src/share/vm/gc_implementation/g1/concurrentMark.cpp

Thu, 23 Oct 2014 12:02:08 -0700

author
asaha
date
Thu, 23 Oct 2014 12:02:08 -0700
changeset 7476
c2844108a708
parent 7257
e7d0505c8a30
child 7333
b12a2a9b05ca
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.hpp"
    36 #include "gc_implementation/g1/heapRegion.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    40 #include "gc_implementation/shared/vmGCOperations.hpp"
    41 #include "gc_implementation/shared/gcTimer.hpp"
    42 #include "gc_implementation/shared/gcTrace.hpp"
    43 #include "gc_implementation/shared/gcTraceTime.hpp"
    44 #include "memory/allocation.hpp"
    45 #include "memory/genOopClosures.inline.hpp"
    46 #include "memory/referencePolicy.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/prefetch.inline.hpp"
    52 #include "services/memTracker.hpp"
    54 // Concurrent marking bit map wrapper
    56 CMBitMapRO::CMBitMapRO(int shifter) :
    57   _bm(),
    58   _shifter(shifter) {
    59   _bmStartWord = 0;
    60   _bmWordSize = 0;
    61 }
    63 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    64                                                const HeapWord* limit) const {
    65   // First we must round addr *up* to a possible object boundary.
    66   addr = (HeapWord*)align_size_up((intptr_t)addr,
    67                                   HeapWordSize << _shifter);
    68   size_t addrOffset = heapWordToOffset(addr);
    69   if (limit == NULL) {
    70     limit = _bmStartWord + _bmWordSize;
    71   }
    72   size_t limitOffset = heapWordToOffset(limit);
    73   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    74   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    75   assert(nextAddr >= addr, "get_next_one postcondition");
    76   assert(nextAddr == limit || isMarked(nextAddr),
    77          "get_next_one postcondition");
    78   return nextAddr;
    79 }
    81 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    82                                                  const HeapWord* limit) const {
    83   size_t addrOffset = heapWordToOffset(addr);
    84   if (limit == NULL) {
    85     limit = _bmStartWord + _bmWordSize;
    86   }
    87   size_t limitOffset = heapWordToOffset(limit);
    88   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    89   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    90   assert(nextAddr >= addr, "get_next_one postcondition");
    91   assert(nextAddr == limit || !isMarked(nextAddr),
    92          "get_next_one postcondition");
    93   return nextAddr;
    94 }
    96 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    97   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    98   return (int) (diff >> _shifter);
    99 }
   101 #ifndef PRODUCT
   102 bool CMBitMapRO::covers(MemRegion heap_rs) const {
   103   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   104   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   105          "size inconsistency");
   106   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
   107          _bmWordSize  == heap_rs.word_size();
   108 }
   109 #endif
   111 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   112   _bm.print_on_error(st, prefix);
   113 }
   115 size_t CMBitMap::compute_size(size_t heap_size) {
   116   return heap_size / mark_distance();
   117 }
   119 size_t CMBitMap::mark_distance() {
   120   return MinObjAlignmentInBytes * BitsPerByte;
   121 }
   123 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
   124   _bmStartWord = heap.start();
   125   _bmWordSize = heap.word_size();
   127   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
   128   _bm.set_size(_bmWordSize >> _shifter);
   130   storage->set_mapping_changed_listener(&_listener);
   131 }
   133 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
   134   if (zero_filled) {
   135     return;
   136   }
   137   // We need to clear the bitmap on commit, removing any existing information.
   138   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
   139   _bm->clearRange(mr);
   140 }
   142 // Closure used for clearing the given mark bitmap.
   143 class ClearBitmapHRClosure : public HeapRegionClosure {
   144  private:
   145   ConcurrentMark* _cm;
   146   CMBitMap* _bitmap;
   147   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
   148  public:
   149   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
   150     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
   151   }
   153   virtual bool doHeapRegion(HeapRegion* r) {
   154     size_t const chunk_size_in_words = M / HeapWordSize;
   156     HeapWord* cur = r->bottom();
   157     HeapWord* const end = r->end();
   159     while (cur < end) {
   160       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
   161       _bitmap->clearRange(mr);
   163       cur += chunk_size_in_words;
   165       // Abort iteration if after yielding the marking has been aborted.
   166       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
   167         return true;
   168       }
   169       // Repeat the asserts from before the start of the closure. We will do them
   170       // as asserts here to minimize their overhead on the product. However, we
   171       // will have them as guarantees at the beginning / end of the bitmap
   172       // clearing to get some checking in the product.
   173       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
   174       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
   175     }
   177     return false;
   178   }
   179 };
   181 void CMBitMap::clearAll() {
   182   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
   183   G1CollectedHeap::heap()->heap_region_iterate(&cl);
   184   guarantee(cl.complete(), "Must have completed iteration.");
   185   return;
   186 }
   188 void CMBitMap::markRange(MemRegion mr) {
   189   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   190   assert(!mr.is_empty(), "unexpected empty region");
   191   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   192           ((HeapWord *) mr.end())),
   193          "markRange memory region end is not card aligned");
   194   // convert address range into offset range
   195   _bm.at_put_range(heapWordToOffset(mr.start()),
   196                    heapWordToOffset(mr.end()), true);
   197 }
   199 void CMBitMap::clearRange(MemRegion mr) {
   200   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   201   assert(!mr.is_empty(), "unexpected empty region");
   202   // convert address range into offset range
   203   _bm.at_put_range(heapWordToOffset(mr.start()),
   204                    heapWordToOffset(mr.end()), false);
   205 }
   207 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   208                                             HeapWord* end_addr) {
   209   HeapWord* start = getNextMarkedWordAddress(addr);
   210   start = MIN2(start, end_addr);
   211   HeapWord* end   = getNextUnmarkedWordAddress(start);
   212   end = MIN2(end, end_addr);
   213   assert(start <= end, "Consistency check");
   214   MemRegion mr(start, end);
   215   if (!mr.is_empty()) {
   216     clearRange(mr);
   217   }
   218   return mr;
   219 }
   221 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   222   _base(NULL), _cm(cm)
   223 #ifdef ASSERT
   224   , _drain_in_progress(false)
   225   , _drain_in_progress_yields(false)
   226 #endif
   227 {}
   229 bool CMMarkStack::allocate(size_t capacity) {
   230   // allocate a stack of the requisite depth
   231   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   232   if (!rs.is_reserved()) {
   233     warning("ConcurrentMark MarkStack allocation failure");
   234     return false;
   235   }
   236   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   237   if (!_virtual_space.initialize(rs, rs.size())) {
   238     warning("ConcurrentMark MarkStack backing store failure");
   239     // Release the virtual memory reserved for the marking stack
   240     rs.release();
   241     return false;
   242   }
   243   assert(_virtual_space.committed_size() == rs.size(),
   244          "Didn't reserve backing store for all of ConcurrentMark stack?");
   245   _base = (oop*) _virtual_space.low();
   246   setEmpty();
   247   _capacity = (jint) capacity;
   248   _saved_index = -1;
   249   _should_expand = false;
   250   NOT_PRODUCT(_max_depth = 0);
   251   return true;
   252 }
   254 void CMMarkStack::expand() {
   255   // Called, during remark, if we've overflown the marking stack during marking.
   256   assert(isEmpty(), "stack should been emptied while handling overflow");
   257   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   258   // Clear expansion flag
   259   _should_expand = false;
   260   if (_capacity == (jint) MarkStackSizeMax) {
   261     if (PrintGCDetails && Verbose) {
   262       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   263     }
   264     return;
   265   }
   266   // Double capacity if possible
   267   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   268   // Do not give up existing stack until we have managed to
   269   // get the double capacity that we desired.
   270   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   271                                                            sizeof(oop)));
   272   if (rs.is_reserved()) {
   273     // Release the backing store associated with old stack
   274     _virtual_space.release();
   275     // Reinitialize virtual space for new stack
   276     if (!_virtual_space.initialize(rs, rs.size())) {
   277       fatal("Not enough swap for expanded marking stack capacity");
   278     }
   279     _base = (oop*)(_virtual_space.low());
   280     _index = 0;
   281     _capacity = new_capacity;
   282   } else {
   283     if (PrintGCDetails && Verbose) {
   284       // Failed to double capacity, continue;
   285       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   286                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   287                           _capacity / K, new_capacity / K);
   288     }
   289   }
   290 }
   292 void CMMarkStack::set_should_expand() {
   293   // If we're resetting the marking state because of an
   294   // marking stack overflow, record that we should, if
   295   // possible, expand the stack.
   296   _should_expand = _cm->has_overflown();
   297 }
   299 CMMarkStack::~CMMarkStack() {
   300   if (_base != NULL) {
   301     _base = NULL;
   302     _virtual_space.release();
   303   }
   304 }
   306 void CMMarkStack::par_push(oop ptr) {
   307   while (true) {
   308     if (isFull()) {
   309       _overflow = true;
   310       return;
   311     }
   312     // Otherwise...
   313     jint index = _index;
   314     jint next_index = index+1;
   315     jint res = Atomic::cmpxchg(next_index, &_index, index);
   316     if (res == index) {
   317       _base[index] = ptr;
   318       // Note that we don't maintain this atomically.  We could, but it
   319       // doesn't seem necessary.
   320       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   321       return;
   322     }
   323     // Otherwise, we need to try again.
   324   }
   325 }
   327 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   328   while (true) {
   329     if (isFull()) {
   330       _overflow = true;
   331       return;
   332     }
   333     // Otherwise...
   334     jint index = _index;
   335     jint next_index = index + n;
   336     if (next_index > _capacity) {
   337       _overflow = true;
   338       return;
   339     }
   340     jint res = Atomic::cmpxchg(next_index, &_index, index);
   341     if (res == index) {
   342       for (int i = 0; i < n; i++) {
   343         int  ind = index + i;
   344         assert(ind < _capacity, "By overflow test above.");
   345         _base[ind] = ptr_arr[i];
   346       }
   347       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   348       return;
   349     }
   350     // Otherwise, we need to try again.
   351   }
   352 }
   354 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   355   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   356   jint start = _index;
   357   jint next_index = start + n;
   358   if (next_index > _capacity) {
   359     _overflow = true;
   360     return;
   361   }
   362   // Otherwise.
   363   _index = next_index;
   364   for (int i = 0; i < n; i++) {
   365     int ind = start + i;
   366     assert(ind < _capacity, "By overflow test above.");
   367     _base[ind] = ptr_arr[i];
   368   }
   369   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   370 }
   372 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   373   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   374   jint index = _index;
   375   if (index == 0) {
   376     *n = 0;
   377     return false;
   378   } else {
   379     int k = MIN2(max, index);
   380     jint  new_ind = index - k;
   381     for (int j = 0; j < k; j++) {
   382       ptr_arr[j] = _base[new_ind + j];
   383     }
   384     _index = new_ind;
   385     *n = k;
   386     return true;
   387   }
   388 }
   390 template<class OopClosureClass>
   391 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   392   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   393          || SafepointSynchronize::is_at_safepoint(),
   394          "Drain recursion must be yield-safe.");
   395   bool res = true;
   396   debug_only(_drain_in_progress = true);
   397   debug_only(_drain_in_progress_yields = yield_after);
   398   while (!isEmpty()) {
   399     oop newOop = pop();
   400     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   401     assert(newOop->is_oop(), "Expected an oop");
   402     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   403            "only grey objects on this stack");
   404     newOop->oop_iterate(cl);
   405     if (yield_after && _cm->do_yield_check()) {
   406       res = false;
   407       break;
   408     }
   409   }
   410   debug_only(_drain_in_progress = false);
   411   return res;
   412 }
   414 void CMMarkStack::note_start_of_gc() {
   415   assert(_saved_index == -1,
   416          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   417   _saved_index = _index;
   418 }
   420 void CMMarkStack::note_end_of_gc() {
   421   // This is intentionally a guarantee, instead of an assert. If we
   422   // accidentally add something to the mark stack during GC, it
   423   // will be a correctness issue so it's better if we crash. we'll
   424   // only check this once per GC anyway, so it won't be a performance
   425   // issue in any way.
   426   guarantee(_saved_index == _index,
   427             err_msg("saved index: %d index: %d", _saved_index, _index));
   428   _saved_index = -1;
   429 }
   431 void CMMarkStack::oops_do(OopClosure* f) {
   432   assert(_saved_index == _index,
   433          err_msg("saved index: %d index: %d", _saved_index, _index));
   434   for (int i = 0; i < _index; i += 1) {
   435     f->do_oop(&_base[i]);
   436   }
   437 }
   439 CMRootRegions::CMRootRegions() :
   440   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   441   _should_abort(false),  _next_survivor(NULL) { }
   443 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   444   _young_list = g1h->young_list();
   445   _cm = cm;
   446 }
   448 void CMRootRegions::prepare_for_scan() {
   449   assert(!scan_in_progress(), "pre-condition");
   451   // Currently, only survivors can be root regions.
   452   assert(_next_survivor == NULL, "pre-condition");
   453   _next_survivor = _young_list->first_survivor_region();
   454   _scan_in_progress = (_next_survivor != NULL);
   455   _should_abort = false;
   456 }
   458 HeapRegion* CMRootRegions::claim_next() {
   459   if (_should_abort) {
   460     // If someone has set the should_abort flag, we return NULL to
   461     // force the caller to bail out of their loop.
   462     return NULL;
   463   }
   465   // Currently, only survivors can be root regions.
   466   HeapRegion* res = _next_survivor;
   467   if (res != NULL) {
   468     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   469     // Read it again in case it changed while we were waiting for the lock.
   470     res = _next_survivor;
   471     if (res != NULL) {
   472       if (res == _young_list->last_survivor_region()) {
   473         // We just claimed the last survivor so store NULL to indicate
   474         // that we're done.
   475         _next_survivor = NULL;
   476       } else {
   477         _next_survivor = res->get_next_young_region();
   478       }
   479     } else {
   480       // Someone else claimed the last survivor while we were trying
   481       // to take the lock so nothing else to do.
   482     }
   483   }
   484   assert(res == NULL || res->is_survivor(), "post-condition");
   486   return res;
   487 }
   489 void CMRootRegions::scan_finished() {
   490   assert(scan_in_progress(), "pre-condition");
   492   // Currently, only survivors can be root regions.
   493   if (!_should_abort) {
   494     assert(_next_survivor == NULL, "we should have claimed all survivors");
   495   }
   496   _next_survivor = NULL;
   498   {
   499     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   500     _scan_in_progress = false;
   501     RootRegionScan_lock->notify_all();
   502   }
   503 }
   505 bool CMRootRegions::wait_until_scan_finished() {
   506   if (!scan_in_progress()) return false;
   508   {
   509     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   510     while (scan_in_progress()) {
   511       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   512     }
   513   }
   514   return true;
   515 }
   517 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   518 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   519 #endif // _MSC_VER
   521 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   522   return MAX2((n_par_threads + 2) / 4, 1U);
   523 }
   525 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
   526   _g1h(g1h),
   527   _markBitMap1(),
   528   _markBitMap2(),
   529   _parallel_marking_threads(0),
   530   _max_parallel_marking_threads(0),
   531   _sleep_factor(0.0),
   532   _marking_task_overhead(1.0),
   533   _cleanup_sleep_factor(0.0),
   534   _cleanup_task_overhead(1.0),
   535   _cleanup_list("Cleanup List"),
   536   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   537   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
   538             CardTableModRefBS::card_shift,
   539             false /* in_resource_area*/),
   541   _prevMarkBitMap(&_markBitMap1),
   542   _nextMarkBitMap(&_markBitMap2),
   544   _markStack(this),
   545   // _finger set in set_non_marking_state
   547   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   548   // _active_tasks set in set_non_marking_state
   549   // _tasks set inside the constructor
   550   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   551   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   553   _has_overflown(false),
   554   _concurrent(false),
   555   _has_aborted(false),
   556   _aborted_gc_id(GCId::undefined()),
   557   _restart_for_overflow(false),
   558   _concurrent_marking_in_progress(false),
   560   // _verbose_level set below
   562   _init_times(),
   563   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   564   _cleanup_times(),
   565   _total_counting_time(0.0),
   566   _total_rs_scrub_time(0.0),
   568   _parallel_workers(NULL),
   570   _count_card_bitmaps(NULL),
   571   _count_marked_bytes(NULL),
   572   _completed_initialization(false) {
   573   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   574   if (verbose_level < no_verbose) {
   575     verbose_level = no_verbose;
   576   }
   577   if (verbose_level > high_verbose) {
   578     verbose_level = high_verbose;
   579   }
   580   _verbose_level = verbose_level;
   582   if (verbose_low()) {
   583     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   584                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   585   }
   587   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
   588   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
   590   // Create & start a ConcurrentMark thread.
   591   _cmThread = new ConcurrentMarkThread(this);
   592   assert(cmThread() != NULL, "CM Thread should have been created");
   593   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   594   if (_cmThread->osthread() == NULL) {
   595       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   596   }
   598   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   599   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
   600   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
   602   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   603   satb_qs.set_buffer_size(G1SATBBufferSize);
   605   _root_regions.init(_g1h, this);
   607   if (ConcGCThreads > ParallelGCThreads) {
   608     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   609             "than ParallelGCThreads (" UINTX_FORMAT ").",
   610             ConcGCThreads, ParallelGCThreads);
   611     return;
   612   }
   613   if (ParallelGCThreads == 0) {
   614     // if we are not running with any parallel GC threads we will not
   615     // spawn any marking threads either
   616     _parallel_marking_threads =       0;
   617     _max_parallel_marking_threads =   0;
   618     _sleep_factor             =     0.0;
   619     _marking_task_overhead    =     1.0;
   620   } else {
   621     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   622       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   623       // if both are set
   624       _sleep_factor             = 0.0;
   625       _marking_task_overhead    = 1.0;
   626     } else if (G1MarkingOverheadPercent > 0) {
   627       // We will calculate the number of parallel marking threads based
   628       // on a target overhead with respect to the soft real-time goal
   629       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   630       double overall_cm_overhead =
   631         (double) MaxGCPauseMillis * marking_overhead /
   632         (double) GCPauseIntervalMillis;
   633       double cpu_ratio = 1.0 / (double) os::processor_count();
   634       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   635       double marking_task_overhead =
   636         overall_cm_overhead / marking_thread_num *
   637                                                 (double) os::processor_count();
   638       double sleep_factor =
   639                          (1.0 - marking_task_overhead) / marking_task_overhead;
   641       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   642       _sleep_factor             = sleep_factor;
   643       _marking_task_overhead    = marking_task_overhead;
   644     } else {
   645       // Calculate the number of parallel marking threads by scaling
   646       // the number of parallel GC threads.
   647       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   648       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   649       _sleep_factor             = 0.0;
   650       _marking_task_overhead    = 1.0;
   651     }
   653     assert(ConcGCThreads > 0, "Should have been set");
   654     _parallel_marking_threads = (uint) ConcGCThreads;
   655     _max_parallel_marking_threads = _parallel_marking_threads;
   657     if (parallel_marking_threads() > 1) {
   658       _cleanup_task_overhead = 1.0;
   659     } else {
   660       _cleanup_task_overhead = marking_task_overhead();
   661     }
   662     _cleanup_sleep_factor =
   663                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   665 #if 0
   666     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   667     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   668     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   669     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   670     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   671 #endif
   673     guarantee(parallel_marking_threads() > 0, "peace of mind");
   674     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   675          _max_parallel_marking_threads, false, true);
   676     if (_parallel_workers == NULL) {
   677       vm_exit_during_initialization("Failed necessary allocation.");
   678     } else {
   679       _parallel_workers->initialize_workers();
   680     }
   681   }
   683   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   684     uintx mark_stack_size =
   685       MIN2(MarkStackSizeMax,
   686           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   687     // Verify that the calculated value for MarkStackSize is in range.
   688     // It would be nice to use the private utility routine from Arguments.
   689     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   690       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   691               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   692               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   693       return;
   694     }
   695     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   696   } else {
   697     // Verify MarkStackSize is in range.
   698     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   699       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   700         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   701           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   702                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   703                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   704           return;
   705         }
   706       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   707         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   708           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   709                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   710                   MarkStackSize, MarkStackSizeMax);
   711           return;
   712         }
   713       }
   714     }
   715   }
   717   if (!_markStack.allocate(MarkStackSize)) {
   718     warning("Failed to allocate CM marking stack");
   719     return;
   720   }
   722   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   723   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   725   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   726   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   728   BitMap::idx_t card_bm_size = _card_bm.size();
   730   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   731   _active_tasks = _max_worker_id;
   733   size_t max_regions = (size_t) _g1h->max_regions();
   734   for (uint i = 0; i < _max_worker_id; ++i) {
   735     CMTaskQueue* task_queue = new CMTaskQueue();
   736     task_queue->initialize();
   737     _task_queues->register_queue(i, task_queue);
   739     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   740     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   742     _tasks[i] = new CMTask(i, this,
   743                            _count_marked_bytes[i],
   744                            &_count_card_bitmaps[i],
   745                            task_queue, _task_queues);
   747     _accum_task_vtime[i] = 0.0;
   748   }
   750   // Calculate the card number for the bottom of the heap. Used
   751   // in biasing indexes into the accounting card bitmaps.
   752   _heap_bottom_card_num =
   753     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   754                                 CardTableModRefBS::card_shift);
   756   // Clear all the liveness counting data
   757   clear_all_count_data();
   759   // so that the call below can read a sensible value
   760   _heap_start = g1h->reserved_region().start();
   761   set_non_marking_state();
   762   _completed_initialization = true;
   763 }
   765 void ConcurrentMark::reset() {
   766   // Starting values for these two. This should be called in a STW
   767   // phase.
   768   MemRegion reserved = _g1h->g1_reserved();
   769   _heap_start = reserved.start();
   770   _heap_end   = reserved.end();
   772   // Separated the asserts so that we know which one fires.
   773   assert(_heap_start != NULL, "heap bounds should look ok");
   774   assert(_heap_end != NULL, "heap bounds should look ok");
   775   assert(_heap_start < _heap_end, "heap bounds should look ok");
   777   // Reset all the marking data structures and any necessary flags
   778   reset_marking_state();
   780   if (verbose_low()) {
   781     gclog_or_tty->print_cr("[global] resetting");
   782   }
   784   // We do reset all of them, since different phases will use
   785   // different number of active threads. So, it's easiest to have all
   786   // of them ready.
   787   for (uint i = 0; i < _max_worker_id; ++i) {
   788     _tasks[i]->reset(_nextMarkBitMap);
   789   }
   791   // we need this to make sure that the flag is on during the evac
   792   // pause with initial mark piggy-backed
   793   set_concurrent_marking_in_progress();
   794 }
   797 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   798   _markStack.set_should_expand();
   799   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   800   if (clear_overflow) {
   801     clear_has_overflown();
   802   } else {
   803     assert(has_overflown(), "pre-condition");
   804   }
   805   _finger = _heap_start;
   807   for (uint i = 0; i < _max_worker_id; ++i) {
   808     CMTaskQueue* queue = _task_queues->queue(i);
   809     queue->set_empty();
   810   }
   811 }
   813 void ConcurrentMark::set_concurrency(uint active_tasks) {
   814   assert(active_tasks <= _max_worker_id, "we should not have more");
   816   _active_tasks = active_tasks;
   817   // Need to update the three data structures below according to the
   818   // number of active threads for this phase.
   819   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   820   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   821   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   822 }
   824 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   825   set_concurrency(active_tasks);
   827   _concurrent = concurrent;
   828   // We propagate this to all tasks, not just the active ones.
   829   for (uint i = 0; i < _max_worker_id; ++i)
   830     _tasks[i]->set_concurrent(concurrent);
   832   if (concurrent) {
   833     set_concurrent_marking_in_progress();
   834   } else {
   835     // We currently assume that the concurrent flag has been set to
   836     // false before we start remark. At this point we should also be
   837     // in a STW phase.
   838     assert(!concurrent_marking_in_progress(), "invariant");
   839     assert(out_of_regions(),
   840            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   841                    p2i(_finger), p2i(_heap_end)));
   842   }
   843 }
   845 void ConcurrentMark::set_non_marking_state() {
   846   // We set the global marking state to some default values when we're
   847   // not doing marking.
   848   reset_marking_state();
   849   _active_tasks = 0;
   850   clear_concurrent_marking_in_progress();
   851 }
   853 ConcurrentMark::~ConcurrentMark() {
   854   // The ConcurrentMark instance is never freed.
   855   ShouldNotReachHere();
   856 }
   858 void ConcurrentMark::clearNextBitmap() {
   859   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   861   // Make sure that the concurrent mark thread looks to still be in
   862   // the current cycle.
   863   guarantee(cmThread()->during_cycle(), "invariant");
   865   // We are finishing up the current cycle by clearing the next
   866   // marking bitmap and getting it ready for the next cycle. During
   867   // this time no other cycle can start. So, let's make sure that this
   868   // is the case.
   869   guarantee(!g1h->mark_in_progress(), "invariant");
   871   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
   872   g1h->heap_region_iterate(&cl);
   874   // Clear the liveness counting data. If the marking has been aborted, the abort()
   875   // call already did that.
   876   if (cl.complete()) {
   877     clear_all_count_data();
   878   }
   880   // Repeat the asserts from above.
   881   guarantee(cmThread()->during_cycle(), "invariant");
   882   guarantee(!g1h->mark_in_progress(), "invariant");
   883 }
   885 class CheckBitmapClearHRClosure : public HeapRegionClosure {
   886   CMBitMap* _bitmap;
   887   bool _error;
   888  public:
   889   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
   890   }
   892   virtual bool doHeapRegion(HeapRegion* r) {
   893     // This closure can be called concurrently to the mutator, so we must make sure
   894     // that the result of the getNextMarkedWordAddress() call is compared to the
   895     // value passed to it as limit to detect any found bits.
   896     // We can use the region's orig_end() for the limit and the comparison value
   897     // as it always contains the "real" end of the region that never changes and
   898     // has no side effects.
   899     // Due to the latter, there can also be no problem with the compiler generating
   900     // reloads of the orig_end() call.
   901     HeapWord* end = r->orig_end();
   902     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
   903   }
   904 };
   906 bool ConcurrentMark::nextMarkBitmapIsClear() {
   907   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
   908   _g1h->heap_region_iterate(&cl);
   909   return cl.complete();
   910 }
   912 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   913 public:
   914   bool doHeapRegion(HeapRegion* r) {
   915     if (!r->continuesHumongous()) {
   916       r->note_start_of_marking();
   917     }
   918     return false;
   919   }
   920 };
   922 void ConcurrentMark::checkpointRootsInitialPre() {
   923   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   924   G1CollectorPolicy* g1p = g1h->g1_policy();
   926   _has_aborted = false;
   928 #ifndef PRODUCT
   929   if (G1PrintReachableAtInitialMark) {
   930     print_reachable("at-cycle-start",
   931                     VerifyOption_G1UsePrevMarking, true /* all */);
   932   }
   933 #endif
   935   // Initialise marking structures. This has to be done in a STW phase.
   936   reset();
   938   // For each region note start of marking.
   939   NoteStartOfMarkHRClosure startcl;
   940   g1h->heap_region_iterate(&startcl);
   941 }
   944 void ConcurrentMark::checkpointRootsInitialPost() {
   945   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   947   // If we force an overflow during remark, the remark operation will
   948   // actually abort and we'll restart concurrent marking. If we always
   949   // force an oveflow during remark we'll never actually complete the
   950   // marking phase. So, we initilize this here, at the start of the
   951   // cycle, so that at the remaining overflow number will decrease at
   952   // every remark and we'll eventually not need to cause one.
   953   force_overflow_stw()->init();
   955   // Start Concurrent Marking weak-reference discovery.
   956   ReferenceProcessor* rp = g1h->ref_processor_cm();
   957   // enable ("weak") refs discovery
   958   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   959   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   961   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   962   // This is the start of  the marking cycle, we're expected all
   963   // threads to have SATB queues with active set to false.
   964   satb_mq_set.set_active_all_threads(true, /* new active value */
   965                                      false /* expected_active */);
   967   _root_regions.prepare_for_scan();
   969   // update_g1_committed() will be called at the end of an evac pause
   970   // when marking is on. So, it's also called at the end of the
   971   // initial-mark pause to update the heap end, if the heap expands
   972   // during it. No need to call it here.
   973 }
   975 /*
   976  * Notice that in the next two methods, we actually leave the STS
   977  * during the barrier sync and join it immediately afterwards. If we
   978  * do not do this, the following deadlock can occur: one thread could
   979  * be in the barrier sync code, waiting for the other thread to also
   980  * sync up, whereas another one could be trying to yield, while also
   981  * waiting for the other threads to sync up too.
   982  *
   983  * Note, however, that this code is also used during remark and in
   984  * this case we should not attempt to leave / enter the STS, otherwise
   985  * we'll either hit an asseert (debug / fastdebug) or deadlock
   986  * (product). So we should only leave / enter the STS if we are
   987  * operating concurrently.
   988  *
   989  * Because the thread that does the sync barrier has left the STS, it
   990  * is possible to be suspended for a Full GC or an evacuation pause
   991  * could occur. This is actually safe, since the entering the sync
   992  * barrier is one of the last things do_marking_step() does, and it
   993  * doesn't manipulate any data structures afterwards.
   994  */
   996 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   997   if (verbose_low()) {
   998     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   999   }
  1001   if (concurrent()) {
  1002     SuspendibleThreadSet::leave();
  1005   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
  1007   if (concurrent()) {
  1008     SuspendibleThreadSet::join();
  1010   // at this point everyone should have synced up and not be doing any
  1011   // more work
  1013   if (verbose_low()) {
  1014     if (barrier_aborted) {
  1015       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
  1016     } else {
  1017       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
  1021   if (barrier_aborted) {
  1022     // If the barrier aborted we ignore the overflow condition and
  1023     // just abort the whole marking phase as quickly as possible.
  1024     return;
  1027   // If we're executing the concurrent phase of marking, reset the marking
  1028   // state; otherwise the marking state is reset after reference processing,
  1029   // during the remark pause.
  1030   // If we reset here as a result of an overflow during the remark we will
  1031   // see assertion failures from any subsequent set_concurrency_and_phase()
  1032   // calls.
  1033   if (concurrent()) {
  1034     // let the task associated with with worker 0 do this
  1035     if (worker_id == 0) {
  1036       // task 0 is responsible for clearing the global data structures
  1037       // We should be here because of an overflow. During STW we should
  1038       // not clear the overflow flag since we rely on it being true when
  1039       // we exit this method to abort the pause and restart concurent
  1040       // marking.
  1041       reset_marking_state(true /* clear_overflow */);
  1042       force_overflow()->update();
  1044       if (G1Log::fine()) {
  1045         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1046         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1051   // after this, each task should reset its own data structures then
  1052   // then go into the second barrier
  1055 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1056   if (verbose_low()) {
  1057     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1060   if (concurrent()) {
  1061     SuspendibleThreadSet::leave();
  1064   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1066   if (concurrent()) {
  1067     SuspendibleThreadSet::join();
  1069   // at this point everything should be re-initialized and ready to go
  1071   if (verbose_low()) {
  1072     if (barrier_aborted) {
  1073       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1074     } else {
  1075       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1080 #ifndef PRODUCT
  1081 void ForceOverflowSettings::init() {
  1082   _num_remaining = G1ConcMarkForceOverflow;
  1083   _force = false;
  1084   update();
  1087 void ForceOverflowSettings::update() {
  1088   if (_num_remaining > 0) {
  1089     _num_remaining -= 1;
  1090     _force = true;
  1091   } else {
  1092     _force = false;
  1096 bool ForceOverflowSettings::should_force() {
  1097   if (_force) {
  1098     _force = false;
  1099     return true;
  1100   } else {
  1101     return false;
  1104 #endif // !PRODUCT
  1106 class CMConcurrentMarkingTask: public AbstractGangTask {
  1107 private:
  1108   ConcurrentMark*       _cm;
  1109   ConcurrentMarkThread* _cmt;
  1111 public:
  1112   void work(uint worker_id) {
  1113     assert(Thread::current()->is_ConcurrentGC_thread(),
  1114            "this should only be done by a conc GC thread");
  1115     ResourceMark rm;
  1117     double start_vtime = os::elapsedVTime();
  1119     SuspendibleThreadSet::join();
  1121     assert(worker_id < _cm->active_tasks(), "invariant");
  1122     CMTask* the_task = _cm->task(worker_id);
  1123     the_task->record_start_time();
  1124     if (!_cm->has_aborted()) {
  1125       do {
  1126         double start_vtime_sec = os::elapsedVTime();
  1127         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1129         the_task->do_marking_step(mark_step_duration_ms,
  1130                                   true  /* do_termination */,
  1131                                   false /* is_serial*/);
  1133         double end_vtime_sec = os::elapsedVTime();
  1134         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1135         _cm->clear_has_overflown();
  1137         _cm->do_yield_check(worker_id);
  1139         jlong sleep_time_ms;
  1140         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1141           sleep_time_ms =
  1142             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1143           SuspendibleThreadSet::leave();
  1144           os::sleep(Thread::current(), sleep_time_ms, false);
  1145           SuspendibleThreadSet::join();
  1147       } while (!_cm->has_aborted() && the_task->has_aborted());
  1149     the_task->record_end_time();
  1150     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1152     SuspendibleThreadSet::leave();
  1154     double end_vtime = os::elapsedVTime();
  1155     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1158   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1159                           ConcurrentMarkThread* cmt) :
  1160       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1162   ~CMConcurrentMarkingTask() { }
  1163 };
  1165 // Calculates the number of active workers for a concurrent
  1166 // phase.
  1167 uint ConcurrentMark::calc_parallel_marking_threads() {
  1168   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1169     uint n_conc_workers = 0;
  1170     if (!UseDynamicNumberOfGCThreads ||
  1171         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1172          !ForceDynamicNumberOfGCThreads)) {
  1173       n_conc_workers = max_parallel_marking_threads();
  1174     } else {
  1175       n_conc_workers =
  1176         AdaptiveSizePolicy::calc_default_active_workers(
  1177                                      max_parallel_marking_threads(),
  1178                                      1, /* Minimum workers */
  1179                                      parallel_marking_threads(),
  1180                                      Threads::number_of_non_daemon_threads());
  1181       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1182       // that scaling has already gone into "_max_parallel_marking_threads".
  1184     assert(n_conc_workers > 0, "Always need at least 1");
  1185     return n_conc_workers;
  1187   // If we are not running with any parallel GC threads we will not
  1188   // have spawned any marking threads either. Hence the number of
  1189   // concurrent workers should be 0.
  1190   return 0;
  1193 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1194   // Currently, only survivors can be root regions.
  1195   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1196   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1198   const uintx interval = PrefetchScanIntervalInBytes;
  1199   HeapWord* curr = hr->bottom();
  1200   const HeapWord* end = hr->top();
  1201   while (curr < end) {
  1202     Prefetch::read(curr, interval);
  1203     oop obj = oop(curr);
  1204     int size = obj->oop_iterate(&cl);
  1205     assert(size == obj->size(), "sanity");
  1206     curr += size;
  1210 class CMRootRegionScanTask : public AbstractGangTask {
  1211 private:
  1212   ConcurrentMark* _cm;
  1214 public:
  1215   CMRootRegionScanTask(ConcurrentMark* cm) :
  1216     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1218   void work(uint worker_id) {
  1219     assert(Thread::current()->is_ConcurrentGC_thread(),
  1220            "this should only be done by a conc GC thread");
  1222     CMRootRegions* root_regions = _cm->root_regions();
  1223     HeapRegion* hr = root_regions->claim_next();
  1224     while (hr != NULL) {
  1225       _cm->scanRootRegion(hr, worker_id);
  1226       hr = root_regions->claim_next();
  1229 };
  1231 void ConcurrentMark::scanRootRegions() {
  1232   // Start of concurrent marking.
  1233   ClassLoaderDataGraph::clear_claimed_marks();
  1235   // scan_in_progress() will have been set to true only if there was
  1236   // at least one root region to scan. So, if it's false, we
  1237   // should not attempt to do any further work.
  1238   if (root_regions()->scan_in_progress()) {
  1239     _parallel_marking_threads = calc_parallel_marking_threads();
  1240     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1241            "Maximum number of marking threads exceeded");
  1242     uint active_workers = MAX2(1U, parallel_marking_threads());
  1244     CMRootRegionScanTask task(this);
  1245     if (use_parallel_marking_threads()) {
  1246       _parallel_workers->set_active_workers((int) active_workers);
  1247       _parallel_workers->run_task(&task);
  1248     } else {
  1249       task.work(0);
  1252     // It's possible that has_aborted() is true here without actually
  1253     // aborting the survivor scan earlier. This is OK as it's
  1254     // mainly used for sanity checking.
  1255     root_regions()->scan_finished();
  1259 void ConcurrentMark::markFromRoots() {
  1260   // we might be tempted to assert that:
  1261   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1262   //        "inconsistent argument?");
  1263   // However that wouldn't be right, because it's possible that
  1264   // a safepoint is indeed in progress as a younger generation
  1265   // stop-the-world GC happens even as we mark in this generation.
  1267   _restart_for_overflow = false;
  1268   force_overflow_conc()->init();
  1270   // _g1h has _n_par_threads
  1271   _parallel_marking_threads = calc_parallel_marking_threads();
  1272   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1273     "Maximum number of marking threads exceeded");
  1275   uint active_workers = MAX2(1U, parallel_marking_threads());
  1277   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1278   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1280   CMConcurrentMarkingTask markingTask(this, cmThread());
  1281   if (use_parallel_marking_threads()) {
  1282     _parallel_workers->set_active_workers((int)active_workers);
  1283     // Don't set _n_par_threads because it affects MT in process_roots()
  1284     // and the decisions on that MT processing is made elsewhere.
  1285     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1286     _parallel_workers->run_task(&markingTask);
  1287   } else {
  1288     markingTask.work(0);
  1290   print_stats();
  1293 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1294   // world is stopped at this checkpoint
  1295   assert(SafepointSynchronize::is_at_safepoint(),
  1296          "world should be stopped");
  1298   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1300   // If a full collection has happened, we shouldn't do this.
  1301   if (has_aborted()) {
  1302     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1303     return;
  1306   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1308   if (VerifyDuringGC) {
  1309     HandleMark hm;  // handle scope
  1310     Universe::heap()->prepare_for_verify();
  1311     Universe::verify(VerifyOption_G1UsePrevMarking,
  1312                      " VerifyDuringGC:(before)");
  1314   g1h->check_bitmaps("Remark Start");
  1316   G1CollectorPolicy* g1p = g1h->g1_policy();
  1317   g1p->record_concurrent_mark_remark_start();
  1319   double start = os::elapsedTime();
  1321   checkpointRootsFinalWork();
  1323   double mark_work_end = os::elapsedTime();
  1325   weakRefsWork(clear_all_soft_refs);
  1327   if (has_overflown()) {
  1328     // Oops.  We overflowed.  Restart concurrent marking.
  1329     _restart_for_overflow = true;
  1330     if (G1TraceMarkStackOverflow) {
  1331       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1334     // Verify the heap w.r.t. the previous marking bitmap.
  1335     if (VerifyDuringGC) {
  1336       HandleMark hm;  // handle scope
  1337       Universe::heap()->prepare_for_verify();
  1338       Universe::verify(VerifyOption_G1UsePrevMarking,
  1339                        " VerifyDuringGC:(overflow)");
  1342     // Clear the marking state because we will be restarting
  1343     // marking due to overflowing the global mark stack.
  1344     reset_marking_state();
  1345   } else {
  1346     // Aggregate the per-task counting data that we have accumulated
  1347     // while marking.
  1348     aggregate_count_data();
  1350     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1351     // We're done with marking.
  1352     // This is the end of  the marking cycle, we're expected all
  1353     // threads to have SATB queues with active set to true.
  1354     satb_mq_set.set_active_all_threads(false, /* new active value */
  1355                                        true /* expected_active */);
  1357     if (VerifyDuringGC) {
  1358       HandleMark hm;  // handle scope
  1359       Universe::heap()->prepare_for_verify();
  1360       Universe::verify(VerifyOption_G1UseNextMarking,
  1361                        " VerifyDuringGC:(after)");
  1363     g1h->check_bitmaps("Remark End");
  1364     assert(!restart_for_overflow(), "sanity");
  1365     // Completely reset the marking state since marking completed
  1366     set_non_marking_state();
  1369   // Expand the marking stack, if we have to and if we can.
  1370   if (_markStack.should_expand()) {
  1371     _markStack.expand();
  1374   // Statistics
  1375   double now = os::elapsedTime();
  1376   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1377   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1378   _remark_times.add((now - start) * 1000.0);
  1380   g1p->record_concurrent_mark_remark_end();
  1382   G1CMIsAliveClosure is_alive(g1h);
  1383   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1386 // Base class of the closures that finalize and verify the
  1387 // liveness counting data.
  1388 class CMCountDataClosureBase: public HeapRegionClosure {
  1389 protected:
  1390   G1CollectedHeap* _g1h;
  1391   ConcurrentMark* _cm;
  1392   CardTableModRefBS* _ct_bs;
  1394   BitMap* _region_bm;
  1395   BitMap* _card_bm;
  1397   // Takes a region that's not empty (i.e., it has at least one
  1398   // live object in it and sets its corresponding bit on the region
  1399   // bitmap to 1. If the region is "starts humongous" it will also set
  1400   // to 1 the bits on the region bitmap that correspond to its
  1401   // associated "continues humongous" regions.
  1402   void set_bit_for_region(HeapRegion* hr) {
  1403     assert(!hr->continuesHumongous(), "should have filtered those out");
  1405     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1406     if (!hr->startsHumongous()) {
  1407       // Normal (non-humongous) case: just set the bit.
  1408       _region_bm->par_at_put(index, true);
  1409     } else {
  1410       // Starts humongous case: calculate how many regions are part of
  1411       // this humongous region and then set the bit range.
  1412       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1413       _region_bm->par_at_put_range(index, end_index, true);
  1417 public:
  1418   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1419                          BitMap* region_bm, BitMap* card_bm):
  1420     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1421     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1422     _region_bm(region_bm), _card_bm(card_bm) { }
  1423 };
  1425 // Closure that calculates the # live objects per region. Used
  1426 // for verification purposes during the cleanup pause.
  1427 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1428   CMBitMapRO* _bm;
  1429   size_t _region_marked_bytes;
  1431 public:
  1432   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1433                          BitMap* region_bm, BitMap* card_bm) :
  1434     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1435     _bm(bm), _region_marked_bytes(0) { }
  1437   bool doHeapRegion(HeapRegion* hr) {
  1439     if (hr->continuesHumongous()) {
  1440       // We will ignore these here and process them when their
  1441       // associated "starts humongous" region is processed (see
  1442       // set_bit_for_heap_region()). Note that we cannot rely on their
  1443       // associated "starts humongous" region to have their bit set to
  1444       // 1 since, due to the region chunking in the parallel region
  1445       // iteration, a "continues humongous" region might be visited
  1446       // before its associated "starts humongous".
  1447       return false;
  1450     HeapWord* ntams = hr->next_top_at_mark_start();
  1451     HeapWord* start = hr->bottom();
  1453     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1454            err_msg("Preconditions not met - "
  1455                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1456                    p2i(start), p2i(ntams), p2i(hr->end())));
  1458     // Find the first marked object at or after "start".
  1459     start = _bm->getNextMarkedWordAddress(start, ntams);
  1461     size_t marked_bytes = 0;
  1463     while (start < ntams) {
  1464       oop obj = oop(start);
  1465       int obj_sz = obj->size();
  1466       HeapWord* obj_end = start + obj_sz;
  1468       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1469       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1471       // Note: if we're looking at the last region in heap - obj_end
  1472       // could be actually just beyond the end of the heap; end_idx
  1473       // will then correspond to a (non-existent) card that is also
  1474       // just beyond the heap.
  1475       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1476         // end of object is not card aligned - increment to cover
  1477         // all the cards spanned by the object
  1478         end_idx += 1;
  1481       // Set the bits in the card BM for the cards spanned by this object.
  1482       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1484       // Add the size of this object to the number of marked bytes.
  1485       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1487       // Find the next marked object after this one.
  1488       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1491     // Mark the allocated-since-marking portion...
  1492     HeapWord* top = hr->top();
  1493     if (ntams < top) {
  1494       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1495       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1497       // Note: if we're looking at the last region in heap - top
  1498       // could be actually just beyond the end of the heap; end_idx
  1499       // will then correspond to a (non-existent) card that is also
  1500       // just beyond the heap.
  1501       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1502         // end of object is not card aligned - increment to cover
  1503         // all the cards spanned by the object
  1504         end_idx += 1;
  1506       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1508       // This definitely means the region has live objects.
  1509       set_bit_for_region(hr);
  1512     // Update the live region bitmap.
  1513     if (marked_bytes > 0) {
  1514       set_bit_for_region(hr);
  1517     // Set the marked bytes for the current region so that
  1518     // it can be queried by a calling verificiation routine
  1519     _region_marked_bytes = marked_bytes;
  1521     return false;
  1524   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1525 };
  1527 // Heap region closure used for verifying the counting data
  1528 // that was accumulated concurrently and aggregated during
  1529 // the remark pause. This closure is applied to the heap
  1530 // regions during the STW cleanup pause.
  1532 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1533   G1CollectedHeap* _g1h;
  1534   ConcurrentMark* _cm;
  1535   CalcLiveObjectsClosure _calc_cl;
  1536   BitMap* _region_bm;   // Region BM to be verified
  1537   BitMap* _card_bm;     // Card BM to be verified
  1538   bool _verbose;        // verbose output?
  1540   BitMap* _exp_region_bm; // Expected Region BM values
  1541   BitMap* _exp_card_bm;   // Expected card BM values
  1543   int _failures;
  1545 public:
  1546   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1547                                 BitMap* region_bm,
  1548                                 BitMap* card_bm,
  1549                                 BitMap* exp_region_bm,
  1550                                 BitMap* exp_card_bm,
  1551                                 bool verbose) :
  1552     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1553     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1554     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1555     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1556     _failures(0) { }
  1558   int failures() const { return _failures; }
  1560   bool doHeapRegion(HeapRegion* hr) {
  1561     if (hr->continuesHumongous()) {
  1562       // We will ignore these here and process them when their
  1563       // associated "starts humongous" region is processed (see
  1564       // set_bit_for_heap_region()). Note that we cannot rely on their
  1565       // associated "starts humongous" region to have their bit set to
  1566       // 1 since, due to the region chunking in the parallel region
  1567       // iteration, a "continues humongous" region might be visited
  1568       // before its associated "starts humongous".
  1569       return false;
  1572     int failures = 0;
  1574     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1575     // this region and set the corresponding bits in the expected region
  1576     // and card bitmaps.
  1577     bool res = _calc_cl.doHeapRegion(hr);
  1578     assert(res == false, "should be continuing");
  1580     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1581                     Mutex::_no_safepoint_check_flag);
  1583     // Verify the marked bytes for this region.
  1584     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1585     size_t act_marked_bytes = hr->next_marked_bytes();
  1587     // We're not OK if expected marked bytes > actual marked bytes. It means
  1588     // we have missed accounting some objects during the actual marking.
  1589     if (exp_marked_bytes > act_marked_bytes) {
  1590       if (_verbose) {
  1591         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1592                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1593                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
  1595       failures += 1;
  1598     // Verify the bit, for this region, in the actual and expected
  1599     // (which was just calculated) region bit maps.
  1600     // We're not OK if the bit in the calculated expected region
  1601     // bitmap is set and the bit in the actual region bitmap is not.
  1602     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1604     bool expected = _exp_region_bm->at(index);
  1605     bool actual = _region_bm->at(index);
  1606     if (expected && !actual) {
  1607       if (_verbose) {
  1608         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1609                                "expected: %s, actual: %s",
  1610                                hr->hrm_index(),
  1611                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1613       failures += 1;
  1616     // Verify that the card bit maps for the cards spanned by the current
  1617     // region match. We have an error if we have a set bit in the expected
  1618     // bit map and the corresponding bit in the actual bitmap is not set.
  1620     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1621     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1623     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1624       expected = _exp_card_bm->at(i);
  1625       actual = _card_bm->at(i);
  1627       if (expected && !actual) {
  1628         if (_verbose) {
  1629           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1630                                  "expected: %s, actual: %s",
  1631                                  hr->hrm_index(), i,
  1632                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1634         failures += 1;
  1638     if (failures > 0 && _verbose)  {
  1639       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1640                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1641                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1642                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1645     _failures += failures;
  1647     // We could stop iteration over the heap when we
  1648     // find the first violating region by returning true.
  1649     return false;
  1651 };
  1653 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1654 protected:
  1655   G1CollectedHeap* _g1h;
  1656   ConcurrentMark* _cm;
  1657   BitMap* _actual_region_bm;
  1658   BitMap* _actual_card_bm;
  1660   uint    _n_workers;
  1662   BitMap* _expected_region_bm;
  1663   BitMap* _expected_card_bm;
  1665   int  _failures;
  1666   bool _verbose;
  1668 public:
  1669   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1670                             BitMap* region_bm, BitMap* card_bm,
  1671                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1672     : AbstractGangTask("G1 verify final counting"),
  1673       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1674       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1675       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1676       _failures(0), _verbose(false),
  1677       _n_workers(0) {
  1678     assert(VerifyDuringGC, "don't call this otherwise");
  1680     // Use the value already set as the number of active threads
  1681     // in the call to run_task().
  1682     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1683       assert( _g1h->workers()->active_workers() > 0,
  1684         "Should have been previously set");
  1685       _n_workers = _g1h->workers()->active_workers();
  1686     } else {
  1687       _n_workers = 1;
  1690     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1691     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1693     _verbose = _cm->verbose_medium();
  1696   void work(uint worker_id) {
  1697     assert(worker_id < _n_workers, "invariant");
  1699     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1700                                             _actual_region_bm, _actual_card_bm,
  1701                                             _expected_region_bm,
  1702                                             _expected_card_bm,
  1703                                             _verbose);
  1705     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1706       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1707                                             worker_id,
  1708                                             _n_workers,
  1709                                             HeapRegion::VerifyCountClaimValue);
  1710     } else {
  1711       _g1h->heap_region_iterate(&verify_cl);
  1714     Atomic::add(verify_cl.failures(), &_failures);
  1717   int failures() const { return _failures; }
  1718 };
  1720 // Closure that finalizes the liveness counting data.
  1721 // Used during the cleanup pause.
  1722 // Sets the bits corresponding to the interval [NTAMS, top]
  1723 // (which contains the implicitly live objects) in the
  1724 // card liveness bitmap. Also sets the bit for each region,
  1725 // containing live data, in the region liveness bitmap.
  1727 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1728  public:
  1729   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1730                               BitMap* region_bm,
  1731                               BitMap* card_bm) :
  1732     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1734   bool doHeapRegion(HeapRegion* hr) {
  1736     if (hr->continuesHumongous()) {
  1737       // We will ignore these here and process them when their
  1738       // associated "starts humongous" region is processed (see
  1739       // set_bit_for_heap_region()). Note that we cannot rely on their
  1740       // associated "starts humongous" region to have their bit set to
  1741       // 1 since, due to the region chunking in the parallel region
  1742       // iteration, a "continues humongous" region might be visited
  1743       // before its associated "starts humongous".
  1744       return false;
  1747     HeapWord* ntams = hr->next_top_at_mark_start();
  1748     HeapWord* top   = hr->top();
  1750     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1752     // Mark the allocated-since-marking portion...
  1753     if (ntams < top) {
  1754       // This definitely means the region has live objects.
  1755       set_bit_for_region(hr);
  1757       // Now set the bits in the card bitmap for [ntams, top)
  1758       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1759       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1761       // Note: if we're looking at the last region in heap - top
  1762       // could be actually just beyond the end of the heap; end_idx
  1763       // will then correspond to a (non-existent) card that is also
  1764       // just beyond the heap.
  1765       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1766         // end of object is not card aligned - increment to cover
  1767         // all the cards spanned by the object
  1768         end_idx += 1;
  1771       assert(end_idx <= _card_bm->size(),
  1772              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1773                      end_idx, _card_bm->size()));
  1774       assert(start_idx < _card_bm->size(),
  1775              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1776                      start_idx, _card_bm->size()));
  1778       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1781     // Set the bit for the region if it contains live data
  1782     if (hr->next_marked_bytes() > 0) {
  1783       set_bit_for_region(hr);
  1786     return false;
  1788 };
  1790 class G1ParFinalCountTask: public AbstractGangTask {
  1791 protected:
  1792   G1CollectedHeap* _g1h;
  1793   ConcurrentMark* _cm;
  1794   BitMap* _actual_region_bm;
  1795   BitMap* _actual_card_bm;
  1797   uint    _n_workers;
  1799 public:
  1800   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1801     : AbstractGangTask("G1 final counting"),
  1802       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1803       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1804       _n_workers(0) {
  1805     // Use the value already set as the number of active threads
  1806     // in the call to run_task().
  1807     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1808       assert( _g1h->workers()->active_workers() > 0,
  1809         "Should have been previously set");
  1810       _n_workers = _g1h->workers()->active_workers();
  1811     } else {
  1812       _n_workers = 1;
  1816   void work(uint worker_id) {
  1817     assert(worker_id < _n_workers, "invariant");
  1819     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1820                                                 _actual_region_bm,
  1821                                                 _actual_card_bm);
  1823     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1824       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1825                                             worker_id,
  1826                                             _n_workers,
  1827                                             HeapRegion::FinalCountClaimValue);
  1828     } else {
  1829       _g1h->heap_region_iterate(&final_update_cl);
  1832 };
  1834 class G1ParNoteEndTask;
  1836 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1837   G1CollectedHeap* _g1;
  1838   size_t _max_live_bytes;
  1839   uint _regions_claimed;
  1840   size_t _freed_bytes;
  1841   FreeRegionList* _local_cleanup_list;
  1842   HeapRegionSetCount _old_regions_removed;
  1843   HeapRegionSetCount _humongous_regions_removed;
  1844   HRRSCleanupTask* _hrrs_cleanup_task;
  1845   double _claimed_region_time;
  1846   double _max_region_time;
  1848 public:
  1849   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1850                              FreeRegionList* local_cleanup_list,
  1851                              HRRSCleanupTask* hrrs_cleanup_task) :
  1852     _g1(g1),
  1853     _max_live_bytes(0), _regions_claimed(0),
  1854     _freed_bytes(0),
  1855     _claimed_region_time(0.0), _max_region_time(0.0),
  1856     _local_cleanup_list(local_cleanup_list),
  1857     _old_regions_removed(),
  1858     _humongous_regions_removed(),
  1859     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1861   size_t freed_bytes() { return _freed_bytes; }
  1862   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1863   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1865   bool doHeapRegion(HeapRegion *hr) {
  1866     if (hr->continuesHumongous()) {
  1867       return false;
  1869     // We use a claim value of zero here because all regions
  1870     // were claimed with value 1 in the FinalCount task.
  1871     _g1->reset_gc_time_stamps(hr);
  1872     double start = os::elapsedTime();
  1873     _regions_claimed++;
  1874     hr->note_end_of_marking();
  1875     _max_live_bytes += hr->max_live_bytes();
  1877     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1878       _freed_bytes += hr->used();
  1879       hr->set_containing_set(NULL);
  1880       if (hr->isHumongous()) {
  1881         assert(hr->startsHumongous(), "we should only see starts humongous");
  1882         _humongous_regions_removed.increment(1u, hr->capacity());
  1883         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1884       } else {
  1885         _old_regions_removed.increment(1u, hr->capacity());
  1886         _g1->free_region(hr, _local_cleanup_list, true);
  1888     } else {
  1889       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1892     double region_time = (os::elapsedTime() - start);
  1893     _claimed_region_time += region_time;
  1894     if (region_time > _max_region_time) {
  1895       _max_region_time = region_time;
  1897     return false;
  1900   size_t max_live_bytes() { return _max_live_bytes; }
  1901   uint regions_claimed() { return _regions_claimed; }
  1902   double claimed_region_time_sec() { return _claimed_region_time; }
  1903   double max_region_time_sec() { return _max_region_time; }
  1904 };
  1906 class G1ParNoteEndTask: public AbstractGangTask {
  1907   friend class G1NoteEndOfConcMarkClosure;
  1909 protected:
  1910   G1CollectedHeap* _g1h;
  1911   size_t _max_live_bytes;
  1912   size_t _freed_bytes;
  1913   FreeRegionList* _cleanup_list;
  1915 public:
  1916   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1917                    FreeRegionList* cleanup_list) :
  1918     AbstractGangTask("G1 note end"), _g1h(g1h),
  1919     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1921   void work(uint worker_id) {
  1922     double start = os::elapsedTime();
  1923     FreeRegionList local_cleanup_list("Local Cleanup List");
  1924     HRRSCleanupTask hrrs_cleanup_task;
  1925     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1926                                            &hrrs_cleanup_task);
  1927     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1928       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1929                                             _g1h->workers()->active_workers(),
  1930                                             HeapRegion::NoteEndClaimValue);
  1931     } else {
  1932       _g1h->heap_region_iterate(&g1_note_end);
  1934     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1936     // Now update the lists
  1937     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1939       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1940       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1941       _max_live_bytes += g1_note_end.max_live_bytes();
  1942       _freed_bytes += g1_note_end.freed_bytes();
  1944       // If we iterate over the global cleanup list at the end of
  1945       // cleanup to do this printing we will not guarantee to only
  1946       // generate output for the newly-reclaimed regions (the list
  1947       // might not be empty at the beginning of cleanup; we might
  1948       // still be working on its previous contents). So we do the
  1949       // printing here, before we append the new regions to the global
  1950       // cleanup list.
  1952       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1953       if (hr_printer->is_active()) {
  1954         FreeRegionListIterator iter(&local_cleanup_list);
  1955         while (iter.more_available()) {
  1956           HeapRegion* hr = iter.get_next();
  1957           hr_printer->cleanup(hr);
  1961       _cleanup_list->add_ordered(&local_cleanup_list);
  1962       assert(local_cleanup_list.is_empty(), "post-condition");
  1964       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1967   size_t max_live_bytes() { return _max_live_bytes; }
  1968   size_t freed_bytes() { return _freed_bytes; }
  1969 };
  1971 class G1ParScrubRemSetTask: public AbstractGangTask {
  1972 protected:
  1973   G1RemSet* _g1rs;
  1974   BitMap* _region_bm;
  1975   BitMap* _card_bm;
  1976 public:
  1977   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1978                        BitMap* region_bm, BitMap* card_bm) :
  1979     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1980     _region_bm(region_bm), _card_bm(card_bm) { }
  1982   void work(uint worker_id) {
  1983     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1984       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1985                        HeapRegion::ScrubRemSetClaimValue);
  1986     } else {
  1987       _g1rs->scrub(_region_bm, _card_bm);
  1991 };
  1993 void ConcurrentMark::cleanup() {
  1994   // world is stopped at this checkpoint
  1995   assert(SafepointSynchronize::is_at_safepoint(),
  1996          "world should be stopped");
  1997   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1999   // If a full collection has happened, we shouldn't do this.
  2000   if (has_aborted()) {
  2001     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2002     return;
  2005   g1h->verify_region_sets_optional();
  2007   if (VerifyDuringGC) {
  2008     HandleMark hm;  // handle scope
  2009     Universe::heap()->prepare_for_verify();
  2010     Universe::verify(VerifyOption_G1UsePrevMarking,
  2011                      " VerifyDuringGC:(before)");
  2013   g1h->check_bitmaps("Cleanup Start");
  2015   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2016   g1p->record_concurrent_mark_cleanup_start();
  2018   double start = os::elapsedTime();
  2020   HeapRegionRemSet::reset_for_cleanup_tasks();
  2022   uint n_workers;
  2024   // Do counting once more with the world stopped for good measure.
  2025   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2027   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2028    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2029            "sanity check");
  2031     g1h->set_par_threads();
  2032     n_workers = g1h->n_par_threads();
  2033     assert(g1h->n_par_threads() == n_workers,
  2034            "Should not have been reset");
  2035     g1h->workers()->run_task(&g1_par_count_task);
  2036     // Done with the parallel phase so reset to 0.
  2037     g1h->set_par_threads(0);
  2039     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2040            "sanity check");
  2041   } else {
  2042     n_workers = 1;
  2043     g1_par_count_task.work(0);
  2046   if (VerifyDuringGC) {
  2047     // Verify that the counting data accumulated during marking matches
  2048     // that calculated by walking the marking bitmap.
  2050     // Bitmaps to hold expected values
  2051     BitMap expected_region_bm(_region_bm.size(), true);
  2052     BitMap expected_card_bm(_card_bm.size(), true);
  2054     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2055                                                  &_region_bm,
  2056                                                  &_card_bm,
  2057                                                  &expected_region_bm,
  2058                                                  &expected_card_bm);
  2060     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2061       g1h->set_par_threads((int)n_workers);
  2062       g1h->workers()->run_task(&g1_par_verify_task);
  2063       // Done with the parallel phase so reset to 0.
  2064       g1h->set_par_threads(0);
  2066       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2067              "sanity check");
  2068     } else {
  2069       g1_par_verify_task.work(0);
  2072     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2075   size_t start_used_bytes = g1h->used();
  2076   g1h->set_marking_complete();
  2078   double count_end = os::elapsedTime();
  2079   double this_final_counting_time = (count_end - start);
  2080   _total_counting_time += this_final_counting_time;
  2082   if (G1PrintRegionLivenessInfo) {
  2083     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2084     _g1h->heap_region_iterate(&cl);
  2087   // Install newly created mark bitMap as "prev".
  2088   swapMarkBitMaps();
  2090   g1h->reset_gc_time_stamp();
  2092   // Note end of marking in all heap regions.
  2093   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2094   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2095     g1h->set_par_threads((int)n_workers);
  2096     g1h->workers()->run_task(&g1_par_note_end_task);
  2097     g1h->set_par_threads(0);
  2099     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2100            "sanity check");
  2101   } else {
  2102     g1_par_note_end_task.work(0);
  2104   g1h->check_gc_time_stamps();
  2106   if (!cleanup_list_is_empty()) {
  2107     // The cleanup list is not empty, so we'll have to process it
  2108     // concurrently. Notify anyone else that might be wanting free
  2109     // regions that there will be more free regions coming soon.
  2110     g1h->set_free_regions_coming();
  2113   // call below, since it affects the metric by which we sort the heap
  2114   // regions.
  2115   if (G1ScrubRemSets) {
  2116     double rs_scrub_start = os::elapsedTime();
  2117     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2118     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2119       g1h->set_par_threads((int)n_workers);
  2120       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2121       g1h->set_par_threads(0);
  2123       assert(g1h->check_heap_region_claim_values(
  2124                                             HeapRegion::ScrubRemSetClaimValue),
  2125              "sanity check");
  2126     } else {
  2127       g1_par_scrub_rs_task.work(0);
  2130     double rs_scrub_end = os::elapsedTime();
  2131     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2132     _total_rs_scrub_time += this_rs_scrub_time;
  2135   // this will also free any regions totally full of garbage objects,
  2136   // and sort the regions.
  2137   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2139   // Statistics.
  2140   double end = os::elapsedTime();
  2141   _cleanup_times.add((end - start) * 1000.0);
  2143   if (G1Log::fine()) {
  2144     g1h->print_size_transition(gclog_or_tty,
  2145                                start_used_bytes,
  2146                                g1h->used(),
  2147                                g1h->capacity());
  2150   // Clean up will have freed any regions completely full of garbage.
  2151   // Update the soft reference policy with the new heap occupancy.
  2152   Universe::update_heap_info_at_gc();
  2154   if (VerifyDuringGC) {
  2155     HandleMark hm;  // handle scope
  2156     Universe::heap()->prepare_for_verify();
  2157     Universe::verify(VerifyOption_G1UsePrevMarking,
  2158                      " VerifyDuringGC:(after)");
  2160   g1h->check_bitmaps("Cleanup End");
  2162   g1h->verify_region_sets_optional();
  2164   // We need to make this be a "collection" so any collection pause that
  2165   // races with it goes around and waits for completeCleanup to finish.
  2166   g1h->increment_total_collections();
  2168   // Clean out dead classes and update Metaspace sizes.
  2169   if (ClassUnloadingWithConcurrentMark) {
  2170     ClassLoaderDataGraph::purge();
  2172   MetaspaceGC::compute_new_size();
  2174   // We reclaimed old regions so we should calculate the sizes to make
  2175   // sure we update the old gen/space data.
  2176   g1h->g1mm()->update_sizes();
  2178   g1h->trace_heap_after_concurrent_cycle();
  2181 void ConcurrentMark::completeCleanup() {
  2182   if (has_aborted()) return;
  2184   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2186   _cleanup_list.verify_optional();
  2187   FreeRegionList tmp_free_list("Tmp Free List");
  2189   if (G1ConcRegionFreeingVerbose) {
  2190     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2191                            "cleanup list has %u entries",
  2192                            _cleanup_list.length());
  2195   // No one else should be accessing the _cleanup_list at this point,
  2196   // so it is not necessary to take any locks
  2197   while (!_cleanup_list.is_empty()) {
  2198     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
  2199     assert(hr != NULL, "Got NULL from a non-empty list");
  2200     hr->par_clear();
  2201     tmp_free_list.add_ordered(hr);
  2203     // Instead of adding one region at a time to the secondary_free_list,
  2204     // we accumulate them in the local list and move them a few at a
  2205     // time. This also cuts down on the number of notify_all() calls
  2206     // we do during this process. We'll also append the local list when
  2207     // _cleanup_list is empty (which means we just removed the last
  2208     // region from the _cleanup_list).
  2209     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2210         _cleanup_list.is_empty()) {
  2211       if (G1ConcRegionFreeingVerbose) {
  2212         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2213                                "appending %u entries to the secondary_free_list, "
  2214                                "cleanup list still has %u entries",
  2215                                tmp_free_list.length(),
  2216                                _cleanup_list.length());
  2220         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2221         g1h->secondary_free_list_add(&tmp_free_list);
  2222         SecondaryFreeList_lock->notify_all();
  2225       if (G1StressConcRegionFreeing) {
  2226         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2227           os::sleep(Thread::current(), (jlong) 1, false);
  2232   assert(tmp_free_list.is_empty(), "post-condition");
  2235 // Supporting Object and Oop closures for reference discovery
  2236 // and processing in during marking
  2238 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2239   HeapWord* addr = (HeapWord*)obj;
  2240   return addr != NULL &&
  2241          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2244 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2245 // Uses the CMTask associated with a worker thread (for serial reference
  2246 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2247 // trace referent objects.
  2248 //
  2249 // Using the CMTask and embedded local queues avoids having the worker
  2250 // threads operating on the global mark stack. This reduces the risk
  2251 // of overflowing the stack - which we would rather avoid at this late
  2252 // state. Also using the tasks' local queues removes the potential
  2253 // of the workers interfering with each other that could occur if
  2254 // operating on the global stack.
  2256 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2257   ConcurrentMark* _cm;
  2258   CMTask*         _task;
  2259   int             _ref_counter_limit;
  2260   int             _ref_counter;
  2261   bool            _is_serial;
  2262  public:
  2263   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2264     _cm(cm), _task(task), _is_serial(is_serial),
  2265     _ref_counter_limit(G1RefProcDrainInterval) {
  2266     assert(_ref_counter_limit > 0, "sanity");
  2267     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2268     _ref_counter = _ref_counter_limit;
  2271   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2272   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2274   template <class T> void do_oop_work(T* p) {
  2275     if (!_cm->has_overflown()) {
  2276       oop obj = oopDesc::load_decode_heap_oop(p);
  2277       if (_cm->verbose_high()) {
  2278         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2279                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2280                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2283       _task->deal_with_reference(obj);
  2284       _ref_counter--;
  2286       if (_ref_counter == 0) {
  2287         // We have dealt with _ref_counter_limit references, pushing them
  2288         // and objects reachable from them on to the local stack (and
  2289         // possibly the global stack). Call CMTask::do_marking_step() to
  2290         // process these entries.
  2291         //
  2292         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2293         // there's nothing more to do (i.e. we're done with the entries that
  2294         // were pushed as a result of the CMTask::deal_with_reference() calls
  2295         // above) or we overflow.
  2296         //
  2297         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2298         // flag while there may still be some work to do. (See the comment at
  2299         // the beginning of CMTask::do_marking_step() for those conditions -
  2300         // one of which is reaching the specified time target.) It is only
  2301         // when CMTask::do_marking_step() returns without setting the
  2302         // has_aborted() flag that the marking step has completed.
  2303         do {
  2304           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2305           _task->do_marking_step(mark_step_duration_ms,
  2306                                  false      /* do_termination */,
  2307                                  _is_serial);
  2308         } while (_task->has_aborted() && !_cm->has_overflown());
  2309         _ref_counter = _ref_counter_limit;
  2311     } else {
  2312       if (_cm->verbose_high()) {
  2313          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2317 };
  2319 // 'Drain' oop closure used by both serial and parallel reference processing.
  2320 // Uses the CMTask associated with a given worker thread (for serial
  2321 // reference processing the CMtask for worker 0 is used). Calls the
  2322 // do_marking_step routine, with an unbelievably large timeout value,
  2323 // to drain the marking data structures of the remaining entries
  2324 // added by the 'keep alive' oop closure above.
  2326 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2327   ConcurrentMark* _cm;
  2328   CMTask*         _task;
  2329   bool            _is_serial;
  2330  public:
  2331   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2332     _cm(cm), _task(task), _is_serial(is_serial) {
  2333     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2336   void do_void() {
  2337     do {
  2338       if (_cm->verbose_high()) {
  2339         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2340                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2343       // We call CMTask::do_marking_step() to completely drain the local
  2344       // and global marking stacks of entries pushed by the 'keep alive'
  2345       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2346       //
  2347       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2348       // if there's nothing more to do (i.e. we'completely drained the
  2349       // entries that were pushed as a a result of applying the 'keep alive'
  2350       // closure to the entries on the discovered ref lists) or we overflow
  2351       // the global marking stack.
  2352       //
  2353       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2354       // flag while there may still be some work to do. (See the comment at
  2355       // the beginning of CMTask::do_marking_step() for those conditions -
  2356       // one of which is reaching the specified time target.) It is only
  2357       // when CMTask::do_marking_step() returns without setting the
  2358       // has_aborted() flag that the marking step has completed.
  2360       _task->do_marking_step(1000000000.0 /* something very large */,
  2361                              true         /* do_termination */,
  2362                              _is_serial);
  2363     } while (_task->has_aborted() && !_cm->has_overflown());
  2365 };
  2367 // Implementation of AbstractRefProcTaskExecutor for parallel
  2368 // reference processing at the end of G1 concurrent marking
  2370 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2371 private:
  2372   G1CollectedHeap* _g1h;
  2373   ConcurrentMark*  _cm;
  2374   WorkGang*        _workers;
  2375   int              _active_workers;
  2377 public:
  2378   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2379                         ConcurrentMark* cm,
  2380                         WorkGang* workers,
  2381                         int n_workers) :
  2382     _g1h(g1h), _cm(cm),
  2383     _workers(workers), _active_workers(n_workers) { }
  2385   // Executes the given task using concurrent marking worker threads.
  2386   virtual void execute(ProcessTask& task);
  2387   virtual void execute(EnqueueTask& task);
  2388 };
  2390 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2391   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2392   ProcessTask&     _proc_task;
  2393   G1CollectedHeap* _g1h;
  2394   ConcurrentMark*  _cm;
  2396 public:
  2397   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2398                      G1CollectedHeap* g1h,
  2399                      ConcurrentMark* cm) :
  2400     AbstractGangTask("Process reference objects in parallel"),
  2401     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2402     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2403     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2406   virtual void work(uint worker_id) {
  2407     ResourceMark rm;
  2408     HandleMark hm;
  2409     CMTask* task = _cm->task(worker_id);
  2410     G1CMIsAliveClosure g1_is_alive(_g1h);
  2411     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2412     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2414     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2416 };
  2418 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2419   assert(_workers != NULL, "Need parallel worker threads.");
  2420   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2422   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2424   // We need to reset the concurrency level before each
  2425   // proxy task execution, so that the termination protocol
  2426   // and overflow handling in CMTask::do_marking_step() knows
  2427   // how many workers to wait for.
  2428   _cm->set_concurrency(_active_workers);
  2429   _g1h->set_par_threads(_active_workers);
  2430   _workers->run_task(&proc_task_proxy);
  2431   _g1h->set_par_threads(0);
  2434 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2435   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2436   EnqueueTask& _enq_task;
  2438 public:
  2439   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2440     AbstractGangTask("Enqueue reference objects in parallel"),
  2441     _enq_task(enq_task) { }
  2443   virtual void work(uint worker_id) {
  2444     _enq_task.work(worker_id);
  2446 };
  2448 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2449   assert(_workers != NULL, "Need parallel worker threads.");
  2450   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2452   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2454   // Not strictly necessary but...
  2455   //
  2456   // We need to reset the concurrency level before each
  2457   // proxy task execution, so that the termination protocol
  2458   // and overflow handling in CMTask::do_marking_step() knows
  2459   // how many workers to wait for.
  2460   _cm->set_concurrency(_active_workers);
  2461   _g1h->set_par_threads(_active_workers);
  2462   _workers->run_task(&enq_task_proxy);
  2463   _g1h->set_par_threads(0);
  2466 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2467   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2470 // Helper class to get rid of some boilerplate code.
  2471 class G1RemarkGCTraceTime : public GCTraceTime {
  2472   static bool doit_and_prepend(bool doit) {
  2473     if (doit) {
  2474       gclog_or_tty->put(' ');
  2476     return doit;
  2479  public:
  2480   G1RemarkGCTraceTime(const char* title, bool doit)
  2481     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2482         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2484 };
  2486 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2487   if (has_overflown()) {
  2488     // Skip processing the discovered references if we have
  2489     // overflown the global marking stack. Reference objects
  2490     // only get discovered once so it is OK to not
  2491     // de-populate the discovered reference lists. We could have,
  2492     // but the only benefit would be that, when marking restarts,
  2493     // less reference objects are discovered.
  2494     return;
  2497   ResourceMark rm;
  2498   HandleMark   hm;
  2500   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2502   // Is alive closure.
  2503   G1CMIsAliveClosure g1_is_alive(g1h);
  2505   // Inner scope to exclude the cleaning of the string and symbol
  2506   // tables from the displayed time.
  2508     if (G1Log::finer()) {
  2509       gclog_or_tty->put(' ');
  2511     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2513     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2515     // See the comment in G1CollectedHeap::ref_processing_init()
  2516     // about how reference processing currently works in G1.
  2518     // Set the soft reference policy
  2519     rp->setup_policy(clear_all_soft_refs);
  2520     assert(_markStack.isEmpty(), "mark stack should be empty");
  2522     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2523     // in serial reference processing. Note these closures are also
  2524     // used for serially processing (by the the current thread) the
  2525     // JNI references during parallel reference processing.
  2526     //
  2527     // These closures do not need to synchronize with the worker
  2528     // threads involved in parallel reference processing as these
  2529     // instances are executed serially by the current thread (e.g.
  2530     // reference processing is not multi-threaded and is thus
  2531     // performed by the current thread instead of a gang worker).
  2532     //
  2533     // The gang tasks involved in parallel reference procssing create
  2534     // their own instances of these closures, which do their own
  2535     // synchronization among themselves.
  2536     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2537     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2539     // We need at least one active thread. If reference processing
  2540     // is not multi-threaded we use the current (VMThread) thread,
  2541     // otherwise we use the work gang from the G1CollectedHeap and
  2542     // we utilize all the worker threads we can.
  2543     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2544     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2545     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2547     // Parallel processing task executor.
  2548     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2549                                               g1h->workers(), active_workers);
  2550     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2552     // Set the concurrency level. The phase was already set prior to
  2553     // executing the remark task.
  2554     set_concurrency(active_workers);
  2556     // Set the degree of MT processing here.  If the discovery was done MT,
  2557     // the number of threads involved during discovery could differ from
  2558     // the number of active workers.  This is OK as long as the discovered
  2559     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2560     rp->set_active_mt_degree(active_workers);
  2562     // Process the weak references.
  2563     const ReferenceProcessorStats& stats =
  2564         rp->process_discovered_references(&g1_is_alive,
  2565                                           &g1_keep_alive,
  2566                                           &g1_drain_mark_stack,
  2567                                           executor,
  2568                                           g1h->gc_timer_cm(),
  2569                                           concurrent_gc_id());
  2570     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2572     // The do_oop work routines of the keep_alive and drain_marking_stack
  2573     // oop closures will set the has_overflown flag if we overflow the
  2574     // global marking stack.
  2576     assert(_markStack.overflow() || _markStack.isEmpty(),
  2577             "mark stack should be empty (unless it overflowed)");
  2579     if (_markStack.overflow()) {
  2580       // This should have been done already when we tried to push an
  2581       // entry on to the global mark stack. But let's do it again.
  2582       set_has_overflown();
  2585     assert(rp->num_q() == active_workers, "why not");
  2587     rp->enqueue_discovered_references(executor);
  2589     rp->verify_no_references_recorded();
  2590     assert(!rp->discovery_enabled(), "Post condition");
  2593   if (has_overflown()) {
  2594     // We can not trust g1_is_alive if the marking stack overflowed
  2595     return;
  2598   assert(_markStack.isEmpty(), "Marking should have completed");
  2600   // Unload Klasses, String, Symbols, Code Cache, etc.
  2602     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2604     if (ClassUnloadingWithConcurrentMark) {
  2605       bool purged_classes;
  2608         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2609         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
  2613         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2614         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2618     if (G1StringDedup::is_enabled()) {
  2619       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2620       G1StringDedup::unlink(&g1_is_alive);
  2625 void ConcurrentMark::swapMarkBitMaps() {
  2626   CMBitMapRO* temp = _prevMarkBitMap;
  2627   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2628   _nextMarkBitMap  = (CMBitMap*)  temp;
  2631 class CMObjectClosure;
  2633 // Closure for iterating over objects, currently only used for
  2634 // processing SATB buffers.
  2635 class CMObjectClosure : public ObjectClosure {
  2636 private:
  2637   CMTask* _task;
  2639 public:
  2640   void do_object(oop obj) {
  2641     _task->deal_with_reference(obj);
  2644   CMObjectClosure(CMTask* task) : _task(task) { }
  2645 };
  2647 class G1RemarkThreadsClosure : public ThreadClosure {
  2648   CMObjectClosure _cm_obj;
  2649   G1CMOopClosure _cm_cl;
  2650   MarkingCodeBlobClosure _code_cl;
  2651   int _thread_parity;
  2652   bool _is_par;
  2654  public:
  2655   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2656     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2657     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2659   void do_thread(Thread* thread) {
  2660     if (thread->is_Java_thread()) {
  2661       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2662         JavaThread* jt = (JavaThread*)thread;
  2664         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2665         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2666         // * Alive if on the stack of an executing method
  2667         // * Weakly reachable otherwise
  2668         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2669         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2670         jt->nmethods_do(&_code_cl);
  2672         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2674     } else if (thread->is_VM_thread()) {
  2675       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2676         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2680 };
  2682 class CMRemarkTask: public AbstractGangTask {
  2683 private:
  2684   ConcurrentMark* _cm;
  2685   bool            _is_serial;
  2686 public:
  2687   void work(uint worker_id) {
  2688     // Since all available tasks are actually started, we should
  2689     // only proceed if we're supposed to be actived.
  2690     if (worker_id < _cm->active_tasks()) {
  2691       CMTask* task = _cm->task(worker_id);
  2692       task->record_start_time();
  2694         ResourceMark rm;
  2695         HandleMark hm;
  2697         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2698         Threads::threads_do(&threads_f);
  2701       do {
  2702         task->do_marking_step(1000000000.0 /* something very large */,
  2703                               true         /* do_termination       */,
  2704                               _is_serial);
  2705       } while (task->has_aborted() && !_cm->has_overflown());
  2706       // If we overflow, then we do not want to restart. We instead
  2707       // want to abort remark and do concurrent marking again.
  2708       task->record_end_time();
  2712   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2713     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2714     _cm->terminator()->reset_for_reuse(active_workers);
  2716 };
  2718 void ConcurrentMark::checkpointRootsFinalWork() {
  2719   ResourceMark rm;
  2720   HandleMark   hm;
  2721   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2723   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2725   g1h->ensure_parsability(false);
  2727   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2728     G1CollectedHeap::StrongRootsScope srs(g1h);
  2729     // this is remark, so we'll use up all active threads
  2730     uint active_workers = g1h->workers()->active_workers();
  2731     if (active_workers == 0) {
  2732       assert(active_workers > 0, "Should have been set earlier");
  2733       active_workers = (uint) ParallelGCThreads;
  2734       g1h->workers()->set_active_workers(active_workers);
  2736     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2737     // Leave _parallel_marking_threads at it's
  2738     // value originally calculated in the ConcurrentMark
  2739     // constructor and pass values of the active workers
  2740     // through the gang in the task.
  2742     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2743     // We will start all available threads, even if we decide that the
  2744     // active_workers will be fewer. The extra ones will just bail out
  2745     // immediately.
  2746     g1h->set_par_threads(active_workers);
  2747     g1h->workers()->run_task(&remarkTask);
  2748     g1h->set_par_threads(0);
  2749   } else {
  2750     G1CollectedHeap::StrongRootsScope srs(g1h);
  2751     uint active_workers = 1;
  2752     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2754     // Note - if there's no work gang then the VMThread will be
  2755     // the thread to execute the remark - serially. We have
  2756     // to pass true for the is_serial parameter so that
  2757     // CMTask::do_marking_step() doesn't enter the sync
  2758     // barriers in the event of an overflow. Doing so will
  2759     // cause an assert that the current thread is not a
  2760     // concurrent GC thread.
  2761     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2762     remarkTask.work(0);
  2764   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2765   guarantee(has_overflown() ||
  2766             satb_mq_set.completed_buffers_num() == 0,
  2767             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2768                     BOOL_TO_STR(has_overflown()),
  2769                     satb_mq_set.completed_buffers_num()));
  2771   print_stats();
  2774 #ifndef PRODUCT
  2776 class PrintReachableOopClosure: public OopClosure {
  2777 private:
  2778   G1CollectedHeap* _g1h;
  2779   outputStream*    _out;
  2780   VerifyOption     _vo;
  2781   bool             _all;
  2783 public:
  2784   PrintReachableOopClosure(outputStream* out,
  2785                            VerifyOption  vo,
  2786                            bool          all) :
  2787     _g1h(G1CollectedHeap::heap()),
  2788     _out(out), _vo(vo), _all(all) { }
  2790   void do_oop(narrowOop* p) { do_oop_work(p); }
  2791   void do_oop(      oop* p) { do_oop_work(p); }
  2793   template <class T> void do_oop_work(T* p) {
  2794     oop         obj = oopDesc::load_decode_heap_oop(p);
  2795     const char* str = NULL;
  2796     const char* str2 = "";
  2798     if (obj == NULL) {
  2799       str = "";
  2800     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2801       str = " O";
  2802     } else {
  2803       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2804       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2805       bool marked = _g1h->is_marked(obj, _vo);
  2807       if (over_tams) {
  2808         str = " >";
  2809         if (marked) {
  2810           str2 = " AND MARKED";
  2812       } else if (marked) {
  2813         str = " M";
  2814       } else {
  2815         str = " NOT";
  2819     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2820                    p2i(p), p2i((void*) obj), str, str2);
  2822 };
  2824 class PrintReachableObjectClosure : public ObjectClosure {
  2825 private:
  2826   G1CollectedHeap* _g1h;
  2827   outputStream*    _out;
  2828   VerifyOption     _vo;
  2829   bool             _all;
  2830   HeapRegion*      _hr;
  2832 public:
  2833   PrintReachableObjectClosure(outputStream* out,
  2834                               VerifyOption  vo,
  2835                               bool          all,
  2836                               HeapRegion*   hr) :
  2837     _g1h(G1CollectedHeap::heap()),
  2838     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2840   void do_object(oop o) {
  2841     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2842     bool marked = _g1h->is_marked(o, _vo);
  2843     bool print_it = _all || over_tams || marked;
  2845     if (print_it) {
  2846       _out->print_cr(" "PTR_FORMAT"%s",
  2847                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2848       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2849       o->oop_iterate_no_header(&oopCl);
  2852 };
  2854 class PrintReachableRegionClosure : public HeapRegionClosure {
  2855 private:
  2856   G1CollectedHeap* _g1h;
  2857   outputStream*    _out;
  2858   VerifyOption     _vo;
  2859   bool             _all;
  2861 public:
  2862   bool doHeapRegion(HeapRegion* hr) {
  2863     HeapWord* b = hr->bottom();
  2864     HeapWord* e = hr->end();
  2865     HeapWord* t = hr->top();
  2866     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2867     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2868                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2869     _out->cr();
  2871     HeapWord* from = b;
  2872     HeapWord* to   = t;
  2874     if (to > from) {
  2875       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2876       _out->cr();
  2877       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2878       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2879       _out->cr();
  2882     return false;
  2885   PrintReachableRegionClosure(outputStream* out,
  2886                               VerifyOption  vo,
  2887                               bool          all) :
  2888     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2889 };
  2891 void ConcurrentMark::print_reachable(const char* str,
  2892                                      VerifyOption vo,
  2893                                      bool all) {
  2894   gclog_or_tty->cr();
  2895   gclog_or_tty->print_cr("== Doing heap dump... ");
  2897   if (G1PrintReachableBaseFile == NULL) {
  2898     gclog_or_tty->print_cr("  #### error: no base file defined");
  2899     return;
  2902   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2903       (JVM_MAXPATHLEN - 1)) {
  2904     gclog_or_tty->print_cr("  #### error: file name too long");
  2905     return;
  2908   char file_name[JVM_MAXPATHLEN];
  2909   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2910   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2912   fileStream fout(file_name);
  2913   if (!fout.is_open()) {
  2914     gclog_or_tty->print_cr("  #### error: could not open file");
  2915     return;
  2918   outputStream* out = &fout;
  2919   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2920   out->cr();
  2922   out->print_cr("--- ITERATING OVER REGIONS");
  2923   out->cr();
  2924   PrintReachableRegionClosure rcl(out, vo, all);
  2925   _g1h->heap_region_iterate(&rcl);
  2926   out->cr();
  2928   gclog_or_tty->print_cr("  done");
  2929   gclog_or_tty->flush();
  2932 #endif // PRODUCT
  2934 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2935   // Note we are overriding the read-only view of the prev map here, via
  2936   // the cast.
  2937   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2940 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2941   _nextMarkBitMap->clearRange(mr);
  2944 HeapRegion*
  2945 ConcurrentMark::claim_region(uint worker_id) {
  2946   // "checkpoint" the finger
  2947   HeapWord* finger = _finger;
  2949   // _heap_end will not change underneath our feet; it only changes at
  2950   // yield points.
  2951   while (finger < _heap_end) {
  2952     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2954     // Note on how this code handles humongous regions. In the
  2955     // normal case the finger will reach the start of a "starts
  2956     // humongous" (SH) region. Its end will either be the end of the
  2957     // last "continues humongous" (CH) region in the sequence, or the
  2958     // standard end of the SH region (if the SH is the only region in
  2959     // the sequence). That way claim_region() will skip over the CH
  2960     // regions. However, there is a subtle race between a CM thread
  2961     // executing this method and a mutator thread doing a humongous
  2962     // object allocation. The two are not mutually exclusive as the CM
  2963     // thread does not need to hold the Heap_lock when it gets
  2964     // here. So there is a chance that claim_region() will come across
  2965     // a free region that's in the progress of becoming a SH or a CH
  2966     // region. In the former case, it will either
  2967     //   a) Miss the update to the region's end, in which case it will
  2968     //      visit every subsequent CH region, will find their bitmaps
  2969     //      empty, and do nothing, or
  2970     //   b) Will observe the update of the region's end (in which case
  2971     //      it will skip the subsequent CH regions).
  2972     // If it comes across a region that suddenly becomes CH, the
  2973     // scenario will be similar to b). So, the race between
  2974     // claim_region() and a humongous object allocation might force us
  2975     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2976     // iterations) but it should not introduce and correctness issues.
  2977     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
  2979     // Above heap_region_containing_raw may return NULL as we always scan claim
  2980     // until the end of the heap. In this case, just jump to the next region.
  2981     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
  2983     // Is the gap between reading the finger and doing the CAS too long?
  2984     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2985     if (res == finger && curr_region != NULL) {
  2986       // we succeeded
  2987       HeapWord*   bottom        = curr_region->bottom();
  2988       HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2990       if (verbose_low()) {
  2991         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2992                                "["PTR_FORMAT", "PTR_FORMAT"), "
  2993                                "limit = "PTR_FORMAT,
  2994                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  2997       // notice that _finger == end cannot be guaranteed here since,
  2998       // someone else might have moved the finger even further
  2999       assert(_finger >= end, "the finger should have moved forward");
  3001       if (verbose_low()) {
  3002         gclog_or_tty->print_cr("[%u] we were successful with region = "
  3003                                PTR_FORMAT, worker_id, p2i(curr_region));
  3006       if (limit > bottom) {
  3007         if (verbose_low()) {
  3008           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  3009                                  "returning it ", worker_id, p2i(curr_region));
  3011         return curr_region;
  3012       } else {
  3013         assert(limit == bottom,
  3014                "the region limit should be at bottom");
  3015         if (verbose_low()) {
  3016           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3017                                  "returning NULL", worker_id, p2i(curr_region));
  3019         // we return NULL and the caller should try calling
  3020         // claim_region() again.
  3021         return NULL;
  3023     } else {
  3024       assert(_finger > finger, "the finger should have moved forward");
  3025       if (verbose_low()) {
  3026         if (curr_region == NULL) {
  3027           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
  3028                                  "global finger = "PTR_FORMAT", "
  3029                                  "our finger = "PTR_FORMAT,
  3030                                  worker_id, p2i(_finger), p2i(finger));
  3031         } else {
  3032           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3033                                  "global finger = "PTR_FORMAT", "
  3034                                  "our finger = "PTR_FORMAT,
  3035                                  worker_id, p2i(_finger), p2i(finger));
  3039       // read it again
  3040       finger = _finger;
  3044   return NULL;
  3047 #ifndef PRODUCT
  3048 enum VerifyNoCSetOopsPhase {
  3049   VerifyNoCSetOopsStack,
  3050   VerifyNoCSetOopsQueues,
  3051   VerifyNoCSetOopsSATBCompleted,
  3052   VerifyNoCSetOopsSATBThread
  3053 };
  3055 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3056 private:
  3057   G1CollectedHeap* _g1h;
  3058   VerifyNoCSetOopsPhase _phase;
  3059   int _info;
  3061   const char* phase_str() {
  3062     switch (_phase) {
  3063     case VerifyNoCSetOopsStack:         return "Stack";
  3064     case VerifyNoCSetOopsQueues:        return "Queue";
  3065     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3066     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3067     default:                            ShouldNotReachHere();
  3069     return NULL;
  3072   void do_object_work(oop obj) {
  3073     guarantee(!_g1h->obj_in_cs(obj),
  3074               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3075                       p2i((void*) obj), phase_str(), _info));
  3078 public:
  3079   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3081   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3082     _phase = phase;
  3083     _info = info;
  3086   virtual void do_oop(oop* p) {
  3087     oop obj = oopDesc::load_decode_heap_oop(p);
  3088     do_object_work(obj);
  3091   virtual void do_oop(narrowOop* p) {
  3092     // We should not come across narrow oops while scanning marking
  3093     // stacks and SATB buffers.
  3094     ShouldNotReachHere();
  3097   virtual void do_object(oop obj) {
  3098     do_object_work(obj);
  3100 };
  3102 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3103                                          bool verify_enqueued_buffers,
  3104                                          bool verify_thread_buffers,
  3105                                          bool verify_fingers) {
  3106   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3107   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3108     return;
  3111   VerifyNoCSetOopsClosure cl;
  3113   if (verify_stacks) {
  3114     // Verify entries on the global mark stack
  3115     cl.set_phase(VerifyNoCSetOopsStack);
  3116     _markStack.oops_do(&cl);
  3118     // Verify entries on the task queues
  3119     for (uint i = 0; i < _max_worker_id; i += 1) {
  3120       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3121       CMTaskQueue* queue = _task_queues->queue(i);
  3122       queue->oops_do(&cl);
  3126   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3128   // Verify entries on the enqueued SATB buffers
  3129   if (verify_enqueued_buffers) {
  3130     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3131     satb_qs.iterate_completed_buffers_read_only(&cl);
  3134   // Verify entries on the per-thread SATB buffers
  3135   if (verify_thread_buffers) {
  3136     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3137     satb_qs.iterate_thread_buffers_read_only(&cl);
  3140   if (verify_fingers) {
  3141     // Verify the global finger
  3142     HeapWord* global_finger = finger();
  3143     if (global_finger != NULL && global_finger < _heap_end) {
  3144       // The global finger always points to a heap region boundary. We
  3145       // use heap_region_containing_raw() to get the containing region
  3146       // given that the global finger could be pointing to a free region
  3147       // which subsequently becomes continues humongous. If that
  3148       // happens, heap_region_containing() will return the bottom of the
  3149       // corresponding starts humongous region and the check below will
  3150       // not hold any more.
  3151       // Since we always iterate over all regions, we might get a NULL HeapRegion
  3152       // here.
  3153       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3154       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
  3155                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3156                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3159     // Verify the task fingers
  3160     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3161     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3162       CMTask* task = _tasks[i];
  3163       HeapWord* task_finger = task->finger();
  3164       if (task_finger != NULL && task_finger < _heap_end) {
  3165         // See above note on the global finger verification.
  3166         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3167         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
  3168                   !task_hr->in_collection_set(),
  3169                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3170                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3175 #endif // PRODUCT
  3177 // Aggregate the counting data that was constructed concurrently
  3178 // with marking.
  3179 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3180   G1CollectedHeap* _g1h;
  3181   ConcurrentMark* _cm;
  3182   CardTableModRefBS* _ct_bs;
  3183   BitMap* _cm_card_bm;
  3184   uint _max_worker_id;
  3186  public:
  3187   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3188                               BitMap* cm_card_bm,
  3189                               uint max_worker_id) :
  3190     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3191     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3192     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3194   bool doHeapRegion(HeapRegion* hr) {
  3195     if (hr->continuesHumongous()) {
  3196       // We will ignore these here and process them when their
  3197       // associated "starts humongous" region is processed.
  3198       // Note that we cannot rely on their associated
  3199       // "starts humongous" region to have their bit set to 1
  3200       // since, due to the region chunking in the parallel region
  3201       // iteration, a "continues humongous" region might be visited
  3202       // before its associated "starts humongous".
  3203       return false;
  3206     HeapWord* start = hr->bottom();
  3207     HeapWord* limit = hr->next_top_at_mark_start();
  3208     HeapWord* end = hr->end();
  3210     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3211            err_msg("Preconditions not met - "
  3212                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3213                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3214                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3216     assert(hr->next_marked_bytes() == 0, "Precondition");
  3218     if (start == limit) {
  3219       // NTAMS of this region has not been set so nothing to do.
  3220       return false;
  3223     // 'start' should be in the heap.
  3224     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3225     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3226     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3228     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3229     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3230     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3232     // If ntams is not card aligned then we bump card bitmap index
  3233     // for limit so that we get the all the cards spanned by
  3234     // the object ending at ntams.
  3235     // Note: if this is the last region in the heap then ntams
  3236     // could be actually just beyond the end of the the heap;
  3237     // limit_idx will then  correspond to a (non-existent) card
  3238     // that is also outside the heap.
  3239     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3240       limit_idx += 1;
  3243     assert(limit_idx <= end_idx, "or else use atomics");
  3245     // Aggregate the "stripe" in the count data associated with hr.
  3246     uint hrm_index = hr->hrm_index();
  3247     size_t marked_bytes = 0;
  3249     for (uint i = 0; i < _max_worker_id; i += 1) {
  3250       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3251       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3253       // Fetch the marked_bytes in this region for task i and
  3254       // add it to the running total for this region.
  3255       marked_bytes += marked_bytes_array[hrm_index];
  3257       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3258       // into the global card bitmap.
  3259       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3261       while (scan_idx < limit_idx) {
  3262         assert(task_card_bm->at(scan_idx) == true, "should be");
  3263         _cm_card_bm->set_bit(scan_idx);
  3264         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3266         // BitMap::get_next_one_offset() can handle the case when
  3267         // its left_offset parameter is greater than its right_offset
  3268         // parameter. It does, however, have an early exit if
  3269         // left_offset == right_offset. So let's limit the value
  3270         // passed in for left offset here.
  3271         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3272         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3276     // Update the marked bytes for this region.
  3277     hr->add_to_marked_bytes(marked_bytes);
  3279     // Next heap region
  3280     return false;
  3282 };
  3284 class G1AggregateCountDataTask: public AbstractGangTask {
  3285 protected:
  3286   G1CollectedHeap* _g1h;
  3287   ConcurrentMark* _cm;
  3288   BitMap* _cm_card_bm;
  3289   uint _max_worker_id;
  3290   int _active_workers;
  3292 public:
  3293   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3294                            ConcurrentMark* cm,
  3295                            BitMap* cm_card_bm,
  3296                            uint max_worker_id,
  3297                            int n_workers) :
  3298     AbstractGangTask("Count Aggregation"),
  3299     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3300     _max_worker_id(max_worker_id),
  3301     _active_workers(n_workers) { }
  3303   void work(uint worker_id) {
  3304     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3306     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3307       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3308                                             _active_workers,
  3309                                             HeapRegion::AggregateCountClaimValue);
  3310     } else {
  3311       _g1h->heap_region_iterate(&cl);
  3314 };
  3317 void ConcurrentMark::aggregate_count_data() {
  3318   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3319                         _g1h->workers()->active_workers() :
  3320                         1);
  3322   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3323                                            _max_worker_id, n_workers);
  3325   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3326     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3327            "sanity check");
  3328     _g1h->set_par_threads(n_workers);
  3329     _g1h->workers()->run_task(&g1_par_agg_task);
  3330     _g1h->set_par_threads(0);
  3332     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3333            "sanity check");
  3334     _g1h->reset_heap_region_claim_values();
  3335   } else {
  3336     g1_par_agg_task.work(0);
  3338   _g1h->allocation_context_stats().update_at_remark();
  3341 // Clear the per-worker arrays used to store the per-region counting data
  3342 void ConcurrentMark::clear_all_count_data() {
  3343   // Clear the global card bitmap - it will be filled during
  3344   // liveness count aggregation (during remark) and the
  3345   // final counting task.
  3346   _card_bm.clear();
  3348   // Clear the global region bitmap - it will be filled as part
  3349   // of the final counting task.
  3350   _region_bm.clear();
  3352   uint max_regions = _g1h->max_regions();
  3353   assert(_max_worker_id > 0, "uninitialized");
  3355   for (uint i = 0; i < _max_worker_id; i += 1) {
  3356     BitMap* task_card_bm = count_card_bitmap_for(i);
  3357     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3359     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3360     assert(marked_bytes_array != NULL, "uninitialized");
  3362     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3363     task_card_bm->clear();
  3367 void ConcurrentMark::print_stats() {
  3368   if (verbose_stats()) {
  3369     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3370     for (size_t i = 0; i < _active_tasks; ++i) {
  3371       _tasks[i]->print_stats();
  3372       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3377 // abandon current marking iteration due to a Full GC
  3378 void ConcurrentMark::abort() {
  3379   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  3380   // concurrent bitmap clearing.
  3381   _nextMarkBitMap->clearAll();
  3383   // Note we cannot clear the previous marking bitmap here
  3384   // since VerifyDuringGC verifies the objects marked during
  3385   // a full GC against the previous bitmap.
  3387   // Clear the liveness counting data
  3388   clear_all_count_data();
  3389   // Empty mark stack
  3390   reset_marking_state();
  3391   for (uint i = 0; i < _max_worker_id; ++i) {
  3392     _tasks[i]->clear_region_fields();
  3394   _first_overflow_barrier_sync.abort();
  3395   _second_overflow_barrier_sync.abort();
  3396   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3397   if (!gc_id.is_undefined()) {
  3398     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3399     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3400     _aborted_gc_id = gc_id;
  3402   _has_aborted = true;
  3404   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3405   satb_mq_set.abandon_partial_marking();
  3406   // This can be called either during or outside marking, we'll read
  3407   // the expected_active value from the SATB queue set.
  3408   satb_mq_set.set_active_all_threads(
  3409                                  false, /* new active value */
  3410                                  satb_mq_set.is_active() /* expected_active */);
  3412   _g1h->trace_heap_after_concurrent_cycle();
  3413   _g1h->register_concurrent_cycle_end();
  3416 const GCId& ConcurrentMark::concurrent_gc_id() {
  3417   if (has_aborted()) {
  3418     return _aborted_gc_id;
  3420   return _g1h->gc_tracer_cm()->gc_id();
  3423 static void print_ms_time_info(const char* prefix, const char* name,
  3424                                NumberSeq& ns) {
  3425   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3426                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3427   if (ns.num() > 0) {
  3428     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3429                            prefix, ns.sd(), ns.maximum());
  3433 void ConcurrentMark::print_summary_info() {
  3434   gclog_or_tty->print_cr(" Concurrent marking:");
  3435   print_ms_time_info("  ", "init marks", _init_times);
  3436   print_ms_time_info("  ", "remarks", _remark_times);
  3438     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3439     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3442   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3443   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3444                          _total_counting_time,
  3445                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3446                           (double)_cleanup_times.num()
  3447                          : 0.0));
  3448   if (G1ScrubRemSets) {
  3449     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3450                            _total_rs_scrub_time,
  3451                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3452                             (double)_cleanup_times.num()
  3453                            : 0.0));
  3455   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3456                          (_init_times.sum() + _remark_times.sum() +
  3457                           _cleanup_times.sum())/1000.0);
  3458   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3459                 "(%8.2f s marking).",
  3460                 cmThread()->vtime_accum(),
  3461                 cmThread()->vtime_mark_accum());
  3464 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3465   if (use_parallel_marking_threads()) {
  3466     _parallel_workers->print_worker_threads_on(st);
  3470 void ConcurrentMark::print_on_error(outputStream* st) const {
  3471   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3472       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3473   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3474   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3477 // We take a break if someone is trying to stop the world.
  3478 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3479   if (SuspendibleThreadSet::should_yield()) {
  3480     if (worker_id == 0) {
  3481       _g1h->g1_policy()->record_concurrent_pause();
  3483     SuspendibleThreadSet::yield();
  3484     return true;
  3485   } else {
  3486     return false;
  3490 #ifndef PRODUCT
  3491 // for debugging purposes
  3492 void ConcurrentMark::print_finger() {
  3493   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3494                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3495   for (uint i = 0; i < _max_worker_id; ++i) {
  3496     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3498   gclog_or_tty->cr();
  3500 #endif
  3502 void CMTask::scan_object(oop obj) {
  3503   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3505   if (_cm->verbose_high()) {
  3506     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3507                            _worker_id, p2i((void*) obj));
  3510   size_t obj_size = obj->size();
  3511   _words_scanned += obj_size;
  3513   obj->oop_iterate(_cm_oop_closure);
  3514   statsOnly( ++_objs_scanned );
  3515   check_limits();
  3518 // Closure for iteration over bitmaps
  3519 class CMBitMapClosure : public BitMapClosure {
  3520 private:
  3521   // the bitmap that is being iterated over
  3522   CMBitMap*                   _nextMarkBitMap;
  3523   ConcurrentMark*             _cm;
  3524   CMTask*                     _task;
  3526 public:
  3527   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3528     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3530   bool do_bit(size_t offset) {
  3531     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3532     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3533     assert( addr < _cm->finger(), "invariant");
  3535     statsOnly( _task->increase_objs_found_on_bitmap() );
  3536     assert(addr >= _task->finger(), "invariant");
  3538     // We move that task's local finger along.
  3539     _task->move_finger_to(addr);
  3541     _task->scan_object(oop(addr));
  3542     // we only partially drain the local queue and global stack
  3543     _task->drain_local_queue(true);
  3544     _task->drain_global_stack(true);
  3546     // if the has_aborted flag has been raised, we need to bail out of
  3547     // the iteration
  3548     return !_task->has_aborted();
  3550 };
  3552 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3553                                ConcurrentMark* cm,
  3554                                CMTask* task)
  3555   : _g1h(g1h), _cm(cm), _task(task) {
  3556   assert(_ref_processor == NULL, "should be initialized to NULL");
  3558   if (G1UseConcMarkReferenceProcessing) {
  3559     _ref_processor = g1h->ref_processor_cm();
  3560     assert(_ref_processor != NULL, "should not be NULL");
  3564 void CMTask::setup_for_region(HeapRegion* hr) {
  3565   assert(hr != NULL,
  3566         "claim_region() should have filtered out NULL regions");
  3567   assert(!hr->continuesHumongous(),
  3568         "claim_region() should have filtered out continues humongous regions");
  3570   if (_cm->verbose_low()) {
  3571     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3572                            _worker_id, p2i(hr));
  3575   _curr_region  = hr;
  3576   _finger       = hr->bottom();
  3577   update_region_limit();
  3580 void CMTask::update_region_limit() {
  3581   HeapRegion* hr            = _curr_region;
  3582   HeapWord* bottom          = hr->bottom();
  3583   HeapWord* limit           = hr->next_top_at_mark_start();
  3585   if (limit == bottom) {
  3586     if (_cm->verbose_low()) {
  3587       gclog_or_tty->print_cr("[%u] found an empty region "
  3588                              "["PTR_FORMAT", "PTR_FORMAT")",
  3589                              _worker_id, p2i(bottom), p2i(limit));
  3591     // The region was collected underneath our feet.
  3592     // We set the finger to bottom to ensure that the bitmap
  3593     // iteration that will follow this will not do anything.
  3594     // (this is not a condition that holds when we set the region up,
  3595     // as the region is not supposed to be empty in the first place)
  3596     _finger = bottom;
  3597   } else if (limit >= _region_limit) {
  3598     assert(limit >= _finger, "peace of mind");
  3599   } else {
  3600     assert(limit < _region_limit, "only way to get here");
  3601     // This can happen under some pretty unusual circumstances.  An
  3602     // evacuation pause empties the region underneath our feet (NTAMS
  3603     // at bottom). We then do some allocation in the region (NTAMS
  3604     // stays at bottom), followed by the region being used as a GC
  3605     // alloc region (NTAMS will move to top() and the objects
  3606     // originally below it will be grayed). All objects now marked in
  3607     // the region are explicitly grayed, if below the global finger,
  3608     // and we do not need in fact to scan anything else. So, we simply
  3609     // set _finger to be limit to ensure that the bitmap iteration
  3610     // doesn't do anything.
  3611     _finger = limit;
  3614   _region_limit = limit;
  3617 void CMTask::giveup_current_region() {
  3618   assert(_curr_region != NULL, "invariant");
  3619   if (_cm->verbose_low()) {
  3620     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3621                            _worker_id, p2i(_curr_region));
  3623   clear_region_fields();
  3626 void CMTask::clear_region_fields() {
  3627   // Values for these three fields that indicate that we're not
  3628   // holding on to a region.
  3629   _curr_region   = NULL;
  3630   _finger        = NULL;
  3631   _region_limit  = NULL;
  3634 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3635   if (cm_oop_closure == NULL) {
  3636     assert(_cm_oop_closure != NULL, "invariant");
  3637   } else {
  3638     assert(_cm_oop_closure == NULL, "invariant");
  3640   _cm_oop_closure = cm_oop_closure;
  3643 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3644   guarantee(nextMarkBitMap != NULL, "invariant");
  3646   if (_cm->verbose_low()) {
  3647     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3650   _nextMarkBitMap                = nextMarkBitMap;
  3651   clear_region_fields();
  3653   _calls                         = 0;
  3654   _elapsed_time_ms               = 0.0;
  3655   _termination_time_ms           = 0.0;
  3656   _termination_start_time_ms     = 0.0;
  3658 #if _MARKING_STATS_
  3659   _local_pushes                  = 0;
  3660   _local_pops                    = 0;
  3661   _local_max_size                = 0;
  3662   _objs_scanned                  = 0;
  3663   _global_pushes                 = 0;
  3664   _global_pops                   = 0;
  3665   _global_max_size               = 0;
  3666   _global_transfers_to           = 0;
  3667   _global_transfers_from         = 0;
  3668   _regions_claimed               = 0;
  3669   _objs_found_on_bitmap          = 0;
  3670   _satb_buffers_processed        = 0;
  3671   _steal_attempts                = 0;
  3672   _steals                        = 0;
  3673   _aborted                       = 0;
  3674   _aborted_overflow              = 0;
  3675   _aborted_cm_aborted            = 0;
  3676   _aborted_yield                 = 0;
  3677   _aborted_timed_out             = 0;
  3678   _aborted_satb                  = 0;
  3679   _aborted_termination           = 0;
  3680 #endif // _MARKING_STATS_
  3683 bool CMTask::should_exit_termination() {
  3684   regular_clock_call();
  3685   // This is called when we are in the termination protocol. We should
  3686   // quit if, for some reason, this task wants to abort or the global
  3687   // stack is not empty (this means that we can get work from it).
  3688   return !_cm->mark_stack_empty() || has_aborted();
  3691 void CMTask::reached_limit() {
  3692   assert(_words_scanned >= _words_scanned_limit ||
  3693          _refs_reached >= _refs_reached_limit ,
  3694          "shouldn't have been called otherwise");
  3695   regular_clock_call();
  3698 void CMTask::regular_clock_call() {
  3699   if (has_aborted()) return;
  3701   // First, we need to recalculate the words scanned and refs reached
  3702   // limits for the next clock call.
  3703   recalculate_limits();
  3705   // During the regular clock call we do the following
  3707   // (1) If an overflow has been flagged, then we abort.
  3708   if (_cm->has_overflown()) {
  3709     set_has_aborted();
  3710     return;
  3713   // If we are not concurrent (i.e. we're doing remark) we don't need
  3714   // to check anything else. The other steps are only needed during
  3715   // the concurrent marking phase.
  3716   if (!concurrent()) return;
  3718   // (2) If marking has been aborted for Full GC, then we also abort.
  3719   if (_cm->has_aborted()) {
  3720     set_has_aborted();
  3721     statsOnly( ++_aborted_cm_aborted );
  3722     return;
  3725   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3727   // (3) If marking stats are enabled, then we update the step history.
  3728 #if _MARKING_STATS_
  3729   if (_words_scanned >= _words_scanned_limit) {
  3730     ++_clock_due_to_scanning;
  3732   if (_refs_reached >= _refs_reached_limit) {
  3733     ++_clock_due_to_marking;
  3736   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3737   _interval_start_time_ms = curr_time_ms;
  3738   _all_clock_intervals_ms.add(last_interval_ms);
  3740   if (_cm->verbose_medium()) {
  3741       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3742                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
  3743                         _worker_id, last_interval_ms,
  3744                         _words_scanned,
  3745                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3746                         _refs_reached,
  3747                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3749 #endif // _MARKING_STATS_
  3751   // (4) We check whether we should yield. If we have to, then we abort.
  3752   if (SuspendibleThreadSet::should_yield()) {
  3753     // We should yield. To do this we abort the task. The caller is
  3754     // responsible for yielding.
  3755     set_has_aborted();
  3756     statsOnly( ++_aborted_yield );
  3757     return;
  3760   // (5) We check whether we've reached our time quota. If we have,
  3761   // then we abort.
  3762   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3763   if (elapsed_time_ms > _time_target_ms) {
  3764     set_has_aborted();
  3765     _has_timed_out = true;
  3766     statsOnly( ++_aborted_timed_out );
  3767     return;
  3770   // (6) Finally, we check whether there are enough completed STAB
  3771   // buffers available for processing. If there are, we abort.
  3772   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3773   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3774     if (_cm->verbose_low()) {
  3775       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3776                              _worker_id);
  3778     // we do need to process SATB buffers, we'll abort and restart
  3779     // the marking task to do so
  3780     set_has_aborted();
  3781     statsOnly( ++_aborted_satb );
  3782     return;
  3786 void CMTask::recalculate_limits() {
  3787   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3788   _words_scanned_limit      = _real_words_scanned_limit;
  3790   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3791   _refs_reached_limit       = _real_refs_reached_limit;
  3794 void CMTask::decrease_limits() {
  3795   // This is called when we believe that we're going to do an infrequent
  3796   // operation which will increase the per byte scanned cost (i.e. move
  3797   // entries to/from the global stack). It basically tries to decrease the
  3798   // scanning limit so that the clock is called earlier.
  3800   if (_cm->verbose_medium()) {
  3801     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3804   _words_scanned_limit = _real_words_scanned_limit -
  3805     3 * words_scanned_period / 4;
  3806   _refs_reached_limit  = _real_refs_reached_limit -
  3807     3 * refs_reached_period / 4;
  3810 void CMTask::move_entries_to_global_stack() {
  3811   // local array where we'll store the entries that will be popped
  3812   // from the local queue
  3813   oop buffer[global_stack_transfer_size];
  3815   int n = 0;
  3816   oop obj;
  3817   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3818     buffer[n] = obj;
  3819     ++n;
  3822   if (n > 0) {
  3823     // we popped at least one entry from the local queue
  3825     statsOnly( ++_global_transfers_to; _local_pops += n );
  3827     if (!_cm->mark_stack_push(buffer, n)) {
  3828       if (_cm->verbose_low()) {
  3829         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3830                                _worker_id);
  3832       set_has_aborted();
  3833     } else {
  3834       // the transfer was successful
  3836       if (_cm->verbose_medium()) {
  3837         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3838                                _worker_id, n);
  3840       statsOnly( int tmp_size = _cm->mark_stack_size();
  3841                  if (tmp_size > _global_max_size) {
  3842                    _global_max_size = tmp_size;
  3844                  _global_pushes += n );
  3848   // this operation was quite expensive, so decrease the limits
  3849   decrease_limits();
  3852 void CMTask::get_entries_from_global_stack() {
  3853   // local array where we'll store the entries that will be popped
  3854   // from the global stack.
  3855   oop buffer[global_stack_transfer_size];
  3856   int n;
  3857   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3858   assert(n <= global_stack_transfer_size,
  3859          "we should not pop more than the given limit");
  3860   if (n > 0) {
  3861     // yes, we did actually pop at least one entry
  3863     statsOnly( ++_global_transfers_from; _global_pops += n );
  3864     if (_cm->verbose_medium()) {
  3865       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3866                              _worker_id, n);
  3868     for (int i = 0; i < n; ++i) {
  3869       bool success = _task_queue->push(buffer[i]);
  3870       // We only call this when the local queue is empty or under a
  3871       // given target limit. So, we do not expect this push to fail.
  3872       assert(success, "invariant");
  3875     statsOnly( int tmp_size = _task_queue->size();
  3876                if (tmp_size > _local_max_size) {
  3877                  _local_max_size = tmp_size;
  3879                _local_pushes += n );
  3882   // this operation was quite expensive, so decrease the limits
  3883   decrease_limits();
  3886 void CMTask::drain_local_queue(bool partially) {
  3887   if (has_aborted()) return;
  3889   // Decide what the target size is, depending whether we're going to
  3890   // drain it partially (so that other tasks can steal if they run out
  3891   // of things to do) or totally (at the very end).
  3892   size_t target_size;
  3893   if (partially) {
  3894     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3895   } else {
  3896     target_size = 0;
  3899   if (_task_queue->size() > target_size) {
  3900     if (_cm->verbose_high()) {
  3901       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3902                              _worker_id, target_size);
  3905     oop obj;
  3906     bool ret = _task_queue->pop_local(obj);
  3907     while (ret) {
  3908       statsOnly( ++_local_pops );
  3910       if (_cm->verbose_high()) {
  3911         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3912                                p2i((void*) obj));
  3915       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3916       assert(!_g1h->is_on_master_free_list(
  3917                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3919       scan_object(obj);
  3921       if (_task_queue->size() <= target_size || has_aborted()) {
  3922         ret = false;
  3923       } else {
  3924         ret = _task_queue->pop_local(obj);
  3928     if (_cm->verbose_high()) {
  3929       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3930                              _worker_id, _task_queue->size());
  3935 void CMTask::drain_global_stack(bool partially) {
  3936   if (has_aborted()) return;
  3938   // We have a policy to drain the local queue before we attempt to
  3939   // drain the global stack.
  3940   assert(partially || _task_queue->size() == 0, "invariant");
  3942   // Decide what the target size is, depending whether we're going to
  3943   // drain it partially (so that other tasks can steal if they run out
  3944   // of things to do) or totally (at the very end).  Notice that,
  3945   // because we move entries from the global stack in chunks or
  3946   // because another task might be doing the same, we might in fact
  3947   // drop below the target. But, this is not a problem.
  3948   size_t target_size;
  3949   if (partially) {
  3950     target_size = _cm->partial_mark_stack_size_target();
  3951   } else {
  3952     target_size = 0;
  3955   if (_cm->mark_stack_size() > target_size) {
  3956     if (_cm->verbose_low()) {
  3957       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3958                              _worker_id, target_size);
  3961     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3962       get_entries_from_global_stack();
  3963       drain_local_queue(partially);
  3966     if (_cm->verbose_low()) {
  3967       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3968                              _worker_id, _cm->mark_stack_size());
  3973 // SATB Queue has several assumptions on whether to call the par or
  3974 // non-par versions of the methods. this is why some of the code is
  3975 // replicated. We should really get rid of the single-threaded version
  3976 // of the code to simplify things.
  3977 void CMTask::drain_satb_buffers() {
  3978   if (has_aborted()) return;
  3980   // We set this so that the regular clock knows that we're in the
  3981   // middle of draining buffers and doesn't set the abort flag when it
  3982   // notices that SATB buffers are available for draining. It'd be
  3983   // very counter productive if it did that. :-)
  3984   _draining_satb_buffers = true;
  3986   CMObjectClosure oc(this);
  3987   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3988   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3989     satb_mq_set.set_par_closure(_worker_id, &oc);
  3990   } else {
  3991     satb_mq_set.set_closure(&oc);
  3994   // This keeps claiming and applying the closure to completed buffers
  3995   // until we run out of buffers or we need to abort.
  3996   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3997     while (!has_aborted() &&
  3998            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3999       if (_cm->verbose_medium()) {
  4000         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4002       statsOnly( ++_satb_buffers_processed );
  4003       regular_clock_call();
  4005   } else {
  4006     while (!has_aborted() &&
  4007            satb_mq_set.apply_closure_to_completed_buffer()) {
  4008       if (_cm->verbose_medium()) {
  4009         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4011       statsOnly( ++_satb_buffers_processed );
  4012       regular_clock_call();
  4016   _draining_satb_buffers = false;
  4018   assert(has_aborted() ||
  4019          concurrent() ||
  4020          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4022   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4023     satb_mq_set.set_par_closure(_worker_id, NULL);
  4024   } else {
  4025     satb_mq_set.set_closure(NULL);
  4028   // again, this was a potentially expensive operation, decrease the
  4029   // limits to get the regular clock call early
  4030   decrease_limits();
  4033 void CMTask::print_stats() {
  4034   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4035                          _worker_id, _calls);
  4036   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4037                          _elapsed_time_ms, _termination_time_ms);
  4038   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4039                          _step_times_ms.num(), _step_times_ms.avg(),
  4040                          _step_times_ms.sd());
  4041   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4042                          _step_times_ms.maximum(), _step_times_ms.sum());
  4044 #if _MARKING_STATS_
  4045   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4046                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4047                          _all_clock_intervals_ms.sd());
  4048   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4049                          _all_clock_intervals_ms.maximum(),
  4050                          _all_clock_intervals_ms.sum());
  4051   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4052                          _clock_due_to_scanning, _clock_due_to_marking);
  4053   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4054                          _objs_scanned, _objs_found_on_bitmap);
  4055   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4056                          _local_pushes, _local_pops, _local_max_size);
  4057   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4058                          _global_pushes, _global_pops, _global_max_size);
  4059   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4060                          _global_transfers_to,_global_transfers_from);
  4061   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4062   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4063   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4064                          _steal_attempts, _steals);
  4065   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4066   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4067                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4068   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4069                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4070 #endif // _MARKING_STATS_
  4073 /*****************************************************************************
  4075     The do_marking_step(time_target_ms, ...) method is the building
  4076     block of the parallel marking framework. It can be called in parallel
  4077     with other invocations of do_marking_step() on different tasks
  4078     (but only one per task, obviously) and concurrently with the
  4079     mutator threads, or during remark, hence it eliminates the need
  4080     for two versions of the code. When called during remark, it will
  4081     pick up from where the task left off during the concurrent marking
  4082     phase. Interestingly, tasks are also claimable during evacuation
  4083     pauses too, since do_marking_step() ensures that it aborts before
  4084     it needs to yield.
  4086     The data structures that it uses to do marking work are the
  4087     following:
  4089       (1) Marking Bitmap. If there are gray objects that appear only
  4090       on the bitmap (this happens either when dealing with an overflow
  4091       or when the initial marking phase has simply marked the roots
  4092       and didn't push them on the stack), then tasks claim heap
  4093       regions whose bitmap they then scan to find gray objects. A
  4094       global finger indicates where the end of the last claimed region
  4095       is. A local finger indicates how far into the region a task has
  4096       scanned. The two fingers are used to determine how to gray an
  4097       object (i.e. whether simply marking it is OK, as it will be
  4098       visited by a task in the future, or whether it needs to be also
  4099       pushed on a stack).
  4101       (2) Local Queue. The local queue of the task which is accessed
  4102       reasonably efficiently by the task. Other tasks can steal from
  4103       it when they run out of work. Throughout the marking phase, a
  4104       task attempts to keep its local queue short but not totally
  4105       empty, so that entries are available for stealing by other
  4106       tasks. Only when there is no more work, a task will totally
  4107       drain its local queue.
  4109       (3) Global Mark Stack. This handles local queue overflow. During
  4110       marking only sets of entries are moved between it and the local
  4111       queues, as access to it requires a mutex and more fine-grain
  4112       interaction with it which might cause contention. If it
  4113       overflows, then the marking phase should restart and iterate
  4114       over the bitmap to identify gray objects. Throughout the marking
  4115       phase, tasks attempt to keep the global mark stack at a small
  4116       length but not totally empty, so that entries are available for
  4117       popping by other tasks. Only when there is no more work, tasks
  4118       will totally drain the global mark stack.
  4120       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4121       made available. Buffers are regularly removed from this queue
  4122       and scanned for roots, so that the queue doesn't get too
  4123       long. During remark, all completed buffers are processed, as
  4124       well as the filled in parts of any uncompleted buffers.
  4126     The do_marking_step() method tries to abort when the time target
  4127     has been reached. There are a few other cases when the
  4128     do_marking_step() method also aborts:
  4130       (1) When the marking phase has been aborted (after a Full GC).
  4132       (2) When a global overflow (on the global stack) has been
  4133       triggered. Before the task aborts, it will actually sync up with
  4134       the other tasks to ensure that all the marking data structures
  4135       (local queues, stacks, fingers etc.)  are re-initialized so that
  4136       when do_marking_step() completes, the marking phase can
  4137       immediately restart.
  4139       (3) When enough completed SATB buffers are available. The
  4140       do_marking_step() method only tries to drain SATB buffers right
  4141       at the beginning. So, if enough buffers are available, the
  4142       marking step aborts and the SATB buffers are processed at
  4143       the beginning of the next invocation.
  4145       (4) To yield. when we have to yield then we abort and yield
  4146       right at the end of do_marking_step(). This saves us from a lot
  4147       of hassle as, by yielding we might allow a Full GC. If this
  4148       happens then objects will be compacted underneath our feet, the
  4149       heap might shrink, etc. We save checking for this by just
  4150       aborting and doing the yield right at the end.
  4152     From the above it follows that the do_marking_step() method should
  4153     be called in a loop (or, otherwise, regularly) until it completes.
  4155     If a marking step completes without its has_aborted() flag being
  4156     true, it means it has completed the current marking phase (and
  4157     also all other marking tasks have done so and have all synced up).
  4159     A method called regular_clock_call() is invoked "regularly" (in
  4160     sub ms intervals) throughout marking. It is this clock method that
  4161     checks all the abort conditions which were mentioned above and
  4162     decides when the task should abort. A work-based scheme is used to
  4163     trigger this clock method: when the number of object words the
  4164     marking phase has scanned or the number of references the marking
  4165     phase has visited reach a given limit. Additional invocations to
  4166     the method clock have been planted in a few other strategic places
  4167     too. The initial reason for the clock method was to avoid calling
  4168     vtime too regularly, as it is quite expensive. So, once it was in
  4169     place, it was natural to piggy-back all the other conditions on it
  4170     too and not constantly check them throughout the code.
  4172     If do_termination is true then do_marking_step will enter its
  4173     termination protocol.
  4175     The value of is_serial must be true when do_marking_step is being
  4176     called serially (i.e. by the VMThread) and do_marking_step should
  4177     skip any synchronization in the termination and overflow code.
  4178     Examples include the serial remark code and the serial reference
  4179     processing closures.
  4181     The value of is_serial must be false when do_marking_step is
  4182     being called by any of the worker threads in a work gang.
  4183     Examples include the concurrent marking code (CMMarkingTask),
  4184     the MT remark code, and the MT reference processing closures.
  4186  *****************************************************************************/
  4188 void CMTask::do_marking_step(double time_target_ms,
  4189                              bool do_termination,
  4190                              bool is_serial) {
  4191   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4192   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4194   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4195   assert(_task_queues != NULL, "invariant");
  4196   assert(_task_queue != NULL, "invariant");
  4197   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4199   assert(!_claimed,
  4200          "only one thread should claim this task at any one time");
  4202   // OK, this doesn't safeguard again all possible scenarios, as it is
  4203   // possible for two threads to set the _claimed flag at the same
  4204   // time. But it is only for debugging purposes anyway and it will
  4205   // catch most problems.
  4206   _claimed = true;
  4208   _start_time_ms = os::elapsedVTime() * 1000.0;
  4209   statsOnly( _interval_start_time_ms = _start_time_ms );
  4211   // If do_stealing is true then do_marking_step will attempt to
  4212   // steal work from the other CMTasks. It only makes sense to
  4213   // enable stealing when the termination protocol is enabled
  4214   // and do_marking_step() is not being called serially.
  4215   bool do_stealing = do_termination && !is_serial;
  4217   double diff_prediction_ms =
  4218     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4219   _time_target_ms = time_target_ms - diff_prediction_ms;
  4221   // set up the variables that are used in the work-based scheme to
  4222   // call the regular clock method
  4223   _words_scanned = 0;
  4224   _refs_reached  = 0;
  4225   recalculate_limits();
  4227   // clear all flags
  4228   clear_has_aborted();
  4229   _has_timed_out = false;
  4230   _draining_satb_buffers = false;
  4232   ++_calls;
  4234   if (_cm->verbose_low()) {
  4235     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4236                            "target = %1.2lfms >>>>>>>>>>",
  4237                            _worker_id, _calls, _time_target_ms);
  4240   // Set up the bitmap and oop closures. Anything that uses them is
  4241   // eventually called from this method, so it is OK to allocate these
  4242   // statically.
  4243   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4244   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4245   set_cm_oop_closure(&cm_oop_closure);
  4247   if (_cm->has_overflown()) {
  4248     // This can happen if the mark stack overflows during a GC pause
  4249     // and this task, after a yield point, restarts. We have to abort
  4250     // as we need to get into the overflow protocol which happens
  4251     // right at the end of this task.
  4252     set_has_aborted();
  4255   // First drain any available SATB buffers. After this, we will not
  4256   // look at SATB buffers before the next invocation of this method.
  4257   // If enough completed SATB buffers are queued up, the regular clock
  4258   // will abort this task so that it restarts.
  4259   drain_satb_buffers();
  4260   // ...then partially drain the local queue and the global stack
  4261   drain_local_queue(true);
  4262   drain_global_stack(true);
  4264   do {
  4265     if (!has_aborted() && _curr_region != NULL) {
  4266       // This means that we're already holding on to a region.
  4267       assert(_finger != NULL, "if region is not NULL, then the finger "
  4268              "should not be NULL either");
  4270       // We might have restarted this task after an evacuation pause
  4271       // which might have evacuated the region we're holding on to
  4272       // underneath our feet. Let's read its limit again to make sure
  4273       // that we do not iterate over a region of the heap that
  4274       // contains garbage (update_region_limit() will also move
  4275       // _finger to the start of the region if it is found empty).
  4276       update_region_limit();
  4277       // We will start from _finger not from the start of the region,
  4278       // as we might be restarting this task after aborting half-way
  4279       // through scanning this region. In this case, _finger points to
  4280       // the address where we last found a marked object. If this is a
  4281       // fresh region, _finger points to start().
  4282       MemRegion mr = MemRegion(_finger, _region_limit);
  4284       if (_cm->verbose_low()) {
  4285         gclog_or_tty->print_cr("[%u] we're scanning part "
  4286                                "["PTR_FORMAT", "PTR_FORMAT") "
  4287                                "of region "HR_FORMAT,
  4288                                _worker_id, p2i(_finger), p2i(_region_limit),
  4289                                HR_FORMAT_PARAMS(_curr_region));
  4292       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4293              "humongous regions should go around loop once only");
  4295       // Some special cases:
  4296       // If the memory region is empty, we can just give up the region.
  4297       // If the current region is humongous then we only need to check
  4298       // the bitmap for the bit associated with the start of the object,
  4299       // scan the object if it's live, and give up the region.
  4300       // Otherwise, let's iterate over the bitmap of the part of the region
  4301       // that is left.
  4302       // If the iteration is successful, give up the region.
  4303       if (mr.is_empty()) {
  4304         giveup_current_region();
  4305         regular_clock_call();
  4306       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4307         if (_nextMarkBitMap->isMarked(mr.start())) {
  4308           // The object is marked - apply the closure
  4309           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4310           bitmap_closure.do_bit(offset);
  4312         // Even if this task aborted while scanning the humongous object
  4313         // we can (and should) give up the current region.
  4314         giveup_current_region();
  4315         regular_clock_call();
  4316       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4317         giveup_current_region();
  4318         regular_clock_call();
  4319       } else {
  4320         assert(has_aborted(), "currently the only way to do so");
  4321         // The only way to abort the bitmap iteration is to return
  4322         // false from the do_bit() method. However, inside the
  4323         // do_bit() method we move the _finger to point to the
  4324         // object currently being looked at. So, if we bail out, we
  4325         // have definitely set _finger to something non-null.
  4326         assert(_finger != NULL, "invariant");
  4328         // Region iteration was actually aborted. So now _finger
  4329         // points to the address of the object we last scanned. If we
  4330         // leave it there, when we restart this task, we will rescan
  4331         // the object. It is easy to avoid this. We move the finger by
  4332         // enough to point to the next possible object header (the
  4333         // bitmap knows by how much we need to move it as it knows its
  4334         // granularity).
  4335         assert(_finger < _region_limit, "invariant");
  4336         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4337         // Check if bitmap iteration was aborted while scanning the last object
  4338         if (new_finger >= _region_limit) {
  4339           giveup_current_region();
  4340         } else {
  4341           move_finger_to(new_finger);
  4345     // At this point we have either completed iterating over the
  4346     // region we were holding on to, or we have aborted.
  4348     // We then partially drain the local queue and the global stack.
  4349     // (Do we really need this?)
  4350     drain_local_queue(true);
  4351     drain_global_stack(true);
  4353     // Read the note on the claim_region() method on why it might
  4354     // return NULL with potentially more regions available for
  4355     // claiming and why we have to check out_of_regions() to determine
  4356     // whether we're done or not.
  4357     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4358       // We are going to try to claim a new region. We should have
  4359       // given up on the previous one.
  4360       // Separated the asserts so that we know which one fires.
  4361       assert(_curr_region  == NULL, "invariant");
  4362       assert(_finger       == NULL, "invariant");
  4363       assert(_region_limit == NULL, "invariant");
  4364       if (_cm->verbose_low()) {
  4365         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4367       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4368       if (claimed_region != NULL) {
  4369         // Yes, we managed to claim one
  4370         statsOnly( ++_regions_claimed );
  4372         if (_cm->verbose_low()) {
  4373           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4374                                  "region "PTR_FORMAT,
  4375                                  _worker_id, p2i(claimed_region));
  4378         setup_for_region(claimed_region);
  4379         assert(_curr_region == claimed_region, "invariant");
  4381       // It is important to call the regular clock here. It might take
  4382       // a while to claim a region if, for example, we hit a large
  4383       // block of empty regions. So we need to call the regular clock
  4384       // method once round the loop to make sure it's called
  4385       // frequently enough.
  4386       regular_clock_call();
  4389     if (!has_aborted() && _curr_region == NULL) {
  4390       assert(_cm->out_of_regions(),
  4391              "at this point we should be out of regions");
  4393   } while ( _curr_region != NULL && !has_aborted());
  4395   if (!has_aborted()) {
  4396     // We cannot check whether the global stack is empty, since other
  4397     // tasks might be pushing objects to it concurrently.
  4398     assert(_cm->out_of_regions(),
  4399            "at this point we should be out of regions");
  4401     if (_cm->verbose_low()) {
  4402       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4405     // Try to reduce the number of available SATB buffers so that
  4406     // remark has less work to do.
  4407     drain_satb_buffers();
  4410   // Since we've done everything else, we can now totally drain the
  4411   // local queue and global stack.
  4412   drain_local_queue(false);
  4413   drain_global_stack(false);
  4415   // Attempt at work stealing from other task's queues.
  4416   if (do_stealing && !has_aborted()) {
  4417     // We have not aborted. This means that we have finished all that
  4418     // we could. Let's try to do some stealing...
  4420     // We cannot check whether the global stack is empty, since other
  4421     // tasks might be pushing objects to it concurrently.
  4422     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4423            "only way to reach here");
  4425     if (_cm->verbose_low()) {
  4426       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4429     while (!has_aborted()) {
  4430       oop obj;
  4431       statsOnly( ++_steal_attempts );
  4433       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4434         if (_cm->verbose_medium()) {
  4435           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4436                                  _worker_id, p2i((void*) obj));
  4439         statsOnly( ++_steals );
  4441         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4442                "any stolen object should be marked");
  4443         scan_object(obj);
  4445         // And since we're towards the end, let's totally drain the
  4446         // local queue and global stack.
  4447         drain_local_queue(false);
  4448         drain_global_stack(false);
  4449       } else {
  4450         break;
  4455   // If we are about to wrap up and go into termination, check if we
  4456   // should raise the overflow flag.
  4457   if (do_termination && !has_aborted()) {
  4458     if (_cm->force_overflow()->should_force()) {
  4459       _cm->set_has_overflown();
  4460       regular_clock_call();
  4464   // We still haven't aborted. Now, let's try to get into the
  4465   // termination protocol.
  4466   if (do_termination && !has_aborted()) {
  4467     // We cannot check whether the global stack is empty, since other
  4468     // tasks might be concurrently pushing objects on it.
  4469     // Separated the asserts so that we know which one fires.
  4470     assert(_cm->out_of_regions(), "only way to reach here");
  4471     assert(_task_queue->size() == 0, "only way to reach here");
  4473     if (_cm->verbose_low()) {
  4474       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4477     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4479     // The CMTask class also extends the TerminatorTerminator class,
  4480     // hence its should_exit_termination() method will also decide
  4481     // whether to exit the termination protocol or not.
  4482     bool finished = (is_serial ||
  4483                      _cm->terminator()->offer_termination(this));
  4484     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4485     _termination_time_ms +=
  4486       termination_end_time_ms - _termination_start_time_ms;
  4488     if (finished) {
  4489       // We're all done.
  4491       if (_worker_id == 0) {
  4492         // let's allow task 0 to do this
  4493         if (concurrent()) {
  4494           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4495           // we need to set this to false before the next
  4496           // safepoint. This way we ensure that the marking phase
  4497           // doesn't observe any more heap expansions.
  4498           _cm->clear_concurrent_marking_in_progress();
  4502       // We can now guarantee that the global stack is empty, since
  4503       // all other tasks have finished. We separated the guarantees so
  4504       // that, if a condition is false, we can immediately find out
  4505       // which one.
  4506       guarantee(_cm->out_of_regions(), "only way to reach here");
  4507       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4508       guarantee(_task_queue->size() == 0, "only way to reach here");
  4509       guarantee(!_cm->has_overflown(), "only way to reach here");
  4510       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4512       if (_cm->verbose_low()) {
  4513         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4515     } else {
  4516       // Apparently there's more work to do. Let's abort this task. It
  4517       // will restart it and we can hopefully find more things to do.
  4519       if (_cm->verbose_low()) {
  4520         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4521                                _worker_id);
  4524       set_has_aborted();
  4525       statsOnly( ++_aborted_termination );
  4529   // Mainly for debugging purposes to make sure that a pointer to the
  4530   // closure which was statically allocated in this frame doesn't
  4531   // escape it by accident.
  4532   set_cm_oop_closure(NULL);
  4533   double end_time_ms = os::elapsedVTime() * 1000.0;
  4534   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4535   // Update the step history.
  4536   _step_times_ms.add(elapsed_time_ms);
  4538   if (has_aborted()) {
  4539     // The task was aborted for some reason.
  4541     statsOnly( ++_aborted );
  4543     if (_has_timed_out) {
  4544       double diff_ms = elapsed_time_ms - _time_target_ms;
  4545       // Keep statistics of how well we did with respect to hitting
  4546       // our target only if we actually timed out (if we aborted for
  4547       // other reasons, then the results might get skewed).
  4548       _marking_step_diffs_ms.add(diff_ms);
  4551     if (_cm->has_overflown()) {
  4552       // This is the interesting one. We aborted because a global
  4553       // overflow was raised. This means we have to restart the
  4554       // marking phase and start iterating over regions. However, in
  4555       // order to do this we have to make sure that all tasks stop
  4556       // what they are doing and re-initialise in a safe manner. We
  4557       // will achieve this with the use of two barrier sync points.
  4559       if (_cm->verbose_low()) {
  4560         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4563       if (!is_serial) {
  4564         // We only need to enter the sync barrier if being called
  4565         // from a parallel context
  4566         _cm->enter_first_sync_barrier(_worker_id);
  4568         // When we exit this sync barrier we know that all tasks have
  4569         // stopped doing marking work. So, it's now safe to
  4570         // re-initialise our data structures. At the end of this method,
  4571         // task 0 will clear the global data structures.
  4574       statsOnly( ++_aborted_overflow );
  4576       // We clear the local state of this task...
  4577       clear_region_fields();
  4579       if (!is_serial) {
  4580         // ...and enter the second barrier.
  4581         _cm->enter_second_sync_barrier(_worker_id);
  4583       // At this point, if we're during the concurrent phase of
  4584       // marking, everything has been re-initialized and we're
  4585       // ready to restart.
  4588     if (_cm->verbose_low()) {
  4589       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4590                              "elapsed = %1.2lfms <<<<<<<<<<",
  4591                              _worker_id, _time_target_ms, elapsed_time_ms);
  4592       if (_cm->has_aborted()) {
  4593         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4594                                _worker_id);
  4597   } else {
  4598     if (_cm->verbose_low()) {
  4599       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4600                              "elapsed = %1.2lfms <<<<<<<<<<",
  4601                              _worker_id, _time_target_ms, elapsed_time_ms);
  4605   _claimed = false;
  4608 CMTask::CMTask(uint worker_id,
  4609                ConcurrentMark* cm,
  4610                size_t* marked_bytes,
  4611                BitMap* card_bm,
  4612                CMTaskQueue* task_queue,
  4613                CMTaskQueueSet* task_queues)
  4614   : _g1h(G1CollectedHeap::heap()),
  4615     _worker_id(worker_id), _cm(cm),
  4616     _claimed(false),
  4617     _nextMarkBitMap(NULL), _hash_seed(17),
  4618     _task_queue(task_queue),
  4619     _task_queues(task_queues),
  4620     _cm_oop_closure(NULL),
  4621     _marked_bytes_array(marked_bytes),
  4622     _card_bm(card_bm) {
  4623   guarantee(task_queue != NULL, "invariant");
  4624   guarantee(task_queues != NULL, "invariant");
  4626   statsOnly( _clock_due_to_scanning = 0;
  4627              _clock_due_to_marking  = 0 );
  4629   _marking_step_diffs_ms.add(0.5);
  4632 // These are formatting macros that are used below to ensure
  4633 // consistent formatting. The *_H_* versions are used to format the
  4634 // header for a particular value and they should be kept consistent
  4635 // with the corresponding macro. Also note that most of the macros add
  4636 // the necessary white space (as a prefix) which makes them a bit
  4637 // easier to compose.
  4639 // All the output lines are prefixed with this string to be able to
  4640 // identify them easily in a large log file.
  4641 #define G1PPRL_LINE_PREFIX            "###"
  4643 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4644 #ifdef _LP64
  4645 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4646 #else // _LP64
  4647 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4648 #endif // _LP64
  4650 // For per-region info
  4651 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4652 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4653 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4654 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4655 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4656 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4658 // For summary info
  4659 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4660 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4661 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4662 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4664 G1PrintRegionLivenessInfoClosure::
  4665 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4666   : _out(out),
  4667     _total_used_bytes(0), _total_capacity_bytes(0),
  4668     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4669     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4670     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4671     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4672   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4673   MemRegion g1_reserved = g1h->g1_reserved();
  4674   double now = os::elapsedTime();
  4676   // Print the header of the output.
  4677   _out->cr();
  4678   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4679   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4680                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4681                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4682                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4683                  HeapRegion::GrainBytes);
  4684   _out->print_cr(G1PPRL_LINE_PREFIX);
  4685   _out->print_cr(G1PPRL_LINE_PREFIX
  4686                 G1PPRL_TYPE_H_FORMAT
  4687                 G1PPRL_ADDR_BASE_H_FORMAT
  4688                 G1PPRL_BYTE_H_FORMAT
  4689                 G1PPRL_BYTE_H_FORMAT
  4690                 G1PPRL_BYTE_H_FORMAT
  4691                 G1PPRL_DOUBLE_H_FORMAT
  4692                 G1PPRL_BYTE_H_FORMAT
  4693                 G1PPRL_BYTE_H_FORMAT,
  4694                 "type", "address-range",
  4695                 "used", "prev-live", "next-live", "gc-eff",
  4696                 "remset", "code-roots");
  4697   _out->print_cr(G1PPRL_LINE_PREFIX
  4698                 G1PPRL_TYPE_H_FORMAT
  4699                 G1PPRL_ADDR_BASE_H_FORMAT
  4700                 G1PPRL_BYTE_H_FORMAT
  4701                 G1PPRL_BYTE_H_FORMAT
  4702                 G1PPRL_BYTE_H_FORMAT
  4703                 G1PPRL_DOUBLE_H_FORMAT
  4704                 G1PPRL_BYTE_H_FORMAT
  4705                 G1PPRL_BYTE_H_FORMAT,
  4706                 "", "",
  4707                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4708                 "(bytes)", "(bytes)");
  4711 // It takes as a parameter a reference to one of the _hum_* fields, it
  4712 // deduces the corresponding value for a region in a humongous region
  4713 // series (either the region size, or what's left if the _hum_* field
  4714 // is < the region size), and updates the _hum_* field accordingly.
  4715 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4716   size_t bytes = 0;
  4717   // The > 0 check is to deal with the prev and next live bytes which
  4718   // could be 0.
  4719   if (*hum_bytes > 0) {
  4720     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4721     *hum_bytes -= bytes;
  4723   return bytes;
  4726 // It deduces the values for a region in a humongous region series
  4727 // from the _hum_* fields and updates those accordingly. It assumes
  4728 // that that _hum_* fields have already been set up from the "starts
  4729 // humongous" region and we visit the regions in address order.
  4730 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4731                                                      size_t* capacity_bytes,
  4732                                                      size_t* prev_live_bytes,
  4733                                                      size_t* next_live_bytes) {
  4734   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4735   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4736   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4737   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4738   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4741 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4742   const char* type       = r->get_type_str();
  4743   HeapWord* bottom       = r->bottom();
  4744   HeapWord* end          = r->end();
  4745   size_t capacity_bytes  = r->capacity();
  4746   size_t used_bytes      = r->used();
  4747   size_t prev_live_bytes = r->live_bytes();
  4748   size_t next_live_bytes = r->next_live_bytes();
  4749   double gc_eff          = r->gc_efficiency();
  4750   size_t remset_bytes    = r->rem_set()->mem_size();
  4751   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4753   if (r->startsHumongous()) {
  4754     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4755            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4756            "they should have been zeroed after the last time we used them");
  4757     // Set up the _hum_* fields.
  4758     _hum_capacity_bytes  = capacity_bytes;
  4759     _hum_used_bytes      = used_bytes;
  4760     _hum_prev_live_bytes = prev_live_bytes;
  4761     _hum_next_live_bytes = next_live_bytes;
  4762     get_hum_bytes(&used_bytes, &capacity_bytes,
  4763                   &prev_live_bytes, &next_live_bytes);
  4764     end = bottom + HeapRegion::GrainWords;
  4765   } else if (r->continuesHumongous()) {
  4766     get_hum_bytes(&used_bytes, &capacity_bytes,
  4767                   &prev_live_bytes, &next_live_bytes);
  4768     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4771   _total_used_bytes      += used_bytes;
  4772   _total_capacity_bytes  += capacity_bytes;
  4773   _total_prev_live_bytes += prev_live_bytes;
  4774   _total_next_live_bytes += next_live_bytes;
  4775   _total_remset_bytes    += remset_bytes;
  4776   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4778   // Print a line for this particular region.
  4779   _out->print_cr(G1PPRL_LINE_PREFIX
  4780                  G1PPRL_TYPE_FORMAT
  4781                  G1PPRL_ADDR_BASE_FORMAT
  4782                  G1PPRL_BYTE_FORMAT
  4783                  G1PPRL_BYTE_FORMAT
  4784                  G1PPRL_BYTE_FORMAT
  4785                  G1PPRL_DOUBLE_FORMAT
  4786                  G1PPRL_BYTE_FORMAT
  4787                  G1PPRL_BYTE_FORMAT,
  4788                  type, p2i(bottom), p2i(end),
  4789                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4790                  remset_bytes, strong_code_roots_bytes);
  4792   return false;
  4795 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4796   // add static memory usages to remembered set sizes
  4797   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4798   // Print the footer of the output.
  4799   _out->print_cr(G1PPRL_LINE_PREFIX);
  4800   _out->print_cr(G1PPRL_LINE_PREFIX
  4801                  " SUMMARY"
  4802                  G1PPRL_SUM_MB_FORMAT("capacity")
  4803                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4804                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4805                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4806                  G1PPRL_SUM_MB_FORMAT("remset")
  4807                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4808                  bytes_to_mb(_total_capacity_bytes),
  4809                  bytes_to_mb(_total_used_bytes),
  4810                  perc(_total_used_bytes, _total_capacity_bytes),
  4811                  bytes_to_mb(_total_prev_live_bytes),
  4812                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4813                  bytes_to_mb(_total_next_live_bytes),
  4814                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4815                  bytes_to_mb(_total_remset_bytes),
  4816                  bytes_to_mb(_total_strong_code_roots_bytes));
  4817   _out->cr();

mercurial