src/share/vm/gc_interface/collectedHeap.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1822
0bfd3fb24150
child 2188
8b10f48633dc
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    34 class CollectorPolicy;
    36 //
    37 // CollectedHeap
    38 //   SharedHeap
    39 //     GenCollectedHeap
    40 //     G1CollectedHeap
    41 //   ParallelScavengeHeap
    42 //
    43 class CollectedHeap : public CHeapObj {
    44   friend class VMStructs;
    45   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    46   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    48 #ifdef ASSERT
    49   static int       _fire_out_of_memory_count;
    50 #endif
    52   // Used for filler objects (static, but initialized in ctor).
    53   static size_t _filler_array_max_size;
    55   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    56   bool _defer_initial_card_mark;
    58  protected:
    59   MemRegion _reserved;
    60   BarrierSet* _barrier_set;
    61   bool _is_gc_active;
    62   unsigned int _total_collections;          // ... started
    63   unsigned int _total_full_collections;     // ... started
    64   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    65   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    67   // Reason for current garbage collection.  Should be set to
    68   // a value reflecting no collection between collections.
    69   GCCause::Cause _gc_cause;
    70   GCCause::Cause _gc_lastcause;
    71   PerfStringVariable* _perf_gc_cause;
    72   PerfStringVariable* _perf_gc_lastcause;
    74   // Constructor
    75   CollectedHeap();
    77   // Do common initializations that must follow instance construction,
    78   // for example, those needing virtual calls.
    79   // This code could perhaps be moved into initialize() but would
    80   // be slightly more awkward because we want the latter to be a
    81   // pure virtual.
    82   void pre_initialize();
    84   // Create a new tlab
    85   virtual HeapWord* allocate_new_tlab(size_t size);
    87   // Accumulate statistics on all tlabs.
    88   virtual void accumulate_statistics_all_tlabs();
    90   // Reinitialize tlabs before resuming mutators.
    91   virtual void resize_all_tlabs();
    93  protected:
    94   // Allocate from the current thread's TLAB, with broken-out slow path.
    95   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    96   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
    98   // Allocate an uninitialized block of the given size, or returns NULL if
    99   // this is impossible.
   100   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
   102   // Like allocate_init, but the block returned by a successful allocation
   103   // is guaranteed initialized to zeros.
   104   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
   106   // Same as common_mem version, except memory is allocated in the permanent area
   107   // If there is no permanent area, revert to common_mem_allocate_noinit
   108   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   110   // Same as common_mem version, except memory is allocated in the permanent area
   111   // If there is no permanent area, revert to common_mem_allocate_init
   112   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   114   // Helper functions for (VM) allocation.
   115   inline static void post_allocation_setup_common(KlassHandle klass,
   116                                                   HeapWord* obj, size_t size);
   117   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   118                                                             HeapWord* objPtr,
   119                                                             size_t size);
   121   inline static void post_allocation_setup_obj(KlassHandle klass,
   122                                                HeapWord* obj, size_t size);
   124   inline static void post_allocation_setup_array(KlassHandle klass,
   125                                                  HeapWord* obj, size_t size,
   126                                                  int length);
   128   // Clears an allocated object.
   129   inline static void init_obj(HeapWord* obj, size_t size);
   131   // Filler object utilities.
   132   static inline size_t filler_array_hdr_size();
   133   static inline size_t filler_array_min_size();
   134   static inline size_t filler_array_max_size();
   136   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   137   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   139   // Fill with a single array; caller must ensure filler_array_min_size() <=
   140   // words <= filler_array_max_size().
   141   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   143   // Fill with a single object (either an int array or a java.lang.Object).
   144   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   146   // Verification functions
   147   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   148     PRODUCT_RETURN;
   149   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   150     PRODUCT_RETURN;
   151   debug_only(static void check_for_valid_allocation_state();)
   153  public:
   154   enum Name {
   155     Abstract,
   156     SharedHeap,
   157     GenCollectedHeap,
   158     ParallelScavengeHeap,
   159     G1CollectedHeap
   160   };
   162   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   164   /**
   165    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   166    * and JNI_OK on success.
   167    */
   168   virtual jint initialize() = 0;
   170   // In many heaps, there will be a need to perform some initialization activities
   171   // after the Universe is fully formed, but before general heap allocation is allowed.
   172   // This is the correct place to place such initialization methods.
   173   virtual void post_initialize() = 0;
   175   MemRegion reserved_region() const { return _reserved; }
   176   address base() const { return (address)reserved_region().start(); }
   178   // Future cleanup here. The following functions should specify bytes or
   179   // heapwords as part of their signature.
   180   virtual size_t capacity() const = 0;
   181   virtual size_t used() const = 0;
   183   // Return "true" if the part of the heap that allocates Java
   184   // objects has reached the maximal committed limit that it can
   185   // reach, without a garbage collection.
   186   virtual bool is_maximal_no_gc() const = 0;
   188   virtual size_t permanent_capacity() const = 0;
   189   virtual size_t permanent_used() const = 0;
   191   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   192   // memory that the vm could make available for storing 'normal' java objects.
   193   // This is based on the reserved address space, but should not include space
   194   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   195   // perm gen space or, in the case of the young gen, one of the survivor
   196   // spaces).
   197   virtual size_t max_capacity() const = 0;
   199   // Returns "TRUE" if "p" points into the reserved area of the heap.
   200   bool is_in_reserved(const void* p) const {
   201     return _reserved.contains(p);
   202   }
   204   bool is_in_reserved_or_null(const void* p) const {
   205     return p == NULL || is_in_reserved(p);
   206   }
   208   // Returns "TRUE" if "p" points to the head of an allocated object in the
   209   // heap. Since this method can be expensive in general, we restrict its
   210   // use to assertion checking only.
   211   virtual bool is_in(const void* p) const = 0;
   213   bool is_in_or_null(const void* p) const {
   214     return p == NULL || is_in(p);
   215   }
   217   // Let's define some terms: a "closed" subset of a heap is one that
   218   //
   219   // 1) contains all currently-allocated objects, and
   220   //
   221   // 2) is closed under reference: no object in the closed subset
   222   //    references one outside the closed subset.
   223   //
   224   // Membership in a heap's closed subset is useful for assertions.
   225   // Clearly, the entire heap is a closed subset, so the default
   226   // implementation is to use "is_in_reserved".  But this may not be too
   227   // liberal to perform useful checking.  Also, the "is_in" predicate
   228   // defines a closed subset, but may be too expensive, since "is_in"
   229   // verifies that its argument points to an object head.  The
   230   // "closed_subset" method allows a heap to define an intermediate
   231   // predicate, allowing more precise checking than "is_in_reserved" at
   232   // lower cost than "is_in."
   234   // One important case is a heap composed of disjoint contiguous spaces,
   235   // such as the Garbage-First collector.  Such heaps have a convenient
   236   // closed subset consisting of the allocated portions of those
   237   // contiguous spaces.
   239   // Return "TRUE" iff the given pointer points into the heap's defined
   240   // closed subset (which defaults to the entire heap).
   241   virtual bool is_in_closed_subset(const void* p) const {
   242     return is_in_reserved(p);
   243   }
   245   bool is_in_closed_subset_or_null(const void* p) const {
   246     return p == NULL || is_in_closed_subset(p);
   247   }
   249   // XXX is_permanent() and is_in_permanent() should be better named
   250   // to distinguish one from the other.
   252   // Returns "TRUE" if "p" is allocated as "permanent" data.
   253   // If the heap does not use "permanent" data, returns the same
   254   // value is_in_reserved() would return.
   255   // NOTE: this actually returns true if "p" is in reserved space
   256   // for the space not that it is actually allocated (i.e. in committed
   257   // space). If you need the more conservative answer use is_permanent().
   258   virtual bool is_in_permanent(const void *p) const = 0;
   260   bool is_in_permanent_or_null(const void *p) const {
   261     return p == NULL || is_in_permanent(p);
   262   }
   264   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   265   // If the heap does not use "permanent" data, returns the same
   266   // value is_in() would return.
   267   virtual bool is_permanent(const void *p) const = 0;
   269   bool is_permanent_or_null(const void *p) const {
   270     return p == NULL || is_permanent(p);
   271   }
   273   // An object is scavengable if its location may move during a scavenge.
   274   // (A scavenge is a GC which is not a full GC.)
   275   // Currently, this just means it is not perm (and not null).
   276   // This could change if we rethink what's in perm-gen.
   277   bool is_scavengable(const void *p) const {
   278     return !is_in_permanent_or_null(p);
   279   }
   281   // Returns "TRUE" if "p" is a method oop in the
   282   // current heap, with high probability. This predicate
   283   // is not stable, in general.
   284   bool is_valid_method(oop p) const;
   286   void set_gc_cause(GCCause::Cause v) {
   287      if (UsePerfData) {
   288        _gc_lastcause = _gc_cause;
   289        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   290        _perf_gc_cause->set_value(GCCause::to_string(v));
   291      }
   292     _gc_cause = v;
   293   }
   294   GCCause::Cause gc_cause() { return _gc_cause; }
   296   // Preload classes into the shared portion of the heap, and then dump
   297   // that data to a file so that it can be loaded directly by another
   298   // VM (then terminate).
   299   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   301   // General obj/array allocation facilities.
   302   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   303   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   304   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   306   // Special obj/array allocation facilities.
   307   // Some heaps may want to manage "permanent" data uniquely. These default
   308   // to the general routines if the heap does not support such handling.
   309   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   310   // permanent_obj_allocate_no_klass_install() does not do the installation of
   311   // the klass pointer in the newly created object (as permanent_obj_allocate()
   312   // above does).  This allows for a delay in the installation of the klass
   313   // pointer that is needed during the create of klassKlass's.  The
   314   // method post_allocation_install_obj_klass() is used to install the
   315   // klass pointer.
   316   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   317                                                             int size,
   318                                                             TRAPS);
   319   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   320                                                        oop obj,
   321                                                        int size);
   322   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   324   // Raw memory allocation facilities
   325   // The obj and array allocate methods are covers for these methods.
   326   // The permanent allocation method should default to mem_allocate if
   327   // permanent memory isn't supported.
   328   virtual HeapWord* mem_allocate(size_t size,
   329                                  bool is_noref,
   330                                  bool is_tlab,
   331                                  bool* gc_overhead_limit_was_exceeded) = 0;
   332   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   334   // The boundary between a "large" and "small" array of primitives, in words.
   335   virtual size_t large_typearray_limit() = 0;
   337   // Utilities for turning raw memory into filler objects.
   338   //
   339   // min_fill_size() is the smallest region that can be filled.
   340   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   341   // multiple objects.  fill_with_object() is for regions known to be smaller
   342   // than the largest array of integers; it uses a single object to fill the
   343   // region and has slightly less overhead.
   344   static size_t min_fill_size() {
   345     return size_t(align_object_size(oopDesc::header_size()));
   346   }
   348   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   350   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   351   static void fill_with_object(MemRegion region, bool zap = true) {
   352     fill_with_object(region.start(), region.word_size(), zap);
   353   }
   354   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   355     fill_with_object(start, pointer_delta(end, start), zap);
   356   }
   358   // Some heaps may offer a contiguous region for shared non-blocking
   359   // allocation, via inlined code (by exporting the address of the top and
   360   // end fields defining the extent of the contiguous allocation region.)
   362   // This function returns "true" iff the heap supports this kind of
   363   // allocation.  (Default is "no".)
   364   virtual bool supports_inline_contig_alloc() const {
   365     return false;
   366   }
   367   // These functions return the addresses of the fields that define the
   368   // boundaries of the contiguous allocation area.  (These fields should be
   369   // physically near to one another.)
   370   virtual HeapWord** top_addr() const {
   371     guarantee(false, "inline contiguous allocation not supported");
   372     return NULL;
   373   }
   374   virtual HeapWord** end_addr() const {
   375     guarantee(false, "inline contiguous allocation not supported");
   376     return NULL;
   377   }
   379   // Some heaps may be in an unparseable state at certain times between
   380   // collections. This may be necessary for efficient implementation of
   381   // certain allocation-related activities. Calling this function before
   382   // attempting to parse a heap ensures that the heap is in a parsable
   383   // state (provided other concurrent activity does not introduce
   384   // unparsability). It is normally expected, therefore, that this
   385   // method is invoked with the world stopped.
   386   // NOTE: if you override this method, make sure you call
   387   // super::ensure_parsability so that the non-generational
   388   // part of the work gets done. See implementation of
   389   // CollectedHeap::ensure_parsability and, for instance,
   390   // that of GenCollectedHeap::ensure_parsability().
   391   // The argument "retire_tlabs" controls whether existing TLABs
   392   // are merely filled or also retired, thus preventing further
   393   // allocation from them and necessitating allocation of new TLABs.
   394   virtual void ensure_parsability(bool retire_tlabs);
   396   // Return an estimate of the maximum allocation that could be performed
   397   // without triggering any collection or expansion activity.  In a
   398   // generational collector, for example, this is probably the largest
   399   // allocation that could be supported (without expansion) in the youngest
   400   // generation.  It is "unsafe" because no locks are taken; the result
   401   // should be treated as an approximation, not a guarantee, for use in
   402   // heuristic resizing decisions.
   403   virtual size_t unsafe_max_alloc() = 0;
   405   // Section on thread-local allocation buffers (TLABs)
   406   // If the heap supports thread-local allocation buffers, it should override
   407   // the following methods:
   408   // Returns "true" iff the heap supports thread-local allocation buffers.
   409   // The default is "no".
   410   virtual bool supports_tlab_allocation() const {
   411     return false;
   412   }
   413   // The amount of space available for thread-local allocation buffers.
   414   virtual size_t tlab_capacity(Thread *thr) const {
   415     guarantee(false, "thread-local allocation buffers not supported");
   416     return 0;
   417   }
   418   // An estimate of the maximum allocation that could be performed
   419   // for thread-local allocation buffers without triggering any
   420   // collection or expansion activity.
   421   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   422     guarantee(false, "thread-local allocation buffers not supported");
   423     return 0;
   424   }
   426   // Can a compiler initialize a new object without store barriers?
   427   // This permission only extends from the creation of a new object
   428   // via a TLAB up to the first subsequent safepoint. If such permission
   429   // is granted for this heap type, the compiler promises to call
   430   // defer_store_barrier() below on any slow path allocation of
   431   // a new object for which such initializing store barriers will
   432   // have been elided.
   433   virtual bool can_elide_tlab_store_barriers() const = 0;
   435   // If a compiler is eliding store barriers for TLAB-allocated objects,
   436   // there is probably a corresponding slow path which can produce
   437   // an object allocated anywhere.  The compiler's runtime support
   438   // promises to call this function on such a slow-path-allocated
   439   // object before performing initializations that have elided
   440   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   441   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   443   // Answers whether an initializing store to a new object currently
   444   // allocated at the given address doesn't need a store
   445   // barrier. Returns "true" if it doesn't need an initializing
   446   // store barrier; answers "false" if it does.
   447   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   449   // If a compiler is eliding store barriers for TLAB-allocated objects,
   450   // we will be informed of a slow-path allocation by a call
   451   // to new_store_pre_barrier() above. Such a call precedes the
   452   // initialization of the object itself, and no post-store-barriers will
   453   // be issued. Some heap types require that the barrier strictly follows
   454   // the initializing stores. (This is currently implemented by deferring the
   455   // barrier until the next slow-path allocation or gc-related safepoint.)
   456   // This interface answers whether a particular heap type needs the card
   457   // mark to be thus strictly sequenced after the stores.
   458   virtual bool card_mark_must_follow_store() const = 0;
   460   // If the CollectedHeap was asked to defer a store barrier above,
   461   // this informs it to flush such a deferred store barrier to the
   462   // remembered set.
   463   virtual void flush_deferred_store_barrier(JavaThread* thread);
   465   // Can a compiler elide a store barrier when it writes
   466   // a permanent oop into the heap?  Applies when the compiler
   467   // is storing x to the heap, where x->is_perm() is true.
   468   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   470   // Does this heap support heap inspection (+PrintClassHistogram?)
   471   virtual bool supports_heap_inspection() const = 0;
   473   // Perform a collection of the heap; intended for use in implementing
   474   // "System.gc".  This probably implies as full a collection as the
   475   // "CollectedHeap" supports.
   476   virtual void collect(GCCause::Cause cause) = 0;
   478   // This interface assumes that it's being called by the
   479   // vm thread. It collects the heap assuming that the
   480   // heap lock is already held and that we are executing in
   481   // the context of the vm thread.
   482   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   484   // Returns the barrier set for this heap
   485   BarrierSet* barrier_set() { return _barrier_set; }
   487   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   488   // that it should answer "false" for the concurrent part of a concurrent
   489   // collector -- dld).
   490   bool is_gc_active() const { return _is_gc_active; }
   492   // Total number of GC collections (started)
   493   unsigned int total_collections() const { return _total_collections; }
   494   unsigned int total_full_collections() const { return _total_full_collections;}
   496   // Increment total number of GC collections (started)
   497   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   498   void increment_total_collections(bool full = false) {
   499     _total_collections++;
   500     if (full) {
   501       increment_total_full_collections();
   502     }
   503   }
   505   void increment_total_full_collections() { _total_full_collections++; }
   507   // Return the AdaptiveSizePolicy for the heap.
   508   virtual AdaptiveSizePolicy* size_policy() = 0;
   510   // Return the CollectorPolicy for the heap
   511   virtual CollectorPolicy* collector_policy() const = 0;
   513   // Iterate over all the ref-containing fields of all objects, calling
   514   // "cl.do_oop" on each. This includes objects in permanent memory.
   515   virtual void oop_iterate(OopClosure* cl) = 0;
   517   // Iterate over all objects, calling "cl.do_object" on each.
   518   // This includes objects in permanent memory.
   519   virtual void object_iterate(ObjectClosure* cl) = 0;
   521   // Similar to object_iterate() except iterates only
   522   // over live objects.
   523   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   525   // Behaves the same as oop_iterate, except only traverses
   526   // interior pointers contained in permanent memory. If there
   527   // is no permanent memory, does nothing.
   528   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   530   // Behaves the same as object_iterate, except only traverses
   531   // object contained in permanent memory. If there is no
   532   // permanent memory, does nothing.
   533   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   535   // NOTE! There is no requirement that a collector implement these
   536   // functions.
   537   //
   538   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   539   // each address in the (reserved) heap is a member of exactly
   540   // one block.  The defining characteristic of a block is that it is
   541   // possible to find its size, and thus to progress forward to the next
   542   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   543   // represent Java objects, or they might be free blocks in a
   544   // free-list-based heap (or subheap), as long as the two kinds are
   545   // distinguishable and the size of each is determinable.
   547   // Returns the address of the start of the "block" that contains the
   548   // address "addr".  We say "blocks" instead of "object" since some heaps
   549   // may not pack objects densely; a chunk may either be an object or a
   550   // non-object.
   551   virtual HeapWord* block_start(const void* addr) const = 0;
   553   // Requires "addr" to be the start of a chunk, and returns its size.
   554   // "addr + size" is required to be the start of a new chunk, or the end
   555   // of the active area of the heap.
   556   virtual size_t block_size(const HeapWord* addr) const = 0;
   558   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   559   // the block is an object.
   560   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   562   // Returns the longest time (in ms) that has elapsed since the last
   563   // time that any part of the heap was examined by a garbage collection.
   564   virtual jlong millis_since_last_gc() = 0;
   566   // Perform any cleanup actions necessary before allowing a verification.
   567   virtual void prepare_for_verify() = 0;
   569   // Generate any dumps preceding or following a full gc
   570   void pre_full_gc_dump();
   571   void post_full_gc_dump();
   573   virtual void print() const = 0;
   574   virtual void print_on(outputStream* st) const = 0;
   576   // Print all GC threads (other than the VM thread)
   577   // used by this heap.
   578   virtual void print_gc_threads_on(outputStream* st) const = 0;
   579   void print_gc_threads() { print_gc_threads_on(tty); }
   580   // Iterator for all GC threads (other than VM thread)
   581   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   583   // Print any relevant tracing info that flags imply.
   584   // Default implementation does nothing.
   585   virtual void print_tracing_info() const = 0;
   587   // Heap verification
   588   virtual void verify(bool allow_dirty, bool silent, bool option) = 0;
   590   // Non product verification and debugging.
   591 #ifndef PRODUCT
   592   // Support for PromotionFailureALot.  Return true if it's time to cause a
   593   // promotion failure.  The no-argument version uses
   594   // this->_promotion_failure_alot_count as the counter.
   595   inline bool promotion_should_fail(volatile size_t* count);
   596   inline bool promotion_should_fail();
   598   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   599   // GC in which promotion failure ocurred.
   600   inline void reset_promotion_should_fail(volatile size_t* count);
   601   inline void reset_promotion_should_fail();
   602 #endif  // #ifndef PRODUCT
   604 #ifdef ASSERT
   605   static int fired_fake_oom() {
   606     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   607   }
   608 #endif
   609 };
   611 // Class to set and reset the GC cause for a CollectedHeap.
   613 class GCCauseSetter : StackObj {
   614   CollectedHeap* _heap;
   615   GCCause::Cause _previous_cause;
   616  public:
   617   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   618     assert(SafepointSynchronize::is_at_safepoint(),
   619            "This method manipulates heap state without locking");
   620     _heap = heap;
   621     _previous_cause = _heap->gc_cause();
   622     _heap->set_gc_cause(cause);
   623   }
   625   ~GCCauseSetter() {
   626     assert(SafepointSynchronize::is_at_safepoint(),
   627           "This method manipulates heap state without locking");
   628     _heap->set_gc_cause(_previous_cause);
   629   }
   630 };

mercurial