src/share/vm/c1/c1_LIR.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1862
cd5dbf694d45
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class BlockBegin;
    26 class BlockList;
    27 class LIR_Assembler;
    28 class CodeEmitInfo;
    29 class CodeStub;
    30 class CodeStubList;
    31 class ArrayCopyStub;
    32 class LIR_Op;
    33 class ciType;
    34 class ValueType;
    35 class LIR_OpVisitState;
    36 class FpuStackSim;
    38 //---------------------------------------------------------------------
    39 //                 LIR Operands
    40 //  LIR_OprDesc
    41 //    LIR_OprPtr
    42 //      LIR_Const
    43 //      LIR_Address
    44 //---------------------------------------------------------------------
    45 class LIR_OprDesc;
    46 class LIR_OprPtr;
    47 class LIR_Const;
    48 class LIR_Address;
    49 class LIR_OprVisitor;
    52 typedef LIR_OprDesc* LIR_Opr;
    53 typedef int          RegNr;
    55 define_array(LIR_OprArray, LIR_Opr)
    56 define_stack(LIR_OprList, LIR_OprArray)
    58 define_array(LIR_OprRefArray, LIR_Opr*)
    59 define_stack(LIR_OprRefList, LIR_OprRefArray)
    61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    64 define_array(LIR_OpArray, LIR_Op*)
    65 define_stack(LIR_OpList, LIR_OpArray)
    67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    68 class LIR_OprPtr: public CompilationResourceObj {
    69  public:
    70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    73   virtual LIR_Const*  as_constant()              { return NULL; }
    74   virtual LIR_Address* as_address()              { return NULL; }
    75   virtual BasicType type() const                 = 0;
    76   virtual void print_value_on(outputStream* out) const = 0;
    77 };
    81 // LIR constants
    82 class LIR_Const: public LIR_OprPtr {
    83  private:
    84   JavaValue _value;
    86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
    90  public:
    91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
    92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
    94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
    95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
    96   LIR_Const(void* p) {
    97 #ifdef _LP64
    98     assert(sizeof(jlong) >= sizeof(p), "too small");;
    99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
   100 #else
   101     assert(sizeof(jint) >= sizeof(p), "too small");;
   102     _value.set_type(T_INT);     _value.set_jint((jint)p);
   103 #endif
   104   }
   106   virtual BasicType type()       const { return _value.get_type(); }
   107   virtual LIR_Const* as_constant()     { return this; }
   109   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
   110   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   111   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   112   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   113   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   114   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   115   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   117 #ifdef _LP64
   118   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   119 #else
   120   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   121 #endif
   124   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
   125   jint      as_jint_lo_bits() const    {
   126     if (type() == T_DOUBLE) {
   127       return low(jlong_cast(_value.get_jdouble()));
   128     } else {
   129       return as_jint_lo();
   130     }
   131   }
   132   jint      as_jint_hi_bits() const    {
   133     if (type() == T_DOUBLE) {
   134       return high(jlong_cast(_value.get_jdouble()));
   135     } else {
   136       return as_jint_hi();
   137     }
   138   }
   139   jlong      as_jlong_bits() const    {
   140     if (type() == T_DOUBLE) {
   141       return jlong_cast(_value.get_jdouble());
   142     } else {
   143       return as_jlong();
   144     }
   145   }
   147   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   150   bool is_zero_float() {
   151     jfloat f = as_jfloat();
   152     jfloat ok = 0.0f;
   153     return jint_cast(f) == jint_cast(ok);
   154   }
   156   bool is_one_float() {
   157     jfloat f = as_jfloat();
   158     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   159   }
   161   bool is_zero_double() {
   162     jdouble d = as_jdouble();
   163     jdouble ok = 0.0;
   164     return jlong_cast(d) == jlong_cast(ok);
   165   }
   167   bool is_one_double() {
   168     jdouble d = as_jdouble();
   169     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   170   }
   171 };
   174 //---------------------LIR Operand descriptor------------------------------------
   175 //
   176 // The class LIR_OprDesc represents a LIR instruction operand;
   177 // it can be a register (ALU/FPU), stack location or a constant;
   178 // Constants and addresses are represented as resource area allocated
   179 // structures (see above).
   180 // Registers and stack locations are inlined into the this pointer
   181 // (see value function).
   183 class LIR_OprDesc: public CompilationResourceObj {
   184  public:
   185   // value structure:
   186   //     data       opr-type opr-kind
   187   // +--------------+-------+-------+
   188   // [max...........|7 6 5 4|3 2 1 0]
   189   //                             ^
   190   //                    is_pointer bit
   191   //
   192   // lowest bit cleared, means it is a structure pointer
   193   // we need  4 bits to represent types
   195  private:
   196   friend class LIR_OprFact;
   198   // Conversion
   199   intptr_t value() const                         { return (intptr_t) this; }
   201   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   202     return (value() & mask) == masked_value;
   203   }
   205   enum OprKind {
   206       pointer_value      = 0
   207     , stack_value        = 1
   208     , cpu_register       = 3
   209     , fpu_register       = 5
   210     , illegal_value      = 7
   211   };
   213   enum OprBits {
   214       pointer_bits   = 1
   215     , kind_bits      = 3
   216     , type_bits      = 4
   217     , size_bits      = 2
   218     , destroys_bits  = 1
   219     , virtual_bits   = 1
   220     , is_xmm_bits    = 1
   221     , last_use_bits  = 1
   222     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   223     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   224                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   225     , data_bits      = BitsPerInt - non_data_bits
   226     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   227   };
   229   enum OprShift {
   230       kind_shift     = 0
   231     , type_shift     = kind_shift     + kind_bits
   232     , size_shift     = type_shift     + type_bits
   233     , destroys_shift = size_shift     + size_bits
   234     , last_use_shift = destroys_shift + destroys_bits
   235     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   236     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   237     , is_xmm_shift   = virtual_shift + virtual_bits
   238     , data_shift     = is_xmm_shift + is_xmm_bits
   239     , reg1_shift = data_shift
   240     , reg2_shift = data_shift + reg_bits
   242   };
   244   enum OprSize {
   245       single_size = 0 << size_shift
   246     , double_size = 1 << size_shift
   247   };
   249   enum OprMask {
   250       kind_mask      = right_n_bits(kind_bits)
   251     , type_mask      = right_n_bits(type_bits) << type_shift
   252     , size_mask      = right_n_bits(size_bits) << size_shift
   253     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   254     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   255     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   256     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   257     , pointer_mask   = right_n_bits(pointer_bits)
   258     , lower_reg_mask = right_n_bits(reg_bits)
   259     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   260   };
   262   uintptr_t data() const                         { return value() >> data_shift; }
   263   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   264   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   265   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   266   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   268   static char type_char(BasicType t);
   270  public:
   271   enum {
   272     vreg_base = ConcreteRegisterImpl::number_of_registers,
   273     vreg_max = (1 << data_bits) - 1
   274   };
   276   static inline LIR_Opr illegalOpr();
   278   enum OprType {
   279       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   280     , int_type      = 1 << type_shift
   281     , long_type     = 2 << type_shift
   282     , object_type   = 3 << type_shift
   283     , pointer_type  = 4 << type_shift
   284     , float_type    = 5 << type_shift
   285     , double_type   = 6 << type_shift
   286   };
   287   friend OprType as_OprType(BasicType t);
   288   friend BasicType as_BasicType(OprType t);
   290   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   291   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   293   static OprSize size_for(BasicType t) {
   294     switch (t) {
   295       case T_LONG:
   296       case T_DOUBLE:
   297         return double_size;
   298         break;
   300       case T_FLOAT:
   301       case T_BOOLEAN:
   302       case T_CHAR:
   303       case T_BYTE:
   304       case T_SHORT:
   305       case T_INT:
   306       case T_OBJECT:
   307       case T_ARRAY:
   308         return single_size;
   309         break;
   311       default:
   312         ShouldNotReachHere();
   313         return single_size;
   314       }
   315   }
   318   void validate_type() const PRODUCT_RETURN;
   320   BasicType type() const {
   321     if (is_pointer()) {
   322       return pointer()->type();
   323     }
   324     return as_BasicType(type_field());
   325   }
   328   ValueType* value_type() const                  { return as_ValueType(type()); }
   330   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   332   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   333   // checks whether types are same
   334   bool is_same_type(LIR_Opr opr) const     {
   335     assert(type_field() != unknown_type &&
   336            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   337     return type_field() == opr->type_field();
   338   }
   339   bool is_same_register(LIR_Opr opr) {
   340     return (is_register() && opr->is_register() &&
   341             kind_field() == opr->kind_field() &&
   342             (value() & no_type_mask) == (opr->value() & no_type_mask));
   343   }
   345   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   346   bool is_illegal() const      { return kind_field() == illegal_value; }
   347   bool is_valid() const        { return kind_field() != illegal_value; }
   349   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   350   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   352   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   353   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   355   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   356   bool is_oop() const;
   358   // semantic for fpu- and xmm-registers:
   359   // * is_float and is_double return true for xmm_registers
   360   //   (so is_single_fpu and is_single_xmm are true)
   361   // * So you must always check for is_???_xmm prior to is_???_fpu to
   362   //   distinguish between fpu- and xmm-registers
   364   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   365   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   366   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   368   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   369   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   370   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   371   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   372   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   374   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   375   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   376   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   377   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   378   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   380   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   381   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   382   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   384   // fast accessor functions for special bits that do not work for pointers
   385   // (in this functions, the check for is_pointer() is omitted)
   386   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   387   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   388   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   389   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   390   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   392   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   393   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   394   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   395   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   398   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   399   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   400   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   401   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   402   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   403   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   404   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   405   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   406   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   407   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   408   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   409   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   411   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   412   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   413   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   415   Register as_register()    const;
   416   Register as_register_lo() const;
   417   Register as_register_hi() const;
   419   Register as_pointer_register() {
   420 #ifdef _LP64
   421     if (is_double_cpu()) {
   422       assert(as_register_lo() == as_register_hi(), "should be a single register");
   423       return as_register_lo();
   424     }
   425 #endif
   426     return as_register();
   427   }
   429 #ifdef X86
   430   XMMRegister as_xmm_float_reg() const;
   431   XMMRegister as_xmm_double_reg() const;
   432   // for compatibility with RInfo
   433   int fpu () const                                  { return lo_reg_half(); }
   434 #endif // X86
   436 #ifdef SPARC
   437   FloatRegister as_float_reg   () const;
   438   FloatRegister as_double_reg  () const;
   439 #endif
   441   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   442   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   443   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   444   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   445   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   447   void print() const PRODUCT_RETURN;
   448   void print(outputStream* out) const PRODUCT_RETURN;
   449 };
   452 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   453   switch (type) {
   454   case T_INT:      return LIR_OprDesc::int_type;
   455   case T_LONG:     return LIR_OprDesc::long_type;
   456   case T_FLOAT:    return LIR_OprDesc::float_type;
   457   case T_DOUBLE:   return LIR_OprDesc::double_type;
   458   case T_OBJECT:
   459   case T_ARRAY:    return LIR_OprDesc::object_type;
   460   case T_ILLEGAL:  // fall through
   461   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   462   }
   463 }
   465 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   466   switch (t) {
   467   case LIR_OprDesc::int_type:     return T_INT;
   468   case LIR_OprDesc::long_type:    return T_LONG;
   469   case LIR_OprDesc::float_type:   return T_FLOAT;
   470   case LIR_OprDesc::double_type:  return T_DOUBLE;
   471   case LIR_OprDesc::object_type:  return T_OBJECT;
   472   case LIR_OprDesc::unknown_type: // fall through
   473   default: ShouldNotReachHere();  return T_ILLEGAL;
   474   }
   475 }
   478 // LIR_Address
   479 class LIR_Address: public LIR_OprPtr {
   480  friend class LIR_OpVisitState;
   482  public:
   483   // NOTE: currently these must be the log2 of the scale factor (and
   484   // must also be equivalent to the ScaleFactor enum in
   485   // assembler_i486.hpp)
   486   enum Scale {
   487     times_1  =  0,
   488     times_2  =  1,
   489     times_4  =  2,
   490     times_8  =  3
   491   };
   493  private:
   494   LIR_Opr   _base;
   495   LIR_Opr   _index;
   496   Scale     _scale;
   497   intx      _disp;
   498   BasicType _type;
   500  public:
   501   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   502        _base(base)
   503      , _index(index)
   504      , _scale(times_1)
   505      , _type(type)
   506      , _disp(0) { verify(); }
   508   LIR_Address(LIR_Opr base, int disp, BasicType type):
   509        _base(base)
   510      , _index(LIR_OprDesc::illegalOpr())
   511      , _scale(times_1)
   512      , _type(type)
   513      , _disp(disp) { verify(); }
   515 #ifdef X86
   516   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type):
   517        _base(base)
   518      , _index(index)
   519      , _scale(scale)
   520      , _type(type)
   521      , _disp(disp) { verify(); }
   522 #endif // X86
   524   LIR_Opr base()  const                          { return _base;  }
   525   LIR_Opr index() const                          { return _index; }
   526   Scale   scale() const                          { return _scale; }
   527   intx    disp()  const                          { return _disp;  }
   529   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   531   virtual LIR_Address* as_address()              { return this;   }
   532   virtual BasicType type() const                 { return _type; }
   533   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   535   void verify() const PRODUCT_RETURN;
   537   static Scale scale(BasicType type);
   538 };
   541 // operand factory
   542 class LIR_OprFact: public AllStatic {
   543  public:
   545   static LIR_Opr illegalOpr;
   547   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   548   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   549   static LIR_Opr double_cpu(int reg1, int reg2) {
   550     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   551     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   552                                (reg2 << LIR_OprDesc::reg2_shift) |
   553                                LIR_OprDesc::long_type            |
   554                                LIR_OprDesc::cpu_register         |
   555                                LIR_OprDesc::double_size);
   556   }
   558   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   559                                                                              LIR_OprDesc::float_type           |
   560                                                                              LIR_OprDesc::fpu_register         |
   561                                                                              LIR_OprDesc::single_size); }
   563 #ifdef SPARC
   564   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   565                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   566                                                                              LIR_OprDesc::double_type          |
   567                                                                              LIR_OprDesc::fpu_register         |
   568                                                                              LIR_OprDesc::double_size); }
   569 #endif
   570 #ifdef X86
   571   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   572                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   573                                                                              LIR_OprDesc::double_type          |
   574                                                                              LIR_OprDesc::fpu_register         |
   575                                                                              LIR_OprDesc::double_size); }
   577   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   578                                                                              LIR_OprDesc::float_type           |
   579                                                                              LIR_OprDesc::fpu_register         |
   580                                                                              LIR_OprDesc::single_size          |
   581                                                                              LIR_OprDesc::is_xmm_mask); }
   582   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   583                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   584                                                                              LIR_OprDesc::double_type          |
   585                                                                              LIR_OprDesc::fpu_register         |
   586                                                                              LIR_OprDesc::double_size          |
   587                                                                              LIR_OprDesc::is_xmm_mask); }
   588 #endif // X86
   591   static LIR_Opr virtual_register(int index, BasicType type) {
   592     LIR_Opr res;
   593     switch (type) {
   594       case T_OBJECT: // fall through
   595       case T_ARRAY:
   596         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   597                                             LIR_OprDesc::object_type  |
   598                                             LIR_OprDesc::cpu_register |
   599                                             LIR_OprDesc::single_size  |
   600                                             LIR_OprDesc::virtual_mask);
   601         break;
   603       case T_INT:
   604         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   605                                   LIR_OprDesc::int_type              |
   606                                   LIR_OprDesc::cpu_register          |
   607                                   LIR_OprDesc::single_size           |
   608                                   LIR_OprDesc::virtual_mask);
   609         break;
   611       case T_LONG:
   612         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   613                                   LIR_OprDesc::long_type             |
   614                                   LIR_OprDesc::cpu_register          |
   615                                   LIR_OprDesc::double_size           |
   616                                   LIR_OprDesc::virtual_mask);
   617         break;
   619       case T_FLOAT:
   620         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   621                                   LIR_OprDesc::float_type           |
   622                                   LIR_OprDesc::fpu_register         |
   623                                   LIR_OprDesc::single_size          |
   624                                   LIR_OprDesc::virtual_mask);
   625         break;
   627       case
   628         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   629                                             LIR_OprDesc::double_type           |
   630                                             LIR_OprDesc::fpu_register          |
   631                                             LIR_OprDesc::double_size           |
   632                                             LIR_OprDesc::virtual_mask);
   633         break;
   635       default:       ShouldNotReachHere(); res = illegalOpr;
   636     }
   638 #ifdef ASSERT
   639     res->validate_type();
   640     assert(res->vreg_number() == index, "conversion check");
   641     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   642     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   644     // old-style calculation; check if old and new method are equal
   645     LIR_OprDesc::OprType t = as_OprType(type);
   646     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   647                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   648                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   649     assert(res == old_res, "old and new method not equal");
   650 #endif
   652     return res;
   653   }
   655   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   656   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   657   // index 2.
   658   static LIR_Opr stack(int index, BasicType type) {
   659     LIR_Opr res;
   660     switch (type) {
   661       case T_OBJECT: // fall through
   662       case T_ARRAY:
   663         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   664                                   LIR_OprDesc::object_type           |
   665                                   LIR_OprDesc::stack_value           |
   666                                   LIR_OprDesc::single_size);
   667         break;
   669       case T_INT:
   670         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   671                                   LIR_OprDesc::int_type              |
   672                                   LIR_OprDesc::stack_value           |
   673                                   LIR_OprDesc::single_size);
   674         break;
   676       case T_LONG:
   677         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   678                                   LIR_OprDesc::long_type             |
   679                                   LIR_OprDesc::stack_value           |
   680                                   LIR_OprDesc::double_size);
   681         break;
   683       case T_FLOAT:
   684         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   685                                   LIR_OprDesc::float_type            |
   686                                   LIR_OprDesc::stack_value           |
   687                                   LIR_OprDesc::single_size);
   688         break;
   689       case T_DOUBLE:
   690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   691                                   LIR_OprDesc::double_type           |
   692                                   LIR_OprDesc::stack_value           |
   693                                   LIR_OprDesc::double_size);
   694         break;
   696       default:       ShouldNotReachHere(); res = illegalOpr;
   697     }
   699 #ifdef ASSERT
   700     assert(index >= 0, "index must be positive");
   701     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   703     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   704                                           LIR_OprDesc::stack_value           |
   705                                           as_OprType(type)                   |
   706                                           LIR_OprDesc::size_for(type));
   707     assert(res == old_res, "old and new method not equal");
   708 #endif
   710     return res;
   711   }
   713   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   714   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   715   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   716   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   717   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   718   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   719   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   720   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   721   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   722   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
   724   static LIR_Opr value_type(ValueType* type);
   725   static LIR_Opr dummy_value_type(ValueType* type);
   726 };
   729 //-------------------------------------------------------------------------------
   730 //                   LIR Instructions
   731 //-------------------------------------------------------------------------------
   732 //
   733 // Note:
   734 //  - every instruction has a result operand
   735 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   736 //  - every instruction has a LIR_OpCode operand
   737 //  - LIR_OpN, means an instruction that has N input operands
   738 //
   739 // class hierarchy:
   740 //
   741 class  LIR_Op;
   742 class    LIR_Op0;
   743 class      LIR_OpLabel;
   744 class    LIR_Op1;
   745 class      LIR_OpBranch;
   746 class      LIR_OpConvert;
   747 class      LIR_OpAllocObj;
   748 class      LIR_OpRoundFP;
   749 class    LIR_Op2;
   750 class    LIR_OpDelay;
   751 class    LIR_Op3;
   752 class      LIR_OpAllocArray;
   753 class    LIR_OpCall;
   754 class      LIR_OpJavaCall;
   755 class      LIR_OpRTCall;
   756 class    LIR_OpArrayCopy;
   757 class    LIR_OpLock;
   758 class    LIR_OpTypeCheck;
   759 class    LIR_OpCompareAndSwap;
   760 class    LIR_OpProfileCall;
   763 // LIR operation codes
   764 enum LIR_Code {
   765     lir_none
   766   , begin_op0
   767       , lir_word_align
   768       , lir_label
   769       , lir_nop
   770       , lir_backwardbranch_target
   771       , lir_std_entry
   772       , lir_osr_entry
   773       , lir_build_frame
   774       , lir_fpop_raw
   775       , lir_24bit_FPU
   776       , lir_reset_FPU
   777       , lir_breakpoint
   778       , lir_rtcall
   779       , lir_membar
   780       , lir_membar_acquire
   781       , lir_membar_release
   782       , lir_get_thread
   783   , end_op0
   784   , begin_op1
   785       , lir_fxch
   786       , lir_fld
   787       , lir_ffree
   788       , lir_push
   789       , lir_pop
   790       , lir_null_check
   791       , lir_return
   792       , lir_leal
   793       , lir_neg
   794       , lir_branch
   795       , lir_cond_float_branch
   796       , lir_move
   797       , lir_prefetchr
   798       , lir_prefetchw
   799       , lir_convert
   800       , lir_alloc_object
   801       , lir_monaddr
   802       , lir_roundfp
   803       , lir_safepoint
   804       , lir_unwind
   805   , end_op1
   806   , begin_op2
   807       , lir_cmp
   808       , lir_cmp_l2i
   809       , lir_ucmp_fd2i
   810       , lir_cmp_fd2i
   811       , lir_cmove
   812       , lir_add
   813       , lir_sub
   814       , lir_mul
   815       , lir_mul_strictfp
   816       , lir_div
   817       , lir_div_strictfp
   818       , lir_rem
   819       , lir_sqrt
   820       , lir_abs
   821       , lir_sin
   822       , lir_cos
   823       , lir_tan
   824       , lir_log
   825       , lir_log10
   826       , lir_logic_and
   827       , lir_logic_or
   828       , lir_logic_xor
   829       , lir_shl
   830       , lir_shr
   831       , lir_ushr
   832       , lir_alloc_array
   833       , lir_throw
   834       , lir_compare_to
   835   , end_op2
   836   , begin_op3
   837       , lir_idiv
   838       , lir_irem
   839   , end_op3
   840   , begin_opJavaCall
   841       , lir_static_call
   842       , lir_optvirtual_call
   843       , lir_icvirtual_call
   844       , lir_virtual_call
   845       , lir_dynamic_call
   846   , end_opJavaCall
   847   , begin_opArrayCopy
   848       , lir_arraycopy
   849   , end_opArrayCopy
   850   , begin_opLock
   851     , lir_lock
   852     , lir_unlock
   853   , end_opLock
   854   , begin_delay_slot
   855     , lir_delay_slot
   856   , end_delay_slot
   857   , begin_opTypeCheck
   858     , lir_instanceof
   859     , lir_checkcast
   860     , lir_store_check
   861   , end_opTypeCheck
   862   , begin_opCompareAndSwap
   863     , lir_cas_long
   864     , lir_cas_obj
   865     , lir_cas_int
   866   , end_opCompareAndSwap
   867   , begin_opMDOProfile
   868     , lir_profile_call
   869   , end_opMDOProfile
   870 };
   873 enum LIR_Condition {
   874     lir_cond_equal
   875   , lir_cond_notEqual
   876   , lir_cond_less
   877   , lir_cond_lessEqual
   878   , lir_cond_greaterEqual
   879   , lir_cond_greater
   880   , lir_cond_belowEqual
   881   , lir_cond_aboveEqual
   882   , lir_cond_always
   883   , lir_cond_unknown = -1
   884 };
   887 enum LIR_PatchCode {
   888   lir_patch_none,
   889   lir_patch_low,
   890   lir_patch_high,
   891   lir_patch_normal
   892 };
   895 enum LIR_MoveKind {
   896   lir_move_normal,
   897   lir_move_volatile,
   898   lir_move_unaligned,
   899   lir_move_max_flag
   900 };
   903 // --------------------------------------------------
   904 // LIR_Op
   905 // --------------------------------------------------
   906 class LIR_Op: public CompilationResourceObj {
   907  friend class LIR_OpVisitState;
   909 #ifdef ASSERT
   910  private:
   911   const char *  _file;
   912   int           _line;
   913 #endif
   915  protected:
   916   LIR_Opr       _result;
   917   unsigned short _code;
   918   unsigned short _flags;
   919   CodeEmitInfo* _info;
   920   int           _id;     // value id for register allocation
   921   int           _fpu_pop_count;
   922   Instruction*  _source; // for debugging
   924   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
   926  protected:
   927   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
   929  public:
   930   LIR_Op()
   931     : _result(LIR_OprFact::illegalOpr)
   932     , _code(lir_none)
   933     , _flags(0)
   934     , _info(NULL)
   935 #ifdef ASSERT
   936     , _file(NULL)
   937     , _line(0)
   938 #endif
   939     , _fpu_pop_count(0)
   940     , _source(NULL)
   941     , _id(-1)                             {}
   943   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
   944     : _result(result)
   945     , _code(code)
   946     , _flags(0)
   947     , _info(info)
   948 #ifdef ASSERT
   949     , _file(NULL)
   950     , _line(0)
   951 #endif
   952     , _fpu_pop_count(0)
   953     , _source(NULL)
   954     , _id(-1)                             {}
   956   CodeEmitInfo* info() const                  { return _info;   }
   957   LIR_Code code()      const                  { return (LIR_Code)_code;   }
   958   LIR_Opr result_opr() const                  { return _result; }
   959   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
   961 #ifdef ASSERT
   962   void set_file_and_line(const char * file, int line) {
   963     _file = file;
   964     _line = line;
   965   }
   966 #endif
   968   virtual const char * name() const PRODUCT_RETURN0;
   970   int id()             const                  { return _id;     }
   971   void set_id(int id)                         { _id = id; }
   973   // FPU stack simulation helpers -- only used on Intel
   974   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
   975   int  fpu_pop_count() const                  { return _fpu_pop_count; }
   976   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
   978   Instruction* source() const                 { return _source; }
   979   void set_source(Instruction* ins)           { _source = ins; }
   981   virtual void emit_code(LIR_Assembler* masm) = 0;
   982   virtual void print_instr(outputStream* out) const   = 0;
   983   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
   985   virtual LIR_OpCall* as_OpCall() { return NULL; }
   986   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
   987   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
   988   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
   989   virtual LIR_OpLock* as_OpLock() { return NULL; }
   990   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
   991   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
   992   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
   993   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
   994   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
   995   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
   996   virtual LIR_Op0* as_Op0() { return NULL; }
   997   virtual LIR_Op1* as_Op1() { return NULL; }
   998   virtual LIR_Op2* as_Op2() { return NULL; }
   999   virtual LIR_Op3* as_Op3() { return NULL; }
  1000   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
  1001   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
  1002   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1003   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1005   virtual void verify() const {}
  1006 };
  1008 // for calls
  1009 class LIR_OpCall: public LIR_Op {
  1010  friend class LIR_OpVisitState;
  1012  protected:
  1013   address      _addr;
  1014   LIR_OprList* _arguments;
  1015  protected:
  1016   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1017              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1018     : LIR_Op(code, result, info)
  1019     , _arguments(arguments)
  1020     , _addr(addr) {}
  1022  public:
  1023   address addr() const                           { return _addr; }
  1024   const LIR_OprList* arguments() const           { return _arguments; }
  1025   virtual LIR_OpCall* as_OpCall()                { return this; }
  1026 };
  1029 // --------------------------------------------------
  1030 // LIR_OpJavaCall
  1031 // --------------------------------------------------
  1032 class LIR_OpJavaCall: public LIR_OpCall {
  1033  friend class LIR_OpVisitState;
  1035  private:
  1036   ciMethod*       _method;
  1037   LIR_Opr         _receiver;
  1039  public:
  1040   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1041                  LIR_Opr receiver, LIR_Opr result,
  1042                  address addr, LIR_OprList* arguments,
  1043                  CodeEmitInfo* info)
  1044   : LIR_OpCall(code, addr, result, arguments, info)
  1045   , _receiver(receiver)
  1046   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1048   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1049                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1050                  LIR_OprList* arguments, CodeEmitInfo* info)
  1051   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1052   , _receiver(receiver)
  1053   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1055   LIR_Opr receiver() const                       { return _receiver; }
  1056   ciMethod* method() const                       { return _method;   }
  1058   // JSR 292 support.
  1059   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
  1060   bool is_method_handle_invoke() const {
  1061     return
  1062       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
  1063       ||
  1064       (method()->holder()->name() == ciSymbol::java_dyn_MethodHandle() &&
  1065        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
  1068   intptr_t vtable_offset() const {
  1069     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1070     return (intptr_t) addr();
  1073   virtual void emit_code(LIR_Assembler* masm);
  1074   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1075   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1076 };
  1078 // --------------------------------------------------
  1079 // LIR_OpLabel
  1080 // --------------------------------------------------
  1081 // Location where a branch can continue
  1082 class LIR_OpLabel: public LIR_Op {
  1083  friend class LIR_OpVisitState;
  1085  private:
  1086   Label* _label;
  1087  public:
  1088   LIR_OpLabel(Label* lbl)
  1089    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1090    , _label(lbl)                                 {}
  1091   Label* label() const                           { return _label; }
  1093   virtual void emit_code(LIR_Assembler* masm);
  1094   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1095   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1096 };
  1098 // LIR_OpArrayCopy
  1099 class LIR_OpArrayCopy: public LIR_Op {
  1100  friend class LIR_OpVisitState;
  1102  private:
  1103   ArrayCopyStub*  _stub;
  1104   LIR_Opr   _src;
  1105   LIR_Opr   _src_pos;
  1106   LIR_Opr   _dst;
  1107   LIR_Opr   _dst_pos;
  1108   LIR_Opr   _length;
  1109   LIR_Opr   _tmp;
  1110   ciArrayKlass* _expected_type;
  1111   int       _flags;
  1113 public:
  1114   enum Flags {
  1115     src_null_check         = 1 << 0,
  1116     dst_null_check         = 1 << 1,
  1117     src_pos_positive_check = 1 << 2,
  1118     dst_pos_positive_check = 1 << 3,
  1119     length_positive_check  = 1 << 4,
  1120     src_range_check        = 1 << 5,
  1121     dst_range_check        = 1 << 6,
  1122     type_check             = 1 << 7,
  1123     all_flags              = (1 << 8) - 1
  1124   };
  1126   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1127                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1129   LIR_Opr src() const                            { return _src; }
  1130   LIR_Opr src_pos() const                        { return _src_pos; }
  1131   LIR_Opr dst() const                            { return _dst; }
  1132   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1133   LIR_Opr length() const                         { return _length; }
  1134   LIR_Opr tmp() const                            { return _tmp; }
  1135   int flags() const                              { return _flags; }
  1136   ciArrayKlass* expected_type() const            { return _expected_type; }
  1137   ArrayCopyStub* stub() const                    { return _stub; }
  1139   virtual void emit_code(LIR_Assembler* masm);
  1140   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1141   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1142 };
  1145 // --------------------------------------------------
  1146 // LIR_Op0
  1147 // --------------------------------------------------
  1148 class LIR_Op0: public LIR_Op {
  1149  friend class LIR_OpVisitState;
  1151  public:
  1152   LIR_Op0(LIR_Code code)
  1153    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1154   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1155    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1157   virtual void emit_code(LIR_Assembler* masm);
  1158   virtual LIR_Op0* as_Op0() { return this; }
  1159   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1160 };
  1163 // --------------------------------------------------
  1164 // LIR_Op1
  1165 // --------------------------------------------------
  1167 class LIR_Op1: public LIR_Op {
  1168  friend class LIR_OpVisitState;
  1170  protected:
  1171   LIR_Opr         _opr;   // input operand
  1172   BasicType       _type;  // Operand types
  1173   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1175   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1177   void set_kind(LIR_MoveKind kind) {
  1178     assert(code() == lir_move, "must be");
  1179     _flags = kind;
  1182  public:
  1183   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1184     : LIR_Op(code, result, info)
  1185     , _opr(opr)
  1186     , _patch(patch)
  1187     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1189   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1190     : LIR_Op(code, result, info)
  1191     , _opr(opr)
  1192     , _patch(patch)
  1193     , _type(type)                      {
  1194     assert(code == lir_move, "must be");
  1195     set_kind(kind);
  1198   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1199     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1200     , _opr(opr)
  1201     , _patch(lir_patch_none)
  1202     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1204   LIR_Opr in_opr()           const               { return _opr;   }
  1205   LIR_PatchCode patch_code() const               { return _patch; }
  1206   BasicType type()           const               { return _type;  }
  1208   LIR_MoveKind move_kind() const {
  1209     assert(code() == lir_move, "must be");
  1210     return (LIR_MoveKind)_flags;
  1213   virtual void emit_code(LIR_Assembler* masm);
  1214   virtual LIR_Op1* as_Op1() { return this; }
  1215   virtual const char * name() const PRODUCT_RETURN0;
  1217   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1219   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1220   virtual void verify() const;
  1221 };
  1224 // for runtime calls
  1225 class LIR_OpRTCall: public LIR_OpCall {
  1226  friend class LIR_OpVisitState;
  1228  private:
  1229   LIR_Opr _tmp;
  1230  public:
  1231   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1232                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1233     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1234     , _tmp(tmp) {}
  1236   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1237   virtual void emit_code(LIR_Assembler* masm);
  1238   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1240   LIR_Opr tmp() const                            { return _tmp; }
  1242   virtual void verify() const;
  1243 };
  1246 class LIR_OpBranch: public LIR_Op {
  1247  friend class LIR_OpVisitState;
  1249  private:
  1250   LIR_Condition _cond;
  1251   BasicType     _type;
  1252   Label*        _label;
  1253   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1254   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1255   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1257  public:
  1258   LIR_OpBranch(LIR_Condition cond, Label* lbl)
  1259     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1260     , _cond(cond)
  1261     , _label(lbl)
  1262     , _block(NULL)
  1263     , _ublock(NULL)
  1264     , _stub(NULL) { }
  1266   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1267   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1269   // for unordered comparisons
  1270   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1272   LIR_Condition cond()        const              { return _cond;        }
  1273   BasicType     type()        const              { return _type;        }
  1274   Label*        label()       const              { return _label;       }
  1275   BlockBegin*   block()       const              { return _block;       }
  1276   BlockBegin*   ublock()      const              { return _ublock;      }
  1277   CodeStub*     stub()        const              { return _stub;       }
  1279   void          change_block(BlockBegin* b);
  1280   void          change_ublock(BlockBegin* b);
  1281   void          negate_cond();
  1283   virtual void emit_code(LIR_Assembler* masm);
  1284   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1285   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1286 };
  1289 class ConversionStub;
  1291 class LIR_OpConvert: public LIR_Op1 {
  1292  friend class LIR_OpVisitState;
  1294  private:
  1295    Bytecodes::Code _bytecode;
  1296    ConversionStub* _stub;
  1298  public:
  1299    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1300      : LIR_Op1(lir_convert, opr, result)
  1301      , _stub(stub)
  1302      , _bytecode(code)                           {}
  1304   Bytecodes::Code bytecode() const               { return _bytecode; }
  1305   ConversionStub* stub() const                   { return _stub; }
  1307   virtual void emit_code(LIR_Assembler* masm);
  1308   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1309   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1311   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1312 };
  1315 // LIR_OpAllocObj
  1316 class LIR_OpAllocObj : public LIR_Op1 {
  1317  friend class LIR_OpVisitState;
  1319  private:
  1320   LIR_Opr _tmp1;
  1321   LIR_Opr _tmp2;
  1322   LIR_Opr _tmp3;
  1323   LIR_Opr _tmp4;
  1324   int     _hdr_size;
  1325   int     _obj_size;
  1326   CodeStub* _stub;
  1327   bool    _init_check;
  1329  public:
  1330   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1331                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1332                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1333     : LIR_Op1(lir_alloc_object, klass, result)
  1334     , _tmp1(t1)
  1335     , _tmp2(t2)
  1336     , _tmp3(t3)
  1337     , _tmp4(t4)
  1338     , _hdr_size(hdr_size)
  1339     , _obj_size(obj_size)
  1340     , _init_check(init_check)
  1341     , _stub(stub)                                { }
  1343   LIR_Opr klass()        const                   { return in_opr();     }
  1344   LIR_Opr obj()          const                   { return result_opr(); }
  1345   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1346   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1347   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1348   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1349   int     header_size()  const                   { return _hdr_size;    }
  1350   int     object_size()  const                   { return _obj_size;    }
  1351   bool    init_check()   const                   { return _init_check;  }
  1352   CodeStub* stub()       const                   { return _stub;        }
  1354   virtual void emit_code(LIR_Assembler* masm);
  1355   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1356   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1357 };
  1360 // LIR_OpRoundFP
  1361 class LIR_OpRoundFP : public LIR_Op1 {
  1362  friend class LIR_OpVisitState;
  1364  private:
  1365   LIR_Opr _tmp;
  1367  public:
  1368   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1369     : LIR_Op1(lir_roundfp, reg, result)
  1370     , _tmp(stack_loc_temp) {}
  1372   LIR_Opr tmp() const                            { return _tmp; }
  1373   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1374   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1375 };
  1377 // LIR_OpTypeCheck
  1378 class LIR_OpTypeCheck: public LIR_Op {
  1379  friend class LIR_OpVisitState;
  1381  private:
  1382   LIR_Opr       _object;
  1383   LIR_Opr       _array;
  1384   ciKlass*      _klass;
  1385   LIR_Opr       _tmp1;
  1386   LIR_Opr       _tmp2;
  1387   LIR_Opr       _tmp3;
  1388   bool          _fast_check;
  1389   CodeEmitInfo* _info_for_patch;
  1390   CodeEmitInfo* _info_for_exception;
  1391   CodeStub*     _stub;
  1392   // Helpers for Tier1UpdateMethodData
  1393   ciMethod*     _profiled_method;
  1394   int           _profiled_bci;
  1396 public:
  1397   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1398                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1399                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1400                   ciMethod* profiled_method, int profiled_bci);
  1401   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1402                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
  1403                   ciMethod* profiled_method, int profiled_bci);
  1405   LIR_Opr object() const                         { return _object;         }
  1406   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1407   LIR_Opr tmp1() const                           { return _tmp1;           }
  1408   LIR_Opr tmp2() const                           { return _tmp2;           }
  1409   LIR_Opr tmp3() const                           { return _tmp3;           }
  1410   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1411   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1412   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1413   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1414   CodeStub* stub() const                         { return _stub;           }
  1416   // methodDataOop profiling
  1417   ciMethod* profiled_method()                    { return _profiled_method; }
  1418   int       profiled_bci()                       { return _profiled_bci; }
  1420   virtual void emit_code(LIR_Assembler* masm);
  1421   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1422   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1423 };
  1425 // LIR_Op2
  1426 class LIR_Op2: public LIR_Op {
  1427  friend class LIR_OpVisitState;
  1429   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1431  protected:
  1432   LIR_Opr   _opr1;
  1433   LIR_Opr   _opr2;
  1434   BasicType _type;
  1435   LIR_Opr   _tmp;
  1436   LIR_Condition _condition;
  1438   void verify() const;
  1440  public:
  1441   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1442     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1443     , _opr1(opr1)
  1444     , _opr2(opr2)
  1445     , _type(T_ILLEGAL)
  1446     , _condition(condition)
  1447     , _fpu_stack_size(0)
  1448     , _tmp(LIR_OprFact::illegalOpr) {
  1449     assert(code == lir_cmp, "code check");
  1452   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
  1453     : LIR_Op(code, result, NULL)
  1454     , _opr1(opr1)
  1455     , _opr2(opr2)
  1456     , _type(T_ILLEGAL)
  1457     , _condition(condition)
  1458     , _fpu_stack_size(0)
  1459     , _tmp(LIR_OprFact::illegalOpr) {
  1460     assert(code == lir_cmove, "code check");
  1463   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1464           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1465     : LIR_Op(code, result, info)
  1466     , _opr1(opr1)
  1467     , _opr2(opr2)
  1468     , _type(type)
  1469     , _condition(lir_cond_unknown)
  1470     , _fpu_stack_size(0)
  1471     , _tmp(LIR_OprFact::illegalOpr) {
  1472     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1475   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
  1476     : LIR_Op(code, result, NULL)
  1477     , _opr1(opr1)
  1478     , _opr2(opr2)
  1479     , _type(T_ILLEGAL)
  1480     , _condition(lir_cond_unknown)
  1481     , _fpu_stack_size(0)
  1482     , _tmp(tmp) {
  1483     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1486   LIR_Opr in_opr1() const                        { return _opr1; }
  1487   LIR_Opr in_opr2() const                        { return _opr2; }
  1488   BasicType type()  const                        { return _type; }
  1489   LIR_Opr tmp_opr() const                        { return _tmp; }
  1490   LIR_Condition condition() const  {
  1491     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1494   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1495   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1497   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1498   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1500   virtual void emit_code(LIR_Assembler* masm);
  1501   virtual LIR_Op2* as_Op2() { return this; }
  1502   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1503 };
  1505 class LIR_OpAllocArray : public LIR_Op {
  1506  friend class LIR_OpVisitState;
  1508  private:
  1509   LIR_Opr   _klass;
  1510   LIR_Opr   _len;
  1511   LIR_Opr   _tmp1;
  1512   LIR_Opr   _tmp2;
  1513   LIR_Opr   _tmp3;
  1514   LIR_Opr   _tmp4;
  1515   BasicType _type;
  1516   CodeStub* _stub;
  1518  public:
  1519   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1520     : LIR_Op(lir_alloc_array, result, NULL)
  1521     , _klass(klass)
  1522     , _len(len)
  1523     , _tmp1(t1)
  1524     , _tmp2(t2)
  1525     , _tmp3(t3)
  1526     , _tmp4(t4)
  1527     , _type(type)
  1528     , _stub(stub) {}
  1530   LIR_Opr   klass()   const                      { return _klass;       }
  1531   LIR_Opr   len()     const                      { return _len;         }
  1532   LIR_Opr   obj()     const                      { return result_opr(); }
  1533   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1534   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1535   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1536   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1537   BasicType type()    const                      { return _type;        }
  1538   CodeStub* stub()    const                      { return _stub;        }
  1540   virtual void emit_code(LIR_Assembler* masm);
  1541   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1542   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1543 };
  1546 class LIR_Op3: public LIR_Op {
  1547  friend class LIR_OpVisitState;
  1549  private:
  1550   LIR_Opr _opr1;
  1551   LIR_Opr _opr2;
  1552   LIR_Opr _opr3;
  1553  public:
  1554   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1555     : LIR_Op(code, result, info)
  1556     , _opr1(opr1)
  1557     , _opr2(opr2)
  1558     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1559   LIR_Opr in_opr1() const                        { return _opr1; }
  1560   LIR_Opr in_opr2() const                        { return _opr2; }
  1561   LIR_Opr in_opr3() const                        { return _opr3; }
  1563   virtual void emit_code(LIR_Assembler* masm);
  1564   virtual LIR_Op3* as_Op3() { return this; }
  1565   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1566 };
  1569 //--------------------------------
  1570 class LabelObj: public CompilationResourceObj {
  1571  private:
  1572   Label _label;
  1573  public:
  1574   LabelObj()                                     {}
  1575   Label* label()                                 { return &_label; }
  1576 };
  1579 class LIR_OpLock: public LIR_Op {
  1580  friend class LIR_OpVisitState;
  1582  private:
  1583   LIR_Opr _hdr;
  1584   LIR_Opr _obj;
  1585   LIR_Opr _lock;
  1586   LIR_Opr _scratch;
  1587   CodeStub* _stub;
  1588  public:
  1589   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1590     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1591     , _hdr(hdr)
  1592     , _obj(obj)
  1593     , _lock(lock)
  1594     , _scratch(scratch)
  1595     , _stub(stub)                      {}
  1597   LIR_Opr hdr_opr() const                        { return _hdr; }
  1598   LIR_Opr obj_opr() const                        { return _obj; }
  1599   LIR_Opr lock_opr() const                       { return _lock; }
  1600   LIR_Opr scratch_opr() const                    { return _scratch; }
  1601   CodeStub* stub() const                         { return _stub; }
  1603   virtual void emit_code(LIR_Assembler* masm);
  1604   virtual LIR_OpLock* as_OpLock() { return this; }
  1605   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1606 };
  1609 class LIR_OpDelay: public LIR_Op {
  1610  friend class LIR_OpVisitState;
  1612  private:
  1613   LIR_Op* _op;
  1615  public:
  1616   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1617     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1618     _op(op) {
  1619     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1621   virtual void emit_code(LIR_Assembler* masm);
  1622   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1623   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1624   LIR_Op* delay_op() const { return _op; }
  1625   CodeEmitInfo* call_info() const { return info(); }
  1626 };
  1629 // LIR_OpCompareAndSwap
  1630 class LIR_OpCompareAndSwap : public LIR_Op {
  1631  friend class LIR_OpVisitState;
  1633  private:
  1634   LIR_Opr _addr;
  1635   LIR_Opr _cmp_value;
  1636   LIR_Opr _new_value;
  1637   LIR_Opr _tmp1;
  1638   LIR_Opr _tmp2;
  1640  public:
  1641   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
  1642     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1643     , _addr(addr)
  1644     , _cmp_value(cmp_value)
  1645     , _new_value(new_value)
  1646     , _tmp1(t1)
  1647     , _tmp2(t2)                                  { }
  1649   LIR_Opr addr()        const                    { return _addr;  }
  1650   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1651   LIR_Opr new_value()   const                    { return _new_value; }
  1652   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1653   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1655   virtual void emit_code(LIR_Assembler* masm);
  1656   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1657   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1658 };
  1660 // LIR_OpProfileCall
  1661 class LIR_OpProfileCall : public LIR_Op {
  1662  friend class LIR_OpVisitState;
  1664  private:
  1665   ciMethod* _profiled_method;
  1666   int _profiled_bci;
  1667   LIR_Opr _mdo;
  1668   LIR_Opr _recv;
  1669   LIR_Opr _tmp1;
  1670   ciKlass* _known_holder;
  1672  public:
  1673   // Destroys recv
  1674   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1675     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1676     , _profiled_method(profiled_method)
  1677     , _profiled_bci(profiled_bci)
  1678     , _mdo(mdo)
  1679     , _recv(recv)
  1680     , _tmp1(t1)
  1681     , _known_holder(known_holder)                { }
  1683   ciMethod* profiled_method() const              { return _profiled_method;  }
  1684   int       profiled_bci()    const              { return _profiled_bci;     }
  1685   LIR_Opr   mdo()             const              { return _mdo;              }
  1686   LIR_Opr   recv()            const              { return _recv;             }
  1687   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1688   ciKlass*  known_holder()    const              { return _known_holder;     }
  1690   virtual void emit_code(LIR_Assembler* masm);
  1691   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1692   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1693 };
  1696 class LIR_InsertionBuffer;
  1698 //--------------------------------LIR_List---------------------------------------------------
  1699 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1700 // The LIR instructions are appended by the LIR_List class itself;
  1701 //
  1702 // Notes:
  1703 // - all offsets are(should be) in bytes
  1704 // - local positions are specified with an offset, with offset 0 being local 0
  1706 class LIR_List: public CompilationResourceObj {
  1707  private:
  1708   LIR_OpList  _operations;
  1710   Compilation*  _compilation;
  1711 #ifndef PRODUCT
  1712   BlockBegin*   _block;
  1713 #endif
  1714 #ifdef ASSERT
  1715   const char *  _file;
  1716   int           _line;
  1717 #endif
  1719   void append(LIR_Op* op) {
  1720     if (op->source() == NULL)
  1721       op->set_source(_compilation->current_instruction());
  1722 #ifndef PRODUCT
  1723     if (PrintIRWithLIR) {
  1724       _compilation->maybe_print_current_instruction();
  1725       op->print(); tty->cr();
  1727 #endif // PRODUCT
  1729     _operations.append(op);
  1731 #ifdef ASSERT
  1732     op->verify();
  1733     op->set_file_and_line(_file, _line);
  1734     _file = NULL;
  1735     _line = 0;
  1736 #endif
  1739  public:
  1740   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1742 #ifdef ASSERT
  1743   void set_file_and_line(const char * file, int line);
  1744 #endif
  1746   //---------- accessors ---------------
  1747   LIR_OpList* instructions_list()                { return &_operations; }
  1748   int         length() const                     { return _operations.length(); }
  1749   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1751   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1753   // insert LIR_Ops in buffer to right places in LIR_List
  1754   void append(LIR_InsertionBuffer* buffer);
  1756   //---------- mutators ---------------
  1757   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1758   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1760   //---------- printing -------------
  1761   void print_instructions() PRODUCT_RETURN;
  1764   //---------- instructions -------------
  1765   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1766                         address dest, LIR_OprList* arguments,
  1767                         CodeEmitInfo* info) {
  1768     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1770   void call_static(ciMethod* method, LIR_Opr result,
  1771                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1772     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1774   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1775                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1776     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1778   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1779                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1780     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1782   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1783                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1784     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
  1787   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1788   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1789   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1790   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1791   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1793   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  1794   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  1796   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  1797   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  1799   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  1801   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  1802   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  1804   // result is a stack location for old backend and vreg for UseLinearScan
  1805   // stack_loc_temp is an illegal register for old backend
  1806   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  1807   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1808   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1809   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1810   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1811   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  1812   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  1814   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  1816   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  1817   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  1819   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  1821   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  1823   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  1825   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  1826   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  1827   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  1829   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  1830   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  1831     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
  1833   void unwind_exception(LIR_Opr exceptionOop) {
  1834     append(new LIR_Op1(lir_unwind, exceptionOop));
  1837   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  1838     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  1841   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  1842   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  1844   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  1845     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  1847   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  1848     cmp(condition, left, LIR_OprFact::intConst(right), info);
  1851   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  1852   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  1854   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
  1855     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
  1858   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1859   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1860   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1862   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  1863   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  1864   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  1865   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  1866   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  1867   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  1868   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  1870   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  1871   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  1872   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  1873   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  1874   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  1875   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  1876   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  1878   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1879   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1881   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1883   void prefetch(LIR_Address* addr, bool is_store);
  1885   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1886   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1887   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1888   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1889   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1891   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1892   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1893   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1894   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1896   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  1897   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  1899   // jump is an unconditional branch
  1900   void jump(BlockBegin* block) {
  1901     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  1903   void jump(CodeStub* stub) {
  1904     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  1906   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
  1907   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  1908     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1909     append(new LIR_OpBranch(cond, type, block));
  1911   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  1912     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1913     append(new LIR_OpBranch(cond, type, stub));
  1915   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  1916     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  1917     append(new LIR_OpBranch(cond, type, block, unordered));
  1920   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1921   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1922   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1924   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1925   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1926   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1928   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  1929   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  1931   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  1932     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  1935   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  1936                     LIR_OprList* arguments, CodeEmitInfo* info) {
  1937     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  1940   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  1941   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
  1942   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  1944   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  1945   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  1946   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  1948   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  1950   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  1952   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1953                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1954                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1955                   ciMethod* profiled_method, int profiled_bci);
  1956   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
  1957   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1959   // methodDataOop profiling
  1960   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
  1961 };
  1963 void print_LIR(BlockList* blocks);
  1965 class LIR_InsertionBuffer : public CompilationResourceObj {
  1966  private:
  1967   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  1969   // list of insertion points. index and count are stored alternately:
  1970   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  1971   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  1972   intStack    _index_and_count;
  1974   // the LIR_Ops to be inserted
  1975   LIR_OpList  _ops;
  1977   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  1978   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  1979   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  1981 #ifdef ASSERT
  1982   void verify();
  1983 #endif
  1984  public:
  1985   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  1987   // must be called before using the insertion buffer
  1988   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  1989   bool initialized() const  { return _lir != NULL; }
  1990   // called automatically when the buffer is appended to the LIR_List
  1991   void finish()             { _lir = NULL; }
  1993   // accessors
  1994   LIR_List*  lir_list() const             { return _lir; }
  1995   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  1996   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  1997   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  1999   int number_of_ops() const               { return _ops.length(); }
  2000   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  2002   // append an instruction to the buffer
  2003   void append(int index, LIR_Op* op);
  2005   // instruction
  2006   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2007 };
  2010 //
  2011 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  2012 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  2013 // information about the input, output and temporaries used by the
  2014 // op to be recorded.  It also records whether the op has call semantics
  2015 // and also records all the CodeEmitInfos used by this op.
  2016 //
  2019 class LIR_OpVisitState: public StackObj {
  2020  public:
  2021   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2023   enum {
  2024     maxNumberOfOperands = 16,
  2025     maxNumberOfInfos = 4
  2026   };
  2028  private:
  2029   LIR_Op*          _op;
  2031   // optimization: the operands and infos are not stored in a variable-length
  2032   //               list, but in a fixed-size array to save time of size checks and resizing
  2033   int              _oprs_len[numModes];
  2034   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2035   int _info_len;
  2036   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2038   bool             _has_call;
  2039   bool             _has_slow_case;
  2042   // only include register operands
  2043   // addresses are decomposed to the base and index registers
  2044   // constants and stack operands are ignored
  2045   void append(LIR_Opr& opr, OprMode mode) {
  2046     assert(opr->is_valid(), "should not call this otherwise");
  2047     assert(mode >= 0 && mode < numModes, "bad mode");
  2049     if (opr->is_register()) {
  2050        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2051       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2053     } else if (opr->is_pointer()) {
  2054       LIR_Address* address = opr->as_address_ptr();
  2055       if (address != NULL) {
  2056         // special handling for addresses: add base and index register of the address
  2057         // both are always input operands!
  2058         if (address->_base->is_valid()) {
  2059           assert(address->_base->is_register(), "must be");
  2060           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2061           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
  2063         if (address->_index->is_valid()) {
  2064           assert(address->_index->is_register(), "must be");
  2065           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2066           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
  2069       } else {
  2070         assert(opr->is_constant(), "constant operands are not processed");
  2072     } else {
  2073       assert(opr->is_stack(), "stack operands are not processed");
  2077   void append(CodeEmitInfo* info) {
  2078     assert(info != NULL, "should not call this otherwise");
  2079     assert(_info_len < maxNumberOfInfos, "array overflow");
  2080     _info_new[_info_len++] = info;
  2083  public:
  2084   LIR_OpVisitState()         { reset(); }
  2086   LIR_Op* op() const         { return _op; }
  2087   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2089   bool has_call() const      { return _has_call; }
  2090   bool has_slow_case() const { return _has_slow_case; }
  2092   void reset() {
  2093     _op = NULL;
  2094     _has_call = false;
  2095     _has_slow_case = false;
  2097     _oprs_len[inputMode] = 0;
  2098     _oprs_len[tempMode] = 0;
  2099     _oprs_len[outputMode] = 0;
  2100     _info_len = 0;
  2104   int opr_count(OprMode mode) const {
  2105     assert(mode >= 0 && mode < numModes, "bad mode");
  2106     return _oprs_len[mode];
  2109   LIR_Opr opr_at(OprMode mode, int index) const {
  2110     assert(mode >= 0 && mode < numModes, "bad mode");
  2111     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2112     return *_oprs_new[mode][index];
  2115   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2116     assert(mode >= 0 && mode < numModes, "bad mode");
  2117     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2118     *_oprs_new[mode][index] = opr;
  2121   int info_count() const {
  2122     return _info_len;
  2125   CodeEmitInfo* info_at(int index) const {
  2126     assert(index < _info_len, "index out of bounds");
  2127     return _info_new[index];
  2130   XHandlers* all_xhandler();
  2132   // collects all register operands of the instruction
  2133   void visit(LIR_Op* op);
  2135 #if ASSERT
  2136   // check that an operation has no operands
  2137   bool no_operands(LIR_Op* op);
  2138 #endif
  2140   // LIR_Op visitor functions use these to fill in the state
  2141   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2142   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2143   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2144   void do_info(CodeEmitInfo* info)        { append(info); }
  2146   void do_stub(CodeStub* stub);
  2147   void do_call()                          { _has_call = true; }
  2148   void do_slow_case()                     { _has_slow_case = true; }
  2149   void do_slow_case(CodeEmitInfo* info) {
  2150     _has_slow_case = true;
  2151     append(info);
  2153 };
  2156 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };

mercurial