src/share/vm/gc_interface/collectedHeap.hpp

Mon, 20 Sep 2010 14:38:38 -0700

author
jmasa
date
Mon, 20 Sep 2010 14:38:38 -0700
changeset 2188
8b10f48633dc
parent 1907
c18cbe5936b8
child 2314
f95d63e2154a
permissions
-rw-r--r--

6984287: Regularize how GC parallel workers are specified.
Summary: Associate number of GC workers with the workgang as opposed to the task.
Reviewed-by: johnc, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    34 class CollectorPolicy;
    36 //
    37 // CollectedHeap
    38 //   SharedHeap
    39 //     GenCollectedHeap
    40 //     G1CollectedHeap
    41 //   ParallelScavengeHeap
    42 //
    43 class CollectedHeap : public CHeapObj {
    44   friend class VMStructs;
    45   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    46   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    48 #ifdef ASSERT
    49   static int       _fire_out_of_memory_count;
    50 #endif
    52   // Used for filler objects (static, but initialized in ctor).
    53   static size_t _filler_array_max_size;
    55   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    56   bool _defer_initial_card_mark;
    58  protected:
    59   MemRegion _reserved;
    60   BarrierSet* _barrier_set;
    61   bool _is_gc_active;
    62   int _n_par_threads;
    64   unsigned int _total_collections;          // ... started
    65   unsigned int _total_full_collections;     // ... started
    66   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    67   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    69   // Reason for current garbage collection.  Should be set to
    70   // a value reflecting no collection between collections.
    71   GCCause::Cause _gc_cause;
    72   GCCause::Cause _gc_lastcause;
    73   PerfStringVariable* _perf_gc_cause;
    74   PerfStringVariable* _perf_gc_lastcause;
    76   // Constructor
    77   CollectedHeap();
    79   // Do common initializations that must follow instance construction,
    80   // for example, those needing virtual calls.
    81   // This code could perhaps be moved into initialize() but would
    82   // be slightly more awkward because we want the latter to be a
    83   // pure virtual.
    84   void pre_initialize();
    86   // Create a new tlab
    87   virtual HeapWord* allocate_new_tlab(size_t size);
    89   // Accumulate statistics on all tlabs.
    90   virtual void accumulate_statistics_all_tlabs();
    92   // Reinitialize tlabs before resuming mutators.
    93   virtual void resize_all_tlabs();
    95  protected:
    96   // Allocate from the current thread's TLAB, with broken-out slow path.
    97   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    98   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
   100   // Allocate an uninitialized block of the given size, or returns NULL if
   101   // this is impossible.
   102   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
   104   // Like allocate_init, but the block returned by a successful allocation
   105   // is guaranteed initialized to zeros.
   106   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
   108   // Same as common_mem version, except memory is allocated in the permanent area
   109   // If there is no permanent area, revert to common_mem_allocate_noinit
   110   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   112   // Same as common_mem version, except memory is allocated in the permanent area
   113   // If there is no permanent area, revert to common_mem_allocate_init
   114   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   116   // Helper functions for (VM) allocation.
   117   inline static void post_allocation_setup_common(KlassHandle klass,
   118                                                   HeapWord* obj, size_t size);
   119   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   120                                                             HeapWord* objPtr,
   121                                                             size_t size);
   123   inline static void post_allocation_setup_obj(KlassHandle klass,
   124                                                HeapWord* obj, size_t size);
   126   inline static void post_allocation_setup_array(KlassHandle klass,
   127                                                  HeapWord* obj, size_t size,
   128                                                  int length);
   130   // Clears an allocated object.
   131   inline static void init_obj(HeapWord* obj, size_t size);
   133   // Filler object utilities.
   134   static inline size_t filler_array_hdr_size();
   135   static inline size_t filler_array_min_size();
   136   static inline size_t filler_array_max_size();
   138   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   139   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   141   // Fill with a single array; caller must ensure filler_array_min_size() <=
   142   // words <= filler_array_max_size().
   143   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   145   // Fill with a single object (either an int array or a java.lang.Object).
   146   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   148   // Verification functions
   149   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   150     PRODUCT_RETURN;
   151   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   152     PRODUCT_RETURN;
   153   debug_only(static void check_for_valid_allocation_state();)
   155  public:
   156   enum Name {
   157     Abstract,
   158     SharedHeap,
   159     GenCollectedHeap,
   160     ParallelScavengeHeap,
   161     G1CollectedHeap
   162   };
   164   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   166   /**
   167    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   168    * and JNI_OK on success.
   169    */
   170   virtual jint initialize() = 0;
   172   // In many heaps, there will be a need to perform some initialization activities
   173   // after the Universe is fully formed, but before general heap allocation is allowed.
   174   // This is the correct place to place such initialization methods.
   175   virtual void post_initialize() = 0;
   177   MemRegion reserved_region() const { return _reserved; }
   178   address base() const { return (address)reserved_region().start(); }
   180   // Future cleanup here. The following functions should specify bytes or
   181   // heapwords as part of their signature.
   182   virtual size_t capacity() const = 0;
   183   virtual size_t used() const = 0;
   185   // Return "true" if the part of the heap that allocates Java
   186   // objects has reached the maximal committed limit that it can
   187   // reach, without a garbage collection.
   188   virtual bool is_maximal_no_gc() const = 0;
   190   virtual size_t permanent_capacity() const = 0;
   191   virtual size_t permanent_used() const = 0;
   193   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   194   // memory that the vm could make available for storing 'normal' java objects.
   195   // This is based on the reserved address space, but should not include space
   196   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   197   // perm gen space or, in the case of the young gen, one of the survivor
   198   // spaces).
   199   virtual size_t max_capacity() const = 0;
   201   // Returns "TRUE" if "p" points into the reserved area of the heap.
   202   bool is_in_reserved(const void* p) const {
   203     return _reserved.contains(p);
   204   }
   206   bool is_in_reserved_or_null(const void* p) const {
   207     return p == NULL || is_in_reserved(p);
   208   }
   210   // Returns "TRUE" if "p" points to the head of an allocated object in the
   211   // heap. Since this method can be expensive in general, we restrict its
   212   // use to assertion checking only.
   213   virtual bool is_in(const void* p) const = 0;
   215   bool is_in_or_null(const void* p) const {
   216     return p == NULL || is_in(p);
   217   }
   219   // Let's define some terms: a "closed" subset of a heap is one that
   220   //
   221   // 1) contains all currently-allocated objects, and
   222   //
   223   // 2) is closed under reference: no object in the closed subset
   224   //    references one outside the closed subset.
   225   //
   226   // Membership in a heap's closed subset is useful for assertions.
   227   // Clearly, the entire heap is a closed subset, so the default
   228   // implementation is to use "is_in_reserved".  But this may not be too
   229   // liberal to perform useful checking.  Also, the "is_in" predicate
   230   // defines a closed subset, but may be too expensive, since "is_in"
   231   // verifies that its argument points to an object head.  The
   232   // "closed_subset" method allows a heap to define an intermediate
   233   // predicate, allowing more precise checking than "is_in_reserved" at
   234   // lower cost than "is_in."
   236   // One important case is a heap composed of disjoint contiguous spaces,
   237   // such as the Garbage-First collector.  Such heaps have a convenient
   238   // closed subset consisting of the allocated portions of those
   239   // contiguous spaces.
   241   // Return "TRUE" iff the given pointer points into the heap's defined
   242   // closed subset (which defaults to the entire heap).
   243   virtual bool is_in_closed_subset(const void* p) const {
   244     return is_in_reserved(p);
   245   }
   247   bool is_in_closed_subset_or_null(const void* p) const {
   248     return p == NULL || is_in_closed_subset(p);
   249   }
   251   // XXX is_permanent() and is_in_permanent() should be better named
   252   // to distinguish one from the other.
   254   // Returns "TRUE" if "p" is allocated as "permanent" data.
   255   // If the heap does not use "permanent" data, returns the same
   256   // value is_in_reserved() would return.
   257   // NOTE: this actually returns true if "p" is in reserved space
   258   // for the space not that it is actually allocated (i.e. in committed
   259   // space). If you need the more conservative answer use is_permanent().
   260   virtual bool is_in_permanent(const void *p) const = 0;
   262   bool is_in_permanent_or_null(const void *p) const {
   263     return p == NULL || is_in_permanent(p);
   264   }
   266   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   267   // If the heap does not use "permanent" data, returns the same
   268   // value is_in() would return.
   269   virtual bool is_permanent(const void *p) const = 0;
   271   bool is_permanent_or_null(const void *p) const {
   272     return p == NULL || is_permanent(p);
   273   }
   275   // An object is scavengable if its location may move during a scavenge.
   276   // (A scavenge is a GC which is not a full GC.)
   277   // Currently, this just means it is not perm (and not null).
   278   // This could change if we rethink what's in perm-gen.
   279   bool is_scavengable(const void *p) const {
   280     return !is_in_permanent_or_null(p);
   281   }
   283   // Returns "TRUE" if "p" is a method oop in the
   284   // current heap, with high probability. This predicate
   285   // is not stable, in general.
   286   bool is_valid_method(oop p) const;
   288   void set_gc_cause(GCCause::Cause v) {
   289      if (UsePerfData) {
   290        _gc_lastcause = _gc_cause;
   291        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   292        _perf_gc_cause->set_value(GCCause::to_string(v));
   293      }
   294     _gc_cause = v;
   295   }
   296   GCCause::Cause gc_cause() { return _gc_cause; }
   298   // Number of threads currently working on GC tasks.
   299   int n_par_threads() { return _n_par_threads; }
   301   // May be overridden to set additional parallelism.
   302   virtual void set_par_threads(int t) { _n_par_threads = t; };
   304   // Preload classes into the shared portion of the heap, and then dump
   305   // that data to a file so that it can be loaded directly by another
   306   // VM (then terminate).
   307   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   309   // General obj/array allocation facilities.
   310   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   311   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   312   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   314   // Special obj/array allocation facilities.
   315   // Some heaps may want to manage "permanent" data uniquely. These default
   316   // to the general routines if the heap does not support such handling.
   317   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   318   // permanent_obj_allocate_no_klass_install() does not do the installation of
   319   // the klass pointer in the newly created object (as permanent_obj_allocate()
   320   // above does).  This allows for a delay in the installation of the klass
   321   // pointer that is needed during the create of klassKlass's.  The
   322   // method post_allocation_install_obj_klass() is used to install the
   323   // klass pointer.
   324   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   325                                                             int size,
   326                                                             TRAPS);
   327   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   328                                                        oop obj,
   329                                                        int size);
   330   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   332   // Raw memory allocation facilities
   333   // The obj and array allocate methods are covers for these methods.
   334   // The permanent allocation method should default to mem_allocate if
   335   // permanent memory isn't supported.
   336   virtual HeapWord* mem_allocate(size_t size,
   337                                  bool is_noref,
   338                                  bool is_tlab,
   339                                  bool* gc_overhead_limit_was_exceeded) = 0;
   340   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   342   // The boundary between a "large" and "small" array of primitives, in words.
   343   virtual size_t large_typearray_limit() = 0;
   345   // Utilities for turning raw memory into filler objects.
   346   //
   347   // min_fill_size() is the smallest region that can be filled.
   348   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   349   // multiple objects.  fill_with_object() is for regions known to be smaller
   350   // than the largest array of integers; it uses a single object to fill the
   351   // region and has slightly less overhead.
   352   static size_t min_fill_size() {
   353     return size_t(align_object_size(oopDesc::header_size()));
   354   }
   356   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   358   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   359   static void fill_with_object(MemRegion region, bool zap = true) {
   360     fill_with_object(region.start(), region.word_size(), zap);
   361   }
   362   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   363     fill_with_object(start, pointer_delta(end, start), zap);
   364   }
   366   // Some heaps may offer a contiguous region for shared non-blocking
   367   // allocation, via inlined code (by exporting the address of the top and
   368   // end fields defining the extent of the contiguous allocation region.)
   370   // This function returns "true" iff the heap supports this kind of
   371   // allocation.  (Default is "no".)
   372   virtual bool supports_inline_contig_alloc() const {
   373     return false;
   374   }
   375   // These functions return the addresses of the fields that define the
   376   // boundaries of the contiguous allocation area.  (These fields should be
   377   // physically near to one another.)
   378   virtual HeapWord** top_addr() const {
   379     guarantee(false, "inline contiguous allocation not supported");
   380     return NULL;
   381   }
   382   virtual HeapWord** end_addr() const {
   383     guarantee(false, "inline contiguous allocation not supported");
   384     return NULL;
   385   }
   387   // Some heaps may be in an unparseable state at certain times between
   388   // collections. This may be necessary for efficient implementation of
   389   // certain allocation-related activities. Calling this function before
   390   // attempting to parse a heap ensures that the heap is in a parsable
   391   // state (provided other concurrent activity does not introduce
   392   // unparsability). It is normally expected, therefore, that this
   393   // method is invoked with the world stopped.
   394   // NOTE: if you override this method, make sure you call
   395   // super::ensure_parsability so that the non-generational
   396   // part of the work gets done. See implementation of
   397   // CollectedHeap::ensure_parsability and, for instance,
   398   // that of GenCollectedHeap::ensure_parsability().
   399   // The argument "retire_tlabs" controls whether existing TLABs
   400   // are merely filled or also retired, thus preventing further
   401   // allocation from them and necessitating allocation of new TLABs.
   402   virtual void ensure_parsability(bool retire_tlabs);
   404   // Return an estimate of the maximum allocation that could be performed
   405   // without triggering any collection or expansion activity.  In a
   406   // generational collector, for example, this is probably the largest
   407   // allocation that could be supported (without expansion) in the youngest
   408   // generation.  It is "unsafe" because no locks are taken; the result
   409   // should be treated as an approximation, not a guarantee, for use in
   410   // heuristic resizing decisions.
   411   virtual size_t unsafe_max_alloc() = 0;
   413   // Section on thread-local allocation buffers (TLABs)
   414   // If the heap supports thread-local allocation buffers, it should override
   415   // the following methods:
   416   // Returns "true" iff the heap supports thread-local allocation buffers.
   417   // The default is "no".
   418   virtual bool supports_tlab_allocation() const {
   419     return false;
   420   }
   421   // The amount of space available for thread-local allocation buffers.
   422   virtual size_t tlab_capacity(Thread *thr) const {
   423     guarantee(false, "thread-local allocation buffers not supported");
   424     return 0;
   425   }
   426   // An estimate of the maximum allocation that could be performed
   427   // for thread-local allocation buffers without triggering any
   428   // collection or expansion activity.
   429   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   430     guarantee(false, "thread-local allocation buffers not supported");
   431     return 0;
   432   }
   434   // Can a compiler initialize a new object without store barriers?
   435   // This permission only extends from the creation of a new object
   436   // via a TLAB up to the first subsequent safepoint. If such permission
   437   // is granted for this heap type, the compiler promises to call
   438   // defer_store_barrier() below on any slow path allocation of
   439   // a new object for which such initializing store barriers will
   440   // have been elided.
   441   virtual bool can_elide_tlab_store_barriers() const = 0;
   443   // If a compiler is eliding store barriers for TLAB-allocated objects,
   444   // there is probably a corresponding slow path which can produce
   445   // an object allocated anywhere.  The compiler's runtime support
   446   // promises to call this function on such a slow-path-allocated
   447   // object before performing initializations that have elided
   448   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   449   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   451   // Answers whether an initializing store to a new object currently
   452   // allocated at the given address doesn't need a store
   453   // barrier. Returns "true" if it doesn't need an initializing
   454   // store barrier; answers "false" if it does.
   455   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   457   // If a compiler is eliding store barriers for TLAB-allocated objects,
   458   // we will be informed of a slow-path allocation by a call
   459   // to new_store_pre_barrier() above. Such a call precedes the
   460   // initialization of the object itself, and no post-store-barriers will
   461   // be issued. Some heap types require that the barrier strictly follows
   462   // the initializing stores. (This is currently implemented by deferring the
   463   // barrier until the next slow-path allocation or gc-related safepoint.)
   464   // This interface answers whether a particular heap type needs the card
   465   // mark to be thus strictly sequenced after the stores.
   466   virtual bool card_mark_must_follow_store() const = 0;
   468   // If the CollectedHeap was asked to defer a store barrier above,
   469   // this informs it to flush such a deferred store barrier to the
   470   // remembered set.
   471   virtual void flush_deferred_store_barrier(JavaThread* thread);
   473   // Can a compiler elide a store barrier when it writes
   474   // a permanent oop into the heap?  Applies when the compiler
   475   // is storing x to the heap, where x->is_perm() is true.
   476   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   478   // Does this heap support heap inspection (+PrintClassHistogram?)
   479   virtual bool supports_heap_inspection() const = 0;
   481   // Perform a collection of the heap; intended for use in implementing
   482   // "System.gc".  This probably implies as full a collection as the
   483   // "CollectedHeap" supports.
   484   virtual void collect(GCCause::Cause cause) = 0;
   486   // This interface assumes that it's being called by the
   487   // vm thread. It collects the heap assuming that the
   488   // heap lock is already held and that we are executing in
   489   // the context of the vm thread.
   490   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   492   // Returns the barrier set for this heap
   493   BarrierSet* barrier_set() { return _barrier_set; }
   495   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   496   // that it should answer "false" for the concurrent part of a concurrent
   497   // collector -- dld).
   498   bool is_gc_active() const { return _is_gc_active; }
   500   // Total number of GC collections (started)
   501   unsigned int total_collections() const { return _total_collections; }
   502   unsigned int total_full_collections() const { return _total_full_collections;}
   504   // Increment total number of GC collections (started)
   505   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   506   void increment_total_collections(bool full = false) {
   507     _total_collections++;
   508     if (full) {
   509       increment_total_full_collections();
   510     }
   511   }
   513   void increment_total_full_collections() { _total_full_collections++; }
   515   // Return the AdaptiveSizePolicy for the heap.
   516   virtual AdaptiveSizePolicy* size_policy() = 0;
   518   // Return the CollectorPolicy for the heap
   519   virtual CollectorPolicy* collector_policy() const = 0;
   521   // Iterate over all the ref-containing fields of all objects, calling
   522   // "cl.do_oop" on each. This includes objects in permanent memory.
   523   virtual void oop_iterate(OopClosure* cl) = 0;
   525   // Iterate over all objects, calling "cl.do_object" on each.
   526   // This includes objects in permanent memory.
   527   virtual void object_iterate(ObjectClosure* cl) = 0;
   529   // Similar to object_iterate() except iterates only
   530   // over live objects.
   531   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   533   // Behaves the same as oop_iterate, except only traverses
   534   // interior pointers contained in permanent memory. If there
   535   // is no permanent memory, does nothing.
   536   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   538   // Behaves the same as object_iterate, except only traverses
   539   // object contained in permanent memory. If there is no
   540   // permanent memory, does nothing.
   541   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   543   // NOTE! There is no requirement that a collector implement these
   544   // functions.
   545   //
   546   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   547   // each address in the (reserved) heap is a member of exactly
   548   // one block.  The defining characteristic of a block is that it is
   549   // possible to find its size, and thus to progress forward to the next
   550   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   551   // represent Java objects, or they might be free blocks in a
   552   // free-list-based heap (or subheap), as long as the two kinds are
   553   // distinguishable and the size of each is determinable.
   555   // Returns the address of the start of the "block" that contains the
   556   // address "addr".  We say "blocks" instead of "object" since some heaps
   557   // may not pack objects densely; a chunk may either be an object or a
   558   // non-object.
   559   virtual HeapWord* block_start(const void* addr) const = 0;
   561   // Requires "addr" to be the start of a chunk, and returns its size.
   562   // "addr + size" is required to be the start of a new chunk, or the end
   563   // of the active area of the heap.
   564   virtual size_t block_size(const HeapWord* addr) const = 0;
   566   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   567   // the block is an object.
   568   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   570   // Returns the longest time (in ms) that has elapsed since the last
   571   // time that any part of the heap was examined by a garbage collection.
   572   virtual jlong millis_since_last_gc() = 0;
   574   // Perform any cleanup actions necessary before allowing a verification.
   575   virtual void prepare_for_verify() = 0;
   577   // Generate any dumps preceding or following a full gc
   578   void pre_full_gc_dump();
   579   void post_full_gc_dump();
   581   virtual void print() const = 0;
   582   virtual void print_on(outputStream* st) const = 0;
   584   // Print all GC threads (other than the VM thread)
   585   // used by this heap.
   586   virtual void print_gc_threads_on(outputStream* st) const = 0;
   587   void print_gc_threads() { print_gc_threads_on(tty); }
   588   // Iterator for all GC threads (other than VM thread)
   589   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   591   // Print any relevant tracing info that flags imply.
   592   // Default implementation does nothing.
   593   virtual void print_tracing_info() const = 0;
   595   // Heap verification
   596   virtual void verify(bool allow_dirty, bool silent, bool option) = 0;
   598   // Non product verification and debugging.
   599 #ifndef PRODUCT
   600   // Support for PromotionFailureALot.  Return true if it's time to cause a
   601   // promotion failure.  The no-argument version uses
   602   // this->_promotion_failure_alot_count as the counter.
   603   inline bool promotion_should_fail(volatile size_t* count);
   604   inline bool promotion_should_fail();
   606   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   607   // GC in which promotion failure ocurred.
   608   inline void reset_promotion_should_fail(volatile size_t* count);
   609   inline void reset_promotion_should_fail();
   610 #endif  // #ifndef PRODUCT
   612 #ifdef ASSERT
   613   static int fired_fake_oom() {
   614     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   615   }
   616 #endif
   618  public:
   619   // This is a convenience method that is used in cases where
   620   // the actual number of GC worker threads is not pertinent but
   621   // only whether there more than 0.  Use of this method helps
   622   // reduce the occurrence of ParallelGCThreads to uses where the
   623   // actual number may be germane.
   624   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   625 };
   627 // Class to set and reset the GC cause for a CollectedHeap.
   629 class GCCauseSetter : StackObj {
   630   CollectedHeap* _heap;
   631   GCCause::Cause _previous_cause;
   632  public:
   633   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   634     assert(SafepointSynchronize::is_at_safepoint(),
   635            "This method manipulates heap state without locking");
   636     _heap = heap;
   637     _previous_cause = _heap->gc_cause();
   638     _heap->set_gc_cause(cause);
   639   }
   641   ~GCCauseSetter() {
   642     assert(SafepointSynchronize::is_at_safepoint(),
   643           "This method manipulates heap state without locking");
   644     _heap->set_gc_cause(_previous_cause);
   645   }
   646 };

mercurial