src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 22 Apr 2010 15:20:16 -0400

author
tonyp
date
Thu, 22 Apr 2010 15:20:16 -0400
changeset 1966
215576b54709
parent 1907
c18cbe5936b8
child 2011
4e5661ba9d98
permissions
-rw-r--r--

6946048: G1: improvements to +PrintGCDetails output
Summary: Small improvements to G1's PrintGCDetails output. It also includes minor formatting details.
Reviewed-by: ysr, johnc

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(update_rs)
    65     define_num_seq(scan_rs)
    66     define_num_seq(scan_new_refs) // Only for temp use; added to
    67                                   // in parallel case.
    68     define_num_seq(obj_copy)
    69     define_num_seq(termination) // parallel only
    70     define_num_seq(parallel_other) // parallel only
    71   define_num_seq(mark_closure)
    72   define_num_seq(clear_ct)  // parallel only
    73 };
    75 class Summary: public PauseSummary,
    76                public MainBodySummary {
    77 public:
    78   virtual MainBodySummary*    main_body_summary()    { return this; }
    79 };
    81 class AbandonedSummary: public PauseSummary {
    82 };
    84 class G1CollectorPolicy: public CollectorPolicy {
    85 protected:
    86   // The number of pauses during the execution.
    87   long _n_pauses;
    89   // either equal to the number of parallel threads, if ParallelGCThreads
    90   // has been set, or 1 otherwise
    91   int _parallel_gc_threads;
    93   enum SomePrivateConstants {
    94     NumPrevPausesForHeuristics = 10
    95   };
    97   G1MMUTracker* _mmu_tracker;
    99   void initialize_flags();
   101   void initialize_all() {
   102     initialize_flags();
   103     initialize_size_info();
   104     initialize_perm_generation(PermGen::MarkSweepCompact);
   105   }
   107   virtual size_t default_init_heap_size() {
   108     // Pick some reasonable default.
   109     return 8*M;
   110   }
   112   double _cur_collection_start_sec;
   113   size_t _cur_collection_pause_used_at_start_bytes;
   114   size_t _cur_collection_pause_used_regions_at_start;
   115   size_t _prev_collection_pause_used_at_end_bytes;
   116   double _cur_collection_par_time_ms;
   117   double _cur_satb_drain_time_ms;
   118   double _cur_clear_ct_time_ms;
   119   bool   _satb_drain_time_set;
   121 #ifndef PRODUCT
   122   // Card Table Count Cache stats
   123   double _min_clear_cc_time_ms;         // min
   124   double _max_clear_cc_time_ms;         // max
   125   double _cur_clear_cc_time_ms;         // clearing time during current pause
   126   double _cum_clear_cc_time_ms;         // cummulative clearing time
   127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   128 #endif
   130   double _cur_CH_strong_roots_end_sec;
   131   double _cur_CH_strong_roots_dur_ms;
   132   double _cur_G1_strong_roots_end_sec;
   133   double _cur_G1_strong_roots_dur_ms;
   135   // Statistics for recent GC pauses.  See below for how indexed.
   136   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   137   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   138   TruncatedSeq* _recent_evac_times_ms;
   139   // These exclude marking times.
   140   TruncatedSeq* _recent_pause_times_ms;
   141   TruncatedSeq* _recent_gc_times_ms;
   143   TruncatedSeq* _recent_CS_bytes_used_before;
   144   TruncatedSeq* _recent_CS_bytes_surviving;
   146   TruncatedSeq* _recent_rs_sizes;
   148   TruncatedSeq* _concurrent_mark_init_times_ms;
   149   TruncatedSeq* _concurrent_mark_remark_times_ms;
   150   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   152   Summary*           _summary;
   153   AbandonedSummary*  _abandoned_summary;
   155   NumberSeq* _all_pause_times_ms;
   156   NumberSeq* _all_full_gc_times_ms;
   157   double _stop_world_start;
   158   NumberSeq* _all_stop_world_times_ms;
   159   NumberSeq* _all_yield_times_ms;
   161   size_t     _region_num_young;
   162   size_t     _region_num_tenured;
   163   size_t     _prev_region_num_young;
   164   size_t     _prev_region_num_tenured;
   166   NumberSeq* _all_mod_union_times_ms;
   168   int        _aux_num;
   169   NumberSeq* _all_aux_times_ms;
   170   double*    _cur_aux_start_times_ms;
   171   double*    _cur_aux_times_ms;
   172   bool*      _cur_aux_times_set;
   174   double* _par_last_gc_worker_start_times_ms;
   175   double* _par_last_ext_root_scan_times_ms;
   176   double* _par_last_mark_stack_scan_times_ms;
   177   double* _par_last_update_rs_times_ms;
   178   double* _par_last_update_rs_processed_buffers;
   179   double* _par_last_scan_rs_times_ms;
   180   double* _par_last_scan_new_refs_times_ms;
   181   double* _par_last_obj_copy_times_ms;
   182   double* _par_last_termination_times_ms;
   183   double* _par_last_termination_attempts;
   184   double* _par_last_gc_worker_end_times_ms;
   186   // indicates that we are in young GC mode
   187   bool _in_young_gc_mode;
   189   // indicates whether we are in full young or partially young GC mode
   190   bool _full_young_gcs;
   192   // if true, then it tries to dynamically adjust the length of the
   193   // young list
   194   bool _adaptive_young_list_length;
   195   size_t _young_list_min_length;
   196   size_t _young_list_target_length;
   197   size_t _young_list_fixed_length;
   199   size_t _young_cset_length;
   200   bool   _last_young_gc_full;
   202   double _target_pause_time_ms;
   204   unsigned              _full_young_pause_num;
   205   unsigned              _partial_young_pause_num;
   207   bool                  _during_marking;
   208   bool                  _in_marking_window;
   209   bool                  _in_marking_window_im;
   211   SurvRateGroup*        _short_lived_surv_rate_group;
   212   SurvRateGroup*        _survivor_surv_rate_group;
   213   // add here any more surv rate groups
   215   double                _gc_overhead_perc;
   217   bool during_marking() {
   218     return _during_marking;
   219   }
   221   // <NEW PREDICTION>
   223 private:
   224   enum PredictionConstants {
   225     TruncatedSeqLength = 10
   226   };
   228   TruncatedSeq* _alloc_rate_ms_seq;
   229   double        _prev_collection_pause_end_ms;
   231   TruncatedSeq* _pending_card_diff_seq;
   232   TruncatedSeq* _rs_length_diff_seq;
   233   TruncatedSeq* _cost_per_card_ms_seq;
   234   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   236   TruncatedSeq* _cost_per_entry_ms_seq;
   237   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   238   TruncatedSeq* _cost_per_byte_ms_seq;
   239   TruncatedSeq* _constant_other_time_ms_seq;
   240   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _pending_cards_seq;
   244   TruncatedSeq* _scanned_cards_seq;
   245   TruncatedSeq* _rs_lengths_seq;
   247   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   249   TruncatedSeq* _young_gc_eff_seq;
   251   TruncatedSeq* _max_conc_overhead_seq;
   253   size_t _recorded_young_regions;
   254   size_t _recorded_non_young_regions;
   255   size_t _recorded_region_num;
   257   size_t _free_regions_at_end_of_collection;
   259   size_t _recorded_rs_lengths;
   260   size_t _max_rs_lengths;
   262   size_t _recorded_marked_bytes;
   263   size_t _recorded_young_bytes;
   265   size_t _predicted_pending_cards;
   266   size_t _predicted_cards_scanned;
   267   size_t _predicted_rs_lengths;
   268   size_t _predicted_bytes_to_copy;
   270   double _predicted_survival_ratio;
   271   double _predicted_rs_update_time_ms;
   272   double _predicted_rs_scan_time_ms;
   273   double _predicted_object_copy_time_ms;
   274   double _predicted_constant_other_time_ms;
   275   double _predicted_young_other_time_ms;
   276   double _predicted_non_young_other_time_ms;
   277   double _predicted_pause_time_ms;
   279   double _vtime_diff_ms;
   281   double _recorded_young_free_cset_time_ms;
   282   double _recorded_non_young_free_cset_time_ms;
   284   double _sigma;
   285   double _expensive_region_limit_ms;
   287   size_t _rs_lengths_prediction;
   289   size_t _known_garbage_bytes;
   290   double _known_garbage_ratio;
   292   double sigma() {
   293     return _sigma;
   294   }
   296   // A function that prevents us putting too much stock in small sample
   297   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   298   // of samples.  5 or more samples yields one; fewer scales linearly from
   299   // 2.0 at 1 sample to 1.0 at 5.
   300   double confidence_factor(int samples) {
   301     if (samples > 4) return 1.0;
   302     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   303   }
   305   double get_new_neg_prediction(TruncatedSeq* seq) {
   306     return seq->davg() - sigma() * seq->dsd();
   307   }
   309 #ifndef PRODUCT
   310   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   311 #endif // PRODUCT
   313   void adjust_concurrent_refinement(double update_rs_time,
   314                                     double update_rs_processed_buffers,
   315                                     double goal_ms);
   317 protected:
   318   double _pause_time_target_ms;
   319   double _recorded_young_cset_choice_time_ms;
   320   double _recorded_non_young_cset_choice_time_ms;
   321   bool   _within_target;
   322   size_t _pending_cards;
   323   size_t _max_pending_cards;
   325 public:
   327   void set_region_short_lived(HeapRegion* hr) {
   328     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   329   }
   331   void set_region_survivors(HeapRegion* hr) {
   332     hr->install_surv_rate_group(_survivor_surv_rate_group);
   333   }
   335 #ifndef PRODUCT
   336   bool verify_young_ages();
   337 #endif // PRODUCT
   339   double get_new_prediction(TruncatedSeq* seq) {
   340     return MAX2(seq->davg() + sigma() * seq->dsd(),
   341                 seq->davg() * confidence_factor(seq->num()));
   342   }
   344   size_t young_cset_length() {
   345     return _young_cset_length;
   346   }
   348   void record_max_rs_lengths(size_t rs_lengths) {
   349     _max_rs_lengths = rs_lengths;
   350   }
   352   size_t predict_pending_card_diff() {
   353     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   354     if (prediction < 0.00001)
   355       return 0;
   356     else
   357       return (size_t) prediction;
   358   }
   360   size_t predict_pending_cards() {
   361     size_t max_pending_card_num = _g1->max_pending_card_num();
   362     size_t diff = predict_pending_card_diff();
   363     size_t prediction;
   364     if (diff > max_pending_card_num)
   365       prediction = max_pending_card_num;
   366     else
   367       prediction = max_pending_card_num - diff;
   369     return prediction;
   370   }
   372   size_t predict_rs_length_diff() {
   373     return (size_t) get_new_prediction(_rs_length_diff_seq);
   374   }
   376   double predict_alloc_rate_ms() {
   377     return get_new_prediction(_alloc_rate_ms_seq);
   378   }
   380   double predict_cost_per_card_ms() {
   381     return get_new_prediction(_cost_per_card_ms_seq);
   382   }
   384   double predict_rs_update_time_ms(size_t pending_cards) {
   385     return (double) pending_cards * predict_cost_per_card_ms();
   386   }
   388   double predict_fully_young_cards_per_entry_ratio() {
   389     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   390   }
   392   double predict_partially_young_cards_per_entry_ratio() {
   393     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   394       return predict_fully_young_cards_per_entry_ratio();
   395     else
   396       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   397   }
   399   size_t predict_young_card_num(size_t rs_length) {
   400     return (size_t) ((double) rs_length *
   401                      predict_fully_young_cards_per_entry_ratio());
   402   }
   404   size_t predict_non_young_card_num(size_t rs_length) {
   405     return (size_t) ((double) rs_length *
   406                      predict_partially_young_cards_per_entry_ratio());
   407   }
   409   double predict_rs_scan_time_ms(size_t card_num) {
   410     if (full_young_gcs())
   411       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   412     else
   413       return predict_partially_young_rs_scan_time_ms(card_num);
   414   }
   416   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   417     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   418       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   419     else
   420       return (double) card_num *
   421         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   422   }
   424   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   425     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   426       return 1.1 * (double) bytes_to_copy *
   427         get_new_prediction(_cost_per_byte_ms_seq);
   428     else
   429       return (double) bytes_to_copy *
   430         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   431   }
   433   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   434     if (_in_marking_window && !_in_marking_window_im)
   435       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   436     else
   437       return (double) bytes_to_copy *
   438         get_new_prediction(_cost_per_byte_ms_seq);
   439   }
   441   double predict_constant_other_time_ms() {
   442     return get_new_prediction(_constant_other_time_ms_seq);
   443   }
   445   double predict_young_other_time_ms(size_t young_num) {
   446     return
   447       (double) young_num *
   448       get_new_prediction(_young_other_cost_per_region_ms_seq);
   449   }
   451   double predict_non_young_other_time_ms(size_t non_young_num) {
   452     return
   453       (double) non_young_num *
   454       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   455   }
   457   void check_if_region_is_too_expensive(double predicted_time_ms);
   459   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   460   double predict_base_elapsed_time_ms(size_t pending_cards);
   461   double predict_base_elapsed_time_ms(size_t pending_cards,
   462                                       size_t scanned_cards);
   463   size_t predict_bytes_to_copy(HeapRegion* hr);
   464   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   466     // for use by: calculate_young_list_target_length(rs_length)
   467   bool predict_will_fit(size_t young_region_num,
   468                         double base_time_ms,
   469                         size_t init_free_regions,
   470                         double target_pause_time_ms);
   472   void start_recording_regions();
   473   void record_cset_region_info(HeapRegion* hr, bool young);
   474   void record_non_young_cset_region(HeapRegion* hr);
   476   void set_recorded_young_regions(size_t n_regions);
   477   void set_recorded_young_bytes(size_t bytes);
   478   void set_recorded_rs_lengths(size_t rs_lengths);
   479   void set_predicted_bytes_to_copy(size_t bytes);
   481   void end_recording_regions();
   483   void record_vtime_diff_ms(double vtime_diff_ms) {
   484     _vtime_diff_ms = vtime_diff_ms;
   485   }
   487   void record_young_free_cset_time_ms(double time_ms) {
   488     _recorded_young_free_cset_time_ms = time_ms;
   489   }
   491   void record_non_young_free_cset_time_ms(double time_ms) {
   492     _recorded_non_young_free_cset_time_ms = time_ms;
   493   }
   495   double predict_young_gc_eff() {
   496     return get_new_neg_prediction(_young_gc_eff_seq);
   497   }
   499   double predict_survivor_regions_evac_time();
   501   // </NEW PREDICTION>
   503 public:
   504   void cset_regions_freed() {
   505     bool propagate = _last_young_gc_full && !_in_marking_window;
   506     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   507     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   508     // also call it on any more surv rate groups
   509   }
   511   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   512     _known_garbage_bytes = known_garbage_bytes;
   513     size_t heap_bytes = _g1->capacity();
   514     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   515   }
   517   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   518     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   520     _known_garbage_bytes -= known_garbage_bytes;
   521     size_t heap_bytes = _g1->capacity();
   522     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   523   }
   525   G1MMUTracker* mmu_tracker() {
   526     return _mmu_tracker;
   527   }
   529   double predict_init_time_ms() {
   530     return get_new_prediction(_concurrent_mark_init_times_ms);
   531   }
   533   double predict_remark_time_ms() {
   534     return get_new_prediction(_concurrent_mark_remark_times_ms);
   535   }
   537   double predict_cleanup_time_ms() {
   538     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   539   }
   541   // Returns an estimate of the survival rate of the region at yg-age
   542   // "yg_age".
   543   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   544     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   545     if (seq->num() == 0)
   546       gclog_or_tty->print("BARF! age is %d", age);
   547     guarantee( seq->num() > 0, "invariant" );
   548     double pred = get_new_prediction(seq);
   549     if (pred > 1.0)
   550       pred = 1.0;
   551     return pred;
   552   }
   554   double predict_yg_surv_rate(int age) {
   555     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   556   }
   558   double accum_yg_surv_rate_pred(int age) {
   559     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   560   }
   562 protected:
   563   void print_stats(int level, const char* str, double value);
   564   void print_stats(int level, const char* str, int value);
   566   void print_par_stats(int level, const char* str, double* data) {
   567     print_par_stats(level, str, data, true);
   568   }
   569   void print_par_stats(int level, const char* str, double* data, bool summary);
   570   void print_par_sizes(int level, const char* str, double* data, bool summary);
   572   void check_other_times(int level,
   573                          NumberSeq* other_times_ms,
   574                          NumberSeq* calc_other_times_ms) const;
   576   void print_summary (PauseSummary* stats) const;
   577   void print_abandoned_summary(PauseSummary* summary) const;
   579   void print_summary (int level, const char* str, NumberSeq* seq) const;
   580   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   582   double avg_value (double* data);
   583   double max_value (double* data);
   584   double sum_of_values (double* data);
   585   double max_sum (double* data1, double* data2);
   587   int _last_satb_drain_processed_buffers;
   588   int _last_update_rs_processed_buffers;
   589   double _last_pause_time_ms;
   591   size_t _bytes_in_to_space_before_gc;
   592   size_t _bytes_in_to_space_after_gc;
   593   size_t bytes_in_to_space_during_gc() {
   594     return
   595       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   596   }
   597   size_t _bytes_in_collection_set_before_gc;
   598   // Used to count used bytes in CS.
   599   friend class CountCSClosure;
   601   // Statistics kept per GC stoppage, pause or full.
   602   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   604   // We track markings.
   605   int _num_markings;
   606   double _mark_thread_startup_sec;       // Time at startup of marking thread
   608   // Add a new GC of the given duration and end time to the record.
   609   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   611   // The head of the list (via "next_in_collection_set()") representing the
   612   // current collection set. Set from the incrementally built collection
   613   // set at the start of the pause.
   614   HeapRegion* _collection_set;
   616   // The number of regions in the collection set. Set from the incrementally
   617   // built collection set at the start of an evacuation pause.
   618   size_t _collection_set_size;
   620   // The number of bytes in the collection set before the pause. Set from
   621   // the incrementally built collection set at the start of an evacuation
   622   // pause.
   623   size_t _collection_set_bytes_used_before;
   625   // The associated information that is maintained while the incremental
   626   // collection set is being built with young regions. Used to populate
   627   // the recorded info for the evacuation pause.
   629   enum CSetBuildType {
   630     Active,             // We are actively building the collection set
   631     Inactive            // We are not actively building the collection set
   632   };
   634   CSetBuildType _inc_cset_build_state;
   636   // The head of the incrementally built collection set.
   637   HeapRegion* _inc_cset_head;
   639   // The tail of the incrementally built collection set.
   640   HeapRegion* _inc_cset_tail;
   642   // The number of regions in the incrementally built collection set.
   643   // Used to set _collection_set_size at the start of an evacuation
   644   // pause.
   645   size_t _inc_cset_size;
   647   // Used as the index in the surving young words structure
   648   // which tracks the amount of space, for each young region,
   649   // that survives the pause.
   650   size_t _inc_cset_young_index;
   652   // The number of bytes in the incrementally built collection set.
   653   // Used to set _collection_set_bytes_used_before at the start of
   654   // an evacuation pause.
   655   size_t _inc_cset_bytes_used_before;
   657   // Used to record the highest end of heap region in collection set
   658   HeapWord* _inc_cset_max_finger;
   660   // The number of recorded used bytes in the young regions
   661   // of the collection set. This is the sum of the used() bytes
   662   // of retired young regions in the collection set.
   663   size_t _inc_cset_recorded_young_bytes;
   665   // The RSet lengths recorded for regions in the collection set
   666   // (updated by the periodic sampling of the regions in the
   667   // young list/collection set).
   668   size_t _inc_cset_recorded_rs_lengths;
   670   // The predicted elapsed time it will take to collect the regions
   671   // in the collection set (updated by the periodic sampling of the
   672   // regions in the young list/collection set).
   673   double _inc_cset_predicted_elapsed_time_ms;
   675   // The predicted bytes to copy for the regions in the collection
   676   // set (updated by the periodic sampling of the regions in the
   677   // young list/collection set).
   678   size_t _inc_cset_predicted_bytes_to_copy;
   680   // Info about marking.
   681   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   683   // The number of collection pauses at the end of the last mark.
   684   size_t _n_pauses_at_mark_end;
   686   // Stash a pointer to the g1 heap.
   687   G1CollectedHeap* _g1;
   689   // The average time in ms per collection pause, averaged over recent pauses.
   690   double recent_avg_time_for_pauses_ms();
   692   // The average time in ms for processing CollectedHeap strong roots, per
   693   // collection pause, averaged over recent pauses.
   694   double recent_avg_time_for_CH_strong_ms();
   696   // The average time in ms for processing the G1 remembered set, per
   697   // pause, averaged over recent pauses.
   698   double recent_avg_time_for_G1_strong_ms();
   700   // The average time in ms for "evacuating followers", per pause, averaged
   701   // over recent pauses.
   702   double recent_avg_time_for_evac_ms();
   704   // The number of "recent" GCs recorded in the number sequences
   705   int number_of_recent_gcs();
   707   // The average survival ratio, computed by the total number of bytes
   708   // suriviving / total number of bytes before collection over the last
   709   // several recent pauses.
   710   double recent_avg_survival_fraction();
   711   // The survival fraction of the most recent pause; if there have been no
   712   // pauses, returns 1.0.
   713   double last_survival_fraction();
   715   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   716   // one that may be higher than "recent_avg_survival_fraction".
   717   // This is conservative in several ways:
   718   //   If there have been few pauses, it will assume a potential high
   719   //     variance, and err on the side of caution.
   720   //   It puts a lower bound (currently 0.1) on the value it will return.
   721   //   To try to detect phase changes, if the most recent pause ("latest") has a
   722   //     higher-than average ("avg") survival rate, it returns that rate.
   723   // "work" version is a utility function; young is restricted to young regions.
   724   double conservative_avg_survival_fraction_work(double avg,
   725                                                  double latest);
   727   // The arguments are the two sequences that keep track of the number of bytes
   728   //   surviving and the total number of bytes before collection, resp.,
   729   //   over the last evereal recent pauses
   730   // Returns the survival rate for the category in the most recent pause.
   731   // If there have been no pauses, returns 1.0.
   732   double last_survival_fraction_work(TruncatedSeq* surviving,
   733                                      TruncatedSeq* before);
   735   // The arguments are the two sequences that keep track of the number of bytes
   736   //   surviving and the total number of bytes before collection, resp.,
   737   //   over the last several recent pauses
   738   // Returns the average survival ration over the last several recent pauses
   739   // If there have been no pauses, return 1.0
   740   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   741                                            TruncatedSeq* before);
   743   double conservative_avg_survival_fraction() {
   744     double avg = recent_avg_survival_fraction();
   745     double latest = last_survival_fraction();
   746     return conservative_avg_survival_fraction_work(avg, latest);
   747   }
   749   // The ratio of gc time to elapsed time, computed over recent pauses.
   750   double _recent_avg_pause_time_ratio;
   752   double recent_avg_pause_time_ratio() {
   753     return _recent_avg_pause_time_ratio;
   754   }
   756   // Number of pauses between concurrent marking.
   757   size_t _pauses_btwn_concurrent_mark;
   759   size_t _n_marks_since_last_pause;
   761   // At the end of a pause we check the heap occupancy and we decide
   762   // whether we will start a marking cycle during the next pause. If
   763   // we decide that we want to do that, we will set this parameter to
   764   // true. So, this parameter will stay true between the end of a
   765   // pause and the beginning of a subsequent pause (not necessarily
   766   // the next one, see the comments on the next field) when we decide
   767   // that we will indeed start a marking cycle and do the initial-mark
   768   // work.
   769   volatile bool _initiate_conc_mark_if_possible;
   771   // If initiate_conc_mark_if_possible() is set at the beginning of a
   772   // pause, it is a suggestion that the pause should start a marking
   773   // cycle by doing the initial-mark work. However, it is possible
   774   // that the concurrent marking thread is still finishing up the
   775   // previous marking cycle (e.g., clearing the next marking
   776   // bitmap). If that is the case we cannot start a new cycle and
   777   // we'll have to wait for the concurrent marking thread to finish
   778   // what it is doing. In this case we will postpone the marking cycle
   779   // initiation decision for the next pause. When we eventually decide
   780   // to start a cycle, we will set _during_initial_mark_pause which
   781   // will stay true until the end of the initial-mark pause and it's
   782   // the condition that indicates that a pause is doing the
   783   // initial-mark work.
   784   volatile bool _during_initial_mark_pause;
   786   bool _should_revert_to_full_young_gcs;
   787   bool _last_full_young_gc;
   789   // This set of variables tracks the collector efficiency, in order to
   790   // determine whether we should initiate a new marking.
   791   double _cur_mark_stop_world_time_ms;
   792   double _mark_init_start_sec;
   793   double _mark_remark_start_sec;
   794   double _mark_cleanup_start_sec;
   795   double _mark_closure_time_ms;
   797   void   calculate_young_list_min_length();
   798   void   calculate_young_list_target_length();
   799   void   calculate_young_list_target_length(size_t rs_lengths);
   801 public:
   803   G1CollectorPolicy();
   805   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   807   virtual CollectorPolicy::Name kind() {
   808     return CollectorPolicy::G1CollectorPolicyKind;
   809   }
   811   void check_prediction_validity();
   813   size_t bytes_in_collection_set() {
   814     return _bytes_in_collection_set_before_gc;
   815   }
   817   size_t bytes_in_to_space() {
   818     return bytes_in_to_space_during_gc();
   819   }
   821   unsigned calc_gc_alloc_time_stamp() {
   822     return _all_pause_times_ms->num() + 1;
   823   }
   825 protected:
   827   // Count the number of bytes used in the CS.
   828   void count_CS_bytes_used();
   830   // Together these do the base cleanup-recording work.  Subclasses might
   831   // want to put something between them.
   832   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   833                                                 size_t max_live_bytes);
   834   void record_concurrent_mark_cleanup_end_work2();
   836 public:
   838   virtual void init();
   840   // Create jstat counters for the policy.
   841   virtual void initialize_gc_policy_counters();
   843   virtual HeapWord* mem_allocate_work(size_t size,
   844                                       bool is_tlab,
   845                                       bool* gc_overhead_limit_was_exceeded);
   847   // This method controls how a collector handles one or more
   848   // of its generations being fully allocated.
   849   virtual HeapWord* satisfy_failed_allocation(size_t size,
   850                                               bool is_tlab);
   852   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   854   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   856   // The number of collection pauses so far.
   857   long n_pauses() const { return _n_pauses; }
   859   // Update the heuristic info to record a collection pause of the given
   860   // start time, where the given number of bytes were used at the start.
   861   // This may involve changing the desired size of a collection set.
   863   virtual void record_stop_world_start();
   865   virtual void record_collection_pause_start(double start_time_sec,
   866                                              size_t start_used);
   868   // Must currently be called while the world is stopped.
   869   virtual void record_concurrent_mark_init_start();
   870   virtual void record_concurrent_mark_init_end();
   871   void record_concurrent_mark_init_end_pre(double
   872                                            mark_init_elapsed_time_ms);
   874   void record_mark_closure_time(double mark_closure_time_ms);
   876   virtual void record_concurrent_mark_remark_start();
   877   virtual void record_concurrent_mark_remark_end();
   879   virtual void record_concurrent_mark_cleanup_start();
   880   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   881                                                   size_t max_live_bytes);
   882   virtual void record_concurrent_mark_cleanup_completed();
   884   virtual void record_concurrent_pause();
   885   virtual void record_concurrent_pause_end();
   887   virtual void record_collection_pause_end_CH_strong_roots();
   888   virtual void record_collection_pause_end_G1_strong_roots();
   890   virtual void record_collection_pause_end(bool abandoned);
   892   // Record the fact that a full collection occurred.
   893   virtual void record_full_collection_start();
   894   virtual void record_full_collection_end();
   896   void record_gc_worker_start_time(int worker_i, double ms) {
   897     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   898   }
   900   void record_ext_root_scan_time(int worker_i, double ms) {
   901     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   902   }
   904   void record_mark_stack_scan_time(int worker_i, double ms) {
   905     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   906   }
   908   void record_satb_drain_time(double ms) {
   909     _cur_satb_drain_time_ms = ms;
   910     _satb_drain_time_set    = true;
   911   }
   913   void record_satb_drain_processed_buffers (int processed_buffers) {
   914     _last_satb_drain_processed_buffers = processed_buffers;
   915   }
   917   void record_mod_union_time(double ms) {
   918     _all_mod_union_times_ms->add(ms);
   919   }
   921   void record_update_rs_time(int thread, double ms) {
   922     _par_last_update_rs_times_ms[thread] = ms;
   923   }
   925   void record_update_rs_processed_buffers (int thread,
   926                                            double processed_buffers) {
   927     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   928   }
   930   void record_scan_rs_time(int thread, double ms) {
   931     _par_last_scan_rs_times_ms[thread] = ms;
   932   }
   934   void record_scan_new_refs_time(int thread, double ms) {
   935     _par_last_scan_new_refs_times_ms[thread] = ms;
   936   }
   938   double get_scan_new_refs_time(int thread) {
   939     return _par_last_scan_new_refs_times_ms[thread];
   940   }
   942   void reset_obj_copy_time(int thread) {
   943     _par_last_obj_copy_times_ms[thread] = 0.0;
   944   }
   946   void reset_obj_copy_time() {
   947     reset_obj_copy_time(0);
   948   }
   950   void record_obj_copy_time(int thread, double ms) {
   951     _par_last_obj_copy_times_ms[thread] += ms;
   952   }
   954   void record_termination(int thread, double ms, size_t attempts) {
   955     _par_last_termination_times_ms[thread] = ms;
   956     _par_last_termination_attempts[thread] = (double) attempts;
   957   }
   959   void record_gc_worker_end_time(int worker_i, double ms) {
   960     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   961   }
   963   void record_pause_time_ms(double ms) {
   964     _last_pause_time_ms = ms;
   965   }
   967   void record_clear_ct_time(double ms) {
   968     _cur_clear_ct_time_ms = ms;
   969   }
   971   void record_par_time(double ms) {
   972     _cur_collection_par_time_ms = ms;
   973   }
   975   void record_aux_start_time(int i) {
   976     guarantee(i < _aux_num, "should be within range");
   977     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   978   }
   980   void record_aux_end_time(int i) {
   981     guarantee(i < _aux_num, "should be within range");
   982     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   983     _cur_aux_times_set[i] = true;
   984     _cur_aux_times_ms[i] += ms;
   985   }
   987 #ifndef PRODUCT
   988   void record_cc_clear_time(double ms) {
   989     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   990       _min_clear_cc_time_ms = ms;
   991     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   992       _max_clear_cc_time_ms = ms;
   993     _cur_clear_cc_time_ms = ms;
   994     _cum_clear_cc_time_ms += ms;
   995     _num_cc_clears++;
   996   }
   997 #endif
   999   // Record the fact that "bytes" bytes allocated in a region.
  1000   void record_before_bytes(size_t bytes);
  1001   void record_after_bytes(size_t bytes);
  1003   // Returns "true" if this is a good time to do a collection pause.
  1004   // The "word_size" argument, if non-zero, indicates the size of an
  1005   // allocation request that is prompting this query.
  1006   virtual bool should_do_collection_pause(size_t word_size) = 0;
  1008   // Choose a new collection set.  Marks the chosen regions as being
  1009   // "in_collection_set", and links them together.  The head and number of
  1010   // the collection set are available via access methods.
  1011   virtual bool choose_collection_set() = 0;
  1013   // The head of the list (via "next_in_collection_set()") representing the
  1014   // current collection set.
  1015   HeapRegion* collection_set() { return _collection_set; }
  1017   void clear_collection_set() { _collection_set = NULL; }
  1019   // The number of elements in the current collection set.
  1020   size_t collection_set_size() { return _collection_set_size; }
  1022   // Add "hr" to the CS.
  1023   void add_to_collection_set(HeapRegion* hr);
  1025   // Incremental CSet Support
  1027   // The head of the incrementally built collection set.
  1028   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1030   // The tail of the incrementally built collection set.
  1031   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1033   // The number of elements in the incrementally built collection set.
  1034   size_t inc_cset_size() { return _inc_cset_size; }
  1036   // Initialize incremental collection set info.
  1037   void start_incremental_cset_building();
  1039   void clear_incremental_cset() {
  1040     _inc_cset_head = NULL;
  1041     _inc_cset_tail = NULL;
  1044   // Stop adding regions to the incremental collection set
  1045   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1047   // Add/remove information about hr to the aggregated information
  1048   // for the incrementally built collection set.
  1049   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1050   void remove_from_incremental_cset_info(HeapRegion* hr);
  1052   // Update information about hr in the aggregated information for
  1053   // the incrementally built collection set.
  1054   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1056 private:
  1057   // Update the incremental cset information when adding a region
  1058   // (should not be called directly).
  1059   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1061 public:
  1062   // Add hr to the LHS of the incremental collection set.
  1063   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1065   // Add hr to the RHS of the incremental collection set.
  1066   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1068 #ifndef PRODUCT
  1069   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1070 #endif // !PRODUCT
  1072   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1073   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1074   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1076   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1077   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1078   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1080   // This is called at the very beginning of an evacuation pause (it
  1081   // has to be the first thing that the pause does). If
  1082   // initiate_conc_mark_if_possible() is true, and the concurrent
  1083   // marking thread has completed its work during the previous cycle,
  1084   // it will set during_initial_mark_pause() to so that the pause does
  1085   // the initial-mark work and start a marking cycle.
  1086   void decide_on_conc_mark_initiation();
  1088   // If an expansion would be appropriate, because recent GC overhead had
  1089   // exceeded the desired limit, return an amount to expand by.
  1090   virtual size_t expansion_amount();
  1092   // note start of mark thread
  1093   void note_start_of_mark_thread();
  1095   // The marked bytes of the "r" has changed; reclassify it's desirability
  1096   // for marking.  Also asserts that "r" is eligible for a CS.
  1097   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1099 #ifndef PRODUCT
  1100   // Check any appropriate marked bytes info, asserting false if
  1101   // something's wrong, else returning "true".
  1102   virtual bool assertMarkedBytesDataOK() = 0;
  1103 #endif
  1105   // Print tracing information.
  1106   void print_tracing_info() const;
  1108   // Print stats on young survival ratio
  1109   void print_yg_surv_rate_info() const;
  1111   void finished_recalculating_age_indexes(bool is_survivors) {
  1112     if (is_survivors) {
  1113       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1114     } else {
  1115       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1117     // do that for any other surv rate groups
  1120   bool should_add_next_region_to_young_list();
  1122   bool in_young_gc_mode() {
  1123     return _in_young_gc_mode;
  1125   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1126     _in_young_gc_mode = in_young_gc_mode;
  1129   bool full_young_gcs() {
  1130     return _full_young_gcs;
  1132   void set_full_young_gcs(bool full_young_gcs) {
  1133     _full_young_gcs = full_young_gcs;
  1136   bool adaptive_young_list_length() {
  1137     return _adaptive_young_list_length;
  1139   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1140     _adaptive_young_list_length = adaptive_young_list_length;
  1143   inline double get_gc_eff_factor() {
  1144     double ratio = _known_garbage_ratio;
  1146     double square = ratio * ratio;
  1147     // square = square * square;
  1148     double ret = square * 9.0 + 1.0;
  1149 #if 0
  1150     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1151 #endif // 0
  1152     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1153     return ret;
  1156   //
  1157   // Survivor regions policy.
  1158   //
  1159 protected:
  1161   // Current tenuring threshold, set to 0 if the collector reaches the
  1162   // maximum amount of suvivors regions.
  1163   int _tenuring_threshold;
  1165   // The limit on the number of regions allocated for survivors.
  1166   size_t _max_survivor_regions;
  1168   // The amount of survor regions after a collection.
  1169   size_t _recorded_survivor_regions;
  1170   // List of survivor regions.
  1171   HeapRegion* _recorded_survivor_head;
  1172   HeapRegion* _recorded_survivor_tail;
  1174   ageTable _survivors_age_table;
  1176 public:
  1178   inline GCAllocPurpose
  1179     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1180       if (age < _tenuring_threshold && src_region->is_young()) {
  1181         return GCAllocForSurvived;
  1182       } else {
  1183         return GCAllocForTenured;
  1187   inline bool track_object_age(GCAllocPurpose purpose) {
  1188     return purpose == GCAllocForSurvived;
  1191   inline GCAllocPurpose alternative_purpose(int purpose) {
  1192     return GCAllocForTenured;
  1195   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1197   size_t max_regions(int purpose);
  1199   // The limit on regions for a particular purpose is reached.
  1200   void note_alloc_region_limit_reached(int purpose) {
  1201     if (purpose == GCAllocForSurvived) {
  1202       _tenuring_threshold = 0;
  1206   void note_start_adding_survivor_regions() {
  1207     _survivor_surv_rate_group->start_adding_regions();
  1210   void note_stop_adding_survivor_regions() {
  1211     _survivor_surv_rate_group->stop_adding_regions();
  1214   void record_survivor_regions(size_t      regions,
  1215                                HeapRegion* head,
  1216                                HeapRegion* tail) {
  1217     _recorded_survivor_regions = regions;
  1218     _recorded_survivor_head    = head;
  1219     _recorded_survivor_tail    = tail;
  1222   size_t recorded_survivor_regions() {
  1223     return _recorded_survivor_regions;
  1226   void record_thread_age_table(ageTable* age_table)
  1228     _survivors_age_table.merge_par(age_table);
  1231   // Calculates survivor space parameters.
  1232   void calculate_survivors_policy();
  1234 };
  1236 // This encapsulates a particular strategy for a g1 Collector.
  1237 //
  1238 //      Start a concurrent mark when our heap size is n bytes
  1239 //            greater then our heap size was at the last concurrent
  1240 //            mark.  Where n is a function of the CMSTriggerRatio
  1241 //            and the MinHeapFreeRatio.
  1242 //
  1243 //      Start a g1 collection pause when we have allocated the
  1244 //            average number of bytes currently being freed in
  1245 //            a collection, but only if it is at least one region
  1246 //            full
  1247 //
  1248 //      Resize Heap based on desired
  1249 //      allocation space, where desired allocation space is
  1250 //      a function of survival rate and desired future to size.
  1251 //
  1252 //      Choose collection set by first picking all older regions
  1253 //      which have a survival rate which beats our projected young
  1254 //      survival rate.  Then fill out the number of needed regions
  1255 //      with young regions.
  1257 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1258   CollectionSetChooser* _collectionSetChooser;
  1259   // If the estimated is less then desirable, resize if possible.
  1260   void expand_if_possible(size_t numRegions);
  1262   virtual bool choose_collection_set();
  1263   virtual void record_collection_pause_start(double start_time_sec,
  1264                                              size_t start_used);
  1265   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1266                                                   size_t max_live_bytes);
  1267   virtual void record_full_collection_end();
  1269 public:
  1270   G1CollectorPolicy_BestRegionsFirst() {
  1271     _collectionSetChooser = new CollectionSetChooser();
  1273   void record_collection_pause_end(bool abandoned);
  1274   bool should_do_collection_pause(size_t word_size);
  1275   // This is not needed any more, after the CSet choosing code was
  1276   // changed to use the pause prediction work. But let's leave the
  1277   // hook in just in case.
  1278   void note_change_in_marked_bytes(HeapRegion* r) { }
  1279 #ifndef PRODUCT
  1280   bool assertMarkedBytesDataOK();
  1281 #endif
  1282 };
  1284 // This should move to some place more general...
  1286 // If we have "n" measurements, and we've kept track of their "sum" and the
  1287 // "sum_of_squares" of the measurements, this returns the variance of the
  1288 // sequence.
  1289 inline double variance(int n, double sum_of_squares, double sum) {
  1290   double n_d = (double)n;
  1291   double avg = sum/n_d;
  1292   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1295 // Local Variables: ***
  1296 // c-indentation-style: gnu ***
  1297 // End: ***

mercurial