src/share/vm/opto/library_call.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 855
a1980da045cc
child 1078
c771b7f43bbf
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   bool inline_string_compareTo();
   137   bool inline_string_indexOf();
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   139   Node* pop_math_arg();
   140   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   141   bool inline_math_native(vmIntrinsics::ID id);
   142   bool inline_trig(vmIntrinsics::ID id);
   143   bool inline_trans(vmIntrinsics::ID id);
   144   bool inline_abs(vmIntrinsics::ID id);
   145   bool inline_sqrt(vmIntrinsics::ID id);
   146   bool inline_pow(vmIntrinsics::ID id);
   147   bool inline_exp(vmIntrinsics::ID id);
   148   bool inline_min_max(vmIntrinsics::ID id);
   149   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   150   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   151   int classify_unsafe_addr(Node* &base, Node* &offset);
   152   Node* make_unsafe_address(Node* base, Node* offset);
   153   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   154   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   155   bool inline_unsafe_allocate();
   156   bool inline_unsafe_copyMemory();
   157   bool inline_native_currentThread();
   158   bool inline_native_time_funcs(bool isNano);
   159   bool inline_native_isInterrupted();
   160   bool inline_native_Class_query(vmIntrinsics::ID id);
   161   bool inline_native_subtype_check();
   163   bool inline_native_newArray();
   164   bool inline_native_getLength();
   165   bool inline_array_copyOf(bool is_copyOfRange);
   166   bool inline_array_equals();
   167   bool inline_native_clone(bool is_virtual);
   168   bool inline_native_Reflection_getCallerClass();
   169   bool inline_native_AtomicLong_get();
   170   bool inline_native_AtomicLong_attemptUpdate();
   171   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   172   // Helper function for inlining native object hash method
   173   bool inline_native_hashcode(bool is_virtual, bool is_static);
   174   bool inline_native_getClass();
   176   // Helper functions for inlining arraycopy
   177   bool inline_arraycopy();
   178   void generate_arraycopy(const TypePtr* adr_type,
   179                           BasicType basic_elem_type,
   180                           Node* src,  Node* src_offset,
   181                           Node* dest, Node* dest_offset,
   182                           Node* copy_length,
   183                           int nargs,  // arguments on stack for debug info
   184                           bool disjoint_bases = false,
   185                           bool length_never_negative = false,
   186                           RegionNode* slow_region = NULL);
   187   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   188                                                 RegionNode* slow_region);
   189   void generate_clear_array(const TypePtr* adr_type,
   190                             Node* dest,
   191                             BasicType basic_elem_type,
   192                             Node* slice_off,
   193                             Node* slice_len,
   194                             Node* slice_end);
   195   bool generate_block_arraycopy(const TypePtr* adr_type,
   196                                 BasicType basic_elem_type,
   197                                 AllocateNode* alloc,
   198                                 Node* src,  Node* src_offset,
   199                                 Node* dest, Node* dest_offset,
   200                                 Node* dest_size);
   201   void generate_slow_arraycopy(const TypePtr* adr_type,
   202                                Node* src,  Node* src_offset,
   203                                Node* dest, Node* dest_offset,
   204                                Node* copy_length,
   205                                int nargs);
   206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   207                                      Node* dest_elem_klass,
   208                                      Node* src,  Node* src_offset,
   209                                      Node* dest, Node* dest_offset,
   210                                      Node* copy_length, int nargs);
   211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   212                                    Node* src,  Node* src_offset,
   213                                    Node* dest, Node* dest_offset,
   214                                    Node* copy_length, int nargs);
   215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   216                                     BasicType basic_elem_type,
   217                                     bool disjoint_bases,
   218                                     Node* src,  Node* src_offset,
   219                                     Node* dest, Node* dest_offset,
   220                                     Node* copy_length);
   221   bool inline_unsafe_CAS(BasicType type);
   222   bool inline_unsafe_ordered_store(BasicType type);
   223   bool inline_fp_conversions(vmIntrinsics::ID id);
   224   bool inline_reverseBytes(vmIntrinsics::ID id);
   225 };
   228 //---------------------------make_vm_intrinsic----------------------------
   229 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   230   vmIntrinsics::ID id = m->intrinsic_id();
   231   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   233   if (DisableIntrinsic[0] != '\0'
   234       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   235     // disabled by a user request on the command line:
   236     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   237     return NULL;
   238   }
   240   if (!m->is_loaded()) {
   241     // do not attempt to inline unloaded methods
   242     return NULL;
   243   }
   245   // Only a few intrinsics implement a virtual dispatch.
   246   // They are expensive calls which are also frequently overridden.
   247   if (is_virtual) {
   248     switch (id) {
   249     case vmIntrinsics::_hashCode:
   250     case vmIntrinsics::_clone:
   251       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   252       break;
   253     default:
   254       return NULL;
   255     }
   256   }
   258   // -XX:-InlineNatives disables nearly all intrinsics:
   259   if (!InlineNatives) {
   260     switch (id) {
   261     case vmIntrinsics::_indexOf:
   262     case vmIntrinsics::_compareTo:
   263     case vmIntrinsics::_equalsC:
   264       break;  // InlineNatives does not control String.compareTo
   265     default:
   266       return NULL;
   267     }
   268   }
   270   switch (id) {
   271   case vmIntrinsics::_compareTo:
   272     if (!SpecialStringCompareTo)  return NULL;
   273     break;
   274   case vmIntrinsics::_indexOf:
   275     if (!SpecialStringIndexOf)  return NULL;
   276     break;
   277   case vmIntrinsics::_equalsC:
   278     if (!SpecialArraysEquals)  return NULL;
   279     break;
   280   case vmIntrinsics::_arraycopy:
   281     if (!InlineArrayCopy)  return NULL;
   282     break;
   283   case vmIntrinsics::_copyMemory:
   284     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   285     if (!InlineArrayCopy)  return NULL;
   286     break;
   287   case vmIntrinsics::_hashCode:
   288     if (!InlineObjectHash)  return NULL;
   289     break;
   290   case vmIntrinsics::_clone:
   291   case vmIntrinsics::_copyOf:
   292   case vmIntrinsics::_copyOfRange:
   293     if (!InlineObjectCopy)  return NULL;
   294     // These also use the arraycopy intrinsic mechanism:
   295     if (!InlineArrayCopy)  return NULL;
   296     break;
   297   case vmIntrinsics::_checkIndex:
   298     // We do not intrinsify this.  The optimizer does fine with it.
   299     return NULL;
   301   case vmIntrinsics::_get_AtomicLong:
   302   case vmIntrinsics::_attemptUpdate:
   303     if (!InlineAtomicLong)  return NULL;
   304     break;
   306   case vmIntrinsics::_Object_init:
   307   case vmIntrinsics::_invoke:
   308     // We do not intrinsify these; they are marked for other purposes.
   309     return NULL;
   311   case vmIntrinsics::_getCallerClass:
   312     if (!UseNewReflection)  return NULL;
   313     if (!InlineReflectionGetCallerClass)  return NULL;
   314     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   315     break;
   317  default:
   318     break;
   319   }
   321   // -XX:-InlineClassNatives disables natives from the Class class.
   322   // The flag applies to all reflective calls, notably Array.newArray
   323   // (visible to Java programmers as Array.newInstance).
   324   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   325       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   326     if (!InlineClassNatives)  return NULL;
   327   }
   329   // -XX:-InlineThreadNatives disables natives from the Thread class.
   330   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   331     if (!InlineThreadNatives)  return NULL;
   332   }
   334   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   335   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   336       m->holder()->name() == ciSymbol::java_lang_Float() ||
   337       m->holder()->name() == ciSymbol::java_lang_Double()) {
   338     if (!InlineMathNatives)  return NULL;
   339   }
   341   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   342   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   343     if (!InlineUnsafeOps)  return NULL;
   344   }
   346   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   347 }
   349 //----------------------register_library_intrinsics-----------------------
   350 // Initialize this file's data structures, for each Compile instance.
   351 void Compile::register_library_intrinsics() {
   352   // Nothing to do here.
   353 }
   355 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   356   LibraryCallKit kit(jvms, this);
   357   Compile* C = kit.C;
   358   int nodes = C->unique();
   359 #ifndef PRODUCT
   360   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   361     char buf[1000];
   362     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   363     tty->print_cr("Intrinsic %s", str);
   364   }
   365 #endif
   366   if (kit.try_to_inline()) {
   367     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   368       tty->print("Inlining intrinsic %s%s at bci:%d in",
   369                  vmIntrinsics::name_at(intrinsic_id()),
   370                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   371       kit.caller()->print_short_name(tty);
   372       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   373     }
   374     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   375     if (C->log()) {
   376       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   377                      vmIntrinsics::name_at(intrinsic_id()),
   378                      (is_virtual() ? " virtual='1'" : ""),
   379                      C->unique() - nodes);
   380     }
   381     return kit.transfer_exceptions_into_jvms();
   382   }
   384   if (PrintIntrinsics) {
   385     switch (intrinsic_id()) {
   386     case vmIntrinsics::_invoke:
   387     case vmIntrinsics::_Object_init:
   388       // We do not expect to inline these, so do not produce any noise about them.
   389       break;
   390     default:
   391       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   392                  vmIntrinsics::name_at(intrinsic_id()),
   393                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   394       kit.caller()->print_short_name(tty);
   395       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   396     }
   397   }
   398   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   399   return NULL;
   400 }
   402 bool LibraryCallKit::try_to_inline() {
   403   // Handle symbolic names for otherwise undistinguished boolean switches:
   404   const bool is_store       = true;
   405   const bool is_native_ptr  = true;
   406   const bool is_static      = true;
   408   switch (intrinsic_id()) {
   409   case vmIntrinsics::_hashCode:
   410     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   411   case vmIntrinsics::_identityHashCode:
   412     return inline_native_hashcode(/*!virtual*/ false, is_static);
   413   case vmIntrinsics::_getClass:
   414     return inline_native_getClass();
   416   case vmIntrinsics::_dsin:
   417   case vmIntrinsics::_dcos:
   418   case vmIntrinsics::_dtan:
   419   case vmIntrinsics::_dabs:
   420   case vmIntrinsics::_datan2:
   421   case vmIntrinsics::_dsqrt:
   422   case vmIntrinsics::_dexp:
   423   case vmIntrinsics::_dlog:
   424   case vmIntrinsics::_dlog10:
   425   case vmIntrinsics::_dpow:
   426     return inline_math_native(intrinsic_id());
   428   case vmIntrinsics::_min:
   429   case vmIntrinsics::_max:
   430     return inline_min_max(intrinsic_id());
   432   case vmIntrinsics::_arraycopy:
   433     return inline_arraycopy();
   435   case vmIntrinsics::_compareTo:
   436     return inline_string_compareTo();
   437   case vmIntrinsics::_indexOf:
   438     return inline_string_indexOf();
   440   case vmIntrinsics::_getObject:
   441     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   442   case vmIntrinsics::_getBoolean:
   443     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   444   case vmIntrinsics::_getByte:
   445     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   446   case vmIntrinsics::_getShort:
   447     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   448   case vmIntrinsics::_getChar:
   449     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   450   case vmIntrinsics::_getInt:
   451     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   452   case vmIntrinsics::_getLong:
   453     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   454   case vmIntrinsics::_getFloat:
   455     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   456   case vmIntrinsics::_getDouble:
   457     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   459   case vmIntrinsics::_putObject:
   460     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   461   case vmIntrinsics::_putBoolean:
   462     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   463   case vmIntrinsics::_putByte:
   464     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   465   case vmIntrinsics::_putShort:
   466     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   467   case vmIntrinsics::_putChar:
   468     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   469   case vmIntrinsics::_putInt:
   470     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   471   case vmIntrinsics::_putLong:
   472     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   473   case vmIntrinsics::_putFloat:
   474     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   475   case vmIntrinsics::_putDouble:
   476     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   478   case vmIntrinsics::_getByte_raw:
   479     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   480   case vmIntrinsics::_getShort_raw:
   481     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   482   case vmIntrinsics::_getChar_raw:
   483     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   484   case vmIntrinsics::_getInt_raw:
   485     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   486   case vmIntrinsics::_getLong_raw:
   487     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   488   case vmIntrinsics::_getFloat_raw:
   489     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   490   case vmIntrinsics::_getDouble_raw:
   491     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   492   case vmIntrinsics::_getAddress_raw:
   493     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   495   case vmIntrinsics::_putByte_raw:
   496     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   497   case vmIntrinsics::_putShort_raw:
   498     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   499   case vmIntrinsics::_putChar_raw:
   500     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   501   case vmIntrinsics::_putInt_raw:
   502     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   503   case vmIntrinsics::_putLong_raw:
   504     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   505   case vmIntrinsics::_putFloat_raw:
   506     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   507   case vmIntrinsics::_putDouble_raw:
   508     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   509   case vmIntrinsics::_putAddress_raw:
   510     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   512   case vmIntrinsics::_getObjectVolatile:
   513     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   514   case vmIntrinsics::_getBooleanVolatile:
   515     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   516   case vmIntrinsics::_getByteVolatile:
   517     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   518   case vmIntrinsics::_getShortVolatile:
   519     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   520   case vmIntrinsics::_getCharVolatile:
   521     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   522   case vmIntrinsics::_getIntVolatile:
   523     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   524   case vmIntrinsics::_getLongVolatile:
   525     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   526   case vmIntrinsics::_getFloatVolatile:
   527     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   528   case vmIntrinsics::_getDoubleVolatile:
   529     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   531   case vmIntrinsics::_putObjectVolatile:
   532     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   533   case vmIntrinsics::_putBooleanVolatile:
   534     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   535   case vmIntrinsics::_putByteVolatile:
   536     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   537   case vmIntrinsics::_putShortVolatile:
   538     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   539   case vmIntrinsics::_putCharVolatile:
   540     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   541   case vmIntrinsics::_putIntVolatile:
   542     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   543   case vmIntrinsics::_putLongVolatile:
   544     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   545   case vmIntrinsics::_putFloatVolatile:
   546     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   547   case vmIntrinsics::_putDoubleVolatile:
   548     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   550   case vmIntrinsics::_prefetchRead:
   551     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   552   case vmIntrinsics::_prefetchWrite:
   553     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   554   case vmIntrinsics::_prefetchReadStatic:
   555     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   556   case vmIntrinsics::_prefetchWriteStatic:
   557     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   559   case vmIntrinsics::_compareAndSwapObject:
   560     return inline_unsafe_CAS(T_OBJECT);
   561   case vmIntrinsics::_compareAndSwapInt:
   562     return inline_unsafe_CAS(T_INT);
   563   case vmIntrinsics::_compareAndSwapLong:
   564     return inline_unsafe_CAS(T_LONG);
   566   case vmIntrinsics::_putOrderedObject:
   567     return inline_unsafe_ordered_store(T_OBJECT);
   568   case vmIntrinsics::_putOrderedInt:
   569     return inline_unsafe_ordered_store(T_INT);
   570   case vmIntrinsics::_putOrderedLong:
   571     return inline_unsafe_ordered_store(T_LONG);
   573   case vmIntrinsics::_currentThread:
   574     return inline_native_currentThread();
   575   case vmIntrinsics::_isInterrupted:
   576     return inline_native_isInterrupted();
   578   case vmIntrinsics::_currentTimeMillis:
   579     return inline_native_time_funcs(false);
   580   case vmIntrinsics::_nanoTime:
   581     return inline_native_time_funcs(true);
   582   case vmIntrinsics::_allocateInstance:
   583     return inline_unsafe_allocate();
   584   case vmIntrinsics::_copyMemory:
   585     return inline_unsafe_copyMemory();
   586   case vmIntrinsics::_newArray:
   587     return inline_native_newArray();
   588   case vmIntrinsics::_getLength:
   589     return inline_native_getLength();
   590   case vmIntrinsics::_copyOf:
   591     return inline_array_copyOf(false);
   592   case vmIntrinsics::_copyOfRange:
   593     return inline_array_copyOf(true);
   594   case vmIntrinsics::_equalsC:
   595     return inline_array_equals();
   596   case vmIntrinsics::_clone:
   597     return inline_native_clone(intrinsic()->is_virtual());
   599   case vmIntrinsics::_isAssignableFrom:
   600     return inline_native_subtype_check();
   602   case vmIntrinsics::_isInstance:
   603   case vmIntrinsics::_getModifiers:
   604   case vmIntrinsics::_isInterface:
   605   case vmIntrinsics::_isArray:
   606   case vmIntrinsics::_isPrimitive:
   607   case vmIntrinsics::_getSuperclass:
   608   case vmIntrinsics::_getComponentType:
   609   case vmIntrinsics::_getClassAccessFlags:
   610     return inline_native_Class_query(intrinsic_id());
   612   case vmIntrinsics::_floatToRawIntBits:
   613   case vmIntrinsics::_floatToIntBits:
   614   case vmIntrinsics::_intBitsToFloat:
   615   case vmIntrinsics::_doubleToRawLongBits:
   616   case vmIntrinsics::_doubleToLongBits:
   617   case vmIntrinsics::_longBitsToDouble:
   618     return inline_fp_conversions(intrinsic_id());
   620   case vmIntrinsics::_reverseBytes_i:
   621   case vmIntrinsics::_reverseBytes_l:
   622     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   624   case vmIntrinsics::_get_AtomicLong:
   625     return inline_native_AtomicLong_get();
   626   case vmIntrinsics::_attemptUpdate:
   627     return inline_native_AtomicLong_attemptUpdate();
   629   case vmIntrinsics::_getCallerClass:
   630     return inline_native_Reflection_getCallerClass();
   632   default:
   633     // If you get here, it may be that someone has added a new intrinsic
   634     // to the list in vmSymbols.hpp without implementing it here.
   635 #ifndef PRODUCT
   636     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   637       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   638                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   639     }
   640 #endif
   641     return false;
   642   }
   643 }
   645 //------------------------------push_result------------------------------
   646 // Helper function for finishing intrinsics.
   647 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   648   record_for_igvn(region);
   649   set_control(_gvn.transform(region));
   650   BasicType value_type = value->type()->basic_type();
   651   push_node(value_type, _gvn.transform(value));
   652 }
   654 //------------------------------generate_guard---------------------------
   655 // Helper function for generating guarded fast-slow graph structures.
   656 // The given 'test', if true, guards a slow path.  If the test fails
   657 // then a fast path can be taken.  (We generally hope it fails.)
   658 // In all cases, GraphKit::control() is updated to the fast path.
   659 // The returned value represents the control for the slow path.
   660 // The return value is never 'top'; it is either a valid control
   661 // or NULL if it is obvious that the slow path can never be taken.
   662 // Also, if region and the slow control are not NULL, the slow edge
   663 // is appended to the region.
   664 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   665   if (stopped()) {
   666     // Already short circuited.
   667     return NULL;
   668   }
   670   // Build an if node and its projections.
   671   // If test is true we take the slow path, which we assume is uncommon.
   672   if (_gvn.type(test) == TypeInt::ZERO) {
   673     // The slow branch is never taken.  No need to build this guard.
   674     return NULL;
   675   }
   677   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   679   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   680   if (if_slow == top()) {
   681     // The slow branch is never taken.  No need to build this guard.
   682     return NULL;
   683   }
   685   if (region != NULL)
   686     region->add_req(if_slow);
   688   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   689   set_control(if_fast);
   691   return if_slow;
   692 }
   694 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   695   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   696 }
   697 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   698   return generate_guard(test, region, PROB_FAIR);
   699 }
   701 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   702                                                      Node* *pos_index) {
   703   if (stopped())
   704     return NULL;                // already stopped
   705   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   706     return NULL;                // index is already adequately typed
   707   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   708   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   709   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   710   if (is_neg != NULL && pos_index != NULL) {
   711     // Emulate effect of Parse::adjust_map_after_if.
   712     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   713     ccast->set_req(0, control());
   714     (*pos_index) = _gvn.transform(ccast);
   715   }
   716   return is_neg;
   717 }
   719 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   720                                                         Node* *pos_index) {
   721   if (stopped())
   722     return NULL;                // already stopped
   723   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   724     return NULL;                // index is already adequately typed
   725   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   726   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   727   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   728   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   729   if (is_notp != NULL && pos_index != NULL) {
   730     // Emulate effect of Parse::adjust_map_after_if.
   731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   732     ccast->set_req(0, control());
   733     (*pos_index) = _gvn.transform(ccast);
   734   }
   735   return is_notp;
   736 }
   738 // Make sure that 'position' is a valid limit index, in [0..length].
   739 // There are two equivalent plans for checking this:
   740 //   A. (offset + copyLength)  unsigned<=  arrayLength
   741 //   B. offset  <=  (arrayLength - copyLength)
   742 // We require that all of the values above, except for the sum and
   743 // difference, are already known to be non-negative.
   744 // Plan A is robust in the face of overflow, if offset and copyLength
   745 // are both hugely positive.
   746 //
   747 // Plan B is less direct and intuitive, but it does not overflow at
   748 // all, since the difference of two non-negatives is always
   749 // representable.  Whenever Java methods must perform the equivalent
   750 // check they generally use Plan B instead of Plan A.
   751 // For the moment we use Plan A.
   752 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   753                                                   Node* subseq_length,
   754                                                   Node* array_length,
   755                                                   RegionNode* region) {
   756   if (stopped())
   757     return NULL;                // already stopped
   758   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   759   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   760     return NULL;                // common case of whole-array copy
   761   Node* last = subseq_length;
   762   if (!zero_offset)             // last += offset
   763     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   764   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   765   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   766   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   767   return is_over;
   768 }
   771 //--------------------------generate_current_thread--------------------
   772 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   773   ciKlass*    thread_klass = env()->Thread_klass();
   774   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   775   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   776   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   777   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   778   tls_output = thread;
   779   return threadObj;
   780 }
   783 //------------------------------inline_string_compareTo------------------------
   784 bool LibraryCallKit::inline_string_compareTo() {
   786   const int value_offset = java_lang_String::value_offset_in_bytes();
   787   const int count_offset = java_lang_String::count_offset_in_bytes();
   788   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   790   _sp += 2;
   791   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   792   Node *receiver = pop();
   794   // Null check on self without removing any arguments.  The argument
   795   // null check technically happens in the wrong place, which can lead to
   796   // invalid stack traces when string compare is inlined into a method
   797   // which handles NullPointerExceptions.
   798   _sp += 2;
   799   receiver = do_null_check(receiver, T_OBJECT);
   800   argument = do_null_check(argument, T_OBJECT);
   801   _sp -= 2;
   802   if (stopped()) {
   803     return true;
   804   }
   806   ciInstanceKlass* klass = env()->String_klass();
   807   const TypeInstPtr* string_type =
   808     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   810   Node* compare =
   811     _gvn.transform(new (C, 7) StrCompNode(
   812                         control(),
   813                         memory(TypeAryPtr::CHARS),
   814                         memory(string_type->add_offset(value_offset)),
   815                         memory(string_type->add_offset(count_offset)),
   816                         memory(string_type->add_offset(offset_offset)),
   817                         receiver,
   818                         argument));
   819   push(compare);
   820   return true;
   821 }
   823 //------------------------------inline_array_equals----------------------------
   824 bool LibraryCallKit::inline_array_equals() {
   826   if (!Matcher::has_match_rule(Op_AryEq)) return false;
   828   _sp += 2;
   829   Node *argument2 = pop();
   830   Node *argument1 = pop();
   832   Node* equals =
   833     _gvn.transform(new (C, 3) AryEqNode(control(),
   834                                         argument1,
   835                                         argument2)
   836                    );
   837   push(equals);
   838   return true;
   839 }
   841 // Java version of String.indexOf(constant string)
   842 // class StringDecl {
   843 //   StringDecl(char[] ca) {
   844 //     offset = 0;
   845 //     count = ca.length;
   846 //     value = ca;
   847 //   }
   848 //   int offset;
   849 //   int count;
   850 //   char[] value;
   851 // }
   852 //
   853 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
   854 //                             int targetOffset, int cache_i, int md2) {
   855 //   int cache = cache_i;
   856 //   int sourceOffset = string_object.offset;
   857 //   int sourceCount = string_object.count;
   858 //   int targetCount = target_object.length;
   859 //
   860 //   int targetCountLess1 = targetCount - 1;
   861 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   862 //
   863 //   char[] source = string_object.value;
   864 //   char[] target = target_object;
   865 //   int lastChar = target[targetCountLess1];
   866 //
   867 //  outer_loop:
   868 //   for (int i = sourceOffset; i < sourceEnd; ) {
   869 //     int src = source[i + targetCountLess1];
   870 //     if (src == lastChar) {
   871 //       // With random strings and a 4-character alphabet,
   872 //       // reverse matching at this point sets up 0.8% fewer
   873 //       // frames, but (paradoxically) makes 0.3% more probes.
   874 //       // Since those probes are nearer the lastChar probe,
   875 //       // there is may be a net D$ win with reverse matching.
   876 //       // But, reversing loop inhibits unroll of inner loop
   877 //       // for unknown reason.  So, does running outer loop from
   878 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   879 //       for (int j = 0; j < targetCountLess1; j++) {
   880 //         if (target[targetOffset + j] != source[i+j]) {
   881 //           if ((cache & (1 << source[i+j])) == 0) {
   882 //             if (md2 < j+1) {
   883 //               i += j+1;
   884 //               continue outer_loop;
   885 //             }
   886 //           }
   887 //           i += md2;
   888 //           continue outer_loop;
   889 //         }
   890 //       }
   891 //       return i - sourceOffset;
   892 //     }
   893 //     if ((cache & (1 << src)) == 0) {
   894 //       i += targetCountLess1;
   895 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
   896 //     i++;
   897 //   }
   898 //   return -1;
   899 // }
   901 //------------------------------string_indexOf------------------------
   902 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
   903                                      jint cache_i, jint md2_i) {
   905   Node* no_ctrl  = NULL;
   906   float likely   = PROB_LIKELY(0.9);
   907   float unlikely = PROB_UNLIKELY(0.9);
   909   const int value_offset  = java_lang_String::value_offset_in_bytes();
   910   const int count_offset  = java_lang_String::count_offset_in_bytes();
   911   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   913   ciInstanceKlass* klass = env()->String_klass();
   914   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   915   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
   917   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
   918   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   919   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
   920   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   921   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
   922   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
   924   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
   925   jint target_length = target_array->length();
   926   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
   927   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
   929   IdealKit kit(gvn(), control(), merged_memory());
   930 #define __ kit.
   931   Node* zero             = __ ConI(0);
   932   Node* one              = __ ConI(1);
   933   Node* cache            = __ ConI(cache_i);
   934   Node* md2              = __ ConI(md2_i);
   935   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
   936   Node* targetCount      = __ ConI(target_length);
   937   Node* targetCountLess1 = __ ConI(target_length - 1);
   938   Node* targetOffset     = __ ConI(targetOffset_i);
   939   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
   941   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
   942   Node* outer_loop = __ make_label(2 /* goto */);
   943   Node* return_    = __ make_label(1);
   945   __ set(rtn,__ ConI(-1));
   946   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
   947        Node* i2  = __ AddI(__ value(i), targetCountLess1);
   948        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
   949        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
   950        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
   951          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
   952               Node* tpj = __ AddI(targetOffset, __ value(j));
   953               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
   954               Node* ipj  = __ AddI(__ value(i), __ value(j));
   955               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
   956               __ if_then(targ, BoolTest::ne, src2); {
   957                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
   958                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
   959                     __ increment(i, __ AddI(__ value(j), one));
   960                     __ goto_(outer_loop);
   961                   } __ end_if(); __ dead(j);
   962                 }__ end_if(); __ dead(j);
   963                 __ increment(i, md2);
   964                 __ goto_(outer_loop);
   965               }__ end_if();
   966               __ increment(j, one);
   967          }__ end_loop(); __ dead(j);
   968          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
   969          __ goto_(return_);
   970        }__ end_if();
   971        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
   972          __ increment(i, targetCountLess1);
   973        }__ end_if();
   974        __ increment(i, one);
   975        __ bind(outer_loop);
   976   }__ end_loop(); __ dead(i);
   977   __ bind(return_);
   978   __ drain_delay_transform();
   980   set_control(__ ctrl());
   981   Node* result = __ value(rtn);
   982 #undef __
   983   C->set_has_loops(true);
   984   return result;
   985 }
   988 //------------------------------inline_string_indexOf------------------------
   989 bool LibraryCallKit::inline_string_indexOf() {
   991   _sp += 2;
   992   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   993   Node *receiver = pop();
   995   // don't intrinsify if argument isn't a constant string.
   996   if (!argument->is_Con()) {
   997     return false;
   998   }
   999   const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1000   if (str_type == NULL) {
  1001     return false;
  1003   ciInstanceKlass* klass = env()->String_klass();
  1004   ciObject* str_const = str_type->const_oop();
  1005   if (str_const == NULL || str_const->klass() != klass) {
  1006     return false;
  1008   ciInstance* str = str_const->as_instance();
  1009   assert(str != NULL, "must be instance");
  1011   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1012   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1013   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1015   ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1016   int       o = str->field_value_by_offset(offset_offset).as_int();
  1017   int       c = str->field_value_by_offset(count_offset).as_int();
  1018   ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1020   // constant strings have no offset and count == length which
  1021   // simplifies the resulting code somewhat so lets optimize for that.
  1022   if (o != 0 || c != pat->length()) {
  1023     return false;
  1026   // Null check on self without removing any arguments.  The argument
  1027   // null check technically happens in the wrong place, which can lead to
  1028   // invalid stack traces when string compare is inlined into a method
  1029   // which handles NullPointerExceptions.
  1030   _sp += 2;
  1031   receiver = do_null_check(receiver, T_OBJECT);
  1032   // No null check on the argument is needed since it's a constant String oop.
  1033   _sp -= 2;
  1034   if (stopped()) {
  1035     return true;
  1038   // The null string as a pattern always returns 0 (match at beginning of string)
  1039   if (c == 0) {
  1040     push(intcon(0));
  1041     return true;
  1044   jchar lastChar = pat->char_at(o + (c - 1));
  1045   int cache = 0;
  1046   int i;
  1047   for (i = 0; i < c - 1; i++) {
  1048     assert(i < pat->length(), "out of range");
  1049     cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1052   int md2 = c;
  1053   for (i = 0; i < c - 1; i++) {
  1054     assert(i < pat->length(), "out of range");
  1055     if (pat->char_at(o + i) == lastChar) {
  1056       md2 = (c - 1) - i;
  1060   Node* result = string_indexOf(receiver, pat, o, cache, md2);
  1061   push(result);
  1062   return true;
  1065 //--------------------------pop_math_arg--------------------------------
  1066 // Pop a double argument to a math function from the stack
  1067 // rounding it if necessary.
  1068 Node * LibraryCallKit::pop_math_arg() {
  1069   Node *arg = pop_pair();
  1070   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1071     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1072   return arg;
  1075 //------------------------------inline_trig----------------------------------
  1076 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1077 // argument reduction which will turn into a fast/slow diamond.
  1078 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1079   _sp += arg_size();            // restore stack pointer
  1080   Node* arg = pop_math_arg();
  1081   Node* trig = NULL;
  1083   switch (id) {
  1084   case vmIntrinsics::_dsin:
  1085     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1086     break;
  1087   case vmIntrinsics::_dcos:
  1088     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1089     break;
  1090   case vmIntrinsics::_dtan:
  1091     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1092     break;
  1093   default:
  1094     assert(false, "bad intrinsic was passed in");
  1095     return false;
  1098   // Rounding required?  Check for argument reduction!
  1099   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1101     static const double     pi_4 =  0.7853981633974483;
  1102     static const double neg_pi_4 = -0.7853981633974483;
  1103     // pi/2 in 80-bit extended precision
  1104     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1105     // -pi/2 in 80-bit extended precision
  1106     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1107     // Cutoff value for using this argument reduction technique
  1108     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1109     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1111     // Pseudocode for sin:
  1112     // if (x <= Math.PI / 4.0) {
  1113     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1114     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1115     // } else {
  1116     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1117     // }
  1118     // return StrictMath.sin(x);
  1120     // Pseudocode for cos:
  1121     // if (x <= Math.PI / 4.0) {
  1122     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1123     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1124     // } else {
  1125     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1126     // }
  1127     // return StrictMath.cos(x);
  1129     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1130     // requires a special machine instruction to load it.  Instead we'll try
  1131     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1132     // probably do the math inside the SIN encoding.
  1134     // Make the merge point
  1135     RegionNode *r = new (C, 3) RegionNode(3);
  1136     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1138     // Flatten arg so we need only 1 test
  1139     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1140     // Node for PI/4 constant
  1141     Node *pi4 = makecon(TypeD::make(pi_4));
  1142     // Check PI/4 : abs(arg)
  1143     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1144     // Check: If PI/4 < abs(arg) then go slow
  1145     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1146     // Branch either way
  1147     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1148     set_control(opt_iff(r,iff));
  1150     // Set fast path result
  1151     phi->init_req(2,trig);
  1153     // Slow path - non-blocking leaf call
  1154     Node* call = NULL;
  1155     switch (id) {
  1156     case vmIntrinsics::_dsin:
  1157       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1158                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1159                                "Sin", NULL, arg, top());
  1160       break;
  1161     case vmIntrinsics::_dcos:
  1162       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1163                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1164                                "Cos", NULL, arg, top());
  1165       break;
  1166     case vmIntrinsics::_dtan:
  1167       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1168                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1169                                "Tan", NULL, arg, top());
  1170       break;
  1172     assert(control()->in(0) == call, "");
  1173     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1174     r->init_req(1,control());
  1175     phi->init_req(1,slow_result);
  1177     // Post-merge
  1178     set_control(_gvn.transform(r));
  1179     record_for_igvn(r);
  1180     trig = _gvn.transform(phi);
  1182     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1184   // Push result back on JVM stack
  1185   push_pair(trig);
  1186   return true;
  1189 //------------------------------inline_sqrt-------------------------------------
  1190 // Inline square root instruction, if possible.
  1191 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1192   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1193   _sp += arg_size();        // restore stack pointer
  1194   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1195   return true;
  1198 //------------------------------inline_abs-------------------------------------
  1199 // Inline absolute value instruction, if possible.
  1200 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1201   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1202   _sp += arg_size();        // restore stack pointer
  1203   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1204   return true;
  1207 //------------------------------inline_exp-------------------------------------
  1208 // Inline exp instructions, if possible.  The Intel hardware only misses
  1209 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1210 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1211   assert(id == vmIntrinsics::_dexp, "Not exp");
  1213   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1214   // every again.  NaN results requires StrictMath.exp handling.
  1215   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1217   // Do not intrinsify on older platforms which lack cmove.
  1218   if (ConditionalMoveLimit == 0)  return false;
  1220   _sp += arg_size();        // restore stack pointer
  1221   Node *x = pop_math_arg();
  1222   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1224   //-------------------
  1225   //result=(result.isNaN())? StrictMath::exp():result;
  1226   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1227   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1228   // Build the boolean node
  1229   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1231   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1232     // End the current control-flow path
  1233     push_pair(x);
  1234     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1235     // to handle.  Recompile without intrinsifying Math.exp
  1236     uncommon_trap(Deoptimization::Reason_intrinsic,
  1237                   Deoptimization::Action_make_not_entrant);
  1240   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1242   push_pair(result);
  1244   return true;
  1247 //------------------------------inline_pow-------------------------------------
  1248 // Inline power instructions, if possible.
  1249 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1250   assert(id == vmIntrinsics::_dpow, "Not pow");
  1252   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1253   // every again.  NaN results requires StrictMath.pow handling.
  1254   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1256   // Do not intrinsify on older platforms which lack cmove.
  1257   if (ConditionalMoveLimit == 0)  return false;
  1259   // Pseudocode for pow
  1260   // if (x <= 0.0) {
  1261   //   if ((double)((int)y)==y) { // if y is int
  1262   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1263   //   } else {
  1264   //     result = NaN;
  1265   //   }
  1266   // } else {
  1267   //   result = DPow(x,y);
  1268   // }
  1269   // if (result != result)?  {
  1270   //   uncommon_trap();
  1271   // }
  1272   // return result;
  1274   _sp += arg_size();        // restore stack pointer
  1275   Node* y = pop_math_arg();
  1276   Node* x = pop_math_arg();
  1278   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1280   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1281   // inside of something) then skip the fancy tests and just check for
  1282   // NaN result.
  1283   Node *result = NULL;
  1284   if( jvms()->depth() >= 1 ) {
  1285     result = fast_result;
  1286   } else {
  1288     // Set the merge point for If node with condition of (x <= 0.0)
  1289     // There are four possible paths to region node and phi node
  1290     RegionNode *r = new (C, 4) RegionNode(4);
  1291     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1293     // Build the first if node: if (x <= 0.0)
  1294     // Node for 0 constant
  1295     Node *zeronode = makecon(TypeD::ZERO);
  1296     // Check x:0
  1297     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1298     // Check: If (x<=0) then go complex path
  1299     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1300     // Branch either way
  1301     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1302     Node *opt_test = _gvn.transform(if1);
  1303     //assert( opt_test->is_If(), "Expect an IfNode");
  1304     IfNode *opt_if1 = (IfNode*)opt_test;
  1305     // Fast path taken; set region slot 3
  1306     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1307     r->init_req(3,fast_taken); // Capture fast-control
  1309     // Fast path not-taken, i.e. slow path
  1310     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1312     // Set fast path result
  1313     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1314     phi->init_req(3, fast_result);
  1316     // Complex path
  1317     // Build the second if node (if y is int)
  1318     // Node for (int)y
  1319     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1320     // Node for (double)((int) y)
  1321     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1322     // Check (double)((int) y) : y
  1323     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1324     // Check if (y isn't int) then go to slow path
  1326     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1327     // Branch either way
  1328     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1329     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1331     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1332     // Node for constant 1
  1333     Node *conone = intcon(1);
  1334     // 1& (int)y
  1335     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1336     // zero node
  1337     Node *conzero = intcon(0);
  1338     // Check (1&(int)y)==0?
  1339     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1340     // Check if (1&(int)y)!=0?, if so the result is negative
  1341     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1342     // abs(x)
  1343     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1344     // abs(x)^y
  1345     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1346     // -abs(x)^y
  1347     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1348     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1349     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1350     // Set complex path fast result
  1351     phi->init_req(2, signresult);
  1353     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1354     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1355     r->init_req(1,slow_path);
  1356     phi->init_req(1,slow_result);
  1358     // Post merge
  1359     set_control(_gvn.transform(r));
  1360     record_for_igvn(r);
  1361     result=_gvn.transform(phi);
  1364   //-------------------
  1365   //result=(result.isNaN())? uncommon_trap():result;
  1366   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1367   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1368   // Build the boolean node
  1369   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1371   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1372     // End the current control-flow path
  1373     push_pair(x);
  1374     push_pair(y);
  1375     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1376     // to handle.  Recompile without intrinsifying Math.pow.
  1377     uncommon_trap(Deoptimization::Reason_intrinsic,
  1378                   Deoptimization::Action_make_not_entrant);
  1381   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1383   push_pair(result);
  1385   return true;
  1388 //------------------------------inline_trans-------------------------------------
  1389 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1390 // these right, no funny corner cases missed.
  1391 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1392   _sp += arg_size();        // restore stack pointer
  1393   Node* arg = pop_math_arg();
  1394   Node* trans = NULL;
  1396   switch (id) {
  1397   case vmIntrinsics::_dlog:
  1398     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1399     break;
  1400   case vmIntrinsics::_dlog10:
  1401     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1402     break;
  1403   default:
  1404     assert(false, "bad intrinsic was passed in");
  1405     return false;
  1408   // Push result back on JVM stack
  1409   push_pair(trans);
  1410   return true;
  1413 //------------------------------runtime_math-----------------------------
  1414 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1415   Node* a = NULL;
  1416   Node* b = NULL;
  1418   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1419          "must be (DD)D or (D)D type");
  1421   // Inputs
  1422   _sp += arg_size();        // restore stack pointer
  1423   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1424     b = pop_math_arg();
  1426   a = pop_math_arg();
  1428   const TypePtr* no_memory_effects = NULL;
  1429   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1430                                  no_memory_effects,
  1431                                  a, top(), b, b ? top() : NULL);
  1432   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1433 #ifdef ASSERT
  1434   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1435   assert(value_top == top(), "second value must be top");
  1436 #endif
  1438   push_pair(value);
  1439   return true;
  1442 //------------------------------inline_math_native-----------------------------
  1443 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1444   switch (id) {
  1445     // These intrinsics are not properly supported on all hardware
  1446   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1447     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1448   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1449     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1450   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1451     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1453   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1454     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1455   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1456     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1458     // These intrinsics are supported on all hardware
  1459   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1460   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1462     // These intrinsics don't work on X86.  The ad implementation doesn't
  1463     // handle NaN's properly.  Instead of returning infinity, the ad
  1464     // implementation returns a NaN on overflow. See bug: 6304089
  1465     // Once the ad implementations are fixed, change the code below
  1466     // to match the intrinsics above
  1468   case vmIntrinsics::_dexp:  return
  1469     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1470   case vmIntrinsics::_dpow:  return
  1471     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1473    // These intrinsics are not yet correctly implemented
  1474   case vmIntrinsics::_datan2:
  1475     return false;
  1477   default:
  1478     ShouldNotReachHere();
  1479     return false;
  1483 static bool is_simple_name(Node* n) {
  1484   return (n->req() == 1         // constant
  1485           || (n->is_Type() && n->as_Type()->type()->singleton())
  1486           || n->is_Proj()       // parameter or return value
  1487           || n->is_Phi()        // local of some sort
  1488           );
  1491 //----------------------------inline_min_max-----------------------------------
  1492 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1493   push(generate_min_max(id, argument(0), argument(1)));
  1495   return true;
  1498 Node*
  1499 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1500   // These are the candidate return value:
  1501   Node* xvalue = x0;
  1502   Node* yvalue = y0;
  1504   if (xvalue == yvalue) {
  1505     return xvalue;
  1508   bool want_max = (id == vmIntrinsics::_max);
  1510   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1511   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1512   if (txvalue == NULL || tyvalue == NULL)  return top();
  1513   // This is not really necessary, but it is consistent with a
  1514   // hypothetical MaxINode::Value method:
  1515   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1517   // %%% This folding logic should (ideally) be in a different place.
  1518   // Some should be inside IfNode, and there to be a more reliable
  1519   // transformation of ?: style patterns into cmoves.  We also want
  1520   // more powerful optimizations around cmove and min/max.
  1522   // Try to find a dominating comparison of these guys.
  1523   // It can simplify the index computation for Arrays.copyOf
  1524   // and similar uses of System.arraycopy.
  1525   // First, compute the normalized version of CmpI(x, y).
  1526   int   cmp_op = Op_CmpI;
  1527   Node* xkey = xvalue;
  1528   Node* ykey = yvalue;
  1529   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1530   if (ideal_cmpxy->is_Cmp()) {
  1531     // E.g., if we have CmpI(length - offset, count),
  1532     // it might idealize to CmpI(length, count + offset)
  1533     cmp_op = ideal_cmpxy->Opcode();
  1534     xkey = ideal_cmpxy->in(1);
  1535     ykey = ideal_cmpxy->in(2);
  1538   // Start by locating any relevant comparisons.
  1539   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1540   Node* cmpxy = NULL;
  1541   Node* cmpyx = NULL;
  1542   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1543     Node* cmp = start_from->fast_out(k);
  1544     if (cmp->outcnt() > 0 &&            // must have prior uses
  1545         cmp->in(0) == NULL &&           // must be context-independent
  1546         cmp->Opcode() == cmp_op) {      // right kind of compare
  1547       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1548       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1552   const int NCMPS = 2;
  1553   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1554   int cmpn;
  1555   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1556     if (cmps[cmpn] != NULL)  break;     // find a result
  1558   if (cmpn < NCMPS) {
  1559     // Look for a dominating test that tells us the min and max.
  1560     int depth = 0;                // Limit search depth for speed
  1561     Node* dom = control();
  1562     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1563       if (++depth >= 100)  break;
  1564       Node* ifproj = dom;
  1565       if (!ifproj->is_Proj())  continue;
  1566       Node* iff = ifproj->in(0);
  1567       if (!iff->is_If())  continue;
  1568       Node* bol = iff->in(1);
  1569       if (!bol->is_Bool())  continue;
  1570       Node* cmp = bol->in(1);
  1571       if (cmp == NULL)  continue;
  1572       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1573         if (cmps[cmpn] == cmp)  break;
  1574       if (cmpn == NCMPS)  continue;
  1575       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1576       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1577       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1578       // At this point, we know that 'x btest y' is true.
  1579       switch (btest) {
  1580       case BoolTest::eq:
  1581         // They are proven equal, so we can collapse the min/max.
  1582         // Either value is the answer.  Choose the simpler.
  1583         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1584           return yvalue;
  1585         return xvalue;
  1586       case BoolTest::lt:          // x < y
  1587       case BoolTest::le:          // x <= y
  1588         return (want_max ? yvalue : xvalue);
  1589       case BoolTest::gt:          // x > y
  1590       case BoolTest::ge:          // x >= y
  1591         return (want_max ? xvalue : yvalue);
  1596   // We failed to find a dominating test.
  1597   // Let's pick a test that might GVN with prior tests.
  1598   Node*          best_bol   = NULL;
  1599   BoolTest::mask best_btest = BoolTest::illegal;
  1600   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1601     Node* cmp = cmps[cmpn];
  1602     if (cmp == NULL)  continue;
  1603     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1604       Node* bol = cmp->fast_out(j);
  1605       if (!bol->is_Bool())  continue;
  1606       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1607       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1608       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1609       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1610         best_bol   = bol->as_Bool();
  1611         best_btest = btest;
  1616   Node* answer_if_true  = NULL;
  1617   Node* answer_if_false = NULL;
  1618   switch (best_btest) {
  1619   default:
  1620     if (cmpxy == NULL)
  1621       cmpxy = ideal_cmpxy;
  1622     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1623     // and fall through:
  1624   case BoolTest::lt:          // x < y
  1625   case BoolTest::le:          // x <= y
  1626     answer_if_true  = (want_max ? yvalue : xvalue);
  1627     answer_if_false = (want_max ? xvalue : yvalue);
  1628     break;
  1629   case BoolTest::gt:          // x > y
  1630   case BoolTest::ge:          // x >= y
  1631     answer_if_true  = (want_max ? xvalue : yvalue);
  1632     answer_if_false = (want_max ? yvalue : xvalue);
  1633     break;
  1636   jint hi, lo;
  1637   if (want_max) {
  1638     // We can sharpen the minimum.
  1639     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1640     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1641   } else {
  1642     // We can sharpen the maximum.
  1643     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1644     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1647   // Use a flow-free graph structure, to avoid creating excess control edges
  1648   // which could hinder other optimizations.
  1649   // Since Math.min/max is often used with arraycopy, we want
  1650   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1651   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1652                                answer_if_false, answer_if_true,
  1653                                TypeInt::make(lo, hi, widen));
  1655   return _gvn.transform(cmov);
  1657   /*
  1658   // This is not as desirable as it may seem, since Min and Max
  1659   // nodes do not have a full set of optimizations.
  1660   // And they would interfere, anyway, with 'if' optimizations
  1661   // and with CMoveI canonical forms.
  1662   switch (id) {
  1663   case vmIntrinsics::_min:
  1664     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1665   case vmIntrinsics::_max:
  1666     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1667   default:
  1668     ShouldNotReachHere();
  1670   */
  1673 inline int
  1674 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1675   const TypePtr* base_type = TypePtr::NULL_PTR;
  1676   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1677   if (base_type == NULL) {
  1678     // Unknown type.
  1679     return Type::AnyPtr;
  1680   } else if (base_type == TypePtr::NULL_PTR) {
  1681     // Since this is a NULL+long form, we have to switch to a rawptr.
  1682     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1683     offset = MakeConX(0);
  1684     return Type::RawPtr;
  1685   } else if (base_type->base() == Type::RawPtr) {
  1686     return Type::RawPtr;
  1687   } else if (base_type->isa_oopptr()) {
  1688     // Base is never null => always a heap address.
  1689     if (base_type->ptr() == TypePtr::NotNull) {
  1690       return Type::OopPtr;
  1692     // Offset is small => always a heap address.
  1693     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1694     if (offset_type != NULL &&
  1695         base_type->offset() == 0 &&     // (should always be?)
  1696         offset_type->_lo >= 0 &&
  1697         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1698       return Type::OopPtr;
  1700     // Otherwise, it might either be oop+off or NULL+addr.
  1701     return Type::AnyPtr;
  1702   } else {
  1703     // No information:
  1704     return Type::AnyPtr;
  1708 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1709   int kind = classify_unsafe_addr(base, offset);
  1710   if (kind == Type::RawPtr) {
  1711     return basic_plus_adr(top(), base, offset);
  1712   } else {
  1713     return basic_plus_adr(base, offset);
  1717 //----------------------------inline_reverseBytes_int/long-------------------
  1718 // inline Integer.reverseBytes(int)
  1719 // inline Long.reverseBytes(long)
  1720 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1721   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1722   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1723   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1724   _sp += arg_size();        // restore stack pointer
  1725   switch (id) {
  1726   case vmIntrinsics::_reverseBytes_i:
  1727     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1728     break;
  1729   case vmIntrinsics::_reverseBytes_l:
  1730     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1731     break;
  1732   default:
  1735   return true;
  1738 //----------------------------inline_unsafe_access----------------------------
  1740 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1742 // Interpret Unsafe.fieldOffset cookies correctly:
  1743 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1745 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1746   if (callee()->is_static())  return false;  // caller must have the capability!
  1748 #ifndef PRODUCT
  1750     ResourceMark rm;
  1751     // Check the signatures.
  1752     ciSignature* sig = signature();
  1753 #ifdef ASSERT
  1754     if (!is_store) {
  1755       // Object getObject(Object base, int/long offset), etc.
  1756       BasicType rtype = sig->return_type()->basic_type();
  1757       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1758           rtype = T_ADDRESS;  // it is really a C void*
  1759       assert(rtype == type, "getter must return the expected value");
  1760       if (!is_native_ptr) {
  1761         assert(sig->count() == 2, "oop getter has 2 arguments");
  1762         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1763         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1764       } else {
  1765         assert(sig->count() == 1, "native getter has 1 argument");
  1766         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1768     } else {
  1769       // void putObject(Object base, int/long offset, Object x), etc.
  1770       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1771       if (!is_native_ptr) {
  1772         assert(sig->count() == 3, "oop putter has 3 arguments");
  1773         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1774         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1775       } else {
  1776         assert(sig->count() == 2, "native putter has 2 arguments");
  1777         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1779       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1780       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1781         vtype = T_ADDRESS;  // it is really a C void*
  1782       assert(vtype == type, "putter must accept the expected value");
  1784 #endif // ASSERT
  1786 #endif //PRODUCT
  1788   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1790   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1792   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1793   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1795   debug_only(int saved_sp = _sp);
  1796   _sp += nargs;
  1798   Node* val;
  1799   debug_only(val = (Node*)(uintptr_t)-1);
  1802   if (is_store) {
  1803     // Get the value being stored.  (Pop it first; it was pushed last.)
  1804     switch (type) {
  1805     case T_DOUBLE:
  1806     case T_LONG:
  1807     case T_ADDRESS:
  1808       val = pop_pair();
  1809       break;
  1810     default:
  1811       val = pop();
  1815   // Build address expression.  See the code in inline_unsafe_prefetch.
  1816   Node *adr;
  1817   Node *heap_base_oop = top();
  1818   if (!is_native_ptr) {
  1819     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1820     Node* offset = pop_pair();
  1821     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1822     Node* base   = pop();
  1823     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1824     // to be plain byte offsets, which are also the same as those accepted
  1825     // by oopDesc::field_base.
  1826     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1827            "fieldOffset must be byte-scaled");
  1828     // 32-bit machines ignore the high half!
  1829     offset = ConvL2X(offset);
  1830     adr = make_unsafe_address(base, offset);
  1831     heap_base_oop = base;
  1832   } else {
  1833     Node* ptr = pop_pair();
  1834     // Adjust Java long to machine word:
  1835     ptr = ConvL2X(ptr);
  1836     adr = make_unsafe_address(NULL, ptr);
  1839   // Pop receiver last:  it was pushed first.
  1840   Node *receiver = pop();
  1842   assert(saved_sp == _sp, "must have correct argument count");
  1844   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1846   // First guess at the value type.
  1847   const Type *value_type = Type::get_const_basic_type(type);
  1849   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  1850   // there was not enough information to nail it down.
  1851   Compile::AliasType* alias_type = C->alias_type(adr_type);
  1852   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1854   // We will need memory barriers unless we can determine a unique
  1855   // alias category for this reference.  (Note:  If for some reason
  1856   // the barriers get omitted and the unsafe reference begins to "pollute"
  1857   // the alias analysis of the rest of the graph, either Compile::can_alias
  1858   // or Compile::must_alias will throw a diagnostic assert.)
  1859   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  1861   if (!is_store && type == T_OBJECT) {
  1862     // Attempt to infer a sharper value type from the offset and base type.
  1863     ciKlass* sharpened_klass = NULL;
  1865     // See if it is an instance field, with an object type.
  1866     if (alias_type->field() != NULL) {
  1867       assert(!is_native_ptr, "native pointer op cannot use a java address");
  1868       if (alias_type->field()->type()->is_klass()) {
  1869         sharpened_klass = alias_type->field()->type()->as_klass();
  1873     // See if it is a narrow oop array.
  1874     if (adr_type->isa_aryptr()) {
  1875       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
  1876         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  1877         if (elem_type != NULL) {
  1878           sharpened_klass = elem_type->klass();
  1883     if (sharpened_klass != NULL) {
  1884       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  1886       // Sharpen the value type.
  1887       value_type = tjp;
  1889 #ifndef PRODUCT
  1890       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  1891         tty->print("  from base type:  ");   adr_type->dump();
  1892         tty->print("  sharpened value: "); value_type->dump();
  1894 #endif
  1898   // Null check on self without removing any arguments.  The argument
  1899   // null check technically happens in the wrong place, which can lead to
  1900   // invalid stack traces when the primitive is inlined into a method
  1901   // which handles NullPointerExceptions.
  1902   _sp += nargs;
  1903   do_null_check(receiver, T_OBJECT);
  1904   _sp -= nargs;
  1905   if (stopped()) {
  1906     return true;
  1908   // Heap pointers get a null-check from the interpreter,
  1909   // as a courtesy.  However, this is not guaranteed by Unsafe,
  1910   // and it is not possible to fully distinguish unintended nulls
  1911   // from intended ones in this API.
  1913   if (is_volatile) {
  1914     // We need to emit leading and trailing CPU membars (see below) in
  1915     // addition to memory membars when is_volatile. This is a little
  1916     // too strong, but avoids the need to insert per-alias-type
  1917     // volatile membars (for stores; compare Parse::do_put_xxx), which
  1918     // we cannot do effectively here because we probably only have a
  1919     // rough approximation of type.
  1920     need_mem_bar = true;
  1921     // For Stores, place a memory ordering barrier now.
  1922     if (is_store)
  1923       insert_mem_bar(Op_MemBarRelease);
  1926   // Memory barrier to prevent normal and 'unsafe' accesses from
  1927   // bypassing each other.  Happens after null checks, so the
  1928   // exception paths do not take memory state from the memory barrier,
  1929   // so there's no problems making a strong assert about mixing users
  1930   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  1931   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  1932   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1934   if (!is_store) {
  1935     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  1936     // load value and push onto stack
  1937     switch (type) {
  1938     case T_BOOLEAN:
  1939     case T_CHAR:
  1940     case T_BYTE:
  1941     case T_SHORT:
  1942     case T_INT:
  1943     case T_FLOAT:
  1944     case T_OBJECT:
  1945       push( p );
  1946       break;
  1947     case T_ADDRESS:
  1948       // Cast to an int type.
  1949       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  1950       p = ConvX2L(p);
  1951       push_pair(p);
  1952       break;
  1953     case T_DOUBLE:
  1954     case T_LONG:
  1955       push_pair( p );
  1956       break;
  1957     default: ShouldNotReachHere();
  1959   } else {
  1960     // place effect of store into memory
  1961     switch (type) {
  1962     case T_DOUBLE:
  1963       val = dstore_rounding(val);
  1964       break;
  1965     case T_ADDRESS:
  1966       // Repackage the long as a pointer.
  1967       val = ConvL2X(val);
  1968       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  1969       break;
  1972     if (type != T_OBJECT ) {
  1973       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1974     } else {
  1975       // Possibly an oop being stored to Java heap or native memory
  1976       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  1977         // oop to Java heap.
  1978         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1979       } else {
  1981         // We can't tell at compile time if we are storing in the Java heap or outside
  1982         // of it. So we need to emit code to conditionally do the proper type of
  1983         // store.
  1985         IdealKit kit(gvn(), control(),  merged_memory());
  1986         kit.declares_done();
  1987         // QQQ who knows what probability is here??
  1988         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  1989           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1990         } kit.else_(); {
  1991           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1992         } kit.end_if();
  1997   if (is_volatile) {
  1998     if (!is_store)
  1999       insert_mem_bar(Op_MemBarAcquire);
  2000     else
  2001       insert_mem_bar(Op_MemBarVolatile);
  2004   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2006   return true;
  2009 //----------------------------inline_unsafe_prefetch----------------------------
  2011 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2012 #ifndef PRODUCT
  2014     ResourceMark rm;
  2015     // Check the signatures.
  2016     ciSignature* sig = signature();
  2017 #ifdef ASSERT
  2018     // Object getObject(Object base, int/long offset), etc.
  2019     BasicType rtype = sig->return_type()->basic_type();
  2020     if (!is_native_ptr) {
  2021       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2022       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2023       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2024     } else {
  2025       assert(sig->count() == 1, "native prefetch has 1 argument");
  2026       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2028 #endif // ASSERT
  2030 #endif // !PRODUCT
  2032   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2034   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2035   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2037   debug_only(int saved_sp = _sp);
  2038   _sp += nargs;
  2040   // Build address expression.  See the code in inline_unsafe_access.
  2041   Node *adr;
  2042   if (!is_native_ptr) {
  2043     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2044     Node* offset = pop_pair();
  2045     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2046     Node* base   = pop();
  2047     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2048     // to be plain byte offsets, which are also the same as those accepted
  2049     // by oopDesc::field_base.
  2050     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2051            "fieldOffset must be byte-scaled");
  2052     // 32-bit machines ignore the high half!
  2053     offset = ConvL2X(offset);
  2054     adr = make_unsafe_address(base, offset);
  2055   } else {
  2056     Node* ptr = pop_pair();
  2057     // Adjust Java long to machine word:
  2058     ptr = ConvL2X(ptr);
  2059     adr = make_unsafe_address(NULL, ptr);
  2062   if (is_static) {
  2063     assert(saved_sp == _sp, "must have correct argument count");
  2064   } else {
  2065     // Pop receiver last:  it was pushed first.
  2066     Node *receiver = pop();
  2067     assert(saved_sp == _sp, "must have correct argument count");
  2069     // Null check on self without removing any arguments.  The argument
  2070     // null check technically happens in the wrong place, which can lead to
  2071     // invalid stack traces when the primitive is inlined into a method
  2072     // which handles NullPointerExceptions.
  2073     _sp += nargs;
  2074     do_null_check(receiver, T_OBJECT);
  2075     _sp -= nargs;
  2076     if (stopped()) {
  2077       return true;
  2081   // Generate the read or write prefetch
  2082   Node *prefetch;
  2083   if (is_store) {
  2084     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2085   } else {
  2086     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2088   prefetch->init_req(0, control());
  2089   set_i_o(_gvn.transform(prefetch));
  2091   return true;
  2094 //----------------------------inline_unsafe_CAS----------------------------
  2096 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2097   // This basic scheme here is the same as inline_unsafe_access, but
  2098   // differs in enough details that combining them would make the code
  2099   // overly confusing.  (This is a true fact! I originally combined
  2100   // them, but even I was confused by it!) As much code/comments as
  2101   // possible are retained from inline_unsafe_access though to make
  2102   // the correspondences clearer. - dl
  2104   if (callee()->is_static())  return false;  // caller must have the capability!
  2106 #ifndef PRODUCT
  2108     ResourceMark rm;
  2109     // Check the signatures.
  2110     ciSignature* sig = signature();
  2111 #ifdef ASSERT
  2112     BasicType rtype = sig->return_type()->basic_type();
  2113     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2114     assert(sig->count() == 4, "CAS has 4 arguments");
  2115     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2116     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2117 #endif // ASSERT
  2119 #endif //PRODUCT
  2121   // number of stack slots per value argument (1 or 2)
  2122   int type_words = type2size[type];
  2124   // Cannot inline wide CAS on machines that don't support it natively
  2125   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2126     return false;
  2128   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2130   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2131   int nargs = 1 + 1 + 2  + type_words + type_words;
  2133   // pop arguments: newval, oldval, offset, base, and receiver
  2134   debug_only(int saved_sp = _sp);
  2135   _sp += nargs;
  2136   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2137   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2138   Node *offset   = pop_pair();
  2139   Node *base     = pop();
  2140   Node *receiver = pop();
  2141   assert(saved_sp == _sp, "must have correct argument count");
  2143   //  Null check receiver.
  2144   _sp += nargs;
  2145   do_null_check(receiver, T_OBJECT);
  2146   _sp -= nargs;
  2147   if (stopped()) {
  2148     return true;
  2151   // Build field offset expression.
  2152   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2153   // to be plain byte offsets, which are also the same as those accepted
  2154   // by oopDesc::field_base.
  2155   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2156   // 32-bit machines ignore the high half of long offsets
  2157   offset = ConvL2X(offset);
  2158   Node* adr = make_unsafe_address(base, offset);
  2159   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2161   // (Unlike inline_unsafe_access, there seems no point in trying
  2162   // to refine types. Just use the coarse types here.
  2163   const Type *value_type = Type::get_const_basic_type(type);
  2164   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2165   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2166   int alias_idx = C->get_alias_index(adr_type);
  2168   // Memory-model-wise, a CAS acts like a little synchronized block,
  2169   // so needs barriers on each side.  These don't translate into
  2170   // actual barriers on most machines, but we still need rest of
  2171   // compiler to respect ordering.
  2173   insert_mem_bar(Op_MemBarRelease);
  2174   insert_mem_bar(Op_MemBarCPUOrder);
  2176   // 4984716: MemBars must be inserted before this
  2177   //          memory node in order to avoid a false
  2178   //          dependency which will confuse the scheduler.
  2179   Node *mem = memory(alias_idx);
  2181   // For now, we handle only those cases that actually exist: ints,
  2182   // longs, and Object. Adding others should be straightforward.
  2183   Node* cas;
  2184   switch(type) {
  2185   case T_INT:
  2186     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2187     break;
  2188   case T_LONG:
  2189     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2190     break;
  2191   case T_OBJECT:
  2192      // reference stores need a store barrier.
  2193     // (They don't if CAS fails, but it isn't worth checking.)
  2194     pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
  2195 #ifdef _LP64
  2196     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2197       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2198       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2199       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2200                                                           newval_enc, oldval_enc));
  2201     } else
  2202 #endif
  2204       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2206     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2207     break;
  2208   default:
  2209     ShouldNotReachHere();
  2210     break;
  2213   // SCMemProjNodes represent the memory state of CAS. Their main
  2214   // role is to prevent CAS nodes from being optimized away when their
  2215   // results aren't used.
  2216   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2217   set_memory(proj, alias_idx);
  2219   // Add the trailing membar surrounding the access
  2220   insert_mem_bar(Op_MemBarCPUOrder);
  2221   insert_mem_bar(Op_MemBarAcquire);
  2223   push(cas);
  2224   return true;
  2227 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2228   // This is another variant of inline_unsafe_access, differing in
  2229   // that it always issues store-store ("release") barrier and ensures
  2230   // store-atomicity (which only matters for "long").
  2232   if (callee()->is_static())  return false;  // caller must have the capability!
  2234 #ifndef PRODUCT
  2236     ResourceMark rm;
  2237     // Check the signatures.
  2238     ciSignature* sig = signature();
  2239 #ifdef ASSERT
  2240     BasicType rtype = sig->return_type()->basic_type();
  2241     assert(rtype == T_VOID, "must return void");
  2242     assert(sig->count() == 3, "has 3 arguments");
  2243     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2244     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2245 #endif // ASSERT
  2247 #endif //PRODUCT
  2249   // number of stack slots per value argument (1 or 2)
  2250   int type_words = type2size[type];
  2252   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2254   // Argument words:  "this" plus oop plus offset plus value;
  2255   int nargs = 1 + 1 + 2 + type_words;
  2257   // pop arguments: val, offset, base, and receiver
  2258   debug_only(int saved_sp = _sp);
  2259   _sp += nargs;
  2260   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2261   Node *offset   = pop_pair();
  2262   Node *base     = pop();
  2263   Node *receiver = pop();
  2264   assert(saved_sp == _sp, "must have correct argument count");
  2266   //  Null check receiver.
  2267   _sp += nargs;
  2268   do_null_check(receiver, T_OBJECT);
  2269   _sp -= nargs;
  2270   if (stopped()) {
  2271     return true;
  2274   // Build field offset expression.
  2275   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2276   // 32-bit machines ignore the high half of long offsets
  2277   offset = ConvL2X(offset);
  2278   Node* adr = make_unsafe_address(base, offset);
  2279   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2280   const Type *value_type = Type::get_const_basic_type(type);
  2281   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2283   insert_mem_bar(Op_MemBarRelease);
  2284   insert_mem_bar(Op_MemBarCPUOrder);
  2285   // Ensure that the store is atomic for longs:
  2286   bool require_atomic_access = true;
  2287   Node* store;
  2288   if (type == T_OBJECT) // reference stores need a store barrier.
  2289     store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
  2290   else {
  2291     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2293   insert_mem_bar(Op_MemBarCPUOrder);
  2294   return true;
  2297 bool LibraryCallKit::inline_unsafe_allocate() {
  2298   if (callee()->is_static())  return false;  // caller must have the capability!
  2299   int nargs = 1 + 1;
  2300   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2301   null_check_receiver(callee());  // check then ignore argument(0)
  2302   _sp += nargs;  // set original stack for use by uncommon_trap
  2303   Node* cls = do_null_check(argument(1), T_OBJECT);
  2304   _sp -= nargs;
  2305   if (stopped())  return true;
  2307   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2308   _sp += nargs;  // set original stack for use by uncommon_trap
  2309   kls = do_null_check(kls, T_OBJECT);
  2310   _sp -= nargs;
  2311   if (stopped())  return true;  // argument was like int.class
  2313   // Note:  The argument might still be an illegal value like
  2314   // Serializable.class or Object[].class.   The runtime will handle it.
  2315   // But we must make an explicit check for initialization.
  2316   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2317   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2318   Node* bits = intcon(instanceKlass::fully_initialized);
  2319   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2320   // The 'test' is non-zero if we need to take a slow path.
  2322   Node* obj = new_instance(kls, test);
  2323   push(obj);
  2325   return true;
  2328 //------------------------inline_native_time_funcs--------------
  2329 // inline code for System.currentTimeMillis() and System.nanoTime()
  2330 // these have the same type and signature
  2331 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2332   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2333                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2334   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2335   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2336   const TypePtr* no_memory_effects = NULL;
  2337   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2338   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2339 #ifdef ASSERT
  2340   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2341   assert(value_top == top(), "second value must be top");
  2342 #endif
  2343   push_pair(value);
  2344   return true;
  2347 //------------------------inline_native_currentThread------------------
  2348 bool LibraryCallKit::inline_native_currentThread() {
  2349   Node* junk = NULL;
  2350   push(generate_current_thread(junk));
  2351   return true;
  2354 //------------------------inline_native_isInterrupted------------------
  2355 bool LibraryCallKit::inline_native_isInterrupted() {
  2356   const int nargs = 1+1;  // receiver + boolean
  2357   assert(nargs == arg_size(), "sanity");
  2358   // Add a fast path to t.isInterrupted(clear_int):
  2359   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2360   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2361   // So, in the common case that the interrupt bit is false,
  2362   // we avoid making a call into the VM.  Even if the interrupt bit
  2363   // is true, if the clear_int argument is false, we avoid the VM call.
  2364   // However, if the receiver is not currentThread, we must call the VM,
  2365   // because there must be some locking done around the operation.
  2367   // We only go to the fast case code if we pass two guards.
  2368   // Paths which do not pass are accumulated in the slow_region.
  2369   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2370   record_for_igvn(slow_region);
  2371   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2372   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2373   enum { no_int_result_path   = 1,
  2374          no_clear_result_path = 2,
  2375          slow_result_path     = 3
  2376   };
  2378   // (a) Receiving thread must be the current thread.
  2379   Node* rec_thr = argument(0);
  2380   Node* tls_ptr = NULL;
  2381   Node* cur_thr = generate_current_thread(tls_ptr);
  2382   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2383   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2385   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2386   if (!known_current_thread)
  2387     generate_slow_guard(bol_thr, slow_region);
  2389   // (b) Interrupt bit on TLS must be false.
  2390   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2391   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2392   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2393   Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
  2394   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2395   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2397   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2399   // First fast path:  if (!TLS._interrupted) return false;
  2400   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2401   result_rgn->init_req(no_int_result_path, false_bit);
  2402   result_val->init_req(no_int_result_path, intcon(0));
  2404   // drop through to next case
  2405   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2407   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2408   Node* clr_arg = argument(1);
  2409   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2410   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2411   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2413   // Second fast path:  ... else if (!clear_int) return true;
  2414   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2415   result_rgn->init_req(no_clear_result_path, false_arg);
  2416   result_val->init_req(no_clear_result_path, intcon(1));
  2418   // drop through to next case
  2419   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2421   // (d) Otherwise, go to the slow path.
  2422   slow_region->add_req(control());
  2423   set_control( _gvn.transform(slow_region) );
  2425   if (stopped()) {
  2426     // There is no slow path.
  2427     result_rgn->init_req(slow_result_path, top());
  2428     result_val->init_req(slow_result_path, top());
  2429   } else {
  2430     // non-virtual because it is a private non-static
  2431     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2433     Node* slow_val = set_results_for_java_call(slow_call);
  2434     // this->control() comes from set_results_for_java_call
  2436     // If we know that the result of the slow call will be true, tell the optimizer!
  2437     if (known_current_thread)  slow_val = intcon(1);
  2439     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2440     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2441     // These two phis are pre-filled with copies of of the fast IO and Memory
  2442     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2443     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2445     result_rgn->init_req(slow_result_path, control());
  2446     io_phi    ->init_req(slow_result_path, i_o());
  2447     mem_phi   ->init_req(slow_result_path, reset_memory());
  2448     result_val->init_req(slow_result_path, slow_val);
  2450     set_all_memory( _gvn.transform(mem_phi) );
  2451     set_i_o(        _gvn.transform(io_phi) );
  2454   push_result(result_rgn, result_val);
  2455   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2457   return true;
  2460 //---------------------------load_mirror_from_klass----------------------------
  2461 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2462 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2463   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2464   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2467 //-----------------------load_klass_from_mirror_common-------------------------
  2468 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2469 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2470 // and branch to the given path on the region.
  2471 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2472 // compile for the non-null case.
  2473 // If the region is NULL, force never_see_null = true.
  2474 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2475                                                     bool never_see_null,
  2476                                                     int nargs,
  2477                                                     RegionNode* region,
  2478                                                     int null_path,
  2479                                                     int offset) {
  2480   if (region == NULL)  never_see_null = true;
  2481   Node* p = basic_plus_adr(mirror, offset);
  2482   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2483   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2484   _sp += nargs; // any deopt will start just before call to enclosing method
  2485   Node* null_ctl = top();
  2486   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2487   if (region != NULL) {
  2488     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2489     region->init_req(null_path, null_ctl);
  2490   } else {
  2491     assert(null_ctl == top(), "no loose ends");
  2493   _sp -= nargs;
  2494   return kls;
  2497 //--------------------(inline_native_Class_query helpers)---------------------
  2498 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2499 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2500 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2501   // Branch around if the given klass has the given modifier bit set.
  2502   // Like generate_guard, adds a new path onto the region.
  2503   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2504   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2505   Node* mask = intcon(modifier_mask);
  2506   Node* bits = intcon(modifier_bits);
  2507   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2508   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2509   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2510   return generate_fair_guard(bol, region);
  2512 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2513   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2516 //-------------------------inline_native_Class_query-------------------
  2517 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2518   int nargs = 1+0;  // just the Class mirror, in most cases
  2519   const Type* return_type = TypeInt::BOOL;
  2520   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2521   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2522   bool expect_prim = false;     // most of these guys expect to work on refs
  2524   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2526   switch (id) {
  2527   case vmIntrinsics::_isInstance:
  2528     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2529     // nothing is an instance of a primitive type
  2530     prim_return_value = intcon(0);
  2531     break;
  2532   case vmIntrinsics::_getModifiers:
  2533     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2534     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2535     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2536     break;
  2537   case vmIntrinsics::_isInterface:
  2538     prim_return_value = intcon(0);
  2539     break;
  2540   case vmIntrinsics::_isArray:
  2541     prim_return_value = intcon(0);
  2542     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2543     break;
  2544   case vmIntrinsics::_isPrimitive:
  2545     prim_return_value = intcon(1);
  2546     expect_prim = true;  // obviously
  2547     break;
  2548   case vmIntrinsics::_getSuperclass:
  2549     prim_return_value = null();
  2550     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2551     break;
  2552   case vmIntrinsics::_getComponentType:
  2553     prim_return_value = null();
  2554     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2555     break;
  2556   case vmIntrinsics::_getClassAccessFlags:
  2557     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2558     return_type = TypeInt::INT;  // not bool!  6297094
  2559     break;
  2560   default:
  2561     ShouldNotReachHere();
  2564   Node* mirror =                      argument(0);
  2565   Node* obj    = (nargs <= 1)? top(): argument(1);
  2567   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2568   if (mirror_con == NULL)  return false;  // cannot happen?
  2570 #ifndef PRODUCT
  2571   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2572     ciType* k = mirror_con->java_mirror_type();
  2573     if (k) {
  2574       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2575       k->print_name();
  2576       tty->cr();
  2579 #endif
  2581   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2582   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2583   record_for_igvn(region);
  2584   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2586   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2587   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2588   // if it is. See bug 4774291.
  2590   // For Reflection.getClassAccessFlags(), the null check occurs in
  2591   // the wrong place; see inline_unsafe_access(), above, for a similar
  2592   // situation.
  2593   _sp += nargs;  // set original stack for use by uncommon_trap
  2594   mirror = do_null_check(mirror, T_OBJECT);
  2595   _sp -= nargs;
  2596   // If mirror or obj is dead, only null-path is taken.
  2597   if (stopped())  return true;
  2599   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2601   // Now load the mirror's klass metaobject, and null-check it.
  2602   // Side-effects region with the control path if the klass is null.
  2603   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2604                                      region, _prim_path);
  2605   // If kls is null, we have a primitive mirror.
  2606   phi->init_req(_prim_path, prim_return_value);
  2607   if (stopped()) { push_result(region, phi); return true; }
  2609   Node* p;  // handy temp
  2610   Node* null_ctl;
  2612   // Now that we have the non-null klass, we can perform the real query.
  2613   // For constant classes, the query will constant-fold in LoadNode::Value.
  2614   Node* query_value = top();
  2615   switch (id) {
  2616   case vmIntrinsics::_isInstance:
  2617     // nothing is an instance of a primitive type
  2618     query_value = gen_instanceof(obj, kls);
  2619     break;
  2621   case vmIntrinsics::_getModifiers:
  2622     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2623     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2624     break;
  2626   case vmIntrinsics::_isInterface:
  2627     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2628     if (generate_interface_guard(kls, region) != NULL)
  2629       // A guard was added.  If the guard is taken, it was an interface.
  2630       phi->add_req(intcon(1));
  2631     // If we fall through, it's a plain class.
  2632     query_value = intcon(0);
  2633     break;
  2635   case vmIntrinsics::_isArray:
  2636     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2637     if (generate_array_guard(kls, region) != NULL)
  2638       // A guard was added.  If the guard is taken, it was an array.
  2639       phi->add_req(intcon(1));
  2640     // If we fall through, it's a plain class.
  2641     query_value = intcon(0);
  2642     break;
  2644   case vmIntrinsics::_isPrimitive:
  2645     query_value = intcon(0); // "normal" path produces false
  2646     break;
  2648   case vmIntrinsics::_getSuperclass:
  2649     // The rules here are somewhat unfortunate, but we can still do better
  2650     // with random logic than with a JNI call.
  2651     // Interfaces store null or Object as _super, but must report null.
  2652     // Arrays store an intermediate super as _super, but must report Object.
  2653     // Other types can report the actual _super.
  2654     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2655     if (generate_interface_guard(kls, region) != NULL)
  2656       // A guard was added.  If the guard is taken, it was an interface.
  2657       phi->add_req(null());
  2658     if (generate_array_guard(kls, region) != NULL)
  2659       // A guard was added.  If the guard is taken, it was an array.
  2660       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2661     // If we fall through, it's a plain class.  Get its _super.
  2662     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2663     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2664     null_ctl = top();
  2665     kls = null_check_oop(kls, &null_ctl);
  2666     if (null_ctl != top()) {
  2667       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2668       region->add_req(null_ctl);
  2669       phi   ->add_req(null());
  2671     if (!stopped()) {
  2672       query_value = load_mirror_from_klass(kls);
  2674     break;
  2676   case vmIntrinsics::_getComponentType:
  2677     if (generate_array_guard(kls, region) != NULL) {
  2678       // Be sure to pin the oop load to the guard edge just created:
  2679       Node* is_array_ctrl = region->in(region->req()-1);
  2680       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2681       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2682       phi->add_req(cmo);
  2684     query_value = null();  // non-array case is null
  2685     break;
  2687   case vmIntrinsics::_getClassAccessFlags:
  2688     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2689     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2690     break;
  2692   default:
  2693     ShouldNotReachHere();
  2696   // Fall-through is the normal case of a query to a real class.
  2697   phi->init_req(1, query_value);
  2698   region->init_req(1, control());
  2700   push_result(region, phi);
  2701   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2703   return true;
  2706 //--------------------------inline_native_subtype_check------------------------
  2707 // This intrinsic takes the JNI calls out of the heart of
  2708 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  2709 bool LibraryCallKit::inline_native_subtype_check() {
  2710   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  2712   // Pull both arguments off the stack.
  2713   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  2714   args[0] = argument(0);
  2715   args[1] = argument(1);
  2716   Node* klasses[2];             // corresponding Klasses: superk, subk
  2717   klasses[0] = klasses[1] = top();
  2719   enum {
  2720     // A full decision tree on {superc is prim, subc is prim}:
  2721     _prim_0_path = 1,           // {P,N} => false
  2722                                 // {P,P} & superc!=subc => false
  2723     _prim_same_path,            // {P,P} & superc==subc => true
  2724     _prim_1_path,               // {N,P} => false
  2725     _ref_subtype_path,          // {N,N} & subtype check wins => true
  2726     _both_ref_path,             // {N,N} & subtype check loses => false
  2727     PATH_LIMIT
  2728   };
  2730   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2731   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2732   record_for_igvn(region);
  2734   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  2735   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2736   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  2738   // First null-check both mirrors and load each mirror's klass metaobject.
  2739   int which_arg;
  2740   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2741     Node* arg = args[which_arg];
  2742     _sp += nargs;  // set original stack for use by uncommon_trap
  2743     arg = do_null_check(arg, T_OBJECT);
  2744     _sp -= nargs;
  2745     if (stopped())  break;
  2746     args[which_arg] = _gvn.transform(arg);
  2748     Node* p = basic_plus_adr(arg, class_klass_offset);
  2749     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  2750     klasses[which_arg] = _gvn.transform(kls);
  2753   // Having loaded both klasses, test each for null.
  2754   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2755   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2756     Node* kls = klasses[which_arg];
  2757     Node* null_ctl = top();
  2758     _sp += nargs;  // set original stack for use by uncommon_trap
  2759     kls = null_check_oop(kls, &null_ctl, never_see_null);
  2760     _sp -= nargs;
  2761     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  2762     region->init_req(prim_path, null_ctl);
  2763     if (stopped())  break;
  2764     klasses[which_arg] = kls;
  2767   if (!stopped()) {
  2768     // now we have two reference types, in klasses[0..1]
  2769     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  2770     Node* superk = klasses[0];  // the receiver
  2771     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  2772     // now we have a successful reference subtype check
  2773     region->set_req(_ref_subtype_path, control());
  2776   // If both operands are primitive (both klasses null), then
  2777   // we must return true when they are identical primitives.
  2778   // It is convenient to test this after the first null klass check.
  2779   set_control(region->in(_prim_0_path)); // go back to first null check
  2780   if (!stopped()) {
  2781     // Since superc is primitive, make a guard for the superc==subc case.
  2782     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  2783     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  2784     generate_guard(bol_eq, region, PROB_FAIR);
  2785     if (region->req() == PATH_LIMIT+1) {
  2786       // A guard was added.  If the added guard is taken, superc==subc.
  2787       region->swap_edges(PATH_LIMIT, _prim_same_path);
  2788       region->del_req(PATH_LIMIT);
  2790     region->set_req(_prim_0_path, control()); // Not equal after all.
  2793   // these are the only paths that produce 'true':
  2794   phi->set_req(_prim_same_path,   intcon(1));
  2795   phi->set_req(_ref_subtype_path, intcon(1));
  2797   // pull together the cases:
  2798   assert(region->req() == PATH_LIMIT, "sane region");
  2799   for (uint i = 1; i < region->req(); i++) {
  2800     Node* ctl = region->in(i);
  2801     if (ctl == NULL || ctl == top()) {
  2802       region->set_req(i, top());
  2803       phi   ->set_req(i, top());
  2804     } else if (phi->in(i) == NULL) {
  2805       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  2809   set_control(_gvn.transform(region));
  2810   push(_gvn.transform(phi));
  2812   return true;
  2815 //---------------------generate_array_guard_common------------------------
  2816 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  2817                                                   bool obj_array, bool not_array) {
  2818   // If obj_array/non_array==false/false:
  2819   // Branch around if the given klass is in fact an array (either obj or prim).
  2820   // If obj_array/non_array==false/true:
  2821   // Branch around if the given klass is not an array klass of any kind.
  2822   // If obj_array/non_array==true/true:
  2823   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  2824   // If obj_array/non_array==true/false:
  2825   // Branch around if the kls is an oop array (Object[] or subtype)
  2826   //
  2827   // Like generate_guard, adds a new path onto the region.
  2828   jint  layout_con = 0;
  2829   Node* layout_val = get_layout_helper(kls, layout_con);
  2830   if (layout_val == NULL) {
  2831     bool query = (obj_array
  2832                   ? Klass::layout_helper_is_objArray(layout_con)
  2833                   : Klass::layout_helper_is_javaArray(layout_con));
  2834     if (query == not_array) {
  2835       return NULL;                       // never a branch
  2836     } else {                             // always a branch
  2837       Node* always_branch = control();
  2838       if (region != NULL)
  2839         region->add_req(always_branch);
  2840       set_control(top());
  2841       return always_branch;
  2844   // Now test the correct condition.
  2845   jint  nval = (obj_array
  2846                 ? ((jint)Klass::_lh_array_tag_type_value
  2847                    <<    Klass::_lh_array_tag_shift)
  2848                 : Klass::_lh_neutral_value);
  2849   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  2850   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  2851   // invert the test if we are looking for a non-array
  2852   if (not_array)  btest = BoolTest(btest).negate();
  2853   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  2854   return generate_fair_guard(bol, region);
  2858 //-----------------------inline_native_newArray--------------------------
  2859 bool LibraryCallKit::inline_native_newArray() {
  2860   int nargs = 2;
  2861   Node* mirror    = argument(0);
  2862   Node* count_val = argument(1);
  2864   _sp += nargs;  // set original stack for use by uncommon_trap
  2865   mirror = do_null_check(mirror, T_OBJECT);
  2866   _sp -= nargs;
  2867   // If mirror or obj is dead, only null-path is taken.
  2868   if (stopped())  return true;
  2870   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  2871   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2872   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  2873                                                       TypeInstPtr::NOTNULL);
  2874   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  2875   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  2876                                                       TypePtr::BOTTOM);
  2878   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2879   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  2880                                                   nargs,
  2881                                                   result_reg, _slow_path);
  2882   Node* normal_ctl   = control();
  2883   Node* no_array_ctl = result_reg->in(_slow_path);
  2885   // Generate code for the slow case.  We make a call to newArray().
  2886   set_control(no_array_ctl);
  2887   if (!stopped()) {
  2888     // Either the input type is void.class, or else the
  2889     // array klass has not yet been cached.  Either the
  2890     // ensuing call will throw an exception, or else it
  2891     // will cache the array klass for next time.
  2892     PreserveJVMState pjvms(this);
  2893     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  2894     Node* slow_result = set_results_for_java_call(slow_call);
  2895     // this->control() comes from set_results_for_java_call
  2896     result_reg->set_req(_slow_path, control());
  2897     result_val->set_req(_slow_path, slow_result);
  2898     result_io ->set_req(_slow_path, i_o());
  2899     result_mem->set_req(_slow_path, reset_memory());
  2902   set_control(normal_ctl);
  2903   if (!stopped()) {
  2904     // Normal case:  The array type has been cached in the java.lang.Class.
  2905     // The following call works fine even if the array type is polymorphic.
  2906     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2907     _sp += nargs;  // set original stack for use by uncommon_trap
  2908     Node* obj = new_array(klass_node, count_val);
  2909     _sp -= nargs;
  2910     result_reg->init_req(_normal_path, control());
  2911     result_val->init_req(_normal_path, obj);
  2912     result_io ->init_req(_normal_path, i_o());
  2913     result_mem->init_req(_normal_path, reset_memory());
  2916   // Return the combined state.
  2917   set_i_o(        _gvn.transform(result_io)  );
  2918   set_all_memory( _gvn.transform(result_mem) );
  2919   push_result(result_reg, result_val);
  2920   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2922   return true;
  2925 //----------------------inline_native_getLength--------------------------
  2926 bool LibraryCallKit::inline_native_getLength() {
  2927   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2929   int nargs = 1;
  2930   Node* array = argument(0);
  2932   _sp += nargs;  // set original stack for use by uncommon_trap
  2933   array = do_null_check(array, T_OBJECT);
  2934   _sp -= nargs;
  2936   // If array is dead, only null-path is taken.
  2937   if (stopped())  return true;
  2939   // Deoptimize if it is a non-array.
  2940   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  2942   if (non_array != NULL) {
  2943     PreserveJVMState pjvms(this);
  2944     set_control(non_array);
  2945     _sp += nargs;  // push the arguments back on the stack
  2946     uncommon_trap(Deoptimization::Reason_intrinsic,
  2947                   Deoptimization::Action_maybe_recompile);
  2950   // If control is dead, only non-array-path is taken.
  2951   if (stopped())  return true;
  2953   // The works fine even if the array type is polymorphic.
  2954   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2955   push( load_array_length(array) );
  2957   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2959   return true;
  2962 //------------------------inline_array_copyOf----------------------------
  2963 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  2964   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2966   // Restore the stack and pop off the arguments.
  2967   int nargs = 3 + (is_copyOfRange? 1: 0);
  2968   Node* original          = argument(0);
  2969   Node* start             = is_copyOfRange? argument(1): intcon(0);
  2970   Node* end               = is_copyOfRange? argument(2): argument(1);
  2971   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  2973   _sp += nargs;  // set original stack for use by uncommon_trap
  2974   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  2975   original          = do_null_check(original, T_OBJECT);
  2976   _sp -= nargs;
  2978   // Check if a null path was taken unconditionally.
  2979   if (stopped())  return true;
  2981   Node* orig_length = load_array_length(original);
  2983   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  2984                                             NULL, 0);
  2985   _sp += nargs;  // set original stack for use by uncommon_trap
  2986   klass_node = do_null_check(klass_node, T_OBJECT);
  2987   _sp -= nargs;
  2989   RegionNode* bailout = new (C, 1) RegionNode(1);
  2990   record_for_igvn(bailout);
  2992   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  2993   // Bail out if that is so.
  2994   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  2995   if (not_objArray != NULL) {
  2996     // Improve the klass node's type from the new optimistic assumption:
  2997     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  2998     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2999     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3000     cast->init_req(0, control());
  3001     klass_node = _gvn.transform(cast);
  3004   // Bail out if either start or end is negative.
  3005   generate_negative_guard(start, bailout, &start);
  3006   generate_negative_guard(end,   bailout, &end);
  3008   Node* length = end;
  3009   if (_gvn.type(start) != TypeInt::ZERO) {
  3010     length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3013   // Bail out if length is negative.
  3014   // ...Not needed, since the new_array will throw the right exception.
  3015   //generate_negative_guard(length, bailout, &length);
  3017   if (bailout->req() > 1) {
  3018     PreserveJVMState pjvms(this);
  3019     set_control( _gvn.transform(bailout) );
  3020     _sp += nargs;  // push the arguments back on the stack
  3021     uncommon_trap(Deoptimization::Reason_intrinsic,
  3022                   Deoptimization::Action_maybe_recompile);
  3025   if (!stopped()) {
  3026     // How many elements will we copy from the original?
  3027     // The answer is MinI(orig_length - start, length).
  3028     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3029     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3031     _sp += nargs;  // set original stack for use by uncommon_trap
  3032     Node* newcopy = new_array(klass_node, length);
  3033     _sp -= nargs;
  3035     // Generate a direct call to the right arraycopy function(s).
  3036     // We know the copy is disjoint but we might not know if the
  3037     // oop stores need checking.
  3038     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3039     // This will fail a store-check if x contains any non-nulls.
  3040     bool disjoint_bases = true;
  3041     bool length_never_negative = true;
  3042     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3043                        original, start, newcopy, intcon(0), moved,
  3044                        nargs, disjoint_bases, length_never_negative);
  3046     push(newcopy);
  3049   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3051   return true;
  3055 //----------------------generate_virtual_guard---------------------------
  3056 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3057 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3058                                              RegionNode* slow_region) {
  3059   ciMethod* method = callee();
  3060   int vtable_index = method->vtable_index();
  3061   // Get the methodOop out of the appropriate vtable entry.
  3062   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3063                      vtable_index*vtableEntry::size()) * wordSize +
  3064                      vtableEntry::method_offset_in_bytes();
  3065   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3066   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3068   // Compare the target method with the expected method (e.g., Object.hashCode).
  3069   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3071   Node* native_call = makecon(native_call_addr);
  3072   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3073   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3075   return generate_slow_guard(test_native, slow_region);
  3078 //-----------------------generate_method_call----------------------------
  3079 // Use generate_method_call to make a slow-call to the real
  3080 // method if the fast path fails.  An alternative would be to
  3081 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3082 // This only works for expanding the current library call,
  3083 // not another intrinsic.  (E.g., don't use this for making an
  3084 // arraycopy call inside of the copyOf intrinsic.)
  3085 CallJavaNode*
  3086 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3087   // When compiling the intrinsic method itself, do not use this technique.
  3088   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3090   ciMethod* method = callee();
  3091   // ensure the JVMS we have will be correct for this call
  3092   guarantee(method_id == method->intrinsic_id(), "must match");
  3094   const TypeFunc* tf = TypeFunc::make(method);
  3095   int tfdc = tf->domain()->cnt();
  3096   CallJavaNode* slow_call;
  3097   if (is_static) {
  3098     assert(!is_virtual, "");
  3099     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3100                                 SharedRuntime::get_resolve_static_call_stub(),
  3101                                 method, bci());
  3102   } else if (is_virtual) {
  3103     null_check_receiver(method);
  3104     int vtable_index = methodOopDesc::invalid_vtable_index;
  3105     if (UseInlineCaches) {
  3106       // Suppress the vtable call
  3107     } else {
  3108       // hashCode and clone are not a miranda methods,
  3109       // so the vtable index is fixed.
  3110       // No need to use the linkResolver to get it.
  3111        vtable_index = method->vtable_index();
  3113     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3114                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3115                                 method, vtable_index, bci());
  3116   } else {  // neither virtual nor static:  opt_virtual
  3117     null_check_receiver(method);
  3118     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3119                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3120                                 method, bci());
  3121     slow_call->set_optimized_virtual(true);
  3123   set_arguments_for_java_call(slow_call);
  3124   set_edges_for_java_call(slow_call);
  3125   return slow_call;
  3129 //------------------------------inline_native_hashcode--------------------
  3130 // Build special case code for calls to hashCode on an object.
  3131 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3132   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3133   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3135   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3137   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3138   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3139                                                       TypeInt::INT);
  3140   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3141   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3142                                                       TypePtr::BOTTOM);
  3143   Node* obj = NULL;
  3144   if (!is_static) {
  3145     // Check for hashing null object
  3146     obj = null_check_receiver(callee());
  3147     if (stopped())  return true;        // unconditionally null
  3148     result_reg->init_req(_null_path, top());
  3149     result_val->init_req(_null_path, top());
  3150   } else {
  3151     // Do a null check, and return zero if null.
  3152     // System.identityHashCode(null) == 0
  3153     obj = argument(0);
  3154     Node* null_ctl = top();
  3155     obj = null_check_oop(obj, &null_ctl);
  3156     result_reg->init_req(_null_path, null_ctl);
  3157     result_val->init_req(_null_path, _gvn.intcon(0));
  3160   // Unconditionally null?  Then return right away.
  3161   if (stopped()) {
  3162     set_control( result_reg->in(_null_path) );
  3163     if (!stopped())
  3164       push(      result_val ->in(_null_path) );
  3165     return true;
  3168   // After null check, get the object's klass.
  3169   Node* obj_klass = load_object_klass(obj);
  3171   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3172   // For each case we generate slightly different code.
  3174   // We only go to the fast case code if we pass a number of guards.  The
  3175   // paths which do not pass are accumulated in the slow_region.
  3176   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3177   record_for_igvn(slow_region);
  3179   // If this is a virtual call, we generate a funny guard.  We pull out
  3180   // the vtable entry corresponding to hashCode() from the target object.
  3181   // If the target method which we are calling happens to be the native
  3182   // Object hashCode() method, we pass the guard.  We do not need this
  3183   // guard for non-virtual calls -- the caller is known to be the native
  3184   // Object hashCode().
  3185   if (is_virtual) {
  3186     generate_virtual_guard(obj_klass, slow_region);
  3189   // Get the header out of the object, use LoadMarkNode when available
  3190   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3191   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3192   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3194   // Test the header to see if it is unlocked.
  3195   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3196   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3197   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3198   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3199   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3201   generate_slow_guard(test_unlocked, slow_region);
  3203   // Get the hash value and check to see that it has been properly assigned.
  3204   // We depend on hash_mask being at most 32 bits and avoid the use of
  3205   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3206   // vm: see markOop.hpp.
  3207   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3208   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3209   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3210   // This hack lets the hash bits live anywhere in the mark object now, as long
  3211   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3212   // Java spec says that HashCode is an int so there's no point in capturing
  3213   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3214   hshifted_header      = ConvX2I(hshifted_header);
  3215   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3217   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3218   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3219   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3221   generate_slow_guard(test_assigned, slow_region);
  3223   Node* init_mem = reset_memory();
  3224   // fill in the rest of the null path:
  3225   result_io ->init_req(_null_path, i_o());
  3226   result_mem->init_req(_null_path, init_mem);
  3228   result_val->init_req(_fast_path, hash_val);
  3229   result_reg->init_req(_fast_path, control());
  3230   result_io ->init_req(_fast_path, i_o());
  3231   result_mem->init_req(_fast_path, init_mem);
  3233   // Generate code for the slow case.  We make a call to hashCode().
  3234   set_control(_gvn.transform(slow_region));
  3235   if (!stopped()) {
  3236     // No need for PreserveJVMState, because we're using up the present state.
  3237     set_all_memory(init_mem);
  3238     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3239     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3240     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3241     Node* slow_result = set_results_for_java_call(slow_call);
  3242     // this->control() comes from set_results_for_java_call
  3243     result_reg->init_req(_slow_path, control());
  3244     result_val->init_req(_slow_path, slow_result);
  3245     result_io  ->set_req(_slow_path, i_o());
  3246     result_mem ->set_req(_slow_path, reset_memory());
  3249   // Return the combined state.
  3250   set_i_o(        _gvn.transform(result_io)  );
  3251   set_all_memory( _gvn.transform(result_mem) );
  3252   push_result(result_reg, result_val);
  3254   return true;
  3257 //---------------------------inline_native_getClass----------------------------
  3258 // Build special case code for calls to getClass on an object.
  3259 bool LibraryCallKit::inline_native_getClass() {
  3260   Node* obj = null_check_receiver(callee());
  3261   if (stopped())  return true;
  3262   push( load_mirror_from_klass(load_object_klass(obj)) );
  3263   return true;
  3266 //-----------------inline_native_Reflection_getCallerClass---------------------
  3267 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3268 //
  3269 // NOTE that this code must perform the same logic as
  3270 // vframeStream::security_get_caller_frame in that it must skip
  3271 // Method.invoke() and auxiliary frames.
  3276 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3277   ciMethod*       method = callee();
  3279 #ifndef PRODUCT
  3280   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3281     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3283 #endif
  3285   debug_only(int saved_sp = _sp);
  3287   // Argument words:  (int depth)
  3288   int nargs = 1;
  3290   _sp += nargs;
  3291   Node* caller_depth_node = pop();
  3293   assert(saved_sp == _sp, "must have correct argument count");
  3295   // The depth value must be a constant in order for the runtime call
  3296   // to be eliminated.
  3297   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3298   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3299 #ifndef PRODUCT
  3300     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3301       tty->print_cr("  Bailing out because caller depth was not a constant");
  3303 #endif
  3304     return false;
  3306   // Note that the JVM state at this point does not include the
  3307   // getCallerClass() frame which we are trying to inline. The
  3308   // semantics of getCallerClass(), however, are that the "first"
  3309   // frame is the getCallerClass() frame, so we subtract one from the
  3310   // requested depth before continuing. We don't inline requests of
  3311   // getCallerClass(0).
  3312   int caller_depth = caller_depth_type->get_con() - 1;
  3313   if (caller_depth < 0) {
  3314 #ifndef PRODUCT
  3315     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3316       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3318 #endif
  3319     return false;
  3322   if (!jvms()->has_method()) {
  3323 #ifndef PRODUCT
  3324     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3325       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3327 #endif
  3328     return false;
  3330   int _depth = jvms()->depth();  // cache call chain depth
  3332   // Walk back up the JVM state to find the caller at the required
  3333   // depth. NOTE that this code must perform the same logic as
  3334   // vframeStream::security_get_caller_frame in that it must skip
  3335   // Method.invoke() and auxiliary frames. Note also that depth is
  3336   // 1-based (1 is the bottom of the inlining).
  3337   int inlining_depth = _depth;
  3338   JVMState* caller_jvms = NULL;
  3340   if (inlining_depth > 0) {
  3341     caller_jvms = jvms();
  3342     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3343     do {
  3344       // The following if-tests should be performed in this order
  3345       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3346         // Skip a Method.invoke() or auxiliary frame
  3347       } else if (caller_depth > 0) {
  3348         // Skip real frame
  3349         --caller_depth;
  3350       } else {
  3351         // We're done: reached desired caller after skipping.
  3352         break;
  3354       caller_jvms = caller_jvms->caller();
  3355       --inlining_depth;
  3356     } while (inlining_depth > 0);
  3359   if (inlining_depth == 0) {
  3360 #ifndef PRODUCT
  3361     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3362       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3363       tty->print_cr("  JVM state at this point:");
  3364       for (int i = _depth; i >= 1; i--) {
  3365         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3368 #endif
  3369     return false; // Reached end of inlining
  3372   // Acquire method holder as java.lang.Class
  3373   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3374   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3375   // Push this as a constant
  3376   push(makecon(TypeInstPtr::make(caller_mirror)));
  3377 #ifndef PRODUCT
  3378   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3379     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3380     tty->print_cr("  JVM state at this point:");
  3381     for (int i = _depth; i >= 1; i--) {
  3382       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3385 #endif
  3386   return true;
  3389 // Helper routine for above
  3390 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3391   // Is this the Method.invoke method itself?
  3392   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  3393     return true;
  3395   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3396   ciKlass* k = jvms->method()->holder();
  3397   if (k->is_instance_klass()) {
  3398     ciInstanceKlass* ik = k->as_instance_klass();
  3399     for (; ik != NULL; ik = ik->super()) {
  3400       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3401           ik == env()->find_system_klass(ik->name())) {
  3402         return true;
  3407   return false;
  3410 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3411                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3412                                      // computing it since there is no lookup field by name function in the
  3413                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3414                                      // Using a static variable here is safe even if we have multiple compilation
  3415                                      // threads because the offset is constant.  At worst the same offset will be
  3416                                      // computed and  stored multiple
  3418 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3419   // Restore the stack and pop off the argument
  3420   _sp+=1;
  3421   Node *obj = pop();
  3423   // get the offset of the "value" field. Since the CI interfaces
  3424   // does not provide a way to look up a field by name, we scan the bytecodes
  3425   // to get the field index.  We expect the first 2 instructions of the method
  3426   // to be:
  3427   //    0 aload_0
  3428   //    1 getfield "value"
  3429   ciMethod* method = callee();
  3430   if (value_field_offset == -1)
  3432     ciField* value_field;
  3433     ciBytecodeStream iter(method);
  3434     Bytecodes::Code bc = iter.next();
  3436     if ((bc != Bytecodes::_aload_0) &&
  3437               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3438       return false;
  3439     bc = iter.next();
  3440     if (bc != Bytecodes::_getfield)
  3441       return false;
  3442     bool ignore;
  3443     value_field = iter.get_field(ignore);
  3444     value_field_offset = value_field->offset_in_bytes();
  3447   // Null check without removing any arguments.
  3448   _sp++;
  3449   obj = do_null_check(obj, T_OBJECT);
  3450   _sp--;
  3451   // Check for locking null object
  3452   if (stopped()) return true;
  3454   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3455   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3456   int alias_idx = C->get_alias_index(adr_type);
  3458   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3460   push_pair(result);
  3462   return true;
  3465 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3466   // Restore the stack and pop off the arguments
  3467   _sp+=5;
  3468   Node *newVal = pop_pair();
  3469   Node *oldVal = pop_pair();
  3470   Node *obj = pop();
  3472   // we need the offset of the "value" field which was computed when
  3473   // inlining the get() method.  Give up if we don't have it.
  3474   if (value_field_offset == -1)
  3475     return false;
  3477   // Null check without removing any arguments.
  3478   _sp+=5;
  3479   obj = do_null_check(obj, T_OBJECT);
  3480   _sp-=5;
  3481   // Check for locking null object
  3482   if (stopped()) return true;
  3484   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3485   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3486   int alias_idx = C->get_alias_index(adr_type);
  3488   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3489   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3490   set_memory(store_proj, alias_idx);
  3491   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3493   Node *result;
  3494   // CMove node is not used to be able fold a possible check code
  3495   // after attemptUpdate() call. This code could be transformed
  3496   // into CMove node by loop optimizations.
  3498     RegionNode *r = new (C, 3) RegionNode(3);
  3499     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3501     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3502     Node *iftrue = opt_iff(r, iff);
  3503     r->init_req(1, iftrue);
  3504     result->init_req(1, intcon(1));
  3505     result->init_req(2, intcon(0));
  3507     set_control(_gvn.transform(r));
  3508     record_for_igvn(r);
  3510     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3513   push(_gvn.transform(result));
  3514   return true;
  3517 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3518   // restore the arguments
  3519   _sp += arg_size();
  3521   switch (id) {
  3522   case vmIntrinsics::_floatToRawIntBits:
  3523     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3524     break;
  3526   case vmIntrinsics::_intBitsToFloat:
  3527     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3528     break;
  3530   case vmIntrinsics::_doubleToRawLongBits:
  3531     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3532     break;
  3534   case vmIntrinsics::_longBitsToDouble:
  3535     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3536     break;
  3538   case vmIntrinsics::_doubleToLongBits: {
  3539     Node* value = pop_pair();
  3541     // two paths (plus control) merge in a wood
  3542     RegionNode *r = new (C, 3) RegionNode(3);
  3543     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3545     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3546     // Build the boolean node
  3547     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3549     // Branch either way.
  3550     // NaN case is less traveled, which makes all the difference.
  3551     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3552     Node *opt_isnan = _gvn.transform(ifisnan);
  3553     assert( opt_isnan->is_If(), "Expect an IfNode");
  3554     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3555     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3557     set_control(iftrue);
  3559     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3560     Node *slow_result = longcon(nan_bits); // return NaN
  3561     phi->init_req(1, _gvn.transform( slow_result ));
  3562     r->init_req(1, iftrue);
  3564     // Else fall through
  3565     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3566     set_control(iffalse);
  3568     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3569     r->init_req(2, iffalse);
  3571     // Post merge
  3572     set_control(_gvn.transform(r));
  3573     record_for_igvn(r);
  3575     Node* result = _gvn.transform(phi);
  3576     assert(result->bottom_type()->isa_long(), "must be");
  3577     push_pair(result);
  3579     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3581     break;
  3584   case vmIntrinsics::_floatToIntBits: {
  3585     Node* value = pop();
  3587     // two paths (plus control) merge in a wood
  3588     RegionNode *r = new (C, 3) RegionNode(3);
  3589     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3591     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3592     // Build the boolean node
  3593     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3595     // Branch either way.
  3596     // NaN case is less traveled, which makes all the difference.
  3597     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3598     Node *opt_isnan = _gvn.transform(ifisnan);
  3599     assert( opt_isnan->is_If(), "Expect an IfNode");
  3600     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3601     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3603     set_control(iftrue);
  3605     static const jint nan_bits = 0x7fc00000;
  3606     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3607     phi->init_req(1, _gvn.transform( slow_result ));
  3608     r->init_req(1, iftrue);
  3610     // Else fall through
  3611     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3612     set_control(iffalse);
  3614     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3615     r->init_req(2, iffalse);
  3617     // Post merge
  3618     set_control(_gvn.transform(r));
  3619     record_for_igvn(r);
  3621     Node* result = _gvn.transform(phi);
  3622     assert(result->bottom_type()->isa_int(), "must be");
  3623     push(result);
  3625     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3627     break;
  3630   default:
  3631     ShouldNotReachHere();
  3634   return true;
  3637 #ifdef _LP64
  3638 #define XTOP ,top() /*additional argument*/
  3639 #else  //_LP64
  3640 #define XTOP        /*no additional argument*/
  3641 #endif //_LP64
  3643 //----------------------inline_unsafe_copyMemory-------------------------
  3644 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3645   if (callee()->is_static())  return false;  // caller must have the capability!
  3646   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3647   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3648   null_check_receiver(callee());  // check then ignore argument(0)
  3649   if (stopped())  return true;
  3651   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3653   Node* src_ptr = argument(1);
  3654   Node* src_off = ConvL2X(argument(2));
  3655   assert(argument(3)->is_top(), "2nd half of long");
  3656   Node* dst_ptr = argument(4);
  3657   Node* dst_off = ConvL2X(argument(5));
  3658   assert(argument(6)->is_top(), "2nd half of long");
  3659   Node* size    = ConvL2X(argument(7));
  3660   assert(argument(8)->is_top(), "2nd half of long");
  3662   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3663          "fieldOffset must be byte-scaled");
  3665   Node* src = make_unsafe_address(src_ptr, src_off);
  3666   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3668   // Conservatively insert a memory barrier on all memory slices.
  3669   // Do not let writes of the copy source or destination float below the copy.
  3670   insert_mem_bar(Op_MemBarCPUOrder);
  3672   // Call it.  Note that the length argument is not scaled.
  3673   make_runtime_call(RC_LEAF|RC_NO_FP,
  3674                     OptoRuntime::fast_arraycopy_Type(),
  3675                     StubRoutines::unsafe_arraycopy(),
  3676                     "unsafe_arraycopy",
  3677                     TypeRawPtr::BOTTOM,
  3678                     src, dst, size XTOP);
  3680   // Do not let reads of the copy destination float above the copy.
  3681   insert_mem_bar(Op_MemBarCPUOrder);
  3683   return true;
  3687 //------------------------inline_native_clone----------------------------
  3688 // Here are the simple edge cases:
  3689 //  null receiver => normal trap
  3690 //  virtual and clone was overridden => slow path to out-of-line clone
  3691 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  3692 //
  3693 // The general case has two steps, allocation and copying.
  3694 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  3695 //
  3696 // Copying also has two cases, oop arrays and everything else.
  3697 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  3698 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  3699 //
  3700 // These steps fold up nicely if and when the cloned object's klass
  3701 // can be sharply typed as an object array, a type array, or an instance.
  3702 //
  3703 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  3704   int nargs = 1;
  3705   Node* obj = null_check_receiver(callee());
  3706   if (stopped())  return true;
  3707   Node* obj_klass = load_object_klass(obj);
  3708   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  3709   const TypeOopPtr*   toop   = ((tklass != NULL)
  3710                                 ? tklass->as_instance_type()
  3711                                 : TypeInstPtr::NOTNULL);
  3713   // Conservatively insert a memory barrier on all memory slices.
  3714   // Do not let writes into the original float below the clone.
  3715   insert_mem_bar(Op_MemBarCPUOrder);
  3717   // paths into result_reg:
  3718   enum {
  3719     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  3720     _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
  3721     _fast_path,         // plain allocation, plus a CopyArray operation
  3722     PATH_LIMIT
  3723   };
  3724   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3725   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3726                                                       TypeInstPtr::NOTNULL);
  3727   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3728   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3729                                                       TypePtr::BOTTOM);
  3730   record_for_igvn(result_reg);
  3732   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  3733   int raw_adr_idx = Compile::AliasIdxRaw;
  3734   const bool raw_mem_only = true;
  3736   // paths into alloc_reg (on the fast path, just before the CopyArray):
  3737   enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
  3738   RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
  3739   PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
  3740   PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
  3741   PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
  3742   PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
  3743                                                       raw_adr_type);
  3744   record_for_igvn(alloc_reg);
  3746   bool card_mark = false;  // (see below)
  3748   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  3749   if (array_ctl != NULL) {
  3750     // It's an array.
  3751     PreserveJVMState pjvms(this);
  3752     set_control(array_ctl);
  3753     Node* obj_length = load_array_length(obj);
  3754     Node* obj_size = NULL;
  3755     _sp += nargs;  // set original stack for use by uncommon_trap
  3756     Node* alloc_obj = new_array(obj_klass, obj_length,
  3757                                 raw_mem_only, &obj_size);
  3758     _sp -= nargs;
  3759     assert(obj_size != NULL, "");
  3760     Node* raw_obj = alloc_obj->in(1);
  3761     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3762     if (ReduceBulkZeroing) {
  3763       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3764       if (alloc != NULL) {
  3765         // We will be completely responsible for initializing this object.
  3766         alloc->maybe_set_complete(&_gvn);
  3770     if (!use_ReduceInitialCardMarks()) {
  3771       // If it is an oop array, it requires very special treatment,
  3772       // because card marking is required on each card of the array.
  3773       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  3774       if (is_obja != NULL) {
  3775         PreserveJVMState pjvms2(this);
  3776         set_control(is_obja);
  3777         // Generate a direct call to the right arraycopy function(s).
  3778         bool disjoint_bases = true;
  3779         bool length_never_negative = true;
  3780         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3781                            obj, intcon(0), alloc_obj, intcon(0),
  3782                            obj_length, nargs,
  3783                            disjoint_bases, length_never_negative);
  3784         result_reg->init_req(_objArray_path, control());
  3785         result_val->init_req(_objArray_path, alloc_obj);
  3786         result_i_o ->set_req(_objArray_path, i_o());
  3787         result_mem ->set_req(_objArray_path, reset_memory());
  3790     // We can dispense with card marks if we know the allocation
  3791     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  3792     // causes the non-eden paths to simulate a fresh allocation,
  3793     // insofar that no further card marks are required to initialize
  3794     // the object.
  3796     // Otherwise, there are no card marks to worry about.
  3797     alloc_val->init_req(_typeArray_alloc, raw_obj);
  3798     alloc_siz->init_req(_typeArray_alloc, obj_size);
  3799     alloc_reg->init_req(_typeArray_alloc, control());
  3800     alloc_i_o->init_req(_typeArray_alloc, i_o());
  3801     alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
  3804   // We only go to the fast case code if we pass a number of guards.
  3805   // The paths which do not pass are accumulated in the slow_region.
  3806   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3807   record_for_igvn(slow_region);
  3808   if (!stopped()) {
  3809     // It's an instance.  Make the slow-path tests.
  3810     // If this is a virtual call, we generate a funny guard.  We grab
  3811     // the vtable entry corresponding to clone() from the target object.
  3812     // If the target method which we are calling happens to be the
  3813     // Object clone() method, we pass the guard.  We do not need this
  3814     // guard for non-virtual calls; the caller is known to be the native
  3815     // Object clone().
  3816     if (is_virtual) {
  3817       generate_virtual_guard(obj_klass, slow_region);
  3820     // The object must be cloneable and must not have a finalizer.
  3821     // Both of these conditions may be checked in a single test.
  3822     // We could optimize the cloneable test further, but we don't care.
  3823     generate_access_flags_guard(obj_klass,
  3824                                 // Test both conditions:
  3825                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  3826                                 // Must be cloneable but not finalizer:
  3827                                 JVM_ACC_IS_CLONEABLE,
  3828                                 slow_region);
  3831   if (!stopped()) {
  3832     // It's an instance, and it passed the slow-path tests.
  3833     PreserveJVMState pjvms(this);
  3834     Node* obj_size = NULL;
  3835     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  3836     assert(obj_size != NULL, "");
  3837     Node* raw_obj = alloc_obj->in(1);
  3838     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3839     if (ReduceBulkZeroing) {
  3840       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3841       if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
  3842         alloc = NULL;
  3844     if (!use_ReduceInitialCardMarks()) {
  3845       // Put in store barrier for any and all oops we are sticking
  3846       // into this object.  (We could avoid this if we could prove
  3847       // that the object type contains no oop fields at all.)
  3848       card_mark = true;
  3850     alloc_val->init_req(_instance_alloc, raw_obj);
  3851     alloc_siz->init_req(_instance_alloc, obj_size);
  3852     alloc_reg->init_req(_instance_alloc, control());
  3853     alloc_i_o->init_req(_instance_alloc, i_o());
  3854     alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
  3857   // Generate code for the slow case.  We make a call to clone().
  3858   set_control(_gvn.transform(slow_region));
  3859   if (!stopped()) {
  3860     PreserveJVMState pjvms(this);
  3861     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  3862     Node* slow_result = set_results_for_java_call(slow_call);
  3863     // this->control() comes from set_results_for_java_call
  3864     result_reg->init_req(_slow_path, control());
  3865     result_val->init_req(_slow_path, slow_result);
  3866     result_i_o ->set_req(_slow_path, i_o());
  3867     result_mem ->set_req(_slow_path, reset_memory());
  3870   // The object is allocated, as an array and/or an instance.  Now copy it.
  3871   set_control( _gvn.transform(alloc_reg) );
  3872   set_i_o(     _gvn.transform(alloc_i_o) );
  3873   set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
  3874   Node* raw_obj  = _gvn.transform(alloc_val);
  3876   if (!stopped()) {
  3877     // Copy the fastest available way.
  3878     // (No need for PreserveJVMState, since we're using it all up now.)
  3879     // TODO: generate fields/elements copies for small objects instead.
  3880     Node* src  = obj;
  3881     Node* dest = raw_obj;
  3882     Node* size = _gvn.transform(alloc_siz);
  3884     // Exclude the header.
  3885     int base_off = instanceOopDesc::base_offset_in_bytes();
  3886     if (UseCompressedOops) {
  3887       assert(base_off % BytesPerLong != 0, "base with compressed oops");
  3888       // With compressed oops base_offset_in_bytes is 12 which creates
  3889       // the gap since countx is rounded by 8 bytes below.
  3890       // Copy klass and the gap.
  3891       base_off = instanceOopDesc::klass_offset_in_bytes();
  3893     src  = basic_plus_adr(src,  base_off);
  3894     dest = basic_plus_adr(dest, base_off);
  3896     // Compute the length also, if needed:
  3897     Node* countx = size;
  3898     countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  3899     countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  3901     // Select an appropriate instruction to initialize the range.
  3902     // The CopyArray instruction (if supported) can be optimized
  3903     // into a discrete set of scalar loads and stores.
  3904     bool disjoint_bases = true;
  3905     generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  3906                                  src, NULL, dest, NULL, countx);
  3908     // Now that the object is properly initialized, type it as an oop.
  3909     // Use a secondary InitializeNode memory barrier.
  3910     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
  3911                                                    raw_obj)->as_Initialize();
  3912     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  3913     Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
  3914                                               TypeInstPtr::NOTNULL);
  3915     new_obj = _gvn.transform(new_obj);
  3917     // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  3918     if (card_mark) {
  3919       Node* no_particular_value = NULL;
  3920       Node* no_particular_field = NULL;
  3921       post_barrier(control(),
  3922                    memory(raw_adr_type),
  3923                    new_obj,
  3924                    no_particular_field,
  3925                    raw_adr_idx,
  3926                    no_particular_value,
  3927                    T_OBJECT,
  3928                    false);
  3930     // Present the results of the slow call.
  3931     result_reg->init_req(_fast_path, control());
  3932     result_val->init_req(_fast_path, new_obj);
  3933     result_i_o ->set_req(_fast_path, i_o());
  3934     result_mem ->set_req(_fast_path, reset_memory());
  3937   // Return the combined state.
  3938   set_control(    _gvn.transform(result_reg) );
  3939   set_i_o(        _gvn.transform(result_i_o) );
  3940   set_all_memory( _gvn.transform(result_mem) );
  3942   // Cast the result to a sharper type, since we know what clone does.
  3943   Node* new_obj = _gvn.transform(result_val);
  3944   Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
  3945   push(_gvn.transform(cast));
  3947   return true;
  3951 // constants for computing the copy function
  3952 enum {
  3953   COPYFUNC_UNALIGNED = 0,
  3954   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  3955   COPYFUNC_CONJOINT = 0,
  3956   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  3957 };
  3959 // Note:  The condition "disjoint" applies also for overlapping copies
  3960 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  3961 static address
  3962 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  3963   int selector =
  3964     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  3965     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  3967 #define RETURN_STUB(xxx_arraycopy) { \
  3968   name = #xxx_arraycopy; \
  3969   return StubRoutines::xxx_arraycopy(); }
  3971   switch (t) {
  3972   case T_BYTE:
  3973   case T_BOOLEAN:
  3974     switch (selector) {
  3975     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  3976     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  3977     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  3978     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  3980   case T_CHAR:
  3981   case T_SHORT:
  3982     switch (selector) {
  3983     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  3984     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  3985     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  3986     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  3988   case T_INT:
  3989   case T_FLOAT:
  3990     switch (selector) {
  3991     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  3992     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  3993     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  3994     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  3996   case T_DOUBLE:
  3997   case T_LONG:
  3998     switch (selector) {
  3999     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4000     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4001     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4002     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4004   case T_ARRAY:
  4005   case T_OBJECT:
  4006     switch (selector) {
  4007     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4008     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4009     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4010     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4012   default:
  4013     ShouldNotReachHere();
  4014     return NULL;
  4017 #undef RETURN_STUB
  4020 //------------------------------basictype2arraycopy----------------------------
  4021 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4022                                             Node* src_offset,
  4023                                             Node* dest_offset,
  4024                                             bool disjoint_bases,
  4025                                             const char* &name) {
  4026   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4027   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4029   bool aligned = false;
  4030   bool disjoint = disjoint_bases;
  4032   // if the offsets are the same, we can treat the memory regions as
  4033   // disjoint, because either the memory regions are in different arrays,
  4034   // or they are identical (which we can treat as disjoint.)  We can also
  4035   // treat a copy with a destination index  less that the source index
  4036   // as disjoint since a low->high copy will work correctly in this case.
  4037   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4038       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4039     // both indices are constants
  4040     int s_offs = src_offset_inttype->get_con();
  4041     int d_offs = dest_offset_inttype->get_con();
  4042     int element_size = type2aelembytes(t);
  4043     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4044               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4045     if (s_offs >= d_offs)  disjoint = true;
  4046   } else if (src_offset == dest_offset && src_offset != NULL) {
  4047     // This can occur if the offsets are identical non-constants.
  4048     disjoint = true;
  4051   return select_arraycopy_function(t, aligned, disjoint, name);
  4055 //------------------------------inline_arraycopy-----------------------
  4056 bool LibraryCallKit::inline_arraycopy() {
  4057   // Restore the stack and pop off the arguments.
  4058   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4059   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4061   Node *src         = argument(0);
  4062   Node *src_offset  = argument(1);
  4063   Node *dest        = argument(2);
  4064   Node *dest_offset = argument(3);
  4065   Node *length      = argument(4);
  4067   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4068   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4069   // is.  The checks we choose to mandate at compile time are:
  4070   //
  4071   // (1) src and dest are arrays.
  4072   const Type* src_type = src->Value(&_gvn);
  4073   const Type* dest_type = dest->Value(&_gvn);
  4074   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4075   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4076   if (top_src  == NULL || top_src->klass()  == NULL ||
  4077       top_dest == NULL || top_dest->klass() == NULL) {
  4078     // Conservatively insert a memory barrier on all memory slices.
  4079     // Do not let writes into the source float below the arraycopy.
  4080     insert_mem_bar(Op_MemBarCPUOrder);
  4082     // Call StubRoutines::generic_arraycopy stub.
  4083     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4084                        src, src_offset, dest, dest_offset, length,
  4085                        nargs);
  4087     // Do not let reads from the destination float above the arraycopy.
  4088     // Since we cannot type the arrays, we don't know which slices
  4089     // might be affected.  We could restrict this barrier only to those
  4090     // memory slices which pertain to array elements--but don't bother.
  4091     if (!InsertMemBarAfterArraycopy)
  4092       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4093       insert_mem_bar(Op_MemBarCPUOrder);
  4094     return true;
  4097   // (2) src and dest arrays must have elements of the same BasicType
  4098   // Figure out the size and type of the elements we will be copying.
  4099   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4100   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4101   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4102   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4104   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4105     // The component types are not the same or are not recognized.  Punt.
  4106     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4107     generate_slow_arraycopy(TypePtr::BOTTOM,
  4108                             src, src_offset, dest, dest_offset, length,
  4109                             nargs);
  4110     return true;
  4113   //---------------------------------------------------------------------------
  4114   // We will make a fast path for this call to arraycopy.
  4116   // We have the following tests left to perform:
  4117   //
  4118   // (3) src and dest must not be null.
  4119   // (4) src_offset must not be negative.
  4120   // (5) dest_offset must not be negative.
  4121   // (6) length must not be negative.
  4122   // (7) src_offset + length must not exceed length of src.
  4123   // (8) dest_offset + length must not exceed length of dest.
  4124   // (9) each element of an oop array must be assignable
  4126   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4127   record_for_igvn(slow_region);
  4129   // (3) operands must not be null
  4130   // We currently perform our null checks with the do_null_check routine.
  4131   // This means that the null exceptions will be reported in the caller
  4132   // rather than (correctly) reported inside of the native arraycopy call.
  4133   // This should be corrected, given time.  We do our null check with the
  4134   // stack pointer restored.
  4135   _sp += nargs;
  4136   src  = do_null_check(src,  T_ARRAY);
  4137   dest = do_null_check(dest, T_ARRAY);
  4138   _sp -= nargs;
  4140   // (4) src_offset must not be negative.
  4141   generate_negative_guard(src_offset, slow_region);
  4143   // (5) dest_offset must not be negative.
  4144   generate_negative_guard(dest_offset, slow_region);
  4146   // (6) length must not be negative (moved to generate_arraycopy()).
  4147   // generate_negative_guard(length, slow_region);
  4149   // (7) src_offset + length must not exceed length of src.
  4150   generate_limit_guard(src_offset, length,
  4151                        load_array_length(src),
  4152                        slow_region);
  4154   // (8) dest_offset + length must not exceed length of dest.
  4155   generate_limit_guard(dest_offset, length,
  4156                        load_array_length(dest),
  4157                        slow_region);
  4159   // (9) each element of an oop array must be assignable
  4160   // The generate_arraycopy subroutine checks this.
  4162   // This is where the memory effects are placed:
  4163   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4164   generate_arraycopy(adr_type, dest_elem,
  4165                      src, src_offset, dest, dest_offset, length,
  4166                      nargs, false, false, slow_region);
  4168   return true;
  4171 //-----------------------------generate_arraycopy----------------------
  4172 // Generate an optimized call to arraycopy.
  4173 // Caller must guard against non-arrays.
  4174 // Caller must determine a common array basic-type for both arrays.
  4175 // Caller must validate offsets against array bounds.
  4176 // The slow_region has already collected guard failure paths
  4177 // (such as out of bounds length or non-conformable array types).
  4178 // The generated code has this shape, in general:
  4179 //
  4180 //     if (length == 0)  return   // via zero_path
  4181 //     slowval = -1
  4182 //     if (types unknown) {
  4183 //       slowval = call generic copy loop
  4184 //       if (slowval == 0)  return  // via checked_path
  4185 //     } else if (indexes in bounds) {
  4186 //       if ((is object array) && !(array type check)) {
  4187 //         slowval = call checked copy loop
  4188 //         if (slowval == 0)  return  // via checked_path
  4189 //       } else {
  4190 //         call bulk copy loop
  4191 //         return  // via fast_path
  4192 //       }
  4193 //     }
  4194 //     // adjust params for remaining work:
  4195 //     if (slowval != -1) {
  4196 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4197 //     }
  4198 //   slow_region:
  4199 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4200 //     return  // via slow_call_path
  4201 //
  4202 // This routine is used from several intrinsics:  System.arraycopy,
  4203 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4204 //
  4205 void
  4206 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4207                                    BasicType basic_elem_type,
  4208                                    Node* src,  Node* src_offset,
  4209                                    Node* dest, Node* dest_offset,
  4210                                    Node* copy_length,
  4211                                    int nargs,
  4212                                    bool disjoint_bases,
  4213                                    bool length_never_negative,
  4214                                    RegionNode* slow_region) {
  4216   if (slow_region == NULL) {
  4217     slow_region = new(C,1) RegionNode(1);
  4218     record_for_igvn(slow_region);
  4221   Node* original_dest      = dest;
  4222   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4223   Node* raw_dest           = NULL;  // used before zeroing, if needed
  4224   bool  must_clear_dest    = false;
  4226   // See if this is the initialization of a newly-allocated array.
  4227   // If so, we will take responsibility here for initializing it to zero.
  4228   // (Note:  Because tightly_coupled_allocation performs checks on the
  4229   // out-edges of the dest, we need to avoid making derived pointers
  4230   // from it until we have checked its uses.)
  4231   if (ReduceBulkZeroing
  4232       && !ZeroTLAB              // pointless if already zeroed
  4233       && basic_elem_type != T_CONFLICT // avoid corner case
  4234       && !_gvn.eqv_uncast(src, dest)
  4235       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4236           != NULL)
  4237       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4238       && alloc->maybe_set_complete(&_gvn)) {
  4239     // "You break it, you buy it."
  4240     InitializeNode* init = alloc->initialization();
  4241     assert(init->is_complete(), "we just did this");
  4242     assert(dest->Opcode() == Op_CheckCastPP, "sanity");
  4243     assert(dest->in(0)->in(0) == init, "dest pinned");
  4244     raw_dest = dest->in(1);  // grab the raw pointer!
  4245     original_dest = dest;
  4246     dest = raw_dest;
  4247     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4248     // Decouple the original InitializeNode, turning it into a simple membar.
  4249     // We will build a new one at the end of this routine.
  4250     init->set_req(InitializeNode::RawAddress, top());
  4251     // From this point on, every exit path is responsible for
  4252     // initializing any non-copied parts of the object to zero.
  4253     must_clear_dest = true;
  4254   } else {
  4255     // No zeroing elimination here.
  4256     alloc             = NULL;
  4257     //original_dest   = dest;
  4258     //must_clear_dest = false;
  4261   // Results are placed here:
  4262   enum { fast_path        = 1,  // normal void-returning assembly stub
  4263          checked_path     = 2,  // special assembly stub with cleanup
  4264          slow_call_path   = 3,  // something went wrong; call the VM
  4265          zero_path        = 4,  // bypass when length of copy is zero
  4266          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4267          PATH_LIMIT       = 6
  4268   };
  4269   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4270   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4271   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4272   record_for_igvn(result_region);
  4273   _gvn.set_type_bottom(result_i_o);
  4274   _gvn.set_type_bottom(result_memory);
  4275   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4277   // The slow_control path:
  4278   Node* slow_control;
  4279   Node* slow_i_o = i_o();
  4280   Node* slow_mem = memory(adr_type);
  4281   debug_only(slow_control = (Node*) badAddress);
  4283   // Checked control path:
  4284   Node* checked_control = top();
  4285   Node* checked_mem     = NULL;
  4286   Node* checked_i_o     = NULL;
  4287   Node* checked_value   = NULL;
  4289   if (basic_elem_type == T_CONFLICT) {
  4290     assert(!must_clear_dest, "");
  4291     Node* cv = generate_generic_arraycopy(adr_type,
  4292                                           src, src_offset, dest, dest_offset,
  4293                                           copy_length, nargs);
  4294     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4295     checked_control = control();
  4296     checked_i_o     = i_o();
  4297     checked_mem     = memory(adr_type);
  4298     checked_value   = cv;
  4299     set_control(top());         // no fast path
  4302   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4303   if (not_pos != NULL) {
  4304     PreserveJVMState pjvms(this);
  4305     set_control(not_pos);
  4307     // (6) length must not be negative.
  4308     if (!length_never_negative) {
  4309       generate_negative_guard(copy_length, slow_region);
  4312     if (!stopped() && must_clear_dest) {
  4313       Node* dest_length = alloc->in(AllocateNode::ALength);
  4314       if (_gvn.eqv_uncast(copy_length, dest_length)
  4315           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4316         // There is no zeroing to do.
  4317       } else {
  4318         // Clear the whole thing since there are no source elements to copy.
  4319         generate_clear_array(adr_type, dest, basic_elem_type,
  4320                              intcon(0), NULL,
  4321                              alloc->in(AllocateNode::AllocSize));
  4325     // Present the results of the fast call.
  4326     result_region->init_req(zero_path, control());
  4327     result_i_o   ->init_req(zero_path, i_o());
  4328     result_memory->init_req(zero_path, memory(adr_type));
  4331   if (!stopped() && must_clear_dest) {
  4332     // We have to initialize the *uncopied* part of the array to zero.
  4333     // The copy destination is the slice dest[off..off+len].  The other slices
  4334     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4335     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4336     Node* dest_length = alloc->in(AllocateNode::ALength);
  4337     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4338                                                           copy_length) );
  4340     // If there is a head section that needs zeroing, do it now.
  4341     if (find_int_con(dest_offset, -1) != 0) {
  4342       generate_clear_array(adr_type, dest, basic_elem_type,
  4343                            intcon(0), dest_offset,
  4344                            NULL);
  4347     // Next, perform a dynamic check on the tail length.
  4348     // It is often zero, and we can win big if we prove this.
  4349     // There are two wins:  Avoid generating the ClearArray
  4350     // with its attendant messy index arithmetic, and upgrade
  4351     // the copy to a more hardware-friendly word size of 64 bits.
  4352     Node* tail_ctl = NULL;
  4353     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4354       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4355       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4356       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4357       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4360     // At this point, let's assume there is no tail.
  4361     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4362       // There is no tail.  Try an upgrade to a 64-bit copy.
  4363       bool didit = false;
  4364       { PreserveJVMState pjvms(this);
  4365         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4366                                          src, src_offset, dest, dest_offset,
  4367                                          dest_size);
  4368         if (didit) {
  4369           // Present the results of the block-copying fast call.
  4370           result_region->init_req(bcopy_path, control());
  4371           result_i_o   ->init_req(bcopy_path, i_o());
  4372           result_memory->init_req(bcopy_path, memory(adr_type));
  4375       if (didit)
  4376         set_control(top());     // no regular fast path
  4379     // Clear the tail, if any.
  4380     if (tail_ctl != NULL) {
  4381       Node* notail_ctl = stopped() ? NULL : control();
  4382       set_control(tail_ctl);
  4383       if (notail_ctl == NULL) {
  4384         generate_clear_array(adr_type, dest, basic_elem_type,
  4385                              dest_tail, NULL,
  4386                              dest_size);
  4387       } else {
  4388         // Make a local merge.
  4389         Node* done_ctl = new(C,3) RegionNode(3);
  4390         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4391         done_ctl->init_req(1, notail_ctl);
  4392         done_mem->init_req(1, memory(adr_type));
  4393         generate_clear_array(adr_type, dest, basic_elem_type,
  4394                              dest_tail, NULL,
  4395                              dest_size);
  4396         done_ctl->init_req(2, control());
  4397         done_mem->init_req(2, memory(adr_type));
  4398         set_control( _gvn.transform(done_ctl) );
  4399         set_memory(  _gvn.transform(done_mem), adr_type );
  4404   BasicType copy_type = basic_elem_type;
  4405   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4406   if (!stopped() && copy_type == T_OBJECT) {
  4407     // If src and dest have compatible element types, we can copy bits.
  4408     // Types S[] and D[] are compatible if D is a supertype of S.
  4409     //
  4410     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4411     // which performs a fast optimistic per-oop check, and backs off
  4412     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4413     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4415     // Get the klassOop for both src and dest
  4416     Node* src_klass  = load_object_klass(src);
  4417     Node* dest_klass = load_object_klass(dest);
  4419     // Generate the subtype check.
  4420     // This might fold up statically, or then again it might not.
  4421     //
  4422     // Non-static example:  Copying List<String>.elements to a new String[].
  4423     // The backing store for a List<String> is always an Object[],
  4424     // but its elements are always type String, if the generic types
  4425     // are correct at the source level.
  4426     //
  4427     // Test S[] against D[], not S against D, because (probably)
  4428     // the secondary supertype cache is less busy for S[] than S.
  4429     // This usually only matters when D is an interface.
  4430     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4431     // Plug failing path into checked_oop_disjoint_arraycopy
  4432     if (not_subtype_ctrl != top()) {
  4433       PreserveJVMState pjvms(this);
  4434       set_control(not_subtype_ctrl);
  4435       // (At this point we can assume disjoint_bases, since types differ.)
  4436       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4437       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4438       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4439       Node* dest_elem_klass = _gvn.transform(n1);
  4440       Node* cv = generate_checkcast_arraycopy(adr_type,
  4441                                               dest_elem_klass,
  4442                                               src, src_offset, dest, dest_offset,
  4443                                               copy_length,
  4444                                               nargs);
  4445       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4446       checked_control = control();
  4447       checked_i_o     = i_o();
  4448       checked_mem     = memory(adr_type);
  4449       checked_value   = cv;
  4451     // At this point we know we do not need type checks on oop stores.
  4453     // Let's see if we need card marks:
  4454     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4455       // If we do not need card marks, copy using the jint or jlong stub.
  4456       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4457       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4458              "sizes agree");
  4462   if (!stopped()) {
  4463     // Generate the fast path, if possible.
  4464     PreserveJVMState pjvms(this);
  4465     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4466                                  src, src_offset, dest, dest_offset,
  4467                                  ConvI2X(copy_length));
  4469     // Present the results of the fast call.
  4470     result_region->init_req(fast_path, control());
  4471     result_i_o   ->init_req(fast_path, i_o());
  4472     result_memory->init_req(fast_path, memory(adr_type));
  4475   // Here are all the slow paths up to this point, in one bundle:
  4476   slow_control = top();
  4477   if (slow_region != NULL)
  4478     slow_control = _gvn.transform(slow_region);
  4479   debug_only(slow_region = (RegionNode*)badAddress);
  4481   set_control(checked_control);
  4482   if (!stopped()) {
  4483     // Clean up after the checked call.
  4484     // The returned value is either 0 or -1^K,
  4485     // where K = number of partially transferred array elements.
  4486     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4487     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4488     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4490     // If it is 0, we are done, so transfer to the end.
  4491     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4492     result_region->init_req(checked_path, checks_done);
  4493     result_i_o   ->init_req(checked_path, checked_i_o);
  4494     result_memory->init_req(checked_path, checked_mem);
  4496     // If it is not zero, merge into the slow call.
  4497     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4498     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4499     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4500     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4501     record_for_igvn(slow_reg2);
  4502     slow_reg2  ->init_req(1, slow_control);
  4503     slow_i_o2  ->init_req(1, slow_i_o);
  4504     slow_mem2  ->init_req(1, slow_mem);
  4505     slow_reg2  ->init_req(2, control());
  4506     slow_i_o2  ->init_req(2, i_o());
  4507     slow_mem2  ->init_req(2, memory(adr_type));
  4509     slow_control = _gvn.transform(slow_reg2);
  4510     slow_i_o     = _gvn.transform(slow_i_o2);
  4511     slow_mem     = _gvn.transform(slow_mem2);
  4513     if (alloc != NULL) {
  4514       // We'll restart from the very beginning, after zeroing the whole thing.
  4515       // This can cause double writes, but that's OK since dest is brand new.
  4516       // So we ignore the low 31 bits of the value returned from the stub.
  4517     } else {
  4518       // We must continue the copy exactly where it failed, or else
  4519       // another thread might see the wrong number of writes to dest.
  4520       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4521       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4522       slow_offset->init_req(1, intcon(0));
  4523       slow_offset->init_req(2, checked_offset);
  4524       slow_offset  = _gvn.transform(slow_offset);
  4526       // Adjust the arguments by the conditionally incoming offset.
  4527       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4528       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4529       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4531       // Tweak the node variables to adjust the code produced below:
  4532       src_offset  = src_off_plus;
  4533       dest_offset = dest_off_plus;
  4534       copy_length = length_minus;
  4538   set_control(slow_control);
  4539   if (!stopped()) {
  4540     // Generate the slow path, if needed.
  4541     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4543     set_memory(slow_mem, adr_type);
  4544     set_i_o(slow_i_o);
  4546     if (must_clear_dest) {
  4547       generate_clear_array(adr_type, dest, basic_elem_type,
  4548                            intcon(0), NULL,
  4549                            alloc->in(AllocateNode::AllocSize));
  4552     if (dest != original_dest) {
  4553       // Promote from rawptr to oop, so it looks right in the call's GC map.
  4554       dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
  4555                                                       TypeInstPtr::NOTNULL) );
  4557       // Edit the call's debug-info to avoid referring to original_dest.
  4558       // (The problem with original_dest is that it isn't ready until
  4559       // after the InitializeNode completes, but this stuff is before.)
  4560       // Substitute in the locally valid dest_oop.
  4561       replace_in_map(original_dest, dest);
  4564     generate_slow_arraycopy(adr_type,
  4565                             src, src_offset, dest, dest_offset,
  4566                             copy_length, nargs);
  4568     result_region->init_req(slow_call_path, control());
  4569     result_i_o   ->init_req(slow_call_path, i_o());
  4570     result_memory->init_req(slow_call_path, memory(adr_type));
  4573   // Remove unused edges.
  4574   for (uint i = 1; i < result_region->req(); i++) {
  4575     if (result_region->in(i) == NULL)
  4576       result_region->init_req(i, top());
  4579   // Finished; return the combined state.
  4580   set_control( _gvn.transform(result_region) );
  4581   set_i_o(     _gvn.transform(result_i_o)    );
  4582   set_memory(  _gvn.transform(result_memory), adr_type );
  4584   if (dest != original_dest) {
  4585     // Pin the "finished" array node after the arraycopy/zeroing operations.
  4586     // Use a secondary InitializeNode memory barrier.
  4587     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4588                                                    Compile::AliasIdxRaw,
  4589                                                    raw_dest)->as_Initialize();
  4590     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4591     _gvn.hash_delete(original_dest);
  4592     original_dest->set_req(0, control());
  4593     _gvn.hash_find_insert(original_dest);  // put back into GVN table
  4596   // The memory edges above are precise in order to model effects around
  4597   // array copies accurately to allow value numbering of field loads around
  4598   // arraycopy.  Such field loads, both before and after, are common in Java
  4599   // collections and similar classes involving header/array data structures.
  4600   //
  4601   // But with low number of register or when some registers are used or killed
  4602   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4603   // The next memory barrier is added to avoid it. If the arraycopy can be
  4604   // optimized away (which it can, sometimes) then we can manually remove
  4605   // the membar also.
  4606   if (InsertMemBarAfterArraycopy)
  4607     insert_mem_bar(Op_MemBarCPUOrder);
  4611 // Helper function which determines if an arraycopy immediately follows
  4612 // an allocation, with no intervening tests or other escapes for the object.
  4613 AllocateArrayNode*
  4614 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4615                                            RegionNode* slow_region) {
  4616   if (stopped())             return NULL;  // no fast path
  4617   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4619   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4620   if (alloc == NULL)  return NULL;
  4622   Node* rawmem = memory(Compile::AliasIdxRaw);
  4623   // Is the allocation's memory state untouched?
  4624   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4625     // Bail out if there have been raw-memory effects since the allocation.
  4626     // (Example:  There might have been a call or safepoint.)
  4627     return NULL;
  4629   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4630   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4631     return NULL;
  4634   // There must be no unexpected observers of this allocation.
  4635   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4636     Node* obs = ptr->fast_out(i);
  4637     if (obs != this->map()) {
  4638       return NULL;
  4642   // This arraycopy must unconditionally follow the allocation of the ptr.
  4643   Node* alloc_ctl = ptr->in(0);
  4644   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4646   Node* ctl = control();
  4647   while (ctl != alloc_ctl) {
  4648     // There may be guards which feed into the slow_region.
  4649     // Any other control flow means that we might not get a chance
  4650     // to finish initializing the allocated object.
  4651     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4652       IfNode* iff = ctl->in(0)->as_If();
  4653       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4654       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4655       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4656         ctl = iff->in(0);       // This test feeds the known slow_region.
  4657         continue;
  4659       // One more try:  Various low-level checks bottom out in
  4660       // uncommon traps.  If the debug-info of the trap omits
  4661       // any reference to the allocation, as we've already
  4662       // observed, then there can be no objection to the trap.
  4663       bool found_trap = false;
  4664       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4665         Node* obs = not_ctl->fast_out(j);
  4666         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4667             (obs->as_Call()->entry_point() ==
  4668              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4669           found_trap = true; break;
  4672       if (found_trap) {
  4673         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4674         continue;
  4677     return NULL;
  4680   // If we get this far, we have an allocation which immediately
  4681   // precedes the arraycopy, and we can take over zeroing the new object.
  4682   // The arraycopy will finish the initialization, and provide
  4683   // a new control state to which we will anchor the destination pointer.
  4685   return alloc;
  4688 // Helper for initialization of arrays, creating a ClearArray.
  4689 // It writes zero bits in [start..end), within the body of an array object.
  4690 // The memory effects are all chained onto the 'adr_type' alias category.
  4691 //
  4692 // Since the object is otherwise uninitialized, we are free
  4693 // to put a little "slop" around the edges of the cleared area,
  4694 // as long as it does not go back into the array's header,
  4695 // or beyond the array end within the heap.
  4696 //
  4697 // The lower edge can be rounded down to the nearest jint and the
  4698 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4699 //
  4700 // Arguments:
  4701 //   adr_type           memory slice where writes are generated
  4702 //   dest               oop of the destination array
  4703 //   basic_elem_type    element type of the destination
  4704 //   slice_idx          array index of first element to store
  4705 //   slice_len          number of elements to store (or NULL)
  4706 //   dest_size          total size in bytes of the array object
  4707 //
  4708 // Exactly one of slice_len or dest_size must be non-NULL.
  4709 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4710 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4711 void
  4712 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4713                                      Node* dest,
  4714                                      BasicType basic_elem_type,
  4715                                      Node* slice_idx,
  4716                                      Node* slice_len,
  4717                                      Node* dest_size) {
  4718   // one or the other but not both of slice_len and dest_size:
  4719   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4720   if (slice_len == NULL)  slice_len = top();
  4721   if (dest_size == NULL)  dest_size = top();
  4723   // operate on this memory slice:
  4724   Node* mem = memory(adr_type); // memory slice to operate on
  4726   // scaling and rounding of indexes:
  4727   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4728   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4729   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4730   int bump_bit  = (-1 << scale) & BytesPerInt;
  4732   // determine constant starts and ends
  4733   const intptr_t BIG_NEG = -128;
  4734   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4735   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4736   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4737   if (slice_len_con == 0) {
  4738     return;                     // nothing to do here
  4740   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4741   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4742   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4743     assert(end_con < 0, "not two cons");
  4744     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4745                        BytesPerLong);
  4748   if (start_con >= 0 && end_con >= 0) {
  4749     // Constant start and end.  Simple.
  4750     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4751                                        start_con, end_con, &_gvn);
  4752   } else if (start_con >= 0 && dest_size != top()) {
  4753     // Constant start, pre-rounded end after the tail of the array.
  4754     Node* end = dest_size;
  4755     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4756                                        start_con, end, &_gvn);
  4757   } else if (start_con >= 0 && slice_len != top()) {
  4758     // Constant start, non-constant end.  End needs rounding up.
  4759     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  4760     intptr_t end_base  = abase + (slice_idx_con << scale);
  4761     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  4762     Node*    end       = ConvI2X(slice_len);
  4763     if (scale != 0)
  4764       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  4765     end_base += end_round;
  4766     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  4767     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  4768     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4769                                        start_con, end, &_gvn);
  4770   } else if (start_con < 0 && dest_size != top()) {
  4771     // Non-constant start, pre-rounded end after the tail of the array.
  4772     // This is almost certainly a "round-to-end" operation.
  4773     Node* start = slice_idx;
  4774     start = ConvI2X(start);
  4775     if (scale != 0)
  4776       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  4777     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  4778     if ((bump_bit | clear_low) != 0) {
  4779       int to_clear = (bump_bit | clear_low);
  4780       // Align up mod 8, then store a jint zero unconditionally
  4781       // just before the mod-8 boundary.
  4782       if (((abase + bump_bit) & ~to_clear) - bump_bit
  4783           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  4784         bump_bit = 0;
  4785         assert((abase & to_clear) == 0, "array base must be long-aligned");
  4786       } else {
  4787         // Bump 'start' up to (or past) the next jint boundary:
  4788         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  4789         assert((abase & clear_low) == 0, "array base must be int-aligned");
  4791       // Round bumped 'start' down to jlong boundary in body of array.
  4792       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  4793       if (bump_bit != 0) {
  4794         // Store a zero to the immediately preceding jint:
  4795         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  4796         Node* p1 = basic_plus_adr(dest, x1);
  4797         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  4798         mem = _gvn.transform(mem);
  4801     Node* end = dest_size; // pre-rounded
  4802     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4803                                        start, end, &_gvn);
  4804   } else {
  4805     // Non-constant start, unrounded non-constant end.
  4806     // (Nobody zeroes a random midsection of an array using this routine.)
  4807     ShouldNotReachHere();       // fix caller
  4810   // Done.
  4811   set_memory(mem, adr_type);
  4815 bool
  4816 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  4817                                          BasicType basic_elem_type,
  4818                                          AllocateNode* alloc,
  4819                                          Node* src,  Node* src_offset,
  4820                                          Node* dest, Node* dest_offset,
  4821                                          Node* dest_size) {
  4822   // See if there is an advantage from block transfer.
  4823   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4824   if (scale >= LogBytesPerLong)
  4825     return false;               // it is already a block transfer
  4827   // Look at the alignment of the starting offsets.
  4828   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4829   const intptr_t BIG_NEG = -128;
  4830   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4832   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  4833   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  4834   if (src_off < 0 || dest_off < 0)
  4835     // At present, we can only understand constants.
  4836     return false;
  4838   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  4839     // Non-aligned; too bad.
  4840     // One more chance:  Pick off an initial 32-bit word.
  4841     // This is a common case, since abase can be odd mod 8.
  4842     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  4843         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  4844       Node* sptr = basic_plus_adr(src,  src_off);
  4845       Node* dptr = basic_plus_adr(dest, dest_off);
  4846       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  4847       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  4848       src_off += BytesPerInt;
  4849       dest_off += BytesPerInt;
  4850     } else {
  4851       return false;
  4854   assert(src_off % BytesPerLong == 0, "");
  4855   assert(dest_off % BytesPerLong == 0, "");
  4857   // Do this copy by giant steps.
  4858   Node* sptr  = basic_plus_adr(src,  src_off);
  4859   Node* dptr  = basic_plus_adr(dest, dest_off);
  4860   Node* countx = dest_size;
  4861   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  4862   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  4864   bool disjoint_bases = true;   // since alloc != NULL
  4865   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  4866                                sptr, NULL, dptr, NULL, countx);
  4868   return true;
  4872 // Helper function; generates code for the slow case.
  4873 // We make a call to a runtime method which emulates the native method,
  4874 // but without the native wrapper overhead.
  4875 void
  4876 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  4877                                         Node* src,  Node* src_offset,
  4878                                         Node* dest, Node* dest_offset,
  4879                                         Node* copy_length,
  4880                                         int nargs) {
  4881   _sp += nargs; // any deopt will start just before call to enclosing method
  4882   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  4883                                  OptoRuntime::slow_arraycopy_Type(),
  4884                                  OptoRuntime::slow_arraycopy_Java(),
  4885                                  "slow_arraycopy", adr_type,
  4886                                  src, src_offset, dest, dest_offset,
  4887                                  copy_length);
  4888   _sp -= nargs;
  4890   // Handle exceptions thrown by this fellow:
  4891   make_slow_call_ex(call, env()->Throwable_klass(), false);
  4894 // Helper function; generates code for cases requiring runtime checks.
  4895 Node*
  4896 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  4897                                              Node* dest_elem_klass,
  4898                                              Node* src,  Node* src_offset,
  4899                                              Node* dest, Node* dest_offset,
  4900                                              Node* copy_length,
  4901                                              int nargs) {
  4902   if (stopped())  return NULL;
  4904   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  4905   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4906     return NULL;
  4909   // Pick out the parameters required to perform a store-check
  4910   // for the target array.  This is an optimistic check.  It will
  4911   // look in each non-null element's class, at the desired klass's
  4912   // super_check_offset, for the desired klass.
  4913   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  4914   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  4915   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  4916   Node* check_offset = _gvn.transform(n3);
  4917   Node* check_value  = dest_elem_klass;
  4919   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  4920   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  4922   // (We know the arrays are never conjoint, because their types differ.)
  4923   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4924                                  OptoRuntime::checkcast_arraycopy_Type(),
  4925                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  4926                                  // five arguments, of which two are
  4927                                  // intptr_t (jlong in LP64)
  4928                                  src_start, dest_start,
  4929                                  copy_length XTOP,
  4930                                  check_offset XTOP,
  4931                                  check_value);
  4933   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4937 // Helper function; generates code for cases requiring runtime checks.
  4938 Node*
  4939 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  4940                                            Node* src,  Node* src_offset,
  4941                                            Node* dest, Node* dest_offset,
  4942                                            Node* copy_length,
  4943                                            int nargs) {
  4944   if (stopped())  return NULL;
  4946   address copyfunc_addr = StubRoutines::generic_arraycopy();
  4947   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4948     return NULL;
  4951   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4952                     OptoRuntime::generic_arraycopy_Type(),
  4953                     copyfunc_addr, "generic_arraycopy", adr_type,
  4954                     src, src_offset, dest, dest_offset, copy_length);
  4956   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4959 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  4960 void
  4961 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  4962                                              BasicType basic_elem_type,
  4963                                              bool disjoint_bases,
  4964                                              Node* src,  Node* src_offset,
  4965                                              Node* dest, Node* dest_offset,
  4966                                              Node* copy_length) {
  4967   if (stopped())  return;               // nothing to do
  4969   Node* src_start  = src;
  4970   Node* dest_start = dest;
  4971   if (src_offset != NULL || dest_offset != NULL) {
  4972     assert(src_offset != NULL && dest_offset != NULL, "");
  4973     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  4974     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  4977   // Figure out which arraycopy runtime method to call.
  4978   const char* copyfunc_name = "arraycopy";
  4979   address     copyfunc_addr =
  4980       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  4981                           disjoint_bases, copyfunc_name);
  4983   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  4984   make_runtime_call(RC_LEAF|RC_NO_FP,
  4985                     OptoRuntime::fast_arraycopy_Type(),
  4986                     copyfunc_addr, copyfunc_name, adr_type,
  4987                     src_start, dest_start, copy_length XTOP);

mercurial