src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1829
1316cec51b4d
child 1966
215576b54709
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(update_rs)
    65     define_num_seq(scan_rs)
    66     define_num_seq(scan_new_refs) // Only for temp use; added to
    67                                   // in parallel case.
    68     define_num_seq(obj_copy)
    69     define_num_seq(termination) // parallel only
    70     define_num_seq(parallel_other) // parallel only
    71   define_num_seq(mark_closure)
    72   define_num_seq(clear_ct)  // parallel only
    73 };
    75 class Summary: public PauseSummary,
    76                public MainBodySummary {
    77 public:
    78   virtual MainBodySummary*    main_body_summary()    { return this; }
    79 };
    81 class AbandonedSummary: public PauseSummary {
    82 };
    84 class G1CollectorPolicy: public CollectorPolicy {
    85 protected:
    86   // The number of pauses during the execution.
    87   long _n_pauses;
    89   // either equal to the number of parallel threads, if ParallelGCThreads
    90   // has been set, or 1 otherwise
    91   int _parallel_gc_threads;
    93   enum SomePrivateConstants {
    94     NumPrevPausesForHeuristics = 10
    95   };
    97   G1MMUTracker* _mmu_tracker;
    99   void initialize_flags();
   101   void initialize_all() {
   102     initialize_flags();
   103     initialize_size_info();
   104     initialize_perm_generation(PermGen::MarkSweepCompact);
   105   }
   107   virtual size_t default_init_heap_size() {
   108     // Pick some reasonable default.
   109     return 8*M;
   110   }
   112   double _cur_collection_start_sec;
   113   size_t _cur_collection_pause_used_at_start_bytes;
   114   size_t _cur_collection_pause_used_regions_at_start;
   115   size_t _prev_collection_pause_used_at_end_bytes;
   116   double _cur_collection_par_time_ms;
   117   double _cur_satb_drain_time_ms;
   118   double _cur_clear_ct_time_ms;
   119   bool   _satb_drain_time_set;
   121 #ifndef PRODUCT
   122   // Card Table Count Cache stats
   123   double _min_clear_cc_time_ms;         // min
   124   double _max_clear_cc_time_ms;         // max
   125   double _cur_clear_cc_time_ms;         // clearing time during current pause
   126   double _cum_clear_cc_time_ms;         // cummulative clearing time
   127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   128 #endif
   130   double _cur_CH_strong_roots_end_sec;
   131   double _cur_CH_strong_roots_dur_ms;
   132   double _cur_G1_strong_roots_end_sec;
   133   double _cur_G1_strong_roots_dur_ms;
   135   // Statistics for recent GC pauses.  See below for how indexed.
   136   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   137   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   138   TruncatedSeq* _recent_evac_times_ms;
   139   // These exclude marking times.
   140   TruncatedSeq* _recent_pause_times_ms;
   141   TruncatedSeq* _recent_gc_times_ms;
   143   TruncatedSeq* _recent_CS_bytes_used_before;
   144   TruncatedSeq* _recent_CS_bytes_surviving;
   146   TruncatedSeq* _recent_rs_sizes;
   148   TruncatedSeq* _concurrent_mark_init_times_ms;
   149   TruncatedSeq* _concurrent_mark_remark_times_ms;
   150   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   152   Summary*           _summary;
   153   AbandonedSummary*  _abandoned_summary;
   155   NumberSeq* _all_pause_times_ms;
   156   NumberSeq* _all_full_gc_times_ms;
   157   double _stop_world_start;
   158   NumberSeq* _all_stop_world_times_ms;
   159   NumberSeq* _all_yield_times_ms;
   161   size_t     _region_num_young;
   162   size_t     _region_num_tenured;
   163   size_t     _prev_region_num_young;
   164   size_t     _prev_region_num_tenured;
   166   NumberSeq* _all_mod_union_times_ms;
   168   int        _aux_num;
   169   NumberSeq* _all_aux_times_ms;
   170   double*    _cur_aux_start_times_ms;
   171   double*    _cur_aux_times_ms;
   172   bool*      _cur_aux_times_set;
   174   double* _par_last_ext_root_scan_times_ms;
   175   double* _par_last_mark_stack_scan_times_ms;
   176   double* _par_last_update_rs_start_times_ms;
   177   double* _par_last_update_rs_times_ms;
   178   double* _par_last_update_rs_processed_buffers;
   179   double* _par_last_scan_rs_start_times_ms;
   180   double* _par_last_scan_rs_times_ms;
   181   double* _par_last_scan_new_refs_times_ms;
   182   double* _par_last_obj_copy_times_ms;
   183   double* _par_last_termination_times_ms;
   185   // indicates that we are in young GC mode
   186   bool _in_young_gc_mode;
   188   // indicates whether we are in full young or partially young GC mode
   189   bool _full_young_gcs;
   191   // if true, then it tries to dynamically adjust the length of the
   192   // young list
   193   bool _adaptive_young_list_length;
   194   size_t _young_list_min_length;
   195   size_t _young_list_target_length;
   196   size_t _young_list_fixed_length;
   198   size_t _young_cset_length;
   199   bool   _last_young_gc_full;
   201   double _target_pause_time_ms;
   203   unsigned              _full_young_pause_num;
   204   unsigned              _partial_young_pause_num;
   206   bool                  _during_marking;
   207   bool                  _in_marking_window;
   208   bool                  _in_marking_window_im;
   210   SurvRateGroup*        _short_lived_surv_rate_group;
   211   SurvRateGroup*        _survivor_surv_rate_group;
   212   // add here any more surv rate groups
   214   double                _gc_overhead_perc;
   216   bool during_marking() {
   217     return _during_marking;
   218   }
   220   // <NEW PREDICTION>
   222 private:
   223   enum PredictionConstants {
   224     TruncatedSeqLength = 10
   225   };
   227   TruncatedSeq* _alloc_rate_ms_seq;
   228   double        _prev_collection_pause_end_ms;
   230   TruncatedSeq* _pending_card_diff_seq;
   231   TruncatedSeq* _rs_length_diff_seq;
   232   TruncatedSeq* _cost_per_card_ms_seq;
   233   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _cost_per_entry_ms_seq;
   236   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   237   TruncatedSeq* _cost_per_byte_ms_seq;
   238   TruncatedSeq* _constant_other_time_ms_seq;
   239   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   240   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   242   TruncatedSeq* _pending_cards_seq;
   243   TruncatedSeq* _scanned_cards_seq;
   244   TruncatedSeq* _rs_lengths_seq;
   246   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   248   TruncatedSeq* _young_gc_eff_seq;
   250   TruncatedSeq* _max_conc_overhead_seq;
   252   size_t _recorded_young_regions;
   253   size_t _recorded_non_young_regions;
   254   size_t _recorded_region_num;
   256   size_t _free_regions_at_end_of_collection;
   258   size_t _recorded_rs_lengths;
   259   size_t _max_rs_lengths;
   261   size_t _recorded_marked_bytes;
   262   size_t _recorded_young_bytes;
   264   size_t _predicted_pending_cards;
   265   size_t _predicted_cards_scanned;
   266   size_t _predicted_rs_lengths;
   267   size_t _predicted_bytes_to_copy;
   269   double _predicted_survival_ratio;
   270   double _predicted_rs_update_time_ms;
   271   double _predicted_rs_scan_time_ms;
   272   double _predicted_object_copy_time_ms;
   273   double _predicted_constant_other_time_ms;
   274   double _predicted_young_other_time_ms;
   275   double _predicted_non_young_other_time_ms;
   276   double _predicted_pause_time_ms;
   278   double _vtime_diff_ms;
   280   double _recorded_young_free_cset_time_ms;
   281   double _recorded_non_young_free_cset_time_ms;
   283   double _sigma;
   284   double _expensive_region_limit_ms;
   286   size_t _rs_lengths_prediction;
   288   size_t _known_garbage_bytes;
   289   double _known_garbage_ratio;
   291   double sigma() {
   292     return _sigma;
   293   }
   295   // A function that prevents us putting too much stock in small sample
   296   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   297   // of samples.  5 or more samples yields one; fewer scales linearly from
   298   // 2.0 at 1 sample to 1.0 at 5.
   299   double confidence_factor(int samples) {
   300     if (samples > 4) return 1.0;
   301     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   302   }
   304   double get_new_neg_prediction(TruncatedSeq* seq) {
   305     return seq->davg() - sigma() * seq->dsd();
   306   }
   308 #ifndef PRODUCT
   309   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   310 #endif // PRODUCT
   312   void adjust_concurrent_refinement(double update_rs_time,
   313                                     double update_rs_processed_buffers,
   314                                     double goal_ms);
   316 protected:
   317   double _pause_time_target_ms;
   318   double _recorded_young_cset_choice_time_ms;
   319   double _recorded_non_young_cset_choice_time_ms;
   320   bool   _within_target;
   321   size_t _pending_cards;
   322   size_t _max_pending_cards;
   324 public:
   326   void set_region_short_lived(HeapRegion* hr) {
   327     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   328   }
   330   void set_region_survivors(HeapRegion* hr) {
   331     hr->install_surv_rate_group(_survivor_surv_rate_group);
   332   }
   334 #ifndef PRODUCT
   335   bool verify_young_ages();
   336 #endif // PRODUCT
   338   double get_new_prediction(TruncatedSeq* seq) {
   339     return MAX2(seq->davg() + sigma() * seq->dsd(),
   340                 seq->davg() * confidence_factor(seq->num()));
   341   }
   343   size_t young_cset_length() {
   344     return _young_cset_length;
   345   }
   347   void record_max_rs_lengths(size_t rs_lengths) {
   348     _max_rs_lengths = rs_lengths;
   349   }
   351   size_t predict_pending_card_diff() {
   352     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   353     if (prediction < 0.00001)
   354       return 0;
   355     else
   356       return (size_t) prediction;
   357   }
   359   size_t predict_pending_cards() {
   360     size_t max_pending_card_num = _g1->max_pending_card_num();
   361     size_t diff = predict_pending_card_diff();
   362     size_t prediction;
   363     if (diff > max_pending_card_num)
   364       prediction = max_pending_card_num;
   365     else
   366       prediction = max_pending_card_num - diff;
   368     return prediction;
   369   }
   371   size_t predict_rs_length_diff() {
   372     return (size_t) get_new_prediction(_rs_length_diff_seq);
   373   }
   375   double predict_alloc_rate_ms() {
   376     return get_new_prediction(_alloc_rate_ms_seq);
   377   }
   379   double predict_cost_per_card_ms() {
   380     return get_new_prediction(_cost_per_card_ms_seq);
   381   }
   383   double predict_rs_update_time_ms(size_t pending_cards) {
   384     return (double) pending_cards * predict_cost_per_card_ms();
   385   }
   387   double predict_fully_young_cards_per_entry_ratio() {
   388     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   389   }
   391   double predict_partially_young_cards_per_entry_ratio() {
   392     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   393       return predict_fully_young_cards_per_entry_ratio();
   394     else
   395       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   396   }
   398   size_t predict_young_card_num(size_t rs_length) {
   399     return (size_t) ((double) rs_length *
   400                      predict_fully_young_cards_per_entry_ratio());
   401   }
   403   size_t predict_non_young_card_num(size_t rs_length) {
   404     return (size_t) ((double) rs_length *
   405                      predict_partially_young_cards_per_entry_ratio());
   406   }
   408   double predict_rs_scan_time_ms(size_t card_num) {
   409     if (full_young_gcs())
   410       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   411     else
   412       return predict_partially_young_rs_scan_time_ms(card_num);
   413   }
   415   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   416     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   417       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   418     else
   419       return (double) card_num *
   420         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   421   }
   423   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   424     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   425       return 1.1 * (double) bytes_to_copy *
   426         get_new_prediction(_cost_per_byte_ms_seq);
   427     else
   428       return (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   430   }
   432   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   433     if (_in_marking_window && !_in_marking_window_im)
   434       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   435     else
   436       return (double) bytes_to_copy *
   437         get_new_prediction(_cost_per_byte_ms_seq);
   438   }
   440   double predict_constant_other_time_ms() {
   441     return get_new_prediction(_constant_other_time_ms_seq);
   442   }
   444   double predict_young_other_time_ms(size_t young_num) {
   445     return
   446       (double) young_num *
   447       get_new_prediction(_young_other_cost_per_region_ms_seq);
   448   }
   450   double predict_non_young_other_time_ms(size_t non_young_num) {
   451     return
   452       (double) non_young_num *
   453       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   454   }
   456   void check_if_region_is_too_expensive(double predicted_time_ms);
   458   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   459   double predict_base_elapsed_time_ms(size_t pending_cards);
   460   double predict_base_elapsed_time_ms(size_t pending_cards,
   461                                       size_t scanned_cards);
   462   size_t predict_bytes_to_copy(HeapRegion* hr);
   463   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   465     // for use by: calculate_young_list_target_length(rs_length)
   466   bool predict_will_fit(size_t young_region_num,
   467                         double base_time_ms,
   468                         size_t init_free_regions,
   469                         double target_pause_time_ms);
   471   void start_recording_regions();
   472   void record_cset_region_info(HeapRegion* hr, bool young);
   473   void record_non_young_cset_region(HeapRegion* hr);
   475   void set_recorded_young_regions(size_t n_regions);
   476   void set_recorded_young_bytes(size_t bytes);
   477   void set_recorded_rs_lengths(size_t rs_lengths);
   478   void set_predicted_bytes_to_copy(size_t bytes);
   480   void end_recording_regions();
   482   void record_vtime_diff_ms(double vtime_diff_ms) {
   483     _vtime_diff_ms = vtime_diff_ms;
   484   }
   486   void record_young_free_cset_time_ms(double time_ms) {
   487     _recorded_young_free_cset_time_ms = time_ms;
   488   }
   490   void record_non_young_free_cset_time_ms(double time_ms) {
   491     _recorded_non_young_free_cset_time_ms = time_ms;
   492   }
   494   double predict_young_gc_eff() {
   495     return get_new_neg_prediction(_young_gc_eff_seq);
   496   }
   498   double predict_survivor_regions_evac_time();
   500   // </NEW PREDICTION>
   502 public:
   503   void cset_regions_freed() {
   504     bool propagate = _last_young_gc_full && !_in_marking_window;
   505     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   506     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   507     // also call it on any more surv rate groups
   508   }
   510   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   511     _known_garbage_bytes = known_garbage_bytes;
   512     size_t heap_bytes = _g1->capacity();
   513     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   514   }
   516   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   517     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   519     _known_garbage_bytes -= known_garbage_bytes;
   520     size_t heap_bytes = _g1->capacity();
   521     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   522   }
   524   G1MMUTracker* mmu_tracker() {
   525     return _mmu_tracker;
   526   }
   528   double predict_init_time_ms() {
   529     return get_new_prediction(_concurrent_mark_init_times_ms);
   530   }
   532   double predict_remark_time_ms() {
   533     return get_new_prediction(_concurrent_mark_remark_times_ms);
   534   }
   536   double predict_cleanup_time_ms() {
   537     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   538   }
   540   // Returns an estimate of the survival rate of the region at yg-age
   541   // "yg_age".
   542   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   543     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   544     if (seq->num() == 0)
   545       gclog_or_tty->print("BARF! age is %d", age);
   546     guarantee( seq->num() > 0, "invariant" );
   547     double pred = get_new_prediction(seq);
   548     if (pred > 1.0)
   549       pred = 1.0;
   550     return pred;
   551   }
   553   double predict_yg_surv_rate(int age) {
   554     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   555   }
   557   double accum_yg_surv_rate_pred(int age) {
   558     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   559   }
   561 protected:
   562   void print_stats (int level, const char* str, double value);
   563   void print_stats (int level, const char* str, int value);
   564   void print_par_stats (int level, const char* str, double* data) {
   565     print_par_stats(level, str, data, true);
   566   }
   567   void print_par_stats (int level, const char* str, double* data, bool summary);
   568   void print_par_buffers (int level, const char* str, double* data, bool summary);
   570   void check_other_times(int level,
   571                          NumberSeq* other_times_ms,
   572                          NumberSeq* calc_other_times_ms) const;
   574   void print_summary (PauseSummary* stats) const;
   575   void print_abandoned_summary(PauseSummary* summary) const;
   577   void print_summary (int level, const char* str, NumberSeq* seq) const;
   578   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   580   double avg_value (double* data);
   581   double max_value (double* data);
   582   double sum_of_values (double* data);
   583   double max_sum (double* data1, double* data2);
   585   int _last_satb_drain_processed_buffers;
   586   int _last_update_rs_processed_buffers;
   587   double _last_pause_time_ms;
   589   size_t _bytes_in_to_space_before_gc;
   590   size_t _bytes_in_to_space_after_gc;
   591   size_t bytes_in_to_space_during_gc() {
   592     return
   593       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   594   }
   595   size_t _bytes_in_collection_set_before_gc;
   596   // Used to count used bytes in CS.
   597   friend class CountCSClosure;
   599   // Statistics kept per GC stoppage, pause or full.
   600   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   602   // We track markings.
   603   int _num_markings;
   604   double _mark_thread_startup_sec;       // Time at startup of marking thread
   606   // Add a new GC of the given duration and end time to the record.
   607   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   609   // The head of the list (via "next_in_collection_set()") representing the
   610   // current collection set. Set from the incrementally built collection
   611   // set at the start of the pause.
   612   HeapRegion* _collection_set;
   614   // The number of regions in the collection set. Set from the incrementally
   615   // built collection set at the start of an evacuation pause.
   616   size_t _collection_set_size;
   618   // The number of bytes in the collection set before the pause. Set from
   619   // the incrementally built collection set at the start of an evacuation
   620   // pause.
   621   size_t _collection_set_bytes_used_before;
   623   // The associated information that is maintained while the incremental
   624   // collection set is being built with young regions. Used to populate
   625   // the recorded info for the evacuation pause.
   627   enum CSetBuildType {
   628     Active,             // We are actively building the collection set
   629     Inactive            // We are not actively building the collection set
   630   };
   632   CSetBuildType _inc_cset_build_state;
   634   // The head of the incrementally built collection set.
   635   HeapRegion* _inc_cset_head;
   637   // The tail of the incrementally built collection set.
   638   HeapRegion* _inc_cset_tail;
   640   // The number of regions in the incrementally built collection set.
   641   // Used to set _collection_set_size at the start of an evacuation
   642   // pause.
   643   size_t _inc_cset_size;
   645   // Used as the index in the surving young words structure
   646   // which tracks the amount of space, for each young region,
   647   // that survives the pause.
   648   size_t _inc_cset_young_index;
   650   // The number of bytes in the incrementally built collection set.
   651   // Used to set _collection_set_bytes_used_before at the start of
   652   // an evacuation pause.
   653   size_t _inc_cset_bytes_used_before;
   655   // Used to record the highest end of heap region in collection set
   656   HeapWord* _inc_cset_max_finger;
   658   // The number of recorded used bytes in the young regions
   659   // of the collection set. This is the sum of the used() bytes
   660   // of retired young regions in the collection set.
   661   size_t _inc_cset_recorded_young_bytes;
   663   // The RSet lengths recorded for regions in the collection set
   664   // (updated by the periodic sampling of the regions in the
   665   // young list/collection set).
   666   size_t _inc_cset_recorded_rs_lengths;
   668   // The predicted elapsed time it will take to collect the regions
   669   // in the collection set (updated by the periodic sampling of the
   670   // regions in the young list/collection set).
   671   double _inc_cset_predicted_elapsed_time_ms;
   673   // The predicted bytes to copy for the regions in the collection
   674   // set (updated by the periodic sampling of the regions in the
   675   // young list/collection set).
   676   size_t _inc_cset_predicted_bytes_to_copy;
   678   // Info about marking.
   679   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   681   // The number of collection pauses at the end of the last mark.
   682   size_t _n_pauses_at_mark_end;
   684   // Stash a pointer to the g1 heap.
   685   G1CollectedHeap* _g1;
   687   // The average time in ms per collection pause, averaged over recent pauses.
   688   double recent_avg_time_for_pauses_ms();
   690   // The average time in ms for processing CollectedHeap strong roots, per
   691   // collection pause, averaged over recent pauses.
   692   double recent_avg_time_for_CH_strong_ms();
   694   // The average time in ms for processing the G1 remembered set, per
   695   // pause, averaged over recent pauses.
   696   double recent_avg_time_for_G1_strong_ms();
   698   // The average time in ms for "evacuating followers", per pause, averaged
   699   // over recent pauses.
   700   double recent_avg_time_for_evac_ms();
   702   // The number of "recent" GCs recorded in the number sequences
   703   int number_of_recent_gcs();
   705   // The average survival ratio, computed by the total number of bytes
   706   // suriviving / total number of bytes before collection over the last
   707   // several recent pauses.
   708   double recent_avg_survival_fraction();
   709   // The survival fraction of the most recent pause; if there have been no
   710   // pauses, returns 1.0.
   711   double last_survival_fraction();
   713   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   714   // one that may be higher than "recent_avg_survival_fraction".
   715   // This is conservative in several ways:
   716   //   If there have been few pauses, it will assume a potential high
   717   //     variance, and err on the side of caution.
   718   //   It puts a lower bound (currently 0.1) on the value it will return.
   719   //   To try to detect phase changes, if the most recent pause ("latest") has a
   720   //     higher-than average ("avg") survival rate, it returns that rate.
   721   // "work" version is a utility function; young is restricted to young regions.
   722   double conservative_avg_survival_fraction_work(double avg,
   723                                                  double latest);
   725   // The arguments are the two sequences that keep track of the number of bytes
   726   //   surviving and the total number of bytes before collection, resp.,
   727   //   over the last evereal recent pauses
   728   // Returns the survival rate for the category in the most recent pause.
   729   // If there have been no pauses, returns 1.0.
   730   double last_survival_fraction_work(TruncatedSeq* surviving,
   731                                      TruncatedSeq* before);
   733   // The arguments are the two sequences that keep track of the number of bytes
   734   //   surviving and the total number of bytes before collection, resp.,
   735   //   over the last several recent pauses
   736   // Returns the average survival ration over the last several recent pauses
   737   // If there have been no pauses, return 1.0
   738   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   739                                            TruncatedSeq* before);
   741   double conservative_avg_survival_fraction() {
   742     double avg = recent_avg_survival_fraction();
   743     double latest = last_survival_fraction();
   744     return conservative_avg_survival_fraction_work(avg, latest);
   745   }
   747   // The ratio of gc time to elapsed time, computed over recent pauses.
   748   double _recent_avg_pause_time_ratio;
   750   double recent_avg_pause_time_ratio() {
   751     return _recent_avg_pause_time_ratio;
   752   }
   754   // Number of pauses between concurrent marking.
   755   size_t _pauses_btwn_concurrent_mark;
   757   size_t _n_marks_since_last_pause;
   759   // At the end of a pause we check the heap occupancy and we decide
   760   // whether we will start a marking cycle during the next pause. If
   761   // we decide that we want to do that, we will set this parameter to
   762   // true. So, this parameter will stay true between the end of a
   763   // pause and the beginning of a subsequent pause (not necessarily
   764   // the next one, see the comments on the next field) when we decide
   765   // that we will indeed start a marking cycle and do the initial-mark
   766   // work.
   767   volatile bool _initiate_conc_mark_if_possible;
   769   // If initiate_conc_mark_if_possible() is set at the beginning of a
   770   // pause, it is a suggestion that the pause should start a marking
   771   // cycle by doing the initial-mark work. However, it is possible
   772   // that the concurrent marking thread is still finishing up the
   773   // previous marking cycle (e.g., clearing the next marking
   774   // bitmap). If that is the case we cannot start a new cycle and
   775   // we'll have to wait for the concurrent marking thread to finish
   776   // what it is doing. In this case we will postpone the marking cycle
   777   // initiation decision for the next pause. When we eventually decide
   778   // to start a cycle, we will set _during_initial_mark_pause which
   779   // will stay true until the end of the initial-mark pause and it's
   780   // the condition that indicates that a pause is doing the
   781   // initial-mark work.
   782   volatile bool _during_initial_mark_pause;
   784   bool _should_revert_to_full_young_gcs;
   785   bool _last_full_young_gc;
   787   // This set of variables tracks the collector efficiency, in order to
   788   // determine whether we should initiate a new marking.
   789   double _cur_mark_stop_world_time_ms;
   790   double _mark_init_start_sec;
   791   double _mark_remark_start_sec;
   792   double _mark_cleanup_start_sec;
   793   double _mark_closure_time_ms;
   795   void   calculate_young_list_min_length();
   796   void   calculate_young_list_target_length();
   797   void   calculate_young_list_target_length(size_t rs_lengths);
   799 public:
   801   G1CollectorPolicy();
   803   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   805   virtual CollectorPolicy::Name kind() {
   806     return CollectorPolicy::G1CollectorPolicyKind;
   807   }
   809   void check_prediction_validity();
   811   size_t bytes_in_collection_set() {
   812     return _bytes_in_collection_set_before_gc;
   813   }
   815   size_t bytes_in_to_space() {
   816     return bytes_in_to_space_during_gc();
   817   }
   819   unsigned calc_gc_alloc_time_stamp() {
   820     return _all_pause_times_ms->num() + 1;
   821   }
   823 protected:
   825   // Count the number of bytes used in the CS.
   826   void count_CS_bytes_used();
   828   // Together these do the base cleanup-recording work.  Subclasses might
   829   // want to put something between them.
   830   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   831                                                 size_t max_live_bytes);
   832   void record_concurrent_mark_cleanup_end_work2();
   834 public:
   836   virtual void init();
   838   // Create jstat counters for the policy.
   839   virtual void initialize_gc_policy_counters();
   841   virtual HeapWord* mem_allocate_work(size_t size,
   842                                       bool is_tlab,
   843                                       bool* gc_overhead_limit_was_exceeded);
   845   // This method controls how a collector handles one or more
   846   // of its generations being fully allocated.
   847   virtual HeapWord* satisfy_failed_allocation(size_t size,
   848                                               bool is_tlab);
   850   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   852   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   854   // The number of collection pauses so far.
   855   long n_pauses() const { return _n_pauses; }
   857   // Update the heuristic info to record a collection pause of the given
   858   // start time, where the given number of bytes were used at the start.
   859   // This may involve changing the desired size of a collection set.
   861   virtual void record_stop_world_start();
   863   virtual void record_collection_pause_start(double start_time_sec,
   864                                              size_t start_used);
   866   // Must currently be called while the world is stopped.
   867   virtual void record_concurrent_mark_init_start();
   868   virtual void record_concurrent_mark_init_end();
   869   void record_concurrent_mark_init_end_pre(double
   870                                            mark_init_elapsed_time_ms);
   872   void record_mark_closure_time(double mark_closure_time_ms);
   874   virtual void record_concurrent_mark_remark_start();
   875   virtual void record_concurrent_mark_remark_end();
   877   virtual void record_concurrent_mark_cleanup_start();
   878   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   879                                                   size_t max_live_bytes);
   880   virtual void record_concurrent_mark_cleanup_completed();
   882   virtual void record_concurrent_pause();
   883   virtual void record_concurrent_pause_end();
   885   virtual void record_collection_pause_end_CH_strong_roots();
   886   virtual void record_collection_pause_end_G1_strong_roots();
   888   virtual void record_collection_pause_end(bool abandoned);
   890   // Record the fact that a full collection occurred.
   891   virtual void record_full_collection_start();
   892   virtual void record_full_collection_end();
   894   void record_ext_root_scan_time(int worker_i, double ms) {
   895     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   896   }
   898   void record_mark_stack_scan_time(int worker_i, double ms) {
   899     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   900   }
   902   void record_satb_drain_time(double ms) {
   903     _cur_satb_drain_time_ms = ms;
   904     _satb_drain_time_set    = true;
   905   }
   907   void record_satb_drain_processed_buffers (int processed_buffers) {
   908     _last_satb_drain_processed_buffers = processed_buffers;
   909   }
   911   void record_mod_union_time(double ms) {
   912     _all_mod_union_times_ms->add(ms);
   913   }
   915   void record_update_rs_start_time(int thread, double ms) {
   916     _par_last_update_rs_start_times_ms[thread] = ms;
   917   }
   919   void record_update_rs_time(int thread, double ms) {
   920     _par_last_update_rs_times_ms[thread] = ms;
   921   }
   923   void record_update_rs_processed_buffers (int thread,
   924                                            double processed_buffers) {
   925     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   926   }
   928   void record_scan_rs_start_time(int thread, double ms) {
   929     _par_last_scan_rs_start_times_ms[thread] = ms;
   930   }
   932   void record_scan_rs_time(int thread, double ms) {
   933     _par_last_scan_rs_times_ms[thread] = ms;
   934   }
   936   void record_scan_new_refs_time(int thread, double ms) {
   937     _par_last_scan_new_refs_times_ms[thread] = ms;
   938   }
   940   double get_scan_new_refs_time(int thread) {
   941     return _par_last_scan_new_refs_times_ms[thread];
   942   }
   944   void reset_obj_copy_time(int thread) {
   945     _par_last_obj_copy_times_ms[thread] = 0.0;
   946   }
   948   void reset_obj_copy_time() {
   949     reset_obj_copy_time(0);
   950   }
   952   void record_obj_copy_time(int thread, double ms) {
   953     _par_last_obj_copy_times_ms[thread] += ms;
   954   }
   956   void record_obj_copy_time(double ms) {
   957     record_obj_copy_time(0, ms);
   958   }
   960   void record_termination_time(int thread, double ms) {
   961     _par_last_termination_times_ms[thread] = ms;
   962   }
   964   void record_termination_time(double ms) {
   965     record_termination_time(0, ms);
   966   }
   968   void record_pause_time_ms(double ms) {
   969     _last_pause_time_ms = ms;
   970   }
   972   void record_clear_ct_time(double ms) {
   973     _cur_clear_ct_time_ms = ms;
   974   }
   976   void record_par_time(double ms) {
   977     _cur_collection_par_time_ms = ms;
   978   }
   980   void record_aux_start_time(int i) {
   981     guarantee(i < _aux_num, "should be within range");
   982     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   983   }
   985   void record_aux_end_time(int i) {
   986     guarantee(i < _aux_num, "should be within range");
   987     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   988     _cur_aux_times_set[i] = true;
   989     _cur_aux_times_ms[i] += ms;
   990   }
   992 #ifndef PRODUCT
   993   void record_cc_clear_time(double ms) {
   994     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   995       _min_clear_cc_time_ms = ms;
   996     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   997       _max_clear_cc_time_ms = ms;
   998     _cur_clear_cc_time_ms = ms;
   999     _cum_clear_cc_time_ms += ms;
  1000     _num_cc_clears++;
  1002 #endif
  1004   // Record the fact that "bytes" bytes allocated in a region.
  1005   void record_before_bytes(size_t bytes);
  1006   void record_after_bytes(size_t bytes);
  1008   // Returns "true" if this is a good time to do a collection pause.
  1009   // The "word_size" argument, if non-zero, indicates the size of an
  1010   // allocation request that is prompting this query.
  1011   virtual bool should_do_collection_pause(size_t word_size) = 0;
  1013   // Choose a new collection set.  Marks the chosen regions as being
  1014   // "in_collection_set", and links them together.  The head and number of
  1015   // the collection set are available via access methods.
  1016   virtual bool choose_collection_set() = 0;
  1018   // The head of the list (via "next_in_collection_set()") representing the
  1019   // current collection set.
  1020   HeapRegion* collection_set() { return _collection_set; }
  1022   void clear_collection_set() { _collection_set = NULL; }
  1024   // The number of elements in the current collection set.
  1025   size_t collection_set_size() { return _collection_set_size; }
  1027   // Add "hr" to the CS.
  1028   void add_to_collection_set(HeapRegion* hr);
  1030   // Incremental CSet Support
  1032   // The head of the incrementally built collection set.
  1033   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1035   // The tail of the incrementally built collection set.
  1036   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1038   // The number of elements in the incrementally built collection set.
  1039   size_t inc_cset_size() { return _inc_cset_size; }
  1041   // Initialize incremental collection set info.
  1042   void start_incremental_cset_building();
  1044   void clear_incremental_cset() {
  1045     _inc_cset_head = NULL;
  1046     _inc_cset_tail = NULL;
  1049   // Stop adding regions to the incremental collection set
  1050   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1052   // Add/remove information about hr to the aggregated information
  1053   // for the incrementally built collection set.
  1054   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1055   void remove_from_incremental_cset_info(HeapRegion* hr);
  1057   // Update information about hr in the aggregated information for
  1058   // the incrementally built collection set.
  1059   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1061 private:
  1062   // Update the incremental cset information when adding a region
  1063   // (should not be called directly).
  1064   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1066 public:
  1067   // Add hr to the LHS of the incremental collection set.
  1068   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1070   // Add hr to the RHS of the incremental collection set.
  1071   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1073 #ifndef PRODUCT
  1074   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1075 #endif // !PRODUCT
  1077   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1078   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1079   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1081   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1082   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1083   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1085   // This is called at the very beginning of an evacuation pause (it
  1086   // has to be the first thing that the pause does). If
  1087   // initiate_conc_mark_if_possible() is true, and the concurrent
  1088   // marking thread has completed its work during the previous cycle,
  1089   // it will set during_initial_mark_pause() to so that the pause does
  1090   // the initial-mark work and start a marking cycle.
  1091   void decide_on_conc_mark_initiation();
  1093   // If an expansion would be appropriate, because recent GC overhead had
  1094   // exceeded the desired limit, return an amount to expand by.
  1095   virtual size_t expansion_amount();
  1097   // note start of mark thread
  1098   void note_start_of_mark_thread();
  1100   // The marked bytes of the "r" has changed; reclassify it's desirability
  1101   // for marking.  Also asserts that "r" is eligible for a CS.
  1102   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1104 #ifndef PRODUCT
  1105   // Check any appropriate marked bytes info, asserting false if
  1106   // something's wrong, else returning "true".
  1107   virtual bool assertMarkedBytesDataOK() = 0;
  1108 #endif
  1110   // Print tracing information.
  1111   void print_tracing_info() const;
  1113   // Print stats on young survival ratio
  1114   void print_yg_surv_rate_info() const;
  1116   void finished_recalculating_age_indexes(bool is_survivors) {
  1117     if (is_survivors) {
  1118       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1119     } else {
  1120       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1122     // do that for any other surv rate groups
  1125   bool should_add_next_region_to_young_list();
  1127   bool in_young_gc_mode() {
  1128     return _in_young_gc_mode;
  1130   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1131     _in_young_gc_mode = in_young_gc_mode;
  1134   bool full_young_gcs() {
  1135     return _full_young_gcs;
  1137   void set_full_young_gcs(bool full_young_gcs) {
  1138     _full_young_gcs = full_young_gcs;
  1141   bool adaptive_young_list_length() {
  1142     return _adaptive_young_list_length;
  1144   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1145     _adaptive_young_list_length = adaptive_young_list_length;
  1148   inline double get_gc_eff_factor() {
  1149     double ratio = _known_garbage_ratio;
  1151     double square = ratio * ratio;
  1152     // square = square * square;
  1153     double ret = square * 9.0 + 1.0;
  1154 #if 0
  1155     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1156 #endif // 0
  1157     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1158     return ret;
  1161   //
  1162   // Survivor regions policy.
  1163   //
  1164 protected:
  1166   // Current tenuring threshold, set to 0 if the collector reaches the
  1167   // maximum amount of suvivors regions.
  1168   int _tenuring_threshold;
  1170   // The limit on the number of regions allocated for survivors.
  1171   size_t _max_survivor_regions;
  1173   // The amount of survor regions after a collection.
  1174   size_t _recorded_survivor_regions;
  1175   // List of survivor regions.
  1176   HeapRegion* _recorded_survivor_head;
  1177   HeapRegion* _recorded_survivor_tail;
  1179   ageTable _survivors_age_table;
  1181 public:
  1183   inline GCAllocPurpose
  1184     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1185       if (age < _tenuring_threshold && src_region->is_young()) {
  1186         return GCAllocForSurvived;
  1187       } else {
  1188         return GCAllocForTenured;
  1192   inline bool track_object_age(GCAllocPurpose purpose) {
  1193     return purpose == GCAllocForSurvived;
  1196   inline GCAllocPurpose alternative_purpose(int purpose) {
  1197     return GCAllocForTenured;
  1200   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1202   size_t max_regions(int purpose);
  1204   // The limit on regions for a particular purpose is reached.
  1205   void note_alloc_region_limit_reached(int purpose) {
  1206     if (purpose == GCAllocForSurvived) {
  1207       _tenuring_threshold = 0;
  1211   void note_start_adding_survivor_regions() {
  1212     _survivor_surv_rate_group->start_adding_regions();
  1215   void note_stop_adding_survivor_regions() {
  1216     _survivor_surv_rate_group->stop_adding_regions();
  1219   void record_survivor_regions(size_t      regions,
  1220                                HeapRegion* head,
  1221                                HeapRegion* tail) {
  1222     _recorded_survivor_regions = regions;
  1223     _recorded_survivor_head    = head;
  1224     _recorded_survivor_tail    = tail;
  1227   size_t recorded_survivor_regions() {
  1228     return _recorded_survivor_regions;
  1231   void record_thread_age_table(ageTable* age_table)
  1233     _survivors_age_table.merge_par(age_table);
  1236   // Calculates survivor space parameters.
  1237   void calculate_survivors_policy();
  1239 };
  1241 // This encapsulates a particular strategy for a g1 Collector.
  1242 //
  1243 //      Start a concurrent mark when our heap size is n bytes
  1244 //            greater then our heap size was at the last concurrent
  1245 //            mark.  Where n is a function of the CMSTriggerRatio
  1246 //            and the MinHeapFreeRatio.
  1247 //
  1248 //      Start a g1 collection pause when we have allocated the
  1249 //            average number of bytes currently being freed in
  1250 //            a collection, but only if it is at least one region
  1251 //            full
  1252 //
  1253 //      Resize Heap based on desired
  1254 //      allocation space, where desired allocation space is
  1255 //      a function of survival rate and desired future to size.
  1256 //
  1257 //      Choose collection set by first picking all older regions
  1258 //      which have a survival rate which beats our projected young
  1259 //      survival rate.  Then fill out the number of needed regions
  1260 //      with young regions.
  1262 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1263   CollectionSetChooser* _collectionSetChooser;
  1264   // If the estimated is less then desirable, resize if possible.
  1265   void expand_if_possible(size_t numRegions);
  1267   virtual bool choose_collection_set();
  1268   virtual void record_collection_pause_start(double start_time_sec,
  1269                                              size_t start_used);
  1270   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1271                                                   size_t max_live_bytes);
  1272   virtual void record_full_collection_end();
  1274 public:
  1275   G1CollectorPolicy_BestRegionsFirst() {
  1276     _collectionSetChooser = new CollectionSetChooser();
  1278   void record_collection_pause_end(bool abandoned);
  1279   bool should_do_collection_pause(size_t word_size);
  1280   // This is not needed any more, after the CSet choosing code was
  1281   // changed to use the pause prediction work. But let's leave the
  1282   // hook in just in case.
  1283   void note_change_in_marked_bytes(HeapRegion* r) { }
  1284 #ifndef PRODUCT
  1285   bool assertMarkedBytesDataOK();
  1286 #endif
  1287 };
  1289 // This should move to some place more general...
  1291 // If we have "n" measurements, and we've kept track of their "sum" and the
  1292 // "sum_of_squares" of the measurements, this returns the variance of the
  1293 // sequence.
  1294 inline double variance(int n, double sum_of_squares, double sum) {
  1295   double n_d = (double)n;
  1296   double avg = sum/n_d;
  1297   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1300 // Local Variables: ***
  1301 // c-indentation-style: gnu ***
  1302 // End: ***

mercurial