src/cpu/ppc/vm/assembler_ppc.hpp

Tue, 18 Jun 2019 09:33:34 -0400

author
ogatak
date
Tue, 18 Jun 2019 09:33:34 -0400
changeset 9713
c4567d28f31f
parent 9687
846245a33793
child 9730
42118db355f5
permissions
-rw-r--r--

8185979: PPC64: Implement SHA2 intrinsic
Reviewed-by: mdoerr, goetz
Contributed-by: Bruno Rosa <bruno.rosa@eldorado.org.br>, Gustavo Serra Scalet <gustavo.scalet@eldorado.org.br>, Igor Nunes <igor.nunes@eldorado.org.br>, Martin Doerr <martin.doerr@sap.com>

     1 /*
     2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2012, 2018, SAP SE. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
    27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
    29 #include "asm/register.hpp"
    31 // Address is an abstraction used to represent a memory location
    32 // as used in assembler instructions.
    33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
    34 // So far we do not use this as simplification by this class is low
    35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
    36 // represent an offset.
    37 class Address VALUE_OBJ_CLASS_SPEC {
    38 };
    40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
    41  private:
    42   address          _address;
    43   RelocationHolder _rspec;
    45   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
    46     switch (rtype) {
    47     case relocInfo::external_word_type:
    48       return external_word_Relocation::spec(addr);
    49     case relocInfo::internal_word_type:
    50       return internal_word_Relocation::spec(addr);
    51     case relocInfo::opt_virtual_call_type:
    52       return opt_virtual_call_Relocation::spec();
    53     case relocInfo::static_call_type:
    54       return static_call_Relocation::spec();
    55     case relocInfo::runtime_call_type:
    56       return runtime_call_Relocation::spec();
    57     case relocInfo::none:
    58       return RelocationHolder();
    59     default:
    60       ShouldNotReachHere();
    61       return RelocationHolder();
    62     }
    63   }
    65  protected:
    66   // creation
    67   AddressLiteral() : _address(NULL), _rspec(NULL) {}
    69  public:
    70   AddressLiteral(address addr, RelocationHolder const& rspec)
    71     : _address(addr),
    72       _rspec(rspec) {}
    74   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
    75     : _address((address) addr),
    76       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    78   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
    79     : _address((address) addr),
    80       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    82   intptr_t value() const { return (intptr_t) _address; }
    84   const RelocationHolder& rspec() const { return _rspec; }
    85 };
    87 // Argument is an abstraction used to represent an outgoing
    88 // actual argument or an incoming formal parameter, whether
    89 // it resides in memory or in a register, in a manner consistent
    90 // with the PPC Application Binary Interface, or ABI. This is
    91 // often referred to as the native or C calling convention.
    93 class Argument VALUE_OBJ_CLASS_SPEC {
    94  private:
    95   int _number;  // The number of the argument.
    96  public:
    97   enum {
    98     // Only 8 registers may contain integer parameters.
    99     n_register_parameters = 8,
   100     // Can have up to 8 floating registers.
   101     n_float_register_parameters = 8,
   103     // PPC C calling conventions.
   104     // The first eight arguments are passed in int regs if they are int.
   105     n_int_register_parameters_c = 8,
   106     // The first thirteen float arguments are passed in float regs.
   107     n_float_register_parameters_c = 13,
   108     // Only the first 8 parameters are not placed on the stack. Aix disassembly
   109     // shows that xlC places all float args after argument 8 on the stack AND
   110     // in a register. This is not documented, but we follow this convention, too.
   111     n_regs_not_on_stack_c = 8,
   112   };
   113   // creation
   114   Argument(int number) : _number(number) {}
   116   int  number() const { return _number; }
   118   // Locating register-based arguments:
   119   bool is_register() const { return _number < n_register_parameters; }
   121   Register as_register() const {
   122     assert(is_register(), "must be a register argument");
   123     return as_Register(number() + R3_ARG1->encoding());
   124   }
   125 };
   127 #if !defined(ABI_ELFv2)
   128 // A ppc64 function descriptor.
   129 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
   130  private:
   131   address _entry;
   132   address _toc;
   133   address _env;
   135  public:
   136   inline address entry() const { return _entry; }
   137   inline address toc()   const { return _toc; }
   138   inline address env()   const { return _env; }
   140   inline void set_entry(address entry) { _entry = entry; }
   141   inline void set_toc(  address toc)   { _toc   = toc; }
   142   inline void set_env(  address env)   { _env   = env; }
   144   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
   145   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
   146   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
   148   // Friend functions can be called without loading toc and env.
   149   enum {
   150     friend_toc = 0xcafe,
   151     friend_env = 0xc0de
   152   };
   154   inline bool is_friend_function() const {
   155     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
   156   }
   158   // Constructor for stack-allocated instances.
   159   FunctionDescriptor() {
   160     _entry = (address) 0xbad;
   161     _toc   = (address) 0xbad;
   162     _env   = (address) 0xbad;
   163   }
   164 };
   165 #endif
   167 class Assembler : public AbstractAssembler {
   168  protected:
   169   // Displacement routines
   170   static void print_instruction(int inst);
   171   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   172   static int  branch_destination(int inst, int pos);
   174   friend class AbstractAssembler;
   176   // Code patchers need various routines like inv_wdisp()
   177   friend class NativeInstruction;
   178   friend class NativeGeneralJump;
   179   friend class Relocation;
   181  public:
   183   enum shifts {
   184     XO_21_29_SHIFT = 2,
   185     XO_21_30_SHIFT = 1,
   186     XO_27_29_SHIFT = 2,
   187     XO_30_31_SHIFT = 0,
   188     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
   189     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
   190     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
   191     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
   192   };
   194   enum opcdxos_masks {
   195     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
   196     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   197     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
   198     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   199     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   200     // trap instructions
   201     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   202     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   203     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   204     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   205     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
   206     STD_OPCODE_MASK     = LD_OPCODE_MASK,
   207     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
   208     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   209     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
   210     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   211     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
   212     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   213     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
   214     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
   215     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   216     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   217     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
   218   };
   220   enum opcdxos {
   221     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
   222     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
   223     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
   224     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
   225     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
   226     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
   227     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
   228     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
   229     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
   230     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
   231     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
   232     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
   233     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
   234     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
   235     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
   236     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
   237     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
   238     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
   239     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
   240     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
   241     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
   242     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
   243     ORI_OPCODE    = (24u << OPCODE_SHIFT),
   244     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
   245     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
   246     XORI_OPCODE   = (26u << OPCODE_SHIFT),
   247     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
   249     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
   251     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
   252     CLRRWI_OPCODE = RLWINM_OPCODE,
   253     CLRLWI_OPCODE = RLWINM_OPCODE,
   255     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
   257     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
   258     SLWI_OPCODE   = RLWINM_OPCODE,
   259     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
   260     SRWI_OPCODE   = RLWINM_OPCODE,
   261     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
   262     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
   264     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
   265     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
   266     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
   267     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
   269     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
   271     // Special purpose registers
   272     MTSPR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1),
   273     MFSPR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1),
   275     MTXER_OPCODE  = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
   276     MFXER_OPCODE  = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
   278     MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
   279     MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
   281     MTLR_OPCODE   = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
   282     MFLR_OPCODE   = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
   284     MTCTR_OPCODE  = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
   285     MFCTR_OPCODE  = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
   287     MTTFHAR_OPCODE   = (MTSPR_OPCODE | 128 << SPR_0_4_SHIFT),
   288     MFTFHAR_OPCODE   = (MFSPR_OPCODE | 128 << SPR_0_4_SHIFT),
   289     MTTFIAR_OPCODE   = (MTSPR_OPCODE | 129 << SPR_0_4_SHIFT),
   290     MFTFIAR_OPCODE   = (MFSPR_OPCODE | 129 << SPR_0_4_SHIFT),
   291     MTTEXASR_OPCODE  = (MTSPR_OPCODE | 130 << SPR_0_4_SHIFT),
   292     MFTEXASR_OPCODE  = (MFSPR_OPCODE | 130 << SPR_0_4_SHIFT),
   293     MTTEXASRU_OPCODE = (MTSPR_OPCODE | 131 << SPR_0_4_SHIFT),
   294     MFTEXASRU_OPCODE = (MFSPR_OPCODE | 131 << SPR_0_4_SHIFT),
   296     MTVRSAVE_OPCODE  = (MTSPR_OPCODE | 256 << SPR_0_4_SHIFT),
   297     MFVRSAVE_OPCODE  = (MFSPR_OPCODE | 256 << SPR_0_4_SHIFT),
   299     MFTB_OPCODE   = (MFSPR_OPCODE | 268 << SPR_0_4_SHIFT),
   301     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
   302     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
   303     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
   305     // condition register logic instructions
   306     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
   307     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
   308     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
   309     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
   310     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
   311     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
   312     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
   313     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
   315     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
   316     BXX_OPCODE      = (18u << OPCODE_SHIFT),
   317     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
   319     // CTR-related opcodes
   320     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
   322     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
   323     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
   324     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
   325     LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
   327     LHA_OPCODE   = (42u << OPCODE_SHIFT),
   328     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
   329     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
   331     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
   332     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
   333     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
   334     LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
   336     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
   337     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
   338     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
   340     STW_OPCODE   = (36u << OPCODE_SHIFT),
   341     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
   342     STWU_OPCODE  = (37u << OPCODE_SHIFT),
   343     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
   345     STH_OPCODE   = (44u << OPCODE_SHIFT),
   346     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
   347     STHU_OPCODE  = (45u << OPCODE_SHIFT),
   349     STB_OPCODE   = (38u << OPCODE_SHIFT),
   350     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
   351     STBU_OPCODE  = (39u << OPCODE_SHIFT),
   353     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
   354     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
   355     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
   357     // 32 bit opcode encodings
   359     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
   360     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
   362     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
   364     // 64 bit opcode encodings
   366     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   367     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   368     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
   370     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   371     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   372     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
   373     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
   375     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
   376     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
   377     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
   378     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
   380     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
   382     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
   383     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
   384     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
   386     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
   387     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
   388     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
   389     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
   391     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
   392     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
   393     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
   396     // opcodes only used for floating arithmetic
   397     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
   398     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
   399     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
   400     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
   401     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
   402     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
   403     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
   404     // on Power7.  Do not use.
   405     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
   406     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
   407     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
   408     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
   409     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
   410     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
   411     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
   412     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
   413     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
   414     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
   415     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
   416     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
   417     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
   419     // PPC64-internal FPU conversion opcodes
   420     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
   421     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
   422     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
   423     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
   424     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
   425     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
   426     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
   428     // WARNING: using fmadd results in a non-compliant vm. Some floating
   429     // point tck tests will fail.
   430     FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
   431     DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
   432     FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
   433     DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
   434     FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
   435     DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
   436     FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
   437     DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
   439     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
   440     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
   441     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
   442     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
   443     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
   444     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
   446     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
   447     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
   448     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
   449     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
   450     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
   451     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
   453     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   454     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   456     // Vector instruction support for >= Power6
   457     // Vector Storage Access
   458     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
   459     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
   460     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
   461     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
   462     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
   463     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
   464     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
   465     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
   466     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
   467     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
   468     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
   469     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
   471     // Vector-Scalar (VSX) instruction support.
   472     LXVD2X_OPCODE  = (31u << OPCODE_SHIFT |  844u << 1),
   473     STXVD2X_OPCODE = (31u << OPCODE_SHIFT |  972u << 1),
   474     MTVSRD_OPCODE  = (31u << OPCODE_SHIFT |  179u << 1),
   475     MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT |  243u << 1),
   476     MFVSRD_OPCODE  = (31u << OPCODE_SHIFT |   51u << 1),
   477     MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT |  115u << 1),
   478     XXPERMDI_OPCODE= (60u << OPCODE_SHIFT |   10u << 3),
   479     XXMRGHW_OPCODE = (60u << OPCODE_SHIFT |   18u << 3),
   480     XXMRGLW_OPCODE = (60u << OPCODE_SHIFT |   50u << 3),
   482     // Vector Permute and Formatting
   483     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
   484     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
   485     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
   486     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
   487     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
   488     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
   489     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
   490     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
   491     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
   492     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
   493     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
   494     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
   495     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
   496     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
   497     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
   499     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
   500     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
   501     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
   502     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
   503     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
   504     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
   506     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
   507     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
   508     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
   509     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
   510     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
   511     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
   513     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
   514     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
   516     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
   517     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
   518     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
   519     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
   520     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
   522     // Vector Integer
   523     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
   524     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
   525     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
   526     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
   527     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
   528     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
   529     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
   530     VADDUDM_OPCODE = (4u  << OPCODE_SHIFT |  192u     ),
   531     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
   532     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
   533     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
   534     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
   535     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
   536     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
   537     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
   538     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
   539     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
   540     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
   541     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
   542     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
   543     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
   545     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
   546     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
   547     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
   548     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
   549     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
   550     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
   551     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
   552     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
   553     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
   554     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
   555     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
   556     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
   557     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
   558     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
   559     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
   560     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
   561     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
   563     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
   564     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
   565     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
   566     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
   567     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
   569     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
   570     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
   571     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
   572     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
   573     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
   574     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
   576     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
   577     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
   578     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
   579     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
   580     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
   581     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
   582     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
   583     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
   584     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
   585     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
   586     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
   587     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
   589     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
   590     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
   591     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
   592     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
   593     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
   594     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
   595     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
   596     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
   597     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
   599     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
   600     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
   601     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
   602     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
   603     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
   604     VRLD_OPCODE    = (4u  << OPCODE_SHIFT |  196u     ),
   605     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
   606     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
   607     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
   608     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
   609     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
   610     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
   611     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
   612     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
   613     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
   614     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
   615     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
   616     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
   618     // Vector Floating-Point
   619     // not implemented yet
   621     // Vector Status and Control
   622     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
   623     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
   625     // AES (introduced with Power 8)
   626     VCIPHER_OPCODE      = (4u  << OPCODE_SHIFT | 1288u),
   627     VCIPHERLAST_OPCODE  = (4u  << OPCODE_SHIFT | 1289u),
   628     VNCIPHER_OPCODE     = (4u  << OPCODE_SHIFT | 1352u),
   629     VNCIPHERLAST_OPCODE = (4u  << OPCODE_SHIFT | 1353u),
   630     VSBOX_OPCODE        = (4u  << OPCODE_SHIFT | 1480u),
   632     // SHA (introduced with Power 8)
   633     VSHASIGMAD_OPCODE   = (4u  << OPCODE_SHIFT | 1730u),
   634     VSHASIGMAW_OPCODE   = (4u  << OPCODE_SHIFT | 1666u),
   636     // Vector Binary Polynomial Multiplication (introduced with Power 8)
   637     VPMSUMB_OPCODE      = (4u  << OPCODE_SHIFT | 1032u),
   638     VPMSUMD_OPCODE      = (4u  << OPCODE_SHIFT | 1224u),
   639     VPMSUMH_OPCODE      = (4u  << OPCODE_SHIFT | 1096u),
   640     VPMSUMW_OPCODE      = (4u  << OPCODE_SHIFT | 1160u),
   642     // Vector Permute and Xor (introduced with Power 8)
   643     VPERMXOR_OPCODE     = (4u  << OPCODE_SHIFT |   45u),
   645     // Transactional Memory instructions (introduced with Power 8)
   646     TBEGIN_OPCODE    = (31u << OPCODE_SHIFT |  654u << 1),
   647     TEND_OPCODE      = (31u << OPCODE_SHIFT |  686u << 1),
   648     TABORT_OPCODE    = (31u << OPCODE_SHIFT |  910u << 1),
   649     TABORTWC_OPCODE  = (31u << OPCODE_SHIFT |  782u << 1),
   650     TABORTWCI_OPCODE = (31u << OPCODE_SHIFT |  846u << 1),
   651     TABORTDC_OPCODE  = (31u << OPCODE_SHIFT |  814u << 1),
   652     TABORTDCI_OPCODE = (31u << OPCODE_SHIFT |  878u << 1),
   653     TSR_OPCODE       = (31u << OPCODE_SHIFT |  750u << 1),
   654     TCHECK_OPCODE    = (31u << OPCODE_SHIFT |  718u << 1),
   656     // Icache and dcache related instructions
   657     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
   658     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
   659     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
   660     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
   662     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
   663     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
   664     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
   666     // Instruction synchronization
   667     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
   668     // Memory barriers
   669     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
   670     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
   672     // Trap instructions
   673     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
   674     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
   675     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
   676     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
   678     // Atomics.
   679     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
   680     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
   681     LQARX_OPCODE   = (31u << OPCODE_SHIFT |  276u << 1),
   682     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
   683     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1),
   684     STQCX_OPCODE   = (31u << OPCODE_SHIFT |  182u << 1)
   686   };
   688   // Trap instructions TO bits
   689   enum trap_to_bits {
   690     // single bits
   691     traptoLessThanSigned      = 1 << 4, // 0, left end
   692     traptoGreaterThanSigned   = 1 << 3,
   693     traptoEqual               = 1 << 2,
   694     traptoLessThanUnsigned    = 1 << 1,
   695     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
   697     // compound ones
   698     traptoUnconditional       = (traptoLessThanSigned |
   699                                  traptoGreaterThanSigned |
   700                                  traptoEqual |
   701                                  traptoLessThanUnsigned |
   702                                  traptoGreaterThanUnsigned)
   703   };
   705   // Branch hints BH field
   706   enum branch_hint_bh {
   707     // bclr cases:
   708     bhintbhBCLRisReturn            = 0,
   709     bhintbhBCLRisNotReturnButSame  = 1,
   710     bhintbhBCLRisNotPredictable    = 3,
   712     // bcctr cases:
   713     bhintbhBCCTRisNotReturnButSame = 0,
   714     bhintbhBCCTRisNotPredictable   = 3
   715   };
   717   // Branch prediction hints AT field
   718   enum branch_hint_at {
   719     bhintatNoHint     = 0,  // at=00
   720     bhintatIsNotTaken = 2,  // at=10
   721     bhintatIsTaken    = 3   // at=11
   722   };
   724   // Branch prediction hints
   725   enum branch_hint_concept {
   726     // Use the same encoding as branch_hint_at to simply code.
   727     bhintNoHint       = bhintatNoHint,
   728     bhintIsNotTaken   = bhintatIsNotTaken,
   729     bhintIsTaken      = bhintatIsTaken
   730   };
   732   // Used in BO field of branch instruction.
   733   enum branch_condition {
   734     bcondCRbiIs0      =  4, // bo=001at
   735     bcondCRbiIs1      = 12, // bo=011at
   736     bcondAlways       = 20  // bo=10100
   737   };
   739   // Branch condition with combined prediction hints.
   740   enum branch_condition_with_hint {
   741     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
   742     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
   743     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
   744     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
   745     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
   746     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
   747   };
   749   // Elemental Memory Barriers (>=Power 8)
   750   enum Elemental_Membar_mask_bits {
   751     StoreStore = 1 << 0,
   752     StoreLoad  = 1 << 1,
   753     LoadStore  = 1 << 2,
   754     LoadLoad   = 1 << 3
   755   };
   757   // Branch prediction hints.
   758   inline static int add_bhint_to_boint(const int bhint, const int boint) {
   759     switch (boint) {
   760       case bcondCRbiIs0:
   761       case bcondCRbiIs1:
   762         // branch_hint and branch_hint_at have same encodings
   763         assert(   (int)bhintNoHint     == (int)bhintatNoHint
   764                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
   765                && (int)bhintIsTaken    == (int)bhintatIsTaken,
   766                "wrong encodings");
   767         assert((bhint & 0x03) == bhint, "wrong encodings");
   768         return (boint & ~0x03) | bhint;
   769       case bcondAlways:
   770         // no branch_hint
   771         return boint;
   772       default:
   773         ShouldNotReachHere();
   774         return 0;
   775     }
   776   }
   778   // Extract bcond from boint.
   779   inline static int inv_boint_bcond(const int boint) {
   780     int r_bcond = boint & ~0x03;
   781     assert(r_bcond == bcondCRbiIs0 ||
   782            r_bcond == bcondCRbiIs1 ||
   783            r_bcond == bcondAlways,
   784            "bad branch condition");
   785     return r_bcond;
   786   }
   788   // Extract bhint from boint.
   789   inline static int inv_boint_bhint(const int boint) {
   790     int r_bhint = boint & 0x03;
   791     assert(r_bhint == bhintatNoHint ||
   792            r_bhint == bhintatIsNotTaken ||
   793            r_bhint == bhintatIsTaken,
   794            "bad branch hint");
   795     return r_bhint;
   796   }
   798   // Calculate opposite of given bcond.
   799   inline static int opposite_bcond(const int bcond) {
   800     switch (bcond) {
   801       case bcondCRbiIs0:
   802         return bcondCRbiIs1;
   803       case bcondCRbiIs1:
   804         return bcondCRbiIs0;
   805       default:
   806         ShouldNotReachHere();
   807         return 0;
   808     }
   809   }
   811   // Calculate opposite of given bhint.
   812   inline static int opposite_bhint(const int bhint) {
   813     switch (bhint) {
   814       case bhintatNoHint:
   815         return bhintatNoHint;
   816       case bhintatIsNotTaken:
   817         return bhintatIsTaken;
   818       case bhintatIsTaken:
   819         return bhintatIsNotTaken;
   820       default:
   821         ShouldNotReachHere();
   822         return 0;
   823     }
   824   }
   826   // PPC branch instructions
   827   enum ppcops {
   828     b_op    = 18,
   829     bc_op   = 16,
   830     bcr_op  = 19
   831   };
   833   enum Condition {
   834     negative         = 0,
   835     less             = 0,
   836     positive         = 1,
   837     greater          = 1,
   838     zero             = 2,
   839     equal            = 2,
   840     summary_overflow = 3,
   841   };
   843  public:
   844   // Helper functions for groups of instructions
   846   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   848   // instruction must start at passed address
   849   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
   851   // instruction must be left-justified in argument
   852   static int instr_len(unsigned long instr)  { return BytesPerInstWord; }
   854   // longest instructions
   855   static int instr_maxlen() { return BytesPerInstWord; }
   857   // Test if x is within signed immediate range for nbits.
   858   static bool is_simm(int x, unsigned int nbits) {
   859     assert(0 < nbits && nbits < 32, "out of bounds");
   860     const int   min      = -( ((int)1) << nbits-1 );
   861     const int   maxplus1 =  ( ((int)1) << nbits-1 );
   862     return min <= x && x < maxplus1;
   863   }
   865   static bool is_simm(jlong x, unsigned int nbits) {
   866     assert(0 < nbits && nbits < 64, "out of bounds");
   867     const jlong min      = -( ((jlong)1) << nbits-1 );
   868     const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
   869     return min <= x && x < maxplus1;
   870   }
   872   // Test if x is within unsigned immediate range for nbits
   873   static bool is_uimm(int x, unsigned int nbits) {
   874     assert(0 < nbits && nbits < 32, "out of bounds");
   875     const int   maxplus1 = ( ((int)1) << nbits );
   876     return 0 <= x && x < maxplus1;
   877   }
   879   static bool is_uimm(jlong x, unsigned int nbits) {
   880     assert(0 < nbits && nbits < 64, "out of bounds");
   881     const jlong maxplus1 =  ( ((jlong)1) << nbits );
   882     return 0 <= x && x < maxplus1;
   883   }
   885  protected:
   886   // helpers
   888   // X is supposed to fit in a field "nbits" wide
   889   // and be sign-extended. Check the range.
   890   static void assert_signed_range(intptr_t x, int nbits) {
   891     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   892            "value out of range");
   893   }
   895   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   896     assert((x & 3) == 0, "not word aligned");
   897     assert_signed_range(x, nbits + 2);
   898   }
   900   static void assert_unsigned_const(int x, int nbits) {
   901     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
   902   }
   904   static int fmask(juint hi_bit, juint lo_bit) {
   905     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
   906     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   907   }
   909   // inverse of u_field
   910   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   911     juint r = juint(x) >> lo_bit;
   912     r &= fmask(hi_bit, lo_bit);
   913     return int(r);
   914   }
   916   // signed version: extract from field and sign-extend
   917   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
   918     x = x << (31-hi_bit);
   919     x = x >> (31-hi_bit+lo_bit);
   920     return x;
   921   }
   923   static int u_field(int x, int hi_bit, int lo_bit) {
   924     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
   925     int r = x << lo_bit;
   926     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   927     return r;
   928   }
   930   // Same as u_field for signed values
   931   static int s_field(int x, int hi_bit, int lo_bit) {
   932     int nbits = hi_bit - lo_bit + 1;
   933     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   934       "value out of range");
   935     x &= fmask(hi_bit, lo_bit);
   936     int r = x << lo_bit;
   937     return r;
   938   }
   940   // inv_op for ppc instructions
   941   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
   943   // Determine target address from li, bd field of branch instruction.
   944   static intptr_t inv_li_field(int x) {
   945     intptr_t r = inv_s_field_ppc(x, 25, 2);
   946     r = (r << 2);
   947     return r;
   948   }
   949   static intptr_t inv_bd_field(int x, intptr_t pos) {
   950     intptr_t r = inv_s_field_ppc(x, 15, 2);
   951     r = (r << 2) + pos;
   952     return r;
   953   }
   955   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
   956   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
   957   // Extract instruction fields from instruction words.
   958  public:
   959   static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   960   static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
   961   static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   962   static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
   963   static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   964   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
   965   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
   966   static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
   967   static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   968   static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   969   static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
   970   static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
   971   static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   972   static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   974   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
   975   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
   977   // instruction fields
   978   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
   979   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
   980   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
   981   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
   982   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
   983   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
   984   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
   985   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
   986   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
   987   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
   988   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
   989   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
   990   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
   991   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
   992   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
   993   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
   994   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
   995   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
   996   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
   997   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
   998   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
   999   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
  1000   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
  1001   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
  1002   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
  1003   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
  1004   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
  1005   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
  1006   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
  1007   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
  1008   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
  1009   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
  1010   static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
  1011   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
  1012   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
  1013   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
  1014   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
  1015   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
  1016   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
  1017   static int me2126(   int         x)  { return  mb2126(x); }
  1018   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
  1019   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
  1020   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
  1021   static int ra(       Register    r)  { return  ra(r->encoding()); }
  1022   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
  1023   static int rb(       Register    r)  { return  rb(r->encoding()); }
  1024   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
  1025   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
  1026   static int rs(       Register    r)  { return  rs(r->encoding()); }
  1027   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
  1028   // we don't want to use R0 in memory accesses, because it has value `0' then
  1029   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
  1030   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
  1032   // register r is target
  1033   static int rt(       Register    r)  { return rs(r); }
  1034   static int rt(       int         x)  { return rs(x); }
  1035   static int rta(      Register    r)  { return ra(r); }
  1036   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
  1038   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
  1039   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
  1040   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
  1041   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
  1042   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
  1043   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
  1044   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
  1045   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
  1046   static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
  1047   static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
  1048   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
  1049   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
  1050   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
  1052   // Support vector instructions for >= Power6.
  1053   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
  1054   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
  1055   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
  1056   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
  1057   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
  1059   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
  1060   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
  1061   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
  1062   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
  1063   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
  1065   // Only used on SHA sigma instructions (VX-form)
  1066   static int vst(      int         x)  { return  opp_u_field(x,             16, 16); }
  1067   static int vsix(     int         x)  { return  opp_u_field(x,             20, 17); }
  1069   // Support Vector-Scalar (VSX) instructions.
  1070   static int vsra(      int         x)  { return  opp_u_field(x & 0x1F,     15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
  1071   static int vsrb(      int         x)  { return  opp_u_field(x & 0x1F,     20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
  1072   static int vsrs(      int         x)  { return  opp_u_field(x & 0x1F,     10,  6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
  1073   static int vsrt(      int         x)  { return  vsrs(x); }
  1074   static int vsdm(      int         x)  { return  opp_u_field(x,            23, 22); }
  1076   static int vsra(   VectorSRegister r)  { return  vsra(r->encoding());}
  1077   static int vsrb(   VectorSRegister r)  { return  vsrb(r->encoding());}
  1078   static int vsrs(   VectorSRegister r)  { return  vsrs(r->encoding());}
  1079   static int vsrt(   VectorSRegister r)  { return  vsrt(r->encoding());}
  1081   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
  1082   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
  1083   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
  1084   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
  1086   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
  1087   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
  1088   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
  1089   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
  1090   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
  1091   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
  1092   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
  1094  protected:
  1095   // Compute relative address for branch.
  1096   static intptr_t disp(intptr_t x, intptr_t off) {
  1097     int xx = x - off;
  1098     xx = xx >> 2;
  1099     return xx;
  1102  public:
  1103   // signed immediate, in low bits, nbits long
  1104   static int simm(int x, int nbits) {
  1105     assert_signed_range(x, nbits);
  1106     return x & ((1 << nbits) - 1);
  1109   // unsigned immediate, in low bits, nbits long
  1110   static int uimm(int x, int nbits) {
  1111     assert_unsigned_const(x, nbits);
  1112     return x & ((1 << nbits) - 1);
  1115   static void set_imm(int* instr, short s) {
  1116     // imm is always in the lower 16 bits of the instruction,
  1117     // so this is endian-neutral. Same for the get_imm below.
  1118     uint32_t w = *(uint32_t *)instr;
  1119     *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
  1122   static int get_imm(address a, int instruction_number) {
  1123     return (short)((int *)a)[instruction_number];
  1126   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
  1127   static inline int lo16_unsigned(int x) { return x & 0xffff; }
  1129  protected:
  1131   // Extract the top 32 bits in a 64 bit word.
  1132   static int32_t hi32(int64_t x) {
  1133     int32_t r = int32_t((uint64_t)x >> 32);
  1134     return r;
  1137  public:
  1139   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
  1140     return ((addr + (a - 1)) & ~(a - 1));
  1143   static inline bool is_aligned(unsigned int addr, unsigned int a) {
  1144     return (0 == addr % a);
  1147   void flush() {
  1148     AbstractAssembler::flush();
  1151   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
  1152   inline void emit_data(int);
  1153   inline void emit_data(int, RelocationHolder const&);
  1154   inline void emit_data(int, relocInfo::relocType rtype);
  1156   // Emit an address.
  1157   inline address emit_addr(const address addr = NULL);
  1159 #if !defined(ABI_ELFv2)
  1160   // Emit a function descriptor with the specified entry point, TOC,
  1161   // and ENV. If the entry point is NULL, the descriptor will point
  1162   // just past the descriptor.
  1163   // Use values from friend functions as defaults.
  1164   inline address emit_fd(address entry = NULL,
  1165                          address toc = (address) FunctionDescriptor::friend_toc,
  1166                          address env = (address) FunctionDescriptor::friend_env);
  1167 #endif
  1169   /////////////////////////////////////////////////////////////////////////////////////
  1170   // PPC instructions
  1171   /////////////////////////////////////////////////////////////////////////////////////
  1173   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
  1174   // immediates. The normal instruction encoders enforce that r0 is not
  1175   // passed to them. Use either extended mnemonics encoders or the special ra0
  1176   // versions.
  1178   // Issue an illegal instruction.
  1179   inline void illtrap();
  1180   static inline bool is_illtrap(int x);
  1182   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
  1183   inline void addi( Register d, Register a, int si16);
  1184   inline void addis(Register d, Register a, int si16);
  1185  private:
  1186   inline void addi_r0ok( Register d, Register a, int si16);
  1187   inline void addis_r0ok(Register d, Register a, int si16);
  1188  public:
  1189   inline void addic_( Register d, Register a, int si16);
  1190   inline void subfic( Register d, Register a, int si16);
  1191   inline void add(    Register d, Register a, Register b);
  1192   inline void add_(   Register d, Register a, Register b);
  1193   inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
  1194   inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
  1195   inline void subf_(  Register d, Register a, Register b);
  1196   inline void addc(   Register d, Register a, Register b);
  1197   inline void addc_(  Register d, Register a, Register b);
  1198   inline void subfc(  Register d, Register a, Register b);
  1199   inline void subfc_( Register d, Register a, Register b);
  1200   inline void adde(   Register d, Register a, Register b);
  1201   inline void adde_(  Register d, Register a, Register b);
  1202   inline void subfe(  Register d, Register a, Register b);
  1203   inline void subfe_( Register d, Register a, Register b);
  1204   inline void neg(    Register d, Register a);
  1205   inline void neg_(   Register d, Register a);
  1206   inline void mulli(  Register d, Register a, int si16);
  1207   inline void mulld(  Register d, Register a, Register b);
  1208   inline void mulld_( Register d, Register a, Register b);
  1209   inline void mullw(  Register d, Register a, Register b);
  1210   inline void mullw_( Register d, Register a, Register b);
  1211   inline void mulhw(  Register d, Register a, Register b);
  1212   inline void mulhw_( Register d, Register a, Register b);
  1213   inline void mulhwu( Register d, Register a, Register b);
  1214   inline void mulhwu_(Register d, Register a, Register b);
  1215   inline void mulhd(  Register d, Register a, Register b);
  1216   inline void mulhd_( Register d, Register a, Register b);
  1217   inline void mulhdu( Register d, Register a, Register b);
  1218   inline void mulhdu_(Register d, Register a, Register b);
  1219   inline void divd(   Register d, Register a, Register b);
  1220   inline void divd_(  Register d, Register a, Register b);
  1221   inline void divw(   Register d, Register a, Register b);
  1222   inline void divw_(  Register d, Register a, Register b);
  1224   // extended mnemonics
  1225   inline void li(   Register d, int si16);
  1226   inline void lis(  Register d, int si16);
  1227   inline void addir(Register d, int si16, Register a);
  1229   static bool is_addi(int x) {
  1230      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
  1232   static bool is_addis(int x) {
  1233      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
  1235   static bool is_bxx(int x) {
  1236      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
  1238   static bool is_b(int x) {
  1239      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
  1241   static bool is_bl(int x) {
  1242      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
  1244   static bool is_bcxx(int x) {
  1245      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
  1247   static bool is_bxx_or_bcxx(int x) {
  1248      return is_bxx(x) || is_bcxx(x);
  1250   static bool is_bctrl(int x) {
  1251      return x == 0x4e800421;
  1253   static bool is_bctr(int x) {
  1254      return x == 0x4e800420;
  1256   static bool is_bclr(int x) {
  1257      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
  1259   static bool is_li(int x) {
  1260      return is_addi(x) && inv_ra_field(x)==0;
  1262   static bool is_lis(int x) {
  1263      return is_addis(x) && inv_ra_field(x)==0;
  1265   static bool is_mtctr(int x) {
  1266      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
  1268   static bool is_ld(int x) {
  1269      return LD_OPCODE == (x & LD_OPCODE_MASK);
  1271   static bool is_std(int x) {
  1272      return STD_OPCODE == (x & STD_OPCODE_MASK);
  1274   static bool is_stdu(int x) {
  1275      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
  1277   static bool is_stdx(int x) {
  1278      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
  1280   static bool is_stdux(int x) {
  1281      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
  1283   static bool is_stwx(int x) {
  1284      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
  1286   static bool is_stwux(int x) {
  1287      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
  1289   static bool is_stw(int x) {
  1290      return STW_OPCODE == (x & STW_OPCODE_MASK);
  1292   static bool is_stwu(int x) {
  1293      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
  1295   static bool is_ori(int x) {
  1296      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
  1297   };
  1298   static bool is_oris(int x) {
  1299      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
  1300   };
  1301   static bool is_rldicr(int x) {
  1302      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
  1303   };
  1304   static bool is_nop(int x) {
  1305     return x == 0x60000000;
  1307   // endgroup opcode for Power6
  1308   static bool is_endgroup(int x) {
  1309     return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
  1313  private:
  1314   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
  1315   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
  1316   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
  1317   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
  1318   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
  1320  public:
  1321   // extended mnemonics of Compare Instructions
  1322   inline void cmpwi( ConditionRegister crx, Register a, int si16);
  1323   inline void cmpdi( ConditionRegister crx, Register a, int si16);
  1324   inline void cmpw(  ConditionRegister crx, Register a, Register b);
  1325   inline void cmpd(  ConditionRegister crx, Register a, Register b);
  1326   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
  1327   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
  1328   inline void cmplw( ConditionRegister crx, Register a, Register b);
  1329   inline void cmpld( ConditionRegister crx, Register a, Register b);
  1331   inline void isel(   Register d, Register a, Register b, int bc);
  1332   // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
  1333   inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
  1334   // Set d = 0 if (cr.cc) equals 1, otherwise b.
  1335   inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
  1337   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
  1338          void andi(   Register a, Register s, int ui16);   // optimized version
  1339   inline void andi_(  Register a, Register s, int ui16);
  1340   inline void andis_( Register a, Register s, int ui16);
  1341   inline void ori(    Register a, Register s, int ui16);
  1342   inline void oris(   Register a, Register s, int ui16);
  1343   inline void xori(   Register a, Register s, int ui16);
  1344   inline void xoris(  Register a, Register s, int ui16);
  1345   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
  1346   inline void and_(   Register a, Register s, Register b);
  1347   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
  1348   // SMT-priority change instruction (see SMT instructions below).
  1349   inline void or_unchecked(Register a, Register s, Register b);
  1350   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
  1351   inline void or_(    Register a, Register s, Register b);
  1352   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
  1353   inline void xor_(   Register a, Register s, Register b);
  1354   inline void nand(   Register a, Register s, Register b);
  1355   inline void nand_(  Register a, Register s, Register b);
  1356   inline void nor(    Register a, Register s, Register b);
  1357   inline void nor_(   Register a, Register s, Register b);
  1358   inline void andc(   Register a, Register s, Register b);
  1359   inline void andc_(  Register a, Register s, Register b);
  1360   inline void orc(    Register a, Register s, Register b);
  1361   inline void orc_(   Register a, Register s, Register b);
  1362   inline void extsb(  Register a, Register s);
  1363   inline void extsh(  Register a, Register s);
  1364   inline void extsw(  Register a, Register s);
  1366   // extended mnemonics
  1367   inline void nop();
  1368   // NOP for FP and BR units (different versions to allow them to be in one group)
  1369   inline void fpnop0();
  1370   inline void fpnop1();
  1371   inline void brnop0();
  1372   inline void brnop1();
  1373   inline void brnop2();
  1375   inline void mr(      Register d, Register s);
  1376   inline void ori_opt( Register d, int ui16);
  1377   inline void oris_opt(Register d, int ui16);
  1379   // endgroup opcode for Power6
  1380   inline void endgroup();
  1382   // count instructions
  1383   inline void cntlzw(  Register a, Register s);
  1384   inline void cntlzw_( Register a, Register s);
  1385   inline void cntlzd(  Register a, Register s);
  1386   inline void cntlzd_( Register a, Register s);
  1388   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
  1389   inline void sld(     Register a, Register s, Register b);
  1390   inline void sld_(    Register a, Register s, Register b);
  1391   inline void slw(     Register a, Register s, Register b);
  1392   inline void slw_(    Register a, Register s, Register b);
  1393   inline void srd(     Register a, Register s, Register b);
  1394   inline void srd_(    Register a, Register s, Register b);
  1395   inline void srw(     Register a, Register s, Register b);
  1396   inline void srw_(    Register a, Register s, Register b);
  1397   inline void srad(    Register a, Register s, Register b);
  1398   inline void srad_(   Register a, Register s, Register b);
  1399   inline void sraw(    Register a, Register s, Register b);
  1400   inline void sraw_(   Register a, Register s, Register b);
  1401   inline void sradi(   Register a, Register s, int sh6);
  1402   inline void sradi_(  Register a, Register s, int sh6);
  1403   inline void srawi(   Register a, Register s, int sh5);
  1404   inline void srawi_(  Register a, Register s, int sh5);
  1406   // extended mnemonics for Shift Instructions
  1407   inline void sldi(    Register a, Register s, int sh6);
  1408   inline void sldi_(   Register a, Register s, int sh6);
  1409   inline void slwi(    Register a, Register s, int sh5);
  1410   inline void slwi_(   Register a, Register s, int sh5);
  1411   inline void srdi(    Register a, Register s, int sh6);
  1412   inline void srdi_(   Register a, Register s, int sh6);
  1413   inline void srwi(    Register a, Register s, int sh5);
  1414   inline void srwi_(   Register a, Register s, int sh5);
  1416   inline void clrrdi(  Register a, Register s, int ui6);
  1417   inline void clrrdi_( Register a, Register s, int ui6);
  1418   inline void clrldi(  Register a, Register s, int ui6);
  1419   inline void clrldi_( Register a, Register s, int ui6);
  1420   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
  1421   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
  1422   inline void extrdi(  Register a, Register s, int n, int b);
  1423   // testbit with condition register
  1424   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
  1426   // rotate instructions
  1427   inline void rotldi(  Register a, Register s, int n);
  1428   inline void rotrdi(  Register a, Register s, int n);
  1429   inline void rotlwi(  Register a, Register s, int n);
  1430   inline void rotrwi(  Register a, Register s, int n);
  1432   // Rotate Instructions
  1433   inline void rldic(   Register a, Register s, int sh6, int mb6);
  1434   inline void rldic_(  Register a, Register s, int sh6, int mb6);
  1435   inline void rldicr(  Register a, Register s, int sh6, int mb6);
  1436   inline void rldicr_( Register a, Register s, int sh6, int mb6);
  1437   inline void rldicl(  Register a, Register s, int sh6, int mb6);
  1438   inline void rldicl_( Register a, Register s, int sh6, int mb6);
  1439   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
  1440   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
  1441   inline void rldimi(  Register a, Register s, int sh6, int mb6);
  1442   inline void rldimi_( Register a, Register s, int sh6, int mb6);
  1443   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
  1444   inline void insrdi(  Register a, Register s, int n,   int b);
  1445   inline void insrwi(  Register a, Register s, int n,   int b);
  1447   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
  1448   // 4 bytes
  1449   inline void lwzx( Register d, Register s1, Register s2);
  1450   inline void lwz(  Register d, int si16,    Register s1);
  1451   inline void lwzu( Register d, int si16,    Register s1);
  1453   // 4 bytes
  1454   inline void lwax( Register d, Register s1, Register s2);
  1455   inline void lwa(  Register d, int si16,    Register s1);
  1457   // 4 bytes reversed
  1458   inline void lwbrx( Register d, Register s1, Register s2);
  1460   // 2 bytes
  1461   inline void lhzx( Register d, Register s1, Register s2);
  1462   inline void lhz(  Register d, int si16,    Register s1);
  1463   inline void lhzu( Register d, int si16,    Register s1);
  1465   // 2 bytes reversed
  1466   inline void lhbrx( Register d, Register s1, Register s2);
  1468   // 2 bytes
  1469   inline void lhax( Register d, Register s1, Register s2);
  1470   inline void lha(  Register d, int si16,    Register s1);
  1471   inline void lhau( Register d, int si16,    Register s1);
  1473   // 1 byte
  1474   inline void lbzx( Register d, Register s1, Register s2);
  1475   inline void lbz(  Register d, int si16,    Register s1);
  1476   inline void lbzu( Register d, int si16,    Register s1);
  1478   // 8 bytes
  1479   inline void ldx(  Register d, Register s1, Register s2);
  1480   inline void ld(   Register d, int si16,    Register s1);
  1481   inline void ldu(  Register d, int si16,    Register s1);
  1483   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
  1484   inline void stwx( Register d, Register s1, Register s2);
  1485   inline void stw(  Register d, int si16,    Register s1);
  1486   inline void stwu( Register d, int si16,    Register s1);
  1488   inline void sthx( Register d, Register s1, Register s2);
  1489   inline void sth(  Register d, int si16,    Register s1);
  1490   inline void sthu( Register d, int si16,    Register s1);
  1492   inline void stbx( Register d, Register s1, Register s2);
  1493   inline void stb(  Register d, int si16,    Register s1);
  1494   inline void stbu( Register d, int si16,    Register s1);
  1496   inline void stdx( Register d, Register s1, Register s2);
  1497   inline void std(  Register d, int si16,    Register s1);
  1498   inline void stdu( Register d, int si16,    Register s1);
  1499   inline void stdux(Register s, Register a,  Register b);
  1501   // PPC 1, section 3.3.13 Move To/From System Register Instructions
  1502   inline void mtlr( Register s1);
  1503   inline void mflr( Register d);
  1504   inline void mtctr(Register s1);
  1505   inline void mfctr(Register d);
  1506   inline void mtcrf(int fxm, Register s);
  1507   inline void mfcr( Register d);
  1508   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
  1509   inline void mtcr( Register s);
  1511   // Special purpose registers
  1512   // Exception Register
  1513   inline void mtxer(Register s1);
  1514   inline void mfxer(Register d);
  1515   // Vector Register Save Register
  1516   inline void mtvrsave(Register s1);
  1517   inline void mfvrsave(Register d);
  1518   // Timebase
  1519   inline void mftb(Register d);
  1520   // Introduced with Power 8:
  1521   // Data Stream Control Register
  1522   inline void mtdscr(Register s1);
  1523   inline void mfdscr(Register d );
  1524   // Transactional Memory Registers
  1525   inline void mftfhar(Register d);
  1526   inline void mftfiar(Register d);
  1527   inline void mftexasr(Register d);
  1528   inline void mftexasru(Register d);
  1530   // PPC 1, section 2.4.1 Branch Instructions
  1531   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
  1532   inline void b(  Label& L);
  1533   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
  1534   inline void bl( Label& L);
  1535   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1536   inline void bc( int boint, int biint, Label& L);
  1537   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1538   inline void bcl(int boint, int biint, Label& L);
  1540   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1541   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1542   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
  1543                          relocInfo::relocType rt = relocInfo::none);
  1544   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
  1545                          relocInfo::relocType rt = relocInfo::none);
  1547   // helper function for b, bcxx
  1548   inline bool is_within_range_of_b(address a, address pc);
  1549   inline bool is_within_range_of_bcxx(address a, address pc);
  1551   // get the destination of a bxx branch (b, bl, ba, bla)
  1552   static inline address  bxx_destination(address baddr);
  1553   static inline address  bxx_destination(int instr, address pc);
  1554   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
  1556   // extended mnemonics for branch instructions
  1557   inline void blt(ConditionRegister crx, Label& L);
  1558   inline void bgt(ConditionRegister crx, Label& L);
  1559   inline void beq(ConditionRegister crx, Label& L);
  1560   inline void bso(ConditionRegister crx, Label& L);
  1561   inline void bge(ConditionRegister crx, Label& L);
  1562   inline void ble(ConditionRegister crx, Label& L);
  1563   inline void bne(ConditionRegister crx, Label& L);
  1564   inline void bns(ConditionRegister crx, Label& L);
  1566   // Branch instructions with static prediction hints.
  1567   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
  1568   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
  1569   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
  1570   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
  1571   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
  1572   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
  1573   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
  1574   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
  1575   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
  1576   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
  1577   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
  1578   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
  1579   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
  1580   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
  1581   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
  1582   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
  1584   // for use in conjunction with testbitdi:
  1585   inline void btrue( ConditionRegister crx, Label& L);
  1586   inline void bfalse(ConditionRegister crx, Label& L);
  1588   inline void bltl(ConditionRegister crx, Label& L);
  1589   inline void bgtl(ConditionRegister crx, Label& L);
  1590   inline void beql(ConditionRegister crx, Label& L);
  1591   inline void bsol(ConditionRegister crx, Label& L);
  1592   inline void bgel(ConditionRegister crx, Label& L);
  1593   inline void blel(ConditionRegister crx, Label& L);
  1594   inline void bnel(ConditionRegister crx, Label& L);
  1595   inline void bnsl(ConditionRegister crx, Label& L);
  1597   // extended mnemonics for Branch Instructions via LR
  1598   // We use `blr' for returns.
  1599   inline void blr(relocInfo::relocType rt = relocInfo::none);
  1601   // extended mnemonics for Branch Instructions with CTR
  1602   // bdnz means `decrement CTR and jump to L if CTR is not zero'
  1603   inline void bdnz(Label& L);
  1604   // Decrement and branch if result is zero.
  1605   inline void bdz(Label& L);
  1606   // we use `bctr[l]' for jumps/calls in function descriptor glue
  1607   // code, e.g. calls to runtime functions
  1608   inline void bctr( relocInfo::relocType rt = relocInfo::none);
  1609   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
  1610   // conditional jumps/branches via CTR
  1611   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1612   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1613   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1614   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1616   // condition register logic instructions
  1617   inline void crand( int d, int s1, int s2);
  1618   inline void crnand(int d, int s1, int s2);
  1619   inline void cror(  int d, int s1, int s2);
  1620   inline void crxor( int d, int s1, int s2);
  1621   inline void crnor( int d, int s1, int s2);
  1622   inline void creqv( int d, int s1, int s2);
  1623   inline void crandc(int d, int s1, int s2);
  1624   inline void crorc( int d, int s1, int s2);
  1626   // icache and dcache related instructions
  1627   inline void icbi(  Register s1, Register s2);
  1628   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
  1629   inline void dcbz(  Register s1, Register s2);
  1630   inline void dcbst( Register s1, Register s2);
  1631   inline void dcbf(  Register s1, Register s2);
  1633   enum ct_cache_specification {
  1634     ct_primary_cache   = 0,
  1635     ct_secondary_cache = 2
  1636   };
  1637   // dcache read hint
  1638   inline void dcbt(    Register s1, Register s2);
  1639   inline void dcbtct(  Register s1, Register s2, int ct);
  1640   inline void dcbtds(  Register s1, Register s2, int ds);
  1641   // dcache write hint
  1642   inline void dcbtst(  Register s1, Register s2);
  1643   inline void dcbtstct(Register s1, Register s2, int ct);
  1645   //  machine barrier instructions:
  1646   //
  1647   //  - sync    two-way memory barrier, aka fence
  1648   //  - lwsync  orders  Store|Store,
  1649   //                     Load|Store,
  1650   //                     Load|Load,
  1651   //            but not Store|Load
  1652   //  - eieio   orders memory accesses for device memory (only)
  1653   //  - isync   invalidates speculatively executed instructions
  1654   //            From the Power ISA 2.06 documentation:
  1655   //             "[...] an isync instruction prevents the execution of
  1656   //            instructions following the isync until instructions
  1657   //            preceding the isync have completed, [...]"
  1658   //            From IBM's AIX assembler reference:
  1659   //             "The isync [...] instructions causes the processor to
  1660   //            refetch any instructions that might have been fetched
  1661   //            prior to the isync instruction. The instruction isync
  1662   //            causes the processor to wait for all previous instructions
  1663   //            to complete. Then any instructions already fetched are
  1664   //            discarded and instruction processing continues in the
  1665   //            environment established by the previous instructions."
  1666   //
  1667   //  semantic barrier instructions:
  1668   //  (as defined in orderAccess.hpp)
  1669   //
  1670   //  - release  orders Store|Store,       (maps to lwsync)
  1671   //                     Load|Store
  1672   //  - acquire  orders  Load|Store,       (maps to lwsync)
  1673   //                     Load|Load
  1674   //  - fence    orders Store|Store,       (maps to sync)
  1675   //                     Load|Store,
  1676   //                     Load|Load,
  1677   //                    Store|Load
  1678   //
  1679  private:
  1680   inline void sync(int l);
  1681  public:
  1682   inline void sync();
  1683   inline void lwsync();
  1684   inline void ptesync();
  1685   inline void eieio();
  1686   inline void isync();
  1687   inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
  1689   // atomics
  1690   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1691   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1692   inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1693   inline bool lxarx_hint_exclusive_access();
  1694   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1695   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1696   inline void lqarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1697   inline void stwcx_( Register s, Register a, Register b);
  1698   inline void stdcx_( Register s, Register a, Register b);
  1699   inline void stqcx_( Register s, Register a, Register b);
  1701   // Instructions for adjusting thread priority for simultaneous
  1702   // multithreading (SMT) on Power5.
  1703  private:
  1704   inline void smt_prio_very_low();
  1705   inline void smt_prio_medium_high();
  1706   inline void smt_prio_high();
  1708  public:
  1709   inline void smt_prio_low();
  1710   inline void smt_prio_medium_low();
  1711   inline void smt_prio_medium();
  1713   // trap instructions
  1714   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
  1715   // NOT FOR DIRECT USE!!
  1716  protected:
  1717   inline void tdi_unchecked(int tobits, Register a, int si16);
  1718   inline void twi_unchecked(int tobits, Register a, int si16);
  1719   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1720   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1721   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1722   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1724   static bool is_tdi(int x, int tobits, int ra, int si16) {
  1725      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
  1726          && (tobits == inv_to_field(x))
  1727          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1728          && (si16 == inv_si_field(x));
  1731   static bool is_twi(int x, int tobits, int ra, int si16) {
  1732      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1733          && (tobits == inv_to_field(x))
  1734          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1735          && (si16 == inv_si_field(x));
  1738   static bool is_twi(int x, int tobits, int ra) {
  1739      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1740          && (tobits == inv_to_field(x))
  1741          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
  1744   static bool is_td(int x, int tobits, int ra, int rb) {
  1745      return (TD_OPCODE == (x & TD_OPCODE_MASK))
  1746          && (tobits == inv_to_field(x))
  1747          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1748          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1751   static bool is_tw(int x, int tobits, int ra, int rb) {
  1752      return (TW_OPCODE == (x & TW_OPCODE_MASK))
  1753          && (tobits == inv_to_field(x))
  1754          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1755          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1758  public:
  1759   // PPC floating point instructions
  1760   // PPC 1, section 4.6.2 Floating-Point Load Instructions
  1761   inline void lfs(  FloatRegister d, int si16,   Register a);
  1762   inline void lfsu( FloatRegister d, int si16,   Register a);
  1763   inline void lfsx( FloatRegister d, Register a, Register b);
  1764   inline void lfd(  FloatRegister d, int si16,   Register a);
  1765   inline void lfdu( FloatRegister d, int si16,   Register a);
  1766   inline void lfdx( FloatRegister d, Register a, Register b);
  1768   // PPC 1, section 4.6.3 Floating-Point Store Instructions
  1769   inline void stfs(  FloatRegister s, int si16,   Register a);
  1770   inline void stfsu( FloatRegister s, int si16,   Register a);
  1771   inline void stfsx( FloatRegister s, Register a, Register b);
  1772   inline void stfd(  FloatRegister s, int si16,   Register a);
  1773   inline void stfdu( FloatRegister s, int si16,   Register a);
  1774   inline void stfdx( FloatRegister s, Register a, Register b);
  1776   // PPC 1, section 4.6.4 Floating-Point Move Instructions
  1777   inline void fmr(  FloatRegister d, FloatRegister b);
  1778   inline void fmr_( FloatRegister d, FloatRegister b);
  1780   //  inline void mffgpr( FloatRegister d, Register b);
  1781   //  inline void mftgpr( Register d, FloatRegister b);
  1782   inline void cmpb(   Register a, Register s, Register b);
  1783   inline void popcntb(Register a, Register s);
  1784   inline void popcntw(Register a, Register s);
  1785   inline void popcntd(Register a, Register s);
  1787   inline void fneg(  FloatRegister d, FloatRegister b);
  1788   inline void fneg_( FloatRegister d, FloatRegister b);
  1789   inline void fabs(  FloatRegister d, FloatRegister b);
  1790   inline void fabs_( FloatRegister d, FloatRegister b);
  1791   inline void fnabs( FloatRegister d, FloatRegister b);
  1792   inline void fnabs_(FloatRegister d, FloatRegister b);
  1794   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
  1795   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
  1796   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
  1797   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
  1798   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
  1799   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
  1800   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
  1801   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
  1802   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1803   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
  1804   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
  1805   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
  1806   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
  1807   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
  1808   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
  1809   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
  1810   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1812   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
  1813   inline void frsp(  FloatRegister d, FloatRegister b);
  1814   inline void fctid( FloatRegister d, FloatRegister b);
  1815   inline void fctidz(FloatRegister d, FloatRegister b);
  1816   inline void fctiw( FloatRegister d, FloatRegister b);
  1817   inline void fctiwz(FloatRegister d, FloatRegister b);
  1818   inline void fcfid( FloatRegister d, FloatRegister b);
  1819   inline void fcfids(FloatRegister d, FloatRegister b);
  1821   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
  1822   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
  1824   inline void fsqrt( FloatRegister d, FloatRegister b);
  1825   inline void fsqrts(FloatRegister d, FloatRegister b);
  1827   // Vector instructions for >= Power6.
  1828   inline void lvebx(    VectorRegister d, Register s1, Register s2);
  1829   inline void lvehx(    VectorRegister d, Register s1, Register s2);
  1830   inline void lvewx(    VectorRegister d, Register s1, Register s2);
  1831   inline void lvx(      VectorRegister d, Register s1, Register s2);
  1832   inline void lvxl(     VectorRegister d, Register s1, Register s2);
  1833   inline void stvebx(   VectorRegister d, Register s1, Register s2);
  1834   inline void stvehx(   VectorRegister d, Register s1, Register s2);
  1835   inline void stvewx(   VectorRegister d, Register s1, Register s2);
  1836   inline void stvx(     VectorRegister d, Register s1, Register s2);
  1837   inline void stvxl(    VectorRegister d, Register s1, Register s2);
  1838   inline void lvsl(     VectorRegister d, Register s1, Register s2);
  1839   inline void lvsr(     VectorRegister d, Register s1, Register s2);
  1840   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
  1841   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1842   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1843   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1844   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1845   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1846   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1847   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1848   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1849   inline void vupkhpx(  VectorRegister d, VectorRegister b);
  1850   inline void vupkhsb(  VectorRegister d, VectorRegister b);
  1851   inline void vupkhsh(  VectorRegister d, VectorRegister b);
  1852   inline void vupklpx(  VectorRegister d, VectorRegister b);
  1853   inline void vupklsb(  VectorRegister d, VectorRegister b);
  1854   inline void vupklsh(  VectorRegister d, VectorRegister b);
  1855   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1856   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1857   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1858   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1859   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1860   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1861   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
  1862   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
  1863   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
  1864   inline void vspltisb( VectorRegister d, int si5);
  1865   inline void vspltish( VectorRegister d, int si5);
  1866   inline void vspltisw( VectorRegister d, int si5);
  1867   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1868   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1869   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
  1870   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
  1871   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
  1872   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
  1873   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
  1874   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1875   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1876   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1877   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1878   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1879   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1880   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1881   inline void vaddudm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1882   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1883   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1884   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1885   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1886   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1887   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1888   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1889   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1890   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1891   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1892   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1893   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1894   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1895   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1896   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1897   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1898   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1899   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1900   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1901   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1902   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1903   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1904   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
  1905   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1906   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1907   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1908   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1909   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1910   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1911   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1912   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1913   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
  1914   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
  1915   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
  1916   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
  1917   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1918   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1919   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1920   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1921   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1922   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1923   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1924   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1925   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1926   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1927   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1928   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1929   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1930   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1931   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1932   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1933   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1934   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1935   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
  1936   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
  1937   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
  1938   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
  1939   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
  1940   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
  1941   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
  1942   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
  1943   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
  1944   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1945   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1946   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1947   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1948   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1949   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1950   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
  1951   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1952   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1953   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
  1954   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
  1955   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1956   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
  1957   inline void vmr(      VectorRegister d, VectorRegister a);
  1958   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1959   inline void vrld(     VectorRegister d, VectorRegister a, VectorRegister b);
  1960   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1961   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1962   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1963   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1964   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1965   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1966   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1967   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1968   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1969   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
  1970   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
  1971   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
  1972   // Vector Floating-Point not implemented yet
  1973   inline void mtvscr(   VectorRegister b);
  1974   inline void mfvscr(   VectorRegister d);
  1976   // Vector-Scalar (VSX) instructions.
  1977   inline void lxvd2x(   VectorSRegister d, Register a);
  1978   inline void lxvd2x(   VectorSRegister d, Register a, Register b);
  1979   inline void stxvd2x(  VectorSRegister d, Register a);
  1980   inline void stxvd2x(  VectorSRegister d, Register a, Register b);
  1981   inline void mtvrwz(   VectorRegister  d, Register a);
  1982   inline void mfvrwz(   Register        a, VectorRegister d);
  1983   inline void mtvrd(    VectorRegister  d, Register a);
  1984   inline void mfvrd(    Register        a, VectorRegister d);
  1985   inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
  1986   inline void xxmrghw(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
  1987   inline void xxmrglw(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
  1989   // VSX Extended Mnemonics
  1990   inline void xxspltd(  VectorSRegister d, VectorSRegister a, int x);
  1991   inline void xxmrghd(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
  1992   inline void xxmrgld(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
  1993   inline void xxswapd(  VectorSRegister d, VectorSRegister a);
  1995   // AES (introduced with Power 8)
  1996   inline void vcipher(     VectorRegister d, VectorRegister a, VectorRegister b);
  1997   inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
  1998   inline void vncipher(    VectorRegister d, VectorRegister a, VectorRegister b);
  1999   inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
  2000   inline void vsbox(       VectorRegister d, VectorRegister a);
  2002   // SHA (introduced with Power 8)
  2003   inline void vshasigmad(VectorRegister d, VectorRegister a, bool st, int six);
  2004   inline void vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six);
  2006   // Vector Binary Polynomial Multiplication (introduced with Power 8)
  2007   inline void vpmsumb(  VectorRegister d, VectorRegister a, VectorRegister b);
  2008   inline void vpmsumd(  VectorRegister d, VectorRegister a, VectorRegister b);
  2009   inline void vpmsumh(  VectorRegister d, VectorRegister a, VectorRegister b);
  2010   inline void vpmsumw(  VectorRegister d, VectorRegister a, VectorRegister b);
  2012   // Vector Permute and Xor (introduced with Power 8)
  2013   inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  2015   // Transactional Memory instructions (introduced with Power 8)
  2016   inline void tbegin_();    // R=0
  2017   inline void tbeginrot_(); // R=1 Rollback-Only Transaction
  2018   inline void tend_();    // A=0
  2019   inline void tendall_(); // A=1
  2020   inline void tabort_(Register a);
  2021   inline void tabortwc_(int t, Register a, Register b);
  2022   inline void tabortwci_(int t, Register a, int si);
  2023   inline void tabortdc_(int t, Register a, Register b);
  2024   inline void tabortdci_(int t, Register a, int si);
  2025   inline void tsuspend_(); // tsr with L=0
  2026   inline void tresume_();  // tsr with L=1
  2027   inline void tcheck(int f);
  2029   // The following encoders use r0 as second operand. These instructions
  2030   // read r0 as '0'.
  2031   inline void lwzx( Register d, Register s2);
  2032   inline void lwz(  Register d, int si16);
  2033   inline void lwax( Register d, Register s2);
  2034   inline void lwa(  Register d, int si16);
  2035   inline void lwbrx(Register d, Register s2);
  2036   inline void lhzx( Register d, Register s2);
  2037   inline void lhz(  Register d, int si16);
  2038   inline void lhax( Register d, Register s2);
  2039   inline void lha(  Register d, int si16);
  2040   inline void lhbrx(Register d, Register s2);
  2041   inline void lbzx( Register d, Register s2);
  2042   inline void lbz(  Register d, int si16);
  2043   inline void ldx(  Register d, Register s2);
  2044   inline void ld(   Register d, int si16);
  2045   inline void stwx( Register d, Register s2);
  2046   inline void stw(  Register d, int si16);
  2047   inline void sthx( Register d, Register s2);
  2048   inline void sth(  Register d, int si16);
  2049   inline void stbx( Register d, Register s2);
  2050   inline void stb(  Register d, int si16);
  2051   inline void stdx( Register d, Register s2);
  2052   inline void std(  Register d, int si16);
  2054   // PPC 2, section 3.2.1 Instruction Cache Instructions
  2055   inline void icbi(    Register s2);
  2056   // PPC 2, section 3.2.2 Data Cache Instructions
  2057   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
  2058   inline void dcbz(    Register s2);
  2059   inline void dcbst(   Register s2);
  2060   inline void dcbf(    Register s2);
  2061   // dcache read hint
  2062   inline void dcbt(    Register s2);
  2063   inline void dcbtct(  Register s2, int ct);
  2064   inline void dcbtds(  Register s2, int ds);
  2065   // dcache write hint
  2066   inline void dcbtst(  Register s2);
  2067   inline void dcbtstct(Register s2, int ct);
  2069   // Atomics: use ra0mem to disallow R0 as base.
  2070   inline void lwarx_unchecked(Register d, Register b, int eh1);
  2071   inline void ldarx_unchecked(Register d, Register b, int eh1);
  2072   inline void lqarx_unchecked(Register d, Register b, int eh1);
  2073   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
  2074   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
  2075   inline void lqarx( Register d, Register b, bool hint_exclusive_access);
  2076   inline void stwcx_(Register s, Register b);
  2077   inline void stdcx_(Register s, Register b);
  2078   inline void stqcx_(Register s, Register b);
  2079   inline void lfs(   FloatRegister d, int si16);
  2080   inline void lfsx(  FloatRegister d, Register b);
  2081   inline void lfd(   FloatRegister d, int si16);
  2082   inline void lfdx(  FloatRegister d, Register b);
  2083   inline void stfs(  FloatRegister s, int si16);
  2084   inline void stfsx( FloatRegister s, Register b);
  2085   inline void stfd(  FloatRegister s, int si16);
  2086   inline void stfdx( FloatRegister s, Register b);
  2087   inline void lvebx( VectorRegister d, Register s2);
  2088   inline void lvehx( VectorRegister d, Register s2);
  2089   inline void lvewx( VectorRegister d, Register s2);
  2090   inline void lvx(   VectorRegister d, Register s2);
  2091   inline void lvxl(  VectorRegister d, Register s2);
  2092   inline void stvebx(VectorRegister d, Register s2);
  2093   inline void stvehx(VectorRegister d, Register s2);
  2094   inline void stvewx(VectorRegister d, Register s2);
  2095   inline void stvx(  VectorRegister d, Register s2);
  2096   inline void stvxl( VectorRegister d, Register s2);
  2097   inline void lvsl(  VectorRegister d, Register s2);
  2098   inline void lvsr(  VectorRegister d, Register s2);
  2100   // Endianess specific concatenation of 2 loaded vectors.
  2101   inline void load_perm(VectorRegister perm, Register addr);
  2102   inline void vec_perm(VectorRegister first_dest, VectorRegister second, VectorRegister perm);
  2104   // RegisterOrConstant versions.
  2105   // These emitters choose between the versions using two registers and
  2106   // those with register and immediate, depending on the content of roc.
  2107   // If the constant is not encodable as immediate, instructions to
  2108   // load the constant are emitted beforehand. Store instructions need a
  2109   // tmp reg if the constant is not encodable as immediate.
  2110   // Size unpredictable.
  2111   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
  2112   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2113   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2114   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2115   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2116   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2117   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2118   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2119   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2120   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2121   void add( Register d, RegisterOrConstant roc, Register s1);
  2122   void subf(Register d, RegisterOrConstant roc, Register s1);
  2123   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
  2126   // Emit several instructions to load a 64 bit constant. This issues a fixed
  2127   // instruction pattern so that the constant can be patched later on.
  2128   enum {
  2129     load_const_size = 5 * BytesPerInstWord
  2130   };
  2131          void load_const(Register d, long a,            Register tmp = noreg);
  2132   inline void load_const(Register d, void* a,           Register tmp = noreg);
  2133   inline void load_const(Register d, Label& L,          Register tmp = noreg);
  2134   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
  2136   // Load a 64 bit constant, optimized, not identifyable.
  2137   // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
  2138   // 16 bit immediate offset. This is useful if the offset can be encoded in
  2139   // a succeeding instruction.
  2140          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
  2141   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
  2142     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
  2145   // Creation
  2146   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  2147 #ifdef CHECK_DELAY
  2148     delay_state = no_delay;
  2149 #endif
  2152   // Testing
  2153 #ifndef PRODUCT
  2154   void test_asm();
  2155 #endif
  2156 };
  2159 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP

mercurial