src/cpu/x86/vm/macroAssembler_x86.cpp

Wed, 06 Nov 2013 06:51:24 -0800

author
mikael
date
Wed, 06 Nov 2013 06:51:24 -0800
changeset 6072
be525e91f65b
parent 6029
209aa13ab8c0
child 6155
61746b5f0ed3
permissions
-rw-r--r--

8026775: nsk/jvmti/RedefineClasses/StressRedefine crashes due to EXCEPTION_ACCESS_VIOLATION
Summary: Uncommon trap blob did not bang all the stack shadow pages
Reviewed-by: kvn, twisti, iveresov, jrose

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "memory/universe.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/biasedLocking.hpp"
    36 #include "runtime/interfaceSupport.hpp"
    37 #include "runtime/objectMonitor.hpp"
    38 #include "runtime/os.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "runtime/stubRoutines.hpp"
    41 #include "utilities/macros.hpp"
    42 #if INCLUDE_ALL_GCS
    43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    45 #include "gc_implementation/g1/heapRegion.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 #ifdef PRODUCT
    49 #define BLOCK_COMMENT(str) /* nothing */
    50 #define STOP(error) stop(error)
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #define STOP(error) block_comment(error); stop(error)
    54 #endif
    56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    59 #ifdef ASSERT
    60 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    61 #endif
    63 static Assembler::Condition reverse[] = {
    64     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    65     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    66     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    67     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    68     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    69     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    70     Assembler::above          /* belowEqual    = 0x6 */ ,
    71     Assembler::belowEqual     /* above         = 0x7 */ ,
    72     Assembler::positive       /* negative      = 0x8 */ ,
    73     Assembler::negative       /* positive      = 0x9 */ ,
    74     Assembler::noParity       /* parity        = 0xa */ ,
    75     Assembler::parity         /* noParity      = 0xb */ ,
    76     Assembler::greaterEqual   /* less          = 0xc */ ,
    77     Assembler::less           /* greaterEqual  = 0xd */ ,
    78     Assembler::greater        /* lessEqual     = 0xe */ ,
    79     Assembler::lessEqual      /* greater       = 0xf, */
    81 };
    84 // Implementation of MacroAssembler
    86 // First all the versions that have distinct versions depending on 32/64 bit
    87 // Unless the difference is trivial (1 line or so).
    89 #ifndef _LP64
    91 // 32bit versions
    93 Address MacroAssembler::as_Address(AddressLiteral adr) {
    94   return Address(adr.target(), adr.rspec());
    95 }
    97 Address MacroAssembler::as_Address(ArrayAddress adr) {
    98   return Address::make_array(adr);
    99 }
   101 int MacroAssembler::biased_locking_enter(Register lock_reg,
   102                                          Register obj_reg,
   103                                          Register swap_reg,
   104                                          Register tmp_reg,
   105                                          bool swap_reg_contains_mark,
   106                                          Label& done,
   107                                          Label* slow_case,
   108                                          BiasedLockingCounters* counters) {
   109   assert(UseBiasedLocking, "why call this otherwise?");
   110   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
   111   assert_different_registers(lock_reg, obj_reg, swap_reg);
   113   if (PrintBiasedLockingStatistics && counters == NULL)
   114     counters = BiasedLocking::counters();
   116   bool need_tmp_reg = false;
   117   if (tmp_reg == noreg) {
   118     need_tmp_reg = true;
   119     tmp_reg = lock_reg;
   120   } else {
   121     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   122   }
   123   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   124   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   125   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
   126   Address saved_mark_addr(lock_reg, 0);
   128   // Biased locking
   129   // See whether the lock is currently biased toward our thread and
   130   // whether the epoch is still valid
   131   // Note that the runtime guarantees sufficient alignment of JavaThread
   132   // pointers to allow age to be placed into low bits
   133   // First check to see whether biasing is even enabled for this object
   134   Label cas_label;
   135   int null_check_offset = -1;
   136   if (!swap_reg_contains_mark) {
   137     null_check_offset = offset();
   138     movl(swap_reg, mark_addr);
   139   }
   140   if (need_tmp_reg) {
   141     push(tmp_reg);
   142   }
   143   movl(tmp_reg, swap_reg);
   144   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   145   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
   146   if (need_tmp_reg) {
   147     pop(tmp_reg);
   148   }
   149   jcc(Assembler::notEqual, cas_label);
   150   // The bias pattern is present in the object's header. Need to check
   151   // whether the bias owner and the epoch are both still current.
   152   // Note that because there is no current thread register on x86 we
   153   // need to store off the mark word we read out of the object to
   154   // avoid reloading it and needing to recheck invariants below. This
   155   // store is unfortunate but it makes the overall code shorter and
   156   // simpler.
   157   movl(saved_mark_addr, swap_reg);
   158   if (need_tmp_reg) {
   159     push(tmp_reg);
   160   }
   161   get_thread(tmp_reg);
   162   xorl(swap_reg, tmp_reg);
   163   if (swap_reg_contains_mark) {
   164     null_check_offset = offset();
   165   }
   166   movl(tmp_reg, klass_addr);
   167   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   168   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
   169   if (need_tmp_reg) {
   170     pop(tmp_reg);
   171   }
   172   if (counters != NULL) {
   173     cond_inc32(Assembler::zero,
   174                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
   175   }
   176   jcc(Assembler::equal, done);
   178   Label try_revoke_bias;
   179   Label try_rebias;
   181   // At this point we know that the header has the bias pattern and
   182   // that we are not the bias owner in the current epoch. We need to
   183   // figure out more details about the state of the header in order to
   184   // know what operations can be legally performed on the object's
   185   // header.
   187   // If the low three bits in the xor result aren't clear, that means
   188   // the prototype header is no longer biased and we have to revoke
   189   // the bias on this object.
   190   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
   191   jcc(Assembler::notZero, try_revoke_bias);
   193   // Biasing is still enabled for this data type. See whether the
   194   // epoch of the current bias is still valid, meaning that the epoch
   195   // bits of the mark word are equal to the epoch bits of the
   196   // prototype header. (Note that the prototype header's epoch bits
   197   // only change at a safepoint.) If not, attempt to rebias the object
   198   // toward the current thread. Note that we must be absolutely sure
   199   // that the current epoch is invalid in order to do this because
   200   // otherwise the manipulations it performs on the mark word are
   201   // illegal.
   202   testl(swap_reg, markOopDesc::epoch_mask_in_place);
   203   jcc(Assembler::notZero, try_rebias);
   205   // The epoch of the current bias is still valid but we know nothing
   206   // about the owner; it might be set or it might be clear. Try to
   207   // acquire the bias of the object using an atomic operation. If this
   208   // fails we will go in to the runtime to revoke the object's bias.
   209   // Note that we first construct the presumed unbiased header so we
   210   // don't accidentally blow away another thread's valid bias.
   211   movl(swap_reg, saved_mark_addr);
   212   andl(swap_reg,
   213        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   214   if (need_tmp_reg) {
   215     push(tmp_reg);
   216   }
   217   get_thread(tmp_reg);
   218   orl(tmp_reg, swap_reg);
   219   if (os::is_MP()) {
   220     lock();
   221   }
   222   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   223   if (need_tmp_reg) {
   224     pop(tmp_reg);
   225   }
   226   // If the biasing toward our thread failed, this means that
   227   // another thread succeeded in biasing it toward itself and we
   228   // need to revoke that bias. The revocation will occur in the
   229   // interpreter runtime in the slow case.
   230   if (counters != NULL) {
   231     cond_inc32(Assembler::zero,
   232                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
   233   }
   234   if (slow_case != NULL) {
   235     jcc(Assembler::notZero, *slow_case);
   236   }
   237   jmp(done);
   239   bind(try_rebias);
   240   // At this point we know the epoch has expired, meaning that the
   241   // current "bias owner", if any, is actually invalid. Under these
   242   // circumstances _only_, we are allowed to use the current header's
   243   // value as the comparison value when doing the cas to acquire the
   244   // bias in the current epoch. In other words, we allow transfer of
   245   // the bias from one thread to another directly in this situation.
   246   //
   247   // FIXME: due to a lack of registers we currently blow away the age
   248   // bits in this situation. Should attempt to preserve them.
   249   if (need_tmp_reg) {
   250     push(tmp_reg);
   251   }
   252   get_thread(tmp_reg);
   253   movl(swap_reg, klass_addr);
   254   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
   255   movl(swap_reg, saved_mark_addr);
   256   if (os::is_MP()) {
   257     lock();
   258   }
   259   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   260   if (need_tmp_reg) {
   261     pop(tmp_reg);
   262   }
   263   // If the biasing toward our thread failed, then another thread
   264   // succeeded in biasing it toward itself and we need to revoke that
   265   // bias. The revocation will occur in the runtime in the slow case.
   266   if (counters != NULL) {
   267     cond_inc32(Assembler::zero,
   268                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
   269   }
   270   if (slow_case != NULL) {
   271     jcc(Assembler::notZero, *slow_case);
   272   }
   273   jmp(done);
   275   bind(try_revoke_bias);
   276   // The prototype mark in the klass doesn't have the bias bit set any
   277   // more, indicating that objects of this data type are not supposed
   278   // to be biased any more. We are going to try to reset the mark of
   279   // this object to the prototype value and fall through to the
   280   // CAS-based locking scheme. Note that if our CAS fails, it means
   281   // that another thread raced us for the privilege of revoking the
   282   // bias of this particular object, so it's okay to continue in the
   283   // normal locking code.
   284   //
   285   // FIXME: due to a lack of registers we currently blow away the age
   286   // bits in this situation. Should attempt to preserve them.
   287   movl(swap_reg, saved_mark_addr);
   288   if (need_tmp_reg) {
   289     push(tmp_reg);
   290   }
   291   movl(tmp_reg, klass_addr);
   292   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   293   if (os::is_MP()) {
   294     lock();
   295   }
   296   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   297   if (need_tmp_reg) {
   298     pop(tmp_reg);
   299   }
   300   // Fall through to the normal CAS-based lock, because no matter what
   301   // the result of the above CAS, some thread must have succeeded in
   302   // removing the bias bit from the object's header.
   303   if (counters != NULL) {
   304     cond_inc32(Assembler::zero,
   305                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
   306   }
   308   bind(cas_label);
   310   return null_check_offset;
   311 }
   312 void MacroAssembler::call_VM_leaf_base(address entry_point,
   313                                        int number_of_arguments) {
   314   call(RuntimeAddress(entry_point));
   315   increment(rsp, number_of_arguments * wordSize);
   316 }
   318 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   319   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   320 }
   322 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   323   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   324 }
   326 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   327   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   328 }
   330 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   331   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   332 }
   334 void MacroAssembler::extend_sign(Register hi, Register lo) {
   335   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   336   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   337     cdql();
   338   } else {
   339     movl(hi, lo);
   340     sarl(hi, 31);
   341   }
   342 }
   344 void MacroAssembler::jC2(Register tmp, Label& L) {
   345   // set parity bit if FPU flag C2 is set (via rax)
   346   save_rax(tmp);
   347   fwait(); fnstsw_ax();
   348   sahf();
   349   restore_rax(tmp);
   350   // branch
   351   jcc(Assembler::parity, L);
   352 }
   354 void MacroAssembler::jnC2(Register tmp, Label& L) {
   355   // set parity bit if FPU flag C2 is set (via rax)
   356   save_rax(tmp);
   357   fwait(); fnstsw_ax();
   358   sahf();
   359   restore_rax(tmp);
   360   // branch
   361   jcc(Assembler::noParity, L);
   362 }
   364 // 32bit can do a case table jump in one instruction but we no longer allow the base
   365 // to be installed in the Address class
   366 void MacroAssembler::jump(ArrayAddress entry) {
   367   jmp(as_Address(entry));
   368 }
   370 // Note: y_lo will be destroyed
   371 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   372   // Long compare for Java (semantics as described in JVM spec.)
   373   Label high, low, done;
   375   cmpl(x_hi, y_hi);
   376   jcc(Assembler::less, low);
   377   jcc(Assembler::greater, high);
   378   // x_hi is the return register
   379   xorl(x_hi, x_hi);
   380   cmpl(x_lo, y_lo);
   381   jcc(Assembler::below, low);
   382   jcc(Assembler::equal, done);
   384   bind(high);
   385   xorl(x_hi, x_hi);
   386   increment(x_hi);
   387   jmp(done);
   389   bind(low);
   390   xorl(x_hi, x_hi);
   391   decrementl(x_hi);
   393   bind(done);
   394 }
   396 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   397     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   398 }
   400 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   401   // leal(dst, as_Address(adr));
   402   // see note in movl as to why we must use a move
   403   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   404 }
   406 void MacroAssembler::leave() {
   407   mov(rsp, rbp);
   408   pop(rbp);
   409 }
   411 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   412   // Multiplication of two Java long values stored on the stack
   413   // as illustrated below. Result is in rdx:rax.
   414   //
   415   // rsp ---> [  ??  ] \               \
   416   //            ....    | y_rsp_offset  |
   417   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   418   //          [ y_hi ]                  | (in bytes)
   419   //            ....                    |
   420   //          [ x_lo ]                 /
   421   //          [ x_hi ]
   422   //            ....
   423   //
   424   // Basic idea: lo(result) = lo(x_lo * y_lo)
   425   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   426   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   427   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   428   Label quick;
   429   // load x_hi, y_hi and check if quick
   430   // multiplication is possible
   431   movl(rbx, x_hi);
   432   movl(rcx, y_hi);
   433   movl(rax, rbx);
   434   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   435   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   436   // do full multiplication
   437   // 1st step
   438   mull(y_lo);                                    // x_hi * y_lo
   439   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   440   // 2nd step
   441   movl(rax, x_lo);
   442   mull(rcx);                                     // x_lo * y_hi
   443   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   444   // 3rd step
   445   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   446   movl(rax, x_lo);
   447   mull(y_lo);                                    // x_lo * y_lo
   448   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   449 }
   451 void MacroAssembler::lneg(Register hi, Register lo) {
   452   negl(lo);
   453   adcl(hi, 0);
   454   negl(hi);
   455 }
   457 void MacroAssembler::lshl(Register hi, Register lo) {
   458   // Java shift left long support (semantics as described in JVM spec., p.305)
   459   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   460   // shift value is in rcx !
   461   assert(hi != rcx, "must not use rcx");
   462   assert(lo != rcx, "must not use rcx");
   463   const Register s = rcx;                        // shift count
   464   const int      n = BitsPerWord;
   465   Label L;
   466   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   467   cmpl(s, n);                                    // if (s < n)
   468   jcc(Assembler::less, L);                       // else (s >= n)
   469   movl(hi, lo);                                  // x := x << n
   470   xorl(lo, lo);
   471   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   472   bind(L);                                       // s (mod n) < n
   473   shldl(hi, lo);                                 // x := x << s
   474   shll(lo);
   475 }
   478 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   479   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   480   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   481   assert(hi != rcx, "must not use rcx");
   482   assert(lo != rcx, "must not use rcx");
   483   const Register s = rcx;                        // shift count
   484   const int      n = BitsPerWord;
   485   Label L;
   486   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   487   cmpl(s, n);                                    // if (s < n)
   488   jcc(Assembler::less, L);                       // else (s >= n)
   489   movl(lo, hi);                                  // x := x >> n
   490   if (sign_extension) sarl(hi, 31);
   491   else                xorl(hi, hi);
   492   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   493   bind(L);                                       // s (mod n) < n
   494   shrdl(lo, hi);                                 // x := x >> s
   495   if (sign_extension) sarl(hi);
   496   else                shrl(hi);
   497 }
   499 void MacroAssembler::movoop(Register dst, jobject obj) {
   500   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   501 }
   503 void MacroAssembler::movoop(Address dst, jobject obj) {
   504   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   505 }
   507 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   508   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   509 }
   511 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   512   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   513 }
   515 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
   516   if (src.is_lval()) {
   517     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   518   } else {
   519     movl(dst, as_Address(src));
   520   }
   521 }
   523 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   524   movl(as_Address(dst), src);
   525 }
   527 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   528   movl(dst, as_Address(src));
   529 }
   531 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   532 void MacroAssembler::movptr(Address dst, intptr_t src) {
   533   movl(dst, src);
   534 }
   537 void MacroAssembler::pop_callee_saved_registers() {
   538   pop(rcx);
   539   pop(rdx);
   540   pop(rdi);
   541   pop(rsi);
   542 }
   544 void MacroAssembler::pop_fTOS() {
   545   fld_d(Address(rsp, 0));
   546   addl(rsp, 2 * wordSize);
   547 }
   549 void MacroAssembler::push_callee_saved_registers() {
   550   push(rsi);
   551   push(rdi);
   552   push(rdx);
   553   push(rcx);
   554 }
   556 void MacroAssembler::push_fTOS() {
   557   subl(rsp, 2 * wordSize);
   558   fstp_d(Address(rsp, 0));
   559 }
   562 void MacroAssembler::pushoop(jobject obj) {
   563   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   564 }
   566 void MacroAssembler::pushklass(Metadata* obj) {
   567   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   568 }
   570 void MacroAssembler::pushptr(AddressLiteral src) {
   571   if (src.is_lval()) {
   572     push_literal32((int32_t)src.target(), src.rspec());
   573   } else {
   574     pushl(as_Address(src));
   575   }
   576 }
   578 void MacroAssembler::set_word_if_not_zero(Register dst) {
   579   xorl(dst, dst);
   580   set_byte_if_not_zero(dst);
   581 }
   583 static void pass_arg0(MacroAssembler* masm, Register arg) {
   584   masm->push(arg);
   585 }
   587 static void pass_arg1(MacroAssembler* masm, Register arg) {
   588   masm->push(arg);
   589 }
   591 static void pass_arg2(MacroAssembler* masm, Register arg) {
   592   masm->push(arg);
   593 }
   595 static void pass_arg3(MacroAssembler* masm, Register arg) {
   596   masm->push(arg);
   597 }
   599 #ifndef PRODUCT
   600 extern "C" void findpc(intptr_t x);
   601 #endif
   603 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   604   // In order to get locks to work, we need to fake a in_VM state
   605   JavaThread* thread = JavaThread::current();
   606   JavaThreadState saved_state = thread->thread_state();
   607   thread->set_thread_state(_thread_in_vm);
   608   if (ShowMessageBoxOnError) {
   609     JavaThread* thread = JavaThread::current();
   610     JavaThreadState saved_state = thread->thread_state();
   611     thread->set_thread_state(_thread_in_vm);
   612     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   613       ttyLocker ttyl;
   614       BytecodeCounter::print();
   615     }
   616     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   617     // This is the value of eip which points to where verify_oop will return.
   618     if (os::message_box(msg, "Execution stopped, print registers?")) {
   619       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   620       BREAKPOINT;
   621     }
   622   } else {
   623     ttyLocker ttyl;
   624     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   625   }
   626   // Don't assert holding the ttyLock
   627     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   628   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   629 }
   631 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   632   ttyLocker ttyl;
   633   FlagSetting fs(Debugging, true);
   634   tty->print_cr("eip = 0x%08x", eip);
   635 #ifndef PRODUCT
   636   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   637     tty->cr();
   638     findpc(eip);
   639     tty->cr();
   640   }
   641 #endif
   642 #define PRINT_REG(rax) \
   643   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   644   PRINT_REG(rax);
   645   PRINT_REG(rbx);
   646   PRINT_REG(rcx);
   647   PRINT_REG(rdx);
   648   PRINT_REG(rdi);
   649   PRINT_REG(rsi);
   650   PRINT_REG(rbp);
   651   PRINT_REG(rsp);
   652 #undef PRINT_REG
   653   // Print some words near top of staack.
   654   int* dump_sp = (int*) rsp;
   655   for (int col1 = 0; col1 < 8; col1++) {
   656     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   657     os::print_location(tty, *dump_sp++);
   658   }
   659   for (int row = 0; row < 16; row++) {
   660     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   661     for (int col = 0; col < 8; col++) {
   662       tty->print(" 0x%08x", *dump_sp++);
   663     }
   664     tty->cr();
   665   }
   666   // Print some instructions around pc:
   667   Disassembler::decode((address)eip-64, (address)eip);
   668   tty->print_cr("--------");
   669   Disassembler::decode((address)eip, (address)eip+32);
   670 }
   672 void MacroAssembler::stop(const char* msg) {
   673   ExternalAddress message((address)msg);
   674   // push address of message
   675   pushptr(message.addr());
   676   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   677   pusha();                                            // push registers
   678   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   679   hlt();
   680 }
   682 void MacroAssembler::warn(const char* msg) {
   683   push_CPU_state();
   685   ExternalAddress message((address) msg);
   686   // push address of message
   687   pushptr(message.addr());
   689   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   690   addl(rsp, wordSize);       // discard argument
   691   pop_CPU_state();
   692 }
   694 void MacroAssembler::print_state() {
   695   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   696   pusha();                                            // push registers
   698   push_CPU_state();
   699   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   700   pop_CPU_state();
   702   popa();
   703   addl(rsp, wordSize);
   704 }
   706 #else // _LP64
   708 // 64 bit versions
   710 Address MacroAssembler::as_Address(AddressLiteral adr) {
   711   // amd64 always does this as a pc-rel
   712   // we can be absolute or disp based on the instruction type
   713   // jmp/call are displacements others are absolute
   714   assert(!adr.is_lval(), "must be rval");
   715   assert(reachable(adr), "must be");
   716   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   718 }
   720 Address MacroAssembler::as_Address(ArrayAddress adr) {
   721   AddressLiteral base = adr.base();
   722   lea(rscratch1, base);
   723   Address index = adr.index();
   724   assert(index._disp == 0, "must not have disp"); // maybe it can?
   725   Address array(rscratch1, index._index, index._scale, index._disp);
   726   return array;
   727 }
   729 int MacroAssembler::biased_locking_enter(Register lock_reg,
   730                                          Register obj_reg,
   731                                          Register swap_reg,
   732                                          Register tmp_reg,
   733                                          bool swap_reg_contains_mark,
   734                                          Label& done,
   735                                          Label* slow_case,
   736                                          BiasedLockingCounters* counters) {
   737   assert(UseBiasedLocking, "why call this otherwise?");
   738   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
   739   assert(tmp_reg != noreg, "tmp_reg must be supplied");
   740   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   741   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   742   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   743   Address saved_mark_addr(lock_reg, 0);
   745   if (PrintBiasedLockingStatistics && counters == NULL)
   746     counters = BiasedLocking::counters();
   748   // Biased locking
   749   // See whether the lock is currently biased toward our thread and
   750   // whether the epoch is still valid
   751   // Note that the runtime guarantees sufficient alignment of JavaThread
   752   // pointers to allow age to be placed into low bits
   753   // First check to see whether biasing is even enabled for this object
   754   Label cas_label;
   755   int null_check_offset = -1;
   756   if (!swap_reg_contains_mark) {
   757     null_check_offset = offset();
   758     movq(swap_reg, mark_addr);
   759   }
   760   movq(tmp_reg, swap_reg);
   761   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   762   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
   763   jcc(Assembler::notEqual, cas_label);
   764   // The bias pattern is present in the object's header. Need to check
   765   // whether the bias owner and the epoch are both still current.
   766   load_prototype_header(tmp_reg, obj_reg);
   767   orq(tmp_reg, r15_thread);
   768   xorq(tmp_reg, swap_reg);
   769   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
   770   if (counters != NULL) {
   771     cond_inc32(Assembler::zero,
   772                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   773   }
   774   jcc(Assembler::equal, done);
   776   Label try_revoke_bias;
   777   Label try_rebias;
   779   // At this point we know that the header has the bias pattern and
   780   // that we are not the bias owner in the current epoch. We need to
   781   // figure out more details about the state of the header in order to
   782   // know what operations can be legally performed on the object's
   783   // header.
   785   // If the low three bits in the xor result aren't clear, that means
   786   // the prototype header is no longer biased and we have to revoke
   787   // the bias on this object.
   788   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   789   jcc(Assembler::notZero, try_revoke_bias);
   791   // Biasing is still enabled for this data type. See whether the
   792   // epoch of the current bias is still valid, meaning that the epoch
   793   // bits of the mark word are equal to the epoch bits of the
   794   // prototype header. (Note that the prototype header's epoch bits
   795   // only change at a safepoint.) If not, attempt to rebias the object
   796   // toward the current thread. Note that we must be absolutely sure
   797   // that the current epoch is invalid in order to do this because
   798   // otherwise the manipulations it performs on the mark word are
   799   // illegal.
   800   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
   801   jcc(Assembler::notZero, try_rebias);
   803   // The epoch of the current bias is still valid but we know nothing
   804   // about the owner; it might be set or it might be clear. Try to
   805   // acquire the bias of the object using an atomic operation. If this
   806   // fails we will go in to the runtime to revoke the object's bias.
   807   // Note that we first construct the presumed unbiased header so we
   808   // don't accidentally blow away another thread's valid bias.
   809   andq(swap_reg,
   810        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   811   movq(tmp_reg, swap_reg);
   812   orq(tmp_reg, r15_thread);
   813   if (os::is_MP()) {
   814     lock();
   815   }
   816   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   817   // If the biasing toward our thread failed, this means that
   818   // another thread succeeded in biasing it toward itself and we
   819   // need to revoke that bias. The revocation will occur in the
   820   // interpreter runtime in the slow case.
   821   if (counters != NULL) {
   822     cond_inc32(Assembler::zero,
   823                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   824   }
   825   if (slow_case != NULL) {
   826     jcc(Assembler::notZero, *slow_case);
   827   }
   828   jmp(done);
   830   bind(try_rebias);
   831   // At this point we know the epoch has expired, meaning that the
   832   // current "bias owner", if any, is actually invalid. Under these
   833   // circumstances _only_, we are allowed to use the current header's
   834   // value as the comparison value when doing the cas to acquire the
   835   // bias in the current epoch. In other words, we allow transfer of
   836   // the bias from one thread to another directly in this situation.
   837   //
   838   // FIXME: due to a lack of registers we currently blow away the age
   839   // bits in this situation. Should attempt to preserve them.
   840   load_prototype_header(tmp_reg, obj_reg);
   841   orq(tmp_reg, r15_thread);
   842   if (os::is_MP()) {
   843     lock();
   844   }
   845   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   846   // If the biasing toward our thread failed, then another thread
   847   // succeeded in biasing it toward itself and we need to revoke that
   848   // bias. The revocation will occur in the runtime in the slow case.
   849   if (counters != NULL) {
   850     cond_inc32(Assembler::zero,
   851                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
   852   }
   853   if (slow_case != NULL) {
   854     jcc(Assembler::notZero, *slow_case);
   855   }
   856   jmp(done);
   858   bind(try_revoke_bias);
   859   // The prototype mark in the klass doesn't have the bias bit set any
   860   // more, indicating that objects of this data type are not supposed
   861   // to be biased any more. We are going to try to reset the mark of
   862   // this object to the prototype value and fall through to the
   863   // CAS-based locking scheme. Note that if our CAS fails, it means
   864   // that another thread raced us for the privilege of revoking the
   865   // bias of this particular object, so it's okay to continue in the
   866   // normal locking code.
   867   //
   868   // FIXME: due to a lack of registers we currently blow away the age
   869   // bits in this situation. Should attempt to preserve them.
   870   load_prototype_header(tmp_reg, obj_reg);
   871   if (os::is_MP()) {
   872     lock();
   873   }
   874   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   875   // Fall through to the normal CAS-based lock, because no matter what
   876   // the result of the above CAS, some thread must have succeeded in
   877   // removing the bias bit from the object's header.
   878   if (counters != NULL) {
   879     cond_inc32(Assembler::zero,
   880                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
   881   }
   883   bind(cas_label);
   885   return null_check_offset;
   886 }
   888 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   889   Label L, E;
   891 #ifdef _WIN64
   892   // Windows always allocates space for it's register args
   893   assert(num_args <= 4, "only register arguments supported");
   894   subq(rsp,  frame::arg_reg_save_area_bytes);
   895 #endif
   897   // Align stack if necessary
   898   testl(rsp, 15);
   899   jcc(Assembler::zero, L);
   901   subq(rsp, 8);
   902   {
   903     call(RuntimeAddress(entry_point));
   904   }
   905   addq(rsp, 8);
   906   jmp(E);
   908   bind(L);
   909   {
   910     call(RuntimeAddress(entry_point));
   911   }
   913   bind(E);
   915 #ifdef _WIN64
   916   // restore stack pointer
   917   addq(rsp, frame::arg_reg_save_area_bytes);
   918 #endif
   920 }
   922 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   923   assert(!src2.is_lval(), "should use cmpptr");
   925   if (reachable(src2)) {
   926     cmpq(src1, as_Address(src2));
   927   } else {
   928     lea(rscratch1, src2);
   929     Assembler::cmpq(src1, Address(rscratch1, 0));
   930   }
   931 }
   933 int MacroAssembler::corrected_idivq(Register reg) {
   934   // Full implementation of Java ldiv and lrem; checks for special
   935   // case as described in JVM spec., p.243 & p.271.  The function
   936   // returns the (pc) offset of the idivl instruction - may be needed
   937   // for implicit exceptions.
   938   //
   939   //         normal case                           special case
   940   //
   941   // input : rax: dividend                         min_long
   942   //         reg: divisor   (may not be eax/edx)   -1
   943   //
   944   // output: rax: quotient  (= rax idiv reg)       min_long
   945   //         rdx: remainder (= rax irem reg)       0
   946   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   947   static const int64_t min_long = 0x8000000000000000;
   948   Label normal_case, special_case;
   950   // check for special case
   951   cmp64(rax, ExternalAddress((address) &min_long));
   952   jcc(Assembler::notEqual, normal_case);
   953   xorl(rdx, rdx); // prepare rdx for possible special case (where
   954                   // remainder = 0)
   955   cmpq(reg, -1);
   956   jcc(Assembler::equal, special_case);
   958   // handle normal case
   959   bind(normal_case);
   960   cdqq();
   961   int idivq_offset = offset();
   962   idivq(reg);
   964   // normal and special case exit
   965   bind(special_case);
   967   return idivq_offset;
   968 }
   970 void MacroAssembler::decrementq(Register reg, int value) {
   971   if (value == min_jint) { subq(reg, value); return; }
   972   if (value <  0) { incrementq(reg, -value); return; }
   973   if (value == 0) {                        ; return; }
   974   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   975   /* else */      { subq(reg, value)       ; return; }
   976 }
   978 void MacroAssembler::decrementq(Address dst, int value) {
   979   if (value == min_jint) { subq(dst, value); return; }
   980   if (value <  0) { incrementq(dst, -value); return; }
   981   if (value == 0) {                        ; return; }
   982   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   983   /* else */      { subq(dst, value)       ; return; }
   984 }
   986 void MacroAssembler::incrementq(Register reg, int value) {
   987   if (value == min_jint) { addq(reg, value); return; }
   988   if (value <  0) { decrementq(reg, -value); return; }
   989   if (value == 0) {                        ; return; }
   990   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   991   /* else */      { addq(reg, value)       ; return; }
   992 }
   994 void MacroAssembler::incrementq(Address dst, int value) {
   995   if (value == min_jint) { addq(dst, value); return; }
   996   if (value <  0) { decrementq(dst, -value); return; }
   997   if (value == 0) {                        ; return; }
   998   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   999   /* else */      { addq(dst, value)       ; return; }
  1002 // 32bit can do a case table jump in one instruction but we no longer allow the base
  1003 // to be installed in the Address class
  1004 void MacroAssembler::jump(ArrayAddress entry) {
  1005   lea(rscratch1, entry.base());
  1006   Address dispatch = entry.index();
  1007   assert(dispatch._base == noreg, "must be");
  1008   dispatch._base = rscratch1;
  1009   jmp(dispatch);
  1012 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  1013   ShouldNotReachHere(); // 64bit doesn't use two regs
  1014   cmpq(x_lo, y_lo);
  1017 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  1018     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1021 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  1022   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  1023   movptr(dst, rscratch1);
  1026 void MacroAssembler::leave() {
  1027   // %%% is this really better? Why not on 32bit too?
  1028   emit_int8((unsigned char)0xC9); // LEAVE
  1031 void MacroAssembler::lneg(Register hi, Register lo) {
  1032   ShouldNotReachHere(); // 64bit doesn't use two regs
  1033   negq(lo);
  1036 void MacroAssembler::movoop(Register dst, jobject obj) {
  1037   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1040 void MacroAssembler::movoop(Address dst, jobject obj) {
  1041   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1042   movq(dst, rscratch1);
  1045 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  1046   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1049 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  1050   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1051   movq(dst, rscratch1);
  1054 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  1055   if (src.is_lval()) {
  1056     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1057   } else {
  1058     if (reachable(src)) {
  1059       movq(dst, as_Address(src));
  1060     } else {
  1061       lea(rscratch1, src);
  1062       movq(dst, Address(rscratch1,0));
  1067 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  1068   movq(as_Address(dst), src);
  1071 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  1072   movq(dst, as_Address(src));
  1075 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  1076 void MacroAssembler::movptr(Address dst, intptr_t src) {
  1077   mov64(rscratch1, src);
  1078   movq(dst, rscratch1);
  1081 // These are mostly for initializing NULL
  1082 void MacroAssembler::movptr(Address dst, int32_t src) {
  1083   movslq(dst, src);
  1086 void MacroAssembler::movptr(Register dst, int32_t src) {
  1087   mov64(dst, (intptr_t)src);
  1090 void MacroAssembler::pushoop(jobject obj) {
  1091   movoop(rscratch1, obj);
  1092   push(rscratch1);
  1095 void MacroAssembler::pushklass(Metadata* obj) {
  1096   mov_metadata(rscratch1, obj);
  1097   push(rscratch1);
  1100 void MacroAssembler::pushptr(AddressLiteral src) {
  1101   lea(rscratch1, src);
  1102   if (src.is_lval()) {
  1103     push(rscratch1);
  1104   } else {
  1105     pushq(Address(rscratch1, 0));
  1109 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1110                                            bool clear_pc) {
  1111   // we must set sp to zero to clear frame
  1112   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  1113   // must clear fp, so that compiled frames are not confused; it is
  1114   // possible that we need it only for debugging
  1115   if (clear_fp) {
  1116     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  1119   if (clear_pc) {
  1120     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  1124 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1125                                          Register last_java_fp,
  1126                                          address  last_java_pc) {
  1127   // determine last_java_sp register
  1128   if (!last_java_sp->is_valid()) {
  1129     last_java_sp = rsp;
  1132   // last_java_fp is optional
  1133   if (last_java_fp->is_valid()) {
  1134     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  1135            last_java_fp);
  1138   // last_java_pc is optional
  1139   if (last_java_pc != NULL) {
  1140     Address java_pc(r15_thread,
  1141                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1142     lea(rscratch1, InternalAddress(last_java_pc));
  1143     movptr(java_pc, rscratch1);
  1146   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  1149 static void pass_arg0(MacroAssembler* masm, Register arg) {
  1150   if (c_rarg0 != arg ) {
  1151     masm->mov(c_rarg0, arg);
  1155 static void pass_arg1(MacroAssembler* masm, Register arg) {
  1156   if (c_rarg1 != arg ) {
  1157     masm->mov(c_rarg1, arg);
  1161 static void pass_arg2(MacroAssembler* masm, Register arg) {
  1162   if (c_rarg2 != arg ) {
  1163     masm->mov(c_rarg2, arg);
  1167 static void pass_arg3(MacroAssembler* masm, Register arg) {
  1168   if (c_rarg3 != arg ) {
  1169     masm->mov(c_rarg3, arg);
  1173 void MacroAssembler::stop(const char* msg) {
  1174   address rip = pc();
  1175   pusha(); // get regs on stack
  1176   lea(c_rarg0, ExternalAddress((address) msg));
  1177   lea(c_rarg1, InternalAddress(rip));
  1178   movq(c_rarg2, rsp); // pass pointer to regs array
  1179   andq(rsp, -16); // align stack as required by ABI
  1180   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1181   hlt();
  1184 void MacroAssembler::warn(const char* msg) {
  1185   push(rbp);
  1186   movq(rbp, rsp);
  1187   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1188   push_CPU_state();   // keeps alignment at 16 bytes
  1189   lea(c_rarg0, ExternalAddress((address) msg));
  1190   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  1191   pop_CPU_state();
  1192   mov(rsp, rbp);
  1193   pop(rbp);
  1196 void MacroAssembler::print_state() {
  1197   address rip = pc();
  1198   pusha();            // get regs on stack
  1199   push(rbp);
  1200   movq(rbp, rsp);
  1201   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1202   push_CPU_state();   // keeps alignment at 16 bytes
  1204   lea(c_rarg0, InternalAddress(rip));
  1205   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  1206   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  1208   pop_CPU_state();
  1209   mov(rsp, rbp);
  1210   pop(rbp);
  1211   popa();
  1214 #ifndef PRODUCT
  1215 extern "C" void findpc(intptr_t x);
  1216 #endif
  1218 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  1219   // In order to get locks to work, we need to fake a in_VM state
  1220   if (ShowMessageBoxOnError) {
  1221     JavaThread* thread = JavaThread::current();
  1222     JavaThreadState saved_state = thread->thread_state();
  1223     thread->set_thread_state(_thread_in_vm);
  1224 #ifndef PRODUCT
  1225     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1226       ttyLocker ttyl;
  1227       BytecodeCounter::print();
  1229 #endif
  1230     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  1231     // XXX correct this offset for amd64
  1232     // This is the value of eip which points to where verify_oop will return.
  1233     if (os::message_box(msg, "Execution stopped, print registers?")) {
  1234       print_state64(pc, regs);
  1235       BREAKPOINT;
  1236       assert(false, "start up GDB");
  1238     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  1239   } else {
  1240     ttyLocker ttyl;
  1241     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  1242                     msg);
  1243     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1247 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  1248   ttyLocker ttyl;
  1249   FlagSetting fs(Debugging, true);
  1250   tty->print_cr("rip = 0x%016lx", pc);
  1251 #ifndef PRODUCT
  1252   tty->cr();
  1253   findpc(pc);
  1254   tty->cr();
  1255 #endif
  1256 #define PRINT_REG(rax, value) \
  1257   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  1258   PRINT_REG(rax, regs[15]);
  1259   PRINT_REG(rbx, regs[12]);
  1260   PRINT_REG(rcx, regs[14]);
  1261   PRINT_REG(rdx, regs[13]);
  1262   PRINT_REG(rdi, regs[8]);
  1263   PRINT_REG(rsi, regs[9]);
  1264   PRINT_REG(rbp, regs[10]);
  1265   PRINT_REG(rsp, regs[11]);
  1266   PRINT_REG(r8 , regs[7]);
  1267   PRINT_REG(r9 , regs[6]);
  1268   PRINT_REG(r10, regs[5]);
  1269   PRINT_REG(r11, regs[4]);
  1270   PRINT_REG(r12, regs[3]);
  1271   PRINT_REG(r13, regs[2]);
  1272   PRINT_REG(r14, regs[1]);
  1273   PRINT_REG(r15, regs[0]);
  1274 #undef PRINT_REG
  1275   // Print some words near top of staack.
  1276   int64_t* rsp = (int64_t*) regs[11];
  1277   int64_t* dump_sp = rsp;
  1278   for (int col1 = 0; col1 < 8; col1++) {
  1279     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1280     os::print_location(tty, *dump_sp++);
  1282   for (int row = 0; row < 25; row++) {
  1283     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1284     for (int col = 0; col < 4; col++) {
  1285       tty->print(" 0x%016lx", *dump_sp++);
  1287     tty->cr();
  1289   // Print some instructions around pc:
  1290   Disassembler::decode((address)pc-64, (address)pc);
  1291   tty->print_cr("--------");
  1292   Disassembler::decode((address)pc, (address)pc+32);
  1295 #endif // _LP64
  1297 // Now versions that are common to 32/64 bit
  1299 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  1300   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  1303 void MacroAssembler::addptr(Register dst, Register src) {
  1304   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1307 void MacroAssembler::addptr(Address dst, Register src) {
  1308   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1311 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  1312   if (reachable(src)) {
  1313     Assembler::addsd(dst, as_Address(src));
  1314   } else {
  1315     lea(rscratch1, src);
  1316     Assembler::addsd(dst, Address(rscratch1, 0));
  1320 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  1321   if (reachable(src)) {
  1322     addss(dst, as_Address(src));
  1323   } else {
  1324     lea(rscratch1, src);
  1325     addss(dst, Address(rscratch1, 0));
  1329 void MacroAssembler::align(int modulus) {
  1330   if (offset() % modulus != 0) {
  1331     nop(modulus - (offset() % modulus));
  1335 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  1336   // Used in sign-masking with aligned address.
  1337   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1338   if (reachable(src)) {
  1339     Assembler::andpd(dst, as_Address(src));
  1340   } else {
  1341     lea(rscratch1, src);
  1342     Assembler::andpd(dst, Address(rscratch1, 0));
  1346 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  1347   // Used in sign-masking with aligned address.
  1348   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1349   if (reachable(src)) {
  1350     Assembler::andps(dst, as_Address(src));
  1351   } else {
  1352     lea(rscratch1, src);
  1353     Assembler::andps(dst, Address(rscratch1, 0));
  1357 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  1358   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1361 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  1362   pushf();
  1363   if (os::is_MP())
  1364     lock();
  1365   incrementl(counter_addr);
  1366   popf();
  1369 // Writes to stack successive pages until offset reached to check for
  1370 // stack overflow + shadow pages.  This clobbers tmp.
  1371 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1372   movptr(tmp, rsp);
  1373   // Bang stack for total size given plus shadow page size.
  1374   // Bang one page at a time because large size can bang beyond yellow and
  1375   // red zones.
  1376   Label loop;
  1377   bind(loop);
  1378   movl(Address(tmp, (-os::vm_page_size())), size );
  1379   subptr(tmp, os::vm_page_size());
  1380   subl(size, os::vm_page_size());
  1381   jcc(Assembler::greater, loop);
  1383   // Bang down shadow pages too.
  1384   // At this point, (tmp-0) is the last address touched, so don't
  1385   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
  1386   // was post-decremented.)  Skip this address by starting at i=1, and
  1387   // touch a few more pages below.  N.B.  It is important to touch all
  1388   // the way down to and including i=StackShadowPages.
  1389   for (int i = 1; i <= StackShadowPages; i++) {
  1390     // this could be any sized move but this is can be a debugging crumb
  1391     // so the bigger the better.
  1392     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1396 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1397   assert(UseBiasedLocking, "why call this otherwise?");
  1399   // Check for biased locking unlock case, which is a no-op
  1400   // Note: we do not have to check the thread ID for two reasons.
  1401   // First, the interpreter checks for IllegalMonitorStateException at
  1402   // a higher level. Second, if the bias was revoked while we held the
  1403   // lock, the object could not be rebiased toward another thread, so
  1404   // the bias bit would be clear.
  1405   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1406   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1407   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1408   jcc(Assembler::equal, done);
  1411 void MacroAssembler::c2bool(Register x) {
  1412   // implements x == 0 ? 0 : 1
  1413   // note: must only look at least-significant byte of x
  1414   //       since C-style booleans are stored in one byte
  1415   //       only! (was bug)
  1416   andl(x, 0xFF);
  1417   setb(Assembler::notZero, x);
  1420 // Wouldn't need if AddressLiteral version had new name
  1421 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  1422   Assembler::call(L, rtype);
  1425 void MacroAssembler::call(Register entry) {
  1426   Assembler::call(entry);
  1429 void MacroAssembler::call(AddressLiteral entry) {
  1430   if (reachable(entry)) {
  1431     Assembler::call_literal(entry.target(), entry.rspec());
  1432   } else {
  1433     lea(rscratch1, entry);
  1434     Assembler::call(rscratch1);
  1438 void MacroAssembler::ic_call(address entry) {
  1439   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  1440   movptr(rax, (intptr_t)Universe::non_oop_word());
  1441   call(AddressLiteral(entry, rh));
  1444 // Implementation of call_VM versions
  1446 void MacroAssembler::call_VM(Register oop_result,
  1447                              address entry_point,
  1448                              bool check_exceptions) {
  1449   Label C, E;
  1450   call(C, relocInfo::none);
  1451   jmp(E);
  1453   bind(C);
  1454   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1455   ret(0);
  1457   bind(E);
  1460 void MacroAssembler::call_VM(Register oop_result,
  1461                              address entry_point,
  1462                              Register arg_1,
  1463                              bool check_exceptions) {
  1464   Label C, E;
  1465   call(C, relocInfo::none);
  1466   jmp(E);
  1468   bind(C);
  1469   pass_arg1(this, arg_1);
  1470   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1471   ret(0);
  1473   bind(E);
  1476 void MacroAssembler::call_VM(Register oop_result,
  1477                              address entry_point,
  1478                              Register arg_1,
  1479                              Register arg_2,
  1480                              bool check_exceptions) {
  1481   Label C, E;
  1482   call(C, relocInfo::none);
  1483   jmp(E);
  1485   bind(C);
  1487   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1489   pass_arg2(this, arg_2);
  1490   pass_arg1(this, arg_1);
  1491   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1492   ret(0);
  1494   bind(E);
  1497 void MacroAssembler::call_VM(Register oop_result,
  1498                              address entry_point,
  1499                              Register arg_1,
  1500                              Register arg_2,
  1501                              Register arg_3,
  1502                              bool check_exceptions) {
  1503   Label C, E;
  1504   call(C, relocInfo::none);
  1505   jmp(E);
  1507   bind(C);
  1509   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1510   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1511   pass_arg3(this, arg_3);
  1513   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1514   pass_arg2(this, arg_2);
  1516   pass_arg1(this, arg_1);
  1517   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1518   ret(0);
  1520   bind(E);
  1523 void MacroAssembler::call_VM(Register oop_result,
  1524                              Register last_java_sp,
  1525                              address entry_point,
  1526                              int number_of_arguments,
  1527                              bool check_exceptions) {
  1528   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1529   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1532 void MacroAssembler::call_VM(Register oop_result,
  1533                              Register last_java_sp,
  1534                              address entry_point,
  1535                              Register arg_1,
  1536                              bool check_exceptions) {
  1537   pass_arg1(this, arg_1);
  1538   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1541 void MacroAssembler::call_VM(Register oop_result,
  1542                              Register last_java_sp,
  1543                              address entry_point,
  1544                              Register arg_1,
  1545                              Register arg_2,
  1546                              bool check_exceptions) {
  1548   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1549   pass_arg2(this, arg_2);
  1550   pass_arg1(this, arg_1);
  1551   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1554 void MacroAssembler::call_VM(Register oop_result,
  1555                              Register last_java_sp,
  1556                              address entry_point,
  1557                              Register arg_1,
  1558                              Register arg_2,
  1559                              Register arg_3,
  1560                              bool check_exceptions) {
  1561   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1562   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1563   pass_arg3(this, arg_3);
  1564   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1565   pass_arg2(this, arg_2);
  1566   pass_arg1(this, arg_1);
  1567   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1570 void MacroAssembler::super_call_VM(Register oop_result,
  1571                                    Register last_java_sp,
  1572                                    address entry_point,
  1573                                    int number_of_arguments,
  1574                                    bool check_exceptions) {
  1575   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1576   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1579 void MacroAssembler::super_call_VM(Register oop_result,
  1580                                    Register last_java_sp,
  1581                                    address entry_point,
  1582                                    Register arg_1,
  1583                                    bool check_exceptions) {
  1584   pass_arg1(this, arg_1);
  1585   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1588 void MacroAssembler::super_call_VM(Register oop_result,
  1589                                    Register last_java_sp,
  1590                                    address entry_point,
  1591                                    Register arg_1,
  1592                                    Register arg_2,
  1593                                    bool check_exceptions) {
  1595   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1596   pass_arg2(this, arg_2);
  1597   pass_arg1(this, arg_1);
  1598   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1601 void MacroAssembler::super_call_VM(Register oop_result,
  1602                                    Register last_java_sp,
  1603                                    address entry_point,
  1604                                    Register arg_1,
  1605                                    Register arg_2,
  1606                                    Register arg_3,
  1607                                    bool check_exceptions) {
  1608   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1609   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1610   pass_arg3(this, arg_3);
  1611   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1612   pass_arg2(this, arg_2);
  1613   pass_arg1(this, arg_1);
  1614   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1617 void MacroAssembler::call_VM_base(Register oop_result,
  1618                                   Register java_thread,
  1619                                   Register last_java_sp,
  1620                                   address  entry_point,
  1621                                   int      number_of_arguments,
  1622                                   bool     check_exceptions) {
  1623   // determine java_thread register
  1624   if (!java_thread->is_valid()) {
  1625 #ifdef _LP64
  1626     java_thread = r15_thread;
  1627 #else
  1628     java_thread = rdi;
  1629     get_thread(java_thread);
  1630 #endif // LP64
  1632   // determine last_java_sp register
  1633   if (!last_java_sp->is_valid()) {
  1634     last_java_sp = rsp;
  1636   // debugging support
  1637   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1638   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  1639 #ifdef ASSERT
  1640   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  1641   // r12 is the heapbase.
  1642   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  1643 #endif // ASSERT
  1645   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1646   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1648   // push java thread (becomes first argument of C function)
  1650   NOT_LP64(push(java_thread); number_of_arguments++);
  1651   LP64_ONLY(mov(c_rarg0, r15_thread));
  1653   // set last Java frame before call
  1654   assert(last_java_sp != rbp, "can't use ebp/rbp");
  1656   // Only interpreter should have to set fp
  1657   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  1659   // do the call, remove parameters
  1660   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  1662   // restore the thread (cannot use the pushed argument since arguments
  1663   // may be overwritten by C code generated by an optimizing compiler);
  1664   // however can use the register value directly if it is callee saved.
  1665   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  1666     // rdi & rsi (also r15) are callee saved -> nothing to do
  1667 #ifdef ASSERT
  1668     guarantee(java_thread != rax, "change this code");
  1669     push(rax);
  1670     { Label L;
  1671       get_thread(rax);
  1672       cmpptr(java_thread, rax);
  1673       jcc(Assembler::equal, L);
  1674       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  1675       bind(L);
  1677     pop(rax);
  1678 #endif
  1679   } else {
  1680     get_thread(java_thread);
  1682   // reset last Java frame
  1683   // Only interpreter should have to clear fp
  1684   reset_last_Java_frame(java_thread, true, false);
  1686 #ifndef CC_INTERP
  1687    // C++ interp handles this in the interpreter
  1688   check_and_handle_popframe(java_thread);
  1689   check_and_handle_earlyret(java_thread);
  1690 #endif /* CC_INTERP */
  1692   if (check_exceptions) {
  1693     // check for pending exceptions (java_thread is set upon return)
  1694     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1695 #ifndef _LP64
  1696     jump_cc(Assembler::notEqual,
  1697             RuntimeAddress(StubRoutines::forward_exception_entry()));
  1698 #else
  1699     // This used to conditionally jump to forward_exception however it is
  1700     // possible if we relocate that the branch will not reach. So we must jump
  1701     // around so we can always reach
  1703     Label ok;
  1704     jcc(Assembler::equal, ok);
  1705     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1706     bind(ok);
  1707 #endif // LP64
  1710   // get oop result if there is one and reset the value in the thread
  1711   if (oop_result->is_valid()) {
  1712     get_vm_result(oop_result, java_thread);
  1716 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1718   // Calculate the value for last_Java_sp
  1719   // somewhat subtle. call_VM does an intermediate call
  1720   // which places a return address on the stack just under the
  1721   // stack pointer as the user finsihed with it. This allows
  1722   // use to retrieve last_Java_pc from last_Java_sp[-1].
  1723   // On 32bit we then have to push additional args on the stack to accomplish
  1724   // the actual requested call. On 64bit call_VM only can use register args
  1725   // so the only extra space is the return address that call_VM created.
  1726   // This hopefully explains the calculations here.
  1728 #ifdef _LP64
  1729   // We've pushed one address, correct last_Java_sp
  1730   lea(rax, Address(rsp, wordSize));
  1731 #else
  1732   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  1733 #endif // LP64
  1735   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  1739 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1740   call_VM_leaf_base(entry_point, number_of_arguments);
  1743 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1744   pass_arg0(this, arg_0);
  1745   call_VM_leaf(entry_point, 1);
  1748 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1750   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1751   pass_arg1(this, arg_1);
  1752   pass_arg0(this, arg_0);
  1753   call_VM_leaf(entry_point, 2);
  1756 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1757   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1758   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1759   pass_arg2(this, arg_2);
  1760   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1761   pass_arg1(this, arg_1);
  1762   pass_arg0(this, arg_0);
  1763   call_VM_leaf(entry_point, 3);
  1766 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  1767   pass_arg0(this, arg_0);
  1768   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1771 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1773   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1774   pass_arg1(this, arg_1);
  1775   pass_arg0(this, arg_0);
  1776   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1779 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1780   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1781   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1782   pass_arg2(this, arg_2);
  1783   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1784   pass_arg1(this, arg_1);
  1785   pass_arg0(this, arg_0);
  1786   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1789 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  1790   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  1791   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1792   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1793   pass_arg3(this, arg_3);
  1794   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1795   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1796   pass_arg2(this, arg_2);
  1797   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1798   pass_arg1(this, arg_1);
  1799   pass_arg0(this, arg_0);
  1800   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  1803 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  1804   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  1805   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  1806   verify_oop(oop_result, "broken oop in call_VM_base");
  1809 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  1810   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  1811   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  1814 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1817 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1820 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  1821   if (reachable(src1)) {
  1822     cmpl(as_Address(src1), imm);
  1823   } else {
  1824     lea(rscratch1, src1);
  1825     cmpl(Address(rscratch1, 0), imm);
  1829 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  1830   assert(!src2.is_lval(), "use cmpptr");
  1831   if (reachable(src2)) {
  1832     cmpl(src1, as_Address(src2));
  1833   } else {
  1834     lea(rscratch1, src2);
  1835     cmpl(src1, Address(rscratch1, 0));
  1839 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  1840   Assembler::cmpl(src1, imm);
  1843 void MacroAssembler::cmp32(Register src1, Address src2) {
  1844   Assembler::cmpl(src1, src2);
  1847 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1848   ucomisd(opr1, opr2);
  1850   Label L;
  1851   if (unordered_is_less) {
  1852     movl(dst, -1);
  1853     jcc(Assembler::parity, L);
  1854     jcc(Assembler::below , L);
  1855     movl(dst, 0);
  1856     jcc(Assembler::equal , L);
  1857     increment(dst);
  1858   } else { // unordered is greater
  1859     movl(dst, 1);
  1860     jcc(Assembler::parity, L);
  1861     jcc(Assembler::above , L);
  1862     movl(dst, 0);
  1863     jcc(Assembler::equal , L);
  1864     decrementl(dst);
  1866   bind(L);
  1869 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1870   ucomiss(opr1, opr2);
  1872   Label L;
  1873   if (unordered_is_less) {
  1874     movl(dst, -1);
  1875     jcc(Assembler::parity, L);
  1876     jcc(Assembler::below , L);
  1877     movl(dst, 0);
  1878     jcc(Assembler::equal , L);
  1879     increment(dst);
  1880   } else { // unordered is greater
  1881     movl(dst, 1);
  1882     jcc(Assembler::parity, L);
  1883     jcc(Assembler::above , L);
  1884     movl(dst, 0);
  1885     jcc(Assembler::equal , L);
  1886     decrementl(dst);
  1888   bind(L);
  1892 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  1893   if (reachable(src1)) {
  1894     cmpb(as_Address(src1), imm);
  1895   } else {
  1896     lea(rscratch1, src1);
  1897     cmpb(Address(rscratch1, 0), imm);
  1901 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  1902 #ifdef _LP64
  1903   if (src2.is_lval()) {
  1904     movptr(rscratch1, src2);
  1905     Assembler::cmpq(src1, rscratch1);
  1906   } else if (reachable(src2)) {
  1907     cmpq(src1, as_Address(src2));
  1908   } else {
  1909     lea(rscratch1, src2);
  1910     Assembler::cmpq(src1, Address(rscratch1, 0));
  1912 #else
  1913   if (src2.is_lval()) {
  1914     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1915   } else {
  1916     cmpl(src1, as_Address(src2));
  1918 #endif // _LP64
  1921 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  1922   assert(src2.is_lval(), "not a mem-mem compare");
  1923 #ifdef _LP64
  1924   // moves src2's literal address
  1925   movptr(rscratch1, src2);
  1926   Assembler::cmpq(src1, rscratch1);
  1927 #else
  1928   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1929 #endif // _LP64
  1932 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  1933   if (reachable(adr)) {
  1934     if (os::is_MP())
  1935       lock();
  1936     cmpxchgptr(reg, as_Address(adr));
  1937   } else {
  1938     lea(rscratch1, adr);
  1939     if (os::is_MP())
  1940       lock();
  1941     cmpxchgptr(reg, Address(rscratch1, 0));
  1945 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  1946   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  1949 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  1950   if (reachable(src)) {
  1951     Assembler::comisd(dst, as_Address(src));
  1952   } else {
  1953     lea(rscratch1, src);
  1954     Assembler::comisd(dst, Address(rscratch1, 0));
  1958 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  1959   if (reachable(src)) {
  1960     Assembler::comiss(dst, as_Address(src));
  1961   } else {
  1962     lea(rscratch1, src);
  1963     Assembler::comiss(dst, Address(rscratch1, 0));
  1968 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  1969   Condition negated_cond = negate_condition(cond);
  1970   Label L;
  1971   jcc(negated_cond, L);
  1972   atomic_incl(counter_addr);
  1973   bind(L);
  1976 int MacroAssembler::corrected_idivl(Register reg) {
  1977   // Full implementation of Java idiv and irem; checks for
  1978   // special case as described in JVM spec., p.243 & p.271.
  1979   // The function returns the (pc) offset of the idivl
  1980   // instruction - may be needed for implicit exceptions.
  1981   //
  1982   //         normal case                           special case
  1983   //
  1984   // input : rax,: dividend                         min_int
  1985   //         reg: divisor   (may not be rax,/rdx)   -1
  1986   //
  1987   // output: rax,: quotient  (= rax, idiv reg)       min_int
  1988   //         rdx: remainder (= rax, irem reg)       0
  1989   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  1990   const int min_int = 0x80000000;
  1991   Label normal_case, special_case;
  1993   // check for special case
  1994   cmpl(rax, min_int);
  1995   jcc(Assembler::notEqual, normal_case);
  1996   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  1997   cmpl(reg, -1);
  1998   jcc(Assembler::equal, special_case);
  2000   // handle normal case
  2001   bind(normal_case);
  2002   cdql();
  2003   int idivl_offset = offset();
  2004   idivl(reg);
  2006   // normal and special case exit
  2007   bind(special_case);
  2009   return idivl_offset;
  2014 void MacroAssembler::decrementl(Register reg, int value) {
  2015   if (value == min_jint) {subl(reg, value) ; return; }
  2016   if (value <  0) { incrementl(reg, -value); return; }
  2017   if (value == 0) {                        ; return; }
  2018   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2019   /* else */      { subl(reg, value)       ; return; }
  2022 void MacroAssembler::decrementl(Address dst, int value) {
  2023   if (value == min_jint) {subl(dst, value) ; return; }
  2024   if (value <  0) { incrementl(dst, -value); return; }
  2025   if (value == 0) {                        ; return; }
  2026   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2027   /* else */      { subl(dst, value)       ; return; }
  2030 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2031   assert (shift_value > 0, "illegal shift value");
  2032   Label _is_positive;
  2033   testl (reg, reg);
  2034   jcc (Assembler::positive, _is_positive);
  2035   int offset = (1 << shift_value) - 1 ;
  2037   if (offset == 1) {
  2038     incrementl(reg);
  2039   } else {
  2040     addl(reg, offset);
  2043   bind (_is_positive);
  2044   sarl(reg, shift_value);
  2047 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2048   if (reachable(src)) {
  2049     Assembler::divsd(dst, as_Address(src));
  2050   } else {
  2051     lea(rscratch1, src);
  2052     Assembler::divsd(dst, Address(rscratch1, 0));
  2056 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2057   if (reachable(src)) {
  2058     Assembler::divss(dst, as_Address(src));
  2059   } else {
  2060     lea(rscratch1, src);
  2061     Assembler::divss(dst, Address(rscratch1, 0));
  2065 // !defined(COMPILER2) is because of stupid core builds
  2066 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2067 void MacroAssembler::empty_FPU_stack() {
  2068   if (VM_Version::supports_mmx()) {
  2069     emms();
  2070   } else {
  2071     for (int i = 8; i-- > 0; ) ffree(i);
  2074 #endif // !LP64 || C1 || !C2
  2077 // Defines obj, preserves var_size_in_bytes
  2078 void MacroAssembler::eden_allocate(Register obj,
  2079                                    Register var_size_in_bytes,
  2080                                    int con_size_in_bytes,
  2081                                    Register t1,
  2082                                    Label& slow_case) {
  2083   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2084   assert_different_registers(obj, var_size_in_bytes, t1);
  2085   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2086     jmp(slow_case);
  2087   } else {
  2088     Register end = t1;
  2089     Label retry;
  2090     bind(retry);
  2091     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2092     movptr(obj, heap_top);
  2093     if (var_size_in_bytes == noreg) {
  2094       lea(end, Address(obj, con_size_in_bytes));
  2095     } else {
  2096       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2098     // if end < obj then we wrapped around => object too long => slow case
  2099     cmpptr(end, obj);
  2100     jcc(Assembler::below, slow_case);
  2101     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2102     jcc(Assembler::above, slow_case);
  2103     // Compare obj with the top addr, and if still equal, store the new top addr in
  2104     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2105     // it otherwise. Use lock prefix for atomicity on MPs.
  2106     locked_cmpxchgptr(end, heap_top);
  2107     jcc(Assembler::notEqual, retry);
  2111 void MacroAssembler::enter() {
  2112   push(rbp);
  2113   mov(rbp, rsp);
  2116 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2117 void MacroAssembler::fat_nop() {
  2118   if (UseAddressNop) {
  2119     addr_nop_5();
  2120   } else {
  2121     emit_int8(0x26); // es:
  2122     emit_int8(0x2e); // cs:
  2123     emit_int8(0x64); // fs:
  2124     emit_int8(0x65); // gs:
  2125     emit_int8((unsigned char)0x90);
  2129 void MacroAssembler::fcmp(Register tmp) {
  2130   fcmp(tmp, 1, true, true);
  2133 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  2134   assert(!pop_right || pop_left, "usage error");
  2135   if (VM_Version::supports_cmov()) {
  2136     assert(tmp == noreg, "unneeded temp");
  2137     if (pop_left) {
  2138       fucomip(index);
  2139     } else {
  2140       fucomi(index);
  2142     if (pop_right) {
  2143       fpop();
  2145   } else {
  2146     assert(tmp != noreg, "need temp");
  2147     if (pop_left) {
  2148       if (pop_right) {
  2149         fcompp();
  2150       } else {
  2151         fcomp(index);
  2153     } else {
  2154       fcom(index);
  2156     // convert FPU condition into eflags condition via rax,
  2157     save_rax(tmp);
  2158     fwait(); fnstsw_ax();
  2159     sahf();
  2160     restore_rax(tmp);
  2162   // condition codes set as follows:
  2163   //
  2164   // CF (corresponds to C0) if x < y
  2165   // PF (corresponds to C2) if unordered
  2166   // ZF (corresponds to C3) if x = y
  2169 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  2170   fcmp2int(dst, unordered_is_less, 1, true, true);
  2173 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  2174   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  2175   Label L;
  2176   if (unordered_is_less) {
  2177     movl(dst, -1);
  2178     jcc(Assembler::parity, L);
  2179     jcc(Assembler::below , L);
  2180     movl(dst, 0);
  2181     jcc(Assembler::equal , L);
  2182     increment(dst);
  2183   } else { // unordered is greater
  2184     movl(dst, 1);
  2185     jcc(Assembler::parity, L);
  2186     jcc(Assembler::above , L);
  2187     movl(dst, 0);
  2188     jcc(Assembler::equal , L);
  2189     decrementl(dst);
  2191   bind(L);
  2194 void MacroAssembler::fld_d(AddressLiteral src) {
  2195   fld_d(as_Address(src));
  2198 void MacroAssembler::fld_s(AddressLiteral src) {
  2199   fld_s(as_Address(src));
  2202 void MacroAssembler::fld_x(AddressLiteral src) {
  2203   Assembler::fld_x(as_Address(src));
  2206 void MacroAssembler::fldcw(AddressLiteral src) {
  2207   Assembler::fldcw(as_Address(src));
  2210 void MacroAssembler::pow_exp_core_encoding() {
  2211   // kills rax, rcx, rdx
  2212   subptr(rsp,sizeof(jdouble));
  2213   // computes 2^X. Stack: X ...
  2214   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  2215   // keep it on the thread's stack to compute 2^int(X) later
  2216   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  2217   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  2218   fld_s(0);                 // Stack: X X ...
  2219   frndint();                // Stack: int(X) X ...
  2220   fsuba(1);                 // Stack: int(X) X-int(X) ...
  2221   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  2222   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  2223   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  2224   faddp(1);                 // Stack: 2^(X-int(X))
  2225   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  2226   // shift int(X)+1023 to exponent position.
  2227   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  2228   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  2229   // values so detect them and set result to NaN.
  2230   movl(rax,Address(rsp,0));
  2231   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  2232   addl(rax, 1023);
  2233   movl(rdx,rax);
  2234   shll(rax,20);
  2235   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  2236   addl(rdx,1);
  2237   // Check that 1 < int(X)+1023+1 < 2048
  2238   // in 3 steps:
  2239   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  2240   // 2- (int(X)+1023+1)&-2048 != 0
  2241   // 3- (int(X)+1023+1)&-2048 != 1
  2242   // Do 2- first because addl just updated the flags.
  2243   cmov32(Assembler::equal,rax,rcx);
  2244   cmpl(rdx,1);
  2245   cmov32(Assembler::equal,rax,rcx);
  2246   testl(rdx,rcx);
  2247   cmov32(Assembler::notEqual,rax,rcx);
  2248   movl(Address(rsp,4),rax);
  2249   movl(Address(rsp,0),0);
  2250   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  2251   addptr(rsp,sizeof(jdouble));
  2254 void MacroAssembler::increase_precision() {
  2255   subptr(rsp, BytesPerWord);
  2256   fnstcw(Address(rsp, 0));
  2257   movl(rax, Address(rsp, 0));
  2258   orl(rax, 0x300);
  2259   push(rax);
  2260   fldcw(Address(rsp, 0));
  2261   pop(rax);
  2264 void MacroAssembler::restore_precision() {
  2265   fldcw(Address(rsp, 0));
  2266   addptr(rsp, BytesPerWord);
  2269 void MacroAssembler::fast_pow() {
  2270   // computes X^Y = 2^(Y * log2(X))
  2271   // if fast computation is not possible, result is NaN. Requires
  2272   // fallback from user of this macro.
  2273   // increase precision for intermediate steps of the computation
  2274   increase_precision();
  2275   fyl2x();                 // Stack: (Y*log2(X)) ...
  2276   pow_exp_core_encoding(); // Stack: exp(X) ...
  2277   restore_precision();
  2280 void MacroAssembler::fast_exp() {
  2281   // computes exp(X) = 2^(X * log2(e))
  2282   // if fast computation is not possible, result is NaN. Requires
  2283   // fallback from user of this macro.
  2284   // increase precision for intermediate steps of the computation
  2285   increase_precision();
  2286   fldl2e();                // Stack: log2(e) X ...
  2287   fmulp(1);                // Stack: (X*log2(e)) ...
  2288   pow_exp_core_encoding(); // Stack: exp(X) ...
  2289   restore_precision();
  2292 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  2293   // kills rax, rcx, rdx
  2294   // pow and exp needs 2 extra registers on the fpu stack.
  2295   Label slow_case, done;
  2296   Register tmp = noreg;
  2297   if (!VM_Version::supports_cmov()) {
  2298     // fcmp needs a temporary so preserve rdx,
  2299     tmp = rdx;
  2301   Register tmp2 = rax;
  2302   Register tmp3 = rcx;
  2304   if (is_exp) {
  2305     // Stack: X
  2306     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  2307     fast_exp();                 // Stack: exp(X) X
  2308     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  2309     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  2310     jcc(Assembler::parity, slow_case);
  2311     // get rid of duplicate argument. Stack: exp(X)
  2312     if (num_fpu_regs_in_use > 0) {
  2313       fxch();
  2314       fpop();
  2315     } else {
  2316       ffree(1);
  2318     jmp(done);
  2319   } else {
  2320     // Stack: X Y
  2321     Label x_negative, y_odd;
  2323     fldz();                     // Stack: 0 X Y
  2324     fcmp(tmp, 1, true, false);  // Stack: X Y
  2325     jcc(Assembler::above, x_negative);
  2327     // X >= 0
  2329     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2330     fld_s(1);                   // Stack: X Y X Y
  2331     fast_pow();                 // Stack: X^Y X Y
  2332     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  2333     // X^Y not equal to itself: X^Y is NaN go to slow case.
  2334     jcc(Assembler::parity, slow_case);
  2335     // get rid of duplicate arguments. Stack: X^Y
  2336     if (num_fpu_regs_in_use > 0) {
  2337       fxch(); fpop();
  2338       fxch(); fpop();
  2339     } else {
  2340       ffree(2);
  2341       ffree(1);
  2343     jmp(done);
  2345     // X <= 0
  2346     bind(x_negative);
  2348     fld_s(1);                   // Stack: Y X Y
  2349     frndint();                  // Stack: int(Y) X Y
  2350     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  2351     jcc(Assembler::notEqual, slow_case);
  2353     subptr(rsp, 8);
  2355     // For X^Y, when X < 0, Y has to be an integer and the final
  2356     // result depends on whether it's odd or even. We just checked
  2357     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  2358     // integer to test its parity. If int(Y) is huge and doesn't fit
  2359     // in the 64 bit integer range, the integer indefinite value will
  2360     // end up in the gp registers. Huge numbers are all even, the
  2361     // integer indefinite number is even so it's fine.
  2363 #ifdef ASSERT
  2364     // Let's check we don't end up with an integer indefinite number
  2365     // when not expected. First test for huge numbers: check whether
  2366     // int(Y)+1 == int(Y) which is true for very large numbers and
  2367     // those are all even. A 64 bit integer is guaranteed to not
  2368     // overflow for numbers where y+1 != y (when precision is set to
  2369     // double precision).
  2370     Label y_not_huge;
  2372     fld1();                     // Stack: 1 int(Y) X Y
  2373     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  2375 #ifdef _LP64
  2376     // trip to memory to force the precision down from double extended
  2377     // precision
  2378     fstp_d(Address(rsp, 0));
  2379     fld_d(Address(rsp, 0));
  2380 #endif
  2382     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  2383 #endif
  2385     // move int(Y) as 64 bit integer to thread's stack
  2386     fistp_d(Address(rsp,0));    // Stack: X Y
  2388 #ifdef ASSERT
  2389     jcc(Assembler::notEqual, y_not_huge);
  2391     // Y is huge so we know it's even. It may not fit in a 64 bit
  2392     // integer and we don't want the debug code below to see the
  2393     // integer indefinite value so overwrite int(Y) on the thread's
  2394     // stack with 0.
  2395     movl(Address(rsp, 0), 0);
  2396     movl(Address(rsp, 4), 0);
  2398     bind(y_not_huge);
  2399 #endif
  2401     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2402     fld_s(1);                   // Stack: X Y X Y
  2403     fabs();                     // Stack: abs(X) Y X Y
  2404     fast_pow();                 // Stack: abs(X)^Y X Y
  2405     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  2406     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  2408     pop(tmp2);
  2409     NOT_LP64(pop(tmp3));
  2410     jcc(Assembler::parity, slow_case);
  2412 #ifdef ASSERT
  2413     // Check that int(Y) is not integer indefinite value (int
  2414     // overflow). Shouldn't happen because for values that would
  2415     // overflow, 1+int(Y)==Y which was tested earlier.
  2416 #ifndef _LP64
  2418       Label integer;
  2419       testl(tmp2, tmp2);
  2420       jcc(Assembler::notZero, integer);
  2421       cmpl(tmp3, 0x80000000);
  2422       jcc(Assembler::notZero, integer);
  2423       STOP("integer indefinite value shouldn't be seen here");
  2424       bind(integer);
  2426 #else
  2428       Label integer;
  2429       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  2430       shlq(tmp3, 1);
  2431       jcc(Assembler::carryClear, integer);
  2432       jcc(Assembler::notZero, integer);
  2433       STOP("integer indefinite value shouldn't be seen here");
  2434       bind(integer);
  2436 #endif
  2437 #endif
  2439     // get rid of duplicate arguments. Stack: X^Y
  2440     if (num_fpu_regs_in_use > 0) {
  2441       fxch(); fpop();
  2442       fxch(); fpop();
  2443     } else {
  2444       ffree(2);
  2445       ffree(1);
  2448     testl(tmp2, 1);
  2449     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  2450     // X <= 0, Y even: X^Y = -abs(X)^Y
  2452     fchs();                     // Stack: -abs(X)^Y Y
  2453     jmp(done);
  2456   // slow case: runtime call
  2457   bind(slow_case);
  2459   fpop();                       // pop incorrect result or int(Y)
  2461   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  2462                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  2464   // Come here with result in F-TOS
  2465   bind(done);
  2468 void MacroAssembler::fpop() {
  2469   ffree();
  2470   fincstp();
  2473 void MacroAssembler::fremr(Register tmp) {
  2474   save_rax(tmp);
  2475   { Label L;
  2476     bind(L);
  2477     fprem();
  2478     fwait(); fnstsw_ax();
  2479 #ifdef _LP64
  2480     testl(rax, 0x400);
  2481     jcc(Assembler::notEqual, L);
  2482 #else
  2483     sahf();
  2484     jcc(Assembler::parity, L);
  2485 #endif // _LP64
  2487   restore_rax(tmp);
  2488   // Result is in ST0.
  2489   // Note: fxch & fpop to get rid of ST1
  2490   // (otherwise FPU stack could overflow eventually)
  2491   fxch(1);
  2492   fpop();
  2496 void MacroAssembler::incrementl(AddressLiteral dst) {
  2497   if (reachable(dst)) {
  2498     incrementl(as_Address(dst));
  2499   } else {
  2500     lea(rscratch1, dst);
  2501     incrementl(Address(rscratch1, 0));
  2505 void MacroAssembler::incrementl(ArrayAddress dst) {
  2506   incrementl(as_Address(dst));
  2509 void MacroAssembler::incrementl(Register reg, int value) {
  2510   if (value == min_jint) {addl(reg, value) ; return; }
  2511   if (value <  0) { decrementl(reg, -value); return; }
  2512   if (value == 0) {                        ; return; }
  2513   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  2514   /* else */      { addl(reg, value)       ; return; }
  2517 void MacroAssembler::incrementl(Address dst, int value) {
  2518   if (value == min_jint) {addl(dst, value) ; return; }
  2519   if (value <  0) { decrementl(dst, -value); return; }
  2520   if (value == 0) {                        ; return; }
  2521   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  2522   /* else */      { addl(dst, value)       ; return; }
  2525 void MacroAssembler::jump(AddressLiteral dst) {
  2526   if (reachable(dst)) {
  2527     jmp_literal(dst.target(), dst.rspec());
  2528   } else {
  2529     lea(rscratch1, dst);
  2530     jmp(rscratch1);
  2534 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  2535   if (reachable(dst)) {
  2536     InstructionMark im(this);
  2537     relocate(dst.reloc());
  2538     const int short_size = 2;
  2539     const int long_size = 6;
  2540     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  2541     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  2542       // 0111 tttn #8-bit disp
  2543       emit_int8(0x70 | cc);
  2544       emit_int8((offs - short_size) & 0xFF);
  2545     } else {
  2546       // 0000 1111 1000 tttn #32-bit disp
  2547       emit_int8(0x0F);
  2548       emit_int8((unsigned char)(0x80 | cc));
  2549       emit_int32(offs - long_size);
  2551   } else {
  2552 #ifdef ASSERT
  2553     warning("reversing conditional branch");
  2554 #endif /* ASSERT */
  2555     Label skip;
  2556     jccb(reverse[cc], skip);
  2557     lea(rscratch1, dst);
  2558     Assembler::jmp(rscratch1);
  2559     bind(skip);
  2563 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  2564   if (reachable(src)) {
  2565     Assembler::ldmxcsr(as_Address(src));
  2566   } else {
  2567     lea(rscratch1, src);
  2568     Assembler::ldmxcsr(Address(rscratch1, 0));
  2572 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  2573   int off;
  2574   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2575     off = offset();
  2576     movsbl(dst, src); // movsxb
  2577   } else {
  2578     off = load_unsigned_byte(dst, src);
  2579     shll(dst, 24);
  2580     sarl(dst, 24);
  2582   return off;
  2585 // Note: load_signed_short used to be called load_signed_word.
  2586 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  2587 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  2588 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  2589 int MacroAssembler::load_signed_short(Register dst, Address src) {
  2590   int off;
  2591   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2592     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  2593     // version but this is what 64bit has always done. This seems to imply
  2594     // that users are only using 32bits worth.
  2595     off = offset();
  2596     movswl(dst, src); // movsxw
  2597   } else {
  2598     off = load_unsigned_short(dst, src);
  2599     shll(dst, 16);
  2600     sarl(dst, 16);
  2602   return off;
  2605 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  2606   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2607   // and "3.9 Partial Register Penalties", p. 22).
  2608   int off;
  2609   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  2610     off = offset();
  2611     movzbl(dst, src); // movzxb
  2612   } else {
  2613     xorl(dst, dst);
  2614     off = offset();
  2615     movb(dst, src);
  2617   return off;
  2620 // Note: load_unsigned_short used to be called load_unsigned_word.
  2621 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  2622   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2623   // and "3.9 Partial Register Penalties", p. 22).
  2624   int off;
  2625   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  2626     off = offset();
  2627     movzwl(dst, src); // movzxw
  2628   } else {
  2629     xorl(dst, dst);
  2630     off = offset();
  2631     movw(dst, src);
  2633   return off;
  2636 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  2637   switch (size_in_bytes) {
  2638 #ifndef _LP64
  2639   case  8:
  2640     assert(dst2 != noreg, "second dest register required");
  2641     movl(dst,  src);
  2642     movl(dst2, src.plus_disp(BytesPerInt));
  2643     break;
  2644 #else
  2645   case  8:  movq(dst, src); break;
  2646 #endif
  2647   case  4:  movl(dst, src); break;
  2648   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  2649   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  2650   default:  ShouldNotReachHere();
  2654 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  2655   switch (size_in_bytes) {
  2656 #ifndef _LP64
  2657   case  8:
  2658     assert(src2 != noreg, "second source register required");
  2659     movl(dst,                        src);
  2660     movl(dst.plus_disp(BytesPerInt), src2);
  2661     break;
  2662 #else
  2663   case  8:  movq(dst, src); break;
  2664 #endif
  2665   case  4:  movl(dst, src); break;
  2666   case  2:  movw(dst, src); break;
  2667   case  1:  movb(dst, src); break;
  2668   default:  ShouldNotReachHere();
  2672 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  2673   if (reachable(dst)) {
  2674     movl(as_Address(dst), src);
  2675   } else {
  2676     lea(rscratch1, dst);
  2677     movl(Address(rscratch1, 0), src);
  2681 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  2682   if (reachable(src)) {
  2683     movl(dst, as_Address(src));
  2684   } else {
  2685     lea(rscratch1, src);
  2686     movl(dst, Address(rscratch1, 0));
  2690 // C++ bool manipulation
  2692 void MacroAssembler::movbool(Register dst, Address src) {
  2693   if(sizeof(bool) == 1)
  2694     movb(dst, src);
  2695   else if(sizeof(bool) == 2)
  2696     movw(dst, src);
  2697   else if(sizeof(bool) == 4)
  2698     movl(dst, src);
  2699   else
  2700     // unsupported
  2701     ShouldNotReachHere();
  2704 void MacroAssembler::movbool(Address dst, bool boolconst) {
  2705   if(sizeof(bool) == 1)
  2706     movb(dst, (int) boolconst);
  2707   else if(sizeof(bool) == 2)
  2708     movw(dst, (int) boolconst);
  2709   else if(sizeof(bool) == 4)
  2710     movl(dst, (int) boolconst);
  2711   else
  2712     // unsupported
  2713     ShouldNotReachHere();
  2716 void MacroAssembler::movbool(Address dst, Register src) {
  2717   if(sizeof(bool) == 1)
  2718     movb(dst, src);
  2719   else if(sizeof(bool) == 2)
  2720     movw(dst, src);
  2721   else if(sizeof(bool) == 4)
  2722     movl(dst, src);
  2723   else
  2724     // unsupported
  2725     ShouldNotReachHere();
  2728 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  2729   movb(as_Address(dst), src);
  2732 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  2733   if (reachable(src)) {
  2734     movdl(dst, as_Address(src));
  2735   } else {
  2736     lea(rscratch1, src);
  2737     movdl(dst, Address(rscratch1, 0));
  2741 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  2742   if (reachable(src)) {
  2743     movq(dst, as_Address(src));
  2744   } else {
  2745     lea(rscratch1, src);
  2746     movq(dst, Address(rscratch1, 0));
  2750 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  2751   if (reachable(src)) {
  2752     if (UseXmmLoadAndClearUpper) {
  2753       movsd (dst, as_Address(src));
  2754     } else {
  2755       movlpd(dst, as_Address(src));
  2757   } else {
  2758     lea(rscratch1, src);
  2759     if (UseXmmLoadAndClearUpper) {
  2760       movsd (dst, Address(rscratch1, 0));
  2761     } else {
  2762       movlpd(dst, Address(rscratch1, 0));
  2767 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  2768   if (reachable(src)) {
  2769     movss(dst, as_Address(src));
  2770   } else {
  2771     lea(rscratch1, src);
  2772     movss(dst, Address(rscratch1, 0));
  2776 void MacroAssembler::movptr(Register dst, Register src) {
  2777   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2780 void MacroAssembler::movptr(Register dst, Address src) {
  2781   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2784 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  2785 void MacroAssembler::movptr(Register dst, intptr_t src) {
  2786   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  2789 void MacroAssembler::movptr(Address dst, Register src) {
  2790   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2793 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  2794   if (reachable(src)) {
  2795     Assembler::movdqu(dst, as_Address(src));
  2796   } else {
  2797     lea(rscratch1, src);
  2798     Assembler::movdqu(dst, Address(rscratch1, 0));
  2802 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  2803   if (reachable(src)) {
  2804     Assembler::movdqa(dst, as_Address(src));
  2805   } else {
  2806     lea(rscratch1, src);
  2807     Assembler::movdqa(dst, Address(rscratch1, 0));
  2811 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  2812   if (reachable(src)) {
  2813     Assembler::movsd(dst, as_Address(src));
  2814   } else {
  2815     lea(rscratch1, src);
  2816     Assembler::movsd(dst, Address(rscratch1, 0));
  2820 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  2821   if (reachable(src)) {
  2822     Assembler::movss(dst, as_Address(src));
  2823   } else {
  2824     lea(rscratch1, src);
  2825     Assembler::movss(dst, Address(rscratch1, 0));
  2829 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  2830   if (reachable(src)) {
  2831     Assembler::mulsd(dst, as_Address(src));
  2832   } else {
  2833     lea(rscratch1, src);
  2834     Assembler::mulsd(dst, Address(rscratch1, 0));
  2838 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  2839   if (reachable(src)) {
  2840     Assembler::mulss(dst, as_Address(src));
  2841   } else {
  2842     lea(rscratch1, src);
  2843     Assembler::mulss(dst, Address(rscratch1, 0));
  2847 void MacroAssembler::null_check(Register reg, int offset) {
  2848   if (needs_explicit_null_check(offset)) {
  2849     // provoke OS NULL exception if reg = NULL by
  2850     // accessing M[reg] w/o changing any (non-CC) registers
  2851     // NOTE: cmpl is plenty here to provoke a segv
  2852     cmpptr(rax, Address(reg, 0));
  2853     // Note: should probably use testl(rax, Address(reg, 0));
  2854     //       may be shorter code (however, this version of
  2855     //       testl needs to be implemented first)
  2856   } else {
  2857     // nothing to do, (later) access of M[reg + offset]
  2858     // will provoke OS NULL exception if reg = NULL
  2862 void MacroAssembler::os_breakpoint() {
  2863   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  2864   // (e.g., MSVC can't call ps() otherwise)
  2865   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  2868 void MacroAssembler::pop_CPU_state() {
  2869   pop_FPU_state();
  2870   pop_IU_state();
  2873 void MacroAssembler::pop_FPU_state() {
  2874   NOT_LP64(frstor(Address(rsp, 0));)
  2875   LP64_ONLY(fxrstor(Address(rsp, 0));)
  2876   addptr(rsp, FPUStateSizeInWords * wordSize);
  2879 void MacroAssembler::pop_IU_state() {
  2880   popa();
  2881   LP64_ONLY(addq(rsp, 8));
  2882   popf();
  2885 // Save Integer and Float state
  2886 // Warning: Stack must be 16 byte aligned (64bit)
  2887 void MacroAssembler::push_CPU_state() {
  2888   push_IU_state();
  2889   push_FPU_state();
  2892 void MacroAssembler::push_FPU_state() {
  2893   subptr(rsp, FPUStateSizeInWords * wordSize);
  2894 #ifndef _LP64
  2895   fnsave(Address(rsp, 0));
  2896   fwait();
  2897 #else
  2898   fxsave(Address(rsp, 0));
  2899 #endif // LP64
  2902 void MacroAssembler::push_IU_state() {
  2903   // Push flags first because pusha kills them
  2904   pushf();
  2905   // Make sure rsp stays 16-byte aligned
  2906   LP64_ONLY(subq(rsp, 8));
  2907   pusha();
  2910 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  2911   // determine java_thread register
  2912   if (!java_thread->is_valid()) {
  2913     java_thread = rdi;
  2914     get_thread(java_thread);
  2916   // we must set sp to zero to clear frame
  2917   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  2918   if (clear_fp) {
  2919     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  2922   if (clear_pc)
  2923     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  2927 void MacroAssembler::restore_rax(Register tmp) {
  2928   if (tmp == noreg) pop(rax);
  2929   else if (tmp != rax) mov(rax, tmp);
  2932 void MacroAssembler::round_to(Register reg, int modulus) {
  2933   addptr(reg, modulus - 1);
  2934   andptr(reg, -modulus);
  2937 void MacroAssembler::save_rax(Register tmp) {
  2938   if (tmp == noreg) push(rax);
  2939   else if (tmp != rax) mov(tmp, rax);
  2942 // Write serialization page so VM thread can do a pseudo remote membar.
  2943 // We use the current thread pointer to calculate a thread specific
  2944 // offset to write to within the page. This minimizes bus traffic
  2945 // due to cache line collision.
  2946 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  2947   movl(tmp, thread);
  2948   shrl(tmp, os::get_serialize_page_shift_count());
  2949   andl(tmp, (os::vm_page_size() - sizeof(int)));
  2951   Address index(noreg, tmp, Address::times_1);
  2952   ExternalAddress page(os::get_memory_serialize_page());
  2954   // Size of store must match masking code above
  2955   movl(as_Address(ArrayAddress(page, index)), tmp);
  2958 // Calls to C land
  2959 //
  2960 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  2961 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  2962 // has to be reset to 0. This is required to allow proper stack traversal.
  2963 void MacroAssembler::set_last_Java_frame(Register java_thread,
  2964                                          Register last_java_sp,
  2965                                          Register last_java_fp,
  2966                                          address  last_java_pc) {
  2967   // determine java_thread register
  2968   if (!java_thread->is_valid()) {
  2969     java_thread = rdi;
  2970     get_thread(java_thread);
  2972   // determine last_java_sp register
  2973   if (!last_java_sp->is_valid()) {
  2974     last_java_sp = rsp;
  2977   // last_java_fp is optional
  2979   if (last_java_fp->is_valid()) {
  2980     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  2983   // last_java_pc is optional
  2985   if (last_java_pc != NULL) {
  2986     lea(Address(java_thread,
  2987                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  2988         InternalAddress(last_java_pc));
  2991   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  2994 void MacroAssembler::shlptr(Register dst, int imm8) {
  2995   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  2998 void MacroAssembler::shrptr(Register dst, int imm8) {
  2999   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  3002 void MacroAssembler::sign_extend_byte(Register reg) {
  3003   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  3004     movsbl(reg, reg); // movsxb
  3005   } else {
  3006     shll(reg, 24);
  3007     sarl(reg, 24);
  3011 void MacroAssembler::sign_extend_short(Register reg) {
  3012   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3013     movswl(reg, reg); // movsxw
  3014   } else {
  3015     shll(reg, 16);
  3016     sarl(reg, 16);
  3020 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3021   assert(reachable(src), "Address should be reachable");
  3022   testl(dst, as_Address(src));
  3025 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3026   if (reachable(src)) {
  3027     Assembler::sqrtsd(dst, as_Address(src));
  3028   } else {
  3029     lea(rscratch1, src);
  3030     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3034 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3035   if (reachable(src)) {
  3036     Assembler::sqrtss(dst, as_Address(src));
  3037   } else {
  3038     lea(rscratch1, src);
  3039     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3043 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3044   if (reachable(src)) {
  3045     Assembler::subsd(dst, as_Address(src));
  3046   } else {
  3047     lea(rscratch1, src);
  3048     Assembler::subsd(dst, Address(rscratch1, 0));
  3052 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3053   if (reachable(src)) {
  3054     Assembler::subss(dst, as_Address(src));
  3055   } else {
  3056     lea(rscratch1, src);
  3057     Assembler::subss(dst, Address(rscratch1, 0));
  3061 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3062   if (reachable(src)) {
  3063     Assembler::ucomisd(dst, as_Address(src));
  3064   } else {
  3065     lea(rscratch1, src);
  3066     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3070 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3071   if (reachable(src)) {
  3072     Assembler::ucomiss(dst, as_Address(src));
  3073   } else {
  3074     lea(rscratch1, src);
  3075     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3079 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3080   // Used in sign-bit flipping with aligned address.
  3081   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3082   if (reachable(src)) {
  3083     Assembler::xorpd(dst, as_Address(src));
  3084   } else {
  3085     lea(rscratch1, src);
  3086     Assembler::xorpd(dst, Address(rscratch1, 0));
  3090 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3091   // Used in sign-bit flipping with aligned address.
  3092   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3093   if (reachable(src)) {
  3094     Assembler::xorps(dst, as_Address(src));
  3095   } else {
  3096     lea(rscratch1, src);
  3097     Assembler::xorps(dst, Address(rscratch1, 0));
  3101 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3102   // Used in sign-bit flipping with aligned address.
  3103   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  3104   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  3105   if (reachable(src)) {
  3106     Assembler::pshufb(dst, as_Address(src));
  3107   } else {
  3108     lea(rscratch1, src);
  3109     Assembler::pshufb(dst, Address(rscratch1, 0));
  3113 // AVX 3-operands instructions
  3115 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3116   if (reachable(src)) {
  3117     vaddsd(dst, nds, as_Address(src));
  3118   } else {
  3119     lea(rscratch1, src);
  3120     vaddsd(dst, nds, Address(rscratch1, 0));
  3124 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3125   if (reachable(src)) {
  3126     vaddss(dst, nds, as_Address(src));
  3127   } else {
  3128     lea(rscratch1, src);
  3129     vaddss(dst, nds, Address(rscratch1, 0));
  3133 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3134   if (reachable(src)) {
  3135     vandpd(dst, nds, as_Address(src), vector256);
  3136   } else {
  3137     lea(rscratch1, src);
  3138     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  3142 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3143   if (reachable(src)) {
  3144     vandps(dst, nds, as_Address(src), vector256);
  3145   } else {
  3146     lea(rscratch1, src);
  3147     vandps(dst, nds, Address(rscratch1, 0), vector256);
  3151 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3152   if (reachable(src)) {
  3153     vdivsd(dst, nds, as_Address(src));
  3154   } else {
  3155     lea(rscratch1, src);
  3156     vdivsd(dst, nds, Address(rscratch1, 0));
  3160 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3161   if (reachable(src)) {
  3162     vdivss(dst, nds, as_Address(src));
  3163   } else {
  3164     lea(rscratch1, src);
  3165     vdivss(dst, nds, Address(rscratch1, 0));
  3169 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3170   if (reachable(src)) {
  3171     vmulsd(dst, nds, as_Address(src));
  3172   } else {
  3173     lea(rscratch1, src);
  3174     vmulsd(dst, nds, Address(rscratch1, 0));
  3178 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3179   if (reachable(src)) {
  3180     vmulss(dst, nds, as_Address(src));
  3181   } else {
  3182     lea(rscratch1, src);
  3183     vmulss(dst, nds, Address(rscratch1, 0));
  3187 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3188   if (reachable(src)) {
  3189     vsubsd(dst, nds, as_Address(src));
  3190   } else {
  3191     lea(rscratch1, src);
  3192     vsubsd(dst, nds, Address(rscratch1, 0));
  3196 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3197   if (reachable(src)) {
  3198     vsubss(dst, nds, as_Address(src));
  3199   } else {
  3200     lea(rscratch1, src);
  3201     vsubss(dst, nds, Address(rscratch1, 0));
  3205 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3206   if (reachable(src)) {
  3207     vxorpd(dst, nds, as_Address(src), vector256);
  3208   } else {
  3209     lea(rscratch1, src);
  3210     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  3214 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3215   if (reachable(src)) {
  3216     vxorps(dst, nds, as_Address(src), vector256);
  3217   } else {
  3218     lea(rscratch1, src);
  3219     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  3224 //////////////////////////////////////////////////////////////////////////////////
  3225 #if INCLUDE_ALL_GCS
  3227 void MacroAssembler::g1_write_barrier_pre(Register obj,
  3228                                           Register pre_val,
  3229                                           Register thread,
  3230                                           Register tmp,
  3231                                           bool tosca_live,
  3232                                           bool expand_call) {
  3234   // If expand_call is true then we expand the call_VM_leaf macro
  3235   // directly to skip generating the check by
  3236   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  3238 #ifdef _LP64
  3239   assert(thread == r15_thread, "must be");
  3240 #endif // _LP64
  3242   Label done;
  3243   Label runtime;
  3245   assert(pre_val != noreg, "check this code");
  3247   if (obj != noreg) {
  3248     assert_different_registers(obj, pre_val, tmp);
  3249     assert(pre_val != rax, "check this code");
  3252   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3253                                        PtrQueue::byte_offset_of_active()));
  3254   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3255                                        PtrQueue::byte_offset_of_index()));
  3256   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3257                                        PtrQueue::byte_offset_of_buf()));
  3260   // Is marking active?
  3261   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3262     cmpl(in_progress, 0);
  3263   } else {
  3264     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  3265     cmpb(in_progress, 0);
  3267   jcc(Assembler::equal, done);
  3269   // Do we need to load the previous value?
  3270   if (obj != noreg) {
  3271     load_heap_oop(pre_val, Address(obj, 0));
  3274   // Is the previous value null?
  3275   cmpptr(pre_val, (int32_t) NULL_WORD);
  3276   jcc(Assembler::equal, done);
  3278   // Can we store original value in the thread's buffer?
  3279   // Is index == 0?
  3280   // (The index field is typed as size_t.)
  3282   movptr(tmp, index);                   // tmp := *index_adr
  3283   cmpptr(tmp, 0);                       // tmp == 0?
  3284   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  3286   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  3287   movptr(index, tmp);                   // *index_adr := tmp
  3288   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  3290   // Record the previous value
  3291   movptr(Address(tmp, 0), pre_val);
  3292   jmp(done);
  3294   bind(runtime);
  3295   // save the live input values
  3296   if(tosca_live) push(rax);
  3298   if (obj != noreg && obj != rax)
  3299     push(obj);
  3301   if (pre_val != rax)
  3302     push(pre_val);
  3304   // Calling the runtime using the regular call_VM_leaf mechanism generates
  3305   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  3306   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  3307   //
  3308   // If we care generating the pre-barrier without a frame (e.g. in the
  3309   // intrinsified Reference.get() routine) then ebp might be pointing to
  3310   // the caller frame and so this check will most likely fail at runtime.
  3311   //
  3312   // Expanding the call directly bypasses the generation of the check.
  3313   // So when we do not have have a full interpreter frame on the stack
  3314   // expand_call should be passed true.
  3316   NOT_LP64( push(thread); )
  3318   if (expand_call) {
  3319     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  3320     pass_arg1(this, thread);
  3321     pass_arg0(this, pre_val);
  3322     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  3323   } else {
  3324     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  3327   NOT_LP64( pop(thread); )
  3329   // save the live input values
  3330   if (pre_val != rax)
  3331     pop(pre_val);
  3333   if (obj != noreg && obj != rax)
  3334     pop(obj);
  3336   if(tosca_live) pop(rax);
  3338   bind(done);
  3341 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  3342                                            Register new_val,
  3343                                            Register thread,
  3344                                            Register tmp,
  3345                                            Register tmp2) {
  3346 #ifdef _LP64
  3347   assert(thread == r15_thread, "must be");
  3348 #endif // _LP64
  3350   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3351                                        PtrQueue::byte_offset_of_index()));
  3352   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3353                                        PtrQueue::byte_offset_of_buf()));
  3355   BarrierSet* bs = Universe::heap()->barrier_set();
  3356   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3357   Label done;
  3358   Label runtime;
  3360   // Does store cross heap regions?
  3362   movptr(tmp, store_addr);
  3363   xorptr(tmp, new_val);
  3364   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  3365   jcc(Assembler::equal, done);
  3367   // crosses regions, storing NULL?
  3369   cmpptr(new_val, (int32_t) NULL_WORD);
  3370   jcc(Assembler::equal, done);
  3372   // storing region crossing non-NULL, is card already dirty?
  3374   ExternalAddress cardtable((address) ct->byte_map_base);
  3375   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3376 #ifdef _LP64
  3377   const Register card_addr = tmp;
  3379   movq(card_addr, store_addr);
  3380   shrq(card_addr, CardTableModRefBS::card_shift);
  3382   lea(tmp2, cardtable);
  3384   // get the address of the card
  3385   addq(card_addr, tmp2);
  3386 #else
  3387   const Register card_index = tmp;
  3389   movl(card_index, store_addr);
  3390   shrl(card_index, CardTableModRefBS::card_shift);
  3392   Address index(noreg, card_index, Address::times_1);
  3393   const Register card_addr = tmp;
  3394   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  3395 #endif
  3396   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  3397   jcc(Assembler::equal, done);
  3399   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3400   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  3401   jcc(Assembler::equal, done);
  3404   // storing a region crossing, non-NULL oop, card is clean.
  3405   // dirty card and log.
  3407   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  3409   cmpl(queue_index, 0);
  3410   jcc(Assembler::equal, runtime);
  3411   subl(queue_index, wordSize);
  3412   movptr(tmp2, buffer);
  3413 #ifdef _LP64
  3414   movslq(rscratch1, queue_index);
  3415   addq(tmp2, rscratch1);
  3416   movq(Address(tmp2, 0), card_addr);
  3417 #else
  3418   addl(tmp2, queue_index);
  3419   movl(Address(tmp2, 0), card_index);
  3420 #endif
  3421   jmp(done);
  3423   bind(runtime);
  3424   // save the live input values
  3425   push(store_addr);
  3426   push(new_val);
  3427 #ifdef _LP64
  3428   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  3429 #else
  3430   push(thread);
  3431   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  3432   pop(thread);
  3433 #endif
  3434   pop(new_val);
  3435   pop(store_addr);
  3437   bind(done);
  3440 #endif // INCLUDE_ALL_GCS
  3441 //////////////////////////////////////////////////////////////////////////////////
  3444 void MacroAssembler::store_check(Register obj) {
  3445   // Does a store check for the oop in register obj. The content of
  3446   // register obj is destroyed afterwards.
  3447   store_check_part_1(obj);
  3448   store_check_part_2(obj);
  3451 void MacroAssembler::store_check(Register obj, Address dst) {
  3452   store_check(obj);
  3456 // split the store check operation so that other instructions can be scheduled inbetween
  3457 void MacroAssembler::store_check_part_1(Register obj) {
  3458   BarrierSet* bs = Universe::heap()->barrier_set();
  3459   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3460   shrptr(obj, CardTableModRefBS::card_shift);
  3463 void MacroAssembler::store_check_part_2(Register obj) {
  3464   BarrierSet* bs = Universe::heap()->barrier_set();
  3465   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3466   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3467   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3469   // The calculation for byte_map_base is as follows:
  3470   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  3471   // So this essentially converts an address to a displacement and
  3472   // it will never need to be relocated. On 64bit however the value may be too
  3473   // large for a 32bit displacement
  3475   intptr_t disp = (intptr_t) ct->byte_map_base;
  3476   if (is_simm32(disp)) {
  3477     Address cardtable(noreg, obj, Address::times_1, disp);
  3478     movb(cardtable, 0);
  3479   } else {
  3480     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  3481     // displacement and done in a single instruction given favorable mapping and
  3482     // a smarter version of as_Address. Worst case it is two instructions which
  3483     // is no worse off then loading disp into a register and doing as a simple
  3484     // Address() as above.
  3485     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  3486     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  3487     // in some cases we'll get a single instruction version.
  3489     ExternalAddress cardtable((address)disp);
  3490     Address index(noreg, obj, Address::times_1);
  3491     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  3495 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  3496   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  3499 // Force generation of a 4 byte immediate value even if it fits into 8bit
  3500 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  3501   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  3504 void MacroAssembler::subptr(Register dst, Register src) {
  3505   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  3508 // C++ bool manipulation
  3509 void MacroAssembler::testbool(Register dst) {
  3510   if(sizeof(bool) == 1)
  3511     testb(dst, 0xff);
  3512   else if(sizeof(bool) == 2) {
  3513     // testw implementation needed for two byte bools
  3514     ShouldNotReachHere();
  3515   } else if(sizeof(bool) == 4)
  3516     testl(dst, dst);
  3517   else
  3518     // unsupported
  3519     ShouldNotReachHere();
  3522 void MacroAssembler::testptr(Register dst, Register src) {
  3523   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  3526 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  3527 void MacroAssembler::tlab_allocate(Register obj,
  3528                                    Register var_size_in_bytes,
  3529                                    int con_size_in_bytes,
  3530                                    Register t1,
  3531                                    Register t2,
  3532                                    Label& slow_case) {
  3533   assert_different_registers(obj, t1, t2);
  3534   assert_different_registers(obj, var_size_in_bytes, t1);
  3535   Register end = t2;
  3536   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  3538   verify_tlab();
  3540   NOT_LP64(get_thread(thread));
  3542   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  3543   if (var_size_in_bytes == noreg) {
  3544     lea(end, Address(obj, con_size_in_bytes));
  3545   } else {
  3546     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  3548   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  3549   jcc(Assembler::above, slow_case);
  3551   // update the tlab top pointer
  3552   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  3554   // recover var_size_in_bytes if necessary
  3555   if (var_size_in_bytes == end) {
  3556     subptr(var_size_in_bytes, obj);
  3558   verify_tlab();
  3561 // Preserves rbx, and rdx.
  3562 Register MacroAssembler::tlab_refill(Label& retry,
  3563                                      Label& try_eden,
  3564                                      Label& slow_case) {
  3565   Register top = rax;
  3566   Register t1  = rcx;
  3567   Register t2  = rsi;
  3568   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  3569   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  3570   Label do_refill, discard_tlab;
  3572   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3573     // No allocation in the shared eden.
  3574     jmp(slow_case);
  3577   NOT_LP64(get_thread(thread_reg));
  3579   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  3580   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  3582   // calculate amount of free space
  3583   subptr(t1, top);
  3584   shrptr(t1, LogHeapWordSize);
  3586   // Retain tlab and allocate object in shared space if
  3587   // the amount free in the tlab is too large to discard.
  3588   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  3589   jcc(Assembler::lessEqual, discard_tlab);
  3591   // Retain
  3592   // %%% yuck as movptr...
  3593   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  3594   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  3595   if (TLABStats) {
  3596     // increment number of slow_allocations
  3597     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  3599   jmp(try_eden);
  3601   bind(discard_tlab);
  3602   if (TLABStats) {
  3603     // increment number of refills
  3604     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  3605     // accumulate wastage -- t1 is amount free in tlab
  3606     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  3609   // if tlab is currently allocated (top or end != null) then
  3610   // fill [top, end + alignment_reserve) with array object
  3611   testptr(top, top);
  3612   jcc(Assembler::zero, do_refill);
  3614   // set up the mark word
  3615   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  3616   // set the length to the remaining space
  3617   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  3618   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  3619   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  3620   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  3621   // set klass to intArrayKlass
  3622   // dubious reloc why not an oop reloc?
  3623   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  3624   // store klass last.  concurrent gcs assumes klass length is valid if
  3625   // klass field is not null.
  3626   store_klass(top, t1);
  3628   movptr(t1, top);
  3629   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  3630   incr_allocated_bytes(thread_reg, t1, 0);
  3632   // refill the tlab with an eden allocation
  3633   bind(do_refill);
  3634   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3635   shlptr(t1, LogHeapWordSize);
  3636   // allocate new tlab, address returned in top
  3637   eden_allocate(top, t1, 0, t2, slow_case);
  3639   // Check that t1 was preserved in eden_allocate.
  3640 #ifdef ASSERT
  3641   if (UseTLAB) {
  3642     Label ok;
  3643     Register tsize = rsi;
  3644     assert_different_registers(tsize, thread_reg, t1);
  3645     push(tsize);
  3646     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3647     shlptr(tsize, LogHeapWordSize);
  3648     cmpptr(t1, tsize);
  3649     jcc(Assembler::equal, ok);
  3650     STOP("assert(t1 != tlab size)");
  3651     should_not_reach_here();
  3653     bind(ok);
  3654     pop(tsize);
  3656 #endif
  3657   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  3658   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  3659   addptr(top, t1);
  3660   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  3661   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  3662   verify_tlab();
  3663   jmp(retry);
  3665   return thread_reg; // for use by caller
  3668 void MacroAssembler::incr_allocated_bytes(Register thread,
  3669                                           Register var_size_in_bytes,
  3670                                           int con_size_in_bytes,
  3671                                           Register t1) {
  3672   if (!thread->is_valid()) {
  3673 #ifdef _LP64
  3674     thread = r15_thread;
  3675 #else
  3676     assert(t1->is_valid(), "need temp reg");
  3677     thread = t1;
  3678     get_thread(thread);
  3679 #endif
  3682 #ifdef _LP64
  3683   if (var_size_in_bytes->is_valid()) {
  3684     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3685   } else {
  3686     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3688 #else
  3689   if (var_size_in_bytes->is_valid()) {
  3690     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3691   } else {
  3692     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3694   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  3695 #endif
  3698 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  3699   pusha();
  3701   // if we are coming from c1, xmm registers may be live
  3702   int off = 0;
  3703   if (UseSSE == 1)  {
  3704     subptr(rsp, sizeof(jdouble)*8);
  3705     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  3706     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  3707     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  3708     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  3709     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  3710     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  3711     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  3712     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  3713   } else if (UseSSE >= 2)  {
  3714 #ifdef COMPILER2
  3715     if (MaxVectorSize > 16) {
  3716       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  3717       // Save upper half of YMM registes
  3718       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3719       vextractf128h(Address(rsp,  0),xmm0);
  3720       vextractf128h(Address(rsp, 16),xmm1);
  3721       vextractf128h(Address(rsp, 32),xmm2);
  3722       vextractf128h(Address(rsp, 48),xmm3);
  3723       vextractf128h(Address(rsp, 64),xmm4);
  3724       vextractf128h(Address(rsp, 80),xmm5);
  3725       vextractf128h(Address(rsp, 96),xmm6);
  3726       vextractf128h(Address(rsp,112),xmm7);
  3727 #ifdef _LP64
  3728       vextractf128h(Address(rsp,128),xmm8);
  3729       vextractf128h(Address(rsp,144),xmm9);
  3730       vextractf128h(Address(rsp,160),xmm10);
  3731       vextractf128h(Address(rsp,176),xmm11);
  3732       vextractf128h(Address(rsp,192),xmm12);
  3733       vextractf128h(Address(rsp,208),xmm13);
  3734       vextractf128h(Address(rsp,224),xmm14);
  3735       vextractf128h(Address(rsp,240),xmm15);
  3736 #endif
  3738 #endif
  3739     // Save whole 128bit (16 bytes) XMM regiters
  3740     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3741     movdqu(Address(rsp,off++*16),xmm0);
  3742     movdqu(Address(rsp,off++*16),xmm1);
  3743     movdqu(Address(rsp,off++*16),xmm2);
  3744     movdqu(Address(rsp,off++*16),xmm3);
  3745     movdqu(Address(rsp,off++*16),xmm4);
  3746     movdqu(Address(rsp,off++*16),xmm5);
  3747     movdqu(Address(rsp,off++*16),xmm6);
  3748     movdqu(Address(rsp,off++*16),xmm7);
  3749 #ifdef _LP64
  3750     movdqu(Address(rsp,off++*16),xmm8);
  3751     movdqu(Address(rsp,off++*16),xmm9);
  3752     movdqu(Address(rsp,off++*16),xmm10);
  3753     movdqu(Address(rsp,off++*16),xmm11);
  3754     movdqu(Address(rsp,off++*16),xmm12);
  3755     movdqu(Address(rsp,off++*16),xmm13);
  3756     movdqu(Address(rsp,off++*16),xmm14);
  3757     movdqu(Address(rsp,off++*16),xmm15);
  3758 #endif
  3761   // Preserve registers across runtime call
  3762   int incoming_argument_and_return_value_offset = -1;
  3763   if (num_fpu_regs_in_use > 1) {
  3764     // Must preserve all other FPU regs (could alternatively convert
  3765     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  3766     // FPU state, but can not trust C compiler)
  3767     NEEDS_CLEANUP;
  3768     // NOTE that in this case we also push the incoming argument(s) to
  3769     // the stack and restore it later; we also use this stack slot to
  3770     // hold the return value from dsin, dcos etc.
  3771     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  3772       subptr(rsp, sizeof(jdouble));
  3773       fstp_d(Address(rsp, 0));
  3775     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  3776     for (int i = nb_args-1; i >= 0; i--) {
  3777       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  3781   subptr(rsp, nb_args*sizeof(jdouble));
  3782   for (int i = 0; i < nb_args; i++) {
  3783     fstp_d(Address(rsp, i*sizeof(jdouble)));
  3786 #ifdef _LP64
  3787   if (nb_args > 0) {
  3788     movdbl(xmm0, Address(rsp, 0));
  3790   if (nb_args > 1) {
  3791     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  3793   assert(nb_args <= 2, "unsupported number of args");
  3794 #endif // _LP64
  3796   // NOTE: we must not use call_VM_leaf here because that requires a
  3797   // complete interpreter frame in debug mode -- same bug as 4387334
  3798   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  3799   // do proper 64bit abi
  3801   NEEDS_CLEANUP;
  3802   // Need to add stack banging before this runtime call if it needs to
  3803   // be taken; however, there is no generic stack banging routine at
  3804   // the MacroAssembler level
  3806   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  3808 #ifdef _LP64
  3809   movsd(Address(rsp, 0), xmm0);
  3810   fld_d(Address(rsp, 0));
  3811 #endif // _LP64
  3812   addptr(rsp, sizeof(jdouble) * nb_args);
  3813   if (num_fpu_regs_in_use > 1) {
  3814     // Must save return value to stack and then restore entire FPU
  3815     // stack except incoming arguments
  3816     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  3817     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  3818       fld_d(Address(rsp, 0));
  3819       addptr(rsp, sizeof(jdouble));
  3821     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  3822     addptr(rsp, sizeof(jdouble) * nb_args);
  3825   off = 0;
  3826   if (UseSSE == 1)  {
  3827     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  3828     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  3829     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  3830     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  3831     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  3832     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  3833     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  3834     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  3835     addptr(rsp, sizeof(jdouble)*8);
  3836   } else if (UseSSE >= 2)  {
  3837     // Restore whole 128bit (16 bytes) XMM regiters
  3838     movdqu(xmm0, Address(rsp,off++*16));
  3839     movdqu(xmm1, Address(rsp,off++*16));
  3840     movdqu(xmm2, Address(rsp,off++*16));
  3841     movdqu(xmm3, Address(rsp,off++*16));
  3842     movdqu(xmm4, Address(rsp,off++*16));
  3843     movdqu(xmm5, Address(rsp,off++*16));
  3844     movdqu(xmm6, Address(rsp,off++*16));
  3845     movdqu(xmm7, Address(rsp,off++*16));
  3846 #ifdef _LP64
  3847     movdqu(xmm8, Address(rsp,off++*16));
  3848     movdqu(xmm9, Address(rsp,off++*16));
  3849     movdqu(xmm10, Address(rsp,off++*16));
  3850     movdqu(xmm11, Address(rsp,off++*16));
  3851     movdqu(xmm12, Address(rsp,off++*16));
  3852     movdqu(xmm13, Address(rsp,off++*16));
  3853     movdqu(xmm14, Address(rsp,off++*16));
  3854     movdqu(xmm15, Address(rsp,off++*16));
  3855 #endif
  3856     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3857 #ifdef COMPILER2
  3858     if (MaxVectorSize > 16) {
  3859       // Restore upper half of YMM registes.
  3860       vinsertf128h(xmm0, Address(rsp,  0));
  3861       vinsertf128h(xmm1, Address(rsp, 16));
  3862       vinsertf128h(xmm2, Address(rsp, 32));
  3863       vinsertf128h(xmm3, Address(rsp, 48));
  3864       vinsertf128h(xmm4, Address(rsp, 64));
  3865       vinsertf128h(xmm5, Address(rsp, 80));
  3866       vinsertf128h(xmm6, Address(rsp, 96));
  3867       vinsertf128h(xmm7, Address(rsp,112));
  3868 #ifdef _LP64
  3869       vinsertf128h(xmm8, Address(rsp,128));
  3870       vinsertf128h(xmm9, Address(rsp,144));
  3871       vinsertf128h(xmm10, Address(rsp,160));
  3872       vinsertf128h(xmm11, Address(rsp,176));
  3873       vinsertf128h(xmm12, Address(rsp,192));
  3874       vinsertf128h(xmm13, Address(rsp,208));
  3875       vinsertf128h(xmm14, Address(rsp,224));
  3876       vinsertf128h(xmm15, Address(rsp,240));
  3877 #endif
  3878       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3880 #endif
  3882   popa();
  3885 static const double     pi_4 =  0.7853981633974483;
  3887 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  3888   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  3889   // was attempted in this code; unfortunately it appears that the
  3890   // switch to 80-bit precision and back causes this to be
  3891   // unprofitable compared with simply performing a runtime call if
  3892   // the argument is out of the (-pi/4, pi/4) range.
  3894   Register tmp = noreg;
  3895   if (!VM_Version::supports_cmov()) {
  3896     // fcmp needs a temporary so preserve rbx,
  3897     tmp = rbx;
  3898     push(tmp);
  3901   Label slow_case, done;
  3903   ExternalAddress pi4_adr = (address)&pi_4;
  3904   if (reachable(pi4_adr)) {
  3905     // x ?<= pi/4
  3906     fld_d(pi4_adr);
  3907     fld_s(1);                // Stack:  X  PI/4  X
  3908     fabs();                  // Stack: |X| PI/4  X
  3909     fcmp(tmp);
  3910     jcc(Assembler::above, slow_case);
  3912     // fastest case: -pi/4 <= x <= pi/4
  3913     switch(trig) {
  3914     case 's':
  3915       fsin();
  3916       break;
  3917     case 'c':
  3918       fcos();
  3919       break;
  3920     case 't':
  3921       ftan();
  3922       break;
  3923     default:
  3924       assert(false, "bad intrinsic");
  3925       break;
  3927     jmp(done);
  3930   // slow case: runtime call
  3931   bind(slow_case);
  3933   switch(trig) {
  3934   case 's':
  3936       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  3938     break;
  3939   case 'c':
  3941       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  3943     break;
  3944   case 't':
  3946       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  3948     break;
  3949   default:
  3950     assert(false, "bad intrinsic");
  3951     break;
  3954   // Come here with result in F-TOS
  3955   bind(done);
  3957   if (tmp != noreg) {
  3958     pop(tmp);
  3963 // Look up the method for a megamorphic invokeinterface call.
  3964 // The target method is determined by <intf_klass, itable_index>.
  3965 // The receiver klass is in recv_klass.
  3966 // On success, the result will be in method_result, and execution falls through.
  3967 // On failure, execution transfers to the given label.
  3968 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3969                                              Register intf_klass,
  3970                                              RegisterOrConstant itable_index,
  3971                                              Register method_result,
  3972                                              Register scan_temp,
  3973                                              Label& L_no_such_interface) {
  3974   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3975   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3976          "caller must use same register for non-constant itable index as for method");
  3978   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3979   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3980   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3981   int scan_step   = itableOffsetEntry::size() * wordSize;
  3982   int vte_size    = vtableEntry::size() * wordSize;
  3983   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3984   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3986   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3988   // %%% Could store the aligned, prescaled offset in the klassoop.
  3989   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  3990   if (HeapWordsPerLong > 1) {
  3991     // Round up to align_object_offset boundary
  3992     // see code for InstanceKlass::start_of_itable!
  3993     round_to(scan_temp, BytesPerLong);
  3996   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3997   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3998   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  4000   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  4001   //   if (scan->interface() == intf) {
  4002   //     result = (klass + scan->offset() + itable_index);
  4003   //   }
  4004   // }
  4005   Label search, found_method;
  4007   for (int peel = 1; peel >= 0; peel--) {
  4008     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4009     cmpptr(intf_klass, method_result);
  4011     if (peel) {
  4012       jccb(Assembler::equal, found_method);
  4013     } else {
  4014       jccb(Assembler::notEqual, search);
  4015       // (invert the test to fall through to found_method...)
  4018     if (!peel)  break;
  4020     bind(search);
  4022     // Check that the previous entry is non-null.  A null entry means that
  4023     // the receiver class doesn't implement the interface, and wasn't the
  4024     // same as when the caller was compiled.
  4025     testptr(method_result, method_result);
  4026     jcc(Assembler::zero, L_no_such_interface);
  4027     addptr(scan_temp, scan_step);
  4030   bind(found_method);
  4032   // Got a hit.
  4033   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4034   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4038 // virtual method calling
  4039 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4040                                            RegisterOrConstant vtable_index,
  4041                                            Register method_result) {
  4042   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4043   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4044   Address vtable_entry_addr(recv_klass,
  4045                             vtable_index, Address::times_ptr,
  4046                             base + vtableEntry::method_offset_in_bytes());
  4047   movptr(method_result, vtable_entry_addr);
  4051 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4052                            Register super_klass,
  4053                            Register temp_reg,
  4054                            Label& L_success) {
  4055   Label L_failure;
  4056   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4057   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4058   bind(L_failure);
  4062 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4063                                                    Register super_klass,
  4064                                                    Register temp_reg,
  4065                                                    Label* L_success,
  4066                                                    Label* L_failure,
  4067                                                    Label* L_slow_path,
  4068                                         RegisterOrConstant super_check_offset) {
  4069   assert_different_registers(sub_klass, super_klass, temp_reg);
  4070   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4071   if (super_check_offset.is_register()) {
  4072     assert_different_registers(sub_klass, super_klass,
  4073                                super_check_offset.as_register());
  4074   } else if (must_load_sco) {
  4075     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4078   Label L_fallthrough;
  4079   int label_nulls = 0;
  4080   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4081   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4082   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4083   assert(label_nulls <= 1, "at most one NULL in the batch");
  4085   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4086   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4087   Address super_check_offset_addr(super_klass, sco_offset);
  4089   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4090   // range of a jccb.  If this routine grows larger, reconsider at
  4091   // least some of these.
  4092 #define local_jcc(assembler_cond, label)                                \
  4093   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4094   else                             jcc( assembler_cond, label) /*omit semi*/
  4096   // Hacked jmp, which may only be used just before L_fallthrough.
  4097 #define final_jmp(label)                                                \
  4098   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4099   else                            jmp(label)                /*omit semi*/
  4101   // If the pointers are equal, we are done (e.g., String[] elements).
  4102   // This self-check enables sharing of secondary supertype arrays among
  4103   // non-primary types such as array-of-interface.  Otherwise, each such
  4104   // type would need its own customized SSA.
  4105   // We move this check to the front of the fast path because many
  4106   // type checks are in fact trivially successful in this manner,
  4107   // so we get a nicely predicted branch right at the start of the check.
  4108   cmpptr(sub_klass, super_klass);
  4109   local_jcc(Assembler::equal, *L_success);
  4111   // Check the supertype display:
  4112   if (must_load_sco) {
  4113     // Positive movl does right thing on LP64.
  4114     movl(temp_reg, super_check_offset_addr);
  4115     super_check_offset = RegisterOrConstant(temp_reg);
  4117   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4118   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4120   // This check has worked decisively for primary supers.
  4121   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4122   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4123   // This works in the same check above because of a tricky aliasing
  4124   // between the super_cache and the primary super display elements.
  4125   // (The 'super_check_addr' can address either, as the case requires.)
  4126   // Note that the cache is updated below if it does not help us find
  4127   // what we need immediately.
  4128   // So if it was a primary super, we can just fail immediately.
  4129   // Otherwise, it's the slow path for us (no success at this point).
  4131   if (super_check_offset.is_register()) {
  4132     local_jcc(Assembler::equal, *L_success);
  4133     cmpl(super_check_offset.as_register(), sc_offset);
  4134     if (L_failure == &L_fallthrough) {
  4135       local_jcc(Assembler::equal, *L_slow_path);
  4136     } else {
  4137       local_jcc(Assembler::notEqual, *L_failure);
  4138       final_jmp(*L_slow_path);
  4140   } else if (super_check_offset.as_constant() == sc_offset) {
  4141     // Need a slow path; fast failure is impossible.
  4142     if (L_slow_path == &L_fallthrough) {
  4143       local_jcc(Assembler::equal, *L_success);
  4144     } else {
  4145       local_jcc(Assembler::notEqual, *L_slow_path);
  4146       final_jmp(*L_success);
  4148   } else {
  4149     // No slow path; it's a fast decision.
  4150     if (L_failure == &L_fallthrough) {
  4151       local_jcc(Assembler::equal, *L_success);
  4152     } else {
  4153       local_jcc(Assembler::notEqual, *L_failure);
  4154       final_jmp(*L_success);
  4158   bind(L_fallthrough);
  4160 #undef local_jcc
  4161 #undef final_jmp
  4165 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  4166                                                    Register super_klass,
  4167                                                    Register temp_reg,
  4168                                                    Register temp2_reg,
  4169                                                    Label* L_success,
  4170                                                    Label* L_failure,
  4171                                                    bool set_cond_codes) {
  4172   assert_different_registers(sub_klass, super_klass, temp_reg);
  4173   if (temp2_reg != noreg)
  4174     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  4175 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  4177   Label L_fallthrough;
  4178   int label_nulls = 0;
  4179   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4180   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4181   assert(label_nulls <= 1, "at most one NULL in the batch");
  4183   // a couple of useful fields in sub_klass:
  4184   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  4185   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4186   Address secondary_supers_addr(sub_klass, ss_offset);
  4187   Address super_cache_addr(     sub_klass, sc_offset);
  4189   // Do a linear scan of the secondary super-klass chain.
  4190   // This code is rarely used, so simplicity is a virtue here.
  4191   // The repne_scan instruction uses fixed registers, which we must spill.
  4192   // Don't worry too much about pre-existing connections with the input regs.
  4194   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  4195   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  4197   // Get super_klass value into rax (even if it was in rdi or rcx).
  4198   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  4199   if (super_klass != rax || UseCompressedOops) {
  4200     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  4201     mov(rax, super_klass);
  4203   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  4204   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  4206 #ifndef PRODUCT
  4207   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  4208   ExternalAddress pst_counter_addr((address) pst_counter);
  4209   NOT_LP64(  incrementl(pst_counter_addr) );
  4210   LP64_ONLY( lea(rcx, pst_counter_addr) );
  4211   LP64_ONLY( incrementl(Address(rcx, 0)) );
  4212 #endif //PRODUCT
  4214   // We will consult the secondary-super array.
  4215   movptr(rdi, secondary_supers_addr);
  4216   // Load the array length.  (Positive movl does right thing on LP64.)
  4217   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  4218   // Skip to start of data.
  4219   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  4221   // Scan RCX words at [RDI] for an occurrence of RAX.
  4222   // Set NZ/Z based on last compare.
  4223   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  4224   // not change flags (only scas instruction which is repeated sets flags).
  4225   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  4227     testptr(rax,rax); // Set Z = 0
  4228     repne_scan();
  4230   // Unspill the temp. registers:
  4231   if (pushed_rdi)  pop(rdi);
  4232   if (pushed_rcx)  pop(rcx);
  4233   if (pushed_rax)  pop(rax);
  4235   if (set_cond_codes) {
  4236     // Special hack for the AD files:  rdi is guaranteed non-zero.
  4237     assert(!pushed_rdi, "rdi must be left non-NULL");
  4238     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  4241   if (L_failure == &L_fallthrough)
  4242         jccb(Assembler::notEqual, *L_failure);
  4243   else  jcc(Assembler::notEqual, *L_failure);
  4245   // Success.  Cache the super we found and proceed in triumph.
  4246   movptr(super_cache_addr, super_klass);
  4248   if (L_success != &L_fallthrough) {
  4249     jmp(*L_success);
  4252 #undef IS_A_TEMP
  4254   bind(L_fallthrough);
  4258 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  4259   if (VM_Version::supports_cmov()) {
  4260     cmovl(cc, dst, src);
  4261   } else {
  4262     Label L;
  4263     jccb(negate_condition(cc), L);
  4264     movl(dst, src);
  4265     bind(L);
  4269 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  4270   if (VM_Version::supports_cmov()) {
  4271     cmovl(cc, dst, src);
  4272   } else {
  4273     Label L;
  4274     jccb(negate_condition(cc), L);
  4275     movl(dst, src);
  4276     bind(L);
  4280 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4281   if (!VerifyOops) return;
  4283   // Pass register number to verify_oop_subroutine
  4284   const char* b = NULL;
  4286     ResourceMark rm;
  4287     stringStream ss;
  4288     ss.print("verify_oop: %s: %s", reg->name(), s);
  4289     b = code_string(ss.as_string());
  4291   BLOCK_COMMENT("verify_oop {");
  4292 #ifdef _LP64
  4293   push(rscratch1);                    // save r10, trashed by movptr()
  4294 #endif
  4295   push(rax);                          // save rax,
  4296   push(reg);                          // pass register argument
  4297   ExternalAddress buffer((address) b);
  4298   // avoid using pushptr, as it modifies scratch registers
  4299   // and our contract is not to modify anything
  4300   movptr(rax, buffer.addr());
  4301   push(rax);
  4302   // call indirectly to solve generation ordering problem
  4303   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4304   call(rax);
  4305   // Caller pops the arguments (oop, message) and restores rax, r10
  4306   BLOCK_COMMENT("} verify_oop");
  4310 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  4311                                                       Register tmp,
  4312                                                       int offset) {
  4313   intptr_t value = *delayed_value_addr;
  4314   if (value != 0)
  4315     return RegisterOrConstant(value + offset);
  4317   // load indirectly to solve generation ordering problem
  4318   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  4320 #ifdef ASSERT
  4321   { Label L;
  4322     testptr(tmp, tmp);
  4323     if (WizardMode) {
  4324       const char* buf = NULL;
  4326         ResourceMark rm;
  4327         stringStream ss;
  4328         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  4329         buf = code_string(ss.as_string());
  4331       jcc(Assembler::notZero, L);
  4332       STOP(buf);
  4333     } else {
  4334       jccb(Assembler::notZero, L);
  4335       hlt();
  4337     bind(L);
  4339 #endif
  4341   if (offset != 0)
  4342     addptr(tmp, offset);
  4344   return RegisterOrConstant(tmp);
  4348 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  4349                                          int extra_slot_offset) {
  4350   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  4351   int stackElementSize = Interpreter::stackElementSize;
  4352   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  4353 #ifdef ASSERT
  4354   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  4355   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  4356 #endif
  4357   Register             scale_reg    = noreg;
  4358   Address::ScaleFactor scale_factor = Address::no_scale;
  4359   if (arg_slot.is_constant()) {
  4360     offset += arg_slot.as_constant() * stackElementSize;
  4361   } else {
  4362     scale_reg    = arg_slot.as_register();
  4363     scale_factor = Address::times(stackElementSize);
  4365   offset += wordSize;           // return PC is on stack
  4366   return Address(rsp, scale_reg, scale_factor, offset);
  4370 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4371   if (!VerifyOops) return;
  4373   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  4374   // Pass register number to verify_oop_subroutine
  4375   const char* b = NULL;
  4377     ResourceMark rm;
  4378     stringStream ss;
  4379     ss.print("verify_oop_addr: %s", s);
  4380     b = code_string(ss.as_string());
  4382 #ifdef _LP64
  4383   push(rscratch1);                    // save r10, trashed by movptr()
  4384 #endif
  4385   push(rax);                          // save rax,
  4386   // addr may contain rsp so we will have to adjust it based on the push
  4387   // we just did (and on 64 bit we do two pushes)
  4388   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  4389   // stores rax into addr which is backwards of what was intended.
  4390   if (addr.uses(rsp)) {
  4391     lea(rax, addr);
  4392     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  4393   } else {
  4394     pushptr(addr);
  4397   ExternalAddress buffer((address) b);
  4398   // pass msg argument
  4399   // avoid using pushptr, as it modifies scratch registers
  4400   // and our contract is not to modify anything
  4401   movptr(rax, buffer.addr());
  4402   push(rax);
  4404   // call indirectly to solve generation ordering problem
  4405   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4406   call(rax);
  4407   // Caller pops the arguments (addr, message) and restores rax, r10.
  4410 void MacroAssembler::verify_tlab() {
  4411 #ifdef ASSERT
  4412   if (UseTLAB && VerifyOops) {
  4413     Label next, ok;
  4414     Register t1 = rsi;
  4415     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  4417     push(t1);
  4418     NOT_LP64(push(thread_reg));
  4419     NOT_LP64(get_thread(thread_reg));
  4421     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4422     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4423     jcc(Assembler::aboveEqual, next);
  4424     STOP("assert(top >= start)");
  4425     should_not_reach_here();
  4427     bind(next);
  4428     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4429     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4430     jcc(Assembler::aboveEqual, ok);
  4431     STOP("assert(top <= end)");
  4432     should_not_reach_here();
  4434     bind(ok);
  4435     NOT_LP64(pop(thread_reg));
  4436     pop(t1);
  4438 #endif
  4441 class ControlWord {
  4442  public:
  4443   int32_t _value;
  4445   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  4446   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  4447   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4448   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4449   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4450   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4451   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4452   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4454   void print() const {
  4455     // rounding control
  4456     const char* rc;
  4457     switch (rounding_control()) {
  4458       case 0: rc = "round near"; break;
  4459       case 1: rc = "round down"; break;
  4460       case 2: rc = "round up  "; break;
  4461       case 3: rc = "chop      "; break;
  4462     };
  4463     // precision control
  4464     const char* pc;
  4465     switch (precision_control()) {
  4466       case 0: pc = "24 bits "; break;
  4467       case 1: pc = "reserved"; break;
  4468       case 2: pc = "53 bits "; break;
  4469       case 3: pc = "64 bits "; break;
  4470     };
  4471     // flags
  4472     char f[9];
  4473     f[0] = ' ';
  4474     f[1] = ' ';
  4475     f[2] = (precision   ()) ? 'P' : 'p';
  4476     f[3] = (underflow   ()) ? 'U' : 'u';
  4477     f[4] = (overflow    ()) ? 'O' : 'o';
  4478     f[5] = (zero_divide ()) ? 'Z' : 'z';
  4479     f[6] = (denormalized()) ? 'D' : 'd';
  4480     f[7] = (invalid     ()) ? 'I' : 'i';
  4481     f[8] = '\x0';
  4482     // output
  4483     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  4486 };
  4488 class StatusWord {
  4489  public:
  4490   int32_t _value;
  4492   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  4493   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  4494   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  4495   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  4496   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  4497   int  top() const                     { return  (_value >> 11) & 7      ; }
  4498   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  4499   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  4500   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4501   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4502   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4503   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4504   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4505   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4507   void print() const {
  4508     // condition codes
  4509     char c[5];
  4510     c[0] = (C3()) ? '3' : '-';
  4511     c[1] = (C2()) ? '2' : '-';
  4512     c[2] = (C1()) ? '1' : '-';
  4513     c[3] = (C0()) ? '0' : '-';
  4514     c[4] = '\x0';
  4515     // flags
  4516     char f[9];
  4517     f[0] = (error_status()) ? 'E' : '-';
  4518     f[1] = (stack_fault ()) ? 'S' : '-';
  4519     f[2] = (precision   ()) ? 'P' : '-';
  4520     f[3] = (underflow   ()) ? 'U' : '-';
  4521     f[4] = (overflow    ()) ? 'O' : '-';
  4522     f[5] = (zero_divide ()) ? 'Z' : '-';
  4523     f[6] = (denormalized()) ? 'D' : '-';
  4524     f[7] = (invalid     ()) ? 'I' : '-';
  4525     f[8] = '\x0';
  4526     // output
  4527     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  4530 };
  4532 class TagWord {
  4533  public:
  4534   int32_t _value;
  4536   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  4538   void print() const {
  4539     printf("%04x", _value & 0xFFFF);
  4542 };
  4544 class FPU_Register {
  4545  public:
  4546   int32_t _m0;
  4547   int32_t _m1;
  4548   int16_t _ex;
  4550   bool is_indefinite() const           {
  4551     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  4554   void print() const {
  4555     char  sign = (_ex < 0) ? '-' : '+';
  4556     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  4557     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  4558   };
  4560 };
  4562 class FPU_State {
  4563  public:
  4564   enum {
  4565     register_size       = 10,
  4566     number_of_registers =  8,
  4567     register_mask       =  7
  4568   };
  4570   ControlWord  _control_word;
  4571   StatusWord   _status_word;
  4572   TagWord      _tag_word;
  4573   int32_t      _error_offset;
  4574   int32_t      _error_selector;
  4575   int32_t      _data_offset;
  4576   int32_t      _data_selector;
  4577   int8_t       _register[register_size * number_of_registers];
  4579   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  4580   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  4582   const char* tag_as_string(int tag) const {
  4583     switch (tag) {
  4584       case 0: return "valid";
  4585       case 1: return "zero";
  4586       case 2: return "special";
  4587       case 3: return "empty";
  4589     ShouldNotReachHere();
  4590     return NULL;
  4593   void print() const {
  4594     // print computation registers
  4595     { int t = _status_word.top();
  4596       for (int i = 0; i < number_of_registers; i++) {
  4597         int j = (i - t) & register_mask;
  4598         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  4599         st(j)->print();
  4600         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  4603     printf("\n");
  4604     // print control registers
  4605     printf("ctrl = "); _control_word.print(); printf("\n");
  4606     printf("stat = "); _status_word .print(); printf("\n");
  4607     printf("tags = "); _tag_word    .print(); printf("\n");
  4610 };
  4612 class Flag_Register {
  4613  public:
  4614   int32_t _value;
  4616   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  4617   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  4618   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  4619   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  4620   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  4621   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  4622   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  4624   void print() const {
  4625     // flags
  4626     char f[8];
  4627     f[0] = (overflow       ()) ? 'O' : '-';
  4628     f[1] = (direction      ()) ? 'D' : '-';
  4629     f[2] = (sign           ()) ? 'S' : '-';
  4630     f[3] = (zero           ()) ? 'Z' : '-';
  4631     f[4] = (auxiliary_carry()) ? 'A' : '-';
  4632     f[5] = (parity         ()) ? 'P' : '-';
  4633     f[6] = (carry          ()) ? 'C' : '-';
  4634     f[7] = '\x0';
  4635     // output
  4636     printf("%08x  flags = %s", _value, f);
  4639 };
  4641 class IU_Register {
  4642  public:
  4643   int32_t _value;
  4645   void print() const {
  4646     printf("%08x  %11d", _value, _value);
  4649 };
  4651 class IU_State {
  4652  public:
  4653   Flag_Register _eflags;
  4654   IU_Register   _rdi;
  4655   IU_Register   _rsi;
  4656   IU_Register   _rbp;
  4657   IU_Register   _rsp;
  4658   IU_Register   _rbx;
  4659   IU_Register   _rdx;
  4660   IU_Register   _rcx;
  4661   IU_Register   _rax;
  4663   void print() const {
  4664     // computation registers
  4665     printf("rax,  = "); _rax.print(); printf("\n");
  4666     printf("rbx,  = "); _rbx.print(); printf("\n");
  4667     printf("rcx  = "); _rcx.print(); printf("\n");
  4668     printf("rdx  = "); _rdx.print(); printf("\n");
  4669     printf("rdi  = "); _rdi.print(); printf("\n");
  4670     printf("rsi  = "); _rsi.print(); printf("\n");
  4671     printf("rbp,  = "); _rbp.print(); printf("\n");
  4672     printf("rsp  = "); _rsp.print(); printf("\n");
  4673     printf("\n");
  4674     // control registers
  4675     printf("flgs = "); _eflags.print(); printf("\n");
  4677 };
  4680 class CPU_State {
  4681  public:
  4682   FPU_State _fpu_state;
  4683   IU_State  _iu_state;
  4685   void print() const {
  4686     printf("--------------------------------------------------\n");
  4687     _iu_state .print();
  4688     printf("\n");
  4689     _fpu_state.print();
  4690     printf("--------------------------------------------------\n");
  4693 };
  4696 static void _print_CPU_state(CPU_State* state) {
  4697   state->print();
  4698 };
  4701 void MacroAssembler::print_CPU_state() {
  4702   push_CPU_state();
  4703   push(rsp);                // pass CPU state
  4704   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  4705   addptr(rsp, wordSize);       // discard argument
  4706   pop_CPU_state();
  4710 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  4711   static int counter = 0;
  4712   FPU_State* fs = &state->_fpu_state;
  4713   counter++;
  4714   // For leaf calls, only verify that the top few elements remain empty.
  4715   // We only need 1 empty at the top for C2 code.
  4716   if( stack_depth < 0 ) {
  4717     if( fs->tag_for_st(7) != 3 ) {
  4718       printf("FPR7 not empty\n");
  4719       state->print();
  4720       assert(false, "error");
  4721       return false;
  4723     return true;                // All other stack states do not matter
  4726   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  4727          "bad FPU control word");
  4729   // compute stack depth
  4730   int i = 0;
  4731   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  4732   int d = i;
  4733   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  4734   // verify findings
  4735   if (i != FPU_State::number_of_registers) {
  4736     // stack not contiguous
  4737     printf("%s: stack not contiguous at ST%d\n", s, i);
  4738     state->print();
  4739     assert(false, "error");
  4740     return false;
  4742   // check if computed stack depth corresponds to expected stack depth
  4743   if (stack_depth < 0) {
  4744     // expected stack depth is -stack_depth or less
  4745     if (d > -stack_depth) {
  4746       // too many elements on the stack
  4747       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  4748       state->print();
  4749       assert(false, "error");
  4750       return false;
  4752   } else {
  4753     // expected stack depth is stack_depth
  4754     if (d != stack_depth) {
  4755       // wrong stack depth
  4756       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  4757       state->print();
  4758       assert(false, "error");
  4759       return false;
  4762   // everything is cool
  4763   return true;
  4767 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  4768   if (!VerifyFPU) return;
  4769   push_CPU_state();
  4770   push(rsp);                // pass CPU state
  4771   ExternalAddress msg((address) s);
  4772   // pass message string s
  4773   pushptr(msg.addr());
  4774   push(stack_depth);        // pass stack depth
  4775   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  4776   addptr(rsp, 3 * wordSize);   // discard arguments
  4777   // check for error
  4778   { Label L;
  4779     testl(rax, rax);
  4780     jcc(Assembler::notZero, L);
  4781     int3();                  // break if error condition
  4782     bind(L);
  4784   pop_CPU_state();
  4787 void MacroAssembler::restore_cpu_control_state_after_jni() {
  4788   // Either restore the MXCSR register after returning from the JNI Call
  4789   // or verify that it wasn't changed (with -Xcheck:jni flag).
  4790   if (VM_Version::supports_sse()) {
  4791     if (RestoreMXCSROnJNICalls) {
  4792       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  4793     } else if (CheckJNICalls) {
  4794       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  4797   if (VM_Version::supports_avx()) {
  4798     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  4799     vzeroupper();
  4802 #ifndef _LP64
  4803   // Either restore the x87 floating pointer control word after returning
  4804   // from the JNI call or verify that it wasn't changed.
  4805   if (CheckJNICalls) {
  4806     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  4808 #endif // _LP64
  4812 void MacroAssembler::load_klass(Register dst, Register src) {
  4813 #ifdef _LP64
  4814   if (UseCompressedClassPointers) {
  4815     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4816     decode_klass_not_null(dst);
  4817   } else
  4818 #endif
  4819     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4822 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  4823   load_klass(dst, src);
  4824   movptr(dst, Address(dst, Klass::prototype_header_offset()));
  4827 void MacroAssembler::store_klass(Register dst, Register src) {
  4828 #ifdef _LP64
  4829   if (UseCompressedClassPointers) {
  4830     encode_klass_not_null(src);
  4831     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4832   } else
  4833 #endif
  4834     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4837 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  4838 #ifdef _LP64
  4839   // FIXME: Must change all places where we try to load the klass.
  4840   if (UseCompressedOops) {
  4841     movl(dst, src);
  4842     decode_heap_oop(dst);
  4843   } else
  4844 #endif
  4845     movptr(dst, src);
  4848 // Doesn't do verfication, generates fixed size code
  4849 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  4850 #ifdef _LP64
  4851   if (UseCompressedOops) {
  4852     movl(dst, src);
  4853     decode_heap_oop_not_null(dst);
  4854   } else
  4855 #endif
  4856     movptr(dst, src);
  4859 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  4860 #ifdef _LP64
  4861   if (UseCompressedOops) {
  4862     assert(!dst.uses(src), "not enough registers");
  4863     encode_heap_oop(src);
  4864     movl(dst, src);
  4865   } else
  4866 #endif
  4867     movptr(dst, src);
  4870 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  4871   assert_different_registers(src1, tmp);
  4872 #ifdef _LP64
  4873   if (UseCompressedOops) {
  4874     bool did_push = false;
  4875     if (tmp == noreg) {
  4876       tmp = rax;
  4877       push(tmp);
  4878       did_push = true;
  4879       assert(!src2.uses(rsp), "can't push");
  4881     load_heap_oop(tmp, src2);
  4882     cmpptr(src1, tmp);
  4883     if (did_push)  pop(tmp);
  4884   } else
  4885 #endif
  4886     cmpptr(src1, src2);
  4889 // Used for storing NULLs.
  4890 void MacroAssembler::store_heap_oop_null(Address dst) {
  4891 #ifdef _LP64
  4892   if (UseCompressedOops) {
  4893     movl(dst, (int32_t)NULL_WORD);
  4894   } else {
  4895     movslq(dst, (int32_t)NULL_WORD);
  4897 #else
  4898   movl(dst, (int32_t)NULL_WORD);
  4899 #endif
  4902 #ifdef _LP64
  4903 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  4904   if (UseCompressedClassPointers) {
  4905     // Store to klass gap in destination
  4906     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  4910 #ifdef ASSERT
  4911 void MacroAssembler::verify_heapbase(const char* msg) {
  4912   assert (UseCompressedOops, "should be compressed");
  4913   assert (Universe::heap() != NULL, "java heap should be initialized");
  4914   if (CheckCompressedOops) {
  4915     Label ok;
  4916     push(rscratch1); // cmpptr trashes rscratch1
  4917     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  4918     jcc(Assembler::equal, ok);
  4919     STOP(msg);
  4920     bind(ok);
  4921     pop(rscratch1);
  4924 #endif
  4926 // Algorithm must match oop.inline.hpp encode_heap_oop.
  4927 void MacroAssembler::encode_heap_oop(Register r) {
  4928 #ifdef ASSERT
  4929   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  4930 #endif
  4931   verify_oop(r, "broken oop in encode_heap_oop");
  4932   if (Universe::narrow_oop_base() == NULL) {
  4933     if (Universe::narrow_oop_shift() != 0) {
  4934       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4935       shrq(r, LogMinObjAlignmentInBytes);
  4937     return;
  4939   testq(r, r);
  4940   cmovq(Assembler::equal, r, r12_heapbase);
  4941   subq(r, r12_heapbase);
  4942   shrq(r, LogMinObjAlignmentInBytes);
  4945 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4946 #ifdef ASSERT
  4947   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  4948   if (CheckCompressedOops) {
  4949     Label ok;
  4950     testq(r, r);
  4951     jcc(Assembler::notEqual, ok);
  4952     STOP("null oop passed to encode_heap_oop_not_null");
  4953     bind(ok);
  4955 #endif
  4956   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  4957   if (Universe::narrow_oop_base() != NULL) {
  4958     subq(r, r12_heapbase);
  4960   if (Universe::narrow_oop_shift() != 0) {
  4961     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4962     shrq(r, LogMinObjAlignmentInBytes);
  4966 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  4967 #ifdef ASSERT
  4968   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  4969   if (CheckCompressedOops) {
  4970     Label ok;
  4971     testq(src, src);
  4972     jcc(Assembler::notEqual, ok);
  4973     STOP("null oop passed to encode_heap_oop_not_null2");
  4974     bind(ok);
  4976 #endif
  4977   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  4978   if (dst != src) {
  4979     movq(dst, src);
  4981   if (Universe::narrow_oop_base() != NULL) {
  4982     subq(dst, r12_heapbase);
  4984   if (Universe::narrow_oop_shift() != 0) {
  4985     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4986     shrq(dst, LogMinObjAlignmentInBytes);
  4990 void  MacroAssembler::decode_heap_oop(Register r) {
  4991 #ifdef ASSERT
  4992   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  4993 #endif
  4994   if (Universe::narrow_oop_base() == NULL) {
  4995     if (Universe::narrow_oop_shift() != 0) {
  4996       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4997       shlq(r, LogMinObjAlignmentInBytes);
  4999   } else {
  5000     Label done;
  5001     shlq(r, LogMinObjAlignmentInBytes);
  5002     jccb(Assembler::equal, done);
  5003     addq(r, r12_heapbase);
  5004     bind(done);
  5006   verify_oop(r, "broken oop in decode_heap_oop");
  5009 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5010   // Note: it will change flags
  5011   assert (UseCompressedOops, "should only be used for compressed headers");
  5012   assert (Universe::heap() != NULL, "java heap should be initialized");
  5013   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5014   // vtableStubs also counts instructions in pd_code_size_limit.
  5015   // Also do not verify_oop as this is called by verify_oop.
  5016   if (Universe::narrow_oop_shift() != 0) {
  5017     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5018     shlq(r, LogMinObjAlignmentInBytes);
  5019     if (Universe::narrow_oop_base() != NULL) {
  5020       addq(r, r12_heapbase);
  5022   } else {
  5023     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5027 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5028   // Note: it will change flags
  5029   assert (UseCompressedOops, "should only be used for compressed headers");
  5030   assert (Universe::heap() != NULL, "java heap should be initialized");
  5031   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5032   // vtableStubs also counts instructions in pd_code_size_limit.
  5033   // Also do not verify_oop as this is called by verify_oop.
  5034   if (Universe::narrow_oop_shift() != 0) {
  5035     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5036     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5037       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5038     } else {
  5039       if (dst != src) {
  5040         movq(dst, src);
  5042       shlq(dst, LogMinObjAlignmentInBytes);
  5043       if (Universe::narrow_oop_base() != NULL) {
  5044         addq(dst, r12_heapbase);
  5047   } else {
  5048     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5049     if (dst != src) {
  5050       movq(dst, src);
  5055 void MacroAssembler::encode_klass_not_null(Register r) {
  5056   if (Universe::narrow_klass_base() != NULL) {
  5057     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5058     assert(r != r12_heapbase, "Encoding a klass in r12");
  5059     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5060     subq(r, r12_heapbase);
  5062   if (Universe::narrow_klass_shift() != 0) {
  5063     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5064     shrq(r, LogKlassAlignmentInBytes);
  5066   if (Universe::narrow_klass_base() != NULL) {
  5067     reinit_heapbase();
  5071 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5072   if (dst == src) {
  5073     encode_klass_not_null(src);
  5074   } else {
  5075     if (Universe::narrow_klass_base() != NULL) {
  5076       mov64(dst, (int64_t)Universe::narrow_klass_base());
  5077       negq(dst);
  5078       addq(dst, src);
  5079     } else {
  5080       movptr(dst, src);
  5082     if (Universe::narrow_klass_shift() != 0) {
  5083       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5084       shrq(dst, LogKlassAlignmentInBytes);
  5089 // Function instr_size_for_decode_klass_not_null() counts the instructions
  5090 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  5091 // when (Universe::heap() != NULL).  Hence, if the instructions they
  5092 // generate change, then this method needs to be updated.
  5093 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  5094   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  5095   if (Universe::narrow_klass_base() != NULL) {
  5096     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  5097     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  5098   } else {
  5099     // longest load decode klass function, mov64, leaq
  5100     return 16;
  5104 // !!! If the instructions that get generated here change then function
  5105 // instr_size_for_decode_klass_not_null() needs to get updated.
  5106 void  MacroAssembler::decode_klass_not_null(Register r) {
  5107   // Note: it will change flags
  5108   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5109   assert(r != r12_heapbase, "Decoding a klass in r12");
  5110   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5111   // vtableStubs also counts instructions in pd_code_size_limit.
  5112   // Also do not verify_oop as this is called by verify_oop.
  5113   if (Universe::narrow_klass_shift() != 0) {
  5114     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5115     shlq(r, LogKlassAlignmentInBytes);
  5117   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5118   if (Universe::narrow_klass_base() != NULL) {
  5119     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5120     addq(r, r12_heapbase);
  5121     reinit_heapbase();
  5125 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5126   // Note: it will change flags
  5127   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5128   if (dst == src) {
  5129     decode_klass_not_null(dst);
  5130   } else {
  5131     // Cannot assert, unverified entry point counts instructions (see .ad file)
  5132     // vtableStubs also counts instructions in pd_code_size_limit.
  5133     // Also do not verify_oop as this is called by verify_oop.
  5134     mov64(dst, (int64_t)Universe::narrow_klass_base());
  5135     if (Universe::narrow_klass_shift() != 0) {
  5136       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5137       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  5138       leaq(dst, Address(dst, src, Address::times_8, 0));
  5139     } else {
  5140       addq(dst, src);
  5145 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  5146   assert (UseCompressedOops, "should only be used for compressed headers");
  5147   assert (Universe::heap() != NULL, "java heap should be initialized");
  5148   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5149   int oop_index = oop_recorder()->find_index(obj);
  5150   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5151   mov_narrow_oop(dst, oop_index, rspec);
  5154 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  5155   assert (UseCompressedOops, "should only be used for compressed headers");
  5156   assert (Universe::heap() != NULL, "java heap should be initialized");
  5157   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5158   int oop_index = oop_recorder()->find_index(obj);
  5159   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5160   mov_narrow_oop(dst, oop_index, rspec);
  5163 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  5164   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5165   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5166   int klass_index = oop_recorder()->find_index(k);
  5167   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5168   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5171 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  5172   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5173   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5174   int klass_index = oop_recorder()->find_index(k);
  5175   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5176   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5179 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  5180   assert (UseCompressedOops, "should only be used for compressed headers");
  5181   assert (Universe::heap() != NULL, "java heap should be initialized");
  5182   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5183   int oop_index = oop_recorder()->find_index(obj);
  5184   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5185   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5188 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  5189   assert (UseCompressedOops, "should only be used for compressed headers");
  5190   assert (Universe::heap() != NULL, "java heap should be initialized");
  5191   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5192   int oop_index = oop_recorder()->find_index(obj);
  5193   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5194   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5197 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  5198   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5199   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5200   int klass_index = oop_recorder()->find_index(k);
  5201   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5202   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5205 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  5206   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5207   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5208   int klass_index = oop_recorder()->find_index(k);
  5209   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5210   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5213 void MacroAssembler::reinit_heapbase() {
  5214   if (UseCompressedOops || UseCompressedClassPointers) {
  5215     if (Universe::heap() != NULL) {
  5216       if (Universe::narrow_oop_base() == NULL) {
  5217         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
  5218       } else {
  5219         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
  5221     } else {
  5222       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5227 #endif // _LP64
  5230 // C2 compiled method's prolog code.
  5231 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  5233   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  5234   // NativeJump::patch_verified_entry will be able to patch out the entry
  5235   // code safely. The push to verify stack depth is ok at 5 bytes,
  5236   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  5237   // stack bang then we must use the 6 byte frame allocation even if
  5238   // we have no frame. :-(
  5240   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  5241   // Remove word for return addr
  5242   framesize -= wordSize;
  5244   // Calls to C2R adapters often do not accept exceptional returns.
  5245   // We require that their callers must bang for them.  But be careful, because
  5246   // some VM calls (such as call site linkage) can use several kilobytes of
  5247   // stack.  But the stack safety zone should account for that.
  5248   // See bugs 4446381, 4468289, 4497237.
  5249   if (stack_bang) {
  5250     generate_stack_overflow_check(framesize);
  5252     // We always push rbp, so that on return to interpreter rbp, will be
  5253     // restored correctly and we can correct the stack.
  5254     push(rbp);
  5255     // Remove word for ebp
  5256     framesize -= wordSize;
  5258     // Create frame
  5259     if (framesize) {
  5260       subptr(rsp, framesize);
  5262   } else {
  5263     // Create frame (force generation of a 4 byte immediate value)
  5264     subptr_imm32(rsp, framesize);
  5266     // Save RBP register now.
  5267     framesize -= wordSize;
  5268     movptr(Address(rsp, framesize), rbp);
  5271   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  5272     framesize -= wordSize;
  5273     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  5276 #ifndef _LP64
  5277   // If method sets FPU control word do it now
  5278   if (fp_mode_24b) {
  5279     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  5281   if (UseSSE >= 2 && VerifyFPU) {
  5282     verify_FPU(0, "FPU stack must be clean on entry");
  5284 #endif
  5286 #ifdef ASSERT
  5287   if (VerifyStackAtCalls) {
  5288     Label L;
  5289     push(rax);
  5290     mov(rax, rsp);
  5291     andptr(rax, StackAlignmentInBytes-1);
  5292     cmpptr(rax, StackAlignmentInBytes-wordSize);
  5293     pop(rax);
  5294     jcc(Assembler::equal, L);
  5295     STOP("Stack is not properly aligned!");
  5296     bind(L);
  5298 #endif
  5302 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  5303   // cnt - number of qwords (8-byte words).
  5304   // base - start address, qword aligned.
  5305   assert(base==rdi, "base register must be edi for rep stos");
  5306   assert(tmp==rax,   "tmp register must be eax for rep stos");
  5307   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  5309   xorptr(tmp, tmp);
  5310   if (UseFastStosb) {
  5311     shlptr(cnt,3); // convert to number of bytes
  5312     rep_stosb();
  5313   } else {
  5314     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  5315     rep_stos();
  5319 // IndexOf for constant substrings with size >= 8 chars
  5320 // which don't need to be loaded through stack.
  5321 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  5322                                       Register cnt1, Register cnt2,
  5323                                       int int_cnt2,  Register result,
  5324                                       XMMRegister vec, Register tmp) {
  5325   ShortBranchVerifier sbv(this);
  5326   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5328   // This method uses pcmpestri inxtruction with bound registers
  5329   //   inputs:
  5330   //     xmm - substring
  5331   //     rax - substring length (elements count)
  5332   //     mem - scanned string
  5333   //     rdx - string length (elements count)
  5334   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5335   //   outputs:
  5336   //     rcx - matched index in string
  5337   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5339   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  5340         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  5341         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  5343   // Note, inline_string_indexOf() generates checks:
  5344   // if (substr.count > string.count) return -1;
  5345   // if (substr.count == 0) return 0;
  5346   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  5348   // Load substring.
  5349   movdqu(vec, Address(str2, 0));
  5350   movl(cnt2, int_cnt2);
  5351   movptr(result, str1); // string addr
  5353   if (int_cnt2 > 8) {
  5354     jmpb(SCAN_TO_SUBSTR);
  5356     // Reload substr for rescan, this code
  5357     // is executed only for large substrings (> 8 chars)
  5358     bind(RELOAD_SUBSTR);
  5359     movdqu(vec, Address(str2, 0));
  5360     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  5362     bind(RELOAD_STR);
  5363     // We came here after the beginning of the substring was
  5364     // matched but the rest of it was not so we need to search
  5365     // again. Start from the next element after the previous match.
  5367     // cnt2 is number of substring reminding elements and
  5368     // cnt1 is number of string reminding elements when cmp failed.
  5369     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  5370     subl(cnt1, cnt2);
  5371     addl(cnt1, int_cnt2);
  5372     movl(cnt2, int_cnt2); // Now restore cnt2
  5374     decrementl(cnt1);     // Shift to next element
  5375     cmpl(cnt1, cnt2);
  5376     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5378     addptr(result, 2);
  5380   } // (int_cnt2 > 8)
  5382   // Scan string for start of substr in 16-byte vectors
  5383   bind(SCAN_TO_SUBSTR);
  5384   pcmpestri(vec, Address(result, 0), 0x0d);
  5385   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5386   subl(cnt1, 8);
  5387   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5388   cmpl(cnt1, cnt2);
  5389   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5390   addptr(result, 16);
  5391   jmpb(SCAN_TO_SUBSTR);
  5393   // Found a potential substr
  5394   bind(FOUND_CANDIDATE);
  5395   // Matched whole vector if first element matched (tmp(rcx) == 0).
  5396   if (int_cnt2 == 8) {
  5397     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  5398   } else { // int_cnt2 > 8
  5399     jccb(Assembler::overflow, FOUND_SUBSTR);
  5401   // After pcmpestri tmp(rcx) contains matched element index
  5402   // Compute start addr of substr
  5403   lea(result, Address(result, tmp, Address::times_2));
  5405   // Make sure string is still long enough
  5406   subl(cnt1, tmp);
  5407   cmpl(cnt1, cnt2);
  5408   if (int_cnt2 == 8) {
  5409     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5410   } else { // int_cnt2 > 8
  5411     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  5413   // Left less then substring.
  5415   bind(RET_NOT_FOUND);
  5416   movl(result, -1);
  5417   jmpb(EXIT);
  5419   if (int_cnt2 > 8) {
  5420     // This code is optimized for the case when whole substring
  5421     // is matched if its head is matched.
  5422     bind(MATCH_SUBSTR_HEAD);
  5423     pcmpestri(vec, Address(result, 0), 0x0d);
  5424     // Reload only string if does not match
  5425     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  5427     Label CONT_SCAN_SUBSTR;
  5428     // Compare the rest of substring (> 8 chars).
  5429     bind(FOUND_SUBSTR);
  5430     // First 8 chars are already matched.
  5431     negptr(cnt2);
  5432     addptr(cnt2, 8);
  5434     bind(SCAN_SUBSTR);
  5435     subl(cnt1, 8);
  5436     cmpl(cnt2, -8); // Do not read beyond substring
  5437     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  5438     // Back-up strings to avoid reading beyond substring:
  5439     // cnt1 = cnt1 - cnt2 + 8
  5440     addl(cnt1, cnt2); // cnt2 is negative
  5441     addl(cnt1, 8);
  5442     movl(cnt2, 8); negptr(cnt2);
  5443     bind(CONT_SCAN_SUBSTR);
  5444     if (int_cnt2 < (int)G) {
  5445       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  5446       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  5447     } else {
  5448       // calculate index in register to avoid integer overflow (int_cnt2*2)
  5449       movl(tmp, int_cnt2);
  5450       addptr(tmp, cnt2);
  5451       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  5452       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  5454     // Need to reload strings pointers if not matched whole vector
  5455     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5456     addptr(cnt2, 8);
  5457     jcc(Assembler::negative, SCAN_SUBSTR);
  5458     // Fall through if found full substring
  5460   } // (int_cnt2 > 8)
  5462   bind(RET_FOUND);
  5463   // Found result if we matched full small substring.
  5464   // Compute substr offset
  5465   subptr(result, str1);
  5466   shrl(result, 1); // index
  5467   bind(EXIT);
  5469 } // string_indexofC8
  5471 // Small strings are loaded through stack if they cross page boundary.
  5472 void MacroAssembler::string_indexof(Register str1, Register str2,
  5473                                     Register cnt1, Register cnt2,
  5474                                     int int_cnt2,  Register result,
  5475                                     XMMRegister vec, Register tmp) {
  5476   ShortBranchVerifier sbv(this);
  5477   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5478   //
  5479   // int_cnt2 is length of small (< 8 chars) constant substring
  5480   // or (-1) for non constant substring in which case its length
  5481   // is in cnt2 register.
  5482   //
  5483   // Note, inline_string_indexOf() generates checks:
  5484   // if (substr.count > string.count) return -1;
  5485   // if (substr.count == 0) return 0;
  5486   //
  5487   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  5489   // This method uses pcmpestri inxtruction with bound registers
  5490   //   inputs:
  5491   //     xmm - substring
  5492   //     rax - substring length (elements count)
  5493   //     mem - scanned string
  5494   //     rdx - string length (elements count)
  5495   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5496   //   outputs:
  5497   //     rcx - matched index in string
  5498   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5500   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  5501         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  5502         FOUND_CANDIDATE;
  5504   { //========================================================
  5505     // We don't know where these strings are located
  5506     // and we can't read beyond them. Load them through stack.
  5507     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  5509     movptr(tmp, rsp); // save old SP
  5511     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  5512       if (int_cnt2 == 1) {  // One char
  5513         load_unsigned_short(result, Address(str2, 0));
  5514         movdl(vec, result); // move 32 bits
  5515       } else if (int_cnt2 == 2) { // Two chars
  5516         movdl(vec, Address(str2, 0)); // move 32 bits
  5517       } else if (int_cnt2 == 4) { // Four chars
  5518         movq(vec, Address(str2, 0));  // move 64 bits
  5519       } else { // cnt2 = { 3, 5, 6, 7 }
  5520         // Array header size is 12 bytes in 32-bit VM
  5521         // + 6 bytes for 3 chars == 18 bytes,
  5522         // enough space to load vec and shift.
  5523         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  5524         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  5525         psrldq(vec, 16-(int_cnt2*2));
  5527     } else { // not constant substring
  5528       cmpl(cnt2, 8);
  5529       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  5531       // We can read beyond string if srt+16 does not cross page boundary
  5532       // since heaps are aligned and mapped by pages.
  5533       assert(os::vm_page_size() < (int)G, "default page should be small");
  5534       movl(result, str2); // We need only low 32 bits
  5535       andl(result, (os::vm_page_size()-1));
  5536       cmpl(result, (os::vm_page_size()-16));
  5537       jccb(Assembler::belowEqual, CHECK_STR);
  5539       // Move small strings to stack to allow load 16 bytes into vec.
  5540       subptr(rsp, 16);
  5541       int stk_offset = wordSize-2;
  5542       push(cnt2);
  5544       bind(COPY_SUBSTR);
  5545       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  5546       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5547       decrement(cnt2);
  5548       jccb(Assembler::notZero, COPY_SUBSTR);
  5550       pop(cnt2);
  5551       movptr(str2, rsp);  // New substring address
  5552     } // non constant
  5554     bind(CHECK_STR);
  5555     cmpl(cnt1, 8);
  5556     jccb(Assembler::aboveEqual, BIG_STRINGS);
  5558     // Check cross page boundary.
  5559     movl(result, str1); // We need only low 32 bits
  5560     andl(result, (os::vm_page_size()-1));
  5561     cmpl(result, (os::vm_page_size()-16));
  5562     jccb(Assembler::belowEqual, BIG_STRINGS);
  5564     subptr(rsp, 16);
  5565     int stk_offset = -2;
  5566     if (int_cnt2 < 0) { // not constant
  5567       push(cnt2);
  5568       stk_offset += wordSize;
  5570     movl(cnt2, cnt1);
  5572     bind(COPY_STR);
  5573     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  5574     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5575     decrement(cnt2);
  5576     jccb(Assembler::notZero, COPY_STR);
  5578     if (int_cnt2 < 0) { // not constant
  5579       pop(cnt2);
  5581     movptr(str1, rsp);  // New string address
  5583     bind(BIG_STRINGS);
  5584     // Load substring.
  5585     if (int_cnt2 < 0) { // -1
  5586       movdqu(vec, Address(str2, 0));
  5587       push(cnt2);       // substr count
  5588       push(str2);       // substr addr
  5589       push(str1);       // string addr
  5590     } else {
  5591       // Small (< 8 chars) constant substrings are loaded already.
  5592       movl(cnt2, int_cnt2);
  5594     push(tmp);  // original SP
  5596   } // Finished loading
  5598   //========================================================
  5599   // Start search
  5600   //
  5602   movptr(result, str1); // string addr
  5604   if (int_cnt2  < 0) {  // Only for non constant substring
  5605     jmpb(SCAN_TO_SUBSTR);
  5607     // SP saved at sp+0
  5608     // String saved at sp+1*wordSize
  5609     // Substr saved at sp+2*wordSize
  5610     // Substr count saved at sp+3*wordSize
  5612     // Reload substr for rescan, this code
  5613     // is executed only for large substrings (> 8 chars)
  5614     bind(RELOAD_SUBSTR);
  5615     movptr(str2, Address(rsp, 2*wordSize));
  5616     movl(cnt2, Address(rsp, 3*wordSize));
  5617     movdqu(vec, Address(str2, 0));
  5618     // We came here after the beginning of the substring was
  5619     // matched but the rest of it was not so we need to search
  5620     // again. Start from the next element after the previous match.
  5621     subptr(str1, result); // Restore counter
  5622     shrl(str1, 1);
  5623     addl(cnt1, str1);
  5624     decrementl(cnt1);   // Shift to next element
  5625     cmpl(cnt1, cnt2);
  5626     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5628     addptr(result, 2);
  5629   } // non constant
  5631   // Scan string for start of substr in 16-byte vectors
  5632   bind(SCAN_TO_SUBSTR);
  5633   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5634   pcmpestri(vec, Address(result, 0), 0x0d);
  5635   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5636   subl(cnt1, 8);
  5637   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5638   cmpl(cnt1, cnt2);
  5639   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5640   addptr(result, 16);
  5642   bind(ADJUST_STR);
  5643   cmpl(cnt1, 8); // Do not read beyond string
  5644   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5645   // Back-up string to avoid reading beyond string.
  5646   lea(result, Address(result, cnt1, Address::times_2, -16));
  5647   movl(cnt1, 8);
  5648   jmpb(SCAN_TO_SUBSTR);
  5650   // Found a potential substr
  5651   bind(FOUND_CANDIDATE);
  5652   // After pcmpestri tmp(rcx) contains matched element index
  5654   // Make sure string is still long enough
  5655   subl(cnt1, tmp);
  5656   cmpl(cnt1, cnt2);
  5657   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  5658   // Left less then substring.
  5660   bind(RET_NOT_FOUND);
  5661   movl(result, -1);
  5662   jmpb(CLEANUP);
  5664   bind(FOUND_SUBSTR);
  5665   // Compute start addr of substr
  5666   lea(result, Address(result, tmp, Address::times_2));
  5668   if (int_cnt2 > 0) { // Constant substring
  5669     // Repeat search for small substring (< 8 chars)
  5670     // from new point without reloading substring.
  5671     // Have to check that we don't read beyond string.
  5672     cmpl(tmp, 8-int_cnt2);
  5673     jccb(Assembler::greater, ADJUST_STR);
  5674     // Fall through if matched whole substring.
  5675   } else { // non constant
  5676     assert(int_cnt2 == -1, "should be != 0");
  5678     addl(tmp, cnt2);
  5679     // Found result if we matched whole substring.
  5680     cmpl(tmp, 8);
  5681     jccb(Assembler::lessEqual, RET_FOUND);
  5683     // Repeat search for small substring (<= 8 chars)
  5684     // from new point 'str1' without reloading substring.
  5685     cmpl(cnt2, 8);
  5686     // Have to check that we don't read beyond string.
  5687     jccb(Assembler::lessEqual, ADJUST_STR);
  5689     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  5690     // Compare the rest of substring (> 8 chars).
  5691     movptr(str1, result);
  5693     cmpl(tmp, cnt2);
  5694     // First 8 chars are already matched.
  5695     jccb(Assembler::equal, CHECK_NEXT);
  5697     bind(SCAN_SUBSTR);
  5698     pcmpestri(vec, Address(str1, 0), 0x0d);
  5699     // Need to reload strings pointers if not matched whole vector
  5700     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5702     bind(CHECK_NEXT);
  5703     subl(cnt2, 8);
  5704     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  5705     addptr(str1, 16);
  5706     addptr(str2, 16);
  5707     subl(cnt1, 8);
  5708     cmpl(cnt2, 8); // Do not read beyond substring
  5709     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  5710     // Back-up strings to avoid reading beyond substring.
  5711     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  5712     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  5713     subl(cnt1, cnt2);
  5714     movl(cnt2, 8);
  5715     addl(cnt1, 8);
  5716     bind(CONT_SCAN_SUBSTR);
  5717     movdqu(vec, Address(str2, 0));
  5718     jmpb(SCAN_SUBSTR);
  5720     bind(RET_FOUND_LONG);
  5721     movptr(str1, Address(rsp, wordSize));
  5722   } // non constant
  5724   bind(RET_FOUND);
  5725   // Compute substr offset
  5726   subptr(result, str1);
  5727   shrl(result, 1); // index
  5729   bind(CLEANUP);
  5730   pop(rsp); // restore SP
  5732 } // string_indexof
  5734 // Compare strings.
  5735 void MacroAssembler::string_compare(Register str1, Register str2,
  5736                                     Register cnt1, Register cnt2, Register result,
  5737                                     XMMRegister vec1) {
  5738   ShortBranchVerifier sbv(this);
  5739   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  5741   // Compute the minimum of the string lengths and the
  5742   // difference of the string lengths (stack).
  5743   // Do the conditional move stuff
  5744   movl(result, cnt1);
  5745   subl(cnt1, cnt2);
  5746   push(cnt1);
  5747   cmov32(Assembler::lessEqual, cnt2, result);
  5749   // Is the minimum length zero?
  5750   testl(cnt2, cnt2);
  5751   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  5753   // Compare first characters
  5754   load_unsigned_short(result, Address(str1, 0));
  5755   load_unsigned_short(cnt1, Address(str2, 0));
  5756   subl(result, cnt1);
  5757   jcc(Assembler::notZero,  POP_LABEL);
  5758   cmpl(cnt2, 1);
  5759   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5761   // Check if the strings start at the same location.
  5762   cmpptr(str1, str2);
  5763   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5765   Address::ScaleFactor scale = Address::times_2;
  5766   int stride = 8;
  5768   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  5769     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  5770     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  5771     Label COMPARE_TAIL_LONG;
  5772     int pcmpmask = 0x19;
  5774     // Setup to compare 16-chars (32-bytes) vectors,
  5775     // start from first character again because it has aligned address.
  5776     int stride2 = 16;
  5777     int adr_stride  = stride  << scale;
  5778     int adr_stride2 = stride2 << scale;
  5780     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5781     // rax and rdx are used by pcmpestri as elements counters
  5782     movl(result, cnt2);
  5783     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  5784     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  5786     // fast path : compare first 2 8-char vectors.
  5787     bind(COMPARE_16_CHARS);
  5788     movdqu(vec1, Address(str1, 0));
  5789     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5790     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  5792     movdqu(vec1, Address(str1, adr_stride));
  5793     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  5794     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  5795     addl(cnt1, stride);
  5797     // Compare the characters at index in cnt1
  5798     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  5799     load_unsigned_short(result, Address(str1, cnt1, scale));
  5800     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5801     subl(result, cnt2);
  5802     jmp(POP_LABEL);
  5804     // Setup the registers to start vector comparison loop
  5805     bind(COMPARE_WIDE_VECTORS);
  5806     lea(str1, Address(str1, result, scale));
  5807     lea(str2, Address(str2, result, scale));
  5808     subl(result, stride2);
  5809     subl(cnt2, stride2);
  5810     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  5811     negptr(result);
  5813     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  5814     bind(COMPARE_WIDE_VECTORS_LOOP);
  5815     vmovdqu(vec1, Address(str1, result, scale));
  5816     vpxor(vec1, Address(str2, result, scale));
  5817     vptest(vec1, vec1);
  5818     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  5819     addptr(result, stride2);
  5820     subl(cnt2, stride2);
  5821     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  5822     // clean upper bits of YMM registers
  5823     vzeroupper();
  5825     // compare wide vectors tail
  5826     bind(COMPARE_WIDE_TAIL);
  5827     testptr(result, result);
  5828     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5830     movl(result, stride2);
  5831     movl(cnt2, result);
  5832     negptr(result);
  5833     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  5835     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  5836     bind(VECTOR_NOT_EQUAL);
  5837     // clean upper bits of YMM registers
  5838     vzeroupper();
  5839     lea(str1, Address(str1, result, scale));
  5840     lea(str2, Address(str2, result, scale));
  5841     jmp(COMPARE_16_CHARS);
  5843     // Compare tail chars, length between 1 to 15 chars
  5844     bind(COMPARE_TAIL_LONG);
  5845     movl(cnt2, result);
  5846     cmpl(cnt2, stride);
  5847     jccb(Assembler::less, COMPARE_SMALL_STR);
  5849     movdqu(vec1, Address(str1, 0));
  5850     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5851     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  5852     subptr(cnt2, stride);
  5853     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5854     lea(str1, Address(str1, result, scale));
  5855     lea(str2, Address(str2, result, scale));
  5856     negptr(cnt2);
  5857     jmpb(WHILE_HEAD_LABEL);
  5859     bind(COMPARE_SMALL_STR);
  5860   } else if (UseSSE42Intrinsics) {
  5861     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  5862     int pcmpmask = 0x19;
  5863     // Setup to compare 8-char (16-byte) vectors,
  5864     // start from first character again because it has aligned address.
  5865     movl(result, cnt2);
  5866     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  5867     jccb(Assembler::zero, COMPARE_TAIL);
  5869     lea(str1, Address(str1, result, scale));
  5870     lea(str2, Address(str2, result, scale));
  5871     negptr(result);
  5873     // pcmpestri
  5874     //   inputs:
  5875     //     vec1- substring
  5876     //     rax - negative string length (elements count)
  5877     //     mem - scaned string
  5878     //     rdx - string length (elements count)
  5879     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  5880     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  5881     //   outputs:
  5882     //     rcx - first mismatched element index
  5883     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5885     bind(COMPARE_WIDE_VECTORS);
  5886     movdqu(vec1, Address(str1, result, scale));
  5887     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5888     // After pcmpestri cnt1(rcx) contains mismatched element index
  5890     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  5891     addptr(result, stride);
  5892     subptr(cnt2, stride);
  5893     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5895     // compare wide vectors tail
  5896     testptr(result, result);
  5897     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5899     movl(cnt2, stride);
  5900     movl(result, stride);
  5901     negptr(result);
  5902     movdqu(vec1, Address(str1, result, scale));
  5903     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5904     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  5906     // Mismatched characters in the vectors
  5907     bind(VECTOR_NOT_EQUAL);
  5908     addptr(cnt1, result);
  5909     load_unsigned_short(result, Address(str1, cnt1, scale));
  5910     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5911     subl(result, cnt2);
  5912     jmpb(POP_LABEL);
  5914     bind(COMPARE_TAIL); // limit is zero
  5915     movl(cnt2, result);
  5916     // Fallthru to tail compare
  5918   // Shift str2 and str1 to the end of the arrays, negate min
  5919   lea(str1, Address(str1, cnt2, scale));
  5920   lea(str2, Address(str2, cnt2, scale));
  5921   decrementl(cnt2);  // first character was compared already
  5922   negptr(cnt2);
  5924   // Compare the rest of the elements
  5925   bind(WHILE_HEAD_LABEL);
  5926   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  5927   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  5928   subl(result, cnt1);
  5929   jccb(Assembler::notZero, POP_LABEL);
  5930   increment(cnt2);
  5931   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  5933   // Strings are equal up to min length.  Return the length difference.
  5934   bind(LENGTH_DIFF_LABEL);
  5935   pop(result);
  5936   jmpb(DONE_LABEL);
  5938   // Discard the stored length difference
  5939   bind(POP_LABEL);
  5940   pop(cnt1);
  5942   // That's it
  5943   bind(DONE_LABEL);
  5946 // Compare char[] arrays aligned to 4 bytes or substrings.
  5947 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  5948                                         Register limit, Register result, Register chr,
  5949                                         XMMRegister vec1, XMMRegister vec2) {
  5950   ShortBranchVerifier sbv(this);
  5951   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  5953   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  5954   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  5956   // Check the input args
  5957   cmpptr(ary1, ary2);
  5958   jcc(Assembler::equal, TRUE_LABEL);
  5960   if (is_array_equ) {
  5961     // Need additional checks for arrays_equals.
  5962     testptr(ary1, ary1);
  5963     jcc(Assembler::zero, FALSE_LABEL);
  5964     testptr(ary2, ary2);
  5965     jcc(Assembler::zero, FALSE_LABEL);
  5967     // Check the lengths
  5968     movl(limit, Address(ary1, length_offset));
  5969     cmpl(limit, Address(ary2, length_offset));
  5970     jcc(Assembler::notEqual, FALSE_LABEL);
  5973   // count == 0
  5974   testl(limit, limit);
  5975   jcc(Assembler::zero, TRUE_LABEL);
  5977   if (is_array_equ) {
  5978     // Load array address
  5979     lea(ary1, Address(ary1, base_offset));
  5980     lea(ary2, Address(ary2, base_offset));
  5983   shll(limit, 1);      // byte count != 0
  5984   movl(result, limit); // copy
  5986   if (UseAVX >= 2) {
  5987     // With AVX2, use 32-byte vector compare
  5988     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  5990     // Compare 32-byte vectors
  5991     andl(result, 0x0000001e);  //   tail count (in bytes)
  5992     andl(limit, 0xffffffe0);   // vector count (in bytes)
  5993     jccb(Assembler::zero, COMPARE_TAIL);
  5995     lea(ary1, Address(ary1, limit, Address::times_1));
  5996     lea(ary2, Address(ary2, limit, Address::times_1));
  5997     negptr(limit);
  5999     bind(COMPARE_WIDE_VECTORS);
  6000     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  6001     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  6002     vpxor(vec1, vec2);
  6004     vptest(vec1, vec1);
  6005     jccb(Assembler::notZero, FALSE_LABEL);
  6006     addptr(limit, 32);
  6007     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6009     testl(result, result);
  6010     jccb(Assembler::zero, TRUE_LABEL);
  6012     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  6013     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  6014     vpxor(vec1, vec2);
  6016     vptest(vec1, vec1);
  6017     jccb(Assembler::notZero, FALSE_LABEL);
  6018     jmpb(TRUE_LABEL);
  6020     bind(COMPARE_TAIL); // limit is zero
  6021     movl(limit, result);
  6022     // Fallthru to tail compare
  6023   } else if (UseSSE42Intrinsics) {
  6024     // With SSE4.2, use double quad vector compare
  6025     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6027     // Compare 16-byte vectors
  6028     andl(result, 0x0000000e);  //   tail count (in bytes)
  6029     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6030     jccb(Assembler::zero, COMPARE_TAIL);
  6032     lea(ary1, Address(ary1, limit, Address::times_1));
  6033     lea(ary2, Address(ary2, limit, Address::times_1));
  6034     negptr(limit);
  6036     bind(COMPARE_WIDE_VECTORS);
  6037     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6038     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6039     pxor(vec1, vec2);
  6041     ptest(vec1, vec1);
  6042     jccb(Assembler::notZero, FALSE_LABEL);
  6043     addptr(limit, 16);
  6044     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6046     testl(result, result);
  6047     jccb(Assembler::zero, TRUE_LABEL);
  6049     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6050     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6051     pxor(vec1, vec2);
  6053     ptest(vec1, vec1);
  6054     jccb(Assembler::notZero, FALSE_LABEL);
  6055     jmpb(TRUE_LABEL);
  6057     bind(COMPARE_TAIL); // limit is zero
  6058     movl(limit, result);
  6059     // Fallthru to tail compare
  6062   // Compare 4-byte vectors
  6063   andl(limit, 0xfffffffc); // vector count (in bytes)
  6064   jccb(Assembler::zero, COMPARE_CHAR);
  6066   lea(ary1, Address(ary1, limit, Address::times_1));
  6067   lea(ary2, Address(ary2, limit, Address::times_1));
  6068   negptr(limit);
  6070   bind(COMPARE_VECTORS);
  6071   movl(chr, Address(ary1, limit, Address::times_1));
  6072   cmpl(chr, Address(ary2, limit, Address::times_1));
  6073   jccb(Assembler::notEqual, FALSE_LABEL);
  6074   addptr(limit, 4);
  6075   jcc(Assembler::notZero, COMPARE_VECTORS);
  6077   // Compare trailing char (final 2 bytes), if any
  6078   bind(COMPARE_CHAR);
  6079   testl(result, 0x2);   // tail  char
  6080   jccb(Assembler::zero, TRUE_LABEL);
  6081   load_unsigned_short(chr, Address(ary1, 0));
  6082   load_unsigned_short(limit, Address(ary2, 0));
  6083   cmpl(chr, limit);
  6084   jccb(Assembler::notEqual, FALSE_LABEL);
  6086   bind(TRUE_LABEL);
  6087   movl(result, 1);   // return true
  6088   jmpb(DONE);
  6090   bind(FALSE_LABEL);
  6091   xorl(result, result); // return false
  6093   // That's it
  6094   bind(DONE);
  6095   if (UseAVX >= 2) {
  6096     // clean upper bits of YMM registers
  6097     vzeroupper();
  6101 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6102                                    Register to, Register value, Register count,
  6103                                    Register rtmp, XMMRegister xtmp) {
  6104   ShortBranchVerifier sbv(this);
  6105   assert_different_registers(to, value, count, rtmp);
  6106   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  6107   Label L_fill_2_bytes, L_fill_4_bytes;
  6109   int shift = -1;
  6110   switch (t) {
  6111     case T_BYTE:
  6112       shift = 2;
  6113       break;
  6114     case T_SHORT:
  6115       shift = 1;
  6116       break;
  6117     case T_INT:
  6118       shift = 0;
  6119       break;
  6120     default: ShouldNotReachHere();
  6123   if (t == T_BYTE) {
  6124     andl(value, 0xff);
  6125     movl(rtmp, value);
  6126     shll(rtmp, 8);
  6127     orl(value, rtmp);
  6129   if (t == T_SHORT) {
  6130     andl(value, 0xffff);
  6132   if (t == T_BYTE || t == T_SHORT) {
  6133     movl(rtmp, value);
  6134     shll(rtmp, 16);
  6135     orl(value, rtmp);
  6138   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  6139   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  6140   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  6141     // align source address at 4 bytes address boundary
  6142     if (t == T_BYTE) {
  6143       // One byte misalignment happens only for byte arrays
  6144       testptr(to, 1);
  6145       jccb(Assembler::zero, L_skip_align1);
  6146       movb(Address(to, 0), value);
  6147       increment(to);
  6148       decrement(count);
  6149       BIND(L_skip_align1);
  6151     // Two bytes misalignment happens only for byte and short (char) arrays
  6152     testptr(to, 2);
  6153     jccb(Assembler::zero, L_skip_align2);
  6154     movw(Address(to, 0), value);
  6155     addptr(to, 2);
  6156     subl(count, 1<<(shift-1));
  6157     BIND(L_skip_align2);
  6159   if (UseSSE < 2) {
  6160     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6161     // Fill 32-byte chunks
  6162     subl(count, 8 << shift);
  6163     jcc(Assembler::less, L_check_fill_8_bytes);
  6164     align(16);
  6166     BIND(L_fill_32_bytes_loop);
  6168     for (int i = 0; i < 32; i += 4) {
  6169       movl(Address(to, i), value);
  6172     addptr(to, 32);
  6173     subl(count, 8 << shift);
  6174     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6175     BIND(L_check_fill_8_bytes);
  6176     addl(count, 8 << shift);
  6177     jccb(Assembler::zero, L_exit);
  6178     jmpb(L_fill_8_bytes);
  6180     //
  6181     // length is too short, just fill qwords
  6182     //
  6183     BIND(L_fill_8_bytes_loop);
  6184     movl(Address(to, 0), value);
  6185     movl(Address(to, 4), value);
  6186     addptr(to, 8);
  6187     BIND(L_fill_8_bytes);
  6188     subl(count, 1 << (shift + 1));
  6189     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6190     // fall through to fill 4 bytes
  6191   } else {
  6192     Label L_fill_32_bytes;
  6193     if (!UseUnalignedLoadStores) {
  6194       // align to 8 bytes, we know we are 4 byte aligned to start
  6195       testptr(to, 4);
  6196       jccb(Assembler::zero, L_fill_32_bytes);
  6197       movl(Address(to, 0), value);
  6198       addptr(to, 4);
  6199       subl(count, 1<<shift);
  6201     BIND(L_fill_32_bytes);
  6203       assert( UseSSE >= 2, "supported cpu only" );
  6204       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6205       movdl(xtmp, value);
  6206       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  6207         // Fill 64-byte chunks
  6208         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  6209         vpbroadcastd(xtmp, xtmp);
  6211         subl(count, 16 << shift);
  6212         jcc(Assembler::less, L_check_fill_32_bytes);
  6213         align(16);
  6215         BIND(L_fill_64_bytes_loop);
  6216         vmovdqu(Address(to, 0), xtmp);
  6217         vmovdqu(Address(to, 32), xtmp);
  6218         addptr(to, 64);
  6219         subl(count, 16 << shift);
  6220         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  6222         BIND(L_check_fill_32_bytes);
  6223         addl(count, 8 << shift);
  6224         jccb(Assembler::less, L_check_fill_8_bytes);
  6225         vmovdqu(Address(to, 0), xtmp);
  6226         addptr(to, 32);
  6227         subl(count, 8 << shift);
  6229         BIND(L_check_fill_8_bytes);
  6230         // clean upper bits of YMM registers
  6231         vzeroupper();
  6232       } else {
  6233         // Fill 32-byte chunks
  6234         pshufd(xtmp, xtmp, 0);
  6236         subl(count, 8 << shift);
  6237         jcc(Assembler::less, L_check_fill_8_bytes);
  6238         align(16);
  6240         BIND(L_fill_32_bytes_loop);
  6242         if (UseUnalignedLoadStores) {
  6243           movdqu(Address(to, 0), xtmp);
  6244           movdqu(Address(to, 16), xtmp);
  6245         } else {
  6246           movq(Address(to, 0), xtmp);
  6247           movq(Address(to, 8), xtmp);
  6248           movq(Address(to, 16), xtmp);
  6249           movq(Address(to, 24), xtmp);
  6252         addptr(to, 32);
  6253         subl(count, 8 << shift);
  6254         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6256         BIND(L_check_fill_8_bytes);
  6258       addl(count, 8 << shift);
  6259       jccb(Assembler::zero, L_exit);
  6260       jmpb(L_fill_8_bytes);
  6262       //
  6263       // length is too short, just fill qwords
  6264       //
  6265       BIND(L_fill_8_bytes_loop);
  6266       movq(Address(to, 0), xtmp);
  6267       addptr(to, 8);
  6268       BIND(L_fill_8_bytes);
  6269       subl(count, 1 << (shift + 1));
  6270       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6273   // fill trailing 4 bytes
  6274   BIND(L_fill_4_bytes);
  6275   testl(count, 1<<shift);
  6276   jccb(Assembler::zero, L_fill_2_bytes);
  6277   movl(Address(to, 0), value);
  6278   if (t == T_BYTE || t == T_SHORT) {
  6279     addptr(to, 4);
  6280     BIND(L_fill_2_bytes);
  6281     // fill trailing 2 bytes
  6282     testl(count, 1<<(shift-1));
  6283     jccb(Assembler::zero, L_fill_byte);
  6284     movw(Address(to, 0), value);
  6285     if (t == T_BYTE) {
  6286       addptr(to, 2);
  6287       BIND(L_fill_byte);
  6288       // fill trailing byte
  6289       testl(count, 1);
  6290       jccb(Assembler::zero, L_exit);
  6291       movb(Address(to, 0), value);
  6292     } else {
  6293       BIND(L_fill_byte);
  6295   } else {
  6296     BIND(L_fill_2_bytes);
  6298   BIND(L_exit);
  6301 // encode char[] to byte[] in ISO_8859_1
  6302 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  6303                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  6304                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  6305                                       Register tmp5, Register result) {
  6306   // rsi: src
  6307   // rdi: dst
  6308   // rdx: len
  6309   // rcx: tmp5
  6310   // rax: result
  6311   ShortBranchVerifier sbv(this);
  6312   assert_different_registers(src, dst, len, tmp5, result);
  6313   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  6315   // set result
  6316   xorl(result, result);
  6317   // check for zero length
  6318   testl(len, len);
  6319   jcc(Assembler::zero, L_done);
  6320   movl(result, len);
  6322   // Setup pointers
  6323   lea(src, Address(src, len, Address::times_2)); // char[]
  6324   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  6325   negptr(len);
  6327   if (UseSSE42Intrinsics || UseAVX >= 2) {
  6328     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  6329     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  6331     if (UseAVX >= 2) {
  6332       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  6333       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6334       movdl(tmp1Reg, tmp5);
  6335       vpbroadcastd(tmp1Reg, tmp1Reg);
  6336       jmpb(L_chars_32_check);
  6338       bind(L_copy_32_chars);
  6339       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  6340       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  6341       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6342       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6343       jccb(Assembler::notZero, L_copy_32_chars_exit);
  6344       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6345       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  6346       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  6348       bind(L_chars_32_check);
  6349       addptr(len, 32);
  6350       jccb(Assembler::lessEqual, L_copy_32_chars);
  6352       bind(L_copy_32_chars_exit);
  6353       subptr(len, 16);
  6354       jccb(Assembler::greater, L_copy_16_chars_exit);
  6356     } else if (UseSSE42Intrinsics) {
  6357       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6358       movdl(tmp1Reg, tmp5);
  6359       pshufd(tmp1Reg, tmp1Reg, 0);
  6360       jmpb(L_chars_16_check);
  6363     bind(L_copy_16_chars);
  6364     if (UseAVX >= 2) {
  6365       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  6366       vptest(tmp2Reg, tmp1Reg);
  6367       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6368       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  6369       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  6370     } else {
  6371       if (UseAVX > 0) {
  6372         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6373         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6374         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  6375       } else {
  6376         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6377         por(tmp2Reg, tmp3Reg);
  6378         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6379         por(tmp2Reg, tmp4Reg);
  6381       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6382       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6383       packuswb(tmp3Reg, tmp4Reg);
  6385     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  6387     bind(L_chars_16_check);
  6388     addptr(len, 16);
  6389     jccb(Assembler::lessEqual, L_copy_16_chars);
  6391     bind(L_copy_16_chars_exit);
  6392     if (UseAVX >= 2) {
  6393       // clean upper bits of YMM registers
  6394       vzeroupper();
  6396     subptr(len, 8);
  6397     jccb(Assembler::greater, L_copy_8_chars_exit);
  6399     bind(L_copy_8_chars);
  6400     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  6401     ptest(tmp3Reg, tmp1Reg);
  6402     jccb(Assembler::notZero, L_copy_8_chars_exit);
  6403     packuswb(tmp3Reg, tmp1Reg);
  6404     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  6405     addptr(len, 8);
  6406     jccb(Assembler::lessEqual, L_copy_8_chars);
  6408     bind(L_copy_8_chars_exit);
  6409     subptr(len, 8);
  6410     jccb(Assembler::zero, L_done);
  6413   bind(L_copy_1_char);
  6414   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  6415   testl(tmp5, 0xff00);      // check if Unicode char
  6416   jccb(Assembler::notZero, L_copy_1_char_exit);
  6417   movb(Address(dst, len, Address::times_1, 0), tmp5);
  6418   addptr(len, 1);
  6419   jccb(Assembler::less, L_copy_1_char);
  6421   bind(L_copy_1_char_exit);
  6422   addptr(result, len); // len is negative count of not processed elements
  6423   bind(L_done);
  6426 /**
  6427  * Emits code to update CRC-32 with a byte value according to constants in table
  6429  * @param [in,out]crc   Register containing the crc.
  6430  * @param [in]val       Register containing the byte to fold into the CRC.
  6431  * @param [in]table     Register containing the table of crc constants.
  6433  * uint32_t crc;
  6434  * val = crc_table[(val ^ crc) & 0xFF];
  6435  * crc = val ^ (crc >> 8);
  6437  */
  6438 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  6439   xorl(val, crc);
  6440   andl(val, 0xFF);
  6441   shrl(crc, 8); // unsigned shift
  6442   xorl(crc, Address(table, val, Address::times_4, 0));
  6445 /**
  6446  * Fold 128-bit data chunk
  6447  */
  6448 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  6449   vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  6450   vpclmulldq(xcrc, xK, xcrc); // [63:0]
  6451   vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  6452   pxor(xcrc, xtmp);
  6455 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  6456   vpclmulhdq(xtmp, xK, xcrc);
  6457   vpclmulldq(xcrc, xK, xcrc);
  6458   pxor(xcrc, xbuf);
  6459   pxor(xcrc, xtmp);
  6462 /**
  6463  * 8-bit folds to compute 32-bit CRC
  6465  * uint64_t xcrc;
  6466  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  6467  */
  6468 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  6469   movdl(tmp, xcrc);
  6470   andl(tmp, 0xFF);
  6471   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  6472   psrldq(xcrc, 1); // unsigned shift one byte
  6473   pxor(xcrc, xtmp);
  6476 /**
  6477  * uint32_t crc;
  6478  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  6479  */
  6480 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  6481   movl(tmp, crc);
  6482   andl(tmp, 0xFF);
  6483   shrl(crc, 8);
  6484   xorl(crc, Address(table, tmp, Address::times_4, 0));
  6487 /**
  6488  * @param crc   register containing existing CRC (32-bit)
  6489  * @param buf   register pointing to input byte buffer (byte*)
  6490  * @param len   register containing number of bytes
  6491  * @param table register that will contain address of CRC table
  6492  * @param tmp   scratch register
  6493  */
  6494 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  6495   assert_different_registers(crc, buf, len, table, tmp, rax);
  6497   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  6498   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  6500   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  6501   notl(crc); // ~crc
  6502   cmpl(len, 16);
  6503   jcc(Assembler::less, L_tail);
  6505   // Align buffer to 16 bytes
  6506   movl(tmp, buf);
  6507   andl(tmp, 0xF);
  6508   jccb(Assembler::zero, L_aligned);
  6509   subl(tmp,  16);
  6510   addl(len, tmp);
  6512   align(4);
  6513   BIND(L_align_loop);
  6514   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6515   update_byte_crc32(crc, rax, table);
  6516   increment(buf);
  6517   incrementl(tmp);
  6518   jccb(Assembler::less, L_align_loop);
  6520   BIND(L_aligned);
  6521   movl(tmp, len); // save
  6522   shrl(len, 4);
  6523   jcc(Assembler::zero, L_tail_restore);
  6525   // Fold crc into first bytes of vector
  6526   movdqa(xmm1, Address(buf, 0));
  6527   movdl(rax, xmm1);
  6528   xorl(crc, rax);
  6529   pinsrd(xmm1, crc, 0);
  6530   addptr(buf, 16);
  6531   subl(len, 4); // len > 0
  6532   jcc(Assembler::less, L_fold_tail);
  6534   movdqa(xmm2, Address(buf,  0));
  6535   movdqa(xmm3, Address(buf, 16));
  6536   movdqa(xmm4, Address(buf, 32));
  6537   addptr(buf, 48);
  6538   subl(len, 3);
  6539   jcc(Assembler::lessEqual, L_fold_512b);
  6541   // Fold total 512 bits of polynomial on each iteration,
  6542   // 128 bits per each of 4 parallel streams.
  6543   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  6545   align(32);
  6546   BIND(L_fold_512b_loop);
  6547   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6548   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  6549   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  6550   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  6551   addptr(buf, 64);
  6552   subl(len, 4);
  6553   jcc(Assembler::greater, L_fold_512b_loop);
  6555   // Fold 512 bits to 128 bits.
  6556   BIND(L_fold_512b);
  6557   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6558   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  6559   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  6560   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  6562   // Fold the rest of 128 bits data chunks
  6563   BIND(L_fold_tail);
  6564   addl(len, 3);
  6565   jccb(Assembler::lessEqual, L_fold_128b);
  6566   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6568   BIND(L_fold_tail_loop);
  6569   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6570   addptr(buf, 16);
  6571   decrementl(len);
  6572   jccb(Assembler::greater, L_fold_tail_loop);
  6574   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  6575   BIND(L_fold_128b);
  6576   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  6577   vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  6578   vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  6579   vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  6580   psrldq(xmm1, 8);
  6581   psrldq(xmm2, 4);
  6582   pxor(xmm0, xmm1);
  6583   pxor(xmm0, xmm2);
  6585   // 8 8-bit folds to compute 32-bit CRC.
  6586   for (int j = 0; j < 4; j++) {
  6587     fold_8bit_crc32(xmm0, table, xmm1, rax);
  6589   movdl(crc, xmm0); // mov 32 bits to general register
  6590   for (int j = 0; j < 4; j++) {
  6591     fold_8bit_crc32(crc, table, rax);
  6594   BIND(L_tail_restore);
  6595   movl(len, tmp); // restore
  6596   BIND(L_tail);
  6597   andl(len, 0xf);
  6598   jccb(Assembler::zero, L_exit);
  6600   // Fold the rest of bytes
  6601   align(4);
  6602   BIND(L_tail_loop);
  6603   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6604   update_byte_crc32(crc, rax, table);
  6605   increment(buf);
  6606   decrementl(len);
  6607   jccb(Assembler::greater, L_tail_loop);
  6609   BIND(L_exit);
  6610   notl(crc); // ~c
  6613 #undef BIND
  6614 #undef BLOCK_COMMENT
  6617 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  6618   switch (cond) {
  6619     // Note some conditions are synonyms for others
  6620     case Assembler::zero:         return Assembler::notZero;
  6621     case Assembler::notZero:      return Assembler::zero;
  6622     case Assembler::less:         return Assembler::greaterEqual;
  6623     case Assembler::lessEqual:    return Assembler::greater;
  6624     case Assembler::greater:      return Assembler::lessEqual;
  6625     case Assembler::greaterEqual: return Assembler::less;
  6626     case Assembler::below:        return Assembler::aboveEqual;
  6627     case Assembler::belowEqual:   return Assembler::above;
  6628     case Assembler::above:        return Assembler::belowEqual;
  6629     case Assembler::aboveEqual:   return Assembler::below;
  6630     case Assembler::overflow:     return Assembler::noOverflow;
  6631     case Assembler::noOverflow:   return Assembler::overflow;
  6632     case Assembler::negative:     return Assembler::positive;
  6633     case Assembler::positive:     return Assembler::negative;
  6634     case Assembler::parity:       return Assembler::noParity;
  6635     case Assembler::noParity:     return Assembler::parity;
  6637   ShouldNotReachHere(); return Assembler::overflow;
  6640 SkipIfEqual::SkipIfEqual(
  6641     MacroAssembler* masm, const bool* flag_addr, bool value) {
  6642   _masm = masm;
  6643   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  6644   _masm->jcc(Assembler::equal, _label);
  6647 SkipIfEqual::~SkipIfEqual() {
  6648   _masm->bind(_label);

mercurial