();
  1795       break;
  1797   return oop_maps;
  1800 #undef __
  1802 const char *Runtime1::pd_name_for_address(address entry) {
  1803   return "<unknown function>";

mercurial