src/share/vm/gc_implementation/g1/concurrentMark.cpp

Thu, 02 Oct 2014 10:55:36 +0200

author
stefank
date
Thu, 02 Oct 2014 10:55:36 +0200
changeset 7333
b12a2a9b05ca
parent 7257
e7d0505c8a30
child 7370
8d27d6113625
permissions
-rw-r--r--

8056240: Investigate increased GC remark time after class unloading changes in CRM Fuse
Reviewed-by: mgerdin, coleenp, bdelsart

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/metadataOnStackMark.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    34 #include "gc_implementation/g1/g1Log.hpp"
    35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    36 #include "gc_implementation/g1/g1RemSet.hpp"
    37 #include "gc_implementation/g1/heapRegion.inline.hpp"
    38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    41 #include "gc_implementation/shared/vmGCOperations.hpp"
    42 #include "gc_implementation/shared/gcTimer.hpp"
    43 #include "gc_implementation/shared/gcTrace.hpp"
    44 #include "gc_implementation/shared/gcTraceTime.hpp"
    45 #include "memory/allocation.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/referencePolicy.hpp"
    48 #include "memory/resourceArea.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/prefetch.inline.hpp"
    53 #include "services/memTracker.hpp"
    55 // Concurrent marking bit map wrapper
    57 CMBitMapRO::CMBitMapRO(int shifter) :
    58   _bm(),
    59   _shifter(shifter) {
    60   _bmStartWord = 0;
    61   _bmWordSize = 0;
    62 }
    64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    65                                                const HeapWord* limit) const {
    66   // First we must round addr *up* to a possible object boundary.
    67   addr = (HeapWord*)align_size_up((intptr_t)addr,
    68                                   HeapWordSize << _shifter);
    69   size_t addrOffset = heapWordToOffset(addr);
    70   if (limit == NULL) {
    71     limit = _bmStartWord + _bmWordSize;
    72   }
    73   size_t limitOffset = heapWordToOffset(limit);
    74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    76   assert(nextAddr >= addr, "get_next_one postcondition");
    77   assert(nextAddr == limit || isMarked(nextAddr),
    78          "get_next_one postcondition");
    79   return nextAddr;
    80 }
    82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    83                                                  const HeapWord* limit) const {
    84   size_t addrOffset = heapWordToOffset(addr);
    85   if (limit == NULL) {
    86     limit = _bmStartWord + _bmWordSize;
    87   }
    88   size_t limitOffset = heapWordToOffset(limit);
    89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    91   assert(nextAddr >= addr, "get_next_one postcondition");
    92   assert(nextAddr == limit || !isMarked(nextAddr),
    93          "get_next_one postcondition");
    94   return nextAddr;
    95 }
    97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    99   return (int) (diff >> _shifter);
   100 }
   102 #ifndef PRODUCT
   103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
   104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   106          "size inconsistency");
   107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
   108          _bmWordSize  == heap_rs.word_size();
   109 }
   110 #endif
   112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   113   _bm.print_on_error(st, prefix);
   114 }
   116 size_t CMBitMap::compute_size(size_t heap_size) {
   117   return heap_size / mark_distance();
   118 }
   120 size_t CMBitMap::mark_distance() {
   121   return MinObjAlignmentInBytes * BitsPerByte;
   122 }
   124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
   125   _bmStartWord = heap.start();
   126   _bmWordSize = heap.word_size();
   128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
   129   _bm.set_size(_bmWordSize >> _shifter);
   131   storage->set_mapping_changed_listener(&_listener);
   132 }
   134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
   135   if (zero_filled) {
   136     return;
   137   }
   138   // We need to clear the bitmap on commit, removing any existing information.
   139   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
   140   _bm->clearRange(mr);
   141 }
   143 // Closure used for clearing the given mark bitmap.
   144 class ClearBitmapHRClosure : public HeapRegionClosure {
   145  private:
   146   ConcurrentMark* _cm;
   147   CMBitMap* _bitmap;
   148   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
   149  public:
   150   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
   151     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
   152   }
   154   virtual bool doHeapRegion(HeapRegion* r) {
   155     size_t const chunk_size_in_words = M / HeapWordSize;
   157     HeapWord* cur = r->bottom();
   158     HeapWord* const end = r->end();
   160     while (cur < end) {
   161       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
   162       _bitmap->clearRange(mr);
   164       cur += chunk_size_in_words;
   166       // Abort iteration if after yielding the marking has been aborted.
   167       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
   168         return true;
   169       }
   170       // Repeat the asserts from before the start of the closure. We will do them
   171       // as asserts here to minimize their overhead on the product. However, we
   172       // will have them as guarantees at the beginning / end of the bitmap
   173       // clearing to get some checking in the product.
   174       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
   175       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
   176     }
   178     return false;
   179   }
   180 };
   182 void CMBitMap::clearAll() {
   183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
   184   G1CollectedHeap::heap()->heap_region_iterate(&cl);
   185   guarantee(cl.complete(), "Must have completed iteration.");
   186   return;
   187 }
   189 void CMBitMap::markRange(MemRegion mr) {
   190   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   191   assert(!mr.is_empty(), "unexpected empty region");
   192   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   193           ((HeapWord *) mr.end())),
   194          "markRange memory region end is not card aligned");
   195   // convert address range into offset range
   196   _bm.at_put_range(heapWordToOffset(mr.start()),
   197                    heapWordToOffset(mr.end()), true);
   198 }
   200 void CMBitMap::clearRange(MemRegion mr) {
   201   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   202   assert(!mr.is_empty(), "unexpected empty region");
   203   // convert address range into offset range
   204   _bm.at_put_range(heapWordToOffset(mr.start()),
   205                    heapWordToOffset(mr.end()), false);
   206 }
   208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   209                                             HeapWord* end_addr) {
   210   HeapWord* start = getNextMarkedWordAddress(addr);
   211   start = MIN2(start, end_addr);
   212   HeapWord* end   = getNextUnmarkedWordAddress(start);
   213   end = MIN2(end, end_addr);
   214   assert(start <= end, "Consistency check");
   215   MemRegion mr(start, end);
   216   if (!mr.is_empty()) {
   217     clearRange(mr);
   218   }
   219   return mr;
   220 }
   222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   223   _base(NULL), _cm(cm)
   224 #ifdef ASSERT
   225   , _drain_in_progress(false)
   226   , _drain_in_progress_yields(false)
   227 #endif
   228 {}
   230 bool CMMarkStack::allocate(size_t capacity) {
   231   // allocate a stack of the requisite depth
   232   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   233   if (!rs.is_reserved()) {
   234     warning("ConcurrentMark MarkStack allocation failure");
   235     return false;
   236   }
   237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   238   if (!_virtual_space.initialize(rs, rs.size())) {
   239     warning("ConcurrentMark MarkStack backing store failure");
   240     // Release the virtual memory reserved for the marking stack
   241     rs.release();
   242     return false;
   243   }
   244   assert(_virtual_space.committed_size() == rs.size(),
   245          "Didn't reserve backing store for all of ConcurrentMark stack?");
   246   _base = (oop*) _virtual_space.low();
   247   setEmpty();
   248   _capacity = (jint) capacity;
   249   _saved_index = -1;
   250   _should_expand = false;
   251   NOT_PRODUCT(_max_depth = 0);
   252   return true;
   253 }
   255 void CMMarkStack::expand() {
   256   // Called, during remark, if we've overflown the marking stack during marking.
   257   assert(isEmpty(), "stack should been emptied while handling overflow");
   258   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   259   // Clear expansion flag
   260   _should_expand = false;
   261   if (_capacity == (jint) MarkStackSizeMax) {
   262     if (PrintGCDetails && Verbose) {
   263       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   264     }
   265     return;
   266   }
   267   // Double capacity if possible
   268   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   269   // Do not give up existing stack until we have managed to
   270   // get the double capacity that we desired.
   271   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   272                                                            sizeof(oop)));
   273   if (rs.is_reserved()) {
   274     // Release the backing store associated with old stack
   275     _virtual_space.release();
   276     // Reinitialize virtual space for new stack
   277     if (!_virtual_space.initialize(rs, rs.size())) {
   278       fatal("Not enough swap for expanded marking stack capacity");
   279     }
   280     _base = (oop*)(_virtual_space.low());
   281     _index = 0;
   282     _capacity = new_capacity;
   283   } else {
   284     if (PrintGCDetails && Verbose) {
   285       // Failed to double capacity, continue;
   286       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   287                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   288                           _capacity / K, new_capacity / K);
   289     }
   290   }
   291 }
   293 void CMMarkStack::set_should_expand() {
   294   // If we're resetting the marking state because of an
   295   // marking stack overflow, record that we should, if
   296   // possible, expand the stack.
   297   _should_expand = _cm->has_overflown();
   298 }
   300 CMMarkStack::~CMMarkStack() {
   301   if (_base != NULL) {
   302     _base = NULL;
   303     _virtual_space.release();
   304   }
   305 }
   307 void CMMarkStack::par_push(oop ptr) {
   308   while (true) {
   309     if (isFull()) {
   310       _overflow = true;
   311       return;
   312     }
   313     // Otherwise...
   314     jint index = _index;
   315     jint next_index = index+1;
   316     jint res = Atomic::cmpxchg(next_index, &_index, index);
   317     if (res == index) {
   318       _base[index] = ptr;
   319       // Note that we don't maintain this atomically.  We could, but it
   320       // doesn't seem necessary.
   321       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   322       return;
   323     }
   324     // Otherwise, we need to try again.
   325   }
   326 }
   328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   329   while (true) {
   330     if (isFull()) {
   331       _overflow = true;
   332       return;
   333     }
   334     // Otherwise...
   335     jint index = _index;
   336     jint next_index = index + n;
   337     if (next_index > _capacity) {
   338       _overflow = true;
   339       return;
   340     }
   341     jint res = Atomic::cmpxchg(next_index, &_index, index);
   342     if (res == index) {
   343       for (int i = 0; i < n; i++) {
   344         int  ind = index + i;
   345         assert(ind < _capacity, "By overflow test above.");
   346         _base[ind] = ptr_arr[i];
   347       }
   348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   349       return;
   350     }
   351     // Otherwise, we need to try again.
   352   }
   353 }
   355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   356   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   357   jint start = _index;
   358   jint next_index = start + n;
   359   if (next_index > _capacity) {
   360     _overflow = true;
   361     return;
   362   }
   363   // Otherwise.
   364   _index = next_index;
   365   for (int i = 0; i < n; i++) {
   366     int ind = start + i;
   367     assert(ind < _capacity, "By overflow test above.");
   368     _base[ind] = ptr_arr[i];
   369   }
   370   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   371 }
   373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   374   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   375   jint index = _index;
   376   if (index == 0) {
   377     *n = 0;
   378     return false;
   379   } else {
   380     int k = MIN2(max, index);
   381     jint  new_ind = index - k;
   382     for (int j = 0; j < k; j++) {
   383       ptr_arr[j] = _base[new_ind + j];
   384     }
   385     _index = new_ind;
   386     *n = k;
   387     return true;
   388   }
   389 }
   391 template<class OopClosureClass>
   392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   393   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   394          || SafepointSynchronize::is_at_safepoint(),
   395          "Drain recursion must be yield-safe.");
   396   bool res = true;
   397   debug_only(_drain_in_progress = true);
   398   debug_only(_drain_in_progress_yields = yield_after);
   399   while (!isEmpty()) {
   400     oop newOop = pop();
   401     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   402     assert(newOop->is_oop(), "Expected an oop");
   403     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   404            "only grey objects on this stack");
   405     newOop->oop_iterate(cl);
   406     if (yield_after && _cm->do_yield_check()) {
   407       res = false;
   408       break;
   409     }
   410   }
   411   debug_only(_drain_in_progress = false);
   412   return res;
   413 }
   415 void CMMarkStack::note_start_of_gc() {
   416   assert(_saved_index == -1,
   417          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   418   _saved_index = _index;
   419 }
   421 void CMMarkStack::note_end_of_gc() {
   422   // This is intentionally a guarantee, instead of an assert. If we
   423   // accidentally add something to the mark stack during GC, it
   424   // will be a correctness issue so it's better if we crash. we'll
   425   // only check this once per GC anyway, so it won't be a performance
   426   // issue in any way.
   427   guarantee(_saved_index == _index,
   428             err_msg("saved index: %d index: %d", _saved_index, _index));
   429   _saved_index = -1;
   430 }
   432 void CMMarkStack::oops_do(OopClosure* f) {
   433   assert(_saved_index == _index,
   434          err_msg("saved index: %d index: %d", _saved_index, _index));
   435   for (int i = 0; i < _index; i += 1) {
   436     f->do_oop(&_base[i]);
   437   }
   438 }
   440 CMRootRegions::CMRootRegions() :
   441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   442   _should_abort(false),  _next_survivor(NULL) { }
   444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   445   _young_list = g1h->young_list();
   446   _cm = cm;
   447 }
   449 void CMRootRegions::prepare_for_scan() {
   450   assert(!scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   assert(_next_survivor == NULL, "pre-condition");
   454   _next_survivor = _young_list->first_survivor_region();
   455   _scan_in_progress = (_next_survivor != NULL);
   456   _should_abort = false;
   457 }
   459 HeapRegion* CMRootRegions::claim_next() {
   460   if (_should_abort) {
   461     // If someone has set the should_abort flag, we return NULL to
   462     // force the caller to bail out of their loop.
   463     return NULL;
   464   }
   466   // Currently, only survivors can be root regions.
   467   HeapRegion* res = _next_survivor;
   468   if (res != NULL) {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     // Read it again in case it changed while we were waiting for the lock.
   471     res = _next_survivor;
   472     if (res != NULL) {
   473       if (res == _young_list->last_survivor_region()) {
   474         // We just claimed the last survivor so store NULL to indicate
   475         // that we're done.
   476         _next_survivor = NULL;
   477       } else {
   478         _next_survivor = res->get_next_young_region();
   479       }
   480     } else {
   481       // Someone else claimed the last survivor while we were trying
   482       // to take the lock so nothing else to do.
   483     }
   484   }
   485   assert(res == NULL || res->is_survivor(), "post-condition");
   487   return res;
   488 }
   490 void CMRootRegions::scan_finished() {
   491   assert(scan_in_progress(), "pre-condition");
   493   // Currently, only survivors can be root regions.
   494   if (!_should_abort) {
   495     assert(_next_survivor == NULL, "we should have claimed all survivors");
   496   }
   497   _next_survivor = NULL;
   499   {
   500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   501     _scan_in_progress = false;
   502     RootRegionScan_lock->notify_all();
   503   }
   504 }
   506 bool CMRootRegions::wait_until_scan_finished() {
   507   if (!scan_in_progress()) return false;
   509   {
   510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   511     while (scan_in_progress()) {
   512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   513     }
   514   }
   515   return true;
   516 }
   518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   520 #endif // _MSC_VER
   522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   523   return MAX2((n_par_threads + 2) / 4, 1U);
   524 }
   526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
   527   _g1h(g1h),
   528   _markBitMap1(),
   529   _markBitMap2(),
   530   _parallel_marking_threads(0),
   531   _max_parallel_marking_threads(0),
   532   _sleep_factor(0.0),
   533   _marking_task_overhead(1.0),
   534   _cleanup_sleep_factor(0.0),
   535   _cleanup_task_overhead(1.0),
   536   _cleanup_list("Cleanup List"),
   537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
   539             CardTableModRefBS::card_shift,
   540             false /* in_resource_area*/),
   542   _prevMarkBitMap(&_markBitMap1),
   543   _nextMarkBitMap(&_markBitMap2),
   545   _markStack(this),
   546   // _finger set in set_non_marking_state
   548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   549   // _active_tasks set in set_non_marking_state
   550   // _tasks set inside the constructor
   551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   554   _has_overflown(false),
   555   _concurrent(false),
   556   _has_aborted(false),
   557   _aborted_gc_id(GCId::undefined()),
   558   _restart_for_overflow(false),
   559   _concurrent_marking_in_progress(false),
   561   // _verbose_level set below
   563   _init_times(),
   564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   565   _cleanup_times(),
   566   _total_counting_time(0.0),
   567   _total_rs_scrub_time(0.0),
   569   _parallel_workers(NULL),
   571   _count_card_bitmaps(NULL),
   572   _count_marked_bytes(NULL),
   573   _completed_initialization(false) {
   574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   575   if (verbose_level < no_verbose) {
   576     verbose_level = no_verbose;
   577   }
   578   if (verbose_level > high_verbose) {
   579     verbose_level = high_verbose;
   580   }
   581   _verbose_level = verbose_level;
   583   if (verbose_low()) {
   584     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   585                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   586   }
   588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
   589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
   591   // Create & start a ConcurrentMark thread.
   592   _cmThread = new ConcurrentMarkThread(this);
   593   assert(cmThread() != NULL, "CM Thread should have been created");
   594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   595   if (_cmThread->osthread() == NULL) {
   596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   597   }
   599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
   601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
   603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   604   satb_qs.set_buffer_size(G1SATBBufferSize);
   606   _root_regions.init(_g1h, this);
   608   if (ConcGCThreads > ParallelGCThreads) {
   609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   610             "than ParallelGCThreads (" UINTX_FORMAT ").",
   611             ConcGCThreads, ParallelGCThreads);
   612     return;
   613   }
   614   if (ParallelGCThreads == 0) {
   615     // if we are not running with any parallel GC threads we will not
   616     // spawn any marking threads either
   617     _parallel_marking_threads =       0;
   618     _max_parallel_marking_threads =   0;
   619     _sleep_factor             =     0.0;
   620     _marking_task_overhead    =     1.0;
   621   } else {
   622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   624       // if both are set
   625       _sleep_factor             = 0.0;
   626       _marking_task_overhead    = 1.0;
   627     } else if (G1MarkingOverheadPercent > 0) {
   628       // We will calculate the number of parallel marking threads based
   629       // on a target overhead with respect to the soft real-time goal
   630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   631       double overall_cm_overhead =
   632         (double) MaxGCPauseMillis * marking_overhead /
   633         (double) GCPauseIntervalMillis;
   634       double cpu_ratio = 1.0 / (double) os::processor_count();
   635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   636       double marking_task_overhead =
   637         overall_cm_overhead / marking_thread_num *
   638                                                 (double) os::processor_count();
   639       double sleep_factor =
   640                          (1.0 - marking_task_overhead) / marking_task_overhead;
   642       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   643       _sleep_factor             = sleep_factor;
   644       _marking_task_overhead    = marking_task_overhead;
   645     } else {
   646       // Calculate the number of parallel marking threads by scaling
   647       // the number of parallel GC threads.
   648       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   649       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   650       _sleep_factor             = 0.0;
   651       _marking_task_overhead    = 1.0;
   652     }
   654     assert(ConcGCThreads > 0, "Should have been set");
   655     _parallel_marking_threads = (uint) ConcGCThreads;
   656     _max_parallel_marking_threads = _parallel_marking_threads;
   658     if (parallel_marking_threads() > 1) {
   659       _cleanup_task_overhead = 1.0;
   660     } else {
   661       _cleanup_task_overhead = marking_task_overhead();
   662     }
   663     _cleanup_sleep_factor =
   664                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   666 #if 0
   667     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   668     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   669     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   670     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   671     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   672 #endif
   674     guarantee(parallel_marking_threads() > 0, "peace of mind");
   675     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   676          _max_parallel_marking_threads, false, true);
   677     if (_parallel_workers == NULL) {
   678       vm_exit_during_initialization("Failed necessary allocation.");
   679     } else {
   680       _parallel_workers->initialize_workers();
   681     }
   682   }
   684   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   685     uintx mark_stack_size =
   686       MIN2(MarkStackSizeMax,
   687           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   688     // Verify that the calculated value for MarkStackSize is in range.
   689     // It would be nice to use the private utility routine from Arguments.
   690     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   691       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   692               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   693               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   694       return;
   695     }
   696     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   697   } else {
   698     // Verify MarkStackSize is in range.
   699     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   700       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   701         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   702           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   703                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   704                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   705           return;
   706         }
   707       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   708         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   709           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   710                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   711                   MarkStackSize, MarkStackSizeMax);
   712           return;
   713         }
   714       }
   715     }
   716   }
   718   if (!_markStack.allocate(MarkStackSize)) {
   719     warning("Failed to allocate CM marking stack");
   720     return;
   721   }
   723   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   724   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   726   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   727   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   729   BitMap::idx_t card_bm_size = _card_bm.size();
   731   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   732   _active_tasks = _max_worker_id;
   734   size_t max_regions = (size_t) _g1h->max_regions();
   735   for (uint i = 0; i < _max_worker_id; ++i) {
   736     CMTaskQueue* task_queue = new CMTaskQueue();
   737     task_queue->initialize();
   738     _task_queues->register_queue(i, task_queue);
   740     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   741     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   743     _tasks[i] = new CMTask(i, this,
   744                            _count_marked_bytes[i],
   745                            &_count_card_bitmaps[i],
   746                            task_queue, _task_queues);
   748     _accum_task_vtime[i] = 0.0;
   749   }
   751   // Calculate the card number for the bottom of the heap. Used
   752   // in biasing indexes into the accounting card bitmaps.
   753   _heap_bottom_card_num =
   754     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   755                                 CardTableModRefBS::card_shift);
   757   // Clear all the liveness counting data
   758   clear_all_count_data();
   760   // so that the call below can read a sensible value
   761   _heap_start = g1h->reserved_region().start();
   762   set_non_marking_state();
   763   _completed_initialization = true;
   764 }
   766 void ConcurrentMark::reset() {
   767   // Starting values for these two. This should be called in a STW
   768   // phase.
   769   MemRegion reserved = _g1h->g1_reserved();
   770   _heap_start = reserved.start();
   771   _heap_end   = reserved.end();
   773   // Separated the asserts so that we know which one fires.
   774   assert(_heap_start != NULL, "heap bounds should look ok");
   775   assert(_heap_end != NULL, "heap bounds should look ok");
   776   assert(_heap_start < _heap_end, "heap bounds should look ok");
   778   // Reset all the marking data structures and any necessary flags
   779   reset_marking_state();
   781   if (verbose_low()) {
   782     gclog_or_tty->print_cr("[global] resetting");
   783   }
   785   // We do reset all of them, since different phases will use
   786   // different number of active threads. So, it's easiest to have all
   787   // of them ready.
   788   for (uint i = 0; i < _max_worker_id; ++i) {
   789     _tasks[i]->reset(_nextMarkBitMap);
   790   }
   792   // we need this to make sure that the flag is on during the evac
   793   // pause with initial mark piggy-backed
   794   set_concurrent_marking_in_progress();
   795 }
   798 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   799   _markStack.set_should_expand();
   800   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   801   if (clear_overflow) {
   802     clear_has_overflown();
   803   } else {
   804     assert(has_overflown(), "pre-condition");
   805   }
   806   _finger = _heap_start;
   808   for (uint i = 0; i < _max_worker_id; ++i) {
   809     CMTaskQueue* queue = _task_queues->queue(i);
   810     queue->set_empty();
   811   }
   812 }
   814 void ConcurrentMark::set_concurrency(uint active_tasks) {
   815   assert(active_tasks <= _max_worker_id, "we should not have more");
   817   _active_tasks = active_tasks;
   818   // Need to update the three data structures below according to the
   819   // number of active threads for this phase.
   820   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   821   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   822   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   823 }
   825 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   826   set_concurrency(active_tasks);
   828   _concurrent = concurrent;
   829   // We propagate this to all tasks, not just the active ones.
   830   for (uint i = 0; i < _max_worker_id; ++i)
   831     _tasks[i]->set_concurrent(concurrent);
   833   if (concurrent) {
   834     set_concurrent_marking_in_progress();
   835   } else {
   836     // We currently assume that the concurrent flag has been set to
   837     // false before we start remark. At this point we should also be
   838     // in a STW phase.
   839     assert(!concurrent_marking_in_progress(), "invariant");
   840     assert(out_of_regions(),
   841            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   842                    p2i(_finger), p2i(_heap_end)));
   843   }
   844 }
   846 void ConcurrentMark::set_non_marking_state() {
   847   // We set the global marking state to some default values when we're
   848   // not doing marking.
   849   reset_marking_state();
   850   _active_tasks = 0;
   851   clear_concurrent_marking_in_progress();
   852 }
   854 ConcurrentMark::~ConcurrentMark() {
   855   // The ConcurrentMark instance is never freed.
   856   ShouldNotReachHere();
   857 }
   859 void ConcurrentMark::clearNextBitmap() {
   860   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   862   // Make sure that the concurrent mark thread looks to still be in
   863   // the current cycle.
   864   guarantee(cmThread()->during_cycle(), "invariant");
   866   // We are finishing up the current cycle by clearing the next
   867   // marking bitmap and getting it ready for the next cycle. During
   868   // this time no other cycle can start. So, let's make sure that this
   869   // is the case.
   870   guarantee(!g1h->mark_in_progress(), "invariant");
   872   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
   873   g1h->heap_region_iterate(&cl);
   875   // Clear the liveness counting data. If the marking has been aborted, the abort()
   876   // call already did that.
   877   if (cl.complete()) {
   878     clear_all_count_data();
   879   }
   881   // Repeat the asserts from above.
   882   guarantee(cmThread()->during_cycle(), "invariant");
   883   guarantee(!g1h->mark_in_progress(), "invariant");
   884 }
   886 class CheckBitmapClearHRClosure : public HeapRegionClosure {
   887   CMBitMap* _bitmap;
   888   bool _error;
   889  public:
   890   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
   891   }
   893   virtual bool doHeapRegion(HeapRegion* r) {
   894     // This closure can be called concurrently to the mutator, so we must make sure
   895     // that the result of the getNextMarkedWordAddress() call is compared to the
   896     // value passed to it as limit to detect any found bits.
   897     // We can use the region's orig_end() for the limit and the comparison value
   898     // as it always contains the "real" end of the region that never changes and
   899     // has no side effects.
   900     // Due to the latter, there can also be no problem with the compiler generating
   901     // reloads of the orig_end() call.
   902     HeapWord* end = r->orig_end();
   903     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
   904   }
   905 };
   907 bool ConcurrentMark::nextMarkBitmapIsClear() {
   908   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
   909   _g1h->heap_region_iterate(&cl);
   910   return cl.complete();
   911 }
   913 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   914 public:
   915   bool doHeapRegion(HeapRegion* r) {
   916     if (!r->continuesHumongous()) {
   917       r->note_start_of_marking();
   918     }
   919     return false;
   920   }
   921 };
   923 void ConcurrentMark::checkpointRootsInitialPre() {
   924   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   925   G1CollectorPolicy* g1p = g1h->g1_policy();
   927   _has_aborted = false;
   929 #ifndef PRODUCT
   930   if (G1PrintReachableAtInitialMark) {
   931     print_reachable("at-cycle-start",
   932                     VerifyOption_G1UsePrevMarking, true /* all */);
   933   }
   934 #endif
   936   // Initialise marking structures. This has to be done in a STW phase.
   937   reset();
   939   // For each region note start of marking.
   940   NoteStartOfMarkHRClosure startcl;
   941   g1h->heap_region_iterate(&startcl);
   942 }
   945 void ConcurrentMark::checkpointRootsInitialPost() {
   946   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   948   // If we force an overflow during remark, the remark operation will
   949   // actually abort and we'll restart concurrent marking. If we always
   950   // force an oveflow during remark we'll never actually complete the
   951   // marking phase. So, we initilize this here, at the start of the
   952   // cycle, so that at the remaining overflow number will decrease at
   953   // every remark and we'll eventually not need to cause one.
   954   force_overflow_stw()->init();
   956   // Start Concurrent Marking weak-reference discovery.
   957   ReferenceProcessor* rp = g1h->ref_processor_cm();
   958   // enable ("weak") refs discovery
   959   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   960   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   962   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   963   // This is the start of  the marking cycle, we're expected all
   964   // threads to have SATB queues with active set to false.
   965   satb_mq_set.set_active_all_threads(true, /* new active value */
   966                                      false /* expected_active */);
   968   _root_regions.prepare_for_scan();
   970   // update_g1_committed() will be called at the end of an evac pause
   971   // when marking is on. So, it's also called at the end of the
   972   // initial-mark pause to update the heap end, if the heap expands
   973   // during it. No need to call it here.
   974 }
   976 /*
   977  * Notice that in the next two methods, we actually leave the STS
   978  * during the barrier sync and join it immediately afterwards. If we
   979  * do not do this, the following deadlock can occur: one thread could
   980  * be in the barrier sync code, waiting for the other thread to also
   981  * sync up, whereas another one could be trying to yield, while also
   982  * waiting for the other threads to sync up too.
   983  *
   984  * Note, however, that this code is also used during remark and in
   985  * this case we should not attempt to leave / enter the STS, otherwise
   986  * we'll either hit an asseert (debug / fastdebug) or deadlock
   987  * (product). So we should only leave / enter the STS if we are
   988  * operating concurrently.
   989  *
   990  * Because the thread that does the sync barrier has left the STS, it
   991  * is possible to be suspended for a Full GC or an evacuation pause
   992  * could occur. This is actually safe, since the entering the sync
   993  * barrier is one of the last things do_marking_step() does, and it
   994  * doesn't manipulate any data structures afterwards.
   995  */
   997 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   998   if (verbose_low()) {
   999     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
  1002   if (concurrent()) {
  1003     SuspendibleThreadSet::leave();
  1006   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
  1008   if (concurrent()) {
  1009     SuspendibleThreadSet::join();
  1011   // at this point everyone should have synced up and not be doing any
  1012   // more work
  1014   if (verbose_low()) {
  1015     if (barrier_aborted) {
  1016       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
  1017     } else {
  1018       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
  1022   if (barrier_aborted) {
  1023     // If the barrier aborted we ignore the overflow condition and
  1024     // just abort the whole marking phase as quickly as possible.
  1025     return;
  1028   // If we're executing the concurrent phase of marking, reset the marking
  1029   // state; otherwise the marking state is reset after reference processing,
  1030   // during the remark pause.
  1031   // If we reset here as a result of an overflow during the remark we will
  1032   // see assertion failures from any subsequent set_concurrency_and_phase()
  1033   // calls.
  1034   if (concurrent()) {
  1035     // let the task associated with with worker 0 do this
  1036     if (worker_id == 0) {
  1037       // task 0 is responsible for clearing the global data structures
  1038       // We should be here because of an overflow. During STW we should
  1039       // not clear the overflow flag since we rely on it being true when
  1040       // we exit this method to abort the pause and restart concurent
  1041       // marking.
  1042       reset_marking_state(true /* clear_overflow */);
  1043       force_overflow()->update();
  1045       if (G1Log::fine()) {
  1046         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1047         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1052   // after this, each task should reset its own data structures then
  1053   // then go into the second barrier
  1056 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1057   if (verbose_low()) {
  1058     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1061   if (concurrent()) {
  1062     SuspendibleThreadSet::leave();
  1065   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1067   if (concurrent()) {
  1068     SuspendibleThreadSet::join();
  1070   // at this point everything should be re-initialized and ready to go
  1072   if (verbose_low()) {
  1073     if (barrier_aborted) {
  1074       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1075     } else {
  1076       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1081 #ifndef PRODUCT
  1082 void ForceOverflowSettings::init() {
  1083   _num_remaining = G1ConcMarkForceOverflow;
  1084   _force = false;
  1085   update();
  1088 void ForceOverflowSettings::update() {
  1089   if (_num_remaining > 0) {
  1090     _num_remaining -= 1;
  1091     _force = true;
  1092   } else {
  1093     _force = false;
  1097 bool ForceOverflowSettings::should_force() {
  1098   if (_force) {
  1099     _force = false;
  1100     return true;
  1101   } else {
  1102     return false;
  1105 #endif // !PRODUCT
  1107 class CMConcurrentMarkingTask: public AbstractGangTask {
  1108 private:
  1109   ConcurrentMark*       _cm;
  1110   ConcurrentMarkThread* _cmt;
  1112 public:
  1113   void work(uint worker_id) {
  1114     assert(Thread::current()->is_ConcurrentGC_thread(),
  1115            "this should only be done by a conc GC thread");
  1116     ResourceMark rm;
  1118     double start_vtime = os::elapsedVTime();
  1120     SuspendibleThreadSet::join();
  1122     assert(worker_id < _cm->active_tasks(), "invariant");
  1123     CMTask* the_task = _cm->task(worker_id);
  1124     the_task->record_start_time();
  1125     if (!_cm->has_aborted()) {
  1126       do {
  1127         double start_vtime_sec = os::elapsedVTime();
  1128         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1130         the_task->do_marking_step(mark_step_duration_ms,
  1131                                   true  /* do_termination */,
  1132                                   false /* is_serial*/);
  1134         double end_vtime_sec = os::elapsedVTime();
  1135         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1136         _cm->clear_has_overflown();
  1138         _cm->do_yield_check(worker_id);
  1140         jlong sleep_time_ms;
  1141         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1142           sleep_time_ms =
  1143             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1144           SuspendibleThreadSet::leave();
  1145           os::sleep(Thread::current(), sleep_time_ms, false);
  1146           SuspendibleThreadSet::join();
  1148       } while (!_cm->has_aborted() && the_task->has_aborted());
  1150     the_task->record_end_time();
  1151     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1153     SuspendibleThreadSet::leave();
  1155     double end_vtime = os::elapsedVTime();
  1156     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1159   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1160                           ConcurrentMarkThread* cmt) :
  1161       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1163   ~CMConcurrentMarkingTask() { }
  1164 };
  1166 // Calculates the number of active workers for a concurrent
  1167 // phase.
  1168 uint ConcurrentMark::calc_parallel_marking_threads() {
  1169   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1170     uint n_conc_workers = 0;
  1171     if (!UseDynamicNumberOfGCThreads ||
  1172         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1173          !ForceDynamicNumberOfGCThreads)) {
  1174       n_conc_workers = max_parallel_marking_threads();
  1175     } else {
  1176       n_conc_workers =
  1177         AdaptiveSizePolicy::calc_default_active_workers(
  1178                                      max_parallel_marking_threads(),
  1179                                      1, /* Minimum workers */
  1180                                      parallel_marking_threads(),
  1181                                      Threads::number_of_non_daemon_threads());
  1182       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1183       // that scaling has already gone into "_max_parallel_marking_threads".
  1185     assert(n_conc_workers > 0, "Always need at least 1");
  1186     return n_conc_workers;
  1188   // If we are not running with any parallel GC threads we will not
  1189   // have spawned any marking threads either. Hence the number of
  1190   // concurrent workers should be 0.
  1191   return 0;
  1194 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1195   // Currently, only survivors can be root regions.
  1196   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1197   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1199   const uintx interval = PrefetchScanIntervalInBytes;
  1200   HeapWord* curr = hr->bottom();
  1201   const HeapWord* end = hr->top();
  1202   while (curr < end) {
  1203     Prefetch::read(curr, interval);
  1204     oop obj = oop(curr);
  1205     int size = obj->oop_iterate(&cl);
  1206     assert(size == obj->size(), "sanity");
  1207     curr += size;
  1211 class CMRootRegionScanTask : public AbstractGangTask {
  1212 private:
  1213   ConcurrentMark* _cm;
  1215 public:
  1216   CMRootRegionScanTask(ConcurrentMark* cm) :
  1217     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1219   void work(uint worker_id) {
  1220     assert(Thread::current()->is_ConcurrentGC_thread(),
  1221            "this should only be done by a conc GC thread");
  1223     CMRootRegions* root_regions = _cm->root_regions();
  1224     HeapRegion* hr = root_regions->claim_next();
  1225     while (hr != NULL) {
  1226       _cm->scanRootRegion(hr, worker_id);
  1227       hr = root_regions->claim_next();
  1230 };
  1232 void ConcurrentMark::scanRootRegions() {
  1233   // Start of concurrent marking.
  1234   ClassLoaderDataGraph::clear_claimed_marks();
  1236   // scan_in_progress() will have been set to true only if there was
  1237   // at least one root region to scan. So, if it's false, we
  1238   // should not attempt to do any further work.
  1239   if (root_regions()->scan_in_progress()) {
  1240     _parallel_marking_threads = calc_parallel_marking_threads();
  1241     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1242            "Maximum number of marking threads exceeded");
  1243     uint active_workers = MAX2(1U, parallel_marking_threads());
  1245     CMRootRegionScanTask task(this);
  1246     if (use_parallel_marking_threads()) {
  1247       _parallel_workers->set_active_workers((int) active_workers);
  1248       _parallel_workers->run_task(&task);
  1249     } else {
  1250       task.work(0);
  1253     // It's possible that has_aborted() is true here without actually
  1254     // aborting the survivor scan earlier. This is OK as it's
  1255     // mainly used for sanity checking.
  1256     root_regions()->scan_finished();
  1260 void ConcurrentMark::markFromRoots() {
  1261   // we might be tempted to assert that:
  1262   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1263   //        "inconsistent argument?");
  1264   // However that wouldn't be right, because it's possible that
  1265   // a safepoint is indeed in progress as a younger generation
  1266   // stop-the-world GC happens even as we mark in this generation.
  1268   _restart_for_overflow = false;
  1269   force_overflow_conc()->init();
  1271   // _g1h has _n_par_threads
  1272   _parallel_marking_threads = calc_parallel_marking_threads();
  1273   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1274     "Maximum number of marking threads exceeded");
  1276   uint active_workers = MAX2(1U, parallel_marking_threads());
  1278   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1279   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1281   CMConcurrentMarkingTask markingTask(this, cmThread());
  1282   if (use_parallel_marking_threads()) {
  1283     _parallel_workers->set_active_workers((int)active_workers);
  1284     // Don't set _n_par_threads because it affects MT in process_roots()
  1285     // and the decisions on that MT processing is made elsewhere.
  1286     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1287     _parallel_workers->run_task(&markingTask);
  1288   } else {
  1289     markingTask.work(0);
  1291   print_stats();
  1294 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1295   // world is stopped at this checkpoint
  1296   assert(SafepointSynchronize::is_at_safepoint(),
  1297          "world should be stopped");
  1299   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1301   // If a full collection has happened, we shouldn't do this.
  1302   if (has_aborted()) {
  1303     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1304     return;
  1307   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1309   if (VerifyDuringGC) {
  1310     HandleMark hm;  // handle scope
  1311     Universe::heap()->prepare_for_verify();
  1312     Universe::verify(VerifyOption_G1UsePrevMarking,
  1313                      " VerifyDuringGC:(before)");
  1315   g1h->check_bitmaps("Remark Start");
  1317   G1CollectorPolicy* g1p = g1h->g1_policy();
  1318   g1p->record_concurrent_mark_remark_start();
  1320   double start = os::elapsedTime();
  1322   checkpointRootsFinalWork();
  1324   double mark_work_end = os::elapsedTime();
  1326   weakRefsWork(clear_all_soft_refs);
  1328   if (has_overflown()) {
  1329     // Oops.  We overflowed.  Restart concurrent marking.
  1330     _restart_for_overflow = true;
  1331     if (G1TraceMarkStackOverflow) {
  1332       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1335     // Verify the heap w.r.t. the previous marking bitmap.
  1336     if (VerifyDuringGC) {
  1337       HandleMark hm;  // handle scope
  1338       Universe::heap()->prepare_for_verify();
  1339       Universe::verify(VerifyOption_G1UsePrevMarking,
  1340                        " VerifyDuringGC:(overflow)");
  1343     // Clear the marking state because we will be restarting
  1344     // marking due to overflowing the global mark stack.
  1345     reset_marking_state();
  1346   } else {
  1347     // Aggregate the per-task counting data that we have accumulated
  1348     // while marking.
  1349     aggregate_count_data();
  1351     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1352     // We're done with marking.
  1353     // This is the end of  the marking cycle, we're expected all
  1354     // threads to have SATB queues with active set to true.
  1355     satb_mq_set.set_active_all_threads(false, /* new active value */
  1356                                        true /* expected_active */);
  1358     if (VerifyDuringGC) {
  1359       HandleMark hm;  // handle scope
  1360       Universe::heap()->prepare_for_verify();
  1361       Universe::verify(VerifyOption_G1UseNextMarking,
  1362                        " VerifyDuringGC:(after)");
  1364     g1h->check_bitmaps("Remark End");
  1365     assert(!restart_for_overflow(), "sanity");
  1366     // Completely reset the marking state since marking completed
  1367     set_non_marking_state();
  1370   // Expand the marking stack, if we have to and if we can.
  1371   if (_markStack.should_expand()) {
  1372     _markStack.expand();
  1375   // Statistics
  1376   double now = os::elapsedTime();
  1377   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1378   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1379   _remark_times.add((now - start) * 1000.0);
  1381   g1p->record_concurrent_mark_remark_end();
  1383   G1CMIsAliveClosure is_alive(g1h);
  1384   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1387 // Base class of the closures that finalize and verify the
  1388 // liveness counting data.
  1389 class CMCountDataClosureBase: public HeapRegionClosure {
  1390 protected:
  1391   G1CollectedHeap* _g1h;
  1392   ConcurrentMark* _cm;
  1393   CardTableModRefBS* _ct_bs;
  1395   BitMap* _region_bm;
  1396   BitMap* _card_bm;
  1398   // Takes a region that's not empty (i.e., it has at least one
  1399   // live object in it and sets its corresponding bit on the region
  1400   // bitmap to 1. If the region is "starts humongous" it will also set
  1401   // to 1 the bits on the region bitmap that correspond to its
  1402   // associated "continues humongous" regions.
  1403   void set_bit_for_region(HeapRegion* hr) {
  1404     assert(!hr->continuesHumongous(), "should have filtered those out");
  1406     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1407     if (!hr->startsHumongous()) {
  1408       // Normal (non-humongous) case: just set the bit.
  1409       _region_bm->par_at_put(index, true);
  1410     } else {
  1411       // Starts humongous case: calculate how many regions are part of
  1412       // this humongous region and then set the bit range.
  1413       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1414       _region_bm->par_at_put_range(index, end_index, true);
  1418 public:
  1419   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1420                          BitMap* region_bm, BitMap* card_bm):
  1421     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1422     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1423     _region_bm(region_bm), _card_bm(card_bm) { }
  1424 };
  1426 // Closure that calculates the # live objects per region. Used
  1427 // for verification purposes during the cleanup pause.
  1428 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1429   CMBitMapRO* _bm;
  1430   size_t _region_marked_bytes;
  1432 public:
  1433   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1434                          BitMap* region_bm, BitMap* card_bm) :
  1435     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1436     _bm(bm), _region_marked_bytes(0) { }
  1438   bool doHeapRegion(HeapRegion* hr) {
  1440     if (hr->continuesHumongous()) {
  1441       // We will ignore these here and process them when their
  1442       // associated "starts humongous" region is processed (see
  1443       // set_bit_for_heap_region()). Note that we cannot rely on their
  1444       // associated "starts humongous" region to have their bit set to
  1445       // 1 since, due to the region chunking in the parallel region
  1446       // iteration, a "continues humongous" region might be visited
  1447       // before its associated "starts humongous".
  1448       return false;
  1451     HeapWord* ntams = hr->next_top_at_mark_start();
  1452     HeapWord* start = hr->bottom();
  1454     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1455            err_msg("Preconditions not met - "
  1456                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1457                    p2i(start), p2i(ntams), p2i(hr->end())));
  1459     // Find the first marked object at or after "start".
  1460     start = _bm->getNextMarkedWordAddress(start, ntams);
  1462     size_t marked_bytes = 0;
  1464     while (start < ntams) {
  1465       oop obj = oop(start);
  1466       int obj_sz = obj->size();
  1467       HeapWord* obj_end = start + obj_sz;
  1469       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1470       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1472       // Note: if we're looking at the last region in heap - obj_end
  1473       // could be actually just beyond the end of the heap; end_idx
  1474       // will then correspond to a (non-existent) card that is also
  1475       // just beyond the heap.
  1476       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1477         // end of object is not card aligned - increment to cover
  1478         // all the cards spanned by the object
  1479         end_idx += 1;
  1482       // Set the bits in the card BM for the cards spanned by this object.
  1483       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1485       // Add the size of this object to the number of marked bytes.
  1486       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1488       // Find the next marked object after this one.
  1489       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1492     // Mark the allocated-since-marking portion...
  1493     HeapWord* top = hr->top();
  1494     if (ntams < top) {
  1495       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1496       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1498       // Note: if we're looking at the last region in heap - top
  1499       // could be actually just beyond the end of the heap; end_idx
  1500       // will then correspond to a (non-existent) card that is also
  1501       // just beyond the heap.
  1502       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1503         // end of object is not card aligned - increment to cover
  1504         // all the cards spanned by the object
  1505         end_idx += 1;
  1507       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1509       // This definitely means the region has live objects.
  1510       set_bit_for_region(hr);
  1513     // Update the live region bitmap.
  1514     if (marked_bytes > 0) {
  1515       set_bit_for_region(hr);
  1518     // Set the marked bytes for the current region so that
  1519     // it can be queried by a calling verificiation routine
  1520     _region_marked_bytes = marked_bytes;
  1522     return false;
  1525   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1526 };
  1528 // Heap region closure used for verifying the counting data
  1529 // that was accumulated concurrently and aggregated during
  1530 // the remark pause. This closure is applied to the heap
  1531 // regions during the STW cleanup pause.
  1533 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1534   G1CollectedHeap* _g1h;
  1535   ConcurrentMark* _cm;
  1536   CalcLiveObjectsClosure _calc_cl;
  1537   BitMap* _region_bm;   // Region BM to be verified
  1538   BitMap* _card_bm;     // Card BM to be verified
  1539   bool _verbose;        // verbose output?
  1541   BitMap* _exp_region_bm; // Expected Region BM values
  1542   BitMap* _exp_card_bm;   // Expected card BM values
  1544   int _failures;
  1546 public:
  1547   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1548                                 BitMap* region_bm,
  1549                                 BitMap* card_bm,
  1550                                 BitMap* exp_region_bm,
  1551                                 BitMap* exp_card_bm,
  1552                                 bool verbose) :
  1553     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1554     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1555     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1556     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1557     _failures(0) { }
  1559   int failures() const { return _failures; }
  1561   bool doHeapRegion(HeapRegion* hr) {
  1562     if (hr->continuesHumongous()) {
  1563       // We will ignore these here and process them when their
  1564       // associated "starts humongous" region is processed (see
  1565       // set_bit_for_heap_region()). Note that we cannot rely on their
  1566       // associated "starts humongous" region to have their bit set to
  1567       // 1 since, due to the region chunking in the parallel region
  1568       // iteration, a "continues humongous" region might be visited
  1569       // before its associated "starts humongous".
  1570       return false;
  1573     int failures = 0;
  1575     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1576     // this region and set the corresponding bits in the expected region
  1577     // and card bitmaps.
  1578     bool res = _calc_cl.doHeapRegion(hr);
  1579     assert(res == false, "should be continuing");
  1581     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1582                     Mutex::_no_safepoint_check_flag);
  1584     // Verify the marked bytes for this region.
  1585     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1586     size_t act_marked_bytes = hr->next_marked_bytes();
  1588     // We're not OK if expected marked bytes > actual marked bytes. It means
  1589     // we have missed accounting some objects during the actual marking.
  1590     if (exp_marked_bytes > act_marked_bytes) {
  1591       if (_verbose) {
  1592         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1593                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1594                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
  1596       failures += 1;
  1599     // Verify the bit, for this region, in the actual and expected
  1600     // (which was just calculated) region bit maps.
  1601     // We're not OK if the bit in the calculated expected region
  1602     // bitmap is set and the bit in the actual region bitmap is not.
  1603     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1605     bool expected = _exp_region_bm->at(index);
  1606     bool actual = _region_bm->at(index);
  1607     if (expected && !actual) {
  1608       if (_verbose) {
  1609         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1610                                "expected: %s, actual: %s",
  1611                                hr->hrm_index(),
  1612                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1614       failures += 1;
  1617     // Verify that the card bit maps for the cards spanned by the current
  1618     // region match. We have an error if we have a set bit in the expected
  1619     // bit map and the corresponding bit in the actual bitmap is not set.
  1621     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1622     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1624     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1625       expected = _exp_card_bm->at(i);
  1626       actual = _card_bm->at(i);
  1628       if (expected && !actual) {
  1629         if (_verbose) {
  1630           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1631                                  "expected: %s, actual: %s",
  1632                                  hr->hrm_index(), i,
  1633                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1635         failures += 1;
  1639     if (failures > 0 && _verbose)  {
  1640       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1641                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1642                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1643                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1646     _failures += failures;
  1648     // We could stop iteration over the heap when we
  1649     // find the first violating region by returning true.
  1650     return false;
  1652 };
  1654 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1655 protected:
  1656   G1CollectedHeap* _g1h;
  1657   ConcurrentMark* _cm;
  1658   BitMap* _actual_region_bm;
  1659   BitMap* _actual_card_bm;
  1661   uint    _n_workers;
  1663   BitMap* _expected_region_bm;
  1664   BitMap* _expected_card_bm;
  1666   int  _failures;
  1667   bool _verbose;
  1669 public:
  1670   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1671                             BitMap* region_bm, BitMap* card_bm,
  1672                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1673     : AbstractGangTask("G1 verify final counting"),
  1674       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1675       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1676       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1677       _failures(0), _verbose(false),
  1678       _n_workers(0) {
  1679     assert(VerifyDuringGC, "don't call this otherwise");
  1681     // Use the value already set as the number of active threads
  1682     // in the call to run_task().
  1683     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1684       assert( _g1h->workers()->active_workers() > 0,
  1685         "Should have been previously set");
  1686       _n_workers = _g1h->workers()->active_workers();
  1687     } else {
  1688       _n_workers = 1;
  1691     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1692     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1694     _verbose = _cm->verbose_medium();
  1697   void work(uint worker_id) {
  1698     assert(worker_id < _n_workers, "invariant");
  1700     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1701                                             _actual_region_bm, _actual_card_bm,
  1702                                             _expected_region_bm,
  1703                                             _expected_card_bm,
  1704                                             _verbose);
  1706     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1707       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1708                                             worker_id,
  1709                                             _n_workers,
  1710                                             HeapRegion::VerifyCountClaimValue);
  1711     } else {
  1712       _g1h->heap_region_iterate(&verify_cl);
  1715     Atomic::add(verify_cl.failures(), &_failures);
  1718   int failures() const { return _failures; }
  1719 };
  1721 // Closure that finalizes the liveness counting data.
  1722 // Used during the cleanup pause.
  1723 // Sets the bits corresponding to the interval [NTAMS, top]
  1724 // (which contains the implicitly live objects) in the
  1725 // card liveness bitmap. Also sets the bit for each region,
  1726 // containing live data, in the region liveness bitmap.
  1728 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1729  public:
  1730   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1731                               BitMap* region_bm,
  1732                               BitMap* card_bm) :
  1733     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1735   bool doHeapRegion(HeapRegion* hr) {
  1737     if (hr->continuesHumongous()) {
  1738       // We will ignore these here and process them when their
  1739       // associated "starts humongous" region is processed (see
  1740       // set_bit_for_heap_region()). Note that we cannot rely on their
  1741       // associated "starts humongous" region to have their bit set to
  1742       // 1 since, due to the region chunking in the parallel region
  1743       // iteration, a "continues humongous" region might be visited
  1744       // before its associated "starts humongous".
  1745       return false;
  1748     HeapWord* ntams = hr->next_top_at_mark_start();
  1749     HeapWord* top   = hr->top();
  1751     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1753     // Mark the allocated-since-marking portion...
  1754     if (ntams < top) {
  1755       // This definitely means the region has live objects.
  1756       set_bit_for_region(hr);
  1758       // Now set the bits in the card bitmap for [ntams, top)
  1759       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1760       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1762       // Note: if we're looking at the last region in heap - top
  1763       // could be actually just beyond the end of the heap; end_idx
  1764       // will then correspond to a (non-existent) card that is also
  1765       // just beyond the heap.
  1766       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1767         // end of object is not card aligned - increment to cover
  1768         // all the cards spanned by the object
  1769         end_idx += 1;
  1772       assert(end_idx <= _card_bm->size(),
  1773              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1774                      end_idx, _card_bm->size()));
  1775       assert(start_idx < _card_bm->size(),
  1776              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1777                      start_idx, _card_bm->size()));
  1779       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1782     // Set the bit for the region if it contains live data
  1783     if (hr->next_marked_bytes() > 0) {
  1784       set_bit_for_region(hr);
  1787     return false;
  1789 };
  1791 class G1ParFinalCountTask: public AbstractGangTask {
  1792 protected:
  1793   G1CollectedHeap* _g1h;
  1794   ConcurrentMark* _cm;
  1795   BitMap* _actual_region_bm;
  1796   BitMap* _actual_card_bm;
  1798   uint    _n_workers;
  1800 public:
  1801   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1802     : AbstractGangTask("G1 final counting"),
  1803       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1804       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1805       _n_workers(0) {
  1806     // Use the value already set as the number of active threads
  1807     // in the call to run_task().
  1808     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1809       assert( _g1h->workers()->active_workers() > 0,
  1810         "Should have been previously set");
  1811       _n_workers = _g1h->workers()->active_workers();
  1812     } else {
  1813       _n_workers = 1;
  1817   void work(uint worker_id) {
  1818     assert(worker_id < _n_workers, "invariant");
  1820     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1821                                                 _actual_region_bm,
  1822                                                 _actual_card_bm);
  1824     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1825       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1826                                             worker_id,
  1827                                             _n_workers,
  1828                                             HeapRegion::FinalCountClaimValue);
  1829     } else {
  1830       _g1h->heap_region_iterate(&final_update_cl);
  1833 };
  1835 class G1ParNoteEndTask;
  1837 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1838   G1CollectedHeap* _g1;
  1839   size_t _max_live_bytes;
  1840   uint _regions_claimed;
  1841   size_t _freed_bytes;
  1842   FreeRegionList* _local_cleanup_list;
  1843   HeapRegionSetCount _old_regions_removed;
  1844   HeapRegionSetCount _humongous_regions_removed;
  1845   HRRSCleanupTask* _hrrs_cleanup_task;
  1846   double _claimed_region_time;
  1847   double _max_region_time;
  1849 public:
  1850   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1851                              FreeRegionList* local_cleanup_list,
  1852                              HRRSCleanupTask* hrrs_cleanup_task) :
  1853     _g1(g1),
  1854     _max_live_bytes(0), _regions_claimed(0),
  1855     _freed_bytes(0),
  1856     _claimed_region_time(0.0), _max_region_time(0.0),
  1857     _local_cleanup_list(local_cleanup_list),
  1858     _old_regions_removed(),
  1859     _humongous_regions_removed(),
  1860     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1862   size_t freed_bytes() { return _freed_bytes; }
  1863   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1864   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1866   bool doHeapRegion(HeapRegion *hr) {
  1867     if (hr->continuesHumongous()) {
  1868       return false;
  1870     // We use a claim value of zero here because all regions
  1871     // were claimed with value 1 in the FinalCount task.
  1872     _g1->reset_gc_time_stamps(hr);
  1873     double start = os::elapsedTime();
  1874     _regions_claimed++;
  1875     hr->note_end_of_marking();
  1876     _max_live_bytes += hr->max_live_bytes();
  1878     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1879       _freed_bytes += hr->used();
  1880       hr->set_containing_set(NULL);
  1881       if (hr->isHumongous()) {
  1882         assert(hr->startsHumongous(), "we should only see starts humongous");
  1883         _humongous_regions_removed.increment(1u, hr->capacity());
  1884         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1885       } else {
  1886         _old_regions_removed.increment(1u, hr->capacity());
  1887         _g1->free_region(hr, _local_cleanup_list, true);
  1889     } else {
  1890       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1893     double region_time = (os::elapsedTime() - start);
  1894     _claimed_region_time += region_time;
  1895     if (region_time > _max_region_time) {
  1896       _max_region_time = region_time;
  1898     return false;
  1901   size_t max_live_bytes() { return _max_live_bytes; }
  1902   uint regions_claimed() { return _regions_claimed; }
  1903   double claimed_region_time_sec() { return _claimed_region_time; }
  1904   double max_region_time_sec() { return _max_region_time; }
  1905 };
  1907 class G1ParNoteEndTask: public AbstractGangTask {
  1908   friend class G1NoteEndOfConcMarkClosure;
  1910 protected:
  1911   G1CollectedHeap* _g1h;
  1912   size_t _max_live_bytes;
  1913   size_t _freed_bytes;
  1914   FreeRegionList* _cleanup_list;
  1916 public:
  1917   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1918                    FreeRegionList* cleanup_list) :
  1919     AbstractGangTask("G1 note end"), _g1h(g1h),
  1920     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1922   void work(uint worker_id) {
  1923     double start = os::elapsedTime();
  1924     FreeRegionList local_cleanup_list("Local Cleanup List");
  1925     HRRSCleanupTask hrrs_cleanup_task;
  1926     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1927                                            &hrrs_cleanup_task);
  1928     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1929       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1930                                             _g1h->workers()->active_workers(),
  1931                                             HeapRegion::NoteEndClaimValue);
  1932     } else {
  1933       _g1h->heap_region_iterate(&g1_note_end);
  1935     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1937     // Now update the lists
  1938     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1940       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1941       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1942       _max_live_bytes += g1_note_end.max_live_bytes();
  1943       _freed_bytes += g1_note_end.freed_bytes();
  1945       // If we iterate over the global cleanup list at the end of
  1946       // cleanup to do this printing we will not guarantee to only
  1947       // generate output for the newly-reclaimed regions (the list
  1948       // might not be empty at the beginning of cleanup; we might
  1949       // still be working on its previous contents). So we do the
  1950       // printing here, before we append the new regions to the global
  1951       // cleanup list.
  1953       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1954       if (hr_printer->is_active()) {
  1955         FreeRegionListIterator iter(&local_cleanup_list);
  1956         while (iter.more_available()) {
  1957           HeapRegion* hr = iter.get_next();
  1958           hr_printer->cleanup(hr);
  1962       _cleanup_list->add_ordered(&local_cleanup_list);
  1963       assert(local_cleanup_list.is_empty(), "post-condition");
  1965       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1968   size_t max_live_bytes() { return _max_live_bytes; }
  1969   size_t freed_bytes() { return _freed_bytes; }
  1970 };
  1972 class G1ParScrubRemSetTask: public AbstractGangTask {
  1973 protected:
  1974   G1RemSet* _g1rs;
  1975   BitMap* _region_bm;
  1976   BitMap* _card_bm;
  1977 public:
  1978   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1979                        BitMap* region_bm, BitMap* card_bm) :
  1980     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1981     _region_bm(region_bm), _card_bm(card_bm) { }
  1983   void work(uint worker_id) {
  1984     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1985       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1986                        HeapRegion::ScrubRemSetClaimValue);
  1987     } else {
  1988       _g1rs->scrub(_region_bm, _card_bm);
  1992 };
  1994 void ConcurrentMark::cleanup() {
  1995   // world is stopped at this checkpoint
  1996   assert(SafepointSynchronize::is_at_safepoint(),
  1997          "world should be stopped");
  1998   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2000   // If a full collection has happened, we shouldn't do this.
  2001   if (has_aborted()) {
  2002     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2003     return;
  2006   g1h->verify_region_sets_optional();
  2008   if (VerifyDuringGC) {
  2009     HandleMark hm;  // handle scope
  2010     Universe::heap()->prepare_for_verify();
  2011     Universe::verify(VerifyOption_G1UsePrevMarking,
  2012                      " VerifyDuringGC:(before)");
  2014   g1h->check_bitmaps("Cleanup Start");
  2016   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2017   g1p->record_concurrent_mark_cleanup_start();
  2019   double start = os::elapsedTime();
  2021   HeapRegionRemSet::reset_for_cleanup_tasks();
  2023   uint n_workers;
  2025   // Do counting once more with the world stopped for good measure.
  2026   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2028   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2029    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2030            "sanity check");
  2032     g1h->set_par_threads();
  2033     n_workers = g1h->n_par_threads();
  2034     assert(g1h->n_par_threads() == n_workers,
  2035            "Should not have been reset");
  2036     g1h->workers()->run_task(&g1_par_count_task);
  2037     // Done with the parallel phase so reset to 0.
  2038     g1h->set_par_threads(0);
  2040     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2041            "sanity check");
  2042   } else {
  2043     n_workers = 1;
  2044     g1_par_count_task.work(0);
  2047   if (VerifyDuringGC) {
  2048     // Verify that the counting data accumulated during marking matches
  2049     // that calculated by walking the marking bitmap.
  2051     // Bitmaps to hold expected values
  2052     BitMap expected_region_bm(_region_bm.size(), true);
  2053     BitMap expected_card_bm(_card_bm.size(), true);
  2055     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2056                                                  &_region_bm,
  2057                                                  &_card_bm,
  2058                                                  &expected_region_bm,
  2059                                                  &expected_card_bm);
  2061     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2062       g1h->set_par_threads((int)n_workers);
  2063       g1h->workers()->run_task(&g1_par_verify_task);
  2064       // Done with the parallel phase so reset to 0.
  2065       g1h->set_par_threads(0);
  2067       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2068              "sanity check");
  2069     } else {
  2070       g1_par_verify_task.work(0);
  2073     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2076   size_t start_used_bytes = g1h->used();
  2077   g1h->set_marking_complete();
  2079   double count_end = os::elapsedTime();
  2080   double this_final_counting_time = (count_end - start);
  2081   _total_counting_time += this_final_counting_time;
  2083   if (G1PrintRegionLivenessInfo) {
  2084     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2085     _g1h->heap_region_iterate(&cl);
  2088   // Install newly created mark bitMap as "prev".
  2089   swapMarkBitMaps();
  2091   g1h->reset_gc_time_stamp();
  2093   // Note end of marking in all heap regions.
  2094   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2095   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2096     g1h->set_par_threads((int)n_workers);
  2097     g1h->workers()->run_task(&g1_par_note_end_task);
  2098     g1h->set_par_threads(0);
  2100     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2101            "sanity check");
  2102   } else {
  2103     g1_par_note_end_task.work(0);
  2105   g1h->check_gc_time_stamps();
  2107   if (!cleanup_list_is_empty()) {
  2108     // The cleanup list is not empty, so we'll have to process it
  2109     // concurrently. Notify anyone else that might be wanting free
  2110     // regions that there will be more free regions coming soon.
  2111     g1h->set_free_regions_coming();
  2114   // call below, since it affects the metric by which we sort the heap
  2115   // regions.
  2116   if (G1ScrubRemSets) {
  2117     double rs_scrub_start = os::elapsedTime();
  2118     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2119     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2120       g1h->set_par_threads((int)n_workers);
  2121       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2122       g1h->set_par_threads(0);
  2124       assert(g1h->check_heap_region_claim_values(
  2125                                             HeapRegion::ScrubRemSetClaimValue),
  2126              "sanity check");
  2127     } else {
  2128       g1_par_scrub_rs_task.work(0);
  2131     double rs_scrub_end = os::elapsedTime();
  2132     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2133     _total_rs_scrub_time += this_rs_scrub_time;
  2136   // this will also free any regions totally full of garbage objects,
  2137   // and sort the regions.
  2138   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2140   // Statistics.
  2141   double end = os::elapsedTime();
  2142   _cleanup_times.add((end - start) * 1000.0);
  2144   if (G1Log::fine()) {
  2145     g1h->print_size_transition(gclog_or_tty,
  2146                                start_used_bytes,
  2147                                g1h->used(),
  2148                                g1h->capacity());
  2151   // Clean up will have freed any regions completely full of garbage.
  2152   // Update the soft reference policy with the new heap occupancy.
  2153   Universe::update_heap_info_at_gc();
  2155   if (VerifyDuringGC) {
  2156     HandleMark hm;  // handle scope
  2157     Universe::heap()->prepare_for_verify();
  2158     Universe::verify(VerifyOption_G1UsePrevMarking,
  2159                      " VerifyDuringGC:(after)");
  2161   g1h->check_bitmaps("Cleanup End");
  2163   g1h->verify_region_sets_optional();
  2165   // We need to make this be a "collection" so any collection pause that
  2166   // races with it goes around and waits for completeCleanup to finish.
  2167   g1h->increment_total_collections();
  2169   // Clean out dead classes and update Metaspace sizes.
  2170   if (ClassUnloadingWithConcurrentMark) {
  2171     ClassLoaderDataGraph::purge();
  2173   MetaspaceGC::compute_new_size();
  2175   // We reclaimed old regions so we should calculate the sizes to make
  2176   // sure we update the old gen/space data.
  2177   g1h->g1mm()->update_sizes();
  2179   g1h->trace_heap_after_concurrent_cycle();
  2182 void ConcurrentMark::completeCleanup() {
  2183   if (has_aborted()) return;
  2185   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2187   _cleanup_list.verify_optional();
  2188   FreeRegionList tmp_free_list("Tmp Free List");
  2190   if (G1ConcRegionFreeingVerbose) {
  2191     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2192                            "cleanup list has %u entries",
  2193                            _cleanup_list.length());
  2196   // No one else should be accessing the _cleanup_list at this point,
  2197   // so it is not necessary to take any locks
  2198   while (!_cleanup_list.is_empty()) {
  2199     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
  2200     assert(hr != NULL, "Got NULL from a non-empty list");
  2201     hr->par_clear();
  2202     tmp_free_list.add_ordered(hr);
  2204     // Instead of adding one region at a time to the secondary_free_list,
  2205     // we accumulate them in the local list and move them a few at a
  2206     // time. This also cuts down on the number of notify_all() calls
  2207     // we do during this process. We'll also append the local list when
  2208     // _cleanup_list is empty (which means we just removed the last
  2209     // region from the _cleanup_list).
  2210     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2211         _cleanup_list.is_empty()) {
  2212       if (G1ConcRegionFreeingVerbose) {
  2213         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2214                                "appending %u entries to the secondary_free_list, "
  2215                                "cleanup list still has %u entries",
  2216                                tmp_free_list.length(),
  2217                                _cleanup_list.length());
  2221         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2222         g1h->secondary_free_list_add(&tmp_free_list);
  2223         SecondaryFreeList_lock->notify_all();
  2226       if (G1StressConcRegionFreeing) {
  2227         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2228           os::sleep(Thread::current(), (jlong) 1, false);
  2233   assert(tmp_free_list.is_empty(), "post-condition");
  2236 // Supporting Object and Oop closures for reference discovery
  2237 // and processing in during marking
  2239 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2240   HeapWord* addr = (HeapWord*)obj;
  2241   return addr != NULL &&
  2242          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2245 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2246 // Uses the CMTask associated with a worker thread (for serial reference
  2247 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2248 // trace referent objects.
  2249 //
  2250 // Using the CMTask and embedded local queues avoids having the worker
  2251 // threads operating on the global mark stack. This reduces the risk
  2252 // of overflowing the stack - which we would rather avoid at this late
  2253 // state. Also using the tasks' local queues removes the potential
  2254 // of the workers interfering with each other that could occur if
  2255 // operating on the global stack.
  2257 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2258   ConcurrentMark* _cm;
  2259   CMTask*         _task;
  2260   int             _ref_counter_limit;
  2261   int             _ref_counter;
  2262   bool            _is_serial;
  2263  public:
  2264   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2265     _cm(cm), _task(task), _is_serial(is_serial),
  2266     _ref_counter_limit(G1RefProcDrainInterval) {
  2267     assert(_ref_counter_limit > 0, "sanity");
  2268     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2269     _ref_counter = _ref_counter_limit;
  2272   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2273   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2275   template <class T> void do_oop_work(T* p) {
  2276     if (!_cm->has_overflown()) {
  2277       oop obj = oopDesc::load_decode_heap_oop(p);
  2278       if (_cm->verbose_high()) {
  2279         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2280                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2281                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2284       _task->deal_with_reference(obj);
  2285       _ref_counter--;
  2287       if (_ref_counter == 0) {
  2288         // We have dealt with _ref_counter_limit references, pushing them
  2289         // and objects reachable from them on to the local stack (and
  2290         // possibly the global stack). Call CMTask::do_marking_step() to
  2291         // process these entries.
  2292         //
  2293         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2294         // there's nothing more to do (i.e. we're done with the entries that
  2295         // were pushed as a result of the CMTask::deal_with_reference() calls
  2296         // above) or we overflow.
  2297         //
  2298         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2299         // flag while there may still be some work to do. (See the comment at
  2300         // the beginning of CMTask::do_marking_step() for those conditions -
  2301         // one of which is reaching the specified time target.) It is only
  2302         // when CMTask::do_marking_step() returns without setting the
  2303         // has_aborted() flag that the marking step has completed.
  2304         do {
  2305           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2306           _task->do_marking_step(mark_step_duration_ms,
  2307                                  false      /* do_termination */,
  2308                                  _is_serial);
  2309         } while (_task->has_aborted() && !_cm->has_overflown());
  2310         _ref_counter = _ref_counter_limit;
  2312     } else {
  2313       if (_cm->verbose_high()) {
  2314          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2318 };
  2320 // 'Drain' oop closure used by both serial and parallel reference processing.
  2321 // Uses the CMTask associated with a given worker thread (for serial
  2322 // reference processing the CMtask for worker 0 is used). Calls the
  2323 // do_marking_step routine, with an unbelievably large timeout value,
  2324 // to drain the marking data structures of the remaining entries
  2325 // added by the 'keep alive' oop closure above.
  2327 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2328   ConcurrentMark* _cm;
  2329   CMTask*         _task;
  2330   bool            _is_serial;
  2331  public:
  2332   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2333     _cm(cm), _task(task), _is_serial(is_serial) {
  2334     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2337   void do_void() {
  2338     do {
  2339       if (_cm->verbose_high()) {
  2340         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2341                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2344       // We call CMTask::do_marking_step() to completely drain the local
  2345       // and global marking stacks of entries pushed by the 'keep alive'
  2346       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2347       //
  2348       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2349       // if there's nothing more to do (i.e. we'completely drained the
  2350       // entries that were pushed as a a result of applying the 'keep alive'
  2351       // closure to the entries on the discovered ref lists) or we overflow
  2352       // the global marking stack.
  2353       //
  2354       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2355       // flag while there may still be some work to do. (See the comment at
  2356       // the beginning of CMTask::do_marking_step() for those conditions -
  2357       // one of which is reaching the specified time target.) It is only
  2358       // when CMTask::do_marking_step() returns without setting the
  2359       // has_aborted() flag that the marking step has completed.
  2361       _task->do_marking_step(1000000000.0 /* something very large */,
  2362                              true         /* do_termination */,
  2363                              _is_serial);
  2364     } while (_task->has_aborted() && !_cm->has_overflown());
  2366 };
  2368 // Implementation of AbstractRefProcTaskExecutor for parallel
  2369 // reference processing at the end of G1 concurrent marking
  2371 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2372 private:
  2373   G1CollectedHeap* _g1h;
  2374   ConcurrentMark*  _cm;
  2375   WorkGang*        _workers;
  2376   int              _active_workers;
  2378 public:
  2379   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2380                         ConcurrentMark* cm,
  2381                         WorkGang* workers,
  2382                         int n_workers) :
  2383     _g1h(g1h), _cm(cm),
  2384     _workers(workers), _active_workers(n_workers) { }
  2386   // Executes the given task using concurrent marking worker threads.
  2387   virtual void execute(ProcessTask& task);
  2388   virtual void execute(EnqueueTask& task);
  2389 };
  2391 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2392   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2393   ProcessTask&     _proc_task;
  2394   G1CollectedHeap* _g1h;
  2395   ConcurrentMark*  _cm;
  2397 public:
  2398   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2399                      G1CollectedHeap* g1h,
  2400                      ConcurrentMark* cm) :
  2401     AbstractGangTask("Process reference objects in parallel"),
  2402     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2403     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2404     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2407   virtual void work(uint worker_id) {
  2408     ResourceMark rm;
  2409     HandleMark hm;
  2410     CMTask* task = _cm->task(worker_id);
  2411     G1CMIsAliveClosure g1_is_alive(_g1h);
  2412     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2413     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2415     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2417 };
  2419 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2420   assert(_workers != NULL, "Need parallel worker threads.");
  2421   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2423   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2425   // We need to reset the concurrency level before each
  2426   // proxy task execution, so that the termination protocol
  2427   // and overflow handling in CMTask::do_marking_step() knows
  2428   // how many workers to wait for.
  2429   _cm->set_concurrency(_active_workers);
  2430   _g1h->set_par_threads(_active_workers);
  2431   _workers->run_task(&proc_task_proxy);
  2432   _g1h->set_par_threads(0);
  2435 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2436   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2437   EnqueueTask& _enq_task;
  2439 public:
  2440   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2441     AbstractGangTask("Enqueue reference objects in parallel"),
  2442     _enq_task(enq_task) { }
  2444   virtual void work(uint worker_id) {
  2445     _enq_task.work(worker_id);
  2447 };
  2449 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2450   assert(_workers != NULL, "Need parallel worker threads.");
  2451   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2453   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2455   // Not strictly necessary but...
  2456   //
  2457   // We need to reset the concurrency level before each
  2458   // proxy task execution, so that the termination protocol
  2459   // and overflow handling in CMTask::do_marking_step() knows
  2460   // how many workers to wait for.
  2461   _cm->set_concurrency(_active_workers);
  2462   _g1h->set_par_threads(_active_workers);
  2463   _workers->run_task(&enq_task_proxy);
  2464   _g1h->set_par_threads(0);
  2467 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2468   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2471 // Helper class to get rid of some boilerplate code.
  2472 class G1RemarkGCTraceTime : public GCTraceTime {
  2473   static bool doit_and_prepend(bool doit) {
  2474     if (doit) {
  2475       gclog_or_tty->put(' ');
  2477     return doit;
  2480  public:
  2481   G1RemarkGCTraceTime(const char* title, bool doit)
  2482     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2483         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2485 };
  2487 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2488   if (has_overflown()) {
  2489     // Skip processing the discovered references if we have
  2490     // overflown the global marking stack. Reference objects
  2491     // only get discovered once so it is OK to not
  2492     // de-populate the discovered reference lists. We could have,
  2493     // but the only benefit would be that, when marking restarts,
  2494     // less reference objects are discovered.
  2495     return;
  2498   ResourceMark rm;
  2499   HandleMark   hm;
  2501   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2503   // Is alive closure.
  2504   G1CMIsAliveClosure g1_is_alive(g1h);
  2506   // Inner scope to exclude the cleaning of the string and symbol
  2507   // tables from the displayed time.
  2509     if (G1Log::finer()) {
  2510       gclog_or_tty->put(' ');
  2512     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2514     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2516     // See the comment in G1CollectedHeap::ref_processing_init()
  2517     // about how reference processing currently works in G1.
  2519     // Set the soft reference policy
  2520     rp->setup_policy(clear_all_soft_refs);
  2521     assert(_markStack.isEmpty(), "mark stack should be empty");
  2523     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2524     // in serial reference processing. Note these closures are also
  2525     // used for serially processing (by the the current thread) the
  2526     // JNI references during parallel reference processing.
  2527     //
  2528     // These closures do not need to synchronize with the worker
  2529     // threads involved in parallel reference processing as these
  2530     // instances are executed serially by the current thread (e.g.
  2531     // reference processing is not multi-threaded and is thus
  2532     // performed by the current thread instead of a gang worker).
  2533     //
  2534     // The gang tasks involved in parallel reference procssing create
  2535     // their own instances of these closures, which do their own
  2536     // synchronization among themselves.
  2537     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2538     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2540     // We need at least one active thread. If reference processing
  2541     // is not multi-threaded we use the current (VMThread) thread,
  2542     // otherwise we use the work gang from the G1CollectedHeap and
  2543     // we utilize all the worker threads we can.
  2544     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2545     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2546     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2548     // Parallel processing task executor.
  2549     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2550                                               g1h->workers(), active_workers);
  2551     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2553     // Set the concurrency level. The phase was already set prior to
  2554     // executing the remark task.
  2555     set_concurrency(active_workers);
  2557     // Set the degree of MT processing here.  If the discovery was done MT,
  2558     // the number of threads involved during discovery could differ from
  2559     // the number of active workers.  This is OK as long as the discovered
  2560     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2561     rp->set_active_mt_degree(active_workers);
  2563     // Process the weak references.
  2564     const ReferenceProcessorStats& stats =
  2565         rp->process_discovered_references(&g1_is_alive,
  2566                                           &g1_keep_alive,
  2567                                           &g1_drain_mark_stack,
  2568                                           executor,
  2569                                           g1h->gc_timer_cm(),
  2570                                           concurrent_gc_id());
  2571     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2573     // The do_oop work routines of the keep_alive and drain_marking_stack
  2574     // oop closures will set the has_overflown flag if we overflow the
  2575     // global marking stack.
  2577     assert(_markStack.overflow() || _markStack.isEmpty(),
  2578             "mark stack should be empty (unless it overflowed)");
  2580     if (_markStack.overflow()) {
  2581       // This should have been done already when we tried to push an
  2582       // entry on to the global mark stack. But let's do it again.
  2583       set_has_overflown();
  2586     assert(rp->num_q() == active_workers, "why not");
  2588     rp->enqueue_discovered_references(executor);
  2590     rp->verify_no_references_recorded();
  2591     assert(!rp->discovery_enabled(), "Post condition");
  2594   if (has_overflown()) {
  2595     // We can not trust g1_is_alive if the marking stack overflowed
  2596     return;
  2599   assert(_markStack.isEmpty(), "Marking should have completed");
  2601   // Unload Klasses, String, Symbols, Code Cache, etc.
  2603     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2605     if (ClassUnloadingWithConcurrentMark) {
  2606       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
  2607       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
  2608       // Defer the cleaning until we have complete on_stack data.
  2609       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
  2611       bool purged_classes;
  2614         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2615         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
  2619         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2620         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2624         G1RemarkGCTraceTime trace("Deallocate Metadata", G1Log::finest());
  2625         ClassLoaderDataGraph::free_deallocate_lists();
  2629     if (G1StringDedup::is_enabled()) {
  2630       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2631       G1StringDedup::unlink(&g1_is_alive);
  2636 void ConcurrentMark::swapMarkBitMaps() {
  2637   CMBitMapRO* temp = _prevMarkBitMap;
  2638   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2639   _nextMarkBitMap  = (CMBitMap*)  temp;
  2642 class CMObjectClosure;
  2644 // Closure for iterating over objects, currently only used for
  2645 // processing SATB buffers.
  2646 class CMObjectClosure : public ObjectClosure {
  2647 private:
  2648   CMTask* _task;
  2650 public:
  2651   void do_object(oop obj) {
  2652     _task->deal_with_reference(obj);
  2655   CMObjectClosure(CMTask* task) : _task(task) { }
  2656 };
  2658 class G1RemarkThreadsClosure : public ThreadClosure {
  2659   CMObjectClosure _cm_obj;
  2660   G1CMOopClosure _cm_cl;
  2661   MarkingCodeBlobClosure _code_cl;
  2662   int _thread_parity;
  2663   bool _is_par;
  2665  public:
  2666   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2667     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2668     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2670   void do_thread(Thread* thread) {
  2671     if (thread->is_Java_thread()) {
  2672       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2673         JavaThread* jt = (JavaThread*)thread;
  2675         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2676         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2677         // * Alive if on the stack of an executing method
  2678         // * Weakly reachable otherwise
  2679         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2680         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2681         jt->nmethods_do(&_code_cl);
  2683         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2685     } else if (thread->is_VM_thread()) {
  2686       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2687         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2691 };
  2693 class CMRemarkTask: public AbstractGangTask {
  2694 private:
  2695   ConcurrentMark* _cm;
  2696   bool            _is_serial;
  2697 public:
  2698   void work(uint worker_id) {
  2699     // Since all available tasks are actually started, we should
  2700     // only proceed if we're supposed to be actived.
  2701     if (worker_id < _cm->active_tasks()) {
  2702       CMTask* task = _cm->task(worker_id);
  2703       task->record_start_time();
  2705         ResourceMark rm;
  2706         HandleMark hm;
  2708         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2709         Threads::threads_do(&threads_f);
  2712       do {
  2713         task->do_marking_step(1000000000.0 /* something very large */,
  2714                               true         /* do_termination       */,
  2715                               _is_serial);
  2716       } while (task->has_aborted() && !_cm->has_overflown());
  2717       // If we overflow, then we do not want to restart. We instead
  2718       // want to abort remark and do concurrent marking again.
  2719       task->record_end_time();
  2723   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2724     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2725     _cm->terminator()->reset_for_reuse(active_workers);
  2727 };
  2729 void ConcurrentMark::checkpointRootsFinalWork() {
  2730   ResourceMark rm;
  2731   HandleMark   hm;
  2732   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2734   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2736   g1h->ensure_parsability(false);
  2738   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2739     G1CollectedHeap::StrongRootsScope srs(g1h);
  2740     // this is remark, so we'll use up all active threads
  2741     uint active_workers = g1h->workers()->active_workers();
  2742     if (active_workers == 0) {
  2743       assert(active_workers > 0, "Should have been set earlier");
  2744       active_workers = (uint) ParallelGCThreads;
  2745       g1h->workers()->set_active_workers(active_workers);
  2747     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2748     // Leave _parallel_marking_threads at it's
  2749     // value originally calculated in the ConcurrentMark
  2750     // constructor and pass values of the active workers
  2751     // through the gang in the task.
  2753     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2754     // We will start all available threads, even if we decide that the
  2755     // active_workers will be fewer. The extra ones will just bail out
  2756     // immediately.
  2757     g1h->set_par_threads(active_workers);
  2758     g1h->workers()->run_task(&remarkTask);
  2759     g1h->set_par_threads(0);
  2760   } else {
  2761     G1CollectedHeap::StrongRootsScope srs(g1h);
  2762     uint active_workers = 1;
  2763     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2765     // Note - if there's no work gang then the VMThread will be
  2766     // the thread to execute the remark - serially. We have
  2767     // to pass true for the is_serial parameter so that
  2768     // CMTask::do_marking_step() doesn't enter the sync
  2769     // barriers in the event of an overflow. Doing so will
  2770     // cause an assert that the current thread is not a
  2771     // concurrent GC thread.
  2772     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2773     remarkTask.work(0);
  2775   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2776   guarantee(has_overflown() ||
  2777             satb_mq_set.completed_buffers_num() == 0,
  2778             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2779                     BOOL_TO_STR(has_overflown()),
  2780                     satb_mq_set.completed_buffers_num()));
  2782   print_stats();
  2785 #ifndef PRODUCT
  2787 class PrintReachableOopClosure: public OopClosure {
  2788 private:
  2789   G1CollectedHeap* _g1h;
  2790   outputStream*    _out;
  2791   VerifyOption     _vo;
  2792   bool             _all;
  2794 public:
  2795   PrintReachableOopClosure(outputStream* out,
  2796                            VerifyOption  vo,
  2797                            bool          all) :
  2798     _g1h(G1CollectedHeap::heap()),
  2799     _out(out), _vo(vo), _all(all) { }
  2801   void do_oop(narrowOop* p) { do_oop_work(p); }
  2802   void do_oop(      oop* p) { do_oop_work(p); }
  2804   template <class T> void do_oop_work(T* p) {
  2805     oop         obj = oopDesc::load_decode_heap_oop(p);
  2806     const char* str = NULL;
  2807     const char* str2 = "";
  2809     if (obj == NULL) {
  2810       str = "";
  2811     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2812       str = " O";
  2813     } else {
  2814       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2815       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2816       bool marked = _g1h->is_marked(obj, _vo);
  2818       if (over_tams) {
  2819         str = " >";
  2820         if (marked) {
  2821           str2 = " AND MARKED";
  2823       } else if (marked) {
  2824         str = " M";
  2825       } else {
  2826         str = " NOT";
  2830     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2831                    p2i(p), p2i((void*) obj), str, str2);
  2833 };
  2835 class PrintReachableObjectClosure : public ObjectClosure {
  2836 private:
  2837   G1CollectedHeap* _g1h;
  2838   outputStream*    _out;
  2839   VerifyOption     _vo;
  2840   bool             _all;
  2841   HeapRegion*      _hr;
  2843 public:
  2844   PrintReachableObjectClosure(outputStream* out,
  2845                               VerifyOption  vo,
  2846                               bool          all,
  2847                               HeapRegion*   hr) :
  2848     _g1h(G1CollectedHeap::heap()),
  2849     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2851   void do_object(oop o) {
  2852     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2853     bool marked = _g1h->is_marked(o, _vo);
  2854     bool print_it = _all || over_tams || marked;
  2856     if (print_it) {
  2857       _out->print_cr(" "PTR_FORMAT"%s",
  2858                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2859       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2860       o->oop_iterate_no_header(&oopCl);
  2863 };
  2865 class PrintReachableRegionClosure : public HeapRegionClosure {
  2866 private:
  2867   G1CollectedHeap* _g1h;
  2868   outputStream*    _out;
  2869   VerifyOption     _vo;
  2870   bool             _all;
  2872 public:
  2873   bool doHeapRegion(HeapRegion* hr) {
  2874     HeapWord* b = hr->bottom();
  2875     HeapWord* e = hr->end();
  2876     HeapWord* t = hr->top();
  2877     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2878     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2879                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2880     _out->cr();
  2882     HeapWord* from = b;
  2883     HeapWord* to   = t;
  2885     if (to > from) {
  2886       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2887       _out->cr();
  2888       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2889       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2890       _out->cr();
  2893     return false;
  2896   PrintReachableRegionClosure(outputStream* out,
  2897                               VerifyOption  vo,
  2898                               bool          all) :
  2899     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2900 };
  2902 void ConcurrentMark::print_reachable(const char* str,
  2903                                      VerifyOption vo,
  2904                                      bool all) {
  2905   gclog_or_tty->cr();
  2906   gclog_or_tty->print_cr("== Doing heap dump... ");
  2908   if (G1PrintReachableBaseFile == NULL) {
  2909     gclog_or_tty->print_cr("  #### error: no base file defined");
  2910     return;
  2913   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2914       (JVM_MAXPATHLEN - 1)) {
  2915     gclog_or_tty->print_cr("  #### error: file name too long");
  2916     return;
  2919   char file_name[JVM_MAXPATHLEN];
  2920   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2921   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2923   fileStream fout(file_name);
  2924   if (!fout.is_open()) {
  2925     gclog_or_tty->print_cr("  #### error: could not open file");
  2926     return;
  2929   outputStream* out = &fout;
  2930   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2931   out->cr();
  2933   out->print_cr("--- ITERATING OVER REGIONS");
  2934   out->cr();
  2935   PrintReachableRegionClosure rcl(out, vo, all);
  2936   _g1h->heap_region_iterate(&rcl);
  2937   out->cr();
  2939   gclog_or_tty->print_cr("  done");
  2940   gclog_or_tty->flush();
  2943 #endif // PRODUCT
  2945 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2946   // Note we are overriding the read-only view of the prev map here, via
  2947   // the cast.
  2948   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2951 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2952   _nextMarkBitMap->clearRange(mr);
  2955 HeapRegion*
  2956 ConcurrentMark::claim_region(uint worker_id) {
  2957   // "checkpoint" the finger
  2958   HeapWord* finger = _finger;
  2960   // _heap_end will not change underneath our feet; it only changes at
  2961   // yield points.
  2962   while (finger < _heap_end) {
  2963     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2965     // Note on how this code handles humongous regions. In the
  2966     // normal case the finger will reach the start of a "starts
  2967     // humongous" (SH) region. Its end will either be the end of the
  2968     // last "continues humongous" (CH) region in the sequence, or the
  2969     // standard end of the SH region (if the SH is the only region in
  2970     // the sequence). That way claim_region() will skip over the CH
  2971     // regions. However, there is a subtle race between a CM thread
  2972     // executing this method and a mutator thread doing a humongous
  2973     // object allocation. The two are not mutually exclusive as the CM
  2974     // thread does not need to hold the Heap_lock when it gets
  2975     // here. So there is a chance that claim_region() will come across
  2976     // a free region that's in the progress of becoming a SH or a CH
  2977     // region. In the former case, it will either
  2978     //   a) Miss the update to the region's end, in which case it will
  2979     //      visit every subsequent CH region, will find their bitmaps
  2980     //      empty, and do nothing, or
  2981     //   b) Will observe the update of the region's end (in which case
  2982     //      it will skip the subsequent CH regions).
  2983     // If it comes across a region that suddenly becomes CH, the
  2984     // scenario will be similar to b). So, the race between
  2985     // claim_region() and a humongous object allocation might force us
  2986     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2987     // iterations) but it should not introduce and correctness issues.
  2988     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
  2990     // Above heap_region_containing_raw may return NULL as we always scan claim
  2991     // until the end of the heap. In this case, just jump to the next region.
  2992     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
  2994     // Is the gap between reading the finger and doing the CAS too long?
  2995     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2996     if (res == finger && curr_region != NULL) {
  2997       // we succeeded
  2998       HeapWord*   bottom        = curr_region->bottom();
  2999       HeapWord*   limit         = curr_region->next_top_at_mark_start();
  3001       if (verbose_low()) {
  3002         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  3003                                "["PTR_FORMAT", "PTR_FORMAT"), "
  3004                                "limit = "PTR_FORMAT,
  3005                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  3008       // notice that _finger == end cannot be guaranteed here since,
  3009       // someone else might have moved the finger even further
  3010       assert(_finger >= end, "the finger should have moved forward");
  3012       if (verbose_low()) {
  3013         gclog_or_tty->print_cr("[%u] we were successful with region = "
  3014                                PTR_FORMAT, worker_id, p2i(curr_region));
  3017       if (limit > bottom) {
  3018         if (verbose_low()) {
  3019           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  3020                                  "returning it ", worker_id, p2i(curr_region));
  3022         return curr_region;
  3023       } else {
  3024         assert(limit == bottom,
  3025                "the region limit should be at bottom");
  3026         if (verbose_low()) {
  3027           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3028                                  "returning NULL", worker_id, p2i(curr_region));
  3030         // we return NULL and the caller should try calling
  3031         // claim_region() again.
  3032         return NULL;
  3034     } else {
  3035       assert(_finger > finger, "the finger should have moved forward");
  3036       if (verbose_low()) {
  3037         if (curr_region == NULL) {
  3038           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
  3039                                  "global finger = "PTR_FORMAT", "
  3040                                  "our finger = "PTR_FORMAT,
  3041                                  worker_id, p2i(_finger), p2i(finger));
  3042         } else {
  3043           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3044                                  "global finger = "PTR_FORMAT", "
  3045                                  "our finger = "PTR_FORMAT,
  3046                                  worker_id, p2i(_finger), p2i(finger));
  3050       // read it again
  3051       finger = _finger;
  3055   return NULL;
  3058 #ifndef PRODUCT
  3059 enum VerifyNoCSetOopsPhase {
  3060   VerifyNoCSetOopsStack,
  3061   VerifyNoCSetOopsQueues,
  3062   VerifyNoCSetOopsSATBCompleted,
  3063   VerifyNoCSetOopsSATBThread
  3064 };
  3066 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3067 private:
  3068   G1CollectedHeap* _g1h;
  3069   VerifyNoCSetOopsPhase _phase;
  3070   int _info;
  3072   const char* phase_str() {
  3073     switch (_phase) {
  3074     case VerifyNoCSetOopsStack:         return "Stack";
  3075     case VerifyNoCSetOopsQueues:        return "Queue";
  3076     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3077     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3078     default:                            ShouldNotReachHere();
  3080     return NULL;
  3083   void do_object_work(oop obj) {
  3084     guarantee(!_g1h->obj_in_cs(obj),
  3085               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3086                       p2i((void*) obj), phase_str(), _info));
  3089 public:
  3090   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3092   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3093     _phase = phase;
  3094     _info = info;
  3097   virtual void do_oop(oop* p) {
  3098     oop obj = oopDesc::load_decode_heap_oop(p);
  3099     do_object_work(obj);
  3102   virtual void do_oop(narrowOop* p) {
  3103     // We should not come across narrow oops while scanning marking
  3104     // stacks and SATB buffers.
  3105     ShouldNotReachHere();
  3108   virtual void do_object(oop obj) {
  3109     do_object_work(obj);
  3111 };
  3113 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3114                                          bool verify_enqueued_buffers,
  3115                                          bool verify_thread_buffers,
  3116                                          bool verify_fingers) {
  3117   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3118   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3119     return;
  3122   VerifyNoCSetOopsClosure cl;
  3124   if (verify_stacks) {
  3125     // Verify entries on the global mark stack
  3126     cl.set_phase(VerifyNoCSetOopsStack);
  3127     _markStack.oops_do(&cl);
  3129     // Verify entries on the task queues
  3130     for (uint i = 0; i < _max_worker_id; i += 1) {
  3131       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3132       CMTaskQueue* queue = _task_queues->queue(i);
  3133       queue->oops_do(&cl);
  3137   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3139   // Verify entries on the enqueued SATB buffers
  3140   if (verify_enqueued_buffers) {
  3141     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3142     satb_qs.iterate_completed_buffers_read_only(&cl);
  3145   // Verify entries on the per-thread SATB buffers
  3146   if (verify_thread_buffers) {
  3147     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3148     satb_qs.iterate_thread_buffers_read_only(&cl);
  3151   if (verify_fingers) {
  3152     // Verify the global finger
  3153     HeapWord* global_finger = finger();
  3154     if (global_finger != NULL && global_finger < _heap_end) {
  3155       // The global finger always points to a heap region boundary. We
  3156       // use heap_region_containing_raw() to get the containing region
  3157       // given that the global finger could be pointing to a free region
  3158       // which subsequently becomes continues humongous. If that
  3159       // happens, heap_region_containing() will return the bottom of the
  3160       // corresponding starts humongous region and the check below will
  3161       // not hold any more.
  3162       // Since we always iterate over all regions, we might get a NULL HeapRegion
  3163       // here.
  3164       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3165       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
  3166                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3167                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3170     // Verify the task fingers
  3171     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3172     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3173       CMTask* task = _tasks[i];
  3174       HeapWord* task_finger = task->finger();
  3175       if (task_finger != NULL && task_finger < _heap_end) {
  3176         // See above note on the global finger verification.
  3177         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3178         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
  3179                   !task_hr->in_collection_set(),
  3180                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3181                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3186 #endif // PRODUCT
  3188 // Aggregate the counting data that was constructed concurrently
  3189 // with marking.
  3190 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3191   G1CollectedHeap* _g1h;
  3192   ConcurrentMark* _cm;
  3193   CardTableModRefBS* _ct_bs;
  3194   BitMap* _cm_card_bm;
  3195   uint _max_worker_id;
  3197  public:
  3198   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3199                               BitMap* cm_card_bm,
  3200                               uint max_worker_id) :
  3201     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3202     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3203     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3205   bool doHeapRegion(HeapRegion* hr) {
  3206     if (hr->continuesHumongous()) {
  3207       // We will ignore these here and process them when their
  3208       // associated "starts humongous" region is processed.
  3209       // Note that we cannot rely on their associated
  3210       // "starts humongous" region to have their bit set to 1
  3211       // since, due to the region chunking in the parallel region
  3212       // iteration, a "continues humongous" region might be visited
  3213       // before its associated "starts humongous".
  3214       return false;
  3217     HeapWord* start = hr->bottom();
  3218     HeapWord* limit = hr->next_top_at_mark_start();
  3219     HeapWord* end = hr->end();
  3221     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3222            err_msg("Preconditions not met - "
  3223                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3224                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3225                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3227     assert(hr->next_marked_bytes() == 0, "Precondition");
  3229     if (start == limit) {
  3230       // NTAMS of this region has not been set so nothing to do.
  3231       return false;
  3234     // 'start' should be in the heap.
  3235     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3236     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3237     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3239     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3240     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3241     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3243     // If ntams is not card aligned then we bump card bitmap index
  3244     // for limit so that we get the all the cards spanned by
  3245     // the object ending at ntams.
  3246     // Note: if this is the last region in the heap then ntams
  3247     // could be actually just beyond the end of the the heap;
  3248     // limit_idx will then  correspond to a (non-existent) card
  3249     // that is also outside the heap.
  3250     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3251       limit_idx += 1;
  3254     assert(limit_idx <= end_idx, "or else use atomics");
  3256     // Aggregate the "stripe" in the count data associated with hr.
  3257     uint hrm_index = hr->hrm_index();
  3258     size_t marked_bytes = 0;
  3260     for (uint i = 0; i < _max_worker_id; i += 1) {
  3261       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3262       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3264       // Fetch the marked_bytes in this region for task i and
  3265       // add it to the running total for this region.
  3266       marked_bytes += marked_bytes_array[hrm_index];
  3268       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3269       // into the global card bitmap.
  3270       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3272       while (scan_idx < limit_idx) {
  3273         assert(task_card_bm->at(scan_idx) == true, "should be");
  3274         _cm_card_bm->set_bit(scan_idx);
  3275         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3277         // BitMap::get_next_one_offset() can handle the case when
  3278         // its left_offset parameter is greater than its right_offset
  3279         // parameter. It does, however, have an early exit if
  3280         // left_offset == right_offset. So let's limit the value
  3281         // passed in for left offset here.
  3282         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3283         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3287     // Update the marked bytes for this region.
  3288     hr->add_to_marked_bytes(marked_bytes);
  3290     // Next heap region
  3291     return false;
  3293 };
  3295 class G1AggregateCountDataTask: public AbstractGangTask {
  3296 protected:
  3297   G1CollectedHeap* _g1h;
  3298   ConcurrentMark* _cm;
  3299   BitMap* _cm_card_bm;
  3300   uint _max_worker_id;
  3301   int _active_workers;
  3303 public:
  3304   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3305                            ConcurrentMark* cm,
  3306                            BitMap* cm_card_bm,
  3307                            uint max_worker_id,
  3308                            int n_workers) :
  3309     AbstractGangTask("Count Aggregation"),
  3310     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3311     _max_worker_id(max_worker_id),
  3312     _active_workers(n_workers) { }
  3314   void work(uint worker_id) {
  3315     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3317     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3318       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3319                                             _active_workers,
  3320                                             HeapRegion::AggregateCountClaimValue);
  3321     } else {
  3322       _g1h->heap_region_iterate(&cl);
  3325 };
  3328 void ConcurrentMark::aggregate_count_data() {
  3329   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3330                         _g1h->workers()->active_workers() :
  3331                         1);
  3333   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3334                                            _max_worker_id, n_workers);
  3336   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3337     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3338            "sanity check");
  3339     _g1h->set_par_threads(n_workers);
  3340     _g1h->workers()->run_task(&g1_par_agg_task);
  3341     _g1h->set_par_threads(0);
  3343     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3344            "sanity check");
  3345     _g1h->reset_heap_region_claim_values();
  3346   } else {
  3347     g1_par_agg_task.work(0);
  3349   _g1h->allocation_context_stats().update_at_remark();
  3352 // Clear the per-worker arrays used to store the per-region counting data
  3353 void ConcurrentMark::clear_all_count_data() {
  3354   // Clear the global card bitmap - it will be filled during
  3355   // liveness count aggregation (during remark) and the
  3356   // final counting task.
  3357   _card_bm.clear();
  3359   // Clear the global region bitmap - it will be filled as part
  3360   // of the final counting task.
  3361   _region_bm.clear();
  3363   uint max_regions = _g1h->max_regions();
  3364   assert(_max_worker_id > 0, "uninitialized");
  3366   for (uint i = 0; i < _max_worker_id; i += 1) {
  3367     BitMap* task_card_bm = count_card_bitmap_for(i);
  3368     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3370     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3371     assert(marked_bytes_array != NULL, "uninitialized");
  3373     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3374     task_card_bm->clear();
  3378 void ConcurrentMark::print_stats() {
  3379   if (verbose_stats()) {
  3380     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3381     for (size_t i = 0; i < _active_tasks; ++i) {
  3382       _tasks[i]->print_stats();
  3383       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3388 // abandon current marking iteration due to a Full GC
  3389 void ConcurrentMark::abort() {
  3390   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  3391   // concurrent bitmap clearing.
  3392   _nextMarkBitMap->clearAll();
  3394   // Note we cannot clear the previous marking bitmap here
  3395   // since VerifyDuringGC verifies the objects marked during
  3396   // a full GC against the previous bitmap.
  3398   // Clear the liveness counting data
  3399   clear_all_count_data();
  3400   // Empty mark stack
  3401   reset_marking_state();
  3402   for (uint i = 0; i < _max_worker_id; ++i) {
  3403     _tasks[i]->clear_region_fields();
  3405   _first_overflow_barrier_sync.abort();
  3406   _second_overflow_barrier_sync.abort();
  3407   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3408   if (!gc_id.is_undefined()) {
  3409     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3410     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3411     _aborted_gc_id = gc_id;
  3413   _has_aborted = true;
  3415   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3416   satb_mq_set.abandon_partial_marking();
  3417   // This can be called either during or outside marking, we'll read
  3418   // the expected_active value from the SATB queue set.
  3419   satb_mq_set.set_active_all_threads(
  3420                                  false, /* new active value */
  3421                                  satb_mq_set.is_active() /* expected_active */);
  3423   _g1h->trace_heap_after_concurrent_cycle();
  3424   _g1h->register_concurrent_cycle_end();
  3427 const GCId& ConcurrentMark::concurrent_gc_id() {
  3428   if (has_aborted()) {
  3429     return _aborted_gc_id;
  3431   return _g1h->gc_tracer_cm()->gc_id();
  3434 static void print_ms_time_info(const char* prefix, const char* name,
  3435                                NumberSeq& ns) {
  3436   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3437                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3438   if (ns.num() > 0) {
  3439     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3440                            prefix, ns.sd(), ns.maximum());
  3444 void ConcurrentMark::print_summary_info() {
  3445   gclog_or_tty->print_cr(" Concurrent marking:");
  3446   print_ms_time_info("  ", "init marks", _init_times);
  3447   print_ms_time_info("  ", "remarks", _remark_times);
  3449     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3450     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3453   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3454   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3455                          _total_counting_time,
  3456                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3457                           (double)_cleanup_times.num()
  3458                          : 0.0));
  3459   if (G1ScrubRemSets) {
  3460     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3461                            _total_rs_scrub_time,
  3462                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3463                             (double)_cleanup_times.num()
  3464                            : 0.0));
  3466   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3467                          (_init_times.sum() + _remark_times.sum() +
  3468                           _cleanup_times.sum())/1000.0);
  3469   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3470                 "(%8.2f s marking).",
  3471                 cmThread()->vtime_accum(),
  3472                 cmThread()->vtime_mark_accum());
  3475 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3476   if (use_parallel_marking_threads()) {
  3477     _parallel_workers->print_worker_threads_on(st);
  3481 void ConcurrentMark::print_on_error(outputStream* st) const {
  3482   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3483       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3484   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3485   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3488 // We take a break if someone is trying to stop the world.
  3489 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3490   if (SuspendibleThreadSet::should_yield()) {
  3491     if (worker_id == 0) {
  3492       _g1h->g1_policy()->record_concurrent_pause();
  3494     SuspendibleThreadSet::yield();
  3495     return true;
  3496   } else {
  3497     return false;
  3501 #ifndef PRODUCT
  3502 // for debugging purposes
  3503 void ConcurrentMark::print_finger() {
  3504   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3505                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3506   for (uint i = 0; i < _max_worker_id; ++i) {
  3507     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3509   gclog_or_tty->cr();
  3511 #endif
  3513 void CMTask::scan_object(oop obj) {
  3514   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3516   if (_cm->verbose_high()) {
  3517     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3518                            _worker_id, p2i((void*) obj));
  3521   size_t obj_size = obj->size();
  3522   _words_scanned += obj_size;
  3524   obj->oop_iterate(_cm_oop_closure);
  3525   statsOnly( ++_objs_scanned );
  3526   check_limits();
  3529 // Closure for iteration over bitmaps
  3530 class CMBitMapClosure : public BitMapClosure {
  3531 private:
  3532   // the bitmap that is being iterated over
  3533   CMBitMap*                   _nextMarkBitMap;
  3534   ConcurrentMark*             _cm;
  3535   CMTask*                     _task;
  3537 public:
  3538   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3539     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3541   bool do_bit(size_t offset) {
  3542     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3543     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3544     assert( addr < _cm->finger(), "invariant");
  3546     statsOnly( _task->increase_objs_found_on_bitmap() );
  3547     assert(addr >= _task->finger(), "invariant");
  3549     // We move that task's local finger along.
  3550     _task->move_finger_to(addr);
  3552     _task->scan_object(oop(addr));
  3553     // we only partially drain the local queue and global stack
  3554     _task->drain_local_queue(true);
  3555     _task->drain_global_stack(true);
  3557     // if the has_aborted flag has been raised, we need to bail out of
  3558     // the iteration
  3559     return !_task->has_aborted();
  3561 };
  3563 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3564                                ConcurrentMark* cm,
  3565                                CMTask* task)
  3566   : _g1h(g1h), _cm(cm), _task(task) {
  3567   assert(_ref_processor == NULL, "should be initialized to NULL");
  3569   if (G1UseConcMarkReferenceProcessing) {
  3570     _ref_processor = g1h->ref_processor_cm();
  3571     assert(_ref_processor != NULL, "should not be NULL");
  3575 void CMTask::setup_for_region(HeapRegion* hr) {
  3576   assert(hr != NULL,
  3577         "claim_region() should have filtered out NULL regions");
  3578   assert(!hr->continuesHumongous(),
  3579         "claim_region() should have filtered out continues humongous regions");
  3581   if (_cm->verbose_low()) {
  3582     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3583                            _worker_id, p2i(hr));
  3586   _curr_region  = hr;
  3587   _finger       = hr->bottom();
  3588   update_region_limit();
  3591 void CMTask::update_region_limit() {
  3592   HeapRegion* hr            = _curr_region;
  3593   HeapWord* bottom          = hr->bottom();
  3594   HeapWord* limit           = hr->next_top_at_mark_start();
  3596   if (limit == bottom) {
  3597     if (_cm->verbose_low()) {
  3598       gclog_or_tty->print_cr("[%u] found an empty region "
  3599                              "["PTR_FORMAT", "PTR_FORMAT")",
  3600                              _worker_id, p2i(bottom), p2i(limit));
  3602     // The region was collected underneath our feet.
  3603     // We set the finger to bottom to ensure that the bitmap
  3604     // iteration that will follow this will not do anything.
  3605     // (this is not a condition that holds when we set the region up,
  3606     // as the region is not supposed to be empty in the first place)
  3607     _finger = bottom;
  3608   } else if (limit >= _region_limit) {
  3609     assert(limit >= _finger, "peace of mind");
  3610   } else {
  3611     assert(limit < _region_limit, "only way to get here");
  3612     // This can happen under some pretty unusual circumstances.  An
  3613     // evacuation pause empties the region underneath our feet (NTAMS
  3614     // at bottom). We then do some allocation in the region (NTAMS
  3615     // stays at bottom), followed by the region being used as a GC
  3616     // alloc region (NTAMS will move to top() and the objects
  3617     // originally below it will be grayed). All objects now marked in
  3618     // the region are explicitly grayed, if below the global finger,
  3619     // and we do not need in fact to scan anything else. So, we simply
  3620     // set _finger to be limit to ensure that the bitmap iteration
  3621     // doesn't do anything.
  3622     _finger = limit;
  3625   _region_limit = limit;
  3628 void CMTask::giveup_current_region() {
  3629   assert(_curr_region != NULL, "invariant");
  3630   if (_cm->verbose_low()) {
  3631     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3632                            _worker_id, p2i(_curr_region));
  3634   clear_region_fields();
  3637 void CMTask::clear_region_fields() {
  3638   // Values for these three fields that indicate that we're not
  3639   // holding on to a region.
  3640   _curr_region   = NULL;
  3641   _finger        = NULL;
  3642   _region_limit  = NULL;
  3645 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3646   if (cm_oop_closure == NULL) {
  3647     assert(_cm_oop_closure != NULL, "invariant");
  3648   } else {
  3649     assert(_cm_oop_closure == NULL, "invariant");
  3651   _cm_oop_closure = cm_oop_closure;
  3654 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3655   guarantee(nextMarkBitMap != NULL, "invariant");
  3657   if (_cm->verbose_low()) {
  3658     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3661   _nextMarkBitMap                = nextMarkBitMap;
  3662   clear_region_fields();
  3664   _calls                         = 0;
  3665   _elapsed_time_ms               = 0.0;
  3666   _termination_time_ms           = 0.0;
  3667   _termination_start_time_ms     = 0.0;
  3669 #if _MARKING_STATS_
  3670   _local_pushes                  = 0;
  3671   _local_pops                    = 0;
  3672   _local_max_size                = 0;
  3673   _objs_scanned                  = 0;
  3674   _global_pushes                 = 0;
  3675   _global_pops                   = 0;
  3676   _global_max_size               = 0;
  3677   _global_transfers_to           = 0;
  3678   _global_transfers_from         = 0;
  3679   _regions_claimed               = 0;
  3680   _objs_found_on_bitmap          = 0;
  3681   _satb_buffers_processed        = 0;
  3682   _steal_attempts                = 0;
  3683   _steals                        = 0;
  3684   _aborted                       = 0;
  3685   _aborted_overflow              = 0;
  3686   _aborted_cm_aborted            = 0;
  3687   _aborted_yield                 = 0;
  3688   _aborted_timed_out             = 0;
  3689   _aborted_satb                  = 0;
  3690   _aborted_termination           = 0;
  3691 #endif // _MARKING_STATS_
  3694 bool CMTask::should_exit_termination() {
  3695   regular_clock_call();
  3696   // This is called when we are in the termination protocol. We should
  3697   // quit if, for some reason, this task wants to abort or the global
  3698   // stack is not empty (this means that we can get work from it).
  3699   return !_cm->mark_stack_empty() || has_aborted();
  3702 void CMTask::reached_limit() {
  3703   assert(_words_scanned >= _words_scanned_limit ||
  3704          _refs_reached >= _refs_reached_limit ,
  3705          "shouldn't have been called otherwise");
  3706   regular_clock_call();
  3709 void CMTask::regular_clock_call() {
  3710   if (has_aborted()) return;
  3712   // First, we need to recalculate the words scanned and refs reached
  3713   // limits for the next clock call.
  3714   recalculate_limits();
  3716   // During the regular clock call we do the following
  3718   // (1) If an overflow has been flagged, then we abort.
  3719   if (_cm->has_overflown()) {
  3720     set_has_aborted();
  3721     return;
  3724   // If we are not concurrent (i.e. we're doing remark) we don't need
  3725   // to check anything else. The other steps are only needed during
  3726   // the concurrent marking phase.
  3727   if (!concurrent()) return;
  3729   // (2) If marking has been aborted for Full GC, then we also abort.
  3730   if (_cm->has_aborted()) {
  3731     set_has_aborted();
  3732     statsOnly( ++_aborted_cm_aborted );
  3733     return;
  3736   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3738   // (3) If marking stats are enabled, then we update the step history.
  3739 #if _MARKING_STATS_
  3740   if (_words_scanned >= _words_scanned_limit) {
  3741     ++_clock_due_to_scanning;
  3743   if (_refs_reached >= _refs_reached_limit) {
  3744     ++_clock_due_to_marking;
  3747   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3748   _interval_start_time_ms = curr_time_ms;
  3749   _all_clock_intervals_ms.add(last_interval_ms);
  3751   if (_cm->verbose_medium()) {
  3752       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3753                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
  3754                         _worker_id, last_interval_ms,
  3755                         _words_scanned,
  3756                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3757                         _refs_reached,
  3758                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3760 #endif // _MARKING_STATS_
  3762   // (4) We check whether we should yield. If we have to, then we abort.
  3763   if (SuspendibleThreadSet::should_yield()) {
  3764     // We should yield. To do this we abort the task. The caller is
  3765     // responsible for yielding.
  3766     set_has_aborted();
  3767     statsOnly( ++_aborted_yield );
  3768     return;
  3771   // (5) We check whether we've reached our time quota. If we have,
  3772   // then we abort.
  3773   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3774   if (elapsed_time_ms > _time_target_ms) {
  3775     set_has_aborted();
  3776     _has_timed_out = true;
  3777     statsOnly( ++_aborted_timed_out );
  3778     return;
  3781   // (6) Finally, we check whether there are enough completed STAB
  3782   // buffers available for processing. If there are, we abort.
  3783   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3784   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3785     if (_cm->verbose_low()) {
  3786       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3787                              _worker_id);
  3789     // we do need to process SATB buffers, we'll abort and restart
  3790     // the marking task to do so
  3791     set_has_aborted();
  3792     statsOnly( ++_aborted_satb );
  3793     return;
  3797 void CMTask::recalculate_limits() {
  3798   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3799   _words_scanned_limit      = _real_words_scanned_limit;
  3801   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3802   _refs_reached_limit       = _real_refs_reached_limit;
  3805 void CMTask::decrease_limits() {
  3806   // This is called when we believe that we're going to do an infrequent
  3807   // operation which will increase the per byte scanned cost (i.e. move
  3808   // entries to/from the global stack). It basically tries to decrease the
  3809   // scanning limit so that the clock is called earlier.
  3811   if (_cm->verbose_medium()) {
  3812     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3815   _words_scanned_limit = _real_words_scanned_limit -
  3816     3 * words_scanned_period / 4;
  3817   _refs_reached_limit  = _real_refs_reached_limit -
  3818     3 * refs_reached_period / 4;
  3821 void CMTask::move_entries_to_global_stack() {
  3822   // local array where we'll store the entries that will be popped
  3823   // from the local queue
  3824   oop buffer[global_stack_transfer_size];
  3826   int n = 0;
  3827   oop obj;
  3828   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3829     buffer[n] = obj;
  3830     ++n;
  3833   if (n > 0) {
  3834     // we popped at least one entry from the local queue
  3836     statsOnly( ++_global_transfers_to; _local_pops += n );
  3838     if (!_cm->mark_stack_push(buffer, n)) {
  3839       if (_cm->verbose_low()) {
  3840         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3841                                _worker_id);
  3843       set_has_aborted();
  3844     } else {
  3845       // the transfer was successful
  3847       if (_cm->verbose_medium()) {
  3848         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3849                                _worker_id, n);
  3851       statsOnly( int tmp_size = _cm->mark_stack_size();
  3852                  if (tmp_size > _global_max_size) {
  3853                    _global_max_size = tmp_size;
  3855                  _global_pushes += n );
  3859   // this operation was quite expensive, so decrease the limits
  3860   decrease_limits();
  3863 void CMTask::get_entries_from_global_stack() {
  3864   // local array where we'll store the entries that will be popped
  3865   // from the global stack.
  3866   oop buffer[global_stack_transfer_size];
  3867   int n;
  3868   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3869   assert(n <= global_stack_transfer_size,
  3870          "we should not pop more than the given limit");
  3871   if (n > 0) {
  3872     // yes, we did actually pop at least one entry
  3874     statsOnly( ++_global_transfers_from; _global_pops += n );
  3875     if (_cm->verbose_medium()) {
  3876       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3877                              _worker_id, n);
  3879     for (int i = 0; i < n; ++i) {
  3880       bool success = _task_queue->push(buffer[i]);
  3881       // We only call this when the local queue is empty or under a
  3882       // given target limit. So, we do not expect this push to fail.
  3883       assert(success, "invariant");
  3886     statsOnly( int tmp_size = _task_queue->size();
  3887                if (tmp_size > _local_max_size) {
  3888                  _local_max_size = tmp_size;
  3890                _local_pushes += n );
  3893   // this operation was quite expensive, so decrease the limits
  3894   decrease_limits();
  3897 void CMTask::drain_local_queue(bool partially) {
  3898   if (has_aborted()) return;
  3900   // Decide what the target size is, depending whether we're going to
  3901   // drain it partially (so that other tasks can steal if they run out
  3902   // of things to do) or totally (at the very end).
  3903   size_t target_size;
  3904   if (partially) {
  3905     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3906   } else {
  3907     target_size = 0;
  3910   if (_task_queue->size() > target_size) {
  3911     if (_cm->verbose_high()) {
  3912       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3913                              _worker_id, target_size);
  3916     oop obj;
  3917     bool ret = _task_queue->pop_local(obj);
  3918     while (ret) {
  3919       statsOnly( ++_local_pops );
  3921       if (_cm->verbose_high()) {
  3922         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3923                                p2i((void*) obj));
  3926       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3927       assert(!_g1h->is_on_master_free_list(
  3928                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3930       scan_object(obj);
  3932       if (_task_queue->size() <= target_size || has_aborted()) {
  3933         ret = false;
  3934       } else {
  3935         ret = _task_queue->pop_local(obj);
  3939     if (_cm->verbose_high()) {
  3940       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3941                              _worker_id, _task_queue->size());
  3946 void CMTask::drain_global_stack(bool partially) {
  3947   if (has_aborted()) return;
  3949   // We have a policy to drain the local queue before we attempt to
  3950   // drain the global stack.
  3951   assert(partially || _task_queue->size() == 0, "invariant");
  3953   // Decide what the target size is, depending whether we're going to
  3954   // drain it partially (so that other tasks can steal if they run out
  3955   // of things to do) or totally (at the very end).  Notice that,
  3956   // because we move entries from the global stack in chunks or
  3957   // because another task might be doing the same, we might in fact
  3958   // drop below the target. But, this is not a problem.
  3959   size_t target_size;
  3960   if (partially) {
  3961     target_size = _cm->partial_mark_stack_size_target();
  3962   } else {
  3963     target_size = 0;
  3966   if (_cm->mark_stack_size() > target_size) {
  3967     if (_cm->verbose_low()) {
  3968       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3969                              _worker_id, target_size);
  3972     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3973       get_entries_from_global_stack();
  3974       drain_local_queue(partially);
  3977     if (_cm->verbose_low()) {
  3978       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3979                              _worker_id, _cm->mark_stack_size());
  3984 // SATB Queue has several assumptions on whether to call the par or
  3985 // non-par versions of the methods. this is why some of the code is
  3986 // replicated. We should really get rid of the single-threaded version
  3987 // of the code to simplify things.
  3988 void CMTask::drain_satb_buffers() {
  3989   if (has_aborted()) return;
  3991   // We set this so that the regular clock knows that we're in the
  3992   // middle of draining buffers and doesn't set the abort flag when it
  3993   // notices that SATB buffers are available for draining. It'd be
  3994   // very counter productive if it did that. :-)
  3995   _draining_satb_buffers = true;
  3997   CMObjectClosure oc(this);
  3998   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3999   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4000     satb_mq_set.set_par_closure(_worker_id, &oc);
  4001   } else {
  4002     satb_mq_set.set_closure(&oc);
  4005   // This keeps claiming and applying the closure to completed buffers
  4006   // until we run out of buffers or we need to abort.
  4007   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4008     while (!has_aborted() &&
  4009            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  4010       if (_cm->verbose_medium()) {
  4011         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4013       statsOnly( ++_satb_buffers_processed );
  4014       regular_clock_call();
  4016   } else {
  4017     while (!has_aborted() &&
  4018            satb_mq_set.apply_closure_to_completed_buffer()) {
  4019       if (_cm->verbose_medium()) {
  4020         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4022       statsOnly( ++_satb_buffers_processed );
  4023       regular_clock_call();
  4027   _draining_satb_buffers = false;
  4029   assert(has_aborted() ||
  4030          concurrent() ||
  4031          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4033   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4034     satb_mq_set.set_par_closure(_worker_id, NULL);
  4035   } else {
  4036     satb_mq_set.set_closure(NULL);
  4039   // again, this was a potentially expensive operation, decrease the
  4040   // limits to get the regular clock call early
  4041   decrease_limits();
  4044 void CMTask::print_stats() {
  4045   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4046                          _worker_id, _calls);
  4047   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4048                          _elapsed_time_ms, _termination_time_ms);
  4049   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4050                          _step_times_ms.num(), _step_times_ms.avg(),
  4051                          _step_times_ms.sd());
  4052   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4053                          _step_times_ms.maximum(), _step_times_ms.sum());
  4055 #if _MARKING_STATS_
  4056   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4057                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4058                          _all_clock_intervals_ms.sd());
  4059   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4060                          _all_clock_intervals_ms.maximum(),
  4061                          _all_clock_intervals_ms.sum());
  4062   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4063                          _clock_due_to_scanning, _clock_due_to_marking);
  4064   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4065                          _objs_scanned, _objs_found_on_bitmap);
  4066   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4067                          _local_pushes, _local_pops, _local_max_size);
  4068   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4069                          _global_pushes, _global_pops, _global_max_size);
  4070   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4071                          _global_transfers_to,_global_transfers_from);
  4072   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4073   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4074   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4075                          _steal_attempts, _steals);
  4076   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4077   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4078                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4079   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4080                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4081 #endif // _MARKING_STATS_
  4084 /*****************************************************************************
  4086     The do_marking_step(time_target_ms, ...) method is the building
  4087     block of the parallel marking framework. It can be called in parallel
  4088     with other invocations of do_marking_step() on different tasks
  4089     (but only one per task, obviously) and concurrently with the
  4090     mutator threads, or during remark, hence it eliminates the need
  4091     for two versions of the code. When called during remark, it will
  4092     pick up from where the task left off during the concurrent marking
  4093     phase. Interestingly, tasks are also claimable during evacuation
  4094     pauses too, since do_marking_step() ensures that it aborts before
  4095     it needs to yield.
  4097     The data structures that it uses to do marking work are the
  4098     following:
  4100       (1) Marking Bitmap. If there are gray objects that appear only
  4101       on the bitmap (this happens either when dealing with an overflow
  4102       or when the initial marking phase has simply marked the roots
  4103       and didn't push them on the stack), then tasks claim heap
  4104       regions whose bitmap they then scan to find gray objects. A
  4105       global finger indicates where the end of the last claimed region
  4106       is. A local finger indicates how far into the region a task has
  4107       scanned. The two fingers are used to determine how to gray an
  4108       object (i.e. whether simply marking it is OK, as it will be
  4109       visited by a task in the future, or whether it needs to be also
  4110       pushed on a stack).
  4112       (2) Local Queue. The local queue of the task which is accessed
  4113       reasonably efficiently by the task. Other tasks can steal from
  4114       it when they run out of work. Throughout the marking phase, a
  4115       task attempts to keep its local queue short but not totally
  4116       empty, so that entries are available for stealing by other
  4117       tasks. Only when there is no more work, a task will totally
  4118       drain its local queue.
  4120       (3) Global Mark Stack. This handles local queue overflow. During
  4121       marking only sets of entries are moved between it and the local
  4122       queues, as access to it requires a mutex and more fine-grain
  4123       interaction with it which might cause contention. If it
  4124       overflows, then the marking phase should restart and iterate
  4125       over the bitmap to identify gray objects. Throughout the marking
  4126       phase, tasks attempt to keep the global mark stack at a small
  4127       length but not totally empty, so that entries are available for
  4128       popping by other tasks. Only when there is no more work, tasks
  4129       will totally drain the global mark stack.
  4131       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4132       made available. Buffers are regularly removed from this queue
  4133       and scanned for roots, so that the queue doesn't get too
  4134       long. During remark, all completed buffers are processed, as
  4135       well as the filled in parts of any uncompleted buffers.
  4137     The do_marking_step() method tries to abort when the time target
  4138     has been reached. There are a few other cases when the
  4139     do_marking_step() method also aborts:
  4141       (1) When the marking phase has been aborted (after a Full GC).
  4143       (2) When a global overflow (on the global stack) has been
  4144       triggered. Before the task aborts, it will actually sync up with
  4145       the other tasks to ensure that all the marking data structures
  4146       (local queues, stacks, fingers etc.)  are re-initialized so that
  4147       when do_marking_step() completes, the marking phase can
  4148       immediately restart.
  4150       (3) When enough completed SATB buffers are available. The
  4151       do_marking_step() method only tries to drain SATB buffers right
  4152       at the beginning. So, if enough buffers are available, the
  4153       marking step aborts and the SATB buffers are processed at
  4154       the beginning of the next invocation.
  4156       (4) To yield. when we have to yield then we abort and yield
  4157       right at the end of do_marking_step(). This saves us from a lot
  4158       of hassle as, by yielding we might allow a Full GC. If this
  4159       happens then objects will be compacted underneath our feet, the
  4160       heap might shrink, etc. We save checking for this by just
  4161       aborting and doing the yield right at the end.
  4163     From the above it follows that the do_marking_step() method should
  4164     be called in a loop (or, otherwise, regularly) until it completes.
  4166     If a marking step completes without its has_aborted() flag being
  4167     true, it means it has completed the current marking phase (and
  4168     also all other marking tasks have done so and have all synced up).
  4170     A method called regular_clock_call() is invoked "regularly" (in
  4171     sub ms intervals) throughout marking. It is this clock method that
  4172     checks all the abort conditions which were mentioned above and
  4173     decides when the task should abort. A work-based scheme is used to
  4174     trigger this clock method: when the number of object words the
  4175     marking phase has scanned or the number of references the marking
  4176     phase has visited reach a given limit. Additional invocations to
  4177     the method clock have been planted in a few other strategic places
  4178     too. The initial reason for the clock method was to avoid calling
  4179     vtime too regularly, as it is quite expensive. So, once it was in
  4180     place, it was natural to piggy-back all the other conditions on it
  4181     too and not constantly check them throughout the code.
  4183     If do_termination is true then do_marking_step will enter its
  4184     termination protocol.
  4186     The value of is_serial must be true when do_marking_step is being
  4187     called serially (i.e. by the VMThread) and do_marking_step should
  4188     skip any synchronization in the termination and overflow code.
  4189     Examples include the serial remark code and the serial reference
  4190     processing closures.
  4192     The value of is_serial must be false when do_marking_step is
  4193     being called by any of the worker threads in a work gang.
  4194     Examples include the concurrent marking code (CMMarkingTask),
  4195     the MT remark code, and the MT reference processing closures.
  4197  *****************************************************************************/
  4199 void CMTask::do_marking_step(double time_target_ms,
  4200                              bool do_termination,
  4201                              bool is_serial) {
  4202   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4203   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4205   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4206   assert(_task_queues != NULL, "invariant");
  4207   assert(_task_queue != NULL, "invariant");
  4208   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4210   assert(!_claimed,
  4211          "only one thread should claim this task at any one time");
  4213   // OK, this doesn't safeguard again all possible scenarios, as it is
  4214   // possible for two threads to set the _claimed flag at the same
  4215   // time. But it is only for debugging purposes anyway and it will
  4216   // catch most problems.
  4217   _claimed = true;
  4219   _start_time_ms = os::elapsedVTime() * 1000.0;
  4220   statsOnly( _interval_start_time_ms = _start_time_ms );
  4222   // If do_stealing is true then do_marking_step will attempt to
  4223   // steal work from the other CMTasks. It only makes sense to
  4224   // enable stealing when the termination protocol is enabled
  4225   // and do_marking_step() is not being called serially.
  4226   bool do_stealing = do_termination && !is_serial;
  4228   double diff_prediction_ms =
  4229     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4230   _time_target_ms = time_target_ms - diff_prediction_ms;
  4232   // set up the variables that are used in the work-based scheme to
  4233   // call the regular clock method
  4234   _words_scanned = 0;
  4235   _refs_reached  = 0;
  4236   recalculate_limits();
  4238   // clear all flags
  4239   clear_has_aborted();
  4240   _has_timed_out = false;
  4241   _draining_satb_buffers = false;
  4243   ++_calls;
  4245   if (_cm->verbose_low()) {
  4246     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4247                            "target = %1.2lfms >>>>>>>>>>",
  4248                            _worker_id, _calls, _time_target_ms);
  4251   // Set up the bitmap and oop closures. Anything that uses them is
  4252   // eventually called from this method, so it is OK to allocate these
  4253   // statically.
  4254   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4255   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4256   set_cm_oop_closure(&cm_oop_closure);
  4258   if (_cm->has_overflown()) {
  4259     // This can happen if the mark stack overflows during a GC pause
  4260     // and this task, after a yield point, restarts. We have to abort
  4261     // as we need to get into the overflow protocol which happens
  4262     // right at the end of this task.
  4263     set_has_aborted();
  4266   // First drain any available SATB buffers. After this, we will not
  4267   // look at SATB buffers before the next invocation of this method.
  4268   // If enough completed SATB buffers are queued up, the regular clock
  4269   // will abort this task so that it restarts.
  4270   drain_satb_buffers();
  4271   // ...then partially drain the local queue and the global stack
  4272   drain_local_queue(true);
  4273   drain_global_stack(true);
  4275   do {
  4276     if (!has_aborted() && _curr_region != NULL) {
  4277       // This means that we're already holding on to a region.
  4278       assert(_finger != NULL, "if region is not NULL, then the finger "
  4279              "should not be NULL either");
  4281       // We might have restarted this task after an evacuation pause
  4282       // which might have evacuated the region we're holding on to
  4283       // underneath our feet. Let's read its limit again to make sure
  4284       // that we do not iterate over a region of the heap that
  4285       // contains garbage (update_region_limit() will also move
  4286       // _finger to the start of the region if it is found empty).
  4287       update_region_limit();
  4288       // We will start from _finger not from the start of the region,
  4289       // as we might be restarting this task after aborting half-way
  4290       // through scanning this region. In this case, _finger points to
  4291       // the address where we last found a marked object. If this is a
  4292       // fresh region, _finger points to start().
  4293       MemRegion mr = MemRegion(_finger, _region_limit);
  4295       if (_cm->verbose_low()) {
  4296         gclog_or_tty->print_cr("[%u] we're scanning part "
  4297                                "["PTR_FORMAT", "PTR_FORMAT") "
  4298                                "of region "HR_FORMAT,
  4299                                _worker_id, p2i(_finger), p2i(_region_limit),
  4300                                HR_FORMAT_PARAMS(_curr_region));
  4303       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4304              "humongous regions should go around loop once only");
  4306       // Some special cases:
  4307       // If the memory region is empty, we can just give up the region.
  4308       // If the current region is humongous then we only need to check
  4309       // the bitmap for the bit associated with the start of the object,
  4310       // scan the object if it's live, and give up the region.
  4311       // Otherwise, let's iterate over the bitmap of the part of the region
  4312       // that is left.
  4313       // If the iteration is successful, give up the region.
  4314       if (mr.is_empty()) {
  4315         giveup_current_region();
  4316         regular_clock_call();
  4317       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4318         if (_nextMarkBitMap->isMarked(mr.start())) {
  4319           // The object is marked - apply the closure
  4320           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4321           bitmap_closure.do_bit(offset);
  4323         // Even if this task aborted while scanning the humongous object
  4324         // we can (and should) give up the current region.
  4325         giveup_current_region();
  4326         regular_clock_call();
  4327       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4328         giveup_current_region();
  4329         regular_clock_call();
  4330       } else {
  4331         assert(has_aborted(), "currently the only way to do so");
  4332         // The only way to abort the bitmap iteration is to return
  4333         // false from the do_bit() method. However, inside the
  4334         // do_bit() method we move the _finger to point to the
  4335         // object currently being looked at. So, if we bail out, we
  4336         // have definitely set _finger to something non-null.
  4337         assert(_finger != NULL, "invariant");
  4339         // Region iteration was actually aborted. So now _finger
  4340         // points to the address of the object we last scanned. If we
  4341         // leave it there, when we restart this task, we will rescan
  4342         // the object. It is easy to avoid this. We move the finger by
  4343         // enough to point to the next possible object header (the
  4344         // bitmap knows by how much we need to move it as it knows its
  4345         // granularity).
  4346         assert(_finger < _region_limit, "invariant");
  4347         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4348         // Check if bitmap iteration was aborted while scanning the last object
  4349         if (new_finger >= _region_limit) {
  4350           giveup_current_region();
  4351         } else {
  4352           move_finger_to(new_finger);
  4356     // At this point we have either completed iterating over the
  4357     // region we were holding on to, or we have aborted.
  4359     // We then partially drain the local queue and the global stack.
  4360     // (Do we really need this?)
  4361     drain_local_queue(true);
  4362     drain_global_stack(true);
  4364     // Read the note on the claim_region() method on why it might
  4365     // return NULL with potentially more regions available for
  4366     // claiming and why we have to check out_of_regions() to determine
  4367     // whether we're done or not.
  4368     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4369       // We are going to try to claim a new region. We should have
  4370       // given up on the previous one.
  4371       // Separated the asserts so that we know which one fires.
  4372       assert(_curr_region  == NULL, "invariant");
  4373       assert(_finger       == NULL, "invariant");
  4374       assert(_region_limit == NULL, "invariant");
  4375       if (_cm->verbose_low()) {
  4376         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4378       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4379       if (claimed_region != NULL) {
  4380         // Yes, we managed to claim one
  4381         statsOnly( ++_regions_claimed );
  4383         if (_cm->verbose_low()) {
  4384           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4385                                  "region "PTR_FORMAT,
  4386                                  _worker_id, p2i(claimed_region));
  4389         setup_for_region(claimed_region);
  4390         assert(_curr_region == claimed_region, "invariant");
  4392       // It is important to call the regular clock here. It might take
  4393       // a while to claim a region if, for example, we hit a large
  4394       // block of empty regions. So we need to call the regular clock
  4395       // method once round the loop to make sure it's called
  4396       // frequently enough.
  4397       regular_clock_call();
  4400     if (!has_aborted() && _curr_region == NULL) {
  4401       assert(_cm->out_of_regions(),
  4402              "at this point we should be out of regions");
  4404   } while ( _curr_region != NULL && !has_aborted());
  4406   if (!has_aborted()) {
  4407     // We cannot check whether the global stack is empty, since other
  4408     // tasks might be pushing objects to it concurrently.
  4409     assert(_cm->out_of_regions(),
  4410            "at this point we should be out of regions");
  4412     if (_cm->verbose_low()) {
  4413       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4416     // Try to reduce the number of available SATB buffers so that
  4417     // remark has less work to do.
  4418     drain_satb_buffers();
  4421   // Since we've done everything else, we can now totally drain the
  4422   // local queue and global stack.
  4423   drain_local_queue(false);
  4424   drain_global_stack(false);
  4426   // Attempt at work stealing from other task's queues.
  4427   if (do_stealing && !has_aborted()) {
  4428     // We have not aborted. This means that we have finished all that
  4429     // we could. Let's try to do some stealing...
  4431     // We cannot check whether the global stack is empty, since other
  4432     // tasks might be pushing objects to it concurrently.
  4433     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4434            "only way to reach here");
  4436     if (_cm->verbose_low()) {
  4437       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4440     while (!has_aborted()) {
  4441       oop obj;
  4442       statsOnly( ++_steal_attempts );
  4444       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4445         if (_cm->verbose_medium()) {
  4446           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4447                                  _worker_id, p2i((void*) obj));
  4450         statsOnly( ++_steals );
  4452         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4453                "any stolen object should be marked");
  4454         scan_object(obj);
  4456         // And since we're towards the end, let's totally drain the
  4457         // local queue and global stack.
  4458         drain_local_queue(false);
  4459         drain_global_stack(false);
  4460       } else {
  4461         break;
  4466   // If we are about to wrap up and go into termination, check if we
  4467   // should raise the overflow flag.
  4468   if (do_termination && !has_aborted()) {
  4469     if (_cm->force_overflow()->should_force()) {
  4470       _cm->set_has_overflown();
  4471       regular_clock_call();
  4475   // We still haven't aborted. Now, let's try to get into the
  4476   // termination protocol.
  4477   if (do_termination && !has_aborted()) {
  4478     // We cannot check whether the global stack is empty, since other
  4479     // tasks might be concurrently pushing objects on it.
  4480     // Separated the asserts so that we know which one fires.
  4481     assert(_cm->out_of_regions(), "only way to reach here");
  4482     assert(_task_queue->size() == 0, "only way to reach here");
  4484     if (_cm->verbose_low()) {
  4485       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4488     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4490     // The CMTask class also extends the TerminatorTerminator class,
  4491     // hence its should_exit_termination() method will also decide
  4492     // whether to exit the termination protocol or not.
  4493     bool finished = (is_serial ||
  4494                      _cm->terminator()->offer_termination(this));
  4495     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4496     _termination_time_ms +=
  4497       termination_end_time_ms - _termination_start_time_ms;
  4499     if (finished) {
  4500       // We're all done.
  4502       if (_worker_id == 0) {
  4503         // let's allow task 0 to do this
  4504         if (concurrent()) {
  4505           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4506           // we need to set this to false before the next
  4507           // safepoint. This way we ensure that the marking phase
  4508           // doesn't observe any more heap expansions.
  4509           _cm->clear_concurrent_marking_in_progress();
  4513       // We can now guarantee that the global stack is empty, since
  4514       // all other tasks have finished. We separated the guarantees so
  4515       // that, if a condition is false, we can immediately find out
  4516       // which one.
  4517       guarantee(_cm->out_of_regions(), "only way to reach here");
  4518       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4519       guarantee(_task_queue->size() == 0, "only way to reach here");
  4520       guarantee(!_cm->has_overflown(), "only way to reach here");
  4521       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4523       if (_cm->verbose_low()) {
  4524         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4526     } else {
  4527       // Apparently there's more work to do. Let's abort this task. It
  4528       // will restart it and we can hopefully find more things to do.
  4530       if (_cm->verbose_low()) {
  4531         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4532                                _worker_id);
  4535       set_has_aborted();
  4536       statsOnly( ++_aborted_termination );
  4540   // Mainly for debugging purposes to make sure that a pointer to the
  4541   // closure which was statically allocated in this frame doesn't
  4542   // escape it by accident.
  4543   set_cm_oop_closure(NULL);
  4544   double end_time_ms = os::elapsedVTime() * 1000.0;
  4545   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4546   // Update the step history.
  4547   _step_times_ms.add(elapsed_time_ms);
  4549   if (has_aborted()) {
  4550     // The task was aborted for some reason.
  4552     statsOnly( ++_aborted );
  4554     if (_has_timed_out) {
  4555       double diff_ms = elapsed_time_ms - _time_target_ms;
  4556       // Keep statistics of how well we did with respect to hitting
  4557       // our target only if we actually timed out (if we aborted for
  4558       // other reasons, then the results might get skewed).
  4559       _marking_step_diffs_ms.add(diff_ms);
  4562     if (_cm->has_overflown()) {
  4563       // This is the interesting one. We aborted because a global
  4564       // overflow was raised. This means we have to restart the
  4565       // marking phase and start iterating over regions. However, in
  4566       // order to do this we have to make sure that all tasks stop
  4567       // what they are doing and re-initialise in a safe manner. We
  4568       // will achieve this with the use of two barrier sync points.
  4570       if (_cm->verbose_low()) {
  4571         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4574       if (!is_serial) {
  4575         // We only need to enter the sync barrier if being called
  4576         // from a parallel context
  4577         _cm->enter_first_sync_barrier(_worker_id);
  4579         // When we exit this sync barrier we know that all tasks have
  4580         // stopped doing marking work. So, it's now safe to
  4581         // re-initialise our data structures. At the end of this method,
  4582         // task 0 will clear the global data structures.
  4585       statsOnly( ++_aborted_overflow );
  4587       // We clear the local state of this task...
  4588       clear_region_fields();
  4590       if (!is_serial) {
  4591         // ...and enter the second barrier.
  4592         _cm->enter_second_sync_barrier(_worker_id);
  4594       // At this point, if we're during the concurrent phase of
  4595       // marking, everything has been re-initialized and we're
  4596       // ready to restart.
  4599     if (_cm->verbose_low()) {
  4600       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4601                              "elapsed = %1.2lfms <<<<<<<<<<",
  4602                              _worker_id, _time_target_ms, elapsed_time_ms);
  4603       if (_cm->has_aborted()) {
  4604         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4605                                _worker_id);
  4608   } else {
  4609     if (_cm->verbose_low()) {
  4610       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4611                              "elapsed = %1.2lfms <<<<<<<<<<",
  4612                              _worker_id, _time_target_ms, elapsed_time_ms);
  4616   _claimed = false;
  4619 CMTask::CMTask(uint worker_id,
  4620                ConcurrentMark* cm,
  4621                size_t* marked_bytes,
  4622                BitMap* card_bm,
  4623                CMTaskQueue* task_queue,
  4624                CMTaskQueueSet* task_queues)
  4625   : _g1h(G1CollectedHeap::heap()),
  4626     _worker_id(worker_id), _cm(cm),
  4627     _claimed(false),
  4628     _nextMarkBitMap(NULL), _hash_seed(17),
  4629     _task_queue(task_queue),
  4630     _task_queues(task_queues),
  4631     _cm_oop_closure(NULL),
  4632     _marked_bytes_array(marked_bytes),
  4633     _card_bm(card_bm) {
  4634   guarantee(task_queue != NULL, "invariant");
  4635   guarantee(task_queues != NULL, "invariant");
  4637   statsOnly( _clock_due_to_scanning = 0;
  4638              _clock_due_to_marking  = 0 );
  4640   _marking_step_diffs_ms.add(0.5);
  4643 // These are formatting macros that are used below to ensure
  4644 // consistent formatting. The *_H_* versions are used to format the
  4645 // header for a particular value and they should be kept consistent
  4646 // with the corresponding macro. Also note that most of the macros add
  4647 // the necessary white space (as a prefix) which makes them a bit
  4648 // easier to compose.
  4650 // All the output lines are prefixed with this string to be able to
  4651 // identify them easily in a large log file.
  4652 #define G1PPRL_LINE_PREFIX            "###"
  4654 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4655 #ifdef _LP64
  4656 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4657 #else // _LP64
  4658 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4659 #endif // _LP64
  4661 // For per-region info
  4662 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4663 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4664 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4665 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4666 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4667 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4669 // For summary info
  4670 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4671 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4672 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4673 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4675 G1PrintRegionLivenessInfoClosure::
  4676 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4677   : _out(out),
  4678     _total_used_bytes(0), _total_capacity_bytes(0),
  4679     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4680     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4681     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4682     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4683   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4684   MemRegion g1_reserved = g1h->g1_reserved();
  4685   double now = os::elapsedTime();
  4687   // Print the header of the output.
  4688   _out->cr();
  4689   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4690   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4691                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4692                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4693                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4694                  HeapRegion::GrainBytes);
  4695   _out->print_cr(G1PPRL_LINE_PREFIX);
  4696   _out->print_cr(G1PPRL_LINE_PREFIX
  4697                 G1PPRL_TYPE_H_FORMAT
  4698                 G1PPRL_ADDR_BASE_H_FORMAT
  4699                 G1PPRL_BYTE_H_FORMAT
  4700                 G1PPRL_BYTE_H_FORMAT
  4701                 G1PPRL_BYTE_H_FORMAT
  4702                 G1PPRL_DOUBLE_H_FORMAT
  4703                 G1PPRL_BYTE_H_FORMAT
  4704                 G1PPRL_BYTE_H_FORMAT,
  4705                 "type", "address-range",
  4706                 "used", "prev-live", "next-live", "gc-eff",
  4707                 "remset", "code-roots");
  4708   _out->print_cr(G1PPRL_LINE_PREFIX
  4709                 G1PPRL_TYPE_H_FORMAT
  4710                 G1PPRL_ADDR_BASE_H_FORMAT
  4711                 G1PPRL_BYTE_H_FORMAT
  4712                 G1PPRL_BYTE_H_FORMAT
  4713                 G1PPRL_BYTE_H_FORMAT
  4714                 G1PPRL_DOUBLE_H_FORMAT
  4715                 G1PPRL_BYTE_H_FORMAT
  4716                 G1PPRL_BYTE_H_FORMAT,
  4717                 "", "",
  4718                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4719                 "(bytes)", "(bytes)");
  4722 // It takes as a parameter a reference to one of the _hum_* fields, it
  4723 // deduces the corresponding value for a region in a humongous region
  4724 // series (either the region size, or what's left if the _hum_* field
  4725 // is < the region size), and updates the _hum_* field accordingly.
  4726 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4727   size_t bytes = 0;
  4728   // The > 0 check is to deal with the prev and next live bytes which
  4729   // could be 0.
  4730   if (*hum_bytes > 0) {
  4731     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4732     *hum_bytes -= bytes;
  4734   return bytes;
  4737 // It deduces the values for a region in a humongous region series
  4738 // from the _hum_* fields and updates those accordingly. It assumes
  4739 // that that _hum_* fields have already been set up from the "starts
  4740 // humongous" region and we visit the regions in address order.
  4741 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4742                                                      size_t* capacity_bytes,
  4743                                                      size_t* prev_live_bytes,
  4744                                                      size_t* next_live_bytes) {
  4745   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4746   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4747   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4748   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4749   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4752 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4753   const char* type       = r->get_type_str();
  4754   HeapWord* bottom       = r->bottom();
  4755   HeapWord* end          = r->end();
  4756   size_t capacity_bytes  = r->capacity();
  4757   size_t used_bytes      = r->used();
  4758   size_t prev_live_bytes = r->live_bytes();
  4759   size_t next_live_bytes = r->next_live_bytes();
  4760   double gc_eff          = r->gc_efficiency();
  4761   size_t remset_bytes    = r->rem_set()->mem_size();
  4762   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4764   if (r->startsHumongous()) {
  4765     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4766            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4767            "they should have been zeroed after the last time we used them");
  4768     // Set up the _hum_* fields.
  4769     _hum_capacity_bytes  = capacity_bytes;
  4770     _hum_used_bytes      = used_bytes;
  4771     _hum_prev_live_bytes = prev_live_bytes;
  4772     _hum_next_live_bytes = next_live_bytes;
  4773     get_hum_bytes(&used_bytes, &capacity_bytes,
  4774                   &prev_live_bytes, &next_live_bytes);
  4775     end = bottom + HeapRegion::GrainWords;
  4776   } else if (r->continuesHumongous()) {
  4777     get_hum_bytes(&used_bytes, &capacity_bytes,
  4778                   &prev_live_bytes, &next_live_bytes);
  4779     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4782   _total_used_bytes      += used_bytes;
  4783   _total_capacity_bytes  += capacity_bytes;
  4784   _total_prev_live_bytes += prev_live_bytes;
  4785   _total_next_live_bytes += next_live_bytes;
  4786   _total_remset_bytes    += remset_bytes;
  4787   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4789   // Print a line for this particular region.
  4790   _out->print_cr(G1PPRL_LINE_PREFIX
  4791                  G1PPRL_TYPE_FORMAT
  4792                  G1PPRL_ADDR_BASE_FORMAT
  4793                  G1PPRL_BYTE_FORMAT
  4794                  G1PPRL_BYTE_FORMAT
  4795                  G1PPRL_BYTE_FORMAT
  4796                  G1PPRL_DOUBLE_FORMAT
  4797                  G1PPRL_BYTE_FORMAT
  4798                  G1PPRL_BYTE_FORMAT,
  4799                  type, p2i(bottom), p2i(end),
  4800                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4801                  remset_bytes, strong_code_roots_bytes);
  4803   return false;
  4806 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4807   // add static memory usages to remembered set sizes
  4808   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4809   // Print the footer of the output.
  4810   _out->print_cr(G1PPRL_LINE_PREFIX);
  4811   _out->print_cr(G1PPRL_LINE_PREFIX
  4812                  " SUMMARY"
  4813                  G1PPRL_SUM_MB_FORMAT("capacity")
  4814                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4815                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4816                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4817                  G1PPRL_SUM_MB_FORMAT("remset")
  4818                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4819                  bytes_to_mb(_total_capacity_bytes),
  4820                  bytes_to_mb(_total_used_bytes),
  4821                  perc(_total_used_bytes, _total_capacity_bytes),
  4822                  bytes_to_mb(_total_prev_live_bytes),
  4823                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4824                  bytes_to_mb(_total_next_live_bytes),
  4825                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4826                  bytes_to_mb(_total_remset_bytes),
  4827                  bytes_to_mb(_total_strong_code_roots_bytes));
  4828   _out->cr();

mercurial