src/cpu/ppc/vm/macroAssembler_ppc.cpp

Tue, 07 Jan 2014 17:24:59 +0100

author
goetz
date
Tue, 07 Jan 2014 17:24:59 +0100
changeset 6501
c668f307a4c0
parent 6495
67fa91961822
child 6511
31e80afe3fed
permissions
-rw-r--r--

8031319: PPC64: Some fixes in ppc and aix coding.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2013 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.hpp"
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.inline.hpp"
    30 #include "compiler/disassembler.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "prims/methodHandles.hpp"
    36 #include "runtime/biasedLocking.hpp"
    37 #include "runtime/interfaceSupport.hpp"
    38 #include "runtime/objectMonitor.hpp"
    39 #include "runtime/os.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "runtime/stubRoutines.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    45 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    46 #include "gc_implementation/g1/heapRegion.hpp"
    47 #endif // INCLUDE_ALL_GCS
    49 #ifdef PRODUCT
    50 #define BLOCK_COMMENT(str) // nothing
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #endif
    55 #ifdef ASSERT
    56 // On RISC, there's no benefit to verifying instruction boundaries.
    57 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
    58 #endif
    60 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
    61   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
    62   if (Assembler::is_simm(si31, 16)) {
    63     ld(d, si31, a);
    64     if (emit_filler_nop) nop();
    65   } else {
    66     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
    67     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
    68     addis(d, a, hi);
    69     ld(d, lo, d);
    70   }
    71 }
    73 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
    74   assert_different_registers(d, a);
    75   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
    76 }
    78 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
    79                                       size_t size_in_bytes, bool is_signed) {
    80   switch (size_in_bytes) {
    81   case  8:              ld(dst, offs, base);                         break;
    82   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
    83   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
    84   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
    85   default:  ShouldNotReachHere();
    86   }
    87 }
    89 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
    90                                        size_t size_in_bytes) {
    91   switch (size_in_bytes) {
    92   case  8:  std(dst, offs, base); break;
    93   case  4:  stw(dst, offs, base); break;
    94   case  2:  sth(dst, offs, base); break;
    95   case  1:  stb(dst, offs, base); break;
    96   default:  ShouldNotReachHere();
    97   }
    98 }
   100 void MacroAssembler::align(int modulus, int max, int rem) {
   101   int padding = (rem + modulus - (offset() % modulus)) % modulus;
   102   if (padding > max) return;
   103   for (int c = (padding >> 2); c > 0; --c) { nop(); }
   104 }
   106 // Issue instructions that calculate given TOC from global TOC.
   107 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
   108                                                        bool add_relocation, bool emit_dummy_addr) {
   109   int offset = -1;
   110   if (emit_dummy_addr) {
   111     offset = -128; // dummy address
   112   } else if (addr != (address)(intptr_t)-1) {
   113     offset = MacroAssembler::offset_to_global_toc(addr);
   114   }
   116   if (hi16) {
   117     addis(dst, R29, MacroAssembler::largeoffset_si16_si16_hi(offset));
   118   }
   119   if (lo16) {
   120     if (add_relocation) {
   121       // Relocate at the addi to avoid confusion with a load from the method's TOC.
   122       relocate(internal_word_Relocation::spec(addr));
   123     }
   124     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
   125   }
   126 }
   128 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
   129   const int offset = MacroAssembler::offset_to_global_toc(addr);
   131   const address inst2_addr = a;
   132   const int inst2 = *(int *)inst2_addr;
   134   // The relocation points to the second instruction, the addi,
   135   // and the addi reads and writes the same register dst.
   136   const int dst = inv_rt_field(inst2);
   137   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
   139   // Now, find the preceding addis which writes to dst.
   140   int inst1 = 0;
   141   address inst1_addr = inst2_addr - BytesPerInstWord;
   142   while (inst1_addr >= bound) {
   143     inst1 = *(int *) inst1_addr;
   144     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
   145       // Stop, found the addis which writes dst.
   146       break;
   147     }
   148     inst1_addr -= BytesPerInstWord;
   149   }
   151   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
   152   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
   153   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
   154   return (int)((intptr_t)addr - (intptr_t)inst1_addr);
   155 }
   157 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
   158   const address inst2_addr = a;
   159   const int inst2 = *(int *)inst2_addr;
   161   // The relocation points to the second instruction, the addi,
   162   // and the addi reads and writes the same register dst.
   163   const int dst = inv_rt_field(inst2);
   164   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
   166   // Now, find the preceding addis which writes to dst.
   167   int inst1 = 0;
   168   address inst1_addr = inst2_addr - BytesPerInstWord;
   169   while (inst1_addr >= bound) {
   170     inst1 = *(int *) inst1_addr;
   171     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
   172       // stop, found the addis which writes dst
   173       break;
   174     }
   175     inst1_addr -= BytesPerInstWord;
   176   }
   178   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
   180   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
   181   // -1 is a special case
   182   if (offset == -1) {
   183     return (address)(intptr_t)-1;
   184   } else {
   185     return global_toc() + offset;
   186   }
   187 }
   189 #ifdef _LP64
   190 // Patch compressed oops or klass constants.
   191 // Assembler sequence is
   192 // 1) compressed oops:
   193 //    lis  rx = const.hi
   194 //    ori rx = rx | const.lo
   195 // 2) compressed klass:
   196 //    lis  rx = const.hi
   197 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
   198 //    ori rx = rx | const.lo
   199 // Clrldi will be passed by.
   200 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
   201   assert(UseCompressedOops, "Should only patch compressed oops");
   203   const address inst2_addr = a;
   204   const int inst2 = *(int *)inst2_addr;
   206   // The relocation points to the second instruction, the ori,
   207   // and the ori reads and writes the same register dst.
   208   const int dst = inv_rta_field(inst2);
   209   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
   210   // Now, find the preceding addis which writes to dst.
   211   int inst1 = 0;
   212   address inst1_addr = inst2_addr - BytesPerInstWord;
   213   bool inst1_found = false;
   214   while (inst1_addr >= bound) {
   215     inst1 = *(int *)inst1_addr;
   216     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
   217     inst1_addr -= BytesPerInstWord;
   218   }
   219   assert(inst1_found, "inst is not lis");
   221   int xc = (data >> 16) & 0xffff;
   222   int xd = (data >>  0) & 0xffff;
   224   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
   225   set_imm((int *)inst2_addr,        (xd)); // unsigned int
   226   return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
   227 }
   229 // Get compressed oop or klass constant.
   230 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
   231   assert(UseCompressedOops, "Should only patch compressed oops");
   233   const address inst2_addr = a;
   234   const int inst2 = *(int *)inst2_addr;
   236   // The relocation points to the second instruction, the ori,
   237   // and the ori reads and writes the same register dst.
   238   const int dst = inv_rta_field(inst2);
   239   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
   240   // Now, find the preceding lis which writes to dst.
   241   int inst1 = 0;
   242   address inst1_addr = inst2_addr - BytesPerInstWord;
   243   bool inst1_found = false;
   245   while (inst1_addr >= bound) {
   246     inst1 = *(int *) inst1_addr;
   247     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
   248     inst1_addr -= BytesPerInstWord;
   249   }
   250   assert(inst1_found, "inst is not lis");
   252   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
   253   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
   255   return (int) (xl | xh);
   256 }
   257 #endif // _LP64
   259 void MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc) {
   260   int toc_offset = 0;
   261   // Use RelocationHolder::none for the constant pool entry, otherwise
   262   // we will end up with a failing NativeCall::verify(x) where x is
   263   // the address of the constant pool entry.
   264   // FIXME: We should insert relocation information for oops at the constant
   265   // pool entries instead of inserting it at the loads; patching of a constant
   266   // pool entry should be less expensive.
   267   address oop_address = address_constant((address)a.value(), RelocationHolder::none);
   268   // Relocate at the pc of the load.
   269   relocate(a.rspec());
   270   toc_offset = (int)(oop_address - code()->consts()->start());
   271   ld_largeoffset_unchecked(dst, toc_offset, toc, true);
   272 }
   274 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
   275   const address inst1_addr = a;
   276   const int inst1 = *(int *)inst1_addr;
   278    // The relocation points to the ld or the addis.
   279    return (is_ld(inst1)) ||
   280           (is_addis(inst1) && inv_ra_field(inst1) != 0);
   281 }
   283 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
   284   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
   286   const address inst1_addr = a;
   287   const int inst1 = *(int *)inst1_addr;
   289   if (is_ld(inst1)) {
   290     return inv_d1_field(inst1);
   291   } else if (is_addis(inst1)) {
   292     const int dst = inv_rt_field(inst1);
   294     // Now, find the succeeding ld which reads and writes to dst.
   295     address inst2_addr = inst1_addr + BytesPerInstWord;
   296     int inst2 = 0;
   297     while (true) {
   298       inst2 = *(int *) inst2_addr;
   299       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
   300         // Stop, found the ld which reads and writes dst.
   301         break;
   302       }
   303       inst2_addr += BytesPerInstWord;
   304     }
   305     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
   306   }
   307   ShouldNotReachHere();
   308   return 0;
   309 }
   311 // Get the constant from a `load_const' sequence.
   312 long MacroAssembler::get_const(address a) {
   313   assert(is_load_const_at(a), "not a load of a constant");
   314   const int *p = (const int*) a;
   315   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
   316   if (is_ori(*(p+1))) {
   317     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
   318     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
   319     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
   320   } else if (is_lis(*(p+1))) {
   321     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
   322     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
   323     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
   324   } else {
   325     ShouldNotReachHere();
   326     return (long) 0;
   327   }
   328   return (long) x;
   329 }
   331 // Patch the 64 bit constant of a `load_const' sequence. This is a low
   332 // level procedure. It neither flushes the instruction cache nor is it
   333 // mt safe.
   334 void MacroAssembler::patch_const(address a, long x) {
   335   assert(is_load_const_at(a), "not a load of a constant");
   336   int *p = (int*) a;
   337   if (is_ori(*(p+1))) {
   338     set_imm(0 + p, (x >> 48) & 0xffff);
   339     set_imm(1 + p, (x >> 32) & 0xffff);
   340     set_imm(3 + p, (x >> 16) & 0xffff);
   341     set_imm(4 + p, x & 0xffff);
   342   } else if (is_lis(*(p+1))) {
   343     set_imm(0 + p, (x >> 48) & 0xffff);
   344     set_imm(2 + p, (x >> 32) & 0xffff);
   345     set_imm(1 + p, (x >> 16) & 0xffff);
   346     set_imm(3 + p, x & 0xffff);
   347   } else {
   348     ShouldNotReachHere();
   349   }
   350 }
   352 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
   353   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
   354   int index = oop_recorder()->allocate_metadata_index(obj);
   355   RelocationHolder rspec = metadata_Relocation::spec(index);
   356   return AddressLiteral((address)obj, rspec);
   357 }
   359 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
   360   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
   361   int index = oop_recorder()->find_index(obj);
   362   RelocationHolder rspec = metadata_Relocation::spec(index);
   363   return AddressLiteral((address)obj, rspec);
   364 }
   366 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
   367   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
   368   int oop_index = oop_recorder()->allocate_oop_index(obj);
   369   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
   370 }
   372 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
   373   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
   374   int oop_index = oop_recorder()->find_index(obj);
   375   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
   376 }
   378 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
   379                                                       Register tmp, int offset) {
   380   intptr_t value = *delayed_value_addr;
   381   if (value != 0) {
   382     return RegisterOrConstant(value + offset);
   383   }
   385   // Load indirectly to solve generation ordering problem.
   386   // static address, no relocation
   387   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
   388   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
   390   if (offset != 0) {
   391     addi(tmp, tmp, offset);
   392   }
   394   return RegisterOrConstant(tmp);
   395 }
   397 #ifndef PRODUCT
   398 void MacroAssembler::pd_print_patched_instruction(address branch) {
   399   Unimplemented(); // TODO: PPC port
   400 }
   401 #endif // ndef PRODUCT
   403 // Conditional far branch for destinations encodable in 24+2 bits.
   404 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
   406   // If requested by flag optimize, relocate the bc_far as a
   407   // runtime_call and prepare for optimizing it when the code gets
   408   // relocated.
   409   if (optimize == bc_far_optimize_on_relocate) {
   410     relocate(relocInfo::runtime_call_type);
   411   }
   413   // variant 2:
   414   //
   415   //    b!cxx SKIP
   416   //    bxx   DEST
   417   //  SKIP:
   418   //
   420   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
   421                                                 opposite_bcond(inv_boint_bcond(boint)));
   423   // We emit two branches.
   424   // First, a conditional branch which jumps around the far branch.
   425   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
   426   const address bc_pc        = pc();
   427   bc(opposite_boint, biint, not_taken_pc);
   429   const int bc_instr = *(int*)bc_pc;
   430   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
   431   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
   432   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
   433                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
   434          "postcondition");
   435   assert(biint == inv_bi_field(bc_instr), "postcondition");
   437   // Second, an unconditional far branch which jumps to dest.
   438   // Note: target(dest) remembers the current pc (see CodeSection::target)
   439   //       and returns the current pc if the label is not bound yet; when
   440   //       the label gets bound, the unconditional far branch will be patched.
   441   const address target_pc = target(dest);
   442   const address b_pc  = pc();
   443   b(target_pc);
   445   assert(not_taken_pc == pc(),                     "postcondition");
   446   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
   447 }
   449 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
   450   return is_bc_far_variant1_at(instruction_addr) ||
   451          is_bc_far_variant2_at(instruction_addr) ||
   452          is_bc_far_variant3_at(instruction_addr);
   453 }
   455 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
   456   if (is_bc_far_variant1_at(instruction_addr)) {
   457     const address instruction_1_addr = instruction_addr;
   458     const int instruction_1 = *(int*)instruction_1_addr;
   459     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
   460   } else if (is_bc_far_variant2_at(instruction_addr)) {
   461     const address instruction_2_addr = instruction_addr + 4;
   462     return bxx_destination(instruction_2_addr);
   463   } else if (is_bc_far_variant3_at(instruction_addr)) {
   464     return instruction_addr + 8;
   465   }
   466   // variant 4 ???
   467   ShouldNotReachHere();
   468   return NULL;
   469 }
   470 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
   472   if (is_bc_far_variant3_at(instruction_addr)) {
   473     // variant 3, far cond branch to the next instruction, already patched to nops:
   474     //
   475     //    nop
   476     //    endgroup
   477     //  SKIP/DEST:
   478     //
   479     return;
   480   }
   482   // first, extract boint and biint from the current branch
   483   int boint = 0;
   484   int biint = 0;
   486   ResourceMark rm;
   487   const int code_size = 2 * BytesPerInstWord;
   488   CodeBuffer buf(instruction_addr, code_size);
   489   MacroAssembler masm(&buf);
   490   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
   491     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
   492     masm.nop();
   493     masm.endgroup();
   494   } else {
   495     if (is_bc_far_variant1_at(instruction_addr)) {
   496       // variant 1, the 1st instruction contains the destination address:
   497       //
   498       //    bcxx  DEST
   499       //    endgroup
   500       //
   501       const int instruction_1 = *(int*)(instruction_addr);
   502       boint = inv_bo_field(instruction_1);
   503       biint = inv_bi_field(instruction_1);
   504     } else if (is_bc_far_variant2_at(instruction_addr)) {
   505       // variant 2, the 2nd instruction contains the destination address:
   506       //
   507       //    b!cxx SKIP
   508       //    bxx   DEST
   509       //  SKIP:
   510       //
   511       const int instruction_1 = *(int*)(instruction_addr);
   512       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
   513           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
   514       biint = inv_bi_field(instruction_1);
   515     } else {
   516       // variant 4???
   517       ShouldNotReachHere();
   518     }
   520     // second, set the new branch destination and optimize the code
   521     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
   522         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
   523       // variant 1:
   524       //
   525       //    bcxx  DEST
   526       //    endgroup
   527       //
   528       masm.bc(boint, biint, dest);
   529       masm.endgroup();
   530     } else {
   531       // variant 2:
   532       //
   533       //    b!cxx SKIP
   534       //    bxx   DEST
   535       //  SKIP:
   536       //
   537       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
   538                                                     opposite_bcond(inv_boint_bcond(boint)));
   539       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
   540       masm.bc(opposite_boint, biint, not_taken_pc);
   541       masm.b(dest);
   542     }
   543   }
   544   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
   545 }
   547 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
   548 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
   549   // get current pc
   550   uint64_t start_pc = (uint64_t) pc();
   552   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
   553   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
   555   // relocate here
   556   if (rt != relocInfo::none) {
   557     relocate(rt);
   558   }
   560   if ( ReoptimizeCallSequences &&
   561        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
   562         (!link && is_within_range_of_b(dest, pc_of_b)))) {
   563     // variant 2:
   564     // Emit an optimized, pc-relative call/jump.
   566     if (link) {
   567       // some padding
   568       nop();
   569       nop();
   570       nop();
   571       nop();
   572       nop();
   573       nop();
   575       // do the call
   576       assert(pc() == pc_of_bl, "just checking");
   577       bl(dest, relocInfo::none);
   578     } else {
   579       // do the jump
   580       assert(pc() == pc_of_b, "just checking");
   581       b(dest, relocInfo::none);
   583       // some padding
   584       nop();
   585       nop();
   586       nop();
   587       nop();
   588       nop();
   589       nop();
   590     }
   592     // Assert that we can identify the emitted call/jump.
   593     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
   594            "can't identify emitted call");
   595   } else {
   596     // variant 1:
   598     mr(R0, R11);  // spill R11 -> R0.
   600     // Load the destination address into CTR,
   601     // calculate destination relative to global toc.
   602     calculate_address_from_global_toc(R11, dest, true, true, false);
   604     mtctr(R11);
   605     mr(R11, R0);  // spill R11 <- R0.
   606     nop();
   608     // do the call/jump
   609     if (link) {
   610       bctrl();
   611     } else{
   612       bctr();
   613     }
   614     // Assert that we can identify the emitted call/jump.
   615     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
   616            "can't identify emitted call");
   617   }
   619   // Assert that we can identify the emitted call/jump.
   620   assert(is_bxx64_patchable_at((address)start_pc, link),
   621          "can't identify emitted call");
   622   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
   623          "wrong encoding of dest address");
   624 }
   626 // Identify a bxx64_patchable instruction.
   627 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
   628   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
   629     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
   630       || is_bxx64_patchable_variant2_at(instruction_addr, link);
   631 }
   633 // Does the call64_patchable instruction use a pc-relative encoding of
   634 // the call destination?
   635 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
   636   // variant 2 is pc-relative
   637   return is_bxx64_patchable_variant2_at(instruction_addr, link);
   638 }
   640 // Identify variant 1.
   641 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
   642   unsigned int* instr = (unsigned int*) instruction_addr;
   643   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
   644       && is_mtctr(instr[5]) // mtctr
   645     && is_load_const_at(instruction_addr);
   646 }
   648 // Identify variant 1b: load destination relative to global toc.
   649 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
   650   unsigned int* instr = (unsigned int*) instruction_addr;
   651   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
   652     && is_mtctr(instr[3]) // mtctr
   653     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
   654 }
   656 // Identify variant 2.
   657 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
   658   unsigned int* instr = (unsigned int*) instruction_addr;
   659   if (link) {
   660     return is_bl (instr[6])  // bl dest is last
   661       && is_nop(instr[0])  // nop
   662       && is_nop(instr[1])  // nop
   663       && is_nop(instr[2])  // nop
   664       && is_nop(instr[3])  // nop
   665       && is_nop(instr[4])  // nop
   666       && is_nop(instr[5]); // nop
   667   } else {
   668     return is_b  (instr[0])  // b  dest is first
   669       && is_nop(instr[1])  // nop
   670       && is_nop(instr[2])  // nop
   671       && is_nop(instr[3])  // nop
   672       && is_nop(instr[4])  // nop
   673       && is_nop(instr[5])  // nop
   674       && is_nop(instr[6]); // nop
   675   }
   676 }
   678 // Set dest address of a bxx64_patchable instruction.
   679 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
   680   ResourceMark rm;
   681   int code_size = MacroAssembler::bxx64_patchable_size;
   682   CodeBuffer buf(instruction_addr, code_size);
   683   MacroAssembler masm(&buf);
   684   masm.bxx64_patchable(dest, relocInfo::none, link);
   685   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
   686 }
   688 // Get dest address of a bxx64_patchable instruction.
   689 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
   690   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
   691     return (address) (unsigned long) get_const(instruction_addr);
   692   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
   693     unsigned int* instr = (unsigned int*) instruction_addr;
   694     if (link) {
   695       const int instr_idx = 6; // bl is last
   696       int branchoffset = branch_destination(instr[instr_idx], 0);
   697       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
   698     } else {
   699       const int instr_idx = 0; // b is first
   700       int branchoffset = branch_destination(instr[instr_idx], 0);
   701       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
   702     }
   703   // Load dest relative to global toc.
   704   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
   705     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
   706                                                                instruction_addr);
   707   } else {
   708     ShouldNotReachHere();
   709     return NULL;
   710   }
   711 }
   713 // Uses ordering which corresponds to ABI:
   714 //    _savegpr0_14:  std  r14,-144(r1)
   715 //    _savegpr0_15:  std  r15,-136(r1)
   716 //    _savegpr0_16:  std  r16,-128(r1)
   717 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
   718   std(R14, offset, dst);   offset += 8;
   719   std(R15, offset, dst);   offset += 8;
   720   std(R16, offset, dst);   offset += 8;
   721   std(R17, offset, dst);   offset += 8;
   722   std(R18, offset, dst);   offset += 8;
   723   std(R19, offset, dst);   offset += 8;
   724   std(R20, offset, dst);   offset += 8;
   725   std(R21, offset, dst);   offset += 8;
   726   std(R22, offset, dst);   offset += 8;
   727   std(R23, offset, dst);   offset += 8;
   728   std(R24, offset, dst);   offset += 8;
   729   std(R25, offset, dst);   offset += 8;
   730   std(R26, offset, dst);   offset += 8;
   731   std(R27, offset, dst);   offset += 8;
   732   std(R28, offset, dst);   offset += 8;
   733   std(R29, offset, dst);   offset += 8;
   734   std(R30, offset, dst);   offset += 8;
   735   std(R31, offset, dst);   offset += 8;
   737   stfd(F14, offset, dst);   offset += 8;
   738   stfd(F15, offset, dst);   offset += 8;
   739   stfd(F16, offset, dst);   offset += 8;
   740   stfd(F17, offset, dst);   offset += 8;
   741   stfd(F18, offset, dst);   offset += 8;
   742   stfd(F19, offset, dst);   offset += 8;
   743   stfd(F20, offset, dst);   offset += 8;
   744   stfd(F21, offset, dst);   offset += 8;
   745   stfd(F22, offset, dst);   offset += 8;
   746   stfd(F23, offset, dst);   offset += 8;
   747   stfd(F24, offset, dst);   offset += 8;
   748   stfd(F25, offset, dst);   offset += 8;
   749   stfd(F26, offset, dst);   offset += 8;
   750   stfd(F27, offset, dst);   offset += 8;
   751   stfd(F28, offset, dst);   offset += 8;
   752   stfd(F29, offset, dst);   offset += 8;
   753   stfd(F30, offset, dst);   offset += 8;
   754   stfd(F31, offset, dst);
   755 }
   757 // Uses ordering which corresponds to ABI:
   758 //    _restgpr0_14:  ld   r14,-144(r1)
   759 //    _restgpr0_15:  ld   r15,-136(r1)
   760 //    _restgpr0_16:  ld   r16,-128(r1)
   761 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
   762   ld(R14, offset, src);   offset += 8;
   763   ld(R15, offset, src);   offset += 8;
   764   ld(R16, offset, src);   offset += 8;
   765   ld(R17, offset, src);   offset += 8;
   766   ld(R18, offset, src);   offset += 8;
   767   ld(R19, offset, src);   offset += 8;
   768   ld(R20, offset, src);   offset += 8;
   769   ld(R21, offset, src);   offset += 8;
   770   ld(R22, offset, src);   offset += 8;
   771   ld(R23, offset, src);   offset += 8;
   772   ld(R24, offset, src);   offset += 8;
   773   ld(R25, offset, src);   offset += 8;
   774   ld(R26, offset, src);   offset += 8;
   775   ld(R27, offset, src);   offset += 8;
   776   ld(R28, offset, src);   offset += 8;
   777   ld(R29, offset, src);   offset += 8;
   778   ld(R30, offset, src);   offset += 8;
   779   ld(R31, offset, src);   offset += 8;
   781   // FP registers
   782   lfd(F14, offset, src);   offset += 8;
   783   lfd(F15, offset, src);   offset += 8;
   784   lfd(F16, offset, src);   offset += 8;
   785   lfd(F17, offset, src);   offset += 8;
   786   lfd(F18, offset, src);   offset += 8;
   787   lfd(F19, offset, src);   offset += 8;
   788   lfd(F20, offset, src);   offset += 8;
   789   lfd(F21, offset, src);   offset += 8;
   790   lfd(F22, offset, src);   offset += 8;
   791   lfd(F23, offset, src);   offset += 8;
   792   lfd(F24, offset, src);   offset += 8;
   793   lfd(F25, offset, src);   offset += 8;
   794   lfd(F26, offset, src);   offset += 8;
   795   lfd(F27, offset, src);   offset += 8;
   796   lfd(F28, offset, src);   offset += 8;
   797   lfd(F29, offset, src);   offset += 8;
   798   lfd(F30, offset, src);   offset += 8;
   799   lfd(F31, offset, src);
   800 }
   802 // For verify_oops.
   803 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
   804   std(R3,  offset, dst);   offset += 8;
   805   std(R4,  offset, dst);   offset += 8;
   806   std(R5,  offset, dst);   offset += 8;
   807   std(R6,  offset, dst);   offset += 8;
   808   std(R7,  offset, dst);   offset += 8;
   809   std(R8,  offset, dst);   offset += 8;
   810   std(R9,  offset, dst);   offset += 8;
   811   std(R10, offset, dst);   offset += 8;
   812   std(R11, offset, dst);   offset += 8;
   813   std(R12, offset, dst);
   814 }
   816 // For verify_oops.
   817 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
   818   ld(R3,  offset, src);   offset += 8;
   819   ld(R4,  offset, src);   offset += 8;
   820   ld(R5,  offset, src);   offset += 8;
   821   ld(R6,  offset, src);   offset += 8;
   822   ld(R7,  offset, src);   offset += 8;
   823   ld(R8,  offset, src);   offset += 8;
   824   ld(R9,  offset, src);   offset += 8;
   825   ld(R10, offset, src);   offset += 8;
   826   ld(R11, offset, src);   offset += 8;
   827   ld(R12, offset, src);
   828 }
   830 void MacroAssembler::save_LR_CR(Register tmp) {
   831   mfcr(tmp);
   832   std(tmp, _abi(cr), R1_SP);
   833   mflr(tmp);
   834   std(tmp, _abi(lr), R1_SP);
   835   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
   836 }
   838 void MacroAssembler::restore_LR_CR(Register tmp) {
   839   assert(tmp != R1_SP, "must be distinct");
   840   ld(tmp, _abi(lr), R1_SP);
   841   mtlr(tmp);
   842   ld(tmp, _abi(cr), R1_SP);
   843   mtcr(tmp);
   844 }
   846 address MacroAssembler::get_PC_trash_LR(Register result) {
   847   Label L;
   848   bl(L);
   849   bind(L);
   850   address lr_pc = pc();
   851   mflr(result);
   852   return lr_pc;
   853 }
   855 void MacroAssembler::resize_frame(Register offset, Register tmp) {
   856 #ifdef ASSERT
   857   assert_different_registers(offset, tmp, R1_SP);
   858   andi_(tmp, offset, frame::alignment_in_bytes-1);
   859   asm_assert_eq("resize_frame: unaligned", 0x204);
   860 #endif
   862   // tmp <- *(SP)
   863   ld(tmp, _abi(callers_sp), R1_SP);
   864   // addr <- SP + offset;
   865   // *(addr) <- tmp;
   866   // SP <- addr
   867   stdux(tmp, R1_SP, offset);
   868 }
   870 void MacroAssembler::resize_frame(int offset, Register tmp) {
   871   assert(is_simm(offset, 16), "too big an offset");
   872   assert_different_registers(tmp, R1_SP);
   873   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
   874   // tmp <- *(SP)
   875   ld(tmp, _abi(callers_sp), R1_SP);
   876   // addr <- SP + offset;
   877   // *(addr) <- tmp;
   878   // SP <- addr
   879   stdu(tmp, offset, R1_SP);
   880 }
   882 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
   883   // (addr == tmp1) || (addr == tmp2) is allowed here!
   884   assert(tmp1 != tmp2, "must be distinct");
   886   // compute offset w.r.t. current stack pointer
   887   // tmp_1 <- addr - SP (!)
   888   subf(tmp1, R1_SP, addr);
   890   // atomically update SP keeping back link.
   891   resize_frame(tmp1/* offset */, tmp2/* tmp */);
   892 }
   894 void MacroAssembler::push_frame(Register bytes, Register tmp) {
   895 #ifdef ASSERT
   896   assert(bytes != R0, "r0 not allowed here");
   897   andi_(R0, bytes, frame::alignment_in_bytes-1);
   898   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
   899 #endif
   900   neg(tmp, bytes);
   901   stdux(R1_SP, R1_SP, tmp);
   902 }
   904 // Push a frame of size `bytes'.
   905 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
   906   long offset = align_addr(bytes, frame::alignment_in_bytes);
   907   if (is_simm(-offset, 16)) {
   908     stdu(R1_SP, -offset, R1_SP);
   909   } else {
   910     load_const(tmp, -offset);
   911     stdux(R1_SP, R1_SP, tmp);
   912   }
   913 }
   915 // Push a frame of size `bytes' plus abi112 on top.
   916 void MacroAssembler::push_frame_abi112(unsigned int bytes, Register tmp) {
   917   push_frame(bytes + frame::abi_112_size, tmp);
   918 }
   920 // Setup up a new C frame with a spill area for non-volatile GPRs and
   921 // additional space for local variables.
   922 void MacroAssembler::push_frame_abi112_nonvolatiles(unsigned int bytes,
   923                                                     Register tmp) {
   924   push_frame(bytes + frame::abi_112_size + frame::spill_nonvolatiles_size, tmp);
   925 }
   927 // Pop current C frame.
   928 void MacroAssembler::pop_frame() {
   929   ld(R1_SP, _abi(callers_sp), R1_SP);
   930 }
   932 // Generic version of a call to C function via a function descriptor
   933 // with variable support for C calling conventions (TOC, ENV, etc.).
   934 // Updates and returns _last_calls_return_pc.
   935 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
   936                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
   937   // we emit standard ptrgl glue code here
   938   assert((function_descriptor != R0), "function_descriptor cannot be R0");
   940   // retrieve necessary entries from the function descriptor
   941   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
   942   mtctr(R0);
   944   if (load_toc_of_callee) {
   945     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
   946   }
   947   if (load_env_of_callee) {
   948     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
   949   } else if (load_toc_of_callee) {
   950     li(R11, 0);
   951   }
   953   // do a call or a branch
   954   if (and_link) {
   955     bctrl();
   956   } else {
   957     bctr();
   958   }
   959   _last_calls_return_pc = pc();
   961   return _last_calls_return_pc;
   962 }
   964 // Call a C function via a function descriptor and use full C calling
   965 // conventions.
   966 // We don't use the TOC in generated code, so there is no need to save
   967 // and restore its value.
   968 address MacroAssembler::call_c(Register fd) {
   969   return branch_to(fd, /*and_link=*/true,
   970                        /*save toc=*/false,
   971                        /*restore toc=*/false,
   972                        /*load toc=*/true,
   973                        /*load env=*/true);
   974 }
   976 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
   977   return branch_to(fd, /*and_link=*/false,
   978                        /*save toc=*/false,
   979                        /*restore toc=*/false,
   980                        /*load toc=*/true,
   981                        /*load env=*/true);
   982 }
   984 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
   985   if (rt != relocInfo::none) {
   986     // this call needs to be relocatable
   987     if (!ReoptimizeCallSequences
   988         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
   989         || fd == NULL   // support code-size estimation
   990         || !fd->is_friend_function()
   991         || fd->entry() == NULL) {
   992       // it's not a friend function as defined by class FunctionDescriptor,
   993       // so do a full call-c here.
   994       load_const(R11, (address)fd, R0);
   996       bool has_env = (fd != NULL && fd->env() != NULL);
   997       return branch_to(R11, /*and_link=*/true,
   998                             /*save toc=*/false,
   999                             /*restore toc=*/false,
  1000                             /*load toc=*/true,
  1001                             /*load env=*/has_env);
  1002     } else {
  1003       // It's a friend function. Load the entry point and don't care about
  1004       // toc and env. Use an optimizable call instruction, but ensure the
  1005       // same code-size as in the case of a non-friend function.
  1006       nop();
  1007       nop();
  1008       nop();
  1009       bl64_patchable(fd->entry(), rt);
  1010       _last_calls_return_pc = pc();
  1011       return _last_calls_return_pc;
  1013   } else {
  1014     // This call does not need to be relocatable, do more aggressive
  1015     // optimizations.
  1016     if (!ReoptimizeCallSequences
  1017       || !fd->is_friend_function()) {
  1018       // It's not a friend function as defined by class FunctionDescriptor,
  1019       // so do a full call-c here.
  1020       load_const(R11, (address)fd, R0);
  1021       return branch_to(R11, /*and_link=*/true,
  1022                             /*save toc=*/false,
  1023                             /*restore toc=*/false,
  1024                             /*load toc=*/true,
  1025                             /*load env=*/true);
  1026     } else {
  1027       // it's a friend function, load the entry point and don't care about
  1028       // toc and env.
  1029       address dest = fd->entry();
  1030       if (is_within_range_of_b(dest, pc())) {
  1031         bl(dest);
  1032       } else {
  1033         bl64_patchable(dest, rt);
  1035       _last_calls_return_pc = pc();
  1036       return _last_calls_return_pc;
  1041 // Call a C function.  All constants needed reside in TOC.
  1042 //
  1043 // Read the address to call from the TOC.
  1044 // Read env from TOC, if fd specifies an env.
  1045 // Read new TOC from TOC.
  1046 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
  1047                                          relocInfo::relocType rt, Register toc) {
  1048   if (!ReoptimizeCallSequences
  1049     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
  1050     || !fd->is_friend_function()) {
  1051     // It's not a friend function as defined by class FunctionDescriptor,
  1052     // so do a full call-c here.
  1053     assert(fd->entry() != NULL, "function must be linked");
  1055     AddressLiteral fd_entry(fd->entry());
  1056     load_const_from_method_toc(R11, fd_entry, toc);
  1057     mtctr(R11);
  1058     if (fd->env() == NULL) {
  1059       li(R11, 0);
  1060       nop();
  1061     } else {
  1062       AddressLiteral fd_env(fd->env());
  1063       load_const_from_method_toc(R11, fd_env, toc);
  1065     AddressLiteral fd_toc(fd->toc());
  1066     load_toc_from_toc(R2_TOC, fd_toc, toc);
  1067     // R2_TOC is killed.
  1068     bctrl();
  1069     _last_calls_return_pc = pc();
  1070   } else {
  1071     // It's a friend function, load the entry point and don't care about
  1072     // toc and env. Use an optimizable call instruction, but ensure the
  1073     // same code-size as in the case of a non-friend function.
  1074     nop();
  1075     bl64_patchable(fd->entry(), rt);
  1076     _last_calls_return_pc = pc();
  1078   return _last_calls_return_pc;
  1081 void MacroAssembler::call_VM_base(Register oop_result,
  1082                                   Register last_java_sp,
  1083                                   address  entry_point,
  1084                                   bool     check_exceptions) {
  1085   BLOCK_COMMENT("call_VM {");
  1086   // Determine last_java_sp register.
  1087   if (!last_java_sp->is_valid()) {
  1088     last_java_sp = R1_SP;
  1090   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
  1092   // ARG1 must hold thread address.
  1093   mr(R3_ARG1, R16_thread);
  1095   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
  1097   reset_last_Java_frame();
  1099   // Check for pending exceptions.
  1100   if (check_exceptions) {
  1101     // We don't check for exceptions here.
  1102     ShouldNotReachHere();
  1105   // Get oop result if there is one and reset the value in the thread.
  1106   if (oop_result->is_valid()) {
  1107     get_vm_result(oop_result);
  1110   _last_calls_return_pc = return_pc;
  1111   BLOCK_COMMENT("} call_VM");
  1114 void MacroAssembler::call_VM_leaf_base(address entry_point) {
  1115   BLOCK_COMMENT("call_VM_leaf {");
  1116   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
  1117   BLOCK_COMMENT("} call_VM_leaf");
  1120 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
  1121   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
  1124 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
  1125                              bool check_exceptions) {
  1126   // R3_ARG1 is reserved for the thread.
  1127   mr_if_needed(R4_ARG2, arg_1);
  1128   call_VM(oop_result, entry_point, check_exceptions);
  1131 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
  1132                              bool check_exceptions) {
  1133   // R3_ARG1 is reserved for the thread
  1134   mr_if_needed(R4_ARG2, arg_1);
  1135   assert(arg_2 != R4_ARG2, "smashed argument");
  1136   mr_if_needed(R5_ARG3, arg_2);
  1137   call_VM(oop_result, entry_point, check_exceptions);
  1140 void MacroAssembler::call_VM_leaf(address entry_point) {
  1141   call_VM_leaf_base(entry_point);
  1144 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
  1145   mr_if_needed(R3_ARG1, arg_1);
  1146   call_VM_leaf(entry_point);
  1149 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
  1150   mr_if_needed(R3_ARG1, arg_1);
  1151   assert(arg_2 != R3_ARG1, "smashed argument");
  1152   mr_if_needed(R4_ARG2, arg_2);
  1153   call_VM_leaf(entry_point);
  1156 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1157   mr_if_needed(R3_ARG1, arg_1);
  1158   assert(arg_2 != R3_ARG1, "smashed argument");
  1159   mr_if_needed(R4_ARG2, arg_2);
  1160   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
  1161   mr_if_needed(R5_ARG3, arg_3);
  1162   call_VM_leaf(entry_point);
  1165 // Check whether instruction is a read access to the polling page
  1166 // which was emitted by load_from_polling_page(..).
  1167 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
  1168                                                address* polling_address_ptr) {
  1169   if (!is_ld(instruction))
  1170     return false; // It's not a ld. Fail.
  1172   int rt = inv_rt_field(instruction);
  1173   int ra = inv_ra_field(instruction);
  1174   int ds = inv_ds_field(instruction);
  1175   if (!(ds == 0 && ra != 0 && rt == 0)) {
  1176     return false; // It's not a ld(r0, X, ra). Fail.
  1179   if (!ucontext) {
  1180     // Set polling address.
  1181     if (polling_address_ptr != NULL) {
  1182       *polling_address_ptr = NULL;
  1184     return true; // No ucontext given. Can't check value of ra. Assume true.
  1187 #ifdef LINUX
  1188   // Ucontext given. Check that register ra contains the address of
  1189   // the safepoing polling page.
  1190   ucontext_t* uc = (ucontext_t*) ucontext;
  1191   // Set polling address.
  1192   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
  1193   if (polling_address_ptr != NULL) {
  1194     *polling_address_ptr = addr;
  1196   return os::is_poll_address(addr);
  1197 #else
  1198   // Not on Linux, ucontext must be NULL.
  1199   ShouldNotReachHere();
  1200   return false;
  1201 #endif
  1204 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
  1205 #ifdef LINUX
  1206   ucontext_t* uc = (ucontext_t*) ucontext;
  1208   if (is_stwx(instruction) || is_stwux(instruction)) {
  1209     int ra = inv_ra_field(instruction);
  1210     int rb = inv_rb_field(instruction);
  1212     // look up content of ra and rb in ucontext
  1213     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
  1214     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
  1215     return os::is_memory_serialize_page(thread, ra_val+rb_val);
  1216   } else if (is_stw(instruction) || is_stwu(instruction)) {
  1217     int ra = inv_ra_field(instruction);
  1218     int d1 = inv_d1_field(instruction);
  1220     // look up content of ra in ucontext
  1221     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
  1222     return os::is_memory_serialize_page(thread, ra_val+d1);
  1223   } else {
  1224     return false;
  1226 #else
  1227   // workaround not needed on !LINUX :-)
  1228   ShouldNotCallThis();
  1229   return false;
  1230 #endif
  1233 void MacroAssembler::bang_stack_with_offset(int offset) {
  1234   // When increasing the stack, the old stack pointer will be written
  1235   // to the new top of stack according to the PPC64 abi.
  1236   // Therefore, stack banging is not necessary when increasing
  1237   // the stack by <= os::vm_page_size() bytes.
  1238   // When increasing the stack by a larger amount, this method is
  1239   // called repeatedly to bang the intermediate pages.
  1241   // Stack grows down, caller passes positive offset.
  1242   assert(offset > 0, "must bang with positive offset");
  1244   long stdoffset = -offset;
  1246   if (is_simm(stdoffset, 16)) {
  1247     // Signed 16 bit offset, a simple std is ok.
  1248     if (UseLoadInstructionsForStackBangingPPC64) {
  1249       ld(R0, (int)(signed short)stdoffset, R1_SP);
  1250     } else {
  1251       std(R0,(int)(signed short)stdoffset, R1_SP);
  1253   } else if (is_simm(stdoffset, 31)) {
  1254     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1255     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1257     Register tmp = R11;
  1258     addis(tmp, R1_SP, hi);
  1259     if (UseLoadInstructionsForStackBangingPPC64) {
  1260       ld(R0,  lo, tmp);
  1261     } else {
  1262       std(R0, lo, tmp);
  1264   } else {
  1265     ShouldNotReachHere();
  1269 // If instruction is a stack bang of the form
  1270 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
  1271 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
  1272 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
  1273 // return the banged address. Otherwise, return 0.
  1274 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
  1275 #ifdef LINUX
  1276   ucontext_t* uc = (ucontext_t*) ucontext;
  1277   int rs = inv_rs_field(instruction);
  1278   int ra = inv_ra_field(instruction);
  1279   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
  1280       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
  1281       || (is_stdu(instruction) && rs == 1)) {
  1282     int ds = inv_ds_field(instruction);
  1283     // return banged address
  1284     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
  1285   } else if (is_stdux(instruction) && rs == 1) {
  1286     int rb = inv_rb_field(instruction);
  1287     address sp = (address)uc->uc_mcontext.regs->gpr[1];
  1288     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
  1289     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
  1290                                   : sp + rb_val; // banged address
  1292   return NULL; // not a stack bang
  1293 #else
  1294   // workaround not needed on !LINUX :-)
  1295   ShouldNotCallThis();
  1296   return NULL;
  1297 #endif
  1300 // CmpxchgX sets condition register to cmpX(current, compare).
  1301 void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value,
  1302                               Register compare_value, Register exchange_value,
  1303                               Register addr_base, int semantics, bool cmpxchgx_hint,
  1304                               Register int_flag_success, bool contention_hint) {
  1305   Label retry;
  1306   Label failed;
  1307   Label done;
  1309   // Save one branch if result is returned via register and
  1310   // result register is different from the other ones.
  1311   bool use_result_reg    = (int_flag_success != noreg);
  1312   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
  1313                             int_flag_success != exchange_value && int_flag_success != addr_base);
  1315   // release/fence semantics
  1316   if (semantics & MemBarRel) {
  1317     release();
  1320   if (use_result_reg && preset_result_reg) {
  1321     li(int_flag_success, 0); // preset (assume cas failed)
  1324   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
  1325   if (contention_hint) { // Don't try to reserve if cmp fails.
  1326     lwz(dest_current_value, 0, addr_base);
  1327     cmpw(flag, dest_current_value, compare_value);
  1328     bne(flag, failed);
  1331   // atomic emulation loop
  1332   bind(retry);
  1334   lwarx(dest_current_value, addr_base, cmpxchgx_hint);
  1335   cmpw(flag, dest_current_value, compare_value);
  1336   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1337     bne_predict_not_taken(flag, failed);
  1338   } else {
  1339     bne(                  flag, failed);
  1341   // branch to done  => (flag == ne), (dest_current_value != compare_value)
  1342   // fall through    => (flag == eq), (dest_current_value == compare_value)
  1344   stwcx_(exchange_value, addr_base);
  1345   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1346     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
  1347   } else {
  1348     bne(                  CCR0, retry); // StXcx_ sets CCR0.
  1350   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
  1352   // Result in register (must do this at the end because int_flag_success can be the
  1353   // same register as one above).
  1354   if (use_result_reg) {
  1355     li(int_flag_success, 1);
  1358   if (semantics & MemBarFenceAfter) {
  1359     fence();
  1360   } else if (semantics & MemBarAcq) {
  1361     isync();
  1364   if (use_result_reg && !preset_result_reg) {
  1365     b(done);
  1368   bind(failed);
  1369   if (use_result_reg && !preset_result_reg) {
  1370     li(int_flag_success, 0);
  1373   bind(done);
  1374   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
  1375   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
  1378 // Preforms atomic compare exchange:
  1379 //   if (compare_value == *addr_base)
  1380 //     *addr_base = exchange_value
  1381 //     int_flag_success = 1;
  1382 //   else
  1383 //     int_flag_success = 0;
  1384 //
  1385 // ConditionRegister flag       = cmp(compare_value, *addr_base)
  1386 // Register dest_current_value  = *addr_base
  1387 // Register compare_value       Used to compare with value in memory
  1388 // Register exchange_value      Written to memory if compare_value == *addr_base
  1389 // Register addr_base           The memory location to compareXChange
  1390 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
  1391 //
  1392 // To avoid the costly compare exchange the value is tested beforehand.
  1393 // Several special cases exist to avoid that unnecessary information is generated.
  1394 //
  1395 void MacroAssembler::cmpxchgd(ConditionRegister flag,
  1396                               Register dest_current_value, Register compare_value, Register exchange_value,
  1397                               Register addr_base, int semantics, bool cmpxchgx_hint,
  1398                               Register int_flag_success, Label* failed_ext, bool contention_hint) {
  1399   Label retry;
  1400   Label failed_int;
  1401   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
  1402   Label done;
  1404   // Save one branch if result is returned via register and result register is different from the other ones.
  1405   bool use_result_reg    = (int_flag_success!=noreg);
  1406   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value &&
  1407                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
  1408   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
  1410   // release/fence semantics
  1411   if (semantics & MemBarRel) {
  1412     release();
  1415   if (use_result_reg && preset_result_reg) {
  1416     li(int_flag_success, 0); // preset (assume cas failed)
  1419   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
  1420   if (contention_hint) { // Don't try to reserve if cmp fails.
  1421     ld(dest_current_value, 0, addr_base);
  1422     cmpd(flag, dest_current_value, compare_value);
  1423     bne(flag, failed);
  1426   // atomic emulation loop
  1427   bind(retry);
  1429   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
  1430   cmpd(flag, dest_current_value, compare_value);
  1431   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1432     bne_predict_not_taken(flag, failed);
  1433   } else {
  1434     bne(                  flag, failed);
  1437   stdcx_(exchange_value, addr_base);
  1438   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1439     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
  1440   } else {
  1441     bne(                  CCR0, retry); // stXcx_ sets CCR0
  1444   // result in register (must do this at the end because int_flag_success can be the same register as one above)
  1445   if (use_result_reg) {
  1446     li(int_flag_success, 1);
  1449   // POWER6 doesn't need isync in CAS.
  1450   // Always emit isync to be on the safe side.
  1451   if (semantics & MemBarFenceAfter) {
  1452     fence();
  1453   } else if (semantics & MemBarAcq) {
  1454     isync();
  1457   if (use_result_reg && !preset_result_reg) {
  1458     b(done);
  1461   bind(failed_int);
  1462   if (use_result_reg && !preset_result_reg) {
  1463     li(int_flag_success, 0);
  1466   bind(done);
  1467   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
  1468   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
  1471 // Look up the method for a megamorphic invokeinterface call.
  1472 // The target method is determined by <intf_klass, itable_index>.
  1473 // The receiver klass is in recv_klass.
  1474 // On success, the result will be in method_result, and execution falls through.
  1475 // On failure, execution transfers to the given label.
  1476 void MacroAssembler::lookup_interface_method(Register recv_klass,
  1477                                              Register intf_klass,
  1478                                              RegisterOrConstant itable_index,
  1479                                              Register method_result,
  1480                                              Register scan_temp,
  1481                                              Register sethi_temp,
  1482                                              Label& L_no_such_interface) {
  1483   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  1484   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  1485          "caller must use same register for non-constant itable index as for method");
  1487   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
  1488   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  1489   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  1490   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
  1491   int scan_step   = itableOffsetEntry::size() * wordSize;
  1492   int log_vte_size= exact_log2(vtableEntry::size() * wordSize);
  1494   lwz(scan_temp, InstanceKlass::vtable_length_offset() * wordSize, recv_klass);
  1495   // %%% We should store the aligned, prescaled offset in the klassoop.
  1496   // Then the next several instructions would fold away.
  1498   sldi(scan_temp, scan_temp, log_vte_size);
  1499   addi(scan_temp, scan_temp, vtable_base);
  1500   add(scan_temp, recv_klass, scan_temp);
  1502   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  1503   if (itable_index.is_register()) {
  1504     Register itable_offset = itable_index.as_register();
  1505     sldi(itable_offset, itable_offset, logMEsize);
  1506     if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
  1507     add(recv_klass, itable_offset, recv_klass);
  1508   } else {
  1509     long itable_offset = (long)itable_index.as_constant();
  1510     load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
  1511     add(recv_klass, sethi_temp, recv_klass);
  1514   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  1515   //   if (scan->interface() == intf) {
  1516   //     result = (klass + scan->offset() + itable_index);
  1517   //   }
  1518   // }
  1519   Label search, found_method;
  1521   for (int peel = 1; peel >= 0; peel--) {
  1522     // %%%% Could load both offset and interface in one ldx, if they were
  1523     // in the opposite order. This would save a load.
  1524     ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
  1526     // Check that this entry is non-null. A null entry means that
  1527     // the receiver class doesn't implement the interface, and wasn't the
  1528     // same as when the caller was compiled.
  1529     cmpd(CCR0, method_result, intf_klass);
  1531     if (peel) {
  1532       beq(CCR0, found_method);
  1533     } else {
  1534       bne(CCR0, search);
  1535       // (invert the test to fall through to found_method...)
  1538     if (!peel) break;
  1540     bind(search);
  1542     cmpdi(CCR0, method_result, 0);
  1543     beq(CCR0, L_no_such_interface);
  1544     addi(scan_temp, scan_temp, scan_step);
  1547   bind(found_method);
  1549   // Got a hit.
  1550   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  1551   lwz(scan_temp, ito_offset, scan_temp);
  1552   ldx(method_result, scan_temp, recv_klass);
  1555 // virtual method calling
  1556 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  1557                                            RegisterOrConstant vtable_index,
  1558                                            Register method_result) {
  1560   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
  1562   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  1563   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1565   if (vtable_index.is_register()) {
  1566     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
  1567     add(recv_klass, vtable_index.as_register(), recv_klass);
  1568   } else {
  1569     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
  1571   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
  1574 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
  1576 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  1577                                                    Register super_klass,
  1578                                                    Register temp1_reg,
  1579                                                    Register temp2_reg,
  1580                                                    Label& L_success,
  1581                                                    Label& L_failure) {
  1583   const Register check_cache_offset = temp1_reg;
  1584   const Register cached_super       = temp2_reg;
  1586   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
  1588   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1589   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
  1591   // If the pointers are equal, we are done (e.g., String[] elements).
  1592   // This self-check enables sharing of secondary supertype arrays among
  1593   // non-primary types such as array-of-interface. Otherwise, each such
  1594   // type would need its own customized SSA.
  1595   // We move this check to the front of the fast path because many
  1596   // type checks are in fact trivially successful in this manner,
  1597   // so we get a nicely predicted branch right at the start of the check.
  1598   cmpd(CCR0, sub_klass, super_klass);
  1599   beq(CCR0, L_success);
  1601   // Check the supertype display:
  1602   lwz(check_cache_offset, sco_offset, super_klass);
  1603   // The loaded value is the offset from KlassOopDesc.
  1605   ldx(cached_super, check_cache_offset, sub_klass);
  1606   cmpd(CCR0, cached_super, super_klass);
  1607   beq(CCR0, L_success);
  1609   // This check has worked decisively for primary supers.
  1610   // Secondary supers are sought in the super_cache ('super_cache_addr').
  1611   // (Secondary supers are interfaces and very deeply nested subtypes.)
  1612   // This works in the same check above because of a tricky aliasing
  1613   // between the super_cache and the primary super display elements.
  1614   // (The 'super_check_addr' can address either, as the case requires.)
  1615   // Note that the cache is updated below if it does not help us find
  1616   // what we need immediately.
  1617   // So if it was a primary super, we can just fail immediately.
  1618   // Otherwise, it's the slow path for us (no success at this point).
  1620   cmpwi(CCR0, check_cache_offset, sc_offset);
  1621   bne(CCR0, L_failure);
  1622   // bind(slow_path); // fallthru
  1625 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  1626                                                    Register super_klass,
  1627                                                    Register temp1_reg,
  1628                                                    Register temp2_reg,
  1629                                                    Label* L_success,
  1630                                                    Register result_reg) {
  1631   const Register array_ptr = temp1_reg; // current value from cache array
  1632   const Register temp      = temp2_reg;
  1634   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
  1636   int source_offset = in_bytes(Klass::secondary_supers_offset());
  1637   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
  1639   int length_offset = Array<Klass*>::length_offset_in_bytes();
  1640   int base_offset   = Array<Klass*>::base_offset_in_bytes();
  1642   Label hit, loop, failure, fallthru;
  1644   ld(array_ptr, source_offset, sub_klass);
  1646   //assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
  1647   lwz(temp, length_offset, array_ptr);
  1648   cmpwi(CCR0, temp, 0);
  1649   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
  1651   mtctr(temp); // load ctr
  1653   bind(loop);
  1654   // Oops in table are NO MORE compressed.
  1655   ld(temp, base_offset, array_ptr);
  1656   cmpd(CCR0, temp, super_klass);
  1657   beq(CCR0, hit);
  1658   addi(array_ptr, array_ptr, BytesPerWord);
  1659   bdnz(loop);
  1661   bind(failure);
  1662   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
  1663   b(fallthru);
  1665   bind(hit);
  1666   std(super_klass, target_offset, sub_klass); // save result to cache
  1667   if (result_reg != noreg) li(result_reg, 0); // load zero result (indicates a hit)
  1668   if (L_success != NULL) b(*L_success);
  1670   bind(fallthru);
  1673 // Try fast path, then go to slow one if not successful
  1674 void MacroAssembler::check_klass_subtype(Register sub_klass,
  1675                          Register super_klass,
  1676                          Register temp1_reg,
  1677                          Register temp2_reg,
  1678                          Label& L_success) {
  1679   Label L_failure;
  1680   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, L_success, L_failure);
  1681   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
  1682   bind(L_failure); // Fallthru if not successful.
  1685 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  1686                                               Register temp_reg,
  1687                                               Label& wrong_method_type) {
  1688   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  1689   // Compare method type against that of the receiver.
  1690   load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
  1691   cmpd(CCR0, temp_reg, mtype_reg);
  1692   bne(CCR0, wrong_method_type);
  1695 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  1696                                                    Register temp_reg,
  1697                                                    int extra_slot_offset) {
  1698   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  1699   int stackElementSize = Interpreter::stackElementSize;
  1700   int offset = extra_slot_offset * stackElementSize;
  1701   if (arg_slot.is_constant()) {
  1702     offset += arg_slot.as_constant() * stackElementSize;
  1703     return offset;
  1704   } else {
  1705     assert(temp_reg != noreg, "must specify");
  1706     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
  1707     if (offset != 0)
  1708       addi(temp_reg, temp_reg, offset);
  1709     return temp_reg;
  1713 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
  1714                                           Register mark_reg, Register temp_reg,
  1715                                           Register temp2_reg, Label& done, Label* slow_case) {
  1716   assert(UseBiasedLocking, "why call this otherwise?");
  1718 #ifdef ASSERT
  1719   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
  1720 #endif
  1722   Label cas_label;
  1724   // Branch to done if fast path fails and no slow_case provided.
  1725   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
  1727   // Biased locking
  1728   // See whether the lock is currently biased toward our thread and
  1729   // whether the epoch is still valid
  1730   // Note that the runtime guarantees sufficient alignment of JavaThread
  1731   // pointers to allow age to be placed into low bits
  1732   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
  1733          "biased locking makes assumptions about bit layout");
  1735   if (PrintBiasedLockingStatistics) {
  1736     load_const(temp_reg, (address) BiasedLocking::total_entry_count_addr(), temp2_reg);
  1737     lwz(temp2_reg, 0, temp_reg);
  1738     addi(temp2_reg, temp2_reg, 1);
  1739     stw(temp2_reg, 0, temp_reg);
  1742   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
  1743   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
  1744   bne(cr_reg, cas_label);
  1746   load_klass_with_trap_null_check(temp_reg, obj_reg);
  1748   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
  1749   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
  1750   orr(temp_reg, R16_thread, temp_reg);
  1751   xorr(temp_reg, mark_reg, temp_reg);
  1752   andr(temp_reg, temp_reg, temp2_reg);
  1753   cmpdi(cr_reg, temp_reg, 0);
  1754   if (PrintBiasedLockingStatistics) {
  1755     Label l;
  1756     bne(cr_reg, l);
  1757     load_const(mark_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
  1758     lwz(temp2_reg, 0, mark_reg);
  1759     addi(temp2_reg, temp2_reg, 1);
  1760     stw(temp2_reg, 0, mark_reg);
  1761     // restore mark_reg
  1762     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
  1763     bind(l);
  1765   beq(cr_reg, done);
  1767   Label try_revoke_bias;
  1768   Label try_rebias;
  1770   // At this point we know that the header has the bias pattern and
  1771   // that we are not the bias owner in the current epoch. We need to
  1772   // figure out more details about the state of the header in order to
  1773   // know what operations can be legally performed on the object's
  1774   // header.
  1776   // If the low three bits in the xor result aren't clear, that means
  1777   // the prototype header is no longer biased and we have to revoke
  1778   // the bias on this object.
  1779   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
  1780   cmpwi(cr_reg, temp2_reg, 0);
  1781   bne(cr_reg, try_revoke_bias);
  1783   // Biasing is still enabled for this data type. See whether the
  1784   // epoch of the current bias is still valid, meaning that the epoch
  1785   // bits of the mark word are equal to the epoch bits of the
  1786   // prototype header. (Note that the prototype header's epoch bits
  1787   // only change at a safepoint.) If not, attempt to rebias the object
  1788   // toward the current thread. Note that we must be absolutely sure
  1789   // that the current epoch is invalid in order to do this because
  1790   // otherwise the manipulations it performs on the mark word are
  1791   // illegal.
  1793   int shift_amount = 64 - markOopDesc::epoch_shift;
  1794   // rotate epoch bits to right (little) end and set other bits to 0
  1795   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
  1796   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
  1797   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
  1798   bne(CCR0, try_rebias);
  1800   // The epoch of the current bias is still valid but we know nothing
  1801   // about the owner; it might be set or it might be clear. Try to
  1802   // acquire the bias of the object using an atomic operation. If this
  1803   // fails we will go in to the runtime to revoke the object's bias.
  1804   // Note that we first construct the presumed unbiased header so we
  1805   // don't accidentally blow away another thread's valid bias.
  1806   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
  1807                                 markOopDesc::age_mask_in_place |
  1808                                 markOopDesc::epoch_mask_in_place));
  1809   orr(temp_reg, R16_thread, mark_reg);
  1811   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
  1813   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
  1814   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
  1815   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
  1816            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
  1817            /*where=*/obj_reg,
  1818            MacroAssembler::MemBarAcq,
  1819            MacroAssembler::cmpxchgx_hint_acquire_lock(),
  1820            noreg, slow_case_int); // bail out if failed
  1822   // If the biasing toward our thread failed, this means that
  1823   // another thread succeeded in biasing it toward itself and we
  1824   // need to revoke that bias. The revocation will occur in the
  1825   // interpreter runtime in the slow case.
  1826   if (PrintBiasedLockingStatistics) {
  1827     load_const(temp_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp2_reg);
  1828     lwz(temp2_reg, 0, temp_reg);
  1829     addi(temp2_reg, temp2_reg, 1);
  1830     stw(temp2_reg, 0, temp_reg);
  1832   b(done);
  1834   bind(try_rebias);
  1835   // At this point we know the epoch has expired, meaning that the
  1836   // current "bias owner", if any, is actually invalid. Under these
  1837   // circumstances _only_, we are allowed to use the current header's
  1838   // value as the comparison value when doing the cas to acquire the
  1839   // bias in the current epoch. In other words, we allow transfer of
  1840   // the bias from one thread to another directly in this situation.
  1841   andi(temp_reg, mark_reg, markOopDesc::age_mask_in_place);
  1842   orr(temp_reg, R16_thread, temp_reg);
  1843   load_klass_with_trap_null_check(temp2_reg, obj_reg);
  1844   ld(temp2_reg, in_bytes(Klass::prototype_header_offset()), temp2_reg);
  1845   orr(temp_reg, temp_reg, temp2_reg);
  1847   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
  1849   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
  1850   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
  1851   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
  1852                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
  1853                  /*where=*/obj_reg,
  1854                  MacroAssembler::MemBarAcq,
  1855                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
  1856                  noreg, slow_case_int); // bail out if failed
  1858   // If the biasing toward our thread failed, this means that
  1859   // another thread succeeded in biasing it toward itself and we
  1860   // need to revoke that bias. The revocation will occur in the
  1861   // interpreter runtime in the slow case.
  1862   if (PrintBiasedLockingStatistics) {
  1863     load_const(temp_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp2_reg);
  1864     lwz(temp2_reg, 0, temp_reg);
  1865     addi(temp2_reg, temp2_reg, 1);
  1866     stw(temp2_reg, 0, temp_reg);
  1868   b(done);
  1870   bind(try_revoke_bias);
  1871   // The prototype mark in the klass doesn't have the bias bit set any
  1872   // more, indicating that objects of this data type are not supposed
  1873   // to be biased any more. We are going to try to reset the mark of
  1874   // this object to the prototype value and fall through to the
  1875   // CAS-based locking scheme. Note that if our CAS fails, it means
  1876   // that another thread raced us for the privilege of revoking the
  1877   // bias of this particular object, so it's okay to continue in the
  1878   // normal locking code.
  1879   load_klass_with_trap_null_check(temp_reg, obj_reg);
  1880   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
  1881   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
  1882   orr(temp_reg, temp_reg, temp2_reg);
  1884   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
  1886   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
  1887   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
  1888   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
  1889                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
  1890                  /*where=*/obj_reg,
  1891                  MacroAssembler::MemBarAcq,
  1892                  MacroAssembler::cmpxchgx_hint_acquire_lock());
  1894   // reload markOop in mark_reg before continuing with lightweight locking
  1895   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
  1897   // Fall through to the normal CAS-based lock, because no matter what
  1898   // the result of the above CAS, some thread must have succeeded in
  1899   // removing the bias bit from the object's header.
  1900   if (PrintBiasedLockingStatistics) {
  1901     Label l;
  1902     bne(cr_reg, l);
  1903     load_const(temp_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp2_reg);
  1904     lwz(temp2_reg, 0, temp_reg);
  1905     addi(temp2_reg, temp2_reg, 1);
  1906     stw(temp2_reg, 0, temp_reg);
  1907     bind(l);
  1910   bind(cas_label);
  1913 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
  1914   // Check for biased locking unlock case, which is a no-op
  1915   // Note: we do not have to check the thread ID for two reasons.
  1916   // First, the interpreter checks for IllegalMonitorStateException at
  1917   // a higher level. Second, if the bias was revoked while we held the
  1918   // lock, the object could not be rebiased toward another thread, so
  1919   // the bias bit would be clear.
  1921   ld(temp_reg, 0, mark_addr);
  1922   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
  1924   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
  1925   beq(cr_reg, done);
  1928 // "The box" is the space on the stack where we copy the object mark.
  1929 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
  1930                                                Register temp, Register displaced_header, Register current_header) {
  1931   assert_different_registers(oop, box, temp, displaced_header, current_header);
  1932   assert(flag != CCR0, "bad condition register");
  1933   Label cont;
  1934   Label object_has_monitor;
  1935   Label cas_failed;
  1937   // Load markOop from object into displaced_header.
  1938   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
  1941   // Always do locking in runtime.
  1942   if (EmitSync & 0x01) {
  1943     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
  1944     return;
  1947   if (UseBiasedLocking) {
  1948     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
  1951   // Handle existing monitor.
  1952   if ((EmitSync & 0x02) == 0) {
  1953     // The object has an existing monitor iff (mark & monitor_value) != 0.
  1954     andi_(temp, displaced_header, markOopDesc::monitor_value);
  1955     bne(CCR0, object_has_monitor);
  1958   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
  1959   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
  1961   // Load Compare Value application register.
  1963   // Initialize the box. (Must happen before we update the object mark!)
  1964   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
  1966   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
  1967   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
  1968   // CmpxchgX sets cr_reg to cmpX(current, displaced).
  1969   membar(Assembler::StoreStore);
  1970   cmpxchgd(/*flag=*/flag,
  1971            /*current_value=*/current_header,
  1972            /*compare_value=*/displaced_header,
  1973            /*exchange_value=*/box,
  1974            /*where=*/oop,
  1975            MacroAssembler::MemBarAcq,
  1976            MacroAssembler::cmpxchgx_hint_acquire_lock(),
  1977            noreg,
  1978            &cas_failed);
  1979   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
  1981   // If the compare-and-exchange succeeded, then we found an unlocked
  1982   // object and we have now locked it.
  1983   b(cont);
  1985   bind(cas_failed);
  1986   // We did not see an unlocked object so try the fast recursive case.
  1988   // Check if the owner is self by comparing the value in the markOop of object
  1989   // (current_header) with the stack pointer.
  1990   sub(current_header, current_header, R1_SP);
  1991   load_const_optimized(temp, (address) (~(os::vm_page_size()-1) |
  1992                                         markOopDesc::lock_mask_in_place));
  1994   and_(R0/*==0?*/, current_header, temp);
  1995   // If condition is true we are cont and hence we can store 0 as the
  1996   // displaced header in the box, which indicates that it is a recursive lock.
  1997   mcrf(flag,CCR0);
  1998   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
  2000   // Handle existing monitor.
  2001   if ((EmitSync & 0x02) == 0) {
  2002     b(cont);
  2004     bind(object_has_monitor);
  2005     // The object's monitor m is unlocked iff m->owner == NULL,
  2006     // otherwise m->owner may contain a thread or a stack address.
  2007     //
  2008     // Try to CAS m->owner from NULL to current thread.
  2009     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
  2010     li(displaced_header, 0);
  2011     // CmpxchgX sets flag to cmpX(current, displaced).
  2012     cmpxchgd(/*flag=*/flag,
  2013              /*current_value=*/current_header,
  2014              /*compare_value=*/displaced_header,
  2015              /*exchange_value=*/R16_thread,
  2016              /*where=*/temp,
  2017              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
  2018              MacroAssembler::cmpxchgx_hint_acquire_lock());
  2020     // Store a non-null value into the box.
  2021     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
  2023 #   ifdef ASSERT
  2024     bne(flag, cont);
  2025     // We have acquired the monitor, check some invariants.
  2026     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
  2027     // Invariant 1: _recursions should be 0.
  2028     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
  2029     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
  2030                             "monitor->_recursions should be 0", -1);
  2031     // Invariant 2: OwnerIsThread shouldn't be 0.
  2032     //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
  2033     //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
  2034     //                           "monitor->OwnerIsThread shouldn't be 0", -1);
  2035 #   endif
  2038   bind(cont);
  2039   // flag == EQ indicates success
  2040   // flag == NE indicates failure
  2043 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
  2044                                                  Register temp, Register displaced_header, Register current_header) {
  2045   assert_different_registers(oop, box, temp, displaced_header, current_header);
  2046   assert(flag != CCR0, "bad condition register");
  2047   Label cont;
  2048   Label object_has_monitor;
  2050   // Always do locking in runtime.
  2051   if (EmitSync & 0x01) {
  2052     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
  2053     return;
  2056   if (UseBiasedLocking) {
  2057     biased_locking_exit(flag, oop, current_header, cont);
  2060   // Find the lock address and load the displaced header from the stack.
  2061   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
  2063   // If the displaced header is 0, we have a recursive unlock.
  2064   cmpdi(flag, displaced_header, 0);
  2065   beq(flag, cont);
  2067   // Handle existing monitor.
  2068   if ((EmitSync & 0x02) == 0) {
  2069     // The object has an existing monitor iff (mark & monitor_value) != 0.
  2070     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
  2071     andi(temp, current_header, markOopDesc::monitor_value);
  2072     cmpdi(flag, temp, 0);
  2073     bne(flag, object_has_monitor);
  2077   // Check if it is still a light weight lock, this is is true if we see
  2078   // the stack address of the basicLock in the markOop of the object.
  2079   // Cmpxchg sets flag to cmpd(current_header, box).
  2080   cmpxchgd(/*flag=*/flag,
  2081            /*current_value=*/current_header,
  2082            /*compare_value=*/box,
  2083            /*exchange_value=*/displaced_header,
  2084            /*where=*/oop,
  2085            MacroAssembler::MemBarRel,
  2086            MacroAssembler::cmpxchgx_hint_release_lock(),
  2087            noreg,
  2088            &cont);
  2090   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
  2092   // Handle existing monitor.
  2093   if ((EmitSync & 0x02) == 0) {
  2094     b(cont);
  2096     bind(object_has_monitor);
  2097     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
  2098     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
  2099     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
  2100     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
  2101     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
  2102     cmpdi(flag, temp, 0);
  2103     bne(flag, cont);
  2105     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
  2106     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
  2107     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
  2108     cmpdi(flag, temp, 0);
  2109     bne(flag, cont);
  2110     release();
  2111     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
  2114   bind(cont);
  2115   // flag == EQ indicates success
  2116   // flag == NE indicates failure
  2119 // Write serialization page so VM thread can do a pseudo remote membar.
  2120 // We use the current thread pointer to calculate a thread specific
  2121 // offset to write to within the page. This minimizes bus traffic
  2122 // due to cache line collision.
  2123 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
  2124   srdi(tmp2, thread, os::get_serialize_page_shift_count());
  2126   int mask = os::vm_page_size() - sizeof(int);
  2127   if (Assembler::is_simm(mask, 16)) {
  2128     andi(tmp2, tmp2, mask);
  2129   } else {
  2130     lis(tmp1, (int)((signed short) (mask >> 16)));
  2131     ori(tmp1, tmp1, mask & 0x0000ffff);
  2132     andr(tmp2, tmp2, tmp1);
  2135   load_const(tmp1, (long) os::get_memory_serialize_page());
  2136   release();
  2137   stwx(R0, tmp1, tmp2);
  2141 // GC barrier helper macros
  2143 // Write the card table byte if needed.
  2144 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
  2145   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  2146   assert(bs->kind() == BarrierSet::CardTableModRef ||
  2147          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  2148 #ifdef ASSERT
  2149   cmpdi(CCR0, Rnew_val, 0);
  2150   asm_assert_ne("null oop not allowed", 0x321);
  2151 #endif
  2152   card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
  2155 // Write the card table byte.
  2156 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
  2157   assert_different_registers(Robj, Rtmp, R0);
  2158   load_const_optimized(Rtmp, (address)byte_map_base, R0);
  2159   srdi(Robj, Robj, CardTableModRefBS::card_shift);
  2160   li(R0, 0); // dirty
  2161   if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
  2162   stbx(R0, Rtmp, Robj);
  2165 #ifndef SERIALGC
  2167 // General G1 pre-barrier generator.
  2168 // Goal: record the previous value if it is not null.
  2169 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
  2170                                           Register Rtmp1, Register Rtmp2, bool needs_frame) {
  2171   Label runtime, filtered;
  2173   // Is marking active?
  2174   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  2175     lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
  2176   } else {
  2177     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  2178     lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
  2180   cmpdi(CCR0, Rtmp1, 0);
  2181   beq(CCR0, filtered);
  2183   // Do we need to load the previous value?
  2184   if (Robj != noreg) {
  2185     // Load the previous value...
  2186     if (UseCompressedOops) {
  2187       lwz(Rpre_val, offset, Robj);
  2188     } else {
  2189       ld(Rpre_val, offset, Robj);
  2191     // Previous value has been loaded into Rpre_val.
  2193   assert(Rpre_val != noreg, "must have a real register");
  2195   // Is the previous value null?
  2196   cmpdi(CCR0, Rpre_val, 0);
  2197   beq(CCR0, filtered);
  2199   if (Robj != noreg && UseCompressedOops) {
  2200     decode_heap_oop_not_null(Rpre_val);
  2203   // OK, it's not filtered, so we'll need to call enqueue. In the normal
  2204   // case, pre_val will be a scratch G-reg, but there are some cases in
  2205   // which it's an O-reg. In the first case, do a normal call. In the
  2206   // latter, do a save here and call the frameless version.
  2208   // Can we store original value in the thread's buffer?
  2209   // Is index == 0?
  2210   // (The index field is typed as size_t.)
  2211   const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
  2213   ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
  2214   cmpdi(CCR0, Rindex, 0);
  2215   beq(CCR0, runtime); // If index == 0, goto runtime.
  2216   ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
  2218   addi(Rindex, Rindex, -wordSize); // Decrement index.
  2219   std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
  2221   // Record the previous value.
  2222   stdx(Rpre_val, Rbuffer, Rindex);
  2223   b(filtered);
  2225   bind(runtime);
  2227   // VM call need frame to access(write) O register.
  2228   if (needs_frame) {
  2229     save_LR_CR(Rtmp1);
  2230     push_frame_abi112(0, Rtmp2);
  2233   if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
  2234   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
  2235   if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
  2237   if (needs_frame) {
  2238     pop_frame();
  2239     restore_LR_CR(Rtmp1);
  2242   bind(filtered);
  2245 // General G1 post-barrier generator
  2246 // Store cross-region card.
  2247 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
  2248   Label runtime, filtered_int;
  2249   Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
  2250   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
  2252   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  2253   assert(bs->kind() == BarrierSet::G1SATBCT ||
  2254          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  2256   // Does store cross heap regions?
  2257   if (G1RSBarrierRegionFilter) {
  2258     xorr(Rtmp1, Rstore_addr, Rnew_val);
  2259     srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
  2260     beq(CCR0, filtered);
  2263   // Crosses regions, storing NULL?
  2264 #ifdef ASSERT
  2265   cmpdi(CCR0, Rnew_val, 0);
  2266   asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
  2267   //beq(CCR0, filtered);
  2268 #endif
  2270   // Storing region crossing non-NULL, is card already dirty?
  2271   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
  2272   const Register Rcard_addr = Rtmp1;
  2273   Register Rbase = Rtmp2;
  2274   load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
  2276   srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
  2278   // Get the address of the card.
  2279   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
  2281   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  2282   cmpwi(CCR0, Rtmp3 /* card value */, 0);
  2283   beq(CCR0, filtered);
  2285   // Storing a region crossing, non-NULL oop, card is clean.
  2286   // Dirty card and log.
  2287   li(Rtmp3, 0); // dirty
  2288   //release(); // G1: oops are allowed to get visible after dirty marking.
  2289   stbx(Rtmp3, Rbase, Rcard_addr);
  2291   add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
  2292   Rbase = noreg; // end of lifetime
  2294   const Register Rqueue_index = Rtmp2,
  2295                  Rqueue_buf   = Rtmp3;
  2296   ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
  2297   cmpdi(CCR0, Rqueue_index, 0);
  2298   beq(CCR0, runtime); // index == 0 then jump to runtime
  2299   ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
  2301   addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
  2302   std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
  2304   stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
  2305   b(filtered);
  2307   bind(runtime);
  2309   // Save the live input values.
  2310   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
  2312   bind(filtered_int);
  2314 #endif // SERIALGC
  2316 // Values for last_Java_pc, and last_Java_sp must comply to the rules
  2317 // in frame_ppc64.hpp.
  2318 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
  2319   // Always set last_Java_pc and flags first because once last_Java_sp
  2320   // is visible has_last_Java_frame is true and users will look at the
  2321   // rest of the fields. (Note: flags should always be zero before we
  2322   // get here so doesn't need to be set.)
  2324   // Verify that last_Java_pc was zeroed on return to Java
  2325   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
  2326                           "last_Java_pc not zeroed before leaving Java", 0x200);
  2328   // When returning from calling out from Java mode the frame anchor's
  2329   // last_Java_pc will always be set to NULL. It is set here so that
  2330   // if we are doing a call to native (not VM) that we capture the
  2331   // known pc and don't have to rely on the native call having a
  2332   // standard frame linkage where we can find the pc.
  2333   if (last_Java_pc != noreg)
  2334     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
  2336   // Set last_Java_sp last.
  2337   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
  2340 void MacroAssembler::reset_last_Java_frame(void) {
  2341   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
  2342                              R16_thread, "SP was not set, still zero", 0x202);
  2344   BLOCK_COMMENT("reset_last_Java_frame {");
  2345   li(R0, 0);
  2347   // _last_Java_sp = 0
  2348   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
  2350   // _last_Java_pc = 0
  2351   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
  2352   BLOCK_COMMENT("} reset_last_Java_frame");
  2355 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
  2356   assert_different_registers(sp, tmp1);
  2358   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
  2359   // TOP_IJAVA_FRAME_ABI.
  2360   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
  2361 #ifdef CC_INTERP
  2362   ld(tmp1/*pc*/, _top_ijava_frame_abi(frame_manager_lr), sp);
  2363 #else
  2364   Unimplemented();
  2365 #endif
  2367   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
  2370 void MacroAssembler::get_vm_result(Register oop_result) {
  2371   // Read:
  2372   //   R16_thread
  2373   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
  2374   //
  2375   // Updated:
  2376   //   oop_result
  2377   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
  2379   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  2380   li(R0, 0);
  2381   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  2383   verify_oop(oop_result);
  2386 void MacroAssembler::get_vm_result_2(Register metadata_result) {
  2387   // Read:
  2388   //   R16_thread
  2389   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
  2390   //
  2391   // Updated:
  2392   //   metadata_result
  2393   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
  2395   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
  2396   li(R0, 0);
  2397   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
  2401 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  2402   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
  2403   if (Universe::narrow_klass_base() != 0) {
  2404     load_const(R0, Universe::narrow_klass_base(), (dst != current) ? dst : noreg); // Use dst as temp if it is free.
  2405     sub(dst, current, R0);
  2406     current = dst;
  2408   if (Universe::narrow_klass_shift() != 0) {
  2409     srdi(dst, current, Universe::narrow_klass_shift());
  2410     current = dst;
  2412   mr_if_needed(dst, current); // Move may be required.
  2415 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
  2416   if (UseCompressedClassPointers) {
  2417     encode_klass_not_null(ck, klass);
  2418     stw(ck, oopDesc::klass_offset_in_bytes(), dst_oop);
  2419   } else {
  2420     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
  2424 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  2425   if (!UseCompressedClassPointers) return 0;
  2426   int num_instrs = 1;  // shift or move
  2427   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
  2428   return num_instrs * BytesPerInstWord;
  2431 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  2432   if (src == noreg) src = dst;
  2433   Register shifted_src = src;
  2434   if (Universe::narrow_klass_shift() != 0 ||
  2435       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
  2436     shifted_src = dst;
  2437     sldi(shifted_src, src, Universe::narrow_klass_shift());
  2439   if (Universe::narrow_klass_base() != 0) {
  2440     load_const(R0, Universe::narrow_klass_base());
  2441     add(dst, shifted_src, R0);
  2445 void MacroAssembler::load_klass(Register dst, Register src) {
  2446   if (UseCompressedClassPointers) {
  2447     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
  2448     // Attention: no null check here!
  2449     decode_klass_not_null(dst, dst);
  2450   } else {
  2451     ld(dst, oopDesc::klass_offset_in_bytes(), src);
  2455 void MacroAssembler::load_klass_with_trap_null_check(Register dst, Register src) {
  2456   if (!os::zero_page_read_protected()) {
  2457     if (TrapBasedNullChecks) {
  2458       trap_null_check(src);
  2461   load_klass(dst, src);
  2464 void MacroAssembler::reinit_heapbase(Register d, Register tmp) {
  2465   if (Universe::heap() != NULL) {
  2466     if (Universe::narrow_oop_base() == NULL) {
  2467       Assembler::xorr(R30, R30, R30);
  2468     } else {
  2469       load_const(R30, Universe::narrow_ptrs_base(), tmp);
  2471   } else {
  2472     load_const(R30, Universe::narrow_ptrs_base_addr(), tmp);
  2473     ld(R30, 0, R30);
  2477 // Clear Array
  2478 // Kills both input registers. tmp == R0 is allowed.
  2479 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp) {
  2480   // Procedure for large arrays (uses data cache block zero instruction).
  2481     Label startloop, fast, fastloop, small_rest, restloop, done;
  2482     const int cl_size         = VM_Version::get_cache_line_size(),
  2483               cl_dwords       = cl_size>>3,
  2484               cl_dw_addr_bits = exact_log2(cl_dwords),
  2485               dcbz_min        = 1;                     // Min count of dcbz executions, needs to be >0.
  2487 //2:
  2488     cmpdi(CCR1, cnt_dwords, ((dcbz_min+1)<<cl_dw_addr_bits)-1); // Big enough? (ensure >=dcbz_min lines included).
  2489     blt(CCR1, small_rest);                                      // Too small.
  2490     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits);           // Extract dword offset within first cache line.
  2491     beq(CCR0, fast);                                            // Already 128byte aligned.
  2493     subfic(tmp, tmp, cl_dwords);
  2494     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
  2495     subf(cnt_dwords, tmp, cnt_dwords); // rest.
  2496     li(tmp, 0);
  2497 //10:
  2498   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
  2499     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
  2500     addi(base_ptr, base_ptr, 8);
  2501     bdnz(startloop);
  2502 //13:
  2503   bind(fast);                                  // Clear 128byte blocks.
  2504     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
  2505     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
  2506     mtctr(tmp);                                // Load counter.
  2507 //16:
  2508   bind(fastloop);
  2509     dcbz(base_ptr);                    // Clear 128byte aligned block.
  2510     addi(base_ptr, base_ptr, cl_size);
  2511     bdnz(fastloop);
  2512     if (InsertEndGroupPPC64) { endgroup(); } else { nop(); }
  2513 //20:
  2514   bind(small_rest);
  2515     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
  2516     beq(CCR0, done);                   // rest == 0
  2517     li(tmp, 0);
  2518     mtctr(cnt_dwords);                 // Load counter.
  2519 //24:
  2520   bind(restloop);                      // Clear rest.
  2521     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
  2522     addi(base_ptr, base_ptr, 8);
  2523     bdnz(restloop);
  2524 //27:
  2525   bind(done);
  2528 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
  2530 // Search for a single jchar in an jchar[].
  2531 //
  2532 // Assumes that result differs from all other registers.
  2533 //
  2534 // Haystack, needle are the addresses of jchar-arrays.
  2535 // NeedleChar is needle[0] if it is known at compile time.
  2536 // Haycnt is the length of the haystack. We assume haycnt >=1.
  2537 //
  2538 // Preserves haystack, haycnt, kills all other registers.
  2539 //
  2540 // If needle == R0, we search for the constant needleChar.
  2541 void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt,
  2542                                       Register needle, jchar needleChar,
  2543                                       Register tmp1, Register tmp2) {
  2545   assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2);
  2547   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End;
  2548   Register needle0 = needle, // Contains needle[0].
  2549            addr = tmp1,
  2550            ch1 = tmp2,
  2551            ch2 = R0;
  2553 //2 (variable) or 3 (const):
  2554    if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1.
  2555    dcbtct(haystack, 0x00);                        // Indicate R/O access to haystack.
  2557    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
  2558    mr(addr, haystack);
  2559    beq(CCR0, L_FinalCheck);
  2560    mtctr(tmp2);              // Move to count register.
  2561 //8:
  2562   bind(L_InnerLoop);             // Main work horse (2x unrolled search loop).
  2563    lhz(ch1, 0, addr);        // Load characters from haystack.
  2564    lhz(ch2, 2, addr);
  2565    (needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar);
  2566    (needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar);
  2567    beq(CCR0, L_Found1);   // Did we find the needle?
  2568    beq(CCR1, L_Found2);
  2569    addi(addr, addr, 4);
  2570    bdnz(L_InnerLoop);
  2571 //16:
  2572   bind(L_FinalCheck);
  2573    andi_(R0, haycnt, 1);
  2574    beq(CCR0, L_NotFound);
  2575    lhz(ch1, 0, addr);        // One position left at which we have to compare.
  2576    (needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar);
  2577    beq(CCR1, L_Found3);
  2578 //21:
  2579   bind(L_NotFound);
  2580    li(result, -1);           // Not found.
  2581    b(L_End);
  2583   bind(L_Found2);
  2584    addi(addr, addr, 2);
  2585 //24:
  2586   bind(L_Found1);
  2587   bind(L_Found3);                  // Return index ...
  2588    subf(addr, haystack, addr); // relative to haystack,
  2589    srdi(result, addr, 1);      // in characters.
  2590   bind(L_End);
  2594 // Implementation of IndexOf for jchar arrays.
  2595 //
  2596 // The length of haystack and needle are not constant, i.e. passed in a register.
  2597 //
  2598 // Preserves registers haystack, needle.
  2599 // Kills registers haycnt, needlecnt.
  2600 // Assumes that result differs from all other registers.
  2601 // Haystack, needle are the addresses of jchar-arrays.
  2602 // Haycnt, needlecnt are the lengths of them, respectively.
  2603 //
  2604 // Needlecntval must be zero or 15-bit unsigned immediate and > 1.
  2605 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
  2606                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
  2607                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  2609   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
  2610   Label L_TooShort, L_Found, L_NotFound, L_End;
  2611   Register last_addr = haycnt, // Kill haycnt at the beginning.
  2612            addr      = tmp1,
  2613            n_start   = tmp2,
  2614            ch1       = tmp3,
  2615            ch2       = R0;
  2617   // **************************************************************************************************
  2618   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
  2619   // **************************************************************************************************
  2621 //1 (variable) or 3 (const):
  2622    dcbtct(needle, 0x00);    // Indicate R/O access to str1.
  2623    dcbtct(haystack, 0x00);  // Indicate R/O access to str2.
  2625   // Compute last haystack addr to use if no match gets found.
  2626   if (needlecntval == 0) { // variable needlecnt
  2627 //3:
  2628    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
  2629    addi(addr, haystack, -2);          // Accesses use pre-increment.
  2630    cmpwi(CCR6, needlecnt, 2);
  2631    blt(CCR6, L_TooShort);          // Variable needlecnt: handle short needle separately.
  2632    slwi(ch1, ch1, 1);                 // Scale to number of bytes.
  2633    lwz(n_start, 0, needle);           // Load first 2 characters of needle.
  2634    add(last_addr, haystack, ch1);     // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
  2635    addi(needlecnt, needlecnt, -2);    // Rest of needle.
  2636   } else { // constant needlecnt
  2637   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
  2638   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
  2639 //5:
  2640    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
  2641    lwz(n_start, 0, needle);           // Load first 2 characters of needle.
  2642    addi(addr, haystack, -2);          // Accesses use pre-increment.
  2643    slwi(ch1, ch1, 1);                 // Scale to number of bytes.
  2644    add(last_addr, haystack, ch1);     // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
  2645    li(needlecnt, needlecntval-2);     // Rest of needle.
  2648   // Main Loop (now we have at least 3 characters).
  2649 //11:
  2650   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3;
  2651   bind(L_OuterLoop); // Search for 1st 2 characters.
  2652   Register addr_diff = tmp4;
  2653    subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check.
  2654    addi(addr, addr, 2);              // This is the new address we want to use for comparing.
  2655    srdi_(ch2, addr_diff, 2);
  2656    beq(CCR0, L_FinalCheck);       // 2 characters left?
  2657    mtctr(ch2);                       // addr_diff/4
  2658 //16:
  2659   bind(L_InnerLoop);                // Main work horse (2x unrolled search loop)
  2660    lwz(ch1, 0, addr);           // Load 2 characters of haystack (ignore alignment).
  2661    lwz(ch2, 2, addr);
  2662    cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
  2663    cmpw(CCR1, ch2, n_start);
  2664    beq(CCR0, L_Comp1);       // Did we find the needle start?
  2665    beq(CCR1, L_Comp2);
  2666    addi(addr, addr, 4);
  2667    bdnz(L_InnerLoop);
  2668 //24:
  2669   bind(L_FinalCheck);
  2670    rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1.
  2671    beq(CCR0, L_NotFound);
  2672    lwz(ch1, 0, addr);                       // One position left at which we have to compare.
  2673    cmpw(CCR1, ch1, n_start);
  2674    beq(CCR1, L_Comp3);
  2675 //29:
  2676   bind(L_NotFound);
  2677    li(result, -1); // not found
  2678    b(L_End);
  2681    // **************************************************************************************************
  2682    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
  2683    // **************************************************************************************************
  2684 //31:
  2685  if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size.
  2686   int nopcnt = 5;
  2687   if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below).
  2688   if (needlecntval == 0) {         // We have to handle these cases separately.
  2689   Label L_OneCharLoop;
  2690   bind(L_TooShort);
  2691    mtctr(haycnt);
  2692    lhz(n_start, 0, needle);    // First character of needle
  2693   bind(L_OneCharLoop);
  2694    lhzu(ch1, 2, addr);
  2695    cmpw(CCR1, ch1, n_start);
  2696    beq(CCR1, L_Found);      // Did we find the one character needle?
  2697    bdnz(L_OneCharLoop);
  2698    li(result, -1);             // Not found.
  2699    b(L_End);
  2700   } // 8 instructions, so no impact on alignment.
  2701   for (int x = 0; x < nopcnt; ++x) nop();
  2704   // **************************************************************************************************
  2705   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
  2706   // **************************************************************************************************
  2708   // Compare the rest
  2709 //36 if needlecntval==0, else 37:
  2710   bind(L_Comp2);
  2711    addi(addr, addr, 2); // First comparison has failed, 2nd one hit.
  2712   bind(L_Comp1);            // Addr points to possible needle start.
  2713   bind(L_Comp3);            // Could have created a copy and use a different return address but saving code size here.
  2714   if (needlecntval != 2) {  // Const needlecnt==2?
  2715    if (needlecntval != 3) {
  2716     if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2?
  2717     Register ind_reg = tmp4;
  2718     li(ind_reg, 2*2);   // First 2 characters are already compared, use index 2.
  2719     mtctr(needlecnt);   // Decremented by 2, still > 0.
  2720 //40:
  2721    Label L_CompLoop;
  2722    bind(L_CompLoop);
  2723     lhzx(ch2, needle, ind_reg);
  2724     lhzx(ch1, addr, ind_reg);
  2725     cmpw(CCR1, ch1, ch2);
  2726     bne(CCR1, L_OuterLoop);
  2727     addi(ind_reg, ind_reg, 2);
  2728     bdnz(L_CompLoop);
  2729    } else { // No loop required if there's only one needle character left.
  2730     lhz(ch2, 2*2, needle);
  2731     lhz(ch1, 2*2, addr);
  2732     cmpw(CCR1, ch1, ch2);
  2733     bne(CCR1, L_OuterLoop);
  2736   // Return index ...
  2737 //46:
  2738   bind(L_Found);
  2739    subf(addr, haystack, addr); // relative to haystack, ...
  2740    srdi(result, addr, 1);      // in characters.
  2741 //48:
  2742   bind(L_End);
  2745 // Implementation of Compare for jchar arrays.
  2746 //
  2747 // Kills the registers str1, str2, cnt1, cnt2.
  2748 // Kills cr0, ctr.
  2749 // Assumes that result differes from the input registers.
  2750 void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
  2751                                     Register result_reg, Register tmp_reg) {
  2752    assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg);
  2754    Label Ldone, Lslow_case, Lslow_loop, Lfast_loop;
  2755    Register cnt_diff = R0,
  2756             limit_reg = cnt1_reg,
  2757             chr1_reg = result_reg,
  2758             chr2_reg = cnt2_reg,
  2759             addr_diff = str2_reg;
  2761    // Offset 0 should be 32 byte aligned.
  2762 //-4:
  2763     dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
  2764     dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
  2765 //-2:
  2766    // Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters).
  2767     subf(result_reg, cnt2_reg, cnt1_reg);  // difference between cnt1/2
  2768     subf_(addr_diff, str1_reg, str2_reg);  // alias?
  2769     beq(CCR0, Ldone);                   // return cnt difference if both ones are identical
  2770     srawi(limit_reg, result_reg, 31);      // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow)
  2771     mr(cnt_diff, result_reg);
  2772     andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt1<cnt2 ? cnt1-cnt2 : 0
  2773     add_(limit_reg, cnt2_reg, limit_reg);  // min(cnt1, cnt2)==0?
  2774     beq(CCR0, Ldone);                   // return cnt difference if one has 0 length
  2776     lhz(chr1_reg, 0, str1_reg);            // optional: early out if first characters mismatch
  2777     lhzx(chr2_reg, str1_reg, addr_diff);   // optional: early out if first characters mismatch
  2778     addi(tmp_reg, limit_reg, -1);          // min(cnt1, cnt2)-1
  2779     subf_(result_reg, chr2_reg, chr1_reg); // optional: early out if first characters mismatch
  2780     bne(CCR0, Ldone);                   // optional: early out if first characters mismatch
  2782    // Set loop counter by scaling down tmp_reg
  2783     srawi_(chr2_reg, tmp_reg, exact_log2(4)); // (min(cnt1, cnt2)-1)/4
  2784     ble(CCR0, Lslow_case);                 // need >4 characters for fast loop
  2785     andi(limit_reg, tmp_reg, 4-1);            // remaining characters
  2787    // Adapt str1_reg str2_reg for the first loop iteration
  2788     mtctr(chr2_reg);                 // (min(cnt1, cnt2)-1)/4
  2789     addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop
  2790 //16:
  2791    // Compare the rest of the characters
  2792    bind(Lfast_loop);
  2793     ld(chr1_reg, 0, str1_reg);
  2794     ldx(chr2_reg, str1_reg, addr_diff);
  2795     cmpd(CCR0, chr2_reg, chr1_reg);
  2796     bne(CCR0, Lslow_case); // return chr1_reg
  2797     addi(str1_reg, str1_reg, 4*2);
  2798     bdnz(Lfast_loop);
  2799     addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing
  2800 //23:
  2801    bind(Lslow_case);
  2802     mtctr(limit_reg);
  2803 //24:
  2804    bind(Lslow_loop);
  2805     lhz(chr1_reg, 0, str1_reg);
  2806     lhzx(chr2_reg, str1_reg, addr_diff);
  2807     subf_(result_reg, chr2_reg, chr1_reg);
  2808     bne(CCR0, Ldone); // return chr1_reg
  2809     addi(str1_reg, str1_reg, 1*2);
  2810     bdnz(Lslow_loop);
  2811 //30:
  2812    // If strings are equal up to min length, return the length difference.
  2813     mr(result_reg, cnt_diff);
  2814     nop(); // alignment
  2815 //32:
  2816    // Otherwise, return the difference between the first mismatched chars.
  2817    bind(Ldone);
  2821 // Compare char[] arrays.
  2822 //
  2823 // str1_reg   USE only
  2824 // str2_reg   USE only
  2825 // cnt_reg    USE_DEF, due to tmp reg shortage
  2826 // result_reg DEF only, might compromise USE only registers
  2827 void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
  2828                                         Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
  2829                                         Register tmp5_reg) {
  2831   // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
  2832   assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
  2833   assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
  2835   // Offset 0 should be 32 byte aligned.
  2836   Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false;
  2837   Register index_reg = tmp5_reg;
  2838   Register cbc_iter  = tmp4_reg;
  2840 //-1:
  2841   dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
  2842   dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
  2843 //1:
  2844   andi(cbc_iter, cnt_reg, 4-1);            // Remaining iterations after 4 java characters per iteration loop.
  2845   li(index_reg, 0); // init
  2846   li(result_reg, 0); // assume false
  2847   srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop).
  2849   cmpwi(CCR1, cbc_iter, 0);             // CCR1 = (cbc_iter==0)
  2850   beq(CCR0, Linit_cbc);                 // too short
  2851     mtctr(tmp2_reg);
  2852 //8:
  2853     bind(Lloop);
  2854       ldx(tmp1_reg, str1_reg, index_reg);
  2855       ldx(tmp2_reg, str2_reg, index_reg);
  2856       cmpd(CCR0, tmp1_reg, tmp2_reg);
  2857       bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
  2858       addi(index_reg, index_reg, 4*sizeof(jchar));
  2859       bdnz(Lloop);
  2860 //14:
  2861   bind(Linit_cbc);
  2862   beq(CCR1, Ldone_true);
  2863     mtctr(cbc_iter);
  2864 //16:
  2865     bind(Lcbc);
  2866       lhzx(tmp1_reg, str1_reg, index_reg);
  2867       lhzx(tmp2_reg, str2_reg, index_reg);
  2868       cmpw(CCR0, tmp1_reg, tmp2_reg);
  2869       bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
  2870       addi(index_reg, index_reg, 1*sizeof(jchar));
  2871       bdnz(Lcbc);
  2872     nop();
  2873   bind(Ldone_true);
  2874   li(result_reg, 1);
  2875 //24:
  2876   bind(Ldone_false);
  2880 void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
  2881                                            Register tmp1_reg, Register tmp2_reg) {
  2882   // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
  2883   assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg);
  2884   assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg);
  2885   assert(sizeof(jchar) == 2, "must be");
  2886   assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate");
  2888   Label Ldone_false;
  2890   if (cntval < 16) { // short case
  2891     if (cntval != 0) li(result_reg, 0); // assume false
  2893     const int num_bytes = cntval*sizeof(jchar);
  2894     int index = 0;
  2895     for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) {
  2896       ld(tmp1_reg, index, str1_reg);
  2897       ld(tmp2_reg, index, str2_reg);
  2898       cmpd(CCR0, tmp1_reg, tmp2_reg);
  2899       bne(CCR0, Ldone_false);
  2901     if (cntval & 2) {
  2902       lwz(tmp1_reg, index, str1_reg);
  2903       lwz(tmp2_reg, index, str2_reg);
  2904       cmpw(CCR0, tmp1_reg, tmp2_reg);
  2905       bne(CCR0, Ldone_false);
  2906       index += 4;
  2908     if (cntval & 1) {
  2909       lhz(tmp1_reg, index, str1_reg);
  2910       lhz(tmp2_reg, index, str2_reg);
  2911       cmpw(CCR0, tmp1_reg, tmp2_reg);
  2912       bne(CCR0, Ldone_false);
  2914     // fallthrough: true
  2915   } else {
  2916     Label Lloop;
  2917     Register index_reg = tmp1_reg;
  2918     const int loopcnt = cntval/4;
  2919     assert(loopcnt > 0, "must be");
  2920     // Offset 0 should be 32 byte aligned.
  2921     //2:
  2922     dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
  2923     dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
  2924     li(tmp2_reg, loopcnt);
  2925     li(index_reg, 0); // init
  2926     li(result_reg, 0); // assume false
  2927     mtctr(tmp2_reg);
  2928     //8:
  2929     bind(Lloop);
  2930     ldx(R0, str1_reg, index_reg);
  2931     ldx(tmp2_reg, str2_reg, index_reg);
  2932     cmpd(CCR0, R0, tmp2_reg);
  2933     bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
  2934     addi(index_reg, index_reg, 4*sizeof(jchar));
  2935     bdnz(Lloop);
  2936     //14:
  2937     if (cntval & 2) {
  2938       lwzx(R0, str1_reg, index_reg);
  2939       lwzx(tmp2_reg, str2_reg, index_reg);
  2940       cmpw(CCR0, R0, tmp2_reg);
  2941       bne(CCR0, Ldone_false);
  2942       if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar));
  2944     if (cntval & 1) {
  2945       lhzx(R0, str1_reg, index_reg);
  2946       lhzx(tmp2_reg, str2_reg, index_reg);
  2947       cmpw(CCR0, R0, tmp2_reg);
  2948       bne(CCR0, Ldone_false);
  2950     // fallthru: true
  2952   li(result_reg, 1);
  2953   bind(Ldone_false);
  2957 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
  2958 #ifdef ASSERT
  2959   Label ok;
  2960   if (check_equal) {
  2961     beq(CCR0, ok);
  2962   } else {
  2963     bne(CCR0, ok);
  2965   stop(msg, id);
  2966   bind(ok);
  2967 #endif
  2970 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
  2971                                           Register mem_base, const char* msg, int id) {
  2972 #ifdef ASSERT
  2973   switch (size) {
  2974     case 4:
  2975       lwz(R0, mem_offset, mem_base);
  2976       cmpwi(CCR0, R0, 0);
  2977       break;
  2978     case 8:
  2979       ld(R0, mem_offset, mem_base);
  2980       cmpdi(CCR0, R0, 0);
  2981       break;
  2982     default:
  2983       ShouldNotReachHere();
  2985   asm_assert(check_equal, msg, id);
  2986 #endif // ASSERT
  2989 void MacroAssembler::verify_thread() {
  2990   if (VerifyThread) {
  2991     unimplemented("'VerifyThread' currently not implemented on PPC");
  2995 // READ: oop. KILL: R0. Volatile floats perhaps.
  2996 void MacroAssembler::verify_oop(Register oop, const char* msg) {
  2997   if (!VerifyOops) {
  2998     return;
  3000   // Will be preserved.
  3001   Register tmp = R11;
  3002   assert(oop != tmp, "precondition");
  3003   unsigned int nbytes_save = 10*8; // 10 volatile gprs
  3004   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
  3005   // save tmp
  3006   mr(R0, tmp);
  3007   // kill tmp
  3008   save_LR_CR(tmp);
  3009   push_frame_abi112(nbytes_save, tmp);
  3010   // restore tmp
  3011   mr(tmp, R0);
  3012   save_volatile_gprs(R1_SP, 112); // except R0
  3013   // load FunctionDescriptor**
  3014   load_const(tmp, fd);
  3015   // load FunctionDescriptor*
  3016   ld(tmp, 0, tmp);
  3017   mr(R4_ARG2, oop);
  3018   load_const(R3_ARG1, (address)msg);
  3019   // call destination for its side effect
  3020   call_c(tmp);
  3021   restore_volatile_gprs(R1_SP, 112); // except R0
  3022   pop_frame();
  3023   // save tmp
  3024   mr(R0, tmp);
  3025   // kill tmp
  3026   restore_LR_CR(tmp);
  3027   // restore tmp
  3028   mr(tmp, R0);
  3031 const char* stop_types[] = {
  3032   "stop",
  3033   "untested",
  3034   "unimplemented",
  3035   "shouldnotreachhere"
  3036 };
  3038 static void stop_on_request(int tp, const char* msg) {
  3039   tty->print("PPC assembly code requires stop: (%s) %s\n", (void *)stop_types[tp%/*stop_end*/4], msg);
  3040   guarantee(false, err_msg("PPC assembly code requires stop: %s", msg));
  3043 // Call a C-function that prints output.
  3044 void MacroAssembler::stop(int type, const char* msg, int id) {
  3045 #ifndef PRODUCT
  3046   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
  3047 #else
  3048   block_comment("stop {");
  3049 #endif
  3051   // setup arguments
  3052   load_const_optimized(R3_ARG1, type);
  3053   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
  3054   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
  3055   illtrap();
  3056   emit_int32(id);
  3057   block_comment("} stop;");
  3060 #ifndef PRODUCT
  3061 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
  3062 // Val, addr are temp registers.
  3063 // If low == addr, addr is killed.
  3064 // High is preserved.
  3065 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
  3066   if (!ZapMemory) return;
  3068   assert_different_registers(low, val);
  3070   BLOCK_COMMENT("zap memory region {");
  3071   load_const_optimized(val, 0x0101010101010101);
  3072   int size = before + after;
  3073   if (low == high && size < 5 && size > 0) {
  3074     int offset = -before*BytesPerWord;
  3075     for (int i = 0; i < size; ++i) {
  3076       std(val, offset, low);
  3077       offset += (1*BytesPerWord);
  3079   } else {
  3080     addi(addr, low, -before*BytesPerWord);
  3081     assert_different_registers(high, val);
  3082     if (after) addi(high, high, after * BytesPerWord);
  3083     Label loop;
  3084     bind(loop);
  3085     std(val, 0, addr);
  3086     addi(addr, addr, 8);
  3087     cmpd(CCR6, addr, high);
  3088     ble(CCR6, loop);
  3089     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
  3091   BLOCK_COMMENT("} zap memory region");
  3094 #endif // !PRODUCT

mercurial