src/share/vm/opto/library_call.cpp

Fri, 13 Mar 2009 11:35:17 -0700

author
twisti
date
Fri, 13 Mar 2009 11:35:17 -0700
changeset 1078
c771b7f43bbf
parent 1040
98cb887364d3
child 1116
fbde8ec322d0
permissions
-rw-r--r--

6378821: bitCount() should use POPC on SPARC processors and AMD+10h
Summary: bitCount() should use POPC on SPARC processors where POPC is implemented directly in hardware.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   bool inline_string_compareTo();
   137   bool inline_string_indexOf();
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   139   Node* pop_math_arg();
   140   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   141   bool inline_math_native(vmIntrinsics::ID id);
   142   bool inline_trig(vmIntrinsics::ID id);
   143   bool inline_trans(vmIntrinsics::ID id);
   144   bool inline_abs(vmIntrinsics::ID id);
   145   bool inline_sqrt(vmIntrinsics::ID id);
   146   bool inline_pow(vmIntrinsics::ID id);
   147   bool inline_exp(vmIntrinsics::ID id);
   148   bool inline_min_max(vmIntrinsics::ID id);
   149   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   150   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   151   int classify_unsafe_addr(Node* &base, Node* &offset);
   152   Node* make_unsafe_address(Node* base, Node* offset);
   153   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   154   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   155   bool inline_unsafe_allocate();
   156   bool inline_unsafe_copyMemory();
   157   bool inline_native_currentThread();
   158   bool inline_native_time_funcs(bool isNano);
   159   bool inline_native_isInterrupted();
   160   bool inline_native_Class_query(vmIntrinsics::ID id);
   161   bool inline_native_subtype_check();
   163   bool inline_native_newArray();
   164   bool inline_native_getLength();
   165   bool inline_array_copyOf(bool is_copyOfRange);
   166   bool inline_array_equals();
   167   bool inline_native_clone(bool is_virtual);
   168   bool inline_native_Reflection_getCallerClass();
   169   bool inline_native_AtomicLong_get();
   170   bool inline_native_AtomicLong_attemptUpdate();
   171   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   172   // Helper function for inlining native object hash method
   173   bool inline_native_hashcode(bool is_virtual, bool is_static);
   174   bool inline_native_getClass();
   176   // Helper functions for inlining arraycopy
   177   bool inline_arraycopy();
   178   void generate_arraycopy(const TypePtr* adr_type,
   179                           BasicType basic_elem_type,
   180                           Node* src,  Node* src_offset,
   181                           Node* dest, Node* dest_offset,
   182                           Node* copy_length,
   183                           int nargs,  // arguments on stack for debug info
   184                           bool disjoint_bases = false,
   185                           bool length_never_negative = false,
   186                           RegionNode* slow_region = NULL);
   187   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   188                                                 RegionNode* slow_region);
   189   void generate_clear_array(const TypePtr* adr_type,
   190                             Node* dest,
   191                             BasicType basic_elem_type,
   192                             Node* slice_off,
   193                             Node* slice_len,
   194                             Node* slice_end);
   195   bool generate_block_arraycopy(const TypePtr* adr_type,
   196                                 BasicType basic_elem_type,
   197                                 AllocateNode* alloc,
   198                                 Node* src,  Node* src_offset,
   199                                 Node* dest, Node* dest_offset,
   200                                 Node* dest_size);
   201   void generate_slow_arraycopy(const TypePtr* adr_type,
   202                                Node* src,  Node* src_offset,
   203                                Node* dest, Node* dest_offset,
   204                                Node* copy_length,
   205                                int nargs);
   206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   207                                      Node* dest_elem_klass,
   208                                      Node* src,  Node* src_offset,
   209                                      Node* dest, Node* dest_offset,
   210                                      Node* copy_length, int nargs);
   211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   212                                    Node* src,  Node* src_offset,
   213                                    Node* dest, Node* dest_offset,
   214                                    Node* copy_length, int nargs);
   215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   216                                     BasicType basic_elem_type,
   217                                     bool disjoint_bases,
   218                                     Node* src,  Node* src_offset,
   219                                     Node* dest, Node* dest_offset,
   220                                     Node* copy_length);
   221   bool inline_unsafe_CAS(BasicType type);
   222   bool inline_unsafe_ordered_store(BasicType type);
   223   bool inline_fp_conversions(vmIntrinsics::ID id);
   224   bool inline_bitCount(vmIntrinsics::ID id);
   225   bool inline_reverseBytes(vmIntrinsics::ID id);
   226 };
   229 //---------------------------make_vm_intrinsic----------------------------
   230 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   231   vmIntrinsics::ID id = m->intrinsic_id();
   232   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   234   if (DisableIntrinsic[0] != '\0'
   235       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   236     // disabled by a user request on the command line:
   237     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   238     return NULL;
   239   }
   241   if (!m->is_loaded()) {
   242     // do not attempt to inline unloaded methods
   243     return NULL;
   244   }
   246   // Only a few intrinsics implement a virtual dispatch.
   247   // They are expensive calls which are also frequently overridden.
   248   if (is_virtual) {
   249     switch (id) {
   250     case vmIntrinsics::_hashCode:
   251     case vmIntrinsics::_clone:
   252       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   253       break;
   254     default:
   255       return NULL;
   256     }
   257   }
   259   // -XX:-InlineNatives disables nearly all intrinsics:
   260   if (!InlineNatives) {
   261     switch (id) {
   262     case vmIntrinsics::_indexOf:
   263     case vmIntrinsics::_compareTo:
   264     case vmIntrinsics::_equalsC:
   265       break;  // InlineNatives does not control String.compareTo
   266     default:
   267       return NULL;
   268     }
   269   }
   271   switch (id) {
   272   case vmIntrinsics::_compareTo:
   273     if (!SpecialStringCompareTo)  return NULL;
   274     break;
   275   case vmIntrinsics::_indexOf:
   276     if (!SpecialStringIndexOf)  return NULL;
   277     break;
   278   case vmIntrinsics::_equalsC:
   279     if (!SpecialArraysEquals)  return NULL;
   280     break;
   281   case vmIntrinsics::_arraycopy:
   282     if (!InlineArrayCopy)  return NULL;
   283     break;
   284   case vmIntrinsics::_copyMemory:
   285     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   286     if (!InlineArrayCopy)  return NULL;
   287     break;
   288   case vmIntrinsics::_hashCode:
   289     if (!InlineObjectHash)  return NULL;
   290     break;
   291   case vmIntrinsics::_clone:
   292   case vmIntrinsics::_copyOf:
   293   case vmIntrinsics::_copyOfRange:
   294     if (!InlineObjectCopy)  return NULL;
   295     // These also use the arraycopy intrinsic mechanism:
   296     if (!InlineArrayCopy)  return NULL;
   297     break;
   298   case vmIntrinsics::_checkIndex:
   299     // We do not intrinsify this.  The optimizer does fine with it.
   300     return NULL;
   302   case vmIntrinsics::_get_AtomicLong:
   303   case vmIntrinsics::_attemptUpdate:
   304     if (!InlineAtomicLong)  return NULL;
   305     break;
   307   case vmIntrinsics::_Object_init:
   308   case vmIntrinsics::_invoke:
   309     // We do not intrinsify these; they are marked for other purposes.
   310     return NULL;
   312   case vmIntrinsics::_getCallerClass:
   313     if (!UseNewReflection)  return NULL;
   314     if (!InlineReflectionGetCallerClass)  return NULL;
   315     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   316     break;
   318   case vmIntrinsics::_bitCount_i:
   319   case vmIntrinsics::_bitCount_l:
   320     if (!UsePopCountInstruction)  return NULL;
   321     break;
   323  default:
   324     break;
   325   }
   327   // -XX:-InlineClassNatives disables natives from the Class class.
   328   // The flag applies to all reflective calls, notably Array.newArray
   329   // (visible to Java programmers as Array.newInstance).
   330   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   331       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   332     if (!InlineClassNatives)  return NULL;
   333   }
   335   // -XX:-InlineThreadNatives disables natives from the Thread class.
   336   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   337     if (!InlineThreadNatives)  return NULL;
   338   }
   340   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   341   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   342       m->holder()->name() == ciSymbol::java_lang_Float() ||
   343       m->holder()->name() == ciSymbol::java_lang_Double()) {
   344     if (!InlineMathNatives)  return NULL;
   345   }
   347   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   348   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   349     if (!InlineUnsafeOps)  return NULL;
   350   }
   352   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   353 }
   355 //----------------------register_library_intrinsics-----------------------
   356 // Initialize this file's data structures, for each Compile instance.
   357 void Compile::register_library_intrinsics() {
   358   // Nothing to do here.
   359 }
   361 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   362   LibraryCallKit kit(jvms, this);
   363   Compile* C = kit.C;
   364   int nodes = C->unique();
   365 #ifndef PRODUCT
   366   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   367     char buf[1000];
   368     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   369     tty->print_cr("Intrinsic %s", str);
   370   }
   371 #endif
   372   if (kit.try_to_inline()) {
   373     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   374       tty->print("Inlining intrinsic %s%s at bci:%d in",
   375                  vmIntrinsics::name_at(intrinsic_id()),
   376                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   377       kit.caller()->print_short_name(tty);
   378       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   379     }
   380     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   381     if (C->log()) {
   382       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   383                      vmIntrinsics::name_at(intrinsic_id()),
   384                      (is_virtual() ? " virtual='1'" : ""),
   385                      C->unique() - nodes);
   386     }
   387     return kit.transfer_exceptions_into_jvms();
   388   }
   390   if (PrintIntrinsics) {
   391     switch (intrinsic_id()) {
   392     case vmIntrinsics::_invoke:
   393     case vmIntrinsics::_Object_init:
   394       // We do not expect to inline these, so do not produce any noise about them.
   395       break;
   396     default:
   397       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   398                  vmIntrinsics::name_at(intrinsic_id()),
   399                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   400       kit.caller()->print_short_name(tty);
   401       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   402     }
   403   }
   404   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   405   return NULL;
   406 }
   408 bool LibraryCallKit::try_to_inline() {
   409   // Handle symbolic names for otherwise undistinguished boolean switches:
   410   const bool is_store       = true;
   411   const bool is_native_ptr  = true;
   412   const bool is_static      = true;
   414   switch (intrinsic_id()) {
   415   case vmIntrinsics::_hashCode:
   416     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   417   case vmIntrinsics::_identityHashCode:
   418     return inline_native_hashcode(/*!virtual*/ false, is_static);
   419   case vmIntrinsics::_getClass:
   420     return inline_native_getClass();
   422   case vmIntrinsics::_dsin:
   423   case vmIntrinsics::_dcos:
   424   case vmIntrinsics::_dtan:
   425   case vmIntrinsics::_dabs:
   426   case vmIntrinsics::_datan2:
   427   case vmIntrinsics::_dsqrt:
   428   case vmIntrinsics::_dexp:
   429   case vmIntrinsics::_dlog:
   430   case vmIntrinsics::_dlog10:
   431   case vmIntrinsics::_dpow:
   432     return inline_math_native(intrinsic_id());
   434   case vmIntrinsics::_min:
   435   case vmIntrinsics::_max:
   436     return inline_min_max(intrinsic_id());
   438   case vmIntrinsics::_arraycopy:
   439     return inline_arraycopy();
   441   case vmIntrinsics::_compareTo:
   442     return inline_string_compareTo();
   443   case vmIntrinsics::_indexOf:
   444     return inline_string_indexOf();
   446   case vmIntrinsics::_getObject:
   447     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   448   case vmIntrinsics::_getBoolean:
   449     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   450   case vmIntrinsics::_getByte:
   451     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   452   case vmIntrinsics::_getShort:
   453     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   454   case vmIntrinsics::_getChar:
   455     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   456   case vmIntrinsics::_getInt:
   457     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   458   case vmIntrinsics::_getLong:
   459     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   460   case vmIntrinsics::_getFloat:
   461     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   462   case vmIntrinsics::_getDouble:
   463     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   465   case vmIntrinsics::_putObject:
   466     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   467   case vmIntrinsics::_putBoolean:
   468     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   469   case vmIntrinsics::_putByte:
   470     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   471   case vmIntrinsics::_putShort:
   472     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   473   case vmIntrinsics::_putChar:
   474     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   475   case vmIntrinsics::_putInt:
   476     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   477   case vmIntrinsics::_putLong:
   478     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   479   case vmIntrinsics::_putFloat:
   480     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   481   case vmIntrinsics::_putDouble:
   482     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   484   case vmIntrinsics::_getByte_raw:
   485     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   486   case vmIntrinsics::_getShort_raw:
   487     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   488   case vmIntrinsics::_getChar_raw:
   489     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   490   case vmIntrinsics::_getInt_raw:
   491     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   492   case vmIntrinsics::_getLong_raw:
   493     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   494   case vmIntrinsics::_getFloat_raw:
   495     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   496   case vmIntrinsics::_getDouble_raw:
   497     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   498   case vmIntrinsics::_getAddress_raw:
   499     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   501   case vmIntrinsics::_putByte_raw:
   502     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   503   case vmIntrinsics::_putShort_raw:
   504     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   505   case vmIntrinsics::_putChar_raw:
   506     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   507   case vmIntrinsics::_putInt_raw:
   508     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   509   case vmIntrinsics::_putLong_raw:
   510     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   511   case vmIntrinsics::_putFloat_raw:
   512     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   513   case vmIntrinsics::_putDouble_raw:
   514     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   515   case vmIntrinsics::_putAddress_raw:
   516     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   518   case vmIntrinsics::_getObjectVolatile:
   519     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   520   case vmIntrinsics::_getBooleanVolatile:
   521     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   522   case vmIntrinsics::_getByteVolatile:
   523     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   524   case vmIntrinsics::_getShortVolatile:
   525     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   526   case vmIntrinsics::_getCharVolatile:
   527     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   528   case vmIntrinsics::_getIntVolatile:
   529     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   530   case vmIntrinsics::_getLongVolatile:
   531     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   532   case vmIntrinsics::_getFloatVolatile:
   533     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   534   case vmIntrinsics::_getDoubleVolatile:
   535     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   537   case vmIntrinsics::_putObjectVolatile:
   538     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   539   case vmIntrinsics::_putBooleanVolatile:
   540     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   541   case vmIntrinsics::_putByteVolatile:
   542     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   543   case vmIntrinsics::_putShortVolatile:
   544     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   545   case vmIntrinsics::_putCharVolatile:
   546     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   547   case vmIntrinsics::_putIntVolatile:
   548     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   549   case vmIntrinsics::_putLongVolatile:
   550     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   551   case vmIntrinsics::_putFloatVolatile:
   552     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   553   case vmIntrinsics::_putDoubleVolatile:
   554     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   556   case vmIntrinsics::_prefetchRead:
   557     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   558   case vmIntrinsics::_prefetchWrite:
   559     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   560   case vmIntrinsics::_prefetchReadStatic:
   561     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   562   case vmIntrinsics::_prefetchWriteStatic:
   563     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   565   case vmIntrinsics::_compareAndSwapObject:
   566     return inline_unsafe_CAS(T_OBJECT);
   567   case vmIntrinsics::_compareAndSwapInt:
   568     return inline_unsafe_CAS(T_INT);
   569   case vmIntrinsics::_compareAndSwapLong:
   570     return inline_unsafe_CAS(T_LONG);
   572   case vmIntrinsics::_putOrderedObject:
   573     return inline_unsafe_ordered_store(T_OBJECT);
   574   case vmIntrinsics::_putOrderedInt:
   575     return inline_unsafe_ordered_store(T_INT);
   576   case vmIntrinsics::_putOrderedLong:
   577     return inline_unsafe_ordered_store(T_LONG);
   579   case vmIntrinsics::_currentThread:
   580     return inline_native_currentThread();
   581   case vmIntrinsics::_isInterrupted:
   582     return inline_native_isInterrupted();
   584   case vmIntrinsics::_currentTimeMillis:
   585     return inline_native_time_funcs(false);
   586   case vmIntrinsics::_nanoTime:
   587     return inline_native_time_funcs(true);
   588   case vmIntrinsics::_allocateInstance:
   589     return inline_unsafe_allocate();
   590   case vmIntrinsics::_copyMemory:
   591     return inline_unsafe_copyMemory();
   592   case vmIntrinsics::_newArray:
   593     return inline_native_newArray();
   594   case vmIntrinsics::_getLength:
   595     return inline_native_getLength();
   596   case vmIntrinsics::_copyOf:
   597     return inline_array_copyOf(false);
   598   case vmIntrinsics::_copyOfRange:
   599     return inline_array_copyOf(true);
   600   case vmIntrinsics::_equalsC:
   601     return inline_array_equals();
   602   case vmIntrinsics::_clone:
   603     return inline_native_clone(intrinsic()->is_virtual());
   605   case vmIntrinsics::_isAssignableFrom:
   606     return inline_native_subtype_check();
   608   case vmIntrinsics::_isInstance:
   609   case vmIntrinsics::_getModifiers:
   610   case vmIntrinsics::_isInterface:
   611   case vmIntrinsics::_isArray:
   612   case vmIntrinsics::_isPrimitive:
   613   case vmIntrinsics::_getSuperclass:
   614   case vmIntrinsics::_getComponentType:
   615   case vmIntrinsics::_getClassAccessFlags:
   616     return inline_native_Class_query(intrinsic_id());
   618   case vmIntrinsics::_floatToRawIntBits:
   619   case vmIntrinsics::_floatToIntBits:
   620   case vmIntrinsics::_intBitsToFloat:
   621   case vmIntrinsics::_doubleToRawLongBits:
   622   case vmIntrinsics::_doubleToLongBits:
   623   case vmIntrinsics::_longBitsToDouble:
   624     return inline_fp_conversions(intrinsic_id());
   626   case vmIntrinsics::_bitCount_i:
   627   case vmIntrinsics::_bitCount_l:
   628     return inline_bitCount(intrinsic_id());
   630   case vmIntrinsics::_reverseBytes_i:
   631   case vmIntrinsics::_reverseBytes_l:
   632     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   634   case vmIntrinsics::_get_AtomicLong:
   635     return inline_native_AtomicLong_get();
   636   case vmIntrinsics::_attemptUpdate:
   637     return inline_native_AtomicLong_attemptUpdate();
   639   case vmIntrinsics::_getCallerClass:
   640     return inline_native_Reflection_getCallerClass();
   642   default:
   643     // If you get here, it may be that someone has added a new intrinsic
   644     // to the list in vmSymbols.hpp without implementing it here.
   645 #ifndef PRODUCT
   646     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   647       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   648                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   649     }
   650 #endif
   651     return false;
   652   }
   653 }
   655 //------------------------------push_result------------------------------
   656 // Helper function for finishing intrinsics.
   657 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   658   record_for_igvn(region);
   659   set_control(_gvn.transform(region));
   660   BasicType value_type = value->type()->basic_type();
   661   push_node(value_type, _gvn.transform(value));
   662 }
   664 //------------------------------generate_guard---------------------------
   665 // Helper function for generating guarded fast-slow graph structures.
   666 // The given 'test', if true, guards a slow path.  If the test fails
   667 // then a fast path can be taken.  (We generally hope it fails.)
   668 // In all cases, GraphKit::control() is updated to the fast path.
   669 // The returned value represents the control for the slow path.
   670 // The return value is never 'top'; it is either a valid control
   671 // or NULL if it is obvious that the slow path can never be taken.
   672 // Also, if region and the slow control are not NULL, the slow edge
   673 // is appended to the region.
   674 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   675   if (stopped()) {
   676     // Already short circuited.
   677     return NULL;
   678   }
   680   // Build an if node and its projections.
   681   // If test is true we take the slow path, which we assume is uncommon.
   682   if (_gvn.type(test) == TypeInt::ZERO) {
   683     // The slow branch is never taken.  No need to build this guard.
   684     return NULL;
   685   }
   687   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   689   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   690   if (if_slow == top()) {
   691     // The slow branch is never taken.  No need to build this guard.
   692     return NULL;
   693   }
   695   if (region != NULL)
   696     region->add_req(if_slow);
   698   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   699   set_control(if_fast);
   701   return if_slow;
   702 }
   704 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   705   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   706 }
   707 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   708   return generate_guard(test, region, PROB_FAIR);
   709 }
   711 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   712                                                      Node* *pos_index) {
   713   if (stopped())
   714     return NULL;                // already stopped
   715   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   716     return NULL;                // index is already adequately typed
   717   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   718   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   719   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   720   if (is_neg != NULL && pos_index != NULL) {
   721     // Emulate effect of Parse::adjust_map_after_if.
   722     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   723     ccast->set_req(0, control());
   724     (*pos_index) = _gvn.transform(ccast);
   725   }
   726   return is_neg;
   727 }
   729 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   730                                                         Node* *pos_index) {
   731   if (stopped())
   732     return NULL;                // already stopped
   733   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   734     return NULL;                // index is already adequately typed
   735   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   736   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   737   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   738   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   739   if (is_notp != NULL && pos_index != NULL) {
   740     // Emulate effect of Parse::adjust_map_after_if.
   741     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   742     ccast->set_req(0, control());
   743     (*pos_index) = _gvn.transform(ccast);
   744   }
   745   return is_notp;
   746 }
   748 // Make sure that 'position' is a valid limit index, in [0..length].
   749 // There are two equivalent plans for checking this:
   750 //   A. (offset + copyLength)  unsigned<=  arrayLength
   751 //   B. offset  <=  (arrayLength - copyLength)
   752 // We require that all of the values above, except for the sum and
   753 // difference, are already known to be non-negative.
   754 // Plan A is robust in the face of overflow, if offset and copyLength
   755 // are both hugely positive.
   756 //
   757 // Plan B is less direct and intuitive, but it does not overflow at
   758 // all, since the difference of two non-negatives is always
   759 // representable.  Whenever Java methods must perform the equivalent
   760 // check they generally use Plan B instead of Plan A.
   761 // For the moment we use Plan A.
   762 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   763                                                   Node* subseq_length,
   764                                                   Node* array_length,
   765                                                   RegionNode* region) {
   766   if (stopped())
   767     return NULL;                // already stopped
   768   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   769   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   770     return NULL;                // common case of whole-array copy
   771   Node* last = subseq_length;
   772   if (!zero_offset)             // last += offset
   773     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   774   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   775   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   776   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   777   return is_over;
   778 }
   781 //--------------------------generate_current_thread--------------------
   782 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   783   ciKlass*    thread_klass = env()->Thread_klass();
   784   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   785   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   786   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   787   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   788   tls_output = thread;
   789   return threadObj;
   790 }
   793 //------------------------------inline_string_compareTo------------------------
   794 bool LibraryCallKit::inline_string_compareTo() {
   796   const int value_offset = java_lang_String::value_offset_in_bytes();
   797   const int count_offset = java_lang_String::count_offset_in_bytes();
   798   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   800   _sp += 2;
   801   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   802   Node *receiver = pop();
   804   // Null check on self without removing any arguments.  The argument
   805   // null check technically happens in the wrong place, which can lead to
   806   // invalid stack traces when string compare is inlined into a method
   807   // which handles NullPointerExceptions.
   808   _sp += 2;
   809   receiver = do_null_check(receiver, T_OBJECT);
   810   argument = do_null_check(argument, T_OBJECT);
   811   _sp -= 2;
   812   if (stopped()) {
   813     return true;
   814   }
   816   ciInstanceKlass* klass = env()->String_klass();
   817   const TypeInstPtr* string_type =
   818     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   820   Node* compare =
   821     _gvn.transform(new (C, 7) StrCompNode(
   822                         control(),
   823                         memory(TypeAryPtr::CHARS),
   824                         memory(string_type->add_offset(value_offset)),
   825                         memory(string_type->add_offset(count_offset)),
   826                         memory(string_type->add_offset(offset_offset)),
   827                         receiver,
   828                         argument));
   829   push(compare);
   830   return true;
   831 }
   833 //------------------------------inline_array_equals----------------------------
   834 bool LibraryCallKit::inline_array_equals() {
   836   if (!Matcher::has_match_rule(Op_AryEq)) return false;
   838   _sp += 2;
   839   Node *argument2 = pop();
   840   Node *argument1 = pop();
   842   Node* equals =
   843     _gvn.transform(new (C, 3) AryEqNode(control(),
   844                                         argument1,
   845                                         argument2)
   846                    );
   847   push(equals);
   848   return true;
   849 }
   851 // Java version of String.indexOf(constant string)
   852 // class StringDecl {
   853 //   StringDecl(char[] ca) {
   854 //     offset = 0;
   855 //     count = ca.length;
   856 //     value = ca;
   857 //   }
   858 //   int offset;
   859 //   int count;
   860 //   char[] value;
   861 // }
   862 //
   863 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
   864 //                             int targetOffset, int cache_i, int md2) {
   865 //   int cache = cache_i;
   866 //   int sourceOffset = string_object.offset;
   867 //   int sourceCount = string_object.count;
   868 //   int targetCount = target_object.length;
   869 //
   870 //   int targetCountLess1 = targetCount - 1;
   871 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   872 //
   873 //   char[] source = string_object.value;
   874 //   char[] target = target_object;
   875 //   int lastChar = target[targetCountLess1];
   876 //
   877 //  outer_loop:
   878 //   for (int i = sourceOffset; i < sourceEnd; ) {
   879 //     int src = source[i + targetCountLess1];
   880 //     if (src == lastChar) {
   881 //       // With random strings and a 4-character alphabet,
   882 //       // reverse matching at this point sets up 0.8% fewer
   883 //       // frames, but (paradoxically) makes 0.3% more probes.
   884 //       // Since those probes are nearer the lastChar probe,
   885 //       // there is may be a net D$ win with reverse matching.
   886 //       // But, reversing loop inhibits unroll of inner loop
   887 //       // for unknown reason.  So, does running outer loop from
   888 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   889 //       for (int j = 0; j < targetCountLess1; j++) {
   890 //         if (target[targetOffset + j] != source[i+j]) {
   891 //           if ((cache & (1 << source[i+j])) == 0) {
   892 //             if (md2 < j+1) {
   893 //               i += j+1;
   894 //               continue outer_loop;
   895 //             }
   896 //           }
   897 //           i += md2;
   898 //           continue outer_loop;
   899 //         }
   900 //       }
   901 //       return i - sourceOffset;
   902 //     }
   903 //     if ((cache & (1 << src)) == 0) {
   904 //       i += targetCountLess1;
   905 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
   906 //     i++;
   907 //   }
   908 //   return -1;
   909 // }
   911 //------------------------------string_indexOf------------------------
   912 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
   913                                      jint cache_i, jint md2_i) {
   915   Node* no_ctrl  = NULL;
   916   float likely   = PROB_LIKELY(0.9);
   917   float unlikely = PROB_UNLIKELY(0.9);
   919   const int value_offset  = java_lang_String::value_offset_in_bytes();
   920   const int count_offset  = java_lang_String::count_offset_in_bytes();
   921   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   923   ciInstanceKlass* klass = env()->String_klass();
   924   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   925   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
   927   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
   928   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   929   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
   930   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   931   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
   932   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
   934   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
   935   jint target_length = target_array->length();
   936   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
   937   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
   939   IdealKit kit(gvn(), control(), merged_memory());
   940 #define __ kit.
   941   Node* zero             = __ ConI(0);
   942   Node* one              = __ ConI(1);
   943   Node* cache            = __ ConI(cache_i);
   944   Node* md2              = __ ConI(md2_i);
   945   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
   946   Node* targetCount      = __ ConI(target_length);
   947   Node* targetCountLess1 = __ ConI(target_length - 1);
   948   Node* targetOffset     = __ ConI(targetOffset_i);
   949   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
   951   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
   952   Node* outer_loop = __ make_label(2 /* goto */);
   953   Node* return_    = __ make_label(1);
   955   __ set(rtn,__ ConI(-1));
   956   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
   957        Node* i2  = __ AddI(__ value(i), targetCountLess1);
   958        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
   959        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
   960        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
   961          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
   962               Node* tpj = __ AddI(targetOffset, __ value(j));
   963               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
   964               Node* ipj  = __ AddI(__ value(i), __ value(j));
   965               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
   966               __ if_then(targ, BoolTest::ne, src2); {
   967                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
   968                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
   969                     __ increment(i, __ AddI(__ value(j), one));
   970                     __ goto_(outer_loop);
   971                   } __ end_if(); __ dead(j);
   972                 }__ end_if(); __ dead(j);
   973                 __ increment(i, md2);
   974                 __ goto_(outer_loop);
   975               }__ end_if();
   976               __ increment(j, one);
   977          }__ end_loop(); __ dead(j);
   978          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
   979          __ goto_(return_);
   980        }__ end_if();
   981        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
   982          __ increment(i, targetCountLess1);
   983        }__ end_if();
   984        __ increment(i, one);
   985        __ bind(outer_loop);
   986   }__ end_loop(); __ dead(i);
   987   __ bind(return_);
   988   __ drain_delay_transform();
   990   set_control(__ ctrl());
   991   Node* result = __ value(rtn);
   992 #undef __
   993   C->set_has_loops(true);
   994   return result;
   995 }
   998 //------------------------------inline_string_indexOf------------------------
   999 bool LibraryCallKit::inline_string_indexOf() {
  1001   _sp += 2;
  1002   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1003   Node *receiver = pop();
  1005   // don't intrinsify if argument isn't a constant string.
  1006   if (!argument->is_Con()) {
  1007     return false;
  1009   const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1010   if (str_type == NULL) {
  1011     return false;
  1013   ciInstanceKlass* klass = env()->String_klass();
  1014   ciObject* str_const = str_type->const_oop();
  1015   if (str_const == NULL || str_const->klass() != klass) {
  1016     return false;
  1018   ciInstance* str = str_const->as_instance();
  1019   assert(str != NULL, "must be instance");
  1021   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1022   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1023   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1025   ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1026   int       o = str->field_value_by_offset(offset_offset).as_int();
  1027   int       c = str->field_value_by_offset(count_offset).as_int();
  1028   ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1030   // constant strings have no offset and count == length which
  1031   // simplifies the resulting code somewhat so lets optimize for that.
  1032   if (o != 0 || c != pat->length()) {
  1033     return false;
  1036   // Null check on self without removing any arguments.  The argument
  1037   // null check technically happens in the wrong place, which can lead to
  1038   // invalid stack traces when string compare is inlined into a method
  1039   // which handles NullPointerExceptions.
  1040   _sp += 2;
  1041   receiver = do_null_check(receiver, T_OBJECT);
  1042   // No null check on the argument is needed since it's a constant String oop.
  1043   _sp -= 2;
  1044   if (stopped()) {
  1045     return true;
  1048   // The null string as a pattern always returns 0 (match at beginning of string)
  1049   if (c == 0) {
  1050     push(intcon(0));
  1051     return true;
  1054   jchar lastChar = pat->char_at(o + (c - 1));
  1055   int cache = 0;
  1056   int i;
  1057   for (i = 0; i < c - 1; i++) {
  1058     assert(i < pat->length(), "out of range");
  1059     cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1062   int md2 = c;
  1063   for (i = 0; i < c - 1; i++) {
  1064     assert(i < pat->length(), "out of range");
  1065     if (pat->char_at(o + i) == lastChar) {
  1066       md2 = (c - 1) - i;
  1070   Node* result = string_indexOf(receiver, pat, o, cache, md2);
  1071   push(result);
  1072   return true;
  1075 //--------------------------pop_math_arg--------------------------------
  1076 // Pop a double argument to a math function from the stack
  1077 // rounding it if necessary.
  1078 Node * LibraryCallKit::pop_math_arg() {
  1079   Node *arg = pop_pair();
  1080   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1081     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1082   return arg;
  1085 //------------------------------inline_trig----------------------------------
  1086 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1087 // argument reduction which will turn into a fast/slow diamond.
  1088 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1089   _sp += arg_size();            // restore stack pointer
  1090   Node* arg = pop_math_arg();
  1091   Node* trig = NULL;
  1093   switch (id) {
  1094   case vmIntrinsics::_dsin:
  1095     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1096     break;
  1097   case vmIntrinsics::_dcos:
  1098     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1099     break;
  1100   case vmIntrinsics::_dtan:
  1101     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1102     break;
  1103   default:
  1104     assert(false, "bad intrinsic was passed in");
  1105     return false;
  1108   // Rounding required?  Check for argument reduction!
  1109   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1111     static const double     pi_4 =  0.7853981633974483;
  1112     static const double neg_pi_4 = -0.7853981633974483;
  1113     // pi/2 in 80-bit extended precision
  1114     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1115     // -pi/2 in 80-bit extended precision
  1116     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1117     // Cutoff value for using this argument reduction technique
  1118     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1119     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1121     // Pseudocode for sin:
  1122     // if (x <= Math.PI / 4.0) {
  1123     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1124     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1125     // } else {
  1126     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1127     // }
  1128     // return StrictMath.sin(x);
  1130     // Pseudocode for cos:
  1131     // if (x <= Math.PI / 4.0) {
  1132     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1133     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1134     // } else {
  1135     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1136     // }
  1137     // return StrictMath.cos(x);
  1139     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1140     // requires a special machine instruction to load it.  Instead we'll try
  1141     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1142     // probably do the math inside the SIN encoding.
  1144     // Make the merge point
  1145     RegionNode *r = new (C, 3) RegionNode(3);
  1146     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1148     // Flatten arg so we need only 1 test
  1149     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1150     // Node for PI/4 constant
  1151     Node *pi4 = makecon(TypeD::make(pi_4));
  1152     // Check PI/4 : abs(arg)
  1153     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1154     // Check: If PI/4 < abs(arg) then go slow
  1155     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1156     // Branch either way
  1157     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1158     set_control(opt_iff(r,iff));
  1160     // Set fast path result
  1161     phi->init_req(2,trig);
  1163     // Slow path - non-blocking leaf call
  1164     Node* call = NULL;
  1165     switch (id) {
  1166     case vmIntrinsics::_dsin:
  1167       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1168                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1169                                "Sin", NULL, arg, top());
  1170       break;
  1171     case vmIntrinsics::_dcos:
  1172       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1173                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1174                                "Cos", NULL, arg, top());
  1175       break;
  1176     case vmIntrinsics::_dtan:
  1177       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1178                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1179                                "Tan", NULL, arg, top());
  1180       break;
  1182     assert(control()->in(0) == call, "");
  1183     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1184     r->init_req(1,control());
  1185     phi->init_req(1,slow_result);
  1187     // Post-merge
  1188     set_control(_gvn.transform(r));
  1189     record_for_igvn(r);
  1190     trig = _gvn.transform(phi);
  1192     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1194   // Push result back on JVM stack
  1195   push_pair(trig);
  1196   return true;
  1199 //------------------------------inline_sqrt-------------------------------------
  1200 // Inline square root instruction, if possible.
  1201 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1202   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1203   _sp += arg_size();        // restore stack pointer
  1204   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1205   return true;
  1208 //------------------------------inline_abs-------------------------------------
  1209 // Inline absolute value instruction, if possible.
  1210 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1211   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1212   _sp += arg_size();        // restore stack pointer
  1213   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1214   return true;
  1217 //------------------------------inline_exp-------------------------------------
  1218 // Inline exp instructions, if possible.  The Intel hardware only misses
  1219 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1220 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1221   assert(id == vmIntrinsics::_dexp, "Not exp");
  1223   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1224   // every again.  NaN results requires StrictMath.exp handling.
  1225   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1227   // Do not intrinsify on older platforms which lack cmove.
  1228   if (ConditionalMoveLimit == 0)  return false;
  1230   _sp += arg_size();        // restore stack pointer
  1231   Node *x = pop_math_arg();
  1232   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1234   //-------------------
  1235   //result=(result.isNaN())? StrictMath::exp():result;
  1236   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1237   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1238   // Build the boolean node
  1239   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1241   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1242     // End the current control-flow path
  1243     push_pair(x);
  1244     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1245     // to handle.  Recompile without intrinsifying Math.exp
  1246     uncommon_trap(Deoptimization::Reason_intrinsic,
  1247                   Deoptimization::Action_make_not_entrant);
  1250   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1252   push_pair(result);
  1254   return true;
  1257 //------------------------------inline_pow-------------------------------------
  1258 // Inline power instructions, if possible.
  1259 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1260   assert(id == vmIntrinsics::_dpow, "Not pow");
  1262   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1263   // every again.  NaN results requires StrictMath.pow handling.
  1264   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1266   // Do not intrinsify on older platforms which lack cmove.
  1267   if (ConditionalMoveLimit == 0)  return false;
  1269   // Pseudocode for pow
  1270   // if (x <= 0.0) {
  1271   //   if ((double)((int)y)==y) { // if y is int
  1272   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1273   //   } else {
  1274   //     result = NaN;
  1275   //   }
  1276   // } else {
  1277   //   result = DPow(x,y);
  1278   // }
  1279   // if (result != result)?  {
  1280   //   uncommon_trap();
  1281   // }
  1282   // return result;
  1284   _sp += arg_size();        // restore stack pointer
  1285   Node* y = pop_math_arg();
  1286   Node* x = pop_math_arg();
  1288   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1290   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1291   // inside of something) then skip the fancy tests and just check for
  1292   // NaN result.
  1293   Node *result = NULL;
  1294   if( jvms()->depth() >= 1 ) {
  1295     result = fast_result;
  1296   } else {
  1298     // Set the merge point for If node with condition of (x <= 0.0)
  1299     // There are four possible paths to region node and phi node
  1300     RegionNode *r = new (C, 4) RegionNode(4);
  1301     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1303     // Build the first if node: if (x <= 0.0)
  1304     // Node for 0 constant
  1305     Node *zeronode = makecon(TypeD::ZERO);
  1306     // Check x:0
  1307     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1308     // Check: If (x<=0) then go complex path
  1309     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1310     // Branch either way
  1311     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1312     Node *opt_test = _gvn.transform(if1);
  1313     //assert( opt_test->is_If(), "Expect an IfNode");
  1314     IfNode *opt_if1 = (IfNode*)opt_test;
  1315     // Fast path taken; set region slot 3
  1316     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1317     r->init_req(3,fast_taken); // Capture fast-control
  1319     // Fast path not-taken, i.e. slow path
  1320     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1322     // Set fast path result
  1323     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1324     phi->init_req(3, fast_result);
  1326     // Complex path
  1327     // Build the second if node (if y is int)
  1328     // Node for (int)y
  1329     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1330     // Node for (double)((int) y)
  1331     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1332     // Check (double)((int) y) : y
  1333     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1334     // Check if (y isn't int) then go to slow path
  1336     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1337     // Branch either way
  1338     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1339     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1341     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1342     // Node for constant 1
  1343     Node *conone = intcon(1);
  1344     // 1& (int)y
  1345     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1346     // zero node
  1347     Node *conzero = intcon(0);
  1348     // Check (1&(int)y)==0?
  1349     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1350     // Check if (1&(int)y)!=0?, if so the result is negative
  1351     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1352     // abs(x)
  1353     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1354     // abs(x)^y
  1355     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1356     // -abs(x)^y
  1357     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1358     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1359     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1360     // Set complex path fast result
  1361     phi->init_req(2, signresult);
  1363     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1364     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1365     r->init_req(1,slow_path);
  1366     phi->init_req(1,slow_result);
  1368     // Post merge
  1369     set_control(_gvn.transform(r));
  1370     record_for_igvn(r);
  1371     result=_gvn.transform(phi);
  1374   //-------------------
  1375   //result=(result.isNaN())? uncommon_trap():result;
  1376   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1377   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1378   // Build the boolean node
  1379   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1381   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1382     // End the current control-flow path
  1383     push_pair(x);
  1384     push_pair(y);
  1385     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1386     // to handle.  Recompile without intrinsifying Math.pow.
  1387     uncommon_trap(Deoptimization::Reason_intrinsic,
  1388                   Deoptimization::Action_make_not_entrant);
  1391   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1393   push_pair(result);
  1395   return true;
  1398 //------------------------------inline_trans-------------------------------------
  1399 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1400 // these right, no funny corner cases missed.
  1401 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1402   _sp += arg_size();        // restore stack pointer
  1403   Node* arg = pop_math_arg();
  1404   Node* trans = NULL;
  1406   switch (id) {
  1407   case vmIntrinsics::_dlog:
  1408     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1409     break;
  1410   case vmIntrinsics::_dlog10:
  1411     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1412     break;
  1413   default:
  1414     assert(false, "bad intrinsic was passed in");
  1415     return false;
  1418   // Push result back on JVM stack
  1419   push_pair(trans);
  1420   return true;
  1423 //------------------------------runtime_math-----------------------------
  1424 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1425   Node* a = NULL;
  1426   Node* b = NULL;
  1428   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1429          "must be (DD)D or (D)D type");
  1431   // Inputs
  1432   _sp += arg_size();        // restore stack pointer
  1433   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1434     b = pop_math_arg();
  1436   a = pop_math_arg();
  1438   const TypePtr* no_memory_effects = NULL;
  1439   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1440                                  no_memory_effects,
  1441                                  a, top(), b, b ? top() : NULL);
  1442   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1443 #ifdef ASSERT
  1444   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1445   assert(value_top == top(), "second value must be top");
  1446 #endif
  1448   push_pair(value);
  1449   return true;
  1452 //------------------------------inline_math_native-----------------------------
  1453 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1454   switch (id) {
  1455     // These intrinsics are not properly supported on all hardware
  1456   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1457     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1458   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1459     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1460   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1461     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1463   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1464     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1465   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1466     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1468     // These intrinsics are supported on all hardware
  1469   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1470   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1472     // These intrinsics don't work on X86.  The ad implementation doesn't
  1473     // handle NaN's properly.  Instead of returning infinity, the ad
  1474     // implementation returns a NaN on overflow. See bug: 6304089
  1475     // Once the ad implementations are fixed, change the code below
  1476     // to match the intrinsics above
  1478   case vmIntrinsics::_dexp:  return
  1479     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1480   case vmIntrinsics::_dpow:  return
  1481     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1483    // These intrinsics are not yet correctly implemented
  1484   case vmIntrinsics::_datan2:
  1485     return false;
  1487   default:
  1488     ShouldNotReachHere();
  1489     return false;
  1493 static bool is_simple_name(Node* n) {
  1494   return (n->req() == 1         // constant
  1495           || (n->is_Type() && n->as_Type()->type()->singleton())
  1496           || n->is_Proj()       // parameter or return value
  1497           || n->is_Phi()        // local of some sort
  1498           );
  1501 //----------------------------inline_min_max-----------------------------------
  1502 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1503   push(generate_min_max(id, argument(0), argument(1)));
  1505   return true;
  1508 Node*
  1509 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1510   // These are the candidate return value:
  1511   Node* xvalue = x0;
  1512   Node* yvalue = y0;
  1514   if (xvalue == yvalue) {
  1515     return xvalue;
  1518   bool want_max = (id == vmIntrinsics::_max);
  1520   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1521   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1522   if (txvalue == NULL || tyvalue == NULL)  return top();
  1523   // This is not really necessary, but it is consistent with a
  1524   // hypothetical MaxINode::Value method:
  1525   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1527   // %%% This folding logic should (ideally) be in a different place.
  1528   // Some should be inside IfNode, and there to be a more reliable
  1529   // transformation of ?: style patterns into cmoves.  We also want
  1530   // more powerful optimizations around cmove and min/max.
  1532   // Try to find a dominating comparison of these guys.
  1533   // It can simplify the index computation for Arrays.copyOf
  1534   // and similar uses of System.arraycopy.
  1535   // First, compute the normalized version of CmpI(x, y).
  1536   int   cmp_op = Op_CmpI;
  1537   Node* xkey = xvalue;
  1538   Node* ykey = yvalue;
  1539   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1540   if (ideal_cmpxy->is_Cmp()) {
  1541     // E.g., if we have CmpI(length - offset, count),
  1542     // it might idealize to CmpI(length, count + offset)
  1543     cmp_op = ideal_cmpxy->Opcode();
  1544     xkey = ideal_cmpxy->in(1);
  1545     ykey = ideal_cmpxy->in(2);
  1548   // Start by locating any relevant comparisons.
  1549   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1550   Node* cmpxy = NULL;
  1551   Node* cmpyx = NULL;
  1552   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1553     Node* cmp = start_from->fast_out(k);
  1554     if (cmp->outcnt() > 0 &&            // must have prior uses
  1555         cmp->in(0) == NULL &&           // must be context-independent
  1556         cmp->Opcode() == cmp_op) {      // right kind of compare
  1557       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1558       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1562   const int NCMPS = 2;
  1563   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1564   int cmpn;
  1565   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1566     if (cmps[cmpn] != NULL)  break;     // find a result
  1568   if (cmpn < NCMPS) {
  1569     // Look for a dominating test that tells us the min and max.
  1570     int depth = 0;                // Limit search depth for speed
  1571     Node* dom = control();
  1572     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1573       if (++depth >= 100)  break;
  1574       Node* ifproj = dom;
  1575       if (!ifproj->is_Proj())  continue;
  1576       Node* iff = ifproj->in(0);
  1577       if (!iff->is_If())  continue;
  1578       Node* bol = iff->in(1);
  1579       if (!bol->is_Bool())  continue;
  1580       Node* cmp = bol->in(1);
  1581       if (cmp == NULL)  continue;
  1582       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1583         if (cmps[cmpn] == cmp)  break;
  1584       if (cmpn == NCMPS)  continue;
  1585       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1586       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1587       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1588       // At this point, we know that 'x btest y' is true.
  1589       switch (btest) {
  1590       case BoolTest::eq:
  1591         // They are proven equal, so we can collapse the min/max.
  1592         // Either value is the answer.  Choose the simpler.
  1593         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1594           return yvalue;
  1595         return xvalue;
  1596       case BoolTest::lt:          // x < y
  1597       case BoolTest::le:          // x <= y
  1598         return (want_max ? yvalue : xvalue);
  1599       case BoolTest::gt:          // x > y
  1600       case BoolTest::ge:          // x >= y
  1601         return (want_max ? xvalue : yvalue);
  1606   // We failed to find a dominating test.
  1607   // Let's pick a test that might GVN with prior tests.
  1608   Node*          best_bol   = NULL;
  1609   BoolTest::mask best_btest = BoolTest::illegal;
  1610   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1611     Node* cmp = cmps[cmpn];
  1612     if (cmp == NULL)  continue;
  1613     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1614       Node* bol = cmp->fast_out(j);
  1615       if (!bol->is_Bool())  continue;
  1616       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1617       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1618       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1619       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1620         best_bol   = bol->as_Bool();
  1621         best_btest = btest;
  1626   Node* answer_if_true  = NULL;
  1627   Node* answer_if_false = NULL;
  1628   switch (best_btest) {
  1629   default:
  1630     if (cmpxy == NULL)
  1631       cmpxy = ideal_cmpxy;
  1632     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1633     // and fall through:
  1634   case BoolTest::lt:          // x < y
  1635   case BoolTest::le:          // x <= y
  1636     answer_if_true  = (want_max ? yvalue : xvalue);
  1637     answer_if_false = (want_max ? xvalue : yvalue);
  1638     break;
  1639   case BoolTest::gt:          // x > y
  1640   case BoolTest::ge:          // x >= y
  1641     answer_if_true  = (want_max ? xvalue : yvalue);
  1642     answer_if_false = (want_max ? yvalue : xvalue);
  1643     break;
  1646   jint hi, lo;
  1647   if (want_max) {
  1648     // We can sharpen the minimum.
  1649     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1650     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1651   } else {
  1652     // We can sharpen the maximum.
  1653     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1654     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1657   // Use a flow-free graph structure, to avoid creating excess control edges
  1658   // which could hinder other optimizations.
  1659   // Since Math.min/max is often used with arraycopy, we want
  1660   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1661   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1662                                answer_if_false, answer_if_true,
  1663                                TypeInt::make(lo, hi, widen));
  1665   return _gvn.transform(cmov);
  1667   /*
  1668   // This is not as desirable as it may seem, since Min and Max
  1669   // nodes do not have a full set of optimizations.
  1670   // And they would interfere, anyway, with 'if' optimizations
  1671   // and with CMoveI canonical forms.
  1672   switch (id) {
  1673   case vmIntrinsics::_min:
  1674     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1675   case vmIntrinsics::_max:
  1676     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1677   default:
  1678     ShouldNotReachHere();
  1680   */
  1683 inline int
  1684 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1685   const TypePtr* base_type = TypePtr::NULL_PTR;
  1686   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1687   if (base_type == NULL) {
  1688     // Unknown type.
  1689     return Type::AnyPtr;
  1690   } else if (base_type == TypePtr::NULL_PTR) {
  1691     // Since this is a NULL+long form, we have to switch to a rawptr.
  1692     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1693     offset = MakeConX(0);
  1694     return Type::RawPtr;
  1695   } else if (base_type->base() == Type::RawPtr) {
  1696     return Type::RawPtr;
  1697   } else if (base_type->isa_oopptr()) {
  1698     // Base is never null => always a heap address.
  1699     if (base_type->ptr() == TypePtr::NotNull) {
  1700       return Type::OopPtr;
  1702     // Offset is small => always a heap address.
  1703     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1704     if (offset_type != NULL &&
  1705         base_type->offset() == 0 &&     // (should always be?)
  1706         offset_type->_lo >= 0 &&
  1707         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1708       return Type::OopPtr;
  1710     // Otherwise, it might either be oop+off or NULL+addr.
  1711     return Type::AnyPtr;
  1712   } else {
  1713     // No information:
  1714     return Type::AnyPtr;
  1718 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1719   int kind = classify_unsafe_addr(base, offset);
  1720   if (kind == Type::RawPtr) {
  1721     return basic_plus_adr(top(), base, offset);
  1722   } else {
  1723     return basic_plus_adr(base, offset);
  1727 //----------------------------inline_bitCount_int/long-----------------------
  1728 // inline int Integer.bitCount(int)
  1729 // inline int Long.bitCount(long)
  1730 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  1731   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  1732   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  1733   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  1734   _sp += arg_size();  // restore stack pointer
  1735   switch (id) {
  1736   case vmIntrinsics::_bitCount_i:
  1737     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  1738     break;
  1739   case vmIntrinsics::_bitCount_l:
  1740     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  1741     break;
  1742   default:
  1743     ShouldNotReachHere();
  1745   return true;
  1748 //----------------------------inline_reverseBytes_int/long-------------------
  1749 // inline Integer.reverseBytes(int)
  1750 // inline Long.reverseBytes(long)
  1751 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1752   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1753   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1754   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1755   _sp += arg_size();        // restore stack pointer
  1756   switch (id) {
  1757   case vmIntrinsics::_reverseBytes_i:
  1758     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1759     break;
  1760   case vmIntrinsics::_reverseBytes_l:
  1761     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1762     break;
  1763   default:
  1766   return true;
  1769 //----------------------------inline_unsafe_access----------------------------
  1771 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1773 // Interpret Unsafe.fieldOffset cookies correctly:
  1774 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1776 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1777   if (callee()->is_static())  return false;  // caller must have the capability!
  1779 #ifndef PRODUCT
  1781     ResourceMark rm;
  1782     // Check the signatures.
  1783     ciSignature* sig = signature();
  1784 #ifdef ASSERT
  1785     if (!is_store) {
  1786       // Object getObject(Object base, int/long offset), etc.
  1787       BasicType rtype = sig->return_type()->basic_type();
  1788       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1789           rtype = T_ADDRESS;  // it is really a C void*
  1790       assert(rtype == type, "getter must return the expected value");
  1791       if (!is_native_ptr) {
  1792         assert(sig->count() == 2, "oop getter has 2 arguments");
  1793         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1794         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1795       } else {
  1796         assert(sig->count() == 1, "native getter has 1 argument");
  1797         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1799     } else {
  1800       // void putObject(Object base, int/long offset, Object x), etc.
  1801       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1802       if (!is_native_ptr) {
  1803         assert(sig->count() == 3, "oop putter has 3 arguments");
  1804         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1805         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1806       } else {
  1807         assert(sig->count() == 2, "native putter has 2 arguments");
  1808         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1810       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1811       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1812         vtype = T_ADDRESS;  // it is really a C void*
  1813       assert(vtype == type, "putter must accept the expected value");
  1815 #endif // ASSERT
  1817 #endif //PRODUCT
  1819   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1821   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1823   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1824   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1826   debug_only(int saved_sp = _sp);
  1827   _sp += nargs;
  1829   Node* val;
  1830   debug_only(val = (Node*)(uintptr_t)-1);
  1833   if (is_store) {
  1834     // Get the value being stored.  (Pop it first; it was pushed last.)
  1835     switch (type) {
  1836     case T_DOUBLE:
  1837     case T_LONG:
  1838     case T_ADDRESS:
  1839       val = pop_pair();
  1840       break;
  1841     default:
  1842       val = pop();
  1846   // Build address expression.  See the code in inline_unsafe_prefetch.
  1847   Node *adr;
  1848   Node *heap_base_oop = top();
  1849   if (!is_native_ptr) {
  1850     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1851     Node* offset = pop_pair();
  1852     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1853     Node* base   = pop();
  1854     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1855     // to be plain byte offsets, which are also the same as those accepted
  1856     // by oopDesc::field_base.
  1857     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1858            "fieldOffset must be byte-scaled");
  1859     // 32-bit machines ignore the high half!
  1860     offset = ConvL2X(offset);
  1861     adr = make_unsafe_address(base, offset);
  1862     heap_base_oop = base;
  1863   } else {
  1864     Node* ptr = pop_pair();
  1865     // Adjust Java long to machine word:
  1866     ptr = ConvL2X(ptr);
  1867     adr = make_unsafe_address(NULL, ptr);
  1870   // Pop receiver last:  it was pushed first.
  1871   Node *receiver = pop();
  1873   assert(saved_sp == _sp, "must have correct argument count");
  1875   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1877   // First guess at the value type.
  1878   const Type *value_type = Type::get_const_basic_type(type);
  1880   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  1881   // there was not enough information to nail it down.
  1882   Compile::AliasType* alias_type = C->alias_type(adr_type);
  1883   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1885   // We will need memory barriers unless we can determine a unique
  1886   // alias category for this reference.  (Note:  If for some reason
  1887   // the barriers get omitted and the unsafe reference begins to "pollute"
  1888   // the alias analysis of the rest of the graph, either Compile::can_alias
  1889   // or Compile::must_alias will throw a diagnostic assert.)
  1890   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  1892   if (!is_store && type == T_OBJECT) {
  1893     // Attempt to infer a sharper value type from the offset and base type.
  1894     ciKlass* sharpened_klass = NULL;
  1896     // See if it is an instance field, with an object type.
  1897     if (alias_type->field() != NULL) {
  1898       assert(!is_native_ptr, "native pointer op cannot use a java address");
  1899       if (alias_type->field()->type()->is_klass()) {
  1900         sharpened_klass = alias_type->field()->type()->as_klass();
  1904     // See if it is a narrow oop array.
  1905     if (adr_type->isa_aryptr()) {
  1906       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
  1907         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  1908         if (elem_type != NULL) {
  1909           sharpened_klass = elem_type->klass();
  1914     if (sharpened_klass != NULL) {
  1915       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  1917       // Sharpen the value type.
  1918       value_type = tjp;
  1920 #ifndef PRODUCT
  1921       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  1922         tty->print("  from base type:  ");   adr_type->dump();
  1923         tty->print("  sharpened value: "); value_type->dump();
  1925 #endif
  1929   // Null check on self without removing any arguments.  The argument
  1930   // null check technically happens in the wrong place, which can lead to
  1931   // invalid stack traces when the primitive is inlined into a method
  1932   // which handles NullPointerExceptions.
  1933   _sp += nargs;
  1934   do_null_check(receiver, T_OBJECT);
  1935   _sp -= nargs;
  1936   if (stopped()) {
  1937     return true;
  1939   // Heap pointers get a null-check from the interpreter,
  1940   // as a courtesy.  However, this is not guaranteed by Unsafe,
  1941   // and it is not possible to fully distinguish unintended nulls
  1942   // from intended ones in this API.
  1944   if (is_volatile) {
  1945     // We need to emit leading and trailing CPU membars (see below) in
  1946     // addition to memory membars when is_volatile. This is a little
  1947     // too strong, but avoids the need to insert per-alias-type
  1948     // volatile membars (for stores; compare Parse::do_put_xxx), which
  1949     // we cannot do effectively here because we probably only have a
  1950     // rough approximation of type.
  1951     need_mem_bar = true;
  1952     // For Stores, place a memory ordering barrier now.
  1953     if (is_store)
  1954       insert_mem_bar(Op_MemBarRelease);
  1957   // Memory barrier to prevent normal and 'unsafe' accesses from
  1958   // bypassing each other.  Happens after null checks, so the
  1959   // exception paths do not take memory state from the memory barrier,
  1960   // so there's no problems making a strong assert about mixing users
  1961   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  1962   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  1963   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1965   if (!is_store) {
  1966     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  1967     // load value and push onto stack
  1968     switch (type) {
  1969     case T_BOOLEAN:
  1970     case T_CHAR:
  1971     case T_BYTE:
  1972     case T_SHORT:
  1973     case T_INT:
  1974     case T_FLOAT:
  1975     case T_OBJECT:
  1976       push( p );
  1977       break;
  1978     case T_ADDRESS:
  1979       // Cast to an int type.
  1980       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  1981       p = ConvX2L(p);
  1982       push_pair(p);
  1983       break;
  1984     case T_DOUBLE:
  1985     case T_LONG:
  1986       push_pair( p );
  1987       break;
  1988     default: ShouldNotReachHere();
  1990   } else {
  1991     // place effect of store into memory
  1992     switch (type) {
  1993     case T_DOUBLE:
  1994       val = dstore_rounding(val);
  1995       break;
  1996     case T_ADDRESS:
  1997       // Repackage the long as a pointer.
  1998       val = ConvL2X(val);
  1999       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2000       break;
  2003     if (type != T_OBJECT ) {
  2004       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2005     } else {
  2006       // Possibly an oop being stored to Java heap or native memory
  2007       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2008         // oop to Java heap.
  2009         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  2010       } else {
  2012         // We can't tell at compile time if we are storing in the Java heap or outside
  2013         // of it. So we need to emit code to conditionally do the proper type of
  2014         // store.
  2016         IdealKit kit(gvn(), control(),  merged_memory());
  2017         kit.declares_done();
  2018         // QQQ who knows what probability is here??
  2019         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2020           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  2021         } kit.else_(); {
  2022           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2023         } kit.end_if();
  2028   if (is_volatile) {
  2029     if (!is_store)
  2030       insert_mem_bar(Op_MemBarAcquire);
  2031     else
  2032       insert_mem_bar(Op_MemBarVolatile);
  2035   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2037   return true;
  2040 //----------------------------inline_unsafe_prefetch----------------------------
  2042 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2043 #ifndef PRODUCT
  2045     ResourceMark rm;
  2046     // Check the signatures.
  2047     ciSignature* sig = signature();
  2048 #ifdef ASSERT
  2049     // Object getObject(Object base, int/long offset), etc.
  2050     BasicType rtype = sig->return_type()->basic_type();
  2051     if (!is_native_ptr) {
  2052       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2053       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2054       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2055     } else {
  2056       assert(sig->count() == 1, "native prefetch has 1 argument");
  2057       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2059 #endif // ASSERT
  2061 #endif // !PRODUCT
  2063   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2065   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2066   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2068   debug_only(int saved_sp = _sp);
  2069   _sp += nargs;
  2071   // Build address expression.  See the code in inline_unsafe_access.
  2072   Node *adr;
  2073   if (!is_native_ptr) {
  2074     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2075     Node* offset = pop_pair();
  2076     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2077     Node* base   = pop();
  2078     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2079     // to be plain byte offsets, which are also the same as those accepted
  2080     // by oopDesc::field_base.
  2081     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2082            "fieldOffset must be byte-scaled");
  2083     // 32-bit machines ignore the high half!
  2084     offset = ConvL2X(offset);
  2085     adr = make_unsafe_address(base, offset);
  2086   } else {
  2087     Node* ptr = pop_pair();
  2088     // Adjust Java long to machine word:
  2089     ptr = ConvL2X(ptr);
  2090     adr = make_unsafe_address(NULL, ptr);
  2093   if (is_static) {
  2094     assert(saved_sp == _sp, "must have correct argument count");
  2095   } else {
  2096     // Pop receiver last:  it was pushed first.
  2097     Node *receiver = pop();
  2098     assert(saved_sp == _sp, "must have correct argument count");
  2100     // Null check on self without removing any arguments.  The argument
  2101     // null check technically happens in the wrong place, which can lead to
  2102     // invalid stack traces when the primitive is inlined into a method
  2103     // which handles NullPointerExceptions.
  2104     _sp += nargs;
  2105     do_null_check(receiver, T_OBJECT);
  2106     _sp -= nargs;
  2107     if (stopped()) {
  2108       return true;
  2112   // Generate the read or write prefetch
  2113   Node *prefetch;
  2114   if (is_store) {
  2115     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2116   } else {
  2117     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2119   prefetch->init_req(0, control());
  2120   set_i_o(_gvn.transform(prefetch));
  2122   return true;
  2125 //----------------------------inline_unsafe_CAS----------------------------
  2127 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2128   // This basic scheme here is the same as inline_unsafe_access, but
  2129   // differs in enough details that combining them would make the code
  2130   // overly confusing.  (This is a true fact! I originally combined
  2131   // them, but even I was confused by it!) As much code/comments as
  2132   // possible are retained from inline_unsafe_access though to make
  2133   // the correspondences clearer. - dl
  2135   if (callee()->is_static())  return false;  // caller must have the capability!
  2137 #ifndef PRODUCT
  2139     ResourceMark rm;
  2140     // Check the signatures.
  2141     ciSignature* sig = signature();
  2142 #ifdef ASSERT
  2143     BasicType rtype = sig->return_type()->basic_type();
  2144     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2145     assert(sig->count() == 4, "CAS has 4 arguments");
  2146     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2147     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2148 #endif // ASSERT
  2150 #endif //PRODUCT
  2152   // number of stack slots per value argument (1 or 2)
  2153   int type_words = type2size[type];
  2155   // Cannot inline wide CAS on machines that don't support it natively
  2156   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2157     return false;
  2159   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2161   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2162   int nargs = 1 + 1 + 2  + type_words + type_words;
  2164   // pop arguments: newval, oldval, offset, base, and receiver
  2165   debug_only(int saved_sp = _sp);
  2166   _sp += nargs;
  2167   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2168   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2169   Node *offset   = pop_pair();
  2170   Node *base     = pop();
  2171   Node *receiver = pop();
  2172   assert(saved_sp == _sp, "must have correct argument count");
  2174   //  Null check receiver.
  2175   _sp += nargs;
  2176   do_null_check(receiver, T_OBJECT);
  2177   _sp -= nargs;
  2178   if (stopped()) {
  2179     return true;
  2182   // Build field offset expression.
  2183   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2184   // to be plain byte offsets, which are also the same as those accepted
  2185   // by oopDesc::field_base.
  2186   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2187   // 32-bit machines ignore the high half of long offsets
  2188   offset = ConvL2X(offset);
  2189   Node* adr = make_unsafe_address(base, offset);
  2190   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2192   // (Unlike inline_unsafe_access, there seems no point in trying
  2193   // to refine types. Just use the coarse types here.
  2194   const Type *value_type = Type::get_const_basic_type(type);
  2195   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2196   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2197   int alias_idx = C->get_alias_index(adr_type);
  2199   // Memory-model-wise, a CAS acts like a little synchronized block,
  2200   // so needs barriers on each side.  These don't translate into
  2201   // actual barriers on most machines, but we still need rest of
  2202   // compiler to respect ordering.
  2204   insert_mem_bar(Op_MemBarRelease);
  2205   insert_mem_bar(Op_MemBarCPUOrder);
  2207   // 4984716: MemBars must be inserted before this
  2208   //          memory node in order to avoid a false
  2209   //          dependency which will confuse the scheduler.
  2210   Node *mem = memory(alias_idx);
  2212   // For now, we handle only those cases that actually exist: ints,
  2213   // longs, and Object. Adding others should be straightforward.
  2214   Node* cas;
  2215   switch(type) {
  2216   case T_INT:
  2217     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2218     break;
  2219   case T_LONG:
  2220     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2221     break;
  2222   case T_OBJECT:
  2223      // reference stores need a store barrier.
  2224     // (They don't if CAS fails, but it isn't worth checking.)
  2225     pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
  2226 #ifdef _LP64
  2227     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2228       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2229       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2230       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2231                                                           newval_enc, oldval_enc));
  2232     } else
  2233 #endif
  2235       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2237     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2238     break;
  2239   default:
  2240     ShouldNotReachHere();
  2241     break;
  2244   // SCMemProjNodes represent the memory state of CAS. Their main
  2245   // role is to prevent CAS nodes from being optimized away when their
  2246   // results aren't used.
  2247   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2248   set_memory(proj, alias_idx);
  2250   // Add the trailing membar surrounding the access
  2251   insert_mem_bar(Op_MemBarCPUOrder);
  2252   insert_mem_bar(Op_MemBarAcquire);
  2254   push(cas);
  2255   return true;
  2258 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2259   // This is another variant of inline_unsafe_access, differing in
  2260   // that it always issues store-store ("release") barrier and ensures
  2261   // store-atomicity (which only matters for "long").
  2263   if (callee()->is_static())  return false;  // caller must have the capability!
  2265 #ifndef PRODUCT
  2267     ResourceMark rm;
  2268     // Check the signatures.
  2269     ciSignature* sig = signature();
  2270 #ifdef ASSERT
  2271     BasicType rtype = sig->return_type()->basic_type();
  2272     assert(rtype == T_VOID, "must return void");
  2273     assert(sig->count() == 3, "has 3 arguments");
  2274     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2275     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2276 #endif // ASSERT
  2278 #endif //PRODUCT
  2280   // number of stack slots per value argument (1 or 2)
  2281   int type_words = type2size[type];
  2283   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2285   // Argument words:  "this" plus oop plus offset plus value;
  2286   int nargs = 1 + 1 + 2 + type_words;
  2288   // pop arguments: val, offset, base, and receiver
  2289   debug_only(int saved_sp = _sp);
  2290   _sp += nargs;
  2291   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2292   Node *offset   = pop_pair();
  2293   Node *base     = pop();
  2294   Node *receiver = pop();
  2295   assert(saved_sp == _sp, "must have correct argument count");
  2297   //  Null check receiver.
  2298   _sp += nargs;
  2299   do_null_check(receiver, T_OBJECT);
  2300   _sp -= nargs;
  2301   if (stopped()) {
  2302     return true;
  2305   // Build field offset expression.
  2306   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2307   // 32-bit machines ignore the high half of long offsets
  2308   offset = ConvL2X(offset);
  2309   Node* adr = make_unsafe_address(base, offset);
  2310   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2311   const Type *value_type = Type::get_const_basic_type(type);
  2312   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2314   insert_mem_bar(Op_MemBarRelease);
  2315   insert_mem_bar(Op_MemBarCPUOrder);
  2316   // Ensure that the store is atomic for longs:
  2317   bool require_atomic_access = true;
  2318   Node* store;
  2319   if (type == T_OBJECT) // reference stores need a store barrier.
  2320     store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
  2321   else {
  2322     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2324   insert_mem_bar(Op_MemBarCPUOrder);
  2325   return true;
  2328 bool LibraryCallKit::inline_unsafe_allocate() {
  2329   if (callee()->is_static())  return false;  // caller must have the capability!
  2330   int nargs = 1 + 1;
  2331   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2332   null_check_receiver(callee());  // check then ignore argument(0)
  2333   _sp += nargs;  // set original stack for use by uncommon_trap
  2334   Node* cls = do_null_check(argument(1), T_OBJECT);
  2335   _sp -= nargs;
  2336   if (stopped())  return true;
  2338   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2339   _sp += nargs;  // set original stack for use by uncommon_trap
  2340   kls = do_null_check(kls, T_OBJECT);
  2341   _sp -= nargs;
  2342   if (stopped())  return true;  // argument was like int.class
  2344   // Note:  The argument might still be an illegal value like
  2345   // Serializable.class or Object[].class.   The runtime will handle it.
  2346   // But we must make an explicit check for initialization.
  2347   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2348   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2349   Node* bits = intcon(instanceKlass::fully_initialized);
  2350   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2351   // The 'test' is non-zero if we need to take a slow path.
  2353   Node* obj = new_instance(kls, test);
  2354   push(obj);
  2356   return true;
  2359 //------------------------inline_native_time_funcs--------------
  2360 // inline code for System.currentTimeMillis() and System.nanoTime()
  2361 // these have the same type and signature
  2362 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2363   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2364                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2365   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2366   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2367   const TypePtr* no_memory_effects = NULL;
  2368   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2369   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2370 #ifdef ASSERT
  2371   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2372   assert(value_top == top(), "second value must be top");
  2373 #endif
  2374   push_pair(value);
  2375   return true;
  2378 //------------------------inline_native_currentThread------------------
  2379 bool LibraryCallKit::inline_native_currentThread() {
  2380   Node* junk = NULL;
  2381   push(generate_current_thread(junk));
  2382   return true;
  2385 //------------------------inline_native_isInterrupted------------------
  2386 bool LibraryCallKit::inline_native_isInterrupted() {
  2387   const int nargs = 1+1;  // receiver + boolean
  2388   assert(nargs == arg_size(), "sanity");
  2389   // Add a fast path to t.isInterrupted(clear_int):
  2390   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2391   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2392   // So, in the common case that the interrupt bit is false,
  2393   // we avoid making a call into the VM.  Even if the interrupt bit
  2394   // is true, if the clear_int argument is false, we avoid the VM call.
  2395   // However, if the receiver is not currentThread, we must call the VM,
  2396   // because there must be some locking done around the operation.
  2398   // We only go to the fast case code if we pass two guards.
  2399   // Paths which do not pass are accumulated in the slow_region.
  2400   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2401   record_for_igvn(slow_region);
  2402   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2403   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2404   enum { no_int_result_path   = 1,
  2405          no_clear_result_path = 2,
  2406          slow_result_path     = 3
  2407   };
  2409   // (a) Receiving thread must be the current thread.
  2410   Node* rec_thr = argument(0);
  2411   Node* tls_ptr = NULL;
  2412   Node* cur_thr = generate_current_thread(tls_ptr);
  2413   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2414   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2416   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2417   if (!known_current_thread)
  2418     generate_slow_guard(bol_thr, slow_region);
  2420   // (b) Interrupt bit on TLS must be false.
  2421   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2422   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2423   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2424   Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
  2425   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2426   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2428   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2430   // First fast path:  if (!TLS._interrupted) return false;
  2431   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2432   result_rgn->init_req(no_int_result_path, false_bit);
  2433   result_val->init_req(no_int_result_path, intcon(0));
  2435   // drop through to next case
  2436   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2438   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2439   Node* clr_arg = argument(1);
  2440   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2441   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2442   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2444   // Second fast path:  ... else if (!clear_int) return true;
  2445   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2446   result_rgn->init_req(no_clear_result_path, false_arg);
  2447   result_val->init_req(no_clear_result_path, intcon(1));
  2449   // drop through to next case
  2450   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2452   // (d) Otherwise, go to the slow path.
  2453   slow_region->add_req(control());
  2454   set_control( _gvn.transform(slow_region) );
  2456   if (stopped()) {
  2457     // There is no slow path.
  2458     result_rgn->init_req(slow_result_path, top());
  2459     result_val->init_req(slow_result_path, top());
  2460   } else {
  2461     // non-virtual because it is a private non-static
  2462     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2464     Node* slow_val = set_results_for_java_call(slow_call);
  2465     // this->control() comes from set_results_for_java_call
  2467     // If we know that the result of the slow call will be true, tell the optimizer!
  2468     if (known_current_thread)  slow_val = intcon(1);
  2470     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2471     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2472     // These two phis are pre-filled with copies of of the fast IO and Memory
  2473     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2474     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2476     result_rgn->init_req(slow_result_path, control());
  2477     io_phi    ->init_req(slow_result_path, i_o());
  2478     mem_phi   ->init_req(slow_result_path, reset_memory());
  2479     result_val->init_req(slow_result_path, slow_val);
  2481     set_all_memory( _gvn.transform(mem_phi) );
  2482     set_i_o(        _gvn.transform(io_phi) );
  2485   push_result(result_rgn, result_val);
  2486   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2488   return true;
  2491 //---------------------------load_mirror_from_klass----------------------------
  2492 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2493 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2494   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2495   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2498 //-----------------------load_klass_from_mirror_common-------------------------
  2499 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2500 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2501 // and branch to the given path on the region.
  2502 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2503 // compile for the non-null case.
  2504 // If the region is NULL, force never_see_null = true.
  2505 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2506                                                     bool never_see_null,
  2507                                                     int nargs,
  2508                                                     RegionNode* region,
  2509                                                     int null_path,
  2510                                                     int offset) {
  2511   if (region == NULL)  never_see_null = true;
  2512   Node* p = basic_plus_adr(mirror, offset);
  2513   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2514   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2515   _sp += nargs; // any deopt will start just before call to enclosing method
  2516   Node* null_ctl = top();
  2517   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2518   if (region != NULL) {
  2519     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2520     region->init_req(null_path, null_ctl);
  2521   } else {
  2522     assert(null_ctl == top(), "no loose ends");
  2524   _sp -= nargs;
  2525   return kls;
  2528 //--------------------(inline_native_Class_query helpers)---------------------
  2529 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2530 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2531 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2532   // Branch around if the given klass has the given modifier bit set.
  2533   // Like generate_guard, adds a new path onto the region.
  2534   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2535   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2536   Node* mask = intcon(modifier_mask);
  2537   Node* bits = intcon(modifier_bits);
  2538   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2539   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2540   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2541   return generate_fair_guard(bol, region);
  2543 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2544   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2547 //-------------------------inline_native_Class_query-------------------
  2548 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2549   int nargs = 1+0;  // just the Class mirror, in most cases
  2550   const Type* return_type = TypeInt::BOOL;
  2551   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2552   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2553   bool expect_prim = false;     // most of these guys expect to work on refs
  2555   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2557   switch (id) {
  2558   case vmIntrinsics::_isInstance:
  2559     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2560     // nothing is an instance of a primitive type
  2561     prim_return_value = intcon(0);
  2562     break;
  2563   case vmIntrinsics::_getModifiers:
  2564     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2565     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2566     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2567     break;
  2568   case vmIntrinsics::_isInterface:
  2569     prim_return_value = intcon(0);
  2570     break;
  2571   case vmIntrinsics::_isArray:
  2572     prim_return_value = intcon(0);
  2573     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2574     break;
  2575   case vmIntrinsics::_isPrimitive:
  2576     prim_return_value = intcon(1);
  2577     expect_prim = true;  // obviously
  2578     break;
  2579   case vmIntrinsics::_getSuperclass:
  2580     prim_return_value = null();
  2581     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2582     break;
  2583   case vmIntrinsics::_getComponentType:
  2584     prim_return_value = null();
  2585     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2586     break;
  2587   case vmIntrinsics::_getClassAccessFlags:
  2588     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2589     return_type = TypeInt::INT;  // not bool!  6297094
  2590     break;
  2591   default:
  2592     ShouldNotReachHere();
  2595   Node* mirror =                      argument(0);
  2596   Node* obj    = (nargs <= 1)? top(): argument(1);
  2598   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2599   if (mirror_con == NULL)  return false;  // cannot happen?
  2601 #ifndef PRODUCT
  2602   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2603     ciType* k = mirror_con->java_mirror_type();
  2604     if (k) {
  2605       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2606       k->print_name();
  2607       tty->cr();
  2610 #endif
  2612   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2613   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2614   record_for_igvn(region);
  2615   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2617   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2618   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2619   // if it is. See bug 4774291.
  2621   // For Reflection.getClassAccessFlags(), the null check occurs in
  2622   // the wrong place; see inline_unsafe_access(), above, for a similar
  2623   // situation.
  2624   _sp += nargs;  // set original stack for use by uncommon_trap
  2625   mirror = do_null_check(mirror, T_OBJECT);
  2626   _sp -= nargs;
  2627   // If mirror or obj is dead, only null-path is taken.
  2628   if (stopped())  return true;
  2630   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2632   // Now load the mirror's klass metaobject, and null-check it.
  2633   // Side-effects region with the control path if the klass is null.
  2634   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2635                                      region, _prim_path);
  2636   // If kls is null, we have a primitive mirror.
  2637   phi->init_req(_prim_path, prim_return_value);
  2638   if (stopped()) { push_result(region, phi); return true; }
  2640   Node* p;  // handy temp
  2641   Node* null_ctl;
  2643   // Now that we have the non-null klass, we can perform the real query.
  2644   // For constant classes, the query will constant-fold in LoadNode::Value.
  2645   Node* query_value = top();
  2646   switch (id) {
  2647   case vmIntrinsics::_isInstance:
  2648     // nothing is an instance of a primitive type
  2649     query_value = gen_instanceof(obj, kls);
  2650     break;
  2652   case vmIntrinsics::_getModifiers:
  2653     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2654     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2655     break;
  2657   case vmIntrinsics::_isInterface:
  2658     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2659     if (generate_interface_guard(kls, region) != NULL)
  2660       // A guard was added.  If the guard is taken, it was an interface.
  2661       phi->add_req(intcon(1));
  2662     // If we fall through, it's a plain class.
  2663     query_value = intcon(0);
  2664     break;
  2666   case vmIntrinsics::_isArray:
  2667     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2668     if (generate_array_guard(kls, region) != NULL)
  2669       // A guard was added.  If the guard is taken, it was an array.
  2670       phi->add_req(intcon(1));
  2671     // If we fall through, it's a plain class.
  2672     query_value = intcon(0);
  2673     break;
  2675   case vmIntrinsics::_isPrimitive:
  2676     query_value = intcon(0); // "normal" path produces false
  2677     break;
  2679   case vmIntrinsics::_getSuperclass:
  2680     // The rules here are somewhat unfortunate, but we can still do better
  2681     // with random logic than with a JNI call.
  2682     // Interfaces store null or Object as _super, but must report null.
  2683     // Arrays store an intermediate super as _super, but must report Object.
  2684     // Other types can report the actual _super.
  2685     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2686     if (generate_interface_guard(kls, region) != NULL)
  2687       // A guard was added.  If the guard is taken, it was an interface.
  2688       phi->add_req(null());
  2689     if (generate_array_guard(kls, region) != NULL)
  2690       // A guard was added.  If the guard is taken, it was an array.
  2691       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2692     // If we fall through, it's a plain class.  Get its _super.
  2693     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2694     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2695     null_ctl = top();
  2696     kls = null_check_oop(kls, &null_ctl);
  2697     if (null_ctl != top()) {
  2698       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2699       region->add_req(null_ctl);
  2700       phi   ->add_req(null());
  2702     if (!stopped()) {
  2703       query_value = load_mirror_from_klass(kls);
  2705     break;
  2707   case vmIntrinsics::_getComponentType:
  2708     if (generate_array_guard(kls, region) != NULL) {
  2709       // Be sure to pin the oop load to the guard edge just created:
  2710       Node* is_array_ctrl = region->in(region->req()-1);
  2711       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2712       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2713       phi->add_req(cmo);
  2715     query_value = null();  // non-array case is null
  2716     break;
  2718   case vmIntrinsics::_getClassAccessFlags:
  2719     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2720     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2721     break;
  2723   default:
  2724     ShouldNotReachHere();
  2727   // Fall-through is the normal case of a query to a real class.
  2728   phi->init_req(1, query_value);
  2729   region->init_req(1, control());
  2731   push_result(region, phi);
  2732   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2734   return true;
  2737 //--------------------------inline_native_subtype_check------------------------
  2738 // This intrinsic takes the JNI calls out of the heart of
  2739 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  2740 bool LibraryCallKit::inline_native_subtype_check() {
  2741   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  2743   // Pull both arguments off the stack.
  2744   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  2745   args[0] = argument(0);
  2746   args[1] = argument(1);
  2747   Node* klasses[2];             // corresponding Klasses: superk, subk
  2748   klasses[0] = klasses[1] = top();
  2750   enum {
  2751     // A full decision tree on {superc is prim, subc is prim}:
  2752     _prim_0_path = 1,           // {P,N} => false
  2753                                 // {P,P} & superc!=subc => false
  2754     _prim_same_path,            // {P,P} & superc==subc => true
  2755     _prim_1_path,               // {N,P} => false
  2756     _ref_subtype_path,          // {N,N} & subtype check wins => true
  2757     _both_ref_path,             // {N,N} & subtype check loses => false
  2758     PATH_LIMIT
  2759   };
  2761   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2762   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2763   record_for_igvn(region);
  2765   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  2766   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2767   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  2769   // First null-check both mirrors and load each mirror's klass metaobject.
  2770   int which_arg;
  2771   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2772     Node* arg = args[which_arg];
  2773     _sp += nargs;  // set original stack for use by uncommon_trap
  2774     arg = do_null_check(arg, T_OBJECT);
  2775     _sp -= nargs;
  2776     if (stopped())  break;
  2777     args[which_arg] = _gvn.transform(arg);
  2779     Node* p = basic_plus_adr(arg, class_klass_offset);
  2780     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  2781     klasses[which_arg] = _gvn.transform(kls);
  2784   // Having loaded both klasses, test each for null.
  2785   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2786   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2787     Node* kls = klasses[which_arg];
  2788     Node* null_ctl = top();
  2789     _sp += nargs;  // set original stack for use by uncommon_trap
  2790     kls = null_check_oop(kls, &null_ctl, never_see_null);
  2791     _sp -= nargs;
  2792     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  2793     region->init_req(prim_path, null_ctl);
  2794     if (stopped())  break;
  2795     klasses[which_arg] = kls;
  2798   if (!stopped()) {
  2799     // now we have two reference types, in klasses[0..1]
  2800     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  2801     Node* superk = klasses[0];  // the receiver
  2802     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  2803     // now we have a successful reference subtype check
  2804     region->set_req(_ref_subtype_path, control());
  2807   // If both operands are primitive (both klasses null), then
  2808   // we must return true when they are identical primitives.
  2809   // It is convenient to test this after the first null klass check.
  2810   set_control(region->in(_prim_0_path)); // go back to first null check
  2811   if (!stopped()) {
  2812     // Since superc is primitive, make a guard for the superc==subc case.
  2813     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  2814     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  2815     generate_guard(bol_eq, region, PROB_FAIR);
  2816     if (region->req() == PATH_LIMIT+1) {
  2817       // A guard was added.  If the added guard is taken, superc==subc.
  2818       region->swap_edges(PATH_LIMIT, _prim_same_path);
  2819       region->del_req(PATH_LIMIT);
  2821     region->set_req(_prim_0_path, control()); // Not equal after all.
  2824   // these are the only paths that produce 'true':
  2825   phi->set_req(_prim_same_path,   intcon(1));
  2826   phi->set_req(_ref_subtype_path, intcon(1));
  2828   // pull together the cases:
  2829   assert(region->req() == PATH_LIMIT, "sane region");
  2830   for (uint i = 1; i < region->req(); i++) {
  2831     Node* ctl = region->in(i);
  2832     if (ctl == NULL || ctl == top()) {
  2833       region->set_req(i, top());
  2834       phi   ->set_req(i, top());
  2835     } else if (phi->in(i) == NULL) {
  2836       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  2840   set_control(_gvn.transform(region));
  2841   push(_gvn.transform(phi));
  2843   return true;
  2846 //---------------------generate_array_guard_common------------------------
  2847 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  2848                                                   bool obj_array, bool not_array) {
  2849   // If obj_array/non_array==false/false:
  2850   // Branch around if the given klass is in fact an array (either obj or prim).
  2851   // If obj_array/non_array==false/true:
  2852   // Branch around if the given klass is not an array klass of any kind.
  2853   // If obj_array/non_array==true/true:
  2854   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  2855   // If obj_array/non_array==true/false:
  2856   // Branch around if the kls is an oop array (Object[] or subtype)
  2857   //
  2858   // Like generate_guard, adds a new path onto the region.
  2859   jint  layout_con = 0;
  2860   Node* layout_val = get_layout_helper(kls, layout_con);
  2861   if (layout_val == NULL) {
  2862     bool query = (obj_array
  2863                   ? Klass::layout_helper_is_objArray(layout_con)
  2864                   : Klass::layout_helper_is_javaArray(layout_con));
  2865     if (query == not_array) {
  2866       return NULL;                       // never a branch
  2867     } else {                             // always a branch
  2868       Node* always_branch = control();
  2869       if (region != NULL)
  2870         region->add_req(always_branch);
  2871       set_control(top());
  2872       return always_branch;
  2875   // Now test the correct condition.
  2876   jint  nval = (obj_array
  2877                 ? ((jint)Klass::_lh_array_tag_type_value
  2878                    <<    Klass::_lh_array_tag_shift)
  2879                 : Klass::_lh_neutral_value);
  2880   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  2881   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  2882   // invert the test if we are looking for a non-array
  2883   if (not_array)  btest = BoolTest(btest).negate();
  2884   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  2885   return generate_fair_guard(bol, region);
  2889 //-----------------------inline_native_newArray--------------------------
  2890 bool LibraryCallKit::inline_native_newArray() {
  2891   int nargs = 2;
  2892   Node* mirror    = argument(0);
  2893   Node* count_val = argument(1);
  2895   _sp += nargs;  // set original stack for use by uncommon_trap
  2896   mirror = do_null_check(mirror, T_OBJECT);
  2897   _sp -= nargs;
  2898   // If mirror or obj is dead, only null-path is taken.
  2899   if (stopped())  return true;
  2901   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  2902   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2903   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  2904                                                       TypeInstPtr::NOTNULL);
  2905   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  2906   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  2907                                                       TypePtr::BOTTOM);
  2909   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2910   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  2911                                                   nargs,
  2912                                                   result_reg, _slow_path);
  2913   Node* normal_ctl   = control();
  2914   Node* no_array_ctl = result_reg->in(_slow_path);
  2916   // Generate code for the slow case.  We make a call to newArray().
  2917   set_control(no_array_ctl);
  2918   if (!stopped()) {
  2919     // Either the input type is void.class, or else the
  2920     // array klass has not yet been cached.  Either the
  2921     // ensuing call will throw an exception, or else it
  2922     // will cache the array klass for next time.
  2923     PreserveJVMState pjvms(this);
  2924     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  2925     Node* slow_result = set_results_for_java_call(slow_call);
  2926     // this->control() comes from set_results_for_java_call
  2927     result_reg->set_req(_slow_path, control());
  2928     result_val->set_req(_slow_path, slow_result);
  2929     result_io ->set_req(_slow_path, i_o());
  2930     result_mem->set_req(_slow_path, reset_memory());
  2933   set_control(normal_ctl);
  2934   if (!stopped()) {
  2935     // Normal case:  The array type has been cached in the java.lang.Class.
  2936     // The following call works fine even if the array type is polymorphic.
  2937     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2938     _sp += nargs;  // set original stack for use by uncommon_trap
  2939     Node* obj = new_array(klass_node, count_val);
  2940     _sp -= nargs;
  2941     result_reg->init_req(_normal_path, control());
  2942     result_val->init_req(_normal_path, obj);
  2943     result_io ->init_req(_normal_path, i_o());
  2944     result_mem->init_req(_normal_path, reset_memory());
  2947   // Return the combined state.
  2948   set_i_o(        _gvn.transform(result_io)  );
  2949   set_all_memory( _gvn.transform(result_mem) );
  2950   push_result(result_reg, result_val);
  2951   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2953   return true;
  2956 //----------------------inline_native_getLength--------------------------
  2957 bool LibraryCallKit::inline_native_getLength() {
  2958   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2960   int nargs = 1;
  2961   Node* array = argument(0);
  2963   _sp += nargs;  // set original stack for use by uncommon_trap
  2964   array = do_null_check(array, T_OBJECT);
  2965   _sp -= nargs;
  2967   // If array is dead, only null-path is taken.
  2968   if (stopped())  return true;
  2970   // Deoptimize if it is a non-array.
  2971   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  2973   if (non_array != NULL) {
  2974     PreserveJVMState pjvms(this);
  2975     set_control(non_array);
  2976     _sp += nargs;  // push the arguments back on the stack
  2977     uncommon_trap(Deoptimization::Reason_intrinsic,
  2978                   Deoptimization::Action_maybe_recompile);
  2981   // If control is dead, only non-array-path is taken.
  2982   if (stopped())  return true;
  2984   // The works fine even if the array type is polymorphic.
  2985   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2986   push( load_array_length(array) );
  2988   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2990   return true;
  2993 //------------------------inline_array_copyOf----------------------------
  2994 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  2995   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2997   // Restore the stack and pop off the arguments.
  2998   int nargs = 3 + (is_copyOfRange? 1: 0);
  2999   Node* original          = argument(0);
  3000   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3001   Node* end               = is_copyOfRange? argument(2): argument(1);
  3002   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3004   _sp += nargs;  // set original stack for use by uncommon_trap
  3005   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3006   original          = do_null_check(original, T_OBJECT);
  3007   _sp -= nargs;
  3009   // Check if a null path was taken unconditionally.
  3010   if (stopped())  return true;
  3012   Node* orig_length = load_array_length(original);
  3014   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  3015                                             NULL, 0);
  3016   _sp += nargs;  // set original stack for use by uncommon_trap
  3017   klass_node = do_null_check(klass_node, T_OBJECT);
  3018   _sp -= nargs;
  3020   RegionNode* bailout = new (C, 1) RegionNode(1);
  3021   record_for_igvn(bailout);
  3023   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3024   // Bail out if that is so.
  3025   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3026   if (not_objArray != NULL) {
  3027     // Improve the klass node's type from the new optimistic assumption:
  3028     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3029     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3030     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3031     cast->init_req(0, control());
  3032     klass_node = _gvn.transform(cast);
  3035   // Bail out if either start or end is negative.
  3036   generate_negative_guard(start, bailout, &start);
  3037   generate_negative_guard(end,   bailout, &end);
  3039   Node* length = end;
  3040   if (_gvn.type(start) != TypeInt::ZERO) {
  3041     length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3044   // Bail out if length is negative.
  3045   // ...Not needed, since the new_array will throw the right exception.
  3046   //generate_negative_guard(length, bailout, &length);
  3048   if (bailout->req() > 1) {
  3049     PreserveJVMState pjvms(this);
  3050     set_control( _gvn.transform(bailout) );
  3051     _sp += nargs;  // push the arguments back on the stack
  3052     uncommon_trap(Deoptimization::Reason_intrinsic,
  3053                   Deoptimization::Action_maybe_recompile);
  3056   if (!stopped()) {
  3057     // How many elements will we copy from the original?
  3058     // The answer is MinI(orig_length - start, length).
  3059     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3060     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3062     _sp += nargs;  // set original stack for use by uncommon_trap
  3063     Node* newcopy = new_array(klass_node, length);
  3064     _sp -= nargs;
  3066     // Generate a direct call to the right arraycopy function(s).
  3067     // We know the copy is disjoint but we might not know if the
  3068     // oop stores need checking.
  3069     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3070     // This will fail a store-check if x contains any non-nulls.
  3071     bool disjoint_bases = true;
  3072     bool length_never_negative = true;
  3073     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3074                        original, start, newcopy, intcon(0), moved,
  3075                        nargs, disjoint_bases, length_never_negative);
  3077     push(newcopy);
  3080   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3082   return true;
  3086 //----------------------generate_virtual_guard---------------------------
  3087 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3088 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3089                                              RegionNode* slow_region) {
  3090   ciMethod* method = callee();
  3091   int vtable_index = method->vtable_index();
  3092   // Get the methodOop out of the appropriate vtable entry.
  3093   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3094                      vtable_index*vtableEntry::size()) * wordSize +
  3095                      vtableEntry::method_offset_in_bytes();
  3096   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3097   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3099   // Compare the target method with the expected method (e.g., Object.hashCode).
  3100   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3102   Node* native_call = makecon(native_call_addr);
  3103   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3104   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3106   return generate_slow_guard(test_native, slow_region);
  3109 //-----------------------generate_method_call----------------------------
  3110 // Use generate_method_call to make a slow-call to the real
  3111 // method if the fast path fails.  An alternative would be to
  3112 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3113 // This only works for expanding the current library call,
  3114 // not another intrinsic.  (E.g., don't use this for making an
  3115 // arraycopy call inside of the copyOf intrinsic.)
  3116 CallJavaNode*
  3117 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3118   // When compiling the intrinsic method itself, do not use this technique.
  3119   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3121   ciMethod* method = callee();
  3122   // ensure the JVMS we have will be correct for this call
  3123   guarantee(method_id == method->intrinsic_id(), "must match");
  3125   const TypeFunc* tf = TypeFunc::make(method);
  3126   int tfdc = tf->domain()->cnt();
  3127   CallJavaNode* slow_call;
  3128   if (is_static) {
  3129     assert(!is_virtual, "");
  3130     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3131                                 SharedRuntime::get_resolve_static_call_stub(),
  3132                                 method, bci());
  3133   } else if (is_virtual) {
  3134     null_check_receiver(method);
  3135     int vtable_index = methodOopDesc::invalid_vtable_index;
  3136     if (UseInlineCaches) {
  3137       // Suppress the vtable call
  3138     } else {
  3139       // hashCode and clone are not a miranda methods,
  3140       // so the vtable index is fixed.
  3141       // No need to use the linkResolver to get it.
  3142        vtable_index = method->vtable_index();
  3144     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3145                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3146                                 method, vtable_index, bci());
  3147   } else {  // neither virtual nor static:  opt_virtual
  3148     null_check_receiver(method);
  3149     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3150                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3151                                 method, bci());
  3152     slow_call->set_optimized_virtual(true);
  3154   set_arguments_for_java_call(slow_call);
  3155   set_edges_for_java_call(slow_call);
  3156   return slow_call;
  3160 //------------------------------inline_native_hashcode--------------------
  3161 // Build special case code for calls to hashCode on an object.
  3162 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3163   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3164   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3166   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3168   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3169   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3170                                                       TypeInt::INT);
  3171   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3172   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3173                                                       TypePtr::BOTTOM);
  3174   Node* obj = NULL;
  3175   if (!is_static) {
  3176     // Check for hashing null object
  3177     obj = null_check_receiver(callee());
  3178     if (stopped())  return true;        // unconditionally null
  3179     result_reg->init_req(_null_path, top());
  3180     result_val->init_req(_null_path, top());
  3181   } else {
  3182     // Do a null check, and return zero if null.
  3183     // System.identityHashCode(null) == 0
  3184     obj = argument(0);
  3185     Node* null_ctl = top();
  3186     obj = null_check_oop(obj, &null_ctl);
  3187     result_reg->init_req(_null_path, null_ctl);
  3188     result_val->init_req(_null_path, _gvn.intcon(0));
  3191   // Unconditionally null?  Then return right away.
  3192   if (stopped()) {
  3193     set_control( result_reg->in(_null_path) );
  3194     if (!stopped())
  3195       push(      result_val ->in(_null_path) );
  3196     return true;
  3199   // After null check, get the object's klass.
  3200   Node* obj_klass = load_object_klass(obj);
  3202   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3203   // For each case we generate slightly different code.
  3205   // We only go to the fast case code if we pass a number of guards.  The
  3206   // paths which do not pass are accumulated in the slow_region.
  3207   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3208   record_for_igvn(slow_region);
  3210   // If this is a virtual call, we generate a funny guard.  We pull out
  3211   // the vtable entry corresponding to hashCode() from the target object.
  3212   // If the target method which we are calling happens to be the native
  3213   // Object hashCode() method, we pass the guard.  We do not need this
  3214   // guard for non-virtual calls -- the caller is known to be the native
  3215   // Object hashCode().
  3216   if (is_virtual) {
  3217     generate_virtual_guard(obj_klass, slow_region);
  3220   // Get the header out of the object, use LoadMarkNode when available
  3221   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3222   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3223   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3225   // Test the header to see if it is unlocked.
  3226   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3227   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3228   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3229   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3230   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3232   generate_slow_guard(test_unlocked, slow_region);
  3234   // Get the hash value and check to see that it has been properly assigned.
  3235   // We depend on hash_mask being at most 32 bits and avoid the use of
  3236   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3237   // vm: see markOop.hpp.
  3238   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3239   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3240   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3241   // This hack lets the hash bits live anywhere in the mark object now, as long
  3242   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3243   // Java spec says that HashCode is an int so there's no point in capturing
  3244   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3245   hshifted_header      = ConvX2I(hshifted_header);
  3246   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3248   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3249   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3250   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3252   generate_slow_guard(test_assigned, slow_region);
  3254   Node* init_mem = reset_memory();
  3255   // fill in the rest of the null path:
  3256   result_io ->init_req(_null_path, i_o());
  3257   result_mem->init_req(_null_path, init_mem);
  3259   result_val->init_req(_fast_path, hash_val);
  3260   result_reg->init_req(_fast_path, control());
  3261   result_io ->init_req(_fast_path, i_o());
  3262   result_mem->init_req(_fast_path, init_mem);
  3264   // Generate code for the slow case.  We make a call to hashCode().
  3265   set_control(_gvn.transform(slow_region));
  3266   if (!stopped()) {
  3267     // No need for PreserveJVMState, because we're using up the present state.
  3268     set_all_memory(init_mem);
  3269     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3270     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3271     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3272     Node* slow_result = set_results_for_java_call(slow_call);
  3273     // this->control() comes from set_results_for_java_call
  3274     result_reg->init_req(_slow_path, control());
  3275     result_val->init_req(_slow_path, slow_result);
  3276     result_io  ->set_req(_slow_path, i_o());
  3277     result_mem ->set_req(_slow_path, reset_memory());
  3280   // Return the combined state.
  3281   set_i_o(        _gvn.transform(result_io)  );
  3282   set_all_memory( _gvn.transform(result_mem) );
  3283   push_result(result_reg, result_val);
  3285   return true;
  3288 //---------------------------inline_native_getClass----------------------------
  3289 // Build special case code for calls to getClass on an object.
  3290 bool LibraryCallKit::inline_native_getClass() {
  3291   Node* obj = null_check_receiver(callee());
  3292   if (stopped())  return true;
  3293   push( load_mirror_from_klass(load_object_klass(obj)) );
  3294   return true;
  3297 //-----------------inline_native_Reflection_getCallerClass---------------------
  3298 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3299 //
  3300 // NOTE that this code must perform the same logic as
  3301 // vframeStream::security_get_caller_frame in that it must skip
  3302 // Method.invoke() and auxiliary frames.
  3307 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3308   ciMethod*       method = callee();
  3310 #ifndef PRODUCT
  3311   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3312     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3314 #endif
  3316   debug_only(int saved_sp = _sp);
  3318   // Argument words:  (int depth)
  3319   int nargs = 1;
  3321   _sp += nargs;
  3322   Node* caller_depth_node = pop();
  3324   assert(saved_sp == _sp, "must have correct argument count");
  3326   // The depth value must be a constant in order for the runtime call
  3327   // to be eliminated.
  3328   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3329   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3330 #ifndef PRODUCT
  3331     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3332       tty->print_cr("  Bailing out because caller depth was not a constant");
  3334 #endif
  3335     return false;
  3337   // Note that the JVM state at this point does not include the
  3338   // getCallerClass() frame which we are trying to inline. The
  3339   // semantics of getCallerClass(), however, are that the "first"
  3340   // frame is the getCallerClass() frame, so we subtract one from the
  3341   // requested depth before continuing. We don't inline requests of
  3342   // getCallerClass(0).
  3343   int caller_depth = caller_depth_type->get_con() - 1;
  3344   if (caller_depth < 0) {
  3345 #ifndef PRODUCT
  3346     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3347       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3349 #endif
  3350     return false;
  3353   if (!jvms()->has_method()) {
  3354 #ifndef PRODUCT
  3355     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3356       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3358 #endif
  3359     return false;
  3361   int _depth = jvms()->depth();  // cache call chain depth
  3363   // Walk back up the JVM state to find the caller at the required
  3364   // depth. NOTE that this code must perform the same logic as
  3365   // vframeStream::security_get_caller_frame in that it must skip
  3366   // Method.invoke() and auxiliary frames. Note also that depth is
  3367   // 1-based (1 is the bottom of the inlining).
  3368   int inlining_depth = _depth;
  3369   JVMState* caller_jvms = NULL;
  3371   if (inlining_depth > 0) {
  3372     caller_jvms = jvms();
  3373     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3374     do {
  3375       // The following if-tests should be performed in this order
  3376       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3377         // Skip a Method.invoke() or auxiliary frame
  3378       } else if (caller_depth > 0) {
  3379         // Skip real frame
  3380         --caller_depth;
  3381       } else {
  3382         // We're done: reached desired caller after skipping.
  3383         break;
  3385       caller_jvms = caller_jvms->caller();
  3386       --inlining_depth;
  3387     } while (inlining_depth > 0);
  3390   if (inlining_depth == 0) {
  3391 #ifndef PRODUCT
  3392     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3393       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3394       tty->print_cr("  JVM state at this point:");
  3395       for (int i = _depth; i >= 1; i--) {
  3396         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3399 #endif
  3400     return false; // Reached end of inlining
  3403   // Acquire method holder as java.lang.Class
  3404   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3405   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3406   // Push this as a constant
  3407   push(makecon(TypeInstPtr::make(caller_mirror)));
  3408 #ifndef PRODUCT
  3409   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3410     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3411     tty->print_cr("  JVM state at this point:");
  3412     for (int i = _depth; i >= 1; i--) {
  3413       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3416 #endif
  3417   return true;
  3420 // Helper routine for above
  3421 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3422   // Is this the Method.invoke method itself?
  3423   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  3424     return true;
  3426   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3427   ciKlass* k = jvms->method()->holder();
  3428   if (k->is_instance_klass()) {
  3429     ciInstanceKlass* ik = k->as_instance_klass();
  3430     for (; ik != NULL; ik = ik->super()) {
  3431       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3432           ik == env()->find_system_klass(ik->name())) {
  3433         return true;
  3438   return false;
  3441 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3442                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3443                                      // computing it since there is no lookup field by name function in the
  3444                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3445                                      // Using a static variable here is safe even if we have multiple compilation
  3446                                      // threads because the offset is constant.  At worst the same offset will be
  3447                                      // computed and  stored multiple
  3449 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3450   // Restore the stack and pop off the argument
  3451   _sp+=1;
  3452   Node *obj = pop();
  3454   // get the offset of the "value" field. Since the CI interfaces
  3455   // does not provide a way to look up a field by name, we scan the bytecodes
  3456   // to get the field index.  We expect the first 2 instructions of the method
  3457   // to be:
  3458   //    0 aload_0
  3459   //    1 getfield "value"
  3460   ciMethod* method = callee();
  3461   if (value_field_offset == -1)
  3463     ciField* value_field;
  3464     ciBytecodeStream iter(method);
  3465     Bytecodes::Code bc = iter.next();
  3467     if ((bc != Bytecodes::_aload_0) &&
  3468               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3469       return false;
  3470     bc = iter.next();
  3471     if (bc != Bytecodes::_getfield)
  3472       return false;
  3473     bool ignore;
  3474     value_field = iter.get_field(ignore);
  3475     value_field_offset = value_field->offset_in_bytes();
  3478   // Null check without removing any arguments.
  3479   _sp++;
  3480   obj = do_null_check(obj, T_OBJECT);
  3481   _sp--;
  3482   // Check for locking null object
  3483   if (stopped()) return true;
  3485   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3486   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3487   int alias_idx = C->get_alias_index(adr_type);
  3489   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3491   push_pair(result);
  3493   return true;
  3496 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3497   // Restore the stack and pop off the arguments
  3498   _sp+=5;
  3499   Node *newVal = pop_pair();
  3500   Node *oldVal = pop_pair();
  3501   Node *obj = pop();
  3503   // we need the offset of the "value" field which was computed when
  3504   // inlining the get() method.  Give up if we don't have it.
  3505   if (value_field_offset == -1)
  3506     return false;
  3508   // Null check without removing any arguments.
  3509   _sp+=5;
  3510   obj = do_null_check(obj, T_OBJECT);
  3511   _sp-=5;
  3512   // Check for locking null object
  3513   if (stopped()) return true;
  3515   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3516   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3517   int alias_idx = C->get_alias_index(adr_type);
  3519   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3520   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3521   set_memory(store_proj, alias_idx);
  3522   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3524   Node *result;
  3525   // CMove node is not used to be able fold a possible check code
  3526   // after attemptUpdate() call. This code could be transformed
  3527   // into CMove node by loop optimizations.
  3529     RegionNode *r = new (C, 3) RegionNode(3);
  3530     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3532     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3533     Node *iftrue = opt_iff(r, iff);
  3534     r->init_req(1, iftrue);
  3535     result->init_req(1, intcon(1));
  3536     result->init_req(2, intcon(0));
  3538     set_control(_gvn.transform(r));
  3539     record_for_igvn(r);
  3541     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3544   push(_gvn.transform(result));
  3545   return true;
  3548 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3549   // restore the arguments
  3550   _sp += arg_size();
  3552   switch (id) {
  3553   case vmIntrinsics::_floatToRawIntBits:
  3554     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3555     break;
  3557   case vmIntrinsics::_intBitsToFloat:
  3558     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3559     break;
  3561   case vmIntrinsics::_doubleToRawLongBits:
  3562     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3563     break;
  3565   case vmIntrinsics::_longBitsToDouble:
  3566     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3567     break;
  3569   case vmIntrinsics::_doubleToLongBits: {
  3570     Node* value = pop_pair();
  3572     // two paths (plus control) merge in a wood
  3573     RegionNode *r = new (C, 3) RegionNode(3);
  3574     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3576     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3577     // Build the boolean node
  3578     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3580     // Branch either way.
  3581     // NaN case is less traveled, which makes all the difference.
  3582     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3583     Node *opt_isnan = _gvn.transform(ifisnan);
  3584     assert( opt_isnan->is_If(), "Expect an IfNode");
  3585     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3586     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3588     set_control(iftrue);
  3590     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3591     Node *slow_result = longcon(nan_bits); // return NaN
  3592     phi->init_req(1, _gvn.transform( slow_result ));
  3593     r->init_req(1, iftrue);
  3595     // Else fall through
  3596     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3597     set_control(iffalse);
  3599     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3600     r->init_req(2, iffalse);
  3602     // Post merge
  3603     set_control(_gvn.transform(r));
  3604     record_for_igvn(r);
  3606     Node* result = _gvn.transform(phi);
  3607     assert(result->bottom_type()->isa_long(), "must be");
  3608     push_pair(result);
  3610     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3612     break;
  3615   case vmIntrinsics::_floatToIntBits: {
  3616     Node* value = pop();
  3618     // two paths (plus control) merge in a wood
  3619     RegionNode *r = new (C, 3) RegionNode(3);
  3620     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3622     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3623     // Build the boolean node
  3624     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3626     // Branch either way.
  3627     // NaN case is less traveled, which makes all the difference.
  3628     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3629     Node *opt_isnan = _gvn.transform(ifisnan);
  3630     assert( opt_isnan->is_If(), "Expect an IfNode");
  3631     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3632     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3634     set_control(iftrue);
  3636     static const jint nan_bits = 0x7fc00000;
  3637     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3638     phi->init_req(1, _gvn.transform( slow_result ));
  3639     r->init_req(1, iftrue);
  3641     // Else fall through
  3642     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3643     set_control(iffalse);
  3645     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3646     r->init_req(2, iffalse);
  3648     // Post merge
  3649     set_control(_gvn.transform(r));
  3650     record_for_igvn(r);
  3652     Node* result = _gvn.transform(phi);
  3653     assert(result->bottom_type()->isa_int(), "must be");
  3654     push(result);
  3656     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3658     break;
  3661   default:
  3662     ShouldNotReachHere();
  3665   return true;
  3668 #ifdef _LP64
  3669 #define XTOP ,top() /*additional argument*/
  3670 #else  //_LP64
  3671 #define XTOP        /*no additional argument*/
  3672 #endif //_LP64
  3674 //----------------------inline_unsafe_copyMemory-------------------------
  3675 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3676   if (callee()->is_static())  return false;  // caller must have the capability!
  3677   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3678   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3679   null_check_receiver(callee());  // check then ignore argument(0)
  3680   if (stopped())  return true;
  3682   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3684   Node* src_ptr = argument(1);
  3685   Node* src_off = ConvL2X(argument(2));
  3686   assert(argument(3)->is_top(), "2nd half of long");
  3687   Node* dst_ptr = argument(4);
  3688   Node* dst_off = ConvL2X(argument(5));
  3689   assert(argument(6)->is_top(), "2nd half of long");
  3690   Node* size    = ConvL2X(argument(7));
  3691   assert(argument(8)->is_top(), "2nd half of long");
  3693   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3694          "fieldOffset must be byte-scaled");
  3696   Node* src = make_unsafe_address(src_ptr, src_off);
  3697   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3699   // Conservatively insert a memory barrier on all memory slices.
  3700   // Do not let writes of the copy source or destination float below the copy.
  3701   insert_mem_bar(Op_MemBarCPUOrder);
  3703   // Call it.  Note that the length argument is not scaled.
  3704   make_runtime_call(RC_LEAF|RC_NO_FP,
  3705                     OptoRuntime::fast_arraycopy_Type(),
  3706                     StubRoutines::unsafe_arraycopy(),
  3707                     "unsafe_arraycopy",
  3708                     TypeRawPtr::BOTTOM,
  3709                     src, dst, size XTOP);
  3711   // Do not let reads of the copy destination float above the copy.
  3712   insert_mem_bar(Op_MemBarCPUOrder);
  3714   return true;
  3718 //------------------------inline_native_clone----------------------------
  3719 // Here are the simple edge cases:
  3720 //  null receiver => normal trap
  3721 //  virtual and clone was overridden => slow path to out-of-line clone
  3722 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  3723 //
  3724 // The general case has two steps, allocation and copying.
  3725 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  3726 //
  3727 // Copying also has two cases, oop arrays and everything else.
  3728 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  3729 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  3730 //
  3731 // These steps fold up nicely if and when the cloned object's klass
  3732 // can be sharply typed as an object array, a type array, or an instance.
  3733 //
  3734 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  3735   int nargs = 1;
  3736   Node* obj = null_check_receiver(callee());
  3737   if (stopped())  return true;
  3738   Node* obj_klass = load_object_klass(obj);
  3739   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  3740   const TypeOopPtr*   toop   = ((tklass != NULL)
  3741                                 ? tklass->as_instance_type()
  3742                                 : TypeInstPtr::NOTNULL);
  3744   // Conservatively insert a memory barrier on all memory slices.
  3745   // Do not let writes into the original float below the clone.
  3746   insert_mem_bar(Op_MemBarCPUOrder);
  3748   // paths into result_reg:
  3749   enum {
  3750     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  3751     _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
  3752     _fast_path,         // plain allocation, plus a CopyArray operation
  3753     PATH_LIMIT
  3754   };
  3755   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3756   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3757                                                       TypeInstPtr::NOTNULL);
  3758   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3759   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3760                                                       TypePtr::BOTTOM);
  3761   record_for_igvn(result_reg);
  3763   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  3764   int raw_adr_idx = Compile::AliasIdxRaw;
  3765   const bool raw_mem_only = true;
  3767   // paths into alloc_reg (on the fast path, just before the CopyArray):
  3768   enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
  3769   RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
  3770   PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
  3771   PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
  3772   PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
  3773   PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
  3774                                                       raw_adr_type);
  3775   record_for_igvn(alloc_reg);
  3777   bool card_mark = false;  // (see below)
  3779   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  3780   if (array_ctl != NULL) {
  3781     // It's an array.
  3782     PreserveJVMState pjvms(this);
  3783     set_control(array_ctl);
  3784     Node* obj_length = load_array_length(obj);
  3785     Node* obj_size = NULL;
  3786     _sp += nargs;  // set original stack for use by uncommon_trap
  3787     Node* alloc_obj = new_array(obj_klass, obj_length,
  3788                                 raw_mem_only, &obj_size);
  3789     _sp -= nargs;
  3790     assert(obj_size != NULL, "");
  3791     Node* raw_obj = alloc_obj->in(1);
  3792     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3793     if (ReduceBulkZeroing) {
  3794       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3795       if (alloc != NULL) {
  3796         // We will be completely responsible for initializing this object.
  3797         alloc->maybe_set_complete(&_gvn);
  3801     if (!use_ReduceInitialCardMarks()) {
  3802       // If it is an oop array, it requires very special treatment,
  3803       // because card marking is required on each card of the array.
  3804       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  3805       if (is_obja != NULL) {
  3806         PreserveJVMState pjvms2(this);
  3807         set_control(is_obja);
  3808         // Generate a direct call to the right arraycopy function(s).
  3809         bool disjoint_bases = true;
  3810         bool length_never_negative = true;
  3811         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3812                            obj, intcon(0), alloc_obj, intcon(0),
  3813                            obj_length, nargs,
  3814                            disjoint_bases, length_never_negative);
  3815         result_reg->init_req(_objArray_path, control());
  3816         result_val->init_req(_objArray_path, alloc_obj);
  3817         result_i_o ->set_req(_objArray_path, i_o());
  3818         result_mem ->set_req(_objArray_path, reset_memory());
  3821     // We can dispense with card marks if we know the allocation
  3822     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  3823     // causes the non-eden paths to simulate a fresh allocation,
  3824     // insofar that no further card marks are required to initialize
  3825     // the object.
  3827     // Otherwise, there are no card marks to worry about.
  3828     alloc_val->init_req(_typeArray_alloc, raw_obj);
  3829     alloc_siz->init_req(_typeArray_alloc, obj_size);
  3830     alloc_reg->init_req(_typeArray_alloc, control());
  3831     alloc_i_o->init_req(_typeArray_alloc, i_o());
  3832     alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
  3835   // We only go to the fast case code if we pass a number of guards.
  3836   // The paths which do not pass are accumulated in the slow_region.
  3837   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3838   record_for_igvn(slow_region);
  3839   if (!stopped()) {
  3840     // It's an instance.  Make the slow-path tests.
  3841     // If this is a virtual call, we generate a funny guard.  We grab
  3842     // the vtable entry corresponding to clone() from the target object.
  3843     // If the target method which we are calling happens to be the
  3844     // Object clone() method, we pass the guard.  We do not need this
  3845     // guard for non-virtual calls; the caller is known to be the native
  3846     // Object clone().
  3847     if (is_virtual) {
  3848       generate_virtual_guard(obj_klass, slow_region);
  3851     // The object must be cloneable and must not have a finalizer.
  3852     // Both of these conditions may be checked in a single test.
  3853     // We could optimize the cloneable test further, but we don't care.
  3854     generate_access_flags_guard(obj_klass,
  3855                                 // Test both conditions:
  3856                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  3857                                 // Must be cloneable but not finalizer:
  3858                                 JVM_ACC_IS_CLONEABLE,
  3859                                 slow_region);
  3862   if (!stopped()) {
  3863     // It's an instance, and it passed the slow-path tests.
  3864     PreserveJVMState pjvms(this);
  3865     Node* obj_size = NULL;
  3866     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  3867     assert(obj_size != NULL, "");
  3868     Node* raw_obj = alloc_obj->in(1);
  3869     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3870     if (ReduceBulkZeroing) {
  3871       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3872       if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
  3873         alloc = NULL;
  3875     if (!use_ReduceInitialCardMarks()) {
  3876       // Put in store barrier for any and all oops we are sticking
  3877       // into this object.  (We could avoid this if we could prove
  3878       // that the object type contains no oop fields at all.)
  3879       card_mark = true;
  3881     alloc_val->init_req(_instance_alloc, raw_obj);
  3882     alloc_siz->init_req(_instance_alloc, obj_size);
  3883     alloc_reg->init_req(_instance_alloc, control());
  3884     alloc_i_o->init_req(_instance_alloc, i_o());
  3885     alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
  3888   // Generate code for the slow case.  We make a call to clone().
  3889   set_control(_gvn.transform(slow_region));
  3890   if (!stopped()) {
  3891     PreserveJVMState pjvms(this);
  3892     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  3893     Node* slow_result = set_results_for_java_call(slow_call);
  3894     // this->control() comes from set_results_for_java_call
  3895     result_reg->init_req(_slow_path, control());
  3896     result_val->init_req(_slow_path, slow_result);
  3897     result_i_o ->set_req(_slow_path, i_o());
  3898     result_mem ->set_req(_slow_path, reset_memory());
  3901   // The object is allocated, as an array and/or an instance.  Now copy it.
  3902   set_control( _gvn.transform(alloc_reg) );
  3903   set_i_o(     _gvn.transform(alloc_i_o) );
  3904   set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
  3905   Node* raw_obj  = _gvn.transform(alloc_val);
  3907   if (!stopped()) {
  3908     // Copy the fastest available way.
  3909     // (No need for PreserveJVMState, since we're using it all up now.)
  3910     // TODO: generate fields/elements copies for small objects instead.
  3911     Node* src  = obj;
  3912     Node* dest = raw_obj;
  3913     Node* size = _gvn.transform(alloc_siz);
  3915     // Exclude the header.
  3916     int base_off = instanceOopDesc::base_offset_in_bytes();
  3917     if (UseCompressedOops) {
  3918       assert(base_off % BytesPerLong != 0, "base with compressed oops");
  3919       // With compressed oops base_offset_in_bytes is 12 which creates
  3920       // the gap since countx is rounded by 8 bytes below.
  3921       // Copy klass and the gap.
  3922       base_off = instanceOopDesc::klass_offset_in_bytes();
  3924     src  = basic_plus_adr(src,  base_off);
  3925     dest = basic_plus_adr(dest, base_off);
  3927     // Compute the length also, if needed:
  3928     Node* countx = size;
  3929     countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  3930     countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  3932     // Select an appropriate instruction to initialize the range.
  3933     // The CopyArray instruction (if supported) can be optimized
  3934     // into a discrete set of scalar loads and stores.
  3935     bool disjoint_bases = true;
  3936     generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  3937                                  src, NULL, dest, NULL, countx);
  3939     // Now that the object is properly initialized, type it as an oop.
  3940     // Use a secondary InitializeNode memory barrier.
  3941     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
  3942                                                    raw_obj)->as_Initialize();
  3943     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  3944     Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
  3945                                               TypeInstPtr::NOTNULL);
  3946     new_obj = _gvn.transform(new_obj);
  3948     // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  3949     if (card_mark) {
  3950       Node* no_particular_value = NULL;
  3951       Node* no_particular_field = NULL;
  3952       post_barrier(control(),
  3953                    memory(raw_adr_type),
  3954                    new_obj,
  3955                    no_particular_field,
  3956                    raw_adr_idx,
  3957                    no_particular_value,
  3958                    T_OBJECT,
  3959                    false);
  3961     // Present the results of the slow call.
  3962     result_reg->init_req(_fast_path, control());
  3963     result_val->init_req(_fast_path, new_obj);
  3964     result_i_o ->set_req(_fast_path, i_o());
  3965     result_mem ->set_req(_fast_path, reset_memory());
  3968   // Return the combined state.
  3969   set_control(    _gvn.transform(result_reg) );
  3970   set_i_o(        _gvn.transform(result_i_o) );
  3971   set_all_memory( _gvn.transform(result_mem) );
  3973   // Cast the result to a sharper type, since we know what clone does.
  3974   Node* new_obj = _gvn.transform(result_val);
  3975   Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
  3976   push(_gvn.transform(cast));
  3978   return true;
  3982 // constants for computing the copy function
  3983 enum {
  3984   COPYFUNC_UNALIGNED = 0,
  3985   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  3986   COPYFUNC_CONJOINT = 0,
  3987   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  3988 };
  3990 // Note:  The condition "disjoint" applies also for overlapping copies
  3991 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  3992 static address
  3993 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  3994   int selector =
  3995     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  3996     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  3998 #define RETURN_STUB(xxx_arraycopy) { \
  3999   name = #xxx_arraycopy; \
  4000   return StubRoutines::xxx_arraycopy(); }
  4002   switch (t) {
  4003   case T_BYTE:
  4004   case T_BOOLEAN:
  4005     switch (selector) {
  4006     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4007     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4008     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4009     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4011   case T_CHAR:
  4012   case T_SHORT:
  4013     switch (selector) {
  4014     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4015     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4016     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4017     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4019   case T_INT:
  4020   case T_FLOAT:
  4021     switch (selector) {
  4022     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4023     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4024     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4025     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4027   case T_DOUBLE:
  4028   case T_LONG:
  4029     switch (selector) {
  4030     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4031     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4032     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4033     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4035   case T_ARRAY:
  4036   case T_OBJECT:
  4037     switch (selector) {
  4038     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4039     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4040     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4041     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4043   default:
  4044     ShouldNotReachHere();
  4045     return NULL;
  4048 #undef RETURN_STUB
  4051 //------------------------------basictype2arraycopy----------------------------
  4052 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4053                                             Node* src_offset,
  4054                                             Node* dest_offset,
  4055                                             bool disjoint_bases,
  4056                                             const char* &name) {
  4057   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4058   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4060   bool aligned = false;
  4061   bool disjoint = disjoint_bases;
  4063   // if the offsets are the same, we can treat the memory regions as
  4064   // disjoint, because either the memory regions are in different arrays,
  4065   // or they are identical (which we can treat as disjoint.)  We can also
  4066   // treat a copy with a destination index  less that the source index
  4067   // as disjoint since a low->high copy will work correctly in this case.
  4068   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4069       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4070     // both indices are constants
  4071     int s_offs = src_offset_inttype->get_con();
  4072     int d_offs = dest_offset_inttype->get_con();
  4073     int element_size = type2aelembytes(t);
  4074     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4075               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4076     if (s_offs >= d_offs)  disjoint = true;
  4077   } else if (src_offset == dest_offset && src_offset != NULL) {
  4078     // This can occur if the offsets are identical non-constants.
  4079     disjoint = true;
  4082   return select_arraycopy_function(t, aligned, disjoint, name);
  4086 //------------------------------inline_arraycopy-----------------------
  4087 bool LibraryCallKit::inline_arraycopy() {
  4088   // Restore the stack and pop off the arguments.
  4089   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4090   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4092   Node *src         = argument(0);
  4093   Node *src_offset  = argument(1);
  4094   Node *dest        = argument(2);
  4095   Node *dest_offset = argument(3);
  4096   Node *length      = argument(4);
  4098   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4099   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4100   // is.  The checks we choose to mandate at compile time are:
  4101   //
  4102   // (1) src and dest are arrays.
  4103   const Type* src_type = src->Value(&_gvn);
  4104   const Type* dest_type = dest->Value(&_gvn);
  4105   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4106   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4107   if (top_src  == NULL || top_src->klass()  == NULL ||
  4108       top_dest == NULL || top_dest->klass() == NULL) {
  4109     // Conservatively insert a memory barrier on all memory slices.
  4110     // Do not let writes into the source float below the arraycopy.
  4111     insert_mem_bar(Op_MemBarCPUOrder);
  4113     // Call StubRoutines::generic_arraycopy stub.
  4114     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4115                        src, src_offset, dest, dest_offset, length,
  4116                        nargs);
  4118     // Do not let reads from the destination float above the arraycopy.
  4119     // Since we cannot type the arrays, we don't know which slices
  4120     // might be affected.  We could restrict this barrier only to those
  4121     // memory slices which pertain to array elements--but don't bother.
  4122     if (!InsertMemBarAfterArraycopy)
  4123       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4124       insert_mem_bar(Op_MemBarCPUOrder);
  4125     return true;
  4128   // (2) src and dest arrays must have elements of the same BasicType
  4129   // Figure out the size and type of the elements we will be copying.
  4130   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4131   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4132   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4133   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4135   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4136     // The component types are not the same or are not recognized.  Punt.
  4137     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4138     generate_slow_arraycopy(TypePtr::BOTTOM,
  4139                             src, src_offset, dest, dest_offset, length,
  4140                             nargs);
  4141     return true;
  4144   //---------------------------------------------------------------------------
  4145   // We will make a fast path for this call to arraycopy.
  4147   // We have the following tests left to perform:
  4148   //
  4149   // (3) src and dest must not be null.
  4150   // (4) src_offset must not be negative.
  4151   // (5) dest_offset must not be negative.
  4152   // (6) length must not be negative.
  4153   // (7) src_offset + length must not exceed length of src.
  4154   // (8) dest_offset + length must not exceed length of dest.
  4155   // (9) each element of an oop array must be assignable
  4157   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4158   record_for_igvn(slow_region);
  4160   // (3) operands must not be null
  4161   // We currently perform our null checks with the do_null_check routine.
  4162   // This means that the null exceptions will be reported in the caller
  4163   // rather than (correctly) reported inside of the native arraycopy call.
  4164   // This should be corrected, given time.  We do our null check with the
  4165   // stack pointer restored.
  4166   _sp += nargs;
  4167   src  = do_null_check(src,  T_ARRAY);
  4168   dest = do_null_check(dest, T_ARRAY);
  4169   _sp -= nargs;
  4171   // (4) src_offset must not be negative.
  4172   generate_negative_guard(src_offset, slow_region);
  4174   // (5) dest_offset must not be negative.
  4175   generate_negative_guard(dest_offset, slow_region);
  4177   // (6) length must not be negative (moved to generate_arraycopy()).
  4178   // generate_negative_guard(length, slow_region);
  4180   // (7) src_offset + length must not exceed length of src.
  4181   generate_limit_guard(src_offset, length,
  4182                        load_array_length(src),
  4183                        slow_region);
  4185   // (8) dest_offset + length must not exceed length of dest.
  4186   generate_limit_guard(dest_offset, length,
  4187                        load_array_length(dest),
  4188                        slow_region);
  4190   // (9) each element of an oop array must be assignable
  4191   // The generate_arraycopy subroutine checks this.
  4193   // This is where the memory effects are placed:
  4194   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4195   generate_arraycopy(adr_type, dest_elem,
  4196                      src, src_offset, dest, dest_offset, length,
  4197                      nargs, false, false, slow_region);
  4199   return true;
  4202 //-----------------------------generate_arraycopy----------------------
  4203 // Generate an optimized call to arraycopy.
  4204 // Caller must guard against non-arrays.
  4205 // Caller must determine a common array basic-type for both arrays.
  4206 // Caller must validate offsets against array bounds.
  4207 // The slow_region has already collected guard failure paths
  4208 // (such as out of bounds length or non-conformable array types).
  4209 // The generated code has this shape, in general:
  4210 //
  4211 //     if (length == 0)  return   // via zero_path
  4212 //     slowval = -1
  4213 //     if (types unknown) {
  4214 //       slowval = call generic copy loop
  4215 //       if (slowval == 0)  return  // via checked_path
  4216 //     } else if (indexes in bounds) {
  4217 //       if ((is object array) && !(array type check)) {
  4218 //         slowval = call checked copy loop
  4219 //         if (slowval == 0)  return  // via checked_path
  4220 //       } else {
  4221 //         call bulk copy loop
  4222 //         return  // via fast_path
  4223 //       }
  4224 //     }
  4225 //     // adjust params for remaining work:
  4226 //     if (slowval != -1) {
  4227 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4228 //     }
  4229 //   slow_region:
  4230 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4231 //     return  // via slow_call_path
  4232 //
  4233 // This routine is used from several intrinsics:  System.arraycopy,
  4234 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4235 //
  4236 void
  4237 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4238                                    BasicType basic_elem_type,
  4239                                    Node* src,  Node* src_offset,
  4240                                    Node* dest, Node* dest_offset,
  4241                                    Node* copy_length,
  4242                                    int nargs,
  4243                                    bool disjoint_bases,
  4244                                    bool length_never_negative,
  4245                                    RegionNode* slow_region) {
  4247   if (slow_region == NULL) {
  4248     slow_region = new(C,1) RegionNode(1);
  4249     record_for_igvn(slow_region);
  4252   Node* original_dest      = dest;
  4253   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4254   Node* raw_dest           = NULL;  // used before zeroing, if needed
  4255   bool  must_clear_dest    = false;
  4257   // See if this is the initialization of a newly-allocated array.
  4258   // If so, we will take responsibility here for initializing it to zero.
  4259   // (Note:  Because tightly_coupled_allocation performs checks on the
  4260   // out-edges of the dest, we need to avoid making derived pointers
  4261   // from it until we have checked its uses.)
  4262   if (ReduceBulkZeroing
  4263       && !ZeroTLAB              // pointless if already zeroed
  4264       && basic_elem_type != T_CONFLICT // avoid corner case
  4265       && !_gvn.eqv_uncast(src, dest)
  4266       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4267           != NULL)
  4268       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4269       && alloc->maybe_set_complete(&_gvn)) {
  4270     // "You break it, you buy it."
  4271     InitializeNode* init = alloc->initialization();
  4272     assert(init->is_complete(), "we just did this");
  4273     assert(dest->Opcode() == Op_CheckCastPP, "sanity");
  4274     assert(dest->in(0)->in(0) == init, "dest pinned");
  4275     raw_dest = dest->in(1);  // grab the raw pointer!
  4276     original_dest = dest;
  4277     dest = raw_dest;
  4278     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4279     // Decouple the original InitializeNode, turning it into a simple membar.
  4280     // We will build a new one at the end of this routine.
  4281     init->set_req(InitializeNode::RawAddress, top());
  4282     // From this point on, every exit path is responsible for
  4283     // initializing any non-copied parts of the object to zero.
  4284     must_clear_dest = true;
  4285   } else {
  4286     // No zeroing elimination here.
  4287     alloc             = NULL;
  4288     //original_dest   = dest;
  4289     //must_clear_dest = false;
  4292   // Results are placed here:
  4293   enum { fast_path        = 1,  // normal void-returning assembly stub
  4294          checked_path     = 2,  // special assembly stub with cleanup
  4295          slow_call_path   = 3,  // something went wrong; call the VM
  4296          zero_path        = 4,  // bypass when length of copy is zero
  4297          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4298          PATH_LIMIT       = 6
  4299   };
  4300   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4301   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4302   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4303   record_for_igvn(result_region);
  4304   _gvn.set_type_bottom(result_i_o);
  4305   _gvn.set_type_bottom(result_memory);
  4306   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4308   // The slow_control path:
  4309   Node* slow_control;
  4310   Node* slow_i_o = i_o();
  4311   Node* slow_mem = memory(adr_type);
  4312   debug_only(slow_control = (Node*) badAddress);
  4314   // Checked control path:
  4315   Node* checked_control = top();
  4316   Node* checked_mem     = NULL;
  4317   Node* checked_i_o     = NULL;
  4318   Node* checked_value   = NULL;
  4320   if (basic_elem_type == T_CONFLICT) {
  4321     assert(!must_clear_dest, "");
  4322     Node* cv = generate_generic_arraycopy(adr_type,
  4323                                           src, src_offset, dest, dest_offset,
  4324                                           copy_length, nargs);
  4325     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4326     checked_control = control();
  4327     checked_i_o     = i_o();
  4328     checked_mem     = memory(adr_type);
  4329     checked_value   = cv;
  4330     set_control(top());         // no fast path
  4333   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4334   if (not_pos != NULL) {
  4335     PreserveJVMState pjvms(this);
  4336     set_control(not_pos);
  4338     // (6) length must not be negative.
  4339     if (!length_never_negative) {
  4340       generate_negative_guard(copy_length, slow_region);
  4343     if (!stopped() && must_clear_dest) {
  4344       Node* dest_length = alloc->in(AllocateNode::ALength);
  4345       if (_gvn.eqv_uncast(copy_length, dest_length)
  4346           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4347         // There is no zeroing to do.
  4348       } else {
  4349         // Clear the whole thing since there are no source elements to copy.
  4350         generate_clear_array(adr_type, dest, basic_elem_type,
  4351                              intcon(0), NULL,
  4352                              alloc->in(AllocateNode::AllocSize));
  4356     // Present the results of the fast call.
  4357     result_region->init_req(zero_path, control());
  4358     result_i_o   ->init_req(zero_path, i_o());
  4359     result_memory->init_req(zero_path, memory(adr_type));
  4362   if (!stopped() && must_clear_dest) {
  4363     // We have to initialize the *uncopied* part of the array to zero.
  4364     // The copy destination is the slice dest[off..off+len].  The other slices
  4365     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4366     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4367     Node* dest_length = alloc->in(AllocateNode::ALength);
  4368     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4369                                                           copy_length) );
  4371     // If there is a head section that needs zeroing, do it now.
  4372     if (find_int_con(dest_offset, -1) != 0) {
  4373       generate_clear_array(adr_type, dest, basic_elem_type,
  4374                            intcon(0), dest_offset,
  4375                            NULL);
  4378     // Next, perform a dynamic check on the tail length.
  4379     // It is often zero, and we can win big if we prove this.
  4380     // There are two wins:  Avoid generating the ClearArray
  4381     // with its attendant messy index arithmetic, and upgrade
  4382     // the copy to a more hardware-friendly word size of 64 bits.
  4383     Node* tail_ctl = NULL;
  4384     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4385       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4386       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4387       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4388       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4391     // At this point, let's assume there is no tail.
  4392     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4393       // There is no tail.  Try an upgrade to a 64-bit copy.
  4394       bool didit = false;
  4395       { PreserveJVMState pjvms(this);
  4396         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4397                                          src, src_offset, dest, dest_offset,
  4398                                          dest_size);
  4399         if (didit) {
  4400           // Present the results of the block-copying fast call.
  4401           result_region->init_req(bcopy_path, control());
  4402           result_i_o   ->init_req(bcopy_path, i_o());
  4403           result_memory->init_req(bcopy_path, memory(adr_type));
  4406       if (didit)
  4407         set_control(top());     // no regular fast path
  4410     // Clear the tail, if any.
  4411     if (tail_ctl != NULL) {
  4412       Node* notail_ctl = stopped() ? NULL : control();
  4413       set_control(tail_ctl);
  4414       if (notail_ctl == NULL) {
  4415         generate_clear_array(adr_type, dest, basic_elem_type,
  4416                              dest_tail, NULL,
  4417                              dest_size);
  4418       } else {
  4419         // Make a local merge.
  4420         Node* done_ctl = new(C,3) RegionNode(3);
  4421         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4422         done_ctl->init_req(1, notail_ctl);
  4423         done_mem->init_req(1, memory(adr_type));
  4424         generate_clear_array(adr_type, dest, basic_elem_type,
  4425                              dest_tail, NULL,
  4426                              dest_size);
  4427         done_ctl->init_req(2, control());
  4428         done_mem->init_req(2, memory(adr_type));
  4429         set_control( _gvn.transform(done_ctl) );
  4430         set_memory(  _gvn.transform(done_mem), adr_type );
  4435   BasicType copy_type = basic_elem_type;
  4436   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4437   if (!stopped() && copy_type == T_OBJECT) {
  4438     // If src and dest have compatible element types, we can copy bits.
  4439     // Types S[] and D[] are compatible if D is a supertype of S.
  4440     //
  4441     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4442     // which performs a fast optimistic per-oop check, and backs off
  4443     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4444     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4446     // Get the klassOop for both src and dest
  4447     Node* src_klass  = load_object_klass(src);
  4448     Node* dest_klass = load_object_klass(dest);
  4450     // Generate the subtype check.
  4451     // This might fold up statically, or then again it might not.
  4452     //
  4453     // Non-static example:  Copying List<String>.elements to a new String[].
  4454     // The backing store for a List<String> is always an Object[],
  4455     // but its elements are always type String, if the generic types
  4456     // are correct at the source level.
  4457     //
  4458     // Test S[] against D[], not S against D, because (probably)
  4459     // the secondary supertype cache is less busy for S[] than S.
  4460     // This usually only matters when D is an interface.
  4461     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4462     // Plug failing path into checked_oop_disjoint_arraycopy
  4463     if (not_subtype_ctrl != top()) {
  4464       PreserveJVMState pjvms(this);
  4465       set_control(not_subtype_ctrl);
  4466       // (At this point we can assume disjoint_bases, since types differ.)
  4467       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4468       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4469       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4470       Node* dest_elem_klass = _gvn.transform(n1);
  4471       Node* cv = generate_checkcast_arraycopy(adr_type,
  4472                                               dest_elem_klass,
  4473                                               src, src_offset, dest, dest_offset,
  4474                                               copy_length,
  4475                                               nargs);
  4476       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4477       checked_control = control();
  4478       checked_i_o     = i_o();
  4479       checked_mem     = memory(adr_type);
  4480       checked_value   = cv;
  4482     // At this point we know we do not need type checks on oop stores.
  4484     // Let's see if we need card marks:
  4485     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4486       // If we do not need card marks, copy using the jint or jlong stub.
  4487       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4488       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4489              "sizes agree");
  4493   if (!stopped()) {
  4494     // Generate the fast path, if possible.
  4495     PreserveJVMState pjvms(this);
  4496     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4497                                  src, src_offset, dest, dest_offset,
  4498                                  ConvI2X(copy_length));
  4500     // Present the results of the fast call.
  4501     result_region->init_req(fast_path, control());
  4502     result_i_o   ->init_req(fast_path, i_o());
  4503     result_memory->init_req(fast_path, memory(adr_type));
  4506   // Here are all the slow paths up to this point, in one bundle:
  4507   slow_control = top();
  4508   if (slow_region != NULL)
  4509     slow_control = _gvn.transform(slow_region);
  4510   debug_only(slow_region = (RegionNode*)badAddress);
  4512   set_control(checked_control);
  4513   if (!stopped()) {
  4514     // Clean up after the checked call.
  4515     // The returned value is either 0 or -1^K,
  4516     // where K = number of partially transferred array elements.
  4517     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4518     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4519     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4521     // If it is 0, we are done, so transfer to the end.
  4522     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4523     result_region->init_req(checked_path, checks_done);
  4524     result_i_o   ->init_req(checked_path, checked_i_o);
  4525     result_memory->init_req(checked_path, checked_mem);
  4527     // If it is not zero, merge into the slow call.
  4528     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4529     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4530     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4531     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4532     record_for_igvn(slow_reg2);
  4533     slow_reg2  ->init_req(1, slow_control);
  4534     slow_i_o2  ->init_req(1, slow_i_o);
  4535     slow_mem2  ->init_req(1, slow_mem);
  4536     slow_reg2  ->init_req(2, control());
  4537     slow_i_o2  ->init_req(2, i_o());
  4538     slow_mem2  ->init_req(2, memory(adr_type));
  4540     slow_control = _gvn.transform(slow_reg2);
  4541     slow_i_o     = _gvn.transform(slow_i_o2);
  4542     slow_mem     = _gvn.transform(slow_mem2);
  4544     if (alloc != NULL) {
  4545       // We'll restart from the very beginning, after zeroing the whole thing.
  4546       // This can cause double writes, but that's OK since dest is brand new.
  4547       // So we ignore the low 31 bits of the value returned from the stub.
  4548     } else {
  4549       // We must continue the copy exactly where it failed, or else
  4550       // another thread might see the wrong number of writes to dest.
  4551       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4552       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4553       slow_offset->init_req(1, intcon(0));
  4554       slow_offset->init_req(2, checked_offset);
  4555       slow_offset  = _gvn.transform(slow_offset);
  4557       // Adjust the arguments by the conditionally incoming offset.
  4558       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4559       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4560       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4562       // Tweak the node variables to adjust the code produced below:
  4563       src_offset  = src_off_plus;
  4564       dest_offset = dest_off_plus;
  4565       copy_length = length_minus;
  4569   set_control(slow_control);
  4570   if (!stopped()) {
  4571     // Generate the slow path, if needed.
  4572     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4574     set_memory(slow_mem, adr_type);
  4575     set_i_o(slow_i_o);
  4577     if (must_clear_dest) {
  4578       generate_clear_array(adr_type, dest, basic_elem_type,
  4579                            intcon(0), NULL,
  4580                            alloc->in(AllocateNode::AllocSize));
  4583     if (dest != original_dest) {
  4584       // Promote from rawptr to oop, so it looks right in the call's GC map.
  4585       dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
  4586                                                       TypeInstPtr::NOTNULL) );
  4588       // Edit the call's debug-info to avoid referring to original_dest.
  4589       // (The problem with original_dest is that it isn't ready until
  4590       // after the InitializeNode completes, but this stuff is before.)
  4591       // Substitute in the locally valid dest_oop.
  4592       replace_in_map(original_dest, dest);
  4595     generate_slow_arraycopy(adr_type,
  4596                             src, src_offset, dest, dest_offset,
  4597                             copy_length, nargs);
  4599     result_region->init_req(slow_call_path, control());
  4600     result_i_o   ->init_req(slow_call_path, i_o());
  4601     result_memory->init_req(slow_call_path, memory(adr_type));
  4604   // Remove unused edges.
  4605   for (uint i = 1; i < result_region->req(); i++) {
  4606     if (result_region->in(i) == NULL)
  4607       result_region->init_req(i, top());
  4610   // Finished; return the combined state.
  4611   set_control( _gvn.transform(result_region) );
  4612   set_i_o(     _gvn.transform(result_i_o)    );
  4613   set_memory(  _gvn.transform(result_memory), adr_type );
  4615   if (dest != original_dest) {
  4616     // Pin the "finished" array node after the arraycopy/zeroing operations.
  4617     // Use a secondary InitializeNode memory barrier.
  4618     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4619                                                    Compile::AliasIdxRaw,
  4620                                                    raw_dest)->as_Initialize();
  4621     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4622     _gvn.hash_delete(original_dest);
  4623     original_dest->set_req(0, control());
  4624     _gvn.hash_find_insert(original_dest);  // put back into GVN table
  4627   // The memory edges above are precise in order to model effects around
  4628   // array copies accurately to allow value numbering of field loads around
  4629   // arraycopy.  Such field loads, both before and after, are common in Java
  4630   // collections and similar classes involving header/array data structures.
  4631   //
  4632   // But with low number of register or when some registers are used or killed
  4633   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4634   // The next memory barrier is added to avoid it. If the arraycopy can be
  4635   // optimized away (which it can, sometimes) then we can manually remove
  4636   // the membar also.
  4637   if (InsertMemBarAfterArraycopy)
  4638     insert_mem_bar(Op_MemBarCPUOrder);
  4642 // Helper function which determines if an arraycopy immediately follows
  4643 // an allocation, with no intervening tests or other escapes for the object.
  4644 AllocateArrayNode*
  4645 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4646                                            RegionNode* slow_region) {
  4647   if (stopped())             return NULL;  // no fast path
  4648   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4650   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4651   if (alloc == NULL)  return NULL;
  4653   Node* rawmem = memory(Compile::AliasIdxRaw);
  4654   // Is the allocation's memory state untouched?
  4655   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4656     // Bail out if there have been raw-memory effects since the allocation.
  4657     // (Example:  There might have been a call or safepoint.)
  4658     return NULL;
  4660   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4661   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4662     return NULL;
  4665   // There must be no unexpected observers of this allocation.
  4666   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4667     Node* obs = ptr->fast_out(i);
  4668     if (obs != this->map()) {
  4669       return NULL;
  4673   // This arraycopy must unconditionally follow the allocation of the ptr.
  4674   Node* alloc_ctl = ptr->in(0);
  4675   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4677   Node* ctl = control();
  4678   while (ctl != alloc_ctl) {
  4679     // There may be guards which feed into the slow_region.
  4680     // Any other control flow means that we might not get a chance
  4681     // to finish initializing the allocated object.
  4682     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4683       IfNode* iff = ctl->in(0)->as_If();
  4684       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4685       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4686       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4687         ctl = iff->in(0);       // This test feeds the known slow_region.
  4688         continue;
  4690       // One more try:  Various low-level checks bottom out in
  4691       // uncommon traps.  If the debug-info of the trap omits
  4692       // any reference to the allocation, as we've already
  4693       // observed, then there can be no objection to the trap.
  4694       bool found_trap = false;
  4695       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4696         Node* obs = not_ctl->fast_out(j);
  4697         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4698             (obs->as_Call()->entry_point() ==
  4699              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4700           found_trap = true; break;
  4703       if (found_trap) {
  4704         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4705         continue;
  4708     return NULL;
  4711   // If we get this far, we have an allocation which immediately
  4712   // precedes the arraycopy, and we can take over zeroing the new object.
  4713   // The arraycopy will finish the initialization, and provide
  4714   // a new control state to which we will anchor the destination pointer.
  4716   return alloc;
  4719 // Helper for initialization of arrays, creating a ClearArray.
  4720 // It writes zero bits in [start..end), within the body of an array object.
  4721 // The memory effects are all chained onto the 'adr_type' alias category.
  4722 //
  4723 // Since the object is otherwise uninitialized, we are free
  4724 // to put a little "slop" around the edges of the cleared area,
  4725 // as long as it does not go back into the array's header,
  4726 // or beyond the array end within the heap.
  4727 //
  4728 // The lower edge can be rounded down to the nearest jint and the
  4729 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4730 //
  4731 // Arguments:
  4732 //   adr_type           memory slice where writes are generated
  4733 //   dest               oop of the destination array
  4734 //   basic_elem_type    element type of the destination
  4735 //   slice_idx          array index of first element to store
  4736 //   slice_len          number of elements to store (or NULL)
  4737 //   dest_size          total size in bytes of the array object
  4738 //
  4739 // Exactly one of slice_len or dest_size must be non-NULL.
  4740 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4741 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4742 void
  4743 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4744                                      Node* dest,
  4745                                      BasicType basic_elem_type,
  4746                                      Node* slice_idx,
  4747                                      Node* slice_len,
  4748                                      Node* dest_size) {
  4749   // one or the other but not both of slice_len and dest_size:
  4750   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4751   if (slice_len == NULL)  slice_len = top();
  4752   if (dest_size == NULL)  dest_size = top();
  4754   // operate on this memory slice:
  4755   Node* mem = memory(adr_type); // memory slice to operate on
  4757   // scaling and rounding of indexes:
  4758   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4759   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4760   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4761   int bump_bit  = (-1 << scale) & BytesPerInt;
  4763   // determine constant starts and ends
  4764   const intptr_t BIG_NEG = -128;
  4765   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4766   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4767   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4768   if (slice_len_con == 0) {
  4769     return;                     // nothing to do here
  4771   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4772   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4773   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4774     assert(end_con < 0, "not two cons");
  4775     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4776                        BytesPerLong);
  4779   if (start_con >= 0 && end_con >= 0) {
  4780     // Constant start and end.  Simple.
  4781     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4782                                        start_con, end_con, &_gvn);
  4783   } else if (start_con >= 0 && dest_size != top()) {
  4784     // Constant start, pre-rounded end after the tail of the array.
  4785     Node* end = dest_size;
  4786     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4787                                        start_con, end, &_gvn);
  4788   } else if (start_con >= 0 && slice_len != top()) {
  4789     // Constant start, non-constant end.  End needs rounding up.
  4790     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  4791     intptr_t end_base  = abase + (slice_idx_con << scale);
  4792     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  4793     Node*    end       = ConvI2X(slice_len);
  4794     if (scale != 0)
  4795       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  4796     end_base += end_round;
  4797     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  4798     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  4799     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4800                                        start_con, end, &_gvn);
  4801   } else if (start_con < 0 && dest_size != top()) {
  4802     // Non-constant start, pre-rounded end after the tail of the array.
  4803     // This is almost certainly a "round-to-end" operation.
  4804     Node* start = slice_idx;
  4805     start = ConvI2X(start);
  4806     if (scale != 0)
  4807       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  4808     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  4809     if ((bump_bit | clear_low) != 0) {
  4810       int to_clear = (bump_bit | clear_low);
  4811       // Align up mod 8, then store a jint zero unconditionally
  4812       // just before the mod-8 boundary.
  4813       if (((abase + bump_bit) & ~to_clear) - bump_bit
  4814           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  4815         bump_bit = 0;
  4816         assert((abase & to_clear) == 0, "array base must be long-aligned");
  4817       } else {
  4818         // Bump 'start' up to (or past) the next jint boundary:
  4819         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  4820         assert((abase & clear_low) == 0, "array base must be int-aligned");
  4822       // Round bumped 'start' down to jlong boundary in body of array.
  4823       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  4824       if (bump_bit != 0) {
  4825         // Store a zero to the immediately preceding jint:
  4826         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  4827         Node* p1 = basic_plus_adr(dest, x1);
  4828         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  4829         mem = _gvn.transform(mem);
  4832     Node* end = dest_size; // pre-rounded
  4833     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4834                                        start, end, &_gvn);
  4835   } else {
  4836     // Non-constant start, unrounded non-constant end.
  4837     // (Nobody zeroes a random midsection of an array using this routine.)
  4838     ShouldNotReachHere();       // fix caller
  4841   // Done.
  4842   set_memory(mem, adr_type);
  4846 bool
  4847 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  4848                                          BasicType basic_elem_type,
  4849                                          AllocateNode* alloc,
  4850                                          Node* src,  Node* src_offset,
  4851                                          Node* dest, Node* dest_offset,
  4852                                          Node* dest_size) {
  4853   // See if there is an advantage from block transfer.
  4854   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4855   if (scale >= LogBytesPerLong)
  4856     return false;               // it is already a block transfer
  4858   // Look at the alignment of the starting offsets.
  4859   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4860   const intptr_t BIG_NEG = -128;
  4861   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4863   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  4864   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  4865   if (src_off < 0 || dest_off < 0)
  4866     // At present, we can only understand constants.
  4867     return false;
  4869   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  4870     // Non-aligned; too bad.
  4871     // One more chance:  Pick off an initial 32-bit word.
  4872     // This is a common case, since abase can be odd mod 8.
  4873     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  4874         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  4875       Node* sptr = basic_plus_adr(src,  src_off);
  4876       Node* dptr = basic_plus_adr(dest, dest_off);
  4877       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  4878       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  4879       src_off += BytesPerInt;
  4880       dest_off += BytesPerInt;
  4881     } else {
  4882       return false;
  4885   assert(src_off % BytesPerLong == 0, "");
  4886   assert(dest_off % BytesPerLong == 0, "");
  4888   // Do this copy by giant steps.
  4889   Node* sptr  = basic_plus_adr(src,  src_off);
  4890   Node* dptr  = basic_plus_adr(dest, dest_off);
  4891   Node* countx = dest_size;
  4892   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  4893   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  4895   bool disjoint_bases = true;   // since alloc != NULL
  4896   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  4897                                sptr, NULL, dptr, NULL, countx);
  4899   return true;
  4903 // Helper function; generates code for the slow case.
  4904 // We make a call to a runtime method which emulates the native method,
  4905 // but without the native wrapper overhead.
  4906 void
  4907 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  4908                                         Node* src,  Node* src_offset,
  4909                                         Node* dest, Node* dest_offset,
  4910                                         Node* copy_length,
  4911                                         int nargs) {
  4912   _sp += nargs; // any deopt will start just before call to enclosing method
  4913   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  4914                                  OptoRuntime::slow_arraycopy_Type(),
  4915                                  OptoRuntime::slow_arraycopy_Java(),
  4916                                  "slow_arraycopy", adr_type,
  4917                                  src, src_offset, dest, dest_offset,
  4918                                  copy_length);
  4919   _sp -= nargs;
  4921   // Handle exceptions thrown by this fellow:
  4922   make_slow_call_ex(call, env()->Throwable_klass(), false);
  4925 // Helper function; generates code for cases requiring runtime checks.
  4926 Node*
  4927 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  4928                                              Node* dest_elem_klass,
  4929                                              Node* src,  Node* src_offset,
  4930                                              Node* dest, Node* dest_offset,
  4931                                              Node* copy_length,
  4932                                              int nargs) {
  4933   if (stopped())  return NULL;
  4935   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  4936   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4937     return NULL;
  4940   // Pick out the parameters required to perform a store-check
  4941   // for the target array.  This is an optimistic check.  It will
  4942   // look in each non-null element's class, at the desired klass's
  4943   // super_check_offset, for the desired klass.
  4944   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  4945   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  4946   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  4947   Node* check_offset = _gvn.transform(n3);
  4948   Node* check_value  = dest_elem_klass;
  4950   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  4951   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  4953   // (We know the arrays are never conjoint, because their types differ.)
  4954   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4955                                  OptoRuntime::checkcast_arraycopy_Type(),
  4956                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  4957                                  // five arguments, of which two are
  4958                                  // intptr_t (jlong in LP64)
  4959                                  src_start, dest_start,
  4960                                  copy_length XTOP,
  4961                                  check_offset XTOP,
  4962                                  check_value);
  4964   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4968 // Helper function; generates code for cases requiring runtime checks.
  4969 Node*
  4970 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  4971                                            Node* src,  Node* src_offset,
  4972                                            Node* dest, Node* dest_offset,
  4973                                            Node* copy_length,
  4974                                            int nargs) {
  4975   if (stopped())  return NULL;
  4977   address copyfunc_addr = StubRoutines::generic_arraycopy();
  4978   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4979     return NULL;
  4982   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4983                     OptoRuntime::generic_arraycopy_Type(),
  4984                     copyfunc_addr, "generic_arraycopy", adr_type,
  4985                     src, src_offset, dest, dest_offset, copy_length);
  4987   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4990 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  4991 void
  4992 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  4993                                              BasicType basic_elem_type,
  4994                                              bool disjoint_bases,
  4995                                              Node* src,  Node* src_offset,
  4996                                              Node* dest, Node* dest_offset,
  4997                                              Node* copy_length) {
  4998   if (stopped())  return;               // nothing to do
  5000   Node* src_start  = src;
  5001   Node* dest_start = dest;
  5002   if (src_offset != NULL || dest_offset != NULL) {
  5003     assert(src_offset != NULL && dest_offset != NULL, "");
  5004     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5005     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5008   // Figure out which arraycopy runtime method to call.
  5009   const char* copyfunc_name = "arraycopy";
  5010   address     copyfunc_addr =
  5011       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5012                           disjoint_bases, copyfunc_name);
  5014   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5015   make_runtime_call(RC_LEAF|RC_NO_FP,
  5016                     OptoRuntime::fast_arraycopy_Type(),
  5017                     copyfunc_addr, copyfunc_name, adr_type,
  5018                     src_start, dest_start, copy_length XTOP);

mercurial