src/cpu/x86/vm/macroAssembler_x86.cpp

Fri, 25 Oct 2013 15:19:29 -0400

author
coleenp
date
Fri, 25 Oct 2013 15:19:29 -0400
changeset 6029
209aa13ab8c0
parent 5860
69944b868a32
child 6072
be525e91f65b
permissions
-rw-r--r--

8024927: Nashorn performance regression with CompressedOops
Summary: Allocate compressed class space at end of Java heap. For small heap sizes, without CDS, save some space so compressed classes can have the same favorable compression as oops
Reviewed-by: stefank, hseigel, goetz

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "memory/universe.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/biasedLocking.hpp"
    36 #include "runtime/interfaceSupport.hpp"
    37 #include "runtime/objectMonitor.hpp"
    38 #include "runtime/os.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "runtime/stubRoutines.hpp"
    41 #include "utilities/macros.hpp"
    42 #if INCLUDE_ALL_GCS
    43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    45 #include "gc_implementation/g1/heapRegion.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 #ifdef PRODUCT
    49 #define BLOCK_COMMENT(str) /* nothing */
    50 #define STOP(error) stop(error)
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #define STOP(error) block_comment(error); stop(error)
    54 #endif
    56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    59 #ifdef ASSERT
    60 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    61 #endif
    63 static Assembler::Condition reverse[] = {
    64     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    65     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    66     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    67     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    68     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    69     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    70     Assembler::above          /* belowEqual    = 0x6 */ ,
    71     Assembler::belowEqual     /* above         = 0x7 */ ,
    72     Assembler::positive       /* negative      = 0x8 */ ,
    73     Assembler::negative       /* positive      = 0x9 */ ,
    74     Assembler::noParity       /* parity        = 0xa */ ,
    75     Assembler::parity         /* noParity      = 0xb */ ,
    76     Assembler::greaterEqual   /* less          = 0xc */ ,
    77     Assembler::less           /* greaterEqual  = 0xd */ ,
    78     Assembler::greater        /* lessEqual     = 0xe */ ,
    79     Assembler::lessEqual      /* greater       = 0xf, */
    81 };
    84 // Implementation of MacroAssembler
    86 // First all the versions that have distinct versions depending on 32/64 bit
    87 // Unless the difference is trivial (1 line or so).
    89 #ifndef _LP64
    91 // 32bit versions
    93 Address MacroAssembler::as_Address(AddressLiteral adr) {
    94   return Address(adr.target(), adr.rspec());
    95 }
    97 Address MacroAssembler::as_Address(ArrayAddress adr) {
    98   return Address::make_array(adr);
    99 }
   101 int MacroAssembler::biased_locking_enter(Register lock_reg,
   102                                          Register obj_reg,
   103                                          Register swap_reg,
   104                                          Register tmp_reg,
   105                                          bool swap_reg_contains_mark,
   106                                          Label& done,
   107                                          Label* slow_case,
   108                                          BiasedLockingCounters* counters) {
   109   assert(UseBiasedLocking, "why call this otherwise?");
   110   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
   111   assert_different_registers(lock_reg, obj_reg, swap_reg);
   113   if (PrintBiasedLockingStatistics && counters == NULL)
   114     counters = BiasedLocking::counters();
   116   bool need_tmp_reg = false;
   117   if (tmp_reg == noreg) {
   118     need_tmp_reg = true;
   119     tmp_reg = lock_reg;
   120   } else {
   121     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   122   }
   123   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   124   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   125   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
   126   Address saved_mark_addr(lock_reg, 0);
   128   // Biased locking
   129   // See whether the lock is currently biased toward our thread and
   130   // whether the epoch is still valid
   131   // Note that the runtime guarantees sufficient alignment of JavaThread
   132   // pointers to allow age to be placed into low bits
   133   // First check to see whether biasing is even enabled for this object
   134   Label cas_label;
   135   int null_check_offset = -1;
   136   if (!swap_reg_contains_mark) {
   137     null_check_offset = offset();
   138     movl(swap_reg, mark_addr);
   139   }
   140   if (need_tmp_reg) {
   141     push(tmp_reg);
   142   }
   143   movl(tmp_reg, swap_reg);
   144   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   145   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
   146   if (need_tmp_reg) {
   147     pop(tmp_reg);
   148   }
   149   jcc(Assembler::notEqual, cas_label);
   150   // The bias pattern is present in the object's header. Need to check
   151   // whether the bias owner and the epoch are both still current.
   152   // Note that because there is no current thread register on x86 we
   153   // need to store off the mark word we read out of the object to
   154   // avoid reloading it and needing to recheck invariants below. This
   155   // store is unfortunate but it makes the overall code shorter and
   156   // simpler.
   157   movl(saved_mark_addr, swap_reg);
   158   if (need_tmp_reg) {
   159     push(tmp_reg);
   160   }
   161   get_thread(tmp_reg);
   162   xorl(swap_reg, tmp_reg);
   163   if (swap_reg_contains_mark) {
   164     null_check_offset = offset();
   165   }
   166   movl(tmp_reg, klass_addr);
   167   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   168   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
   169   if (need_tmp_reg) {
   170     pop(tmp_reg);
   171   }
   172   if (counters != NULL) {
   173     cond_inc32(Assembler::zero,
   174                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
   175   }
   176   jcc(Assembler::equal, done);
   178   Label try_revoke_bias;
   179   Label try_rebias;
   181   // At this point we know that the header has the bias pattern and
   182   // that we are not the bias owner in the current epoch. We need to
   183   // figure out more details about the state of the header in order to
   184   // know what operations can be legally performed on the object's
   185   // header.
   187   // If the low three bits in the xor result aren't clear, that means
   188   // the prototype header is no longer biased and we have to revoke
   189   // the bias on this object.
   190   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
   191   jcc(Assembler::notZero, try_revoke_bias);
   193   // Biasing is still enabled for this data type. See whether the
   194   // epoch of the current bias is still valid, meaning that the epoch
   195   // bits of the mark word are equal to the epoch bits of the
   196   // prototype header. (Note that the prototype header's epoch bits
   197   // only change at a safepoint.) If not, attempt to rebias the object
   198   // toward the current thread. Note that we must be absolutely sure
   199   // that the current epoch is invalid in order to do this because
   200   // otherwise the manipulations it performs on the mark word are
   201   // illegal.
   202   testl(swap_reg, markOopDesc::epoch_mask_in_place);
   203   jcc(Assembler::notZero, try_rebias);
   205   // The epoch of the current bias is still valid but we know nothing
   206   // about the owner; it might be set or it might be clear. Try to
   207   // acquire the bias of the object using an atomic operation. If this
   208   // fails we will go in to the runtime to revoke the object's bias.
   209   // Note that we first construct the presumed unbiased header so we
   210   // don't accidentally blow away another thread's valid bias.
   211   movl(swap_reg, saved_mark_addr);
   212   andl(swap_reg,
   213        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   214   if (need_tmp_reg) {
   215     push(tmp_reg);
   216   }
   217   get_thread(tmp_reg);
   218   orl(tmp_reg, swap_reg);
   219   if (os::is_MP()) {
   220     lock();
   221   }
   222   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   223   if (need_tmp_reg) {
   224     pop(tmp_reg);
   225   }
   226   // If the biasing toward our thread failed, this means that
   227   // another thread succeeded in biasing it toward itself and we
   228   // need to revoke that bias. The revocation will occur in the
   229   // interpreter runtime in the slow case.
   230   if (counters != NULL) {
   231     cond_inc32(Assembler::zero,
   232                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
   233   }
   234   if (slow_case != NULL) {
   235     jcc(Assembler::notZero, *slow_case);
   236   }
   237   jmp(done);
   239   bind(try_rebias);
   240   // At this point we know the epoch has expired, meaning that the
   241   // current "bias owner", if any, is actually invalid. Under these
   242   // circumstances _only_, we are allowed to use the current header's
   243   // value as the comparison value when doing the cas to acquire the
   244   // bias in the current epoch. In other words, we allow transfer of
   245   // the bias from one thread to another directly in this situation.
   246   //
   247   // FIXME: due to a lack of registers we currently blow away the age
   248   // bits in this situation. Should attempt to preserve them.
   249   if (need_tmp_reg) {
   250     push(tmp_reg);
   251   }
   252   get_thread(tmp_reg);
   253   movl(swap_reg, klass_addr);
   254   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
   255   movl(swap_reg, saved_mark_addr);
   256   if (os::is_MP()) {
   257     lock();
   258   }
   259   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   260   if (need_tmp_reg) {
   261     pop(tmp_reg);
   262   }
   263   // If the biasing toward our thread failed, then another thread
   264   // succeeded in biasing it toward itself and we need to revoke that
   265   // bias. The revocation will occur in the runtime in the slow case.
   266   if (counters != NULL) {
   267     cond_inc32(Assembler::zero,
   268                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
   269   }
   270   if (slow_case != NULL) {
   271     jcc(Assembler::notZero, *slow_case);
   272   }
   273   jmp(done);
   275   bind(try_revoke_bias);
   276   // The prototype mark in the klass doesn't have the bias bit set any
   277   // more, indicating that objects of this data type are not supposed
   278   // to be biased any more. We are going to try to reset the mark of
   279   // this object to the prototype value and fall through to the
   280   // CAS-based locking scheme. Note that if our CAS fails, it means
   281   // that another thread raced us for the privilege of revoking the
   282   // bias of this particular object, so it's okay to continue in the
   283   // normal locking code.
   284   //
   285   // FIXME: due to a lack of registers we currently blow away the age
   286   // bits in this situation. Should attempt to preserve them.
   287   movl(swap_reg, saved_mark_addr);
   288   if (need_tmp_reg) {
   289     push(tmp_reg);
   290   }
   291   movl(tmp_reg, klass_addr);
   292   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   293   if (os::is_MP()) {
   294     lock();
   295   }
   296   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   297   if (need_tmp_reg) {
   298     pop(tmp_reg);
   299   }
   300   // Fall through to the normal CAS-based lock, because no matter what
   301   // the result of the above CAS, some thread must have succeeded in
   302   // removing the bias bit from the object's header.
   303   if (counters != NULL) {
   304     cond_inc32(Assembler::zero,
   305                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
   306   }
   308   bind(cas_label);
   310   return null_check_offset;
   311 }
   312 void MacroAssembler::call_VM_leaf_base(address entry_point,
   313                                        int number_of_arguments) {
   314   call(RuntimeAddress(entry_point));
   315   increment(rsp, number_of_arguments * wordSize);
   316 }
   318 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   319   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   320 }
   322 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   323   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   324 }
   326 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   327   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   328 }
   330 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   331   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   332 }
   334 void MacroAssembler::extend_sign(Register hi, Register lo) {
   335   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   336   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   337     cdql();
   338   } else {
   339     movl(hi, lo);
   340     sarl(hi, 31);
   341   }
   342 }
   344 void MacroAssembler::jC2(Register tmp, Label& L) {
   345   // set parity bit if FPU flag C2 is set (via rax)
   346   save_rax(tmp);
   347   fwait(); fnstsw_ax();
   348   sahf();
   349   restore_rax(tmp);
   350   // branch
   351   jcc(Assembler::parity, L);
   352 }
   354 void MacroAssembler::jnC2(Register tmp, Label& L) {
   355   // set parity bit if FPU flag C2 is set (via rax)
   356   save_rax(tmp);
   357   fwait(); fnstsw_ax();
   358   sahf();
   359   restore_rax(tmp);
   360   // branch
   361   jcc(Assembler::noParity, L);
   362 }
   364 // 32bit can do a case table jump in one instruction but we no longer allow the base
   365 // to be installed in the Address class
   366 void MacroAssembler::jump(ArrayAddress entry) {
   367   jmp(as_Address(entry));
   368 }
   370 // Note: y_lo will be destroyed
   371 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   372   // Long compare for Java (semantics as described in JVM spec.)
   373   Label high, low, done;
   375   cmpl(x_hi, y_hi);
   376   jcc(Assembler::less, low);
   377   jcc(Assembler::greater, high);
   378   // x_hi is the return register
   379   xorl(x_hi, x_hi);
   380   cmpl(x_lo, y_lo);
   381   jcc(Assembler::below, low);
   382   jcc(Assembler::equal, done);
   384   bind(high);
   385   xorl(x_hi, x_hi);
   386   increment(x_hi);
   387   jmp(done);
   389   bind(low);
   390   xorl(x_hi, x_hi);
   391   decrementl(x_hi);
   393   bind(done);
   394 }
   396 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   397     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   398 }
   400 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   401   // leal(dst, as_Address(adr));
   402   // see note in movl as to why we must use a move
   403   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   404 }
   406 void MacroAssembler::leave() {
   407   mov(rsp, rbp);
   408   pop(rbp);
   409 }
   411 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   412   // Multiplication of two Java long values stored on the stack
   413   // as illustrated below. Result is in rdx:rax.
   414   //
   415   // rsp ---> [  ??  ] \               \
   416   //            ....    | y_rsp_offset  |
   417   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   418   //          [ y_hi ]                  | (in bytes)
   419   //            ....                    |
   420   //          [ x_lo ]                 /
   421   //          [ x_hi ]
   422   //            ....
   423   //
   424   // Basic idea: lo(result) = lo(x_lo * y_lo)
   425   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   426   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   427   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   428   Label quick;
   429   // load x_hi, y_hi and check if quick
   430   // multiplication is possible
   431   movl(rbx, x_hi);
   432   movl(rcx, y_hi);
   433   movl(rax, rbx);
   434   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   435   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   436   // do full multiplication
   437   // 1st step
   438   mull(y_lo);                                    // x_hi * y_lo
   439   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   440   // 2nd step
   441   movl(rax, x_lo);
   442   mull(rcx);                                     // x_lo * y_hi
   443   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   444   // 3rd step
   445   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   446   movl(rax, x_lo);
   447   mull(y_lo);                                    // x_lo * y_lo
   448   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   449 }
   451 void MacroAssembler::lneg(Register hi, Register lo) {
   452   negl(lo);
   453   adcl(hi, 0);
   454   negl(hi);
   455 }
   457 void MacroAssembler::lshl(Register hi, Register lo) {
   458   // Java shift left long support (semantics as described in JVM spec., p.305)
   459   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   460   // shift value is in rcx !
   461   assert(hi != rcx, "must not use rcx");
   462   assert(lo != rcx, "must not use rcx");
   463   const Register s = rcx;                        // shift count
   464   const int      n = BitsPerWord;
   465   Label L;
   466   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   467   cmpl(s, n);                                    // if (s < n)
   468   jcc(Assembler::less, L);                       // else (s >= n)
   469   movl(hi, lo);                                  // x := x << n
   470   xorl(lo, lo);
   471   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   472   bind(L);                                       // s (mod n) < n
   473   shldl(hi, lo);                                 // x := x << s
   474   shll(lo);
   475 }
   478 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   479   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   480   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   481   assert(hi != rcx, "must not use rcx");
   482   assert(lo != rcx, "must not use rcx");
   483   const Register s = rcx;                        // shift count
   484   const int      n = BitsPerWord;
   485   Label L;
   486   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   487   cmpl(s, n);                                    // if (s < n)
   488   jcc(Assembler::less, L);                       // else (s >= n)
   489   movl(lo, hi);                                  // x := x >> n
   490   if (sign_extension) sarl(hi, 31);
   491   else                xorl(hi, hi);
   492   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   493   bind(L);                                       // s (mod n) < n
   494   shrdl(lo, hi);                                 // x := x >> s
   495   if (sign_extension) sarl(hi);
   496   else                shrl(hi);
   497 }
   499 void MacroAssembler::movoop(Register dst, jobject obj) {
   500   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   501 }
   503 void MacroAssembler::movoop(Address dst, jobject obj) {
   504   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   505 }
   507 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   508   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   509 }
   511 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   512   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   513 }
   515 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
   516   if (src.is_lval()) {
   517     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   518   } else {
   519     movl(dst, as_Address(src));
   520   }
   521 }
   523 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   524   movl(as_Address(dst), src);
   525 }
   527 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   528   movl(dst, as_Address(src));
   529 }
   531 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   532 void MacroAssembler::movptr(Address dst, intptr_t src) {
   533   movl(dst, src);
   534 }
   537 void MacroAssembler::pop_callee_saved_registers() {
   538   pop(rcx);
   539   pop(rdx);
   540   pop(rdi);
   541   pop(rsi);
   542 }
   544 void MacroAssembler::pop_fTOS() {
   545   fld_d(Address(rsp, 0));
   546   addl(rsp, 2 * wordSize);
   547 }
   549 void MacroAssembler::push_callee_saved_registers() {
   550   push(rsi);
   551   push(rdi);
   552   push(rdx);
   553   push(rcx);
   554 }
   556 void MacroAssembler::push_fTOS() {
   557   subl(rsp, 2 * wordSize);
   558   fstp_d(Address(rsp, 0));
   559 }
   562 void MacroAssembler::pushoop(jobject obj) {
   563   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   564 }
   566 void MacroAssembler::pushklass(Metadata* obj) {
   567   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   568 }
   570 void MacroAssembler::pushptr(AddressLiteral src) {
   571   if (src.is_lval()) {
   572     push_literal32((int32_t)src.target(), src.rspec());
   573   } else {
   574     pushl(as_Address(src));
   575   }
   576 }
   578 void MacroAssembler::set_word_if_not_zero(Register dst) {
   579   xorl(dst, dst);
   580   set_byte_if_not_zero(dst);
   581 }
   583 static void pass_arg0(MacroAssembler* masm, Register arg) {
   584   masm->push(arg);
   585 }
   587 static void pass_arg1(MacroAssembler* masm, Register arg) {
   588   masm->push(arg);
   589 }
   591 static void pass_arg2(MacroAssembler* masm, Register arg) {
   592   masm->push(arg);
   593 }
   595 static void pass_arg3(MacroAssembler* masm, Register arg) {
   596   masm->push(arg);
   597 }
   599 #ifndef PRODUCT
   600 extern "C" void findpc(intptr_t x);
   601 #endif
   603 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   604   // In order to get locks to work, we need to fake a in_VM state
   605   JavaThread* thread = JavaThread::current();
   606   JavaThreadState saved_state = thread->thread_state();
   607   thread->set_thread_state(_thread_in_vm);
   608   if (ShowMessageBoxOnError) {
   609     JavaThread* thread = JavaThread::current();
   610     JavaThreadState saved_state = thread->thread_state();
   611     thread->set_thread_state(_thread_in_vm);
   612     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   613       ttyLocker ttyl;
   614       BytecodeCounter::print();
   615     }
   616     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   617     // This is the value of eip which points to where verify_oop will return.
   618     if (os::message_box(msg, "Execution stopped, print registers?")) {
   619       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   620       BREAKPOINT;
   621     }
   622   } else {
   623     ttyLocker ttyl;
   624     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   625   }
   626   // Don't assert holding the ttyLock
   627     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   628   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   629 }
   631 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   632   ttyLocker ttyl;
   633   FlagSetting fs(Debugging, true);
   634   tty->print_cr("eip = 0x%08x", eip);
   635 #ifndef PRODUCT
   636   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   637     tty->cr();
   638     findpc(eip);
   639     tty->cr();
   640   }
   641 #endif
   642 #define PRINT_REG(rax) \
   643   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   644   PRINT_REG(rax);
   645   PRINT_REG(rbx);
   646   PRINT_REG(rcx);
   647   PRINT_REG(rdx);
   648   PRINT_REG(rdi);
   649   PRINT_REG(rsi);
   650   PRINT_REG(rbp);
   651   PRINT_REG(rsp);
   652 #undef PRINT_REG
   653   // Print some words near top of staack.
   654   int* dump_sp = (int*) rsp;
   655   for (int col1 = 0; col1 < 8; col1++) {
   656     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   657     os::print_location(tty, *dump_sp++);
   658   }
   659   for (int row = 0; row < 16; row++) {
   660     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   661     for (int col = 0; col < 8; col++) {
   662       tty->print(" 0x%08x", *dump_sp++);
   663     }
   664     tty->cr();
   665   }
   666   // Print some instructions around pc:
   667   Disassembler::decode((address)eip-64, (address)eip);
   668   tty->print_cr("--------");
   669   Disassembler::decode((address)eip, (address)eip+32);
   670 }
   672 void MacroAssembler::stop(const char* msg) {
   673   ExternalAddress message((address)msg);
   674   // push address of message
   675   pushptr(message.addr());
   676   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   677   pusha();                                            // push registers
   678   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   679   hlt();
   680 }
   682 void MacroAssembler::warn(const char* msg) {
   683   push_CPU_state();
   685   ExternalAddress message((address) msg);
   686   // push address of message
   687   pushptr(message.addr());
   689   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   690   addl(rsp, wordSize);       // discard argument
   691   pop_CPU_state();
   692 }
   694 void MacroAssembler::print_state() {
   695   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   696   pusha();                                            // push registers
   698   push_CPU_state();
   699   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   700   pop_CPU_state();
   702   popa();
   703   addl(rsp, wordSize);
   704 }
   706 #else // _LP64
   708 // 64 bit versions
   710 Address MacroAssembler::as_Address(AddressLiteral adr) {
   711   // amd64 always does this as a pc-rel
   712   // we can be absolute or disp based on the instruction type
   713   // jmp/call are displacements others are absolute
   714   assert(!adr.is_lval(), "must be rval");
   715   assert(reachable(adr), "must be");
   716   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   718 }
   720 Address MacroAssembler::as_Address(ArrayAddress adr) {
   721   AddressLiteral base = adr.base();
   722   lea(rscratch1, base);
   723   Address index = adr.index();
   724   assert(index._disp == 0, "must not have disp"); // maybe it can?
   725   Address array(rscratch1, index._index, index._scale, index._disp);
   726   return array;
   727 }
   729 int MacroAssembler::biased_locking_enter(Register lock_reg,
   730                                          Register obj_reg,
   731                                          Register swap_reg,
   732                                          Register tmp_reg,
   733                                          bool swap_reg_contains_mark,
   734                                          Label& done,
   735                                          Label* slow_case,
   736                                          BiasedLockingCounters* counters) {
   737   assert(UseBiasedLocking, "why call this otherwise?");
   738   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
   739   assert(tmp_reg != noreg, "tmp_reg must be supplied");
   740   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   741   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   742   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   743   Address saved_mark_addr(lock_reg, 0);
   745   if (PrintBiasedLockingStatistics && counters == NULL)
   746     counters = BiasedLocking::counters();
   748   // Biased locking
   749   // See whether the lock is currently biased toward our thread and
   750   // whether the epoch is still valid
   751   // Note that the runtime guarantees sufficient alignment of JavaThread
   752   // pointers to allow age to be placed into low bits
   753   // First check to see whether biasing is even enabled for this object
   754   Label cas_label;
   755   int null_check_offset = -1;
   756   if (!swap_reg_contains_mark) {
   757     null_check_offset = offset();
   758     movq(swap_reg, mark_addr);
   759   }
   760   movq(tmp_reg, swap_reg);
   761   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   762   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
   763   jcc(Assembler::notEqual, cas_label);
   764   // The bias pattern is present in the object's header. Need to check
   765   // whether the bias owner and the epoch are both still current.
   766   load_prototype_header(tmp_reg, obj_reg);
   767   orq(tmp_reg, r15_thread);
   768   xorq(tmp_reg, swap_reg);
   769   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
   770   if (counters != NULL) {
   771     cond_inc32(Assembler::zero,
   772                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   773   }
   774   jcc(Assembler::equal, done);
   776   Label try_revoke_bias;
   777   Label try_rebias;
   779   // At this point we know that the header has the bias pattern and
   780   // that we are not the bias owner in the current epoch. We need to
   781   // figure out more details about the state of the header in order to
   782   // know what operations can be legally performed on the object's
   783   // header.
   785   // If the low three bits in the xor result aren't clear, that means
   786   // the prototype header is no longer biased and we have to revoke
   787   // the bias on this object.
   788   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   789   jcc(Assembler::notZero, try_revoke_bias);
   791   // Biasing is still enabled for this data type. See whether the
   792   // epoch of the current bias is still valid, meaning that the epoch
   793   // bits of the mark word are equal to the epoch bits of the
   794   // prototype header. (Note that the prototype header's epoch bits
   795   // only change at a safepoint.) If not, attempt to rebias the object
   796   // toward the current thread. Note that we must be absolutely sure
   797   // that the current epoch is invalid in order to do this because
   798   // otherwise the manipulations it performs on the mark word are
   799   // illegal.
   800   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
   801   jcc(Assembler::notZero, try_rebias);
   803   // The epoch of the current bias is still valid but we know nothing
   804   // about the owner; it might be set or it might be clear. Try to
   805   // acquire the bias of the object using an atomic operation. If this
   806   // fails we will go in to the runtime to revoke the object's bias.
   807   // Note that we first construct the presumed unbiased header so we
   808   // don't accidentally blow away another thread's valid bias.
   809   andq(swap_reg,
   810        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   811   movq(tmp_reg, swap_reg);
   812   orq(tmp_reg, r15_thread);
   813   if (os::is_MP()) {
   814     lock();
   815   }
   816   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   817   // If the biasing toward our thread failed, this means that
   818   // another thread succeeded in biasing it toward itself and we
   819   // need to revoke that bias. The revocation will occur in the
   820   // interpreter runtime in the slow case.
   821   if (counters != NULL) {
   822     cond_inc32(Assembler::zero,
   823                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   824   }
   825   if (slow_case != NULL) {
   826     jcc(Assembler::notZero, *slow_case);
   827   }
   828   jmp(done);
   830   bind(try_rebias);
   831   // At this point we know the epoch has expired, meaning that the
   832   // current "bias owner", if any, is actually invalid. Under these
   833   // circumstances _only_, we are allowed to use the current header's
   834   // value as the comparison value when doing the cas to acquire the
   835   // bias in the current epoch. In other words, we allow transfer of
   836   // the bias from one thread to another directly in this situation.
   837   //
   838   // FIXME: due to a lack of registers we currently blow away the age
   839   // bits in this situation. Should attempt to preserve them.
   840   load_prototype_header(tmp_reg, obj_reg);
   841   orq(tmp_reg, r15_thread);
   842   if (os::is_MP()) {
   843     lock();
   844   }
   845   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   846   // If the biasing toward our thread failed, then another thread
   847   // succeeded in biasing it toward itself and we need to revoke that
   848   // bias. The revocation will occur in the runtime in the slow case.
   849   if (counters != NULL) {
   850     cond_inc32(Assembler::zero,
   851                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
   852   }
   853   if (slow_case != NULL) {
   854     jcc(Assembler::notZero, *slow_case);
   855   }
   856   jmp(done);
   858   bind(try_revoke_bias);
   859   // The prototype mark in the klass doesn't have the bias bit set any
   860   // more, indicating that objects of this data type are not supposed
   861   // to be biased any more. We are going to try to reset the mark of
   862   // this object to the prototype value and fall through to the
   863   // CAS-based locking scheme. Note that if our CAS fails, it means
   864   // that another thread raced us for the privilege of revoking the
   865   // bias of this particular object, so it's okay to continue in the
   866   // normal locking code.
   867   //
   868   // FIXME: due to a lack of registers we currently blow away the age
   869   // bits in this situation. Should attempt to preserve them.
   870   load_prototype_header(tmp_reg, obj_reg);
   871   if (os::is_MP()) {
   872     lock();
   873   }
   874   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   875   // Fall through to the normal CAS-based lock, because no matter what
   876   // the result of the above CAS, some thread must have succeeded in
   877   // removing the bias bit from the object's header.
   878   if (counters != NULL) {
   879     cond_inc32(Assembler::zero,
   880                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
   881   }
   883   bind(cas_label);
   885   return null_check_offset;
   886 }
   888 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   889   Label L, E;
   891 #ifdef _WIN64
   892   // Windows always allocates space for it's register args
   893   assert(num_args <= 4, "only register arguments supported");
   894   subq(rsp,  frame::arg_reg_save_area_bytes);
   895 #endif
   897   // Align stack if necessary
   898   testl(rsp, 15);
   899   jcc(Assembler::zero, L);
   901   subq(rsp, 8);
   902   {
   903     call(RuntimeAddress(entry_point));
   904   }
   905   addq(rsp, 8);
   906   jmp(E);
   908   bind(L);
   909   {
   910     call(RuntimeAddress(entry_point));
   911   }
   913   bind(E);
   915 #ifdef _WIN64
   916   // restore stack pointer
   917   addq(rsp, frame::arg_reg_save_area_bytes);
   918 #endif
   920 }
   922 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   923   assert(!src2.is_lval(), "should use cmpptr");
   925   if (reachable(src2)) {
   926     cmpq(src1, as_Address(src2));
   927   } else {
   928     lea(rscratch1, src2);
   929     Assembler::cmpq(src1, Address(rscratch1, 0));
   930   }
   931 }
   933 int MacroAssembler::corrected_idivq(Register reg) {
   934   // Full implementation of Java ldiv and lrem; checks for special
   935   // case as described in JVM spec., p.243 & p.271.  The function
   936   // returns the (pc) offset of the idivl instruction - may be needed
   937   // for implicit exceptions.
   938   //
   939   //         normal case                           special case
   940   //
   941   // input : rax: dividend                         min_long
   942   //         reg: divisor   (may not be eax/edx)   -1
   943   //
   944   // output: rax: quotient  (= rax idiv reg)       min_long
   945   //         rdx: remainder (= rax irem reg)       0
   946   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   947   static const int64_t min_long = 0x8000000000000000;
   948   Label normal_case, special_case;
   950   // check for special case
   951   cmp64(rax, ExternalAddress((address) &min_long));
   952   jcc(Assembler::notEqual, normal_case);
   953   xorl(rdx, rdx); // prepare rdx for possible special case (where
   954                   // remainder = 0)
   955   cmpq(reg, -1);
   956   jcc(Assembler::equal, special_case);
   958   // handle normal case
   959   bind(normal_case);
   960   cdqq();
   961   int idivq_offset = offset();
   962   idivq(reg);
   964   // normal and special case exit
   965   bind(special_case);
   967   return idivq_offset;
   968 }
   970 void MacroAssembler::decrementq(Register reg, int value) {
   971   if (value == min_jint) { subq(reg, value); return; }
   972   if (value <  0) { incrementq(reg, -value); return; }
   973   if (value == 0) {                        ; return; }
   974   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   975   /* else */      { subq(reg, value)       ; return; }
   976 }
   978 void MacroAssembler::decrementq(Address dst, int value) {
   979   if (value == min_jint) { subq(dst, value); return; }
   980   if (value <  0) { incrementq(dst, -value); return; }
   981   if (value == 0) {                        ; return; }
   982   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   983   /* else */      { subq(dst, value)       ; return; }
   984 }
   986 void MacroAssembler::incrementq(Register reg, int value) {
   987   if (value == min_jint) { addq(reg, value); return; }
   988   if (value <  0) { decrementq(reg, -value); return; }
   989   if (value == 0) {                        ; return; }
   990   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   991   /* else */      { addq(reg, value)       ; return; }
   992 }
   994 void MacroAssembler::incrementq(Address dst, int value) {
   995   if (value == min_jint) { addq(dst, value); return; }
   996   if (value <  0) { decrementq(dst, -value); return; }
   997   if (value == 0) {                        ; return; }
   998   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   999   /* else */      { addq(dst, value)       ; return; }
  1002 // 32bit can do a case table jump in one instruction but we no longer allow the base
  1003 // to be installed in the Address class
  1004 void MacroAssembler::jump(ArrayAddress entry) {
  1005   lea(rscratch1, entry.base());
  1006   Address dispatch = entry.index();
  1007   assert(dispatch._base == noreg, "must be");
  1008   dispatch._base = rscratch1;
  1009   jmp(dispatch);
  1012 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  1013   ShouldNotReachHere(); // 64bit doesn't use two regs
  1014   cmpq(x_lo, y_lo);
  1017 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  1018     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1021 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  1022   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  1023   movptr(dst, rscratch1);
  1026 void MacroAssembler::leave() {
  1027   // %%% is this really better? Why not on 32bit too?
  1028   emit_int8((unsigned char)0xC9); // LEAVE
  1031 void MacroAssembler::lneg(Register hi, Register lo) {
  1032   ShouldNotReachHere(); // 64bit doesn't use two regs
  1033   negq(lo);
  1036 void MacroAssembler::movoop(Register dst, jobject obj) {
  1037   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1040 void MacroAssembler::movoop(Address dst, jobject obj) {
  1041   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1042   movq(dst, rscratch1);
  1045 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  1046   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1049 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  1050   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1051   movq(dst, rscratch1);
  1054 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  1055   if (src.is_lval()) {
  1056     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1057   } else {
  1058     if (reachable(src)) {
  1059       movq(dst, as_Address(src));
  1060     } else {
  1061       lea(rscratch1, src);
  1062       movq(dst, Address(rscratch1,0));
  1067 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  1068   movq(as_Address(dst), src);
  1071 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  1072   movq(dst, as_Address(src));
  1075 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  1076 void MacroAssembler::movptr(Address dst, intptr_t src) {
  1077   mov64(rscratch1, src);
  1078   movq(dst, rscratch1);
  1081 // These are mostly for initializing NULL
  1082 void MacroAssembler::movptr(Address dst, int32_t src) {
  1083   movslq(dst, src);
  1086 void MacroAssembler::movptr(Register dst, int32_t src) {
  1087   mov64(dst, (intptr_t)src);
  1090 void MacroAssembler::pushoop(jobject obj) {
  1091   movoop(rscratch1, obj);
  1092   push(rscratch1);
  1095 void MacroAssembler::pushklass(Metadata* obj) {
  1096   mov_metadata(rscratch1, obj);
  1097   push(rscratch1);
  1100 void MacroAssembler::pushptr(AddressLiteral src) {
  1101   lea(rscratch1, src);
  1102   if (src.is_lval()) {
  1103     push(rscratch1);
  1104   } else {
  1105     pushq(Address(rscratch1, 0));
  1109 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1110                                            bool clear_pc) {
  1111   // we must set sp to zero to clear frame
  1112   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  1113   // must clear fp, so that compiled frames are not confused; it is
  1114   // possible that we need it only for debugging
  1115   if (clear_fp) {
  1116     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  1119   if (clear_pc) {
  1120     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  1124 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1125                                          Register last_java_fp,
  1126                                          address  last_java_pc) {
  1127   // determine last_java_sp register
  1128   if (!last_java_sp->is_valid()) {
  1129     last_java_sp = rsp;
  1132   // last_java_fp is optional
  1133   if (last_java_fp->is_valid()) {
  1134     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  1135            last_java_fp);
  1138   // last_java_pc is optional
  1139   if (last_java_pc != NULL) {
  1140     Address java_pc(r15_thread,
  1141                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1142     lea(rscratch1, InternalAddress(last_java_pc));
  1143     movptr(java_pc, rscratch1);
  1146   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  1149 static void pass_arg0(MacroAssembler* masm, Register arg) {
  1150   if (c_rarg0 != arg ) {
  1151     masm->mov(c_rarg0, arg);
  1155 static void pass_arg1(MacroAssembler* masm, Register arg) {
  1156   if (c_rarg1 != arg ) {
  1157     masm->mov(c_rarg1, arg);
  1161 static void pass_arg2(MacroAssembler* masm, Register arg) {
  1162   if (c_rarg2 != arg ) {
  1163     masm->mov(c_rarg2, arg);
  1167 static void pass_arg3(MacroAssembler* masm, Register arg) {
  1168   if (c_rarg3 != arg ) {
  1169     masm->mov(c_rarg3, arg);
  1173 void MacroAssembler::stop(const char* msg) {
  1174   address rip = pc();
  1175   pusha(); // get regs on stack
  1176   lea(c_rarg0, ExternalAddress((address) msg));
  1177   lea(c_rarg1, InternalAddress(rip));
  1178   movq(c_rarg2, rsp); // pass pointer to regs array
  1179   andq(rsp, -16); // align stack as required by ABI
  1180   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1181   hlt();
  1184 void MacroAssembler::warn(const char* msg) {
  1185   push(rbp);
  1186   movq(rbp, rsp);
  1187   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1188   push_CPU_state();   // keeps alignment at 16 bytes
  1189   lea(c_rarg0, ExternalAddress((address) msg));
  1190   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  1191   pop_CPU_state();
  1192   mov(rsp, rbp);
  1193   pop(rbp);
  1196 void MacroAssembler::print_state() {
  1197   address rip = pc();
  1198   pusha();            // get regs on stack
  1199   push(rbp);
  1200   movq(rbp, rsp);
  1201   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1202   push_CPU_state();   // keeps alignment at 16 bytes
  1204   lea(c_rarg0, InternalAddress(rip));
  1205   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  1206   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  1208   pop_CPU_state();
  1209   mov(rsp, rbp);
  1210   pop(rbp);
  1211   popa();
  1214 #ifndef PRODUCT
  1215 extern "C" void findpc(intptr_t x);
  1216 #endif
  1218 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  1219   // In order to get locks to work, we need to fake a in_VM state
  1220   if (ShowMessageBoxOnError) {
  1221     JavaThread* thread = JavaThread::current();
  1222     JavaThreadState saved_state = thread->thread_state();
  1223     thread->set_thread_state(_thread_in_vm);
  1224 #ifndef PRODUCT
  1225     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1226       ttyLocker ttyl;
  1227       BytecodeCounter::print();
  1229 #endif
  1230     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  1231     // XXX correct this offset for amd64
  1232     // This is the value of eip which points to where verify_oop will return.
  1233     if (os::message_box(msg, "Execution stopped, print registers?")) {
  1234       print_state64(pc, regs);
  1235       BREAKPOINT;
  1236       assert(false, "start up GDB");
  1238     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  1239   } else {
  1240     ttyLocker ttyl;
  1241     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  1242                     msg);
  1243     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1247 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  1248   ttyLocker ttyl;
  1249   FlagSetting fs(Debugging, true);
  1250   tty->print_cr("rip = 0x%016lx", pc);
  1251 #ifndef PRODUCT
  1252   tty->cr();
  1253   findpc(pc);
  1254   tty->cr();
  1255 #endif
  1256 #define PRINT_REG(rax, value) \
  1257   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  1258   PRINT_REG(rax, regs[15]);
  1259   PRINT_REG(rbx, regs[12]);
  1260   PRINT_REG(rcx, regs[14]);
  1261   PRINT_REG(rdx, regs[13]);
  1262   PRINT_REG(rdi, regs[8]);
  1263   PRINT_REG(rsi, regs[9]);
  1264   PRINT_REG(rbp, regs[10]);
  1265   PRINT_REG(rsp, regs[11]);
  1266   PRINT_REG(r8 , regs[7]);
  1267   PRINT_REG(r9 , regs[6]);
  1268   PRINT_REG(r10, regs[5]);
  1269   PRINT_REG(r11, regs[4]);
  1270   PRINT_REG(r12, regs[3]);
  1271   PRINT_REG(r13, regs[2]);
  1272   PRINT_REG(r14, regs[1]);
  1273   PRINT_REG(r15, regs[0]);
  1274 #undef PRINT_REG
  1275   // Print some words near top of staack.
  1276   int64_t* rsp = (int64_t*) regs[11];
  1277   int64_t* dump_sp = rsp;
  1278   for (int col1 = 0; col1 < 8; col1++) {
  1279     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1280     os::print_location(tty, *dump_sp++);
  1282   for (int row = 0; row < 25; row++) {
  1283     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1284     for (int col = 0; col < 4; col++) {
  1285       tty->print(" 0x%016lx", *dump_sp++);
  1287     tty->cr();
  1289   // Print some instructions around pc:
  1290   Disassembler::decode((address)pc-64, (address)pc);
  1291   tty->print_cr("--------");
  1292   Disassembler::decode((address)pc, (address)pc+32);
  1295 #endif // _LP64
  1297 // Now versions that are common to 32/64 bit
  1299 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  1300   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  1303 void MacroAssembler::addptr(Register dst, Register src) {
  1304   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1307 void MacroAssembler::addptr(Address dst, Register src) {
  1308   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1311 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  1312   if (reachable(src)) {
  1313     Assembler::addsd(dst, as_Address(src));
  1314   } else {
  1315     lea(rscratch1, src);
  1316     Assembler::addsd(dst, Address(rscratch1, 0));
  1320 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  1321   if (reachable(src)) {
  1322     addss(dst, as_Address(src));
  1323   } else {
  1324     lea(rscratch1, src);
  1325     addss(dst, Address(rscratch1, 0));
  1329 void MacroAssembler::align(int modulus) {
  1330   if (offset() % modulus != 0) {
  1331     nop(modulus - (offset() % modulus));
  1335 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  1336   // Used in sign-masking with aligned address.
  1337   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1338   if (reachable(src)) {
  1339     Assembler::andpd(dst, as_Address(src));
  1340   } else {
  1341     lea(rscratch1, src);
  1342     Assembler::andpd(dst, Address(rscratch1, 0));
  1346 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  1347   // Used in sign-masking with aligned address.
  1348   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1349   if (reachable(src)) {
  1350     Assembler::andps(dst, as_Address(src));
  1351   } else {
  1352     lea(rscratch1, src);
  1353     Assembler::andps(dst, Address(rscratch1, 0));
  1357 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  1358   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1361 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  1362   pushf();
  1363   if (os::is_MP())
  1364     lock();
  1365   incrementl(counter_addr);
  1366   popf();
  1369 // Writes to stack successive pages until offset reached to check for
  1370 // stack overflow + shadow pages.  This clobbers tmp.
  1371 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1372   movptr(tmp, rsp);
  1373   // Bang stack for total size given plus shadow page size.
  1374   // Bang one page at a time because large size can bang beyond yellow and
  1375   // red zones.
  1376   Label loop;
  1377   bind(loop);
  1378   movl(Address(tmp, (-os::vm_page_size())), size );
  1379   subptr(tmp, os::vm_page_size());
  1380   subl(size, os::vm_page_size());
  1381   jcc(Assembler::greater, loop);
  1383   // Bang down shadow pages too.
  1384   // The -1 because we already subtracted 1 page.
  1385   for (int i = 0; i< StackShadowPages-1; i++) {
  1386     // this could be any sized move but this is can be a debugging crumb
  1387     // so the bigger the better.
  1388     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1392 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1393   assert(UseBiasedLocking, "why call this otherwise?");
  1395   // Check for biased locking unlock case, which is a no-op
  1396   // Note: we do not have to check the thread ID for two reasons.
  1397   // First, the interpreter checks for IllegalMonitorStateException at
  1398   // a higher level. Second, if the bias was revoked while we held the
  1399   // lock, the object could not be rebiased toward another thread, so
  1400   // the bias bit would be clear.
  1401   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1402   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1403   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1404   jcc(Assembler::equal, done);
  1407 void MacroAssembler::c2bool(Register x) {
  1408   // implements x == 0 ? 0 : 1
  1409   // note: must only look at least-significant byte of x
  1410   //       since C-style booleans are stored in one byte
  1411   //       only! (was bug)
  1412   andl(x, 0xFF);
  1413   setb(Assembler::notZero, x);
  1416 // Wouldn't need if AddressLiteral version had new name
  1417 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  1418   Assembler::call(L, rtype);
  1421 void MacroAssembler::call(Register entry) {
  1422   Assembler::call(entry);
  1425 void MacroAssembler::call(AddressLiteral entry) {
  1426   if (reachable(entry)) {
  1427     Assembler::call_literal(entry.target(), entry.rspec());
  1428   } else {
  1429     lea(rscratch1, entry);
  1430     Assembler::call(rscratch1);
  1434 void MacroAssembler::ic_call(address entry) {
  1435   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  1436   movptr(rax, (intptr_t)Universe::non_oop_word());
  1437   call(AddressLiteral(entry, rh));
  1440 // Implementation of call_VM versions
  1442 void MacroAssembler::call_VM(Register oop_result,
  1443                              address entry_point,
  1444                              bool check_exceptions) {
  1445   Label C, E;
  1446   call(C, relocInfo::none);
  1447   jmp(E);
  1449   bind(C);
  1450   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1451   ret(0);
  1453   bind(E);
  1456 void MacroAssembler::call_VM(Register oop_result,
  1457                              address entry_point,
  1458                              Register arg_1,
  1459                              bool check_exceptions) {
  1460   Label C, E;
  1461   call(C, relocInfo::none);
  1462   jmp(E);
  1464   bind(C);
  1465   pass_arg1(this, arg_1);
  1466   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1467   ret(0);
  1469   bind(E);
  1472 void MacroAssembler::call_VM(Register oop_result,
  1473                              address entry_point,
  1474                              Register arg_1,
  1475                              Register arg_2,
  1476                              bool check_exceptions) {
  1477   Label C, E;
  1478   call(C, relocInfo::none);
  1479   jmp(E);
  1481   bind(C);
  1483   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1485   pass_arg2(this, arg_2);
  1486   pass_arg1(this, arg_1);
  1487   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1488   ret(0);
  1490   bind(E);
  1493 void MacroAssembler::call_VM(Register oop_result,
  1494                              address entry_point,
  1495                              Register arg_1,
  1496                              Register arg_2,
  1497                              Register arg_3,
  1498                              bool check_exceptions) {
  1499   Label C, E;
  1500   call(C, relocInfo::none);
  1501   jmp(E);
  1503   bind(C);
  1505   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1506   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1507   pass_arg3(this, arg_3);
  1509   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1510   pass_arg2(this, arg_2);
  1512   pass_arg1(this, arg_1);
  1513   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1514   ret(0);
  1516   bind(E);
  1519 void MacroAssembler::call_VM(Register oop_result,
  1520                              Register last_java_sp,
  1521                              address entry_point,
  1522                              int number_of_arguments,
  1523                              bool check_exceptions) {
  1524   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1525   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1528 void MacroAssembler::call_VM(Register oop_result,
  1529                              Register last_java_sp,
  1530                              address entry_point,
  1531                              Register arg_1,
  1532                              bool check_exceptions) {
  1533   pass_arg1(this, arg_1);
  1534   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1537 void MacroAssembler::call_VM(Register oop_result,
  1538                              Register last_java_sp,
  1539                              address entry_point,
  1540                              Register arg_1,
  1541                              Register arg_2,
  1542                              bool check_exceptions) {
  1544   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1545   pass_arg2(this, arg_2);
  1546   pass_arg1(this, arg_1);
  1547   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1550 void MacroAssembler::call_VM(Register oop_result,
  1551                              Register last_java_sp,
  1552                              address entry_point,
  1553                              Register arg_1,
  1554                              Register arg_2,
  1555                              Register arg_3,
  1556                              bool check_exceptions) {
  1557   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1558   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1559   pass_arg3(this, arg_3);
  1560   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1561   pass_arg2(this, arg_2);
  1562   pass_arg1(this, arg_1);
  1563   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1566 void MacroAssembler::super_call_VM(Register oop_result,
  1567                                    Register last_java_sp,
  1568                                    address entry_point,
  1569                                    int number_of_arguments,
  1570                                    bool check_exceptions) {
  1571   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1572   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1575 void MacroAssembler::super_call_VM(Register oop_result,
  1576                                    Register last_java_sp,
  1577                                    address entry_point,
  1578                                    Register arg_1,
  1579                                    bool check_exceptions) {
  1580   pass_arg1(this, arg_1);
  1581   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1584 void MacroAssembler::super_call_VM(Register oop_result,
  1585                                    Register last_java_sp,
  1586                                    address entry_point,
  1587                                    Register arg_1,
  1588                                    Register arg_2,
  1589                                    bool check_exceptions) {
  1591   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1592   pass_arg2(this, arg_2);
  1593   pass_arg1(this, arg_1);
  1594   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1597 void MacroAssembler::super_call_VM(Register oop_result,
  1598                                    Register last_java_sp,
  1599                                    address entry_point,
  1600                                    Register arg_1,
  1601                                    Register arg_2,
  1602                                    Register arg_3,
  1603                                    bool check_exceptions) {
  1604   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1605   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1606   pass_arg3(this, arg_3);
  1607   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1608   pass_arg2(this, arg_2);
  1609   pass_arg1(this, arg_1);
  1610   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1613 void MacroAssembler::call_VM_base(Register oop_result,
  1614                                   Register java_thread,
  1615                                   Register last_java_sp,
  1616                                   address  entry_point,
  1617                                   int      number_of_arguments,
  1618                                   bool     check_exceptions) {
  1619   // determine java_thread register
  1620   if (!java_thread->is_valid()) {
  1621 #ifdef _LP64
  1622     java_thread = r15_thread;
  1623 #else
  1624     java_thread = rdi;
  1625     get_thread(java_thread);
  1626 #endif // LP64
  1628   // determine last_java_sp register
  1629   if (!last_java_sp->is_valid()) {
  1630     last_java_sp = rsp;
  1632   // debugging support
  1633   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1634   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  1635 #ifdef ASSERT
  1636   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  1637   // r12 is the heapbase.
  1638   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  1639 #endif // ASSERT
  1641   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1642   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1644   // push java thread (becomes first argument of C function)
  1646   NOT_LP64(push(java_thread); number_of_arguments++);
  1647   LP64_ONLY(mov(c_rarg0, r15_thread));
  1649   // set last Java frame before call
  1650   assert(last_java_sp != rbp, "can't use ebp/rbp");
  1652   // Only interpreter should have to set fp
  1653   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  1655   // do the call, remove parameters
  1656   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  1658   // restore the thread (cannot use the pushed argument since arguments
  1659   // may be overwritten by C code generated by an optimizing compiler);
  1660   // however can use the register value directly if it is callee saved.
  1661   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  1662     // rdi & rsi (also r15) are callee saved -> nothing to do
  1663 #ifdef ASSERT
  1664     guarantee(java_thread != rax, "change this code");
  1665     push(rax);
  1666     { Label L;
  1667       get_thread(rax);
  1668       cmpptr(java_thread, rax);
  1669       jcc(Assembler::equal, L);
  1670       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  1671       bind(L);
  1673     pop(rax);
  1674 #endif
  1675   } else {
  1676     get_thread(java_thread);
  1678   // reset last Java frame
  1679   // Only interpreter should have to clear fp
  1680   reset_last_Java_frame(java_thread, true, false);
  1682 #ifndef CC_INTERP
  1683    // C++ interp handles this in the interpreter
  1684   check_and_handle_popframe(java_thread);
  1685   check_and_handle_earlyret(java_thread);
  1686 #endif /* CC_INTERP */
  1688   if (check_exceptions) {
  1689     // check for pending exceptions (java_thread is set upon return)
  1690     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1691 #ifndef _LP64
  1692     jump_cc(Assembler::notEqual,
  1693             RuntimeAddress(StubRoutines::forward_exception_entry()));
  1694 #else
  1695     // This used to conditionally jump to forward_exception however it is
  1696     // possible if we relocate that the branch will not reach. So we must jump
  1697     // around so we can always reach
  1699     Label ok;
  1700     jcc(Assembler::equal, ok);
  1701     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1702     bind(ok);
  1703 #endif // LP64
  1706   // get oop result if there is one and reset the value in the thread
  1707   if (oop_result->is_valid()) {
  1708     get_vm_result(oop_result, java_thread);
  1712 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1714   // Calculate the value for last_Java_sp
  1715   // somewhat subtle. call_VM does an intermediate call
  1716   // which places a return address on the stack just under the
  1717   // stack pointer as the user finsihed with it. This allows
  1718   // use to retrieve last_Java_pc from last_Java_sp[-1].
  1719   // On 32bit we then have to push additional args on the stack to accomplish
  1720   // the actual requested call. On 64bit call_VM only can use register args
  1721   // so the only extra space is the return address that call_VM created.
  1722   // This hopefully explains the calculations here.
  1724 #ifdef _LP64
  1725   // We've pushed one address, correct last_Java_sp
  1726   lea(rax, Address(rsp, wordSize));
  1727 #else
  1728   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  1729 #endif // LP64
  1731   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  1735 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1736   call_VM_leaf_base(entry_point, number_of_arguments);
  1739 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1740   pass_arg0(this, arg_0);
  1741   call_VM_leaf(entry_point, 1);
  1744 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1746   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1747   pass_arg1(this, arg_1);
  1748   pass_arg0(this, arg_0);
  1749   call_VM_leaf(entry_point, 2);
  1752 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1753   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1754   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1755   pass_arg2(this, arg_2);
  1756   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1757   pass_arg1(this, arg_1);
  1758   pass_arg0(this, arg_0);
  1759   call_VM_leaf(entry_point, 3);
  1762 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  1763   pass_arg0(this, arg_0);
  1764   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1767 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1769   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1770   pass_arg1(this, arg_1);
  1771   pass_arg0(this, arg_0);
  1772   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1775 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1776   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1777   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1778   pass_arg2(this, arg_2);
  1779   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1780   pass_arg1(this, arg_1);
  1781   pass_arg0(this, arg_0);
  1782   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1785 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  1786   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  1787   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1788   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1789   pass_arg3(this, arg_3);
  1790   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1791   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1792   pass_arg2(this, arg_2);
  1793   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1794   pass_arg1(this, arg_1);
  1795   pass_arg0(this, arg_0);
  1796   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  1799 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  1800   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  1801   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  1802   verify_oop(oop_result, "broken oop in call_VM_base");
  1805 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  1806   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  1807   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  1810 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1813 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1816 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  1817   if (reachable(src1)) {
  1818     cmpl(as_Address(src1), imm);
  1819   } else {
  1820     lea(rscratch1, src1);
  1821     cmpl(Address(rscratch1, 0), imm);
  1825 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  1826   assert(!src2.is_lval(), "use cmpptr");
  1827   if (reachable(src2)) {
  1828     cmpl(src1, as_Address(src2));
  1829   } else {
  1830     lea(rscratch1, src2);
  1831     cmpl(src1, Address(rscratch1, 0));
  1835 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  1836   Assembler::cmpl(src1, imm);
  1839 void MacroAssembler::cmp32(Register src1, Address src2) {
  1840   Assembler::cmpl(src1, src2);
  1843 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1844   ucomisd(opr1, opr2);
  1846   Label L;
  1847   if (unordered_is_less) {
  1848     movl(dst, -1);
  1849     jcc(Assembler::parity, L);
  1850     jcc(Assembler::below , L);
  1851     movl(dst, 0);
  1852     jcc(Assembler::equal , L);
  1853     increment(dst);
  1854   } else { // unordered is greater
  1855     movl(dst, 1);
  1856     jcc(Assembler::parity, L);
  1857     jcc(Assembler::above , L);
  1858     movl(dst, 0);
  1859     jcc(Assembler::equal , L);
  1860     decrementl(dst);
  1862   bind(L);
  1865 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1866   ucomiss(opr1, opr2);
  1868   Label L;
  1869   if (unordered_is_less) {
  1870     movl(dst, -1);
  1871     jcc(Assembler::parity, L);
  1872     jcc(Assembler::below , L);
  1873     movl(dst, 0);
  1874     jcc(Assembler::equal , L);
  1875     increment(dst);
  1876   } else { // unordered is greater
  1877     movl(dst, 1);
  1878     jcc(Assembler::parity, L);
  1879     jcc(Assembler::above , L);
  1880     movl(dst, 0);
  1881     jcc(Assembler::equal , L);
  1882     decrementl(dst);
  1884   bind(L);
  1888 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  1889   if (reachable(src1)) {
  1890     cmpb(as_Address(src1), imm);
  1891   } else {
  1892     lea(rscratch1, src1);
  1893     cmpb(Address(rscratch1, 0), imm);
  1897 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  1898 #ifdef _LP64
  1899   if (src2.is_lval()) {
  1900     movptr(rscratch1, src2);
  1901     Assembler::cmpq(src1, rscratch1);
  1902   } else if (reachable(src2)) {
  1903     cmpq(src1, as_Address(src2));
  1904   } else {
  1905     lea(rscratch1, src2);
  1906     Assembler::cmpq(src1, Address(rscratch1, 0));
  1908 #else
  1909   if (src2.is_lval()) {
  1910     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1911   } else {
  1912     cmpl(src1, as_Address(src2));
  1914 #endif // _LP64
  1917 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  1918   assert(src2.is_lval(), "not a mem-mem compare");
  1919 #ifdef _LP64
  1920   // moves src2's literal address
  1921   movptr(rscratch1, src2);
  1922   Assembler::cmpq(src1, rscratch1);
  1923 #else
  1924   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1925 #endif // _LP64
  1928 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  1929   if (reachable(adr)) {
  1930     if (os::is_MP())
  1931       lock();
  1932     cmpxchgptr(reg, as_Address(adr));
  1933   } else {
  1934     lea(rscratch1, adr);
  1935     if (os::is_MP())
  1936       lock();
  1937     cmpxchgptr(reg, Address(rscratch1, 0));
  1941 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  1942   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  1945 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  1946   if (reachable(src)) {
  1947     Assembler::comisd(dst, as_Address(src));
  1948   } else {
  1949     lea(rscratch1, src);
  1950     Assembler::comisd(dst, Address(rscratch1, 0));
  1954 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  1955   if (reachable(src)) {
  1956     Assembler::comiss(dst, as_Address(src));
  1957   } else {
  1958     lea(rscratch1, src);
  1959     Assembler::comiss(dst, Address(rscratch1, 0));
  1964 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  1965   Condition negated_cond = negate_condition(cond);
  1966   Label L;
  1967   jcc(negated_cond, L);
  1968   atomic_incl(counter_addr);
  1969   bind(L);
  1972 int MacroAssembler::corrected_idivl(Register reg) {
  1973   // Full implementation of Java idiv and irem; checks for
  1974   // special case as described in JVM spec., p.243 & p.271.
  1975   // The function returns the (pc) offset of the idivl
  1976   // instruction - may be needed for implicit exceptions.
  1977   //
  1978   //         normal case                           special case
  1979   //
  1980   // input : rax,: dividend                         min_int
  1981   //         reg: divisor   (may not be rax,/rdx)   -1
  1982   //
  1983   // output: rax,: quotient  (= rax, idiv reg)       min_int
  1984   //         rdx: remainder (= rax, irem reg)       0
  1985   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  1986   const int min_int = 0x80000000;
  1987   Label normal_case, special_case;
  1989   // check for special case
  1990   cmpl(rax, min_int);
  1991   jcc(Assembler::notEqual, normal_case);
  1992   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  1993   cmpl(reg, -1);
  1994   jcc(Assembler::equal, special_case);
  1996   // handle normal case
  1997   bind(normal_case);
  1998   cdql();
  1999   int idivl_offset = offset();
  2000   idivl(reg);
  2002   // normal and special case exit
  2003   bind(special_case);
  2005   return idivl_offset;
  2010 void MacroAssembler::decrementl(Register reg, int value) {
  2011   if (value == min_jint) {subl(reg, value) ; return; }
  2012   if (value <  0) { incrementl(reg, -value); return; }
  2013   if (value == 0) {                        ; return; }
  2014   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2015   /* else */      { subl(reg, value)       ; return; }
  2018 void MacroAssembler::decrementl(Address dst, int value) {
  2019   if (value == min_jint) {subl(dst, value) ; return; }
  2020   if (value <  0) { incrementl(dst, -value); return; }
  2021   if (value == 0) {                        ; return; }
  2022   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2023   /* else */      { subl(dst, value)       ; return; }
  2026 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2027   assert (shift_value > 0, "illegal shift value");
  2028   Label _is_positive;
  2029   testl (reg, reg);
  2030   jcc (Assembler::positive, _is_positive);
  2031   int offset = (1 << shift_value) - 1 ;
  2033   if (offset == 1) {
  2034     incrementl(reg);
  2035   } else {
  2036     addl(reg, offset);
  2039   bind (_is_positive);
  2040   sarl(reg, shift_value);
  2043 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2044   if (reachable(src)) {
  2045     Assembler::divsd(dst, as_Address(src));
  2046   } else {
  2047     lea(rscratch1, src);
  2048     Assembler::divsd(dst, Address(rscratch1, 0));
  2052 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2053   if (reachable(src)) {
  2054     Assembler::divss(dst, as_Address(src));
  2055   } else {
  2056     lea(rscratch1, src);
  2057     Assembler::divss(dst, Address(rscratch1, 0));
  2061 // !defined(COMPILER2) is because of stupid core builds
  2062 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2063 void MacroAssembler::empty_FPU_stack() {
  2064   if (VM_Version::supports_mmx()) {
  2065     emms();
  2066   } else {
  2067     for (int i = 8; i-- > 0; ) ffree(i);
  2070 #endif // !LP64 || C1 || !C2
  2073 // Defines obj, preserves var_size_in_bytes
  2074 void MacroAssembler::eden_allocate(Register obj,
  2075                                    Register var_size_in_bytes,
  2076                                    int con_size_in_bytes,
  2077                                    Register t1,
  2078                                    Label& slow_case) {
  2079   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2080   assert_different_registers(obj, var_size_in_bytes, t1);
  2081   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2082     jmp(slow_case);
  2083   } else {
  2084     Register end = t1;
  2085     Label retry;
  2086     bind(retry);
  2087     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2088     movptr(obj, heap_top);
  2089     if (var_size_in_bytes == noreg) {
  2090       lea(end, Address(obj, con_size_in_bytes));
  2091     } else {
  2092       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2094     // if end < obj then we wrapped around => object too long => slow case
  2095     cmpptr(end, obj);
  2096     jcc(Assembler::below, slow_case);
  2097     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2098     jcc(Assembler::above, slow_case);
  2099     // Compare obj with the top addr, and if still equal, store the new top addr in
  2100     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2101     // it otherwise. Use lock prefix for atomicity on MPs.
  2102     locked_cmpxchgptr(end, heap_top);
  2103     jcc(Assembler::notEqual, retry);
  2107 void MacroAssembler::enter() {
  2108   push(rbp);
  2109   mov(rbp, rsp);
  2112 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2113 void MacroAssembler::fat_nop() {
  2114   if (UseAddressNop) {
  2115     addr_nop_5();
  2116   } else {
  2117     emit_int8(0x26); // es:
  2118     emit_int8(0x2e); // cs:
  2119     emit_int8(0x64); // fs:
  2120     emit_int8(0x65); // gs:
  2121     emit_int8((unsigned char)0x90);
  2125 void MacroAssembler::fcmp(Register tmp) {
  2126   fcmp(tmp, 1, true, true);
  2129 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  2130   assert(!pop_right || pop_left, "usage error");
  2131   if (VM_Version::supports_cmov()) {
  2132     assert(tmp == noreg, "unneeded temp");
  2133     if (pop_left) {
  2134       fucomip(index);
  2135     } else {
  2136       fucomi(index);
  2138     if (pop_right) {
  2139       fpop();
  2141   } else {
  2142     assert(tmp != noreg, "need temp");
  2143     if (pop_left) {
  2144       if (pop_right) {
  2145         fcompp();
  2146       } else {
  2147         fcomp(index);
  2149     } else {
  2150       fcom(index);
  2152     // convert FPU condition into eflags condition via rax,
  2153     save_rax(tmp);
  2154     fwait(); fnstsw_ax();
  2155     sahf();
  2156     restore_rax(tmp);
  2158   // condition codes set as follows:
  2159   //
  2160   // CF (corresponds to C0) if x < y
  2161   // PF (corresponds to C2) if unordered
  2162   // ZF (corresponds to C3) if x = y
  2165 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  2166   fcmp2int(dst, unordered_is_less, 1, true, true);
  2169 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  2170   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  2171   Label L;
  2172   if (unordered_is_less) {
  2173     movl(dst, -1);
  2174     jcc(Assembler::parity, L);
  2175     jcc(Assembler::below , L);
  2176     movl(dst, 0);
  2177     jcc(Assembler::equal , L);
  2178     increment(dst);
  2179   } else { // unordered is greater
  2180     movl(dst, 1);
  2181     jcc(Assembler::parity, L);
  2182     jcc(Assembler::above , L);
  2183     movl(dst, 0);
  2184     jcc(Assembler::equal , L);
  2185     decrementl(dst);
  2187   bind(L);
  2190 void MacroAssembler::fld_d(AddressLiteral src) {
  2191   fld_d(as_Address(src));
  2194 void MacroAssembler::fld_s(AddressLiteral src) {
  2195   fld_s(as_Address(src));
  2198 void MacroAssembler::fld_x(AddressLiteral src) {
  2199   Assembler::fld_x(as_Address(src));
  2202 void MacroAssembler::fldcw(AddressLiteral src) {
  2203   Assembler::fldcw(as_Address(src));
  2206 void MacroAssembler::pow_exp_core_encoding() {
  2207   // kills rax, rcx, rdx
  2208   subptr(rsp,sizeof(jdouble));
  2209   // computes 2^X. Stack: X ...
  2210   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  2211   // keep it on the thread's stack to compute 2^int(X) later
  2212   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  2213   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  2214   fld_s(0);                 // Stack: X X ...
  2215   frndint();                // Stack: int(X) X ...
  2216   fsuba(1);                 // Stack: int(X) X-int(X) ...
  2217   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  2218   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  2219   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  2220   faddp(1);                 // Stack: 2^(X-int(X))
  2221   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  2222   // shift int(X)+1023 to exponent position.
  2223   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  2224   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  2225   // values so detect them and set result to NaN.
  2226   movl(rax,Address(rsp,0));
  2227   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  2228   addl(rax, 1023);
  2229   movl(rdx,rax);
  2230   shll(rax,20);
  2231   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  2232   addl(rdx,1);
  2233   // Check that 1 < int(X)+1023+1 < 2048
  2234   // in 3 steps:
  2235   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  2236   // 2- (int(X)+1023+1)&-2048 != 0
  2237   // 3- (int(X)+1023+1)&-2048 != 1
  2238   // Do 2- first because addl just updated the flags.
  2239   cmov32(Assembler::equal,rax,rcx);
  2240   cmpl(rdx,1);
  2241   cmov32(Assembler::equal,rax,rcx);
  2242   testl(rdx,rcx);
  2243   cmov32(Assembler::notEqual,rax,rcx);
  2244   movl(Address(rsp,4),rax);
  2245   movl(Address(rsp,0),0);
  2246   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  2247   addptr(rsp,sizeof(jdouble));
  2250 void MacroAssembler::increase_precision() {
  2251   subptr(rsp, BytesPerWord);
  2252   fnstcw(Address(rsp, 0));
  2253   movl(rax, Address(rsp, 0));
  2254   orl(rax, 0x300);
  2255   push(rax);
  2256   fldcw(Address(rsp, 0));
  2257   pop(rax);
  2260 void MacroAssembler::restore_precision() {
  2261   fldcw(Address(rsp, 0));
  2262   addptr(rsp, BytesPerWord);
  2265 void MacroAssembler::fast_pow() {
  2266   // computes X^Y = 2^(Y * log2(X))
  2267   // if fast computation is not possible, result is NaN. Requires
  2268   // fallback from user of this macro.
  2269   // increase precision for intermediate steps of the computation
  2270   increase_precision();
  2271   fyl2x();                 // Stack: (Y*log2(X)) ...
  2272   pow_exp_core_encoding(); // Stack: exp(X) ...
  2273   restore_precision();
  2276 void MacroAssembler::fast_exp() {
  2277   // computes exp(X) = 2^(X * log2(e))
  2278   // if fast computation is not possible, result is NaN. Requires
  2279   // fallback from user of this macro.
  2280   // increase precision for intermediate steps of the computation
  2281   increase_precision();
  2282   fldl2e();                // Stack: log2(e) X ...
  2283   fmulp(1);                // Stack: (X*log2(e)) ...
  2284   pow_exp_core_encoding(); // Stack: exp(X) ...
  2285   restore_precision();
  2288 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  2289   // kills rax, rcx, rdx
  2290   // pow and exp needs 2 extra registers on the fpu stack.
  2291   Label slow_case, done;
  2292   Register tmp = noreg;
  2293   if (!VM_Version::supports_cmov()) {
  2294     // fcmp needs a temporary so preserve rdx,
  2295     tmp = rdx;
  2297   Register tmp2 = rax;
  2298   Register tmp3 = rcx;
  2300   if (is_exp) {
  2301     // Stack: X
  2302     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  2303     fast_exp();                 // Stack: exp(X) X
  2304     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  2305     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  2306     jcc(Assembler::parity, slow_case);
  2307     // get rid of duplicate argument. Stack: exp(X)
  2308     if (num_fpu_regs_in_use > 0) {
  2309       fxch();
  2310       fpop();
  2311     } else {
  2312       ffree(1);
  2314     jmp(done);
  2315   } else {
  2316     // Stack: X Y
  2317     Label x_negative, y_odd;
  2319     fldz();                     // Stack: 0 X Y
  2320     fcmp(tmp, 1, true, false);  // Stack: X Y
  2321     jcc(Assembler::above, x_negative);
  2323     // X >= 0
  2325     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2326     fld_s(1);                   // Stack: X Y X Y
  2327     fast_pow();                 // Stack: X^Y X Y
  2328     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  2329     // X^Y not equal to itself: X^Y is NaN go to slow case.
  2330     jcc(Assembler::parity, slow_case);
  2331     // get rid of duplicate arguments. Stack: X^Y
  2332     if (num_fpu_regs_in_use > 0) {
  2333       fxch(); fpop();
  2334       fxch(); fpop();
  2335     } else {
  2336       ffree(2);
  2337       ffree(1);
  2339     jmp(done);
  2341     // X <= 0
  2342     bind(x_negative);
  2344     fld_s(1);                   // Stack: Y X Y
  2345     frndint();                  // Stack: int(Y) X Y
  2346     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  2347     jcc(Assembler::notEqual, slow_case);
  2349     subptr(rsp, 8);
  2351     // For X^Y, when X < 0, Y has to be an integer and the final
  2352     // result depends on whether it's odd or even. We just checked
  2353     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  2354     // integer to test its parity. If int(Y) is huge and doesn't fit
  2355     // in the 64 bit integer range, the integer indefinite value will
  2356     // end up in the gp registers. Huge numbers are all even, the
  2357     // integer indefinite number is even so it's fine.
  2359 #ifdef ASSERT
  2360     // Let's check we don't end up with an integer indefinite number
  2361     // when not expected. First test for huge numbers: check whether
  2362     // int(Y)+1 == int(Y) which is true for very large numbers and
  2363     // those are all even. A 64 bit integer is guaranteed to not
  2364     // overflow for numbers where y+1 != y (when precision is set to
  2365     // double precision).
  2366     Label y_not_huge;
  2368     fld1();                     // Stack: 1 int(Y) X Y
  2369     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  2371 #ifdef _LP64
  2372     // trip to memory to force the precision down from double extended
  2373     // precision
  2374     fstp_d(Address(rsp, 0));
  2375     fld_d(Address(rsp, 0));
  2376 #endif
  2378     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  2379 #endif
  2381     // move int(Y) as 64 bit integer to thread's stack
  2382     fistp_d(Address(rsp,0));    // Stack: X Y
  2384 #ifdef ASSERT
  2385     jcc(Assembler::notEqual, y_not_huge);
  2387     // Y is huge so we know it's even. It may not fit in a 64 bit
  2388     // integer and we don't want the debug code below to see the
  2389     // integer indefinite value so overwrite int(Y) on the thread's
  2390     // stack with 0.
  2391     movl(Address(rsp, 0), 0);
  2392     movl(Address(rsp, 4), 0);
  2394     bind(y_not_huge);
  2395 #endif
  2397     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2398     fld_s(1);                   // Stack: X Y X Y
  2399     fabs();                     // Stack: abs(X) Y X Y
  2400     fast_pow();                 // Stack: abs(X)^Y X Y
  2401     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  2402     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  2404     pop(tmp2);
  2405     NOT_LP64(pop(tmp3));
  2406     jcc(Assembler::parity, slow_case);
  2408 #ifdef ASSERT
  2409     // Check that int(Y) is not integer indefinite value (int
  2410     // overflow). Shouldn't happen because for values that would
  2411     // overflow, 1+int(Y)==Y which was tested earlier.
  2412 #ifndef _LP64
  2414       Label integer;
  2415       testl(tmp2, tmp2);
  2416       jcc(Assembler::notZero, integer);
  2417       cmpl(tmp3, 0x80000000);
  2418       jcc(Assembler::notZero, integer);
  2419       STOP("integer indefinite value shouldn't be seen here");
  2420       bind(integer);
  2422 #else
  2424       Label integer;
  2425       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  2426       shlq(tmp3, 1);
  2427       jcc(Assembler::carryClear, integer);
  2428       jcc(Assembler::notZero, integer);
  2429       STOP("integer indefinite value shouldn't be seen here");
  2430       bind(integer);
  2432 #endif
  2433 #endif
  2435     // get rid of duplicate arguments. Stack: X^Y
  2436     if (num_fpu_regs_in_use > 0) {
  2437       fxch(); fpop();
  2438       fxch(); fpop();
  2439     } else {
  2440       ffree(2);
  2441       ffree(1);
  2444     testl(tmp2, 1);
  2445     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  2446     // X <= 0, Y even: X^Y = -abs(X)^Y
  2448     fchs();                     // Stack: -abs(X)^Y Y
  2449     jmp(done);
  2452   // slow case: runtime call
  2453   bind(slow_case);
  2455   fpop();                       // pop incorrect result or int(Y)
  2457   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  2458                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  2460   // Come here with result in F-TOS
  2461   bind(done);
  2464 void MacroAssembler::fpop() {
  2465   ffree();
  2466   fincstp();
  2469 void MacroAssembler::fremr(Register tmp) {
  2470   save_rax(tmp);
  2471   { Label L;
  2472     bind(L);
  2473     fprem();
  2474     fwait(); fnstsw_ax();
  2475 #ifdef _LP64
  2476     testl(rax, 0x400);
  2477     jcc(Assembler::notEqual, L);
  2478 #else
  2479     sahf();
  2480     jcc(Assembler::parity, L);
  2481 #endif // _LP64
  2483   restore_rax(tmp);
  2484   // Result is in ST0.
  2485   // Note: fxch & fpop to get rid of ST1
  2486   // (otherwise FPU stack could overflow eventually)
  2487   fxch(1);
  2488   fpop();
  2492 void MacroAssembler::incrementl(AddressLiteral dst) {
  2493   if (reachable(dst)) {
  2494     incrementl(as_Address(dst));
  2495   } else {
  2496     lea(rscratch1, dst);
  2497     incrementl(Address(rscratch1, 0));
  2501 void MacroAssembler::incrementl(ArrayAddress dst) {
  2502   incrementl(as_Address(dst));
  2505 void MacroAssembler::incrementl(Register reg, int value) {
  2506   if (value == min_jint) {addl(reg, value) ; return; }
  2507   if (value <  0) { decrementl(reg, -value); return; }
  2508   if (value == 0) {                        ; return; }
  2509   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  2510   /* else */      { addl(reg, value)       ; return; }
  2513 void MacroAssembler::incrementl(Address dst, int value) {
  2514   if (value == min_jint) {addl(dst, value) ; return; }
  2515   if (value <  0) { decrementl(dst, -value); return; }
  2516   if (value == 0) {                        ; return; }
  2517   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  2518   /* else */      { addl(dst, value)       ; return; }
  2521 void MacroAssembler::jump(AddressLiteral dst) {
  2522   if (reachable(dst)) {
  2523     jmp_literal(dst.target(), dst.rspec());
  2524   } else {
  2525     lea(rscratch1, dst);
  2526     jmp(rscratch1);
  2530 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  2531   if (reachable(dst)) {
  2532     InstructionMark im(this);
  2533     relocate(dst.reloc());
  2534     const int short_size = 2;
  2535     const int long_size = 6;
  2536     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  2537     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  2538       // 0111 tttn #8-bit disp
  2539       emit_int8(0x70 | cc);
  2540       emit_int8((offs - short_size) & 0xFF);
  2541     } else {
  2542       // 0000 1111 1000 tttn #32-bit disp
  2543       emit_int8(0x0F);
  2544       emit_int8((unsigned char)(0x80 | cc));
  2545       emit_int32(offs - long_size);
  2547   } else {
  2548 #ifdef ASSERT
  2549     warning("reversing conditional branch");
  2550 #endif /* ASSERT */
  2551     Label skip;
  2552     jccb(reverse[cc], skip);
  2553     lea(rscratch1, dst);
  2554     Assembler::jmp(rscratch1);
  2555     bind(skip);
  2559 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  2560   if (reachable(src)) {
  2561     Assembler::ldmxcsr(as_Address(src));
  2562   } else {
  2563     lea(rscratch1, src);
  2564     Assembler::ldmxcsr(Address(rscratch1, 0));
  2568 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  2569   int off;
  2570   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2571     off = offset();
  2572     movsbl(dst, src); // movsxb
  2573   } else {
  2574     off = load_unsigned_byte(dst, src);
  2575     shll(dst, 24);
  2576     sarl(dst, 24);
  2578   return off;
  2581 // Note: load_signed_short used to be called load_signed_word.
  2582 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  2583 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  2584 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  2585 int MacroAssembler::load_signed_short(Register dst, Address src) {
  2586   int off;
  2587   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2588     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  2589     // version but this is what 64bit has always done. This seems to imply
  2590     // that users are only using 32bits worth.
  2591     off = offset();
  2592     movswl(dst, src); // movsxw
  2593   } else {
  2594     off = load_unsigned_short(dst, src);
  2595     shll(dst, 16);
  2596     sarl(dst, 16);
  2598   return off;
  2601 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  2602   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2603   // and "3.9 Partial Register Penalties", p. 22).
  2604   int off;
  2605   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  2606     off = offset();
  2607     movzbl(dst, src); // movzxb
  2608   } else {
  2609     xorl(dst, dst);
  2610     off = offset();
  2611     movb(dst, src);
  2613   return off;
  2616 // Note: load_unsigned_short used to be called load_unsigned_word.
  2617 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  2618   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2619   // and "3.9 Partial Register Penalties", p. 22).
  2620   int off;
  2621   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  2622     off = offset();
  2623     movzwl(dst, src); // movzxw
  2624   } else {
  2625     xorl(dst, dst);
  2626     off = offset();
  2627     movw(dst, src);
  2629   return off;
  2632 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  2633   switch (size_in_bytes) {
  2634 #ifndef _LP64
  2635   case  8:
  2636     assert(dst2 != noreg, "second dest register required");
  2637     movl(dst,  src);
  2638     movl(dst2, src.plus_disp(BytesPerInt));
  2639     break;
  2640 #else
  2641   case  8:  movq(dst, src); break;
  2642 #endif
  2643   case  4:  movl(dst, src); break;
  2644   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  2645   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  2646   default:  ShouldNotReachHere();
  2650 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  2651   switch (size_in_bytes) {
  2652 #ifndef _LP64
  2653   case  8:
  2654     assert(src2 != noreg, "second source register required");
  2655     movl(dst,                        src);
  2656     movl(dst.plus_disp(BytesPerInt), src2);
  2657     break;
  2658 #else
  2659   case  8:  movq(dst, src); break;
  2660 #endif
  2661   case  4:  movl(dst, src); break;
  2662   case  2:  movw(dst, src); break;
  2663   case  1:  movb(dst, src); break;
  2664   default:  ShouldNotReachHere();
  2668 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  2669   if (reachable(dst)) {
  2670     movl(as_Address(dst), src);
  2671   } else {
  2672     lea(rscratch1, dst);
  2673     movl(Address(rscratch1, 0), src);
  2677 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  2678   if (reachable(src)) {
  2679     movl(dst, as_Address(src));
  2680   } else {
  2681     lea(rscratch1, src);
  2682     movl(dst, Address(rscratch1, 0));
  2686 // C++ bool manipulation
  2688 void MacroAssembler::movbool(Register dst, Address src) {
  2689   if(sizeof(bool) == 1)
  2690     movb(dst, src);
  2691   else if(sizeof(bool) == 2)
  2692     movw(dst, src);
  2693   else if(sizeof(bool) == 4)
  2694     movl(dst, src);
  2695   else
  2696     // unsupported
  2697     ShouldNotReachHere();
  2700 void MacroAssembler::movbool(Address dst, bool boolconst) {
  2701   if(sizeof(bool) == 1)
  2702     movb(dst, (int) boolconst);
  2703   else if(sizeof(bool) == 2)
  2704     movw(dst, (int) boolconst);
  2705   else if(sizeof(bool) == 4)
  2706     movl(dst, (int) boolconst);
  2707   else
  2708     // unsupported
  2709     ShouldNotReachHere();
  2712 void MacroAssembler::movbool(Address dst, Register src) {
  2713   if(sizeof(bool) == 1)
  2714     movb(dst, src);
  2715   else if(sizeof(bool) == 2)
  2716     movw(dst, src);
  2717   else if(sizeof(bool) == 4)
  2718     movl(dst, src);
  2719   else
  2720     // unsupported
  2721     ShouldNotReachHere();
  2724 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  2725   movb(as_Address(dst), src);
  2728 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  2729   if (reachable(src)) {
  2730     movdl(dst, as_Address(src));
  2731   } else {
  2732     lea(rscratch1, src);
  2733     movdl(dst, Address(rscratch1, 0));
  2737 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  2738   if (reachable(src)) {
  2739     movq(dst, as_Address(src));
  2740   } else {
  2741     lea(rscratch1, src);
  2742     movq(dst, Address(rscratch1, 0));
  2746 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  2747   if (reachable(src)) {
  2748     if (UseXmmLoadAndClearUpper) {
  2749       movsd (dst, as_Address(src));
  2750     } else {
  2751       movlpd(dst, as_Address(src));
  2753   } else {
  2754     lea(rscratch1, src);
  2755     if (UseXmmLoadAndClearUpper) {
  2756       movsd (dst, Address(rscratch1, 0));
  2757     } else {
  2758       movlpd(dst, Address(rscratch1, 0));
  2763 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  2764   if (reachable(src)) {
  2765     movss(dst, as_Address(src));
  2766   } else {
  2767     lea(rscratch1, src);
  2768     movss(dst, Address(rscratch1, 0));
  2772 void MacroAssembler::movptr(Register dst, Register src) {
  2773   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2776 void MacroAssembler::movptr(Register dst, Address src) {
  2777   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2780 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  2781 void MacroAssembler::movptr(Register dst, intptr_t src) {
  2782   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  2785 void MacroAssembler::movptr(Address dst, Register src) {
  2786   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2789 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  2790   if (reachable(src)) {
  2791     Assembler::movdqu(dst, as_Address(src));
  2792   } else {
  2793     lea(rscratch1, src);
  2794     Assembler::movdqu(dst, Address(rscratch1, 0));
  2798 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  2799   if (reachable(src)) {
  2800     Assembler::movdqa(dst, as_Address(src));
  2801   } else {
  2802     lea(rscratch1, src);
  2803     Assembler::movdqa(dst, Address(rscratch1, 0));
  2807 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  2808   if (reachable(src)) {
  2809     Assembler::movsd(dst, as_Address(src));
  2810   } else {
  2811     lea(rscratch1, src);
  2812     Assembler::movsd(dst, Address(rscratch1, 0));
  2816 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  2817   if (reachable(src)) {
  2818     Assembler::movss(dst, as_Address(src));
  2819   } else {
  2820     lea(rscratch1, src);
  2821     Assembler::movss(dst, Address(rscratch1, 0));
  2825 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  2826   if (reachable(src)) {
  2827     Assembler::mulsd(dst, as_Address(src));
  2828   } else {
  2829     lea(rscratch1, src);
  2830     Assembler::mulsd(dst, Address(rscratch1, 0));
  2834 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  2835   if (reachable(src)) {
  2836     Assembler::mulss(dst, as_Address(src));
  2837   } else {
  2838     lea(rscratch1, src);
  2839     Assembler::mulss(dst, Address(rscratch1, 0));
  2843 void MacroAssembler::null_check(Register reg, int offset) {
  2844   if (needs_explicit_null_check(offset)) {
  2845     // provoke OS NULL exception if reg = NULL by
  2846     // accessing M[reg] w/o changing any (non-CC) registers
  2847     // NOTE: cmpl is plenty here to provoke a segv
  2848     cmpptr(rax, Address(reg, 0));
  2849     // Note: should probably use testl(rax, Address(reg, 0));
  2850     //       may be shorter code (however, this version of
  2851     //       testl needs to be implemented first)
  2852   } else {
  2853     // nothing to do, (later) access of M[reg + offset]
  2854     // will provoke OS NULL exception if reg = NULL
  2858 void MacroAssembler::os_breakpoint() {
  2859   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  2860   // (e.g., MSVC can't call ps() otherwise)
  2861   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  2864 void MacroAssembler::pop_CPU_state() {
  2865   pop_FPU_state();
  2866   pop_IU_state();
  2869 void MacroAssembler::pop_FPU_state() {
  2870   NOT_LP64(frstor(Address(rsp, 0));)
  2871   LP64_ONLY(fxrstor(Address(rsp, 0));)
  2872   addptr(rsp, FPUStateSizeInWords * wordSize);
  2875 void MacroAssembler::pop_IU_state() {
  2876   popa();
  2877   LP64_ONLY(addq(rsp, 8));
  2878   popf();
  2881 // Save Integer and Float state
  2882 // Warning: Stack must be 16 byte aligned (64bit)
  2883 void MacroAssembler::push_CPU_state() {
  2884   push_IU_state();
  2885   push_FPU_state();
  2888 void MacroAssembler::push_FPU_state() {
  2889   subptr(rsp, FPUStateSizeInWords * wordSize);
  2890 #ifndef _LP64
  2891   fnsave(Address(rsp, 0));
  2892   fwait();
  2893 #else
  2894   fxsave(Address(rsp, 0));
  2895 #endif // LP64
  2898 void MacroAssembler::push_IU_state() {
  2899   // Push flags first because pusha kills them
  2900   pushf();
  2901   // Make sure rsp stays 16-byte aligned
  2902   LP64_ONLY(subq(rsp, 8));
  2903   pusha();
  2906 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  2907   // determine java_thread register
  2908   if (!java_thread->is_valid()) {
  2909     java_thread = rdi;
  2910     get_thread(java_thread);
  2912   // we must set sp to zero to clear frame
  2913   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  2914   if (clear_fp) {
  2915     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  2918   if (clear_pc)
  2919     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  2923 void MacroAssembler::restore_rax(Register tmp) {
  2924   if (tmp == noreg) pop(rax);
  2925   else if (tmp != rax) mov(rax, tmp);
  2928 void MacroAssembler::round_to(Register reg, int modulus) {
  2929   addptr(reg, modulus - 1);
  2930   andptr(reg, -modulus);
  2933 void MacroAssembler::save_rax(Register tmp) {
  2934   if (tmp == noreg) push(rax);
  2935   else if (tmp != rax) mov(tmp, rax);
  2938 // Write serialization page so VM thread can do a pseudo remote membar.
  2939 // We use the current thread pointer to calculate a thread specific
  2940 // offset to write to within the page. This minimizes bus traffic
  2941 // due to cache line collision.
  2942 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  2943   movl(tmp, thread);
  2944   shrl(tmp, os::get_serialize_page_shift_count());
  2945   andl(tmp, (os::vm_page_size() - sizeof(int)));
  2947   Address index(noreg, tmp, Address::times_1);
  2948   ExternalAddress page(os::get_memory_serialize_page());
  2950   // Size of store must match masking code above
  2951   movl(as_Address(ArrayAddress(page, index)), tmp);
  2954 // Calls to C land
  2955 //
  2956 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  2957 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  2958 // has to be reset to 0. This is required to allow proper stack traversal.
  2959 void MacroAssembler::set_last_Java_frame(Register java_thread,
  2960                                          Register last_java_sp,
  2961                                          Register last_java_fp,
  2962                                          address  last_java_pc) {
  2963   // determine java_thread register
  2964   if (!java_thread->is_valid()) {
  2965     java_thread = rdi;
  2966     get_thread(java_thread);
  2968   // determine last_java_sp register
  2969   if (!last_java_sp->is_valid()) {
  2970     last_java_sp = rsp;
  2973   // last_java_fp is optional
  2975   if (last_java_fp->is_valid()) {
  2976     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  2979   // last_java_pc is optional
  2981   if (last_java_pc != NULL) {
  2982     lea(Address(java_thread,
  2983                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  2984         InternalAddress(last_java_pc));
  2987   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  2990 void MacroAssembler::shlptr(Register dst, int imm8) {
  2991   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  2994 void MacroAssembler::shrptr(Register dst, int imm8) {
  2995   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  2998 void MacroAssembler::sign_extend_byte(Register reg) {
  2999   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  3000     movsbl(reg, reg); // movsxb
  3001   } else {
  3002     shll(reg, 24);
  3003     sarl(reg, 24);
  3007 void MacroAssembler::sign_extend_short(Register reg) {
  3008   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3009     movswl(reg, reg); // movsxw
  3010   } else {
  3011     shll(reg, 16);
  3012     sarl(reg, 16);
  3016 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3017   assert(reachable(src), "Address should be reachable");
  3018   testl(dst, as_Address(src));
  3021 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3022   if (reachable(src)) {
  3023     Assembler::sqrtsd(dst, as_Address(src));
  3024   } else {
  3025     lea(rscratch1, src);
  3026     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3030 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3031   if (reachable(src)) {
  3032     Assembler::sqrtss(dst, as_Address(src));
  3033   } else {
  3034     lea(rscratch1, src);
  3035     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3039 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3040   if (reachable(src)) {
  3041     Assembler::subsd(dst, as_Address(src));
  3042   } else {
  3043     lea(rscratch1, src);
  3044     Assembler::subsd(dst, Address(rscratch1, 0));
  3048 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3049   if (reachable(src)) {
  3050     Assembler::subss(dst, as_Address(src));
  3051   } else {
  3052     lea(rscratch1, src);
  3053     Assembler::subss(dst, Address(rscratch1, 0));
  3057 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3058   if (reachable(src)) {
  3059     Assembler::ucomisd(dst, as_Address(src));
  3060   } else {
  3061     lea(rscratch1, src);
  3062     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3066 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3067   if (reachable(src)) {
  3068     Assembler::ucomiss(dst, as_Address(src));
  3069   } else {
  3070     lea(rscratch1, src);
  3071     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3075 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3076   // Used in sign-bit flipping with aligned address.
  3077   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3078   if (reachable(src)) {
  3079     Assembler::xorpd(dst, as_Address(src));
  3080   } else {
  3081     lea(rscratch1, src);
  3082     Assembler::xorpd(dst, Address(rscratch1, 0));
  3086 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3087   // Used in sign-bit flipping with aligned address.
  3088   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3089   if (reachable(src)) {
  3090     Assembler::xorps(dst, as_Address(src));
  3091   } else {
  3092     lea(rscratch1, src);
  3093     Assembler::xorps(dst, Address(rscratch1, 0));
  3097 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3098   // Used in sign-bit flipping with aligned address.
  3099   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  3100   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  3101   if (reachable(src)) {
  3102     Assembler::pshufb(dst, as_Address(src));
  3103   } else {
  3104     lea(rscratch1, src);
  3105     Assembler::pshufb(dst, Address(rscratch1, 0));
  3109 // AVX 3-operands instructions
  3111 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3112   if (reachable(src)) {
  3113     vaddsd(dst, nds, as_Address(src));
  3114   } else {
  3115     lea(rscratch1, src);
  3116     vaddsd(dst, nds, Address(rscratch1, 0));
  3120 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3121   if (reachable(src)) {
  3122     vaddss(dst, nds, as_Address(src));
  3123   } else {
  3124     lea(rscratch1, src);
  3125     vaddss(dst, nds, Address(rscratch1, 0));
  3129 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3130   if (reachable(src)) {
  3131     vandpd(dst, nds, as_Address(src), vector256);
  3132   } else {
  3133     lea(rscratch1, src);
  3134     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  3138 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3139   if (reachable(src)) {
  3140     vandps(dst, nds, as_Address(src), vector256);
  3141   } else {
  3142     lea(rscratch1, src);
  3143     vandps(dst, nds, Address(rscratch1, 0), vector256);
  3147 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3148   if (reachable(src)) {
  3149     vdivsd(dst, nds, as_Address(src));
  3150   } else {
  3151     lea(rscratch1, src);
  3152     vdivsd(dst, nds, Address(rscratch1, 0));
  3156 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3157   if (reachable(src)) {
  3158     vdivss(dst, nds, as_Address(src));
  3159   } else {
  3160     lea(rscratch1, src);
  3161     vdivss(dst, nds, Address(rscratch1, 0));
  3165 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3166   if (reachable(src)) {
  3167     vmulsd(dst, nds, as_Address(src));
  3168   } else {
  3169     lea(rscratch1, src);
  3170     vmulsd(dst, nds, Address(rscratch1, 0));
  3174 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3175   if (reachable(src)) {
  3176     vmulss(dst, nds, as_Address(src));
  3177   } else {
  3178     lea(rscratch1, src);
  3179     vmulss(dst, nds, Address(rscratch1, 0));
  3183 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3184   if (reachable(src)) {
  3185     vsubsd(dst, nds, as_Address(src));
  3186   } else {
  3187     lea(rscratch1, src);
  3188     vsubsd(dst, nds, Address(rscratch1, 0));
  3192 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3193   if (reachable(src)) {
  3194     vsubss(dst, nds, as_Address(src));
  3195   } else {
  3196     lea(rscratch1, src);
  3197     vsubss(dst, nds, Address(rscratch1, 0));
  3201 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3202   if (reachable(src)) {
  3203     vxorpd(dst, nds, as_Address(src), vector256);
  3204   } else {
  3205     lea(rscratch1, src);
  3206     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  3210 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3211   if (reachable(src)) {
  3212     vxorps(dst, nds, as_Address(src), vector256);
  3213   } else {
  3214     lea(rscratch1, src);
  3215     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  3220 //////////////////////////////////////////////////////////////////////////////////
  3221 #if INCLUDE_ALL_GCS
  3223 void MacroAssembler::g1_write_barrier_pre(Register obj,
  3224                                           Register pre_val,
  3225                                           Register thread,
  3226                                           Register tmp,
  3227                                           bool tosca_live,
  3228                                           bool expand_call) {
  3230   // If expand_call is true then we expand the call_VM_leaf macro
  3231   // directly to skip generating the check by
  3232   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  3234 #ifdef _LP64
  3235   assert(thread == r15_thread, "must be");
  3236 #endif // _LP64
  3238   Label done;
  3239   Label runtime;
  3241   assert(pre_val != noreg, "check this code");
  3243   if (obj != noreg) {
  3244     assert_different_registers(obj, pre_val, tmp);
  3245     assert(pre_val != rax, "check this code");
  3248   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3249                                        PtrQueue::byte_offset_of_active()));
  3250   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3251                                        PtrQueue::byte_offset_of_index()));
  3252   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3253                                        PtrQueue::byte_offset_of_buf()));
  3256   // Is marking active?
  3257   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3258     cmpl(in_progress, 0);
  3259   } else {
  3260     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  3261     cmpb(in_progress, 0);
  3263   jcc(Assembler::equal, done);
  3265   // Do we need to load the previous value?
  3266   if (obj != noreg) {
  3267     load_heap_oop(pre_val, Address(obj, 0));
  3270   // Is the previous value null?
  3271   cmpptr(pre_val, (int32_t) NULL_WORD);
  3272   jcc(Assembler::equal, done);
  3274   // Can we store original value in the thread's buffer?
  3275   // Is index == 0?
  3276   // (The index field is typed as size_t.)
  3278   movptr(tmp, index);                   // tmp := *index_adr
  3279   cmpptr(tmp, 0);                       // tmp == 0?
  3280   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  3282   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  3283   movptr(index, tmp);                   // *index_adr := tmp
  3284   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  3286   // Record the previous value
  3287   movptr(Address(tmp, 0), pre_val);
  3288   jmp(done);
  3290   bind(runtime);
  3291   // save the live input values
  3292   if(tosca_live) push(rax);
  3294   if (obj != noreg && obj != rax)
  3295     push(obj);
  3297   if (pre_val != rax)
  3298     push(pre_val);
  3300   // Calling the runtime using the regular call_VM_leaf mechanism generates
  3301   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  3302   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  3303   //
  3304   // If we care generating the pre-barrier without a frame (e.g. in the
  3305   // intrinsified Reference.get() routine) then ebp might be pointing to
  3306   // the caller frame and so this check will most likely fail at runtime.
  3307   //
  3308   // Expanding the call directly bypasses the generation of the check.
  3309   // So when we do not have have a full interpreter frame on the stack
  3310   // expand_call should be passed true.
  3312   NOT_LP64( push(thread); )
  3314   if (expand_call) {
  3315     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  3316     pass_arg1(this, thread);
  3317     pass_arg0(this, pre_val);
  3318     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  3319   } else {
  3320     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  3323   NOT_LP64( pop(thread); )
  3325   // save the live input values
  3326   if (pre_val != rax)
  3327     pop(pre_val);
  3329   if (obj != noreg && obj != rax)
  3330     pop(obj);
  3332   if(tosca_live) pop(rax);
  3334   bind(done);
  3337 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  3338                                            Register new_val,
  3339                                            Register thread,
  3340                                            Register tmp,
  3341                                            Register tmp2) {
  3342 #ifdef _LP64
  3343   assert(thread == r15_thread, "must be");
  3344 #endif // _LP64
  3346   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3347                                        PtrQueue::byte_offset_of_index()));
  3348   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3349                                        PtrQueue::byte_offset_of_buf()));
  3351   BarrierSet* bs = Universe::heap()->barrier_set();
  3352   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3353   Label done;
  3354   Label runtime;
  3356   // Does store cross heap regions?
  3358   movptr(tmp, store_addr);
  3359   xorptr(tmp, new_val);
  3360   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  3361   jcc(Assembler::equal, done);
  3363   // crosses regions, storing NULL?
  3365   cmpptr(new_val, (int32_t) NULL_WORD);
  3366   jcc(Assembler::equal, done);
  3368   // storing region crossing non-NULL, is card already dirty?
  3370   ExternalAddress cardtable((address) ct->byte_map_base);
  3371   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3372 #ifdef _LP64
  3373   const Register card_addr = tmp;
  3375   movq(card_addr, store_addr);
  3376   shrq(card_addr, CardTableModRefBS::card_shift);
  3378   lea(tmp2, cardtable);
  3380   // get the address of the card
  3381   addq(card_addr, tmp2);
  3382 #else
  3383   const Register card_index = tmp;
  3385   movl(card_index, store_addr);
  3386   shrl(card_index, CardTableModRefBS::card_shift);
  3388   Address index(noreg, card_index, Address::times_1);
  3389   const Register card_addr = tmp;
  3390   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  3391 #endif
  3392   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  3393   jcc(Assembler::equal, done);
  3395   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3396   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  3397   jcc(Assembler::equal, done);
  3400   // storing a region crossing, non-NULL oop, card is clean.
  3401   // dirty card and log.
  3403   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  3405   cmpl(queue_index, 0);
  3406   jcc(Assembler::equal, runtime);
  3407   subl(queue_index, wordSize);
  3408   movptr(tmp2, buffer);
  3409 #ifdef _LP64
  3410   movslq(rscratch1, queue_index);
  3411   addq(tmp2, rscratch1);
  3412   movq(Address(tmp2, 0), card_addr);
  3413 #else
  3414   addl(tmp2, queue_index);
  3415   movl(Address(tmp2, 0), card_index);
  3416 #endif
  3417   jmp(done);
  3419   bind(runtime);
  3420   // save the live input values
  3421   push(store_addr);
  3422   push(new_val);
  3423 #ifdef _LP64
  3424   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  3425 #else
  3426   push(thread);
  3427   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  3428   pop(thread);
  3429 #endif
  3430   pop(new_val);
  3431   pop(store_addr);
  3433   bind(done);
  3436 #endif // INCLUDE_ALL_GCS
  3437 //////////////////////////////////////////////////////////////////////////////////
  3440 void MacroAssembler::store_check(Register obj) {
  3441   // Does a store check for the oop in register obj. The content of
  3442   // register obj is destroyed afterwards.
  3443   store_check_part_1(obj);
  3444   store_check_part_2(obj);
  3447 void MacroAssembler::store_check(Register obj, Address dst) {
  3448   store_check(obj);
  3452 // split the store check operation so that other instructions can be scheduled inbetween
  3453 void MacroAssembler::store_check_part_1(Register obj) {
  3454   BarrierSet* bs = Universe::heap()->barrier_set();
  3455   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3456   shrptr(obj, CardTableModRefBS::card_shift);
  3459 void MacroAssembler::store_check_part_2(Register obj) {
  3460   BarrierSet* bs = Universe::heap()->barrier_set();
  3461   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3462   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3463   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3465   // The calculation for byte_map_base is as follows:
  3466   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  3467   // So this essentially converts an address to a displacement and
  3468   // it will never need to be relocated. On 64bit however the value may be too
  3469   // large for a 32bit displacement
  3471   intptr_t disp = (intptr_t) ct->byte_map_base;
  3472   if (is_simm32(disp)) {
  3473     Address cardtable(noreg, obj, Address::times_1, disp);
  3474     movb(cardtable, 0);
  3475   } else {
  3476     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  3477     // displacement and done in a single instruction given favorable mapping and
  3478     // a smarter version of as_Address. Worst case it is two instructions which
  3479     // is no worse off then loading disp into a register and doing as a simple
  3480     // Address() as above.
  3481     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  3482     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  3483     // in some cases we'll get a single instruction version.
  3485     ExternalAddress cardtable((address)disp);
  3486     Address index(noreg, obj, Address::times_1);
  3487     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  3491 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  3492   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  3495 // Force generation of a 4 byte immediate value even if it fits into 8bit
  3496 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  3497   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  3500 void MacroAssembler::subptr(Register dst, Register src) {
  3501   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  3504 // C++ bool manipulation
  3505 void MacroAssembler::testbool(Register dst) {
  3506   if(sizeof(bool) == 1)
  3507     testb(dst, 0xff);
  3508   else if(sizeof(bool) == 2) {
  3509     // testw implementation needed for two byte bools
  3510     ShouldNotReachHere();
  3511   } else if(sizeof(bool) == 4)
  3512     testl(dst, dst);
  3513   else
  3514     // unsupported
  3515     ShouldNotReachHere();
  3518 void MacroAssembler::testptr(Register dst, Register src) {
  3519   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  3522 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  3523 void MacroAssembler::tlab_allocate(Register obj,
  3524                                    Register var_size_in_bytes,
  3525                                    int con_size_in_bytes,
  3526                                    Register t1,
  3527                                    Register t2,
  3528                                    Label& slow_case) {
  3529   assert_different_registers(obj, t1, t2);
  3530   assert_different_registers(obj, var_size_in_bytes, t1);
  3531   Register end = t2;
  3532   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  3534   verify_tlab();
  3536   NOT_LP64(get_thread(thread));
  3538   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  3539   if (var_size_in_bytes == noreg) {
  3540     lea(end, Address(obj, con_size_in_bytes));
  3541   } else {
  3542     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  3544   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  3545   jcc(Assembler::above, slow_case);
  3547   // update the tlab top pointer
  3548   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  3550   // recover var_size_in_bytes if necessary
  3551   if (var_size_in_bytes == end) {
  3552     subptr(var_size_in_bytes, obj);
  3554   verify_tlab();
  3557 // Preserves rbx, and rdx.
  3558 Register MacroAssembler::tlab_refill(Label& retry,
  3559                                      Label& try_eden,
  3560                                      Label& slow_case) {
  3561   Register top = rax;
  3562   Register t1  = rcx;
  3563   Register t2  = rsi;
  3564   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  3565   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  3566   Label do_refill, discard_tlab;
  3568   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3569     // No allocation in the shared eden.
  3570     jmp(slow_case);
  3573   NOT_LP64(get_thread(thread_reg));
  3575   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  3576   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  3578   // calculate amount of free space
  3579   subptr(t1, top);
  3580   shrptr(t1, LogHeapWordSize);
  3582   // Retain tlab and allocate object in shared space if
  3583   // the amount free in the tlab is too large to discard.
  3584   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  3585   jcc(Assembler::lessEqual, discard_tlab);
  3587   // Retain
  3588   // %%% yuck as movptr...
  3589   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  3590   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  3591   if (TLABStats) {
  3592     // increment number of slow_allocations
  3593     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  3595   jmp(try_eden);
  3597   bind(discard_tlab);
  3598   if (TLABStats) {
  3599     // increment number of refills
  3600     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  3601     // accumulate wastage -- t1 is amount free in tlab
  3602     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  3605   // if tlab is currently allocated (top or end != null) then
  3606   // fill [top, end + alignment_reserve) with array object
  3607   testptr(top, top);
  3608   jcc(Assembler::zero, do_refill);
  3610   // set up the mark word
  3611   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  3612   // set the length to the remaining space
  3613   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  3614   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  3615   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  3616   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  3617   // set klass to intArrayKlass
  3618   // dubious reloc why not an oop reloc?
  3619   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  3620   // store klass last.  concurrent gcs assumes klass length is valid if
  3621   // klass field is not null.
  3622   store_klass(top, t1);
  3624   movptr(t1, top);
  3625   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  3626   incr_allocated_bytes(thread_reg, t1, 0);
  3628   // refill the tlab with an eden allocation
  3629   bind(do_refill);
  3630   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3631   shlptr(t1, LogHeapWordSize);
  3632   // allocate new tlab, address returned in top
  3633   eden_allocate(top, t1, 0, t2, slow_case);
  3635   // Check that t1 was preserved in eden_allocate.
  3636 #ifdef ASSERT
  3637   if (UseTLAB) {
  3638     Label ok;
  3639     Register tsize = rsi;
  3640     assert_different_registers(tsize, thread_reg, t1);
  3641     push(tsize);
  3642     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3643     shlptr(tsize, LogHeapWordSize);
  3644     cmpptr(t1, tsize);
  3645     jcc(Assembler::equal, ok);
  3646     STOP("assert(t1 != tlab size)");
  3647     should_not_reach_here();
  3649     bind(ok);
  3650     pop(tsize);
  3652 #endif
  3653   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  3654   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  3655   addptr(top, t1);
  3656   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  3657   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  3658   verify_tlab();
  3659   jmp(retry);
  3661   return thread_reg; // for use by caller
  3664 void MacroAssembler::incr_allocated_bytes(Register thread,
  3665                                           Register var_size_in_bytes,
  3666                                           int con_size_in_bytes,
  3667                                           Register t1) {
  3668   if (!thread->is_valid()) {
  3669 #ifdef _LP64
  3670     thread = r15_thread;
  3671 #else
  3672     assert(t1->is_valid(), "need temp reg");
  3673     thread = t1;
  3674     get_thread(thread);
  3675 #endif
  3678 #ifdef _LP64
  3679   if (var_size_in_bytes->is_valid()) {
  3680     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3681   } else {
  3682     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3684 #else
  3685   if (var_size_in_bytes->is_valid()) {
  3686     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3687   } else {
  3688     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3690   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  3691 #endif
  3694 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  3695   pusha();
  3697   // if we are coming from c1, xmm registers may be live
  3698   int off = 0;
  3699   if (UseSSE == 1)  {
  3700     subptr(rsp, sizeof(jdouble)*8);
  3701     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  3702     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  3703     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  3704     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  3705     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  3706     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  3707     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  3708     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  3709   } else if (UseSSE >= 2)  {
  3710 #ifdef COMPILER2
  3711     if (MaxVectorSize > 16) {
  3712       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  3713       // Save upper half of YMM registes
  3714       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3715       vextractf128h(Address(rsp,  0),xmm0);
  3716       vextractf128h(Address(rsp, 16),xmm1);
  3717       vextractf128h(Address(rsp, 32),xmm2);
  3718       vextractf128h(Address(rsp, 48),xmm3);
  3719       vextractf128h(Address(rsp, 64),xmm4);
  3720       vextractf128h(Address(rsp, 80),xmm5);
  3721       vextractf128h(Address(rsp, 96),xmm6);
  3722       vextractf128h(Address(rsp,112),xmm7);
  3723 #ifdef _LP64
  3724       vextractf128h(Address(rsp,128),xmm8);
  3725       vextractf128h(Address(rsp,144),xmm9);
  3726       vextractf128h(Address(rsp,160),xmm10);
  3727       vextractf128h(Address(rsp,176),xmm11);
  3728       vextractf128h(Address(rsp,192),xmm12);
  3729       vextractf128h(Address(rsp,208),xmm13);
  3730       vextractf128h(Address(rsp,224),xmm14);
  3731       vextractf128h(Address(rsp,240),xmm15);
  3732 #endif
  3734 #endif
  3735     // Save whole 128bit (16 bytes) XMM regiters
  3736     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3737     movdqu(Address(rsp,off++*16),xmm0);
  3738     movdqu(Address(rsp,off++*16),xmm1);
  3739     movdqu(Address(rsp,off++*16),xmm2);
  3740     movdqu(Address(rsp,off++*16),xmm3);
  3741     movdqu(Address(rsp,off++*16),xmm4);
  3742     movdqu(Address(rsp,off++*16),xmm5);
  3743     movdqu(Address(rsp,off++*16),xmm6);
  3744     movdqu(Address(rsp,off++*16),xmm7);
  3745 #ifdef _LP64
  3746     movdqu(Address(rsp,off++*16),xmm8);
  3747     movdqu(Address(rsp,off++*16),xmm9);
  3748     movdqu(Address(rsp,off++*16),xmm10);
  3749     movdqu(Address(rsp,off++*16),xmm11);
  3750     movdqu(Address(rsp,off++*16),xmm12);
  3751     movdqu(Address(rsp,off++*16),xmm13);
  3752     movdqu(Address(rsp,off++*16),xmm14);
  3753     movdqu(Address(rsp,off++*16),xmm15);
  3754 #endif
  3757   // Preserve registers across runtime call
  3758   int incoming_argument_and_return_value_offset = -1;
  3759   if (num_fpu_regs_in_use > 1) {
  3760     // Must preserve all other FPU regs (could alternatively convert
  3761     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  3762     // FPU state, but can not trust C compiler)
  3763     NEEDS_CLEANUP;
  3764     // NOTE that in this case we also push the incoming argument(s) to
  3765     // the stack and restore it later; we also use this stack slot to
  3766     // hold the return value from dsin, dcos etc.
  3767     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  3768       subptr(rsp, sizeof(jdouble));
  3769       fstp_d(Address(rsp, 0));
  3771     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  3772     for (int i = nb_args-1; i >= 0; i--) {
  3773       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  3777   subptr(rsp, nb_args*sizeof(jdouble));
  3778   for (int i = 0; i < nb_args; i++) {
  3779     fstp_d(Address(rsp, i*sizeof(jdouble)));
  3782 #ifdef _LP64
  3783   if (nb_args > 0) {
  3784     movdbl(xmm0, Address(rsp, 0));
  3786   if (nb_args > 1) {
  3787     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  3789   assert(nb_args <= 2, "unsupported number of args");
  3790 #endif // _LP64
  3792   // NOTE: we must not use call_VM_leaf here because that requires a
  3793   // complete interpreter frame in debug mode -- same bug as 4387334
  3794   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  3795   // do proper 64bit abi
  3797   NEEDS_CLEANUP;
  3798   // Need to add stack banging before this runtime call if it needs to
  3799   // be taken; however, there is no generic stack banging routine at
  3800   // the MacroAssembler level
  3802   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  3804 #ifdef _LP64
  3805   movsd(Address(rsp, 0), xmm0);
  3806   fld_d(Address(rsp, 0));
  3807 #endif // _LP64
  3808   addptr(rsp, sizeof(jdouble) * nb_args);
  3809   if (num_fpu_regs_in_use > 1) {
  3810     // Must save return value to stack and then restore entire FPU
  3811     // stack except incoming arguments
  3812     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  3813     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  3814       fld_d(Address(rsp, 0));
  3815       addptr(rsp, sizeof(jdouble));
  3817     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  3818     addptr(rsp, sizeof(jdouble) * nb_args);
  3821   off = 0;
  3822   if (UseSSE == 1)  {
  3823     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  3824     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  3825     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  3826     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  3827     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  3828     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  3829     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  3830     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  3831     addptr(rsp, sizeof(jdouble)*8);
  3832   } else if (UseSSE >= 2)  {
  3833     // Restore whole 128bit (16 bytes) XMM regiters
  3834     movdqu(xmm0, Address(rsp,off++*16));
  3835     movdqu(xmm1, Address(rsp,off++*16));
  3836     movdqu(xmm2, Address(rsp,off++*16));
  3837     movdqu(xmm3, Address(rsp,off++*16));
  3838     movdqu(xmm4, Address(rsp,off++*16));
  3839     movdqu(xmm5, Address(rsp,off++*16));
  3840     movdqu(xmm6, Address(rsp,off++*16));
  3841     movdqu(xmm7, Address(rsp,off++*16));
  3842 #ifdef _LP64
  3843     movdqu(xmm8, Address(rsp,off++*16));
  3844     movdqu(xmm9, Address(rsp,off++*16));
  3845     movdqu(xmm10, Address(rsp,off++*16));
  3846     movdqu(xmm11, Address(rsp,off++*16));
  3847     movdqu(xmm12, Address(rsp,off++*16));
  3848     movdqu(xmm13, Address(rsp,off++*16));
  3849     movdqu(xmm14, Address(rsp,off++*16));
  3850     movdqu(xmm15, Address(rsp,off++*16));
  3851 #endif
  3852     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3853 #ifdef COMPILER2
  3854     if (MaxVectorSize > 16) {
  3855       // Restore upper half of YMM registes.
  3856       vinsertf128h(xmm0, Address(rsp,  0));
  3857       vinsertf128h(xmm1, Address(rsp, 16));
  3858       vinsertf128h(xmm2, Address(rsp, 32));
  3859       vinsertf128h(xmm3, Address(rsp, 48));
  3860       vinsertf128h(xmm4, Address(rsp, 64));
  3861       vinsertf128h(xmm5, Address(rsp, 80));
  3862       vinsertf128h(xmm6, Address(rsp, 96));
  3863       vinsertf128h(xmm7, Address(rsp,112));
  3864 #ifdef _LP64
  3865       vinsertf128h(xmm8, Address(rsp,128));
  3866       vinsertf128h(xmm9, Address(rsp,144));
  3867       vinsertf128h(xmm10, Address(rsp,160));
  3868       vinsertf128h(xmm11, Address(rsp,176));
  3869       vinsertf128h(xmm12, Address(rsp,192));
  3870       vinsertf128h(xmm13, Address(rsp,208));
  3871       vinsertf128h(xmm14, Address(rsp,224));
  3872       vinsertf128h(xmm15, Address(rsp,240));
  3873 #endif
  3874       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3876 #endif
  3878   popa();
  3881 static const double     pi_4 =  0.7853981633974483;
  3883 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  3884   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  3885   // was attempted in this code; unfortunately it appears that the
  3886   // switch to 80-bit precision and back causes this to be
  3887   // unprofitable compared with simply performing a runtime call if
  3888   // the argument is out of the (-pi/4, pi/4) range.
  3890   Register tmp = noreg;
  3891   if (!VM_Version::supports_cmov()) {
  3892     // fcmp needs a temporary so preserve rbx,
  3893     tmp = rbx;
  3894     push(tmp);
  3897   Label slow_case, done;
  3899   ExternalAddress pi4_adr = (address)&pi_4;
  3900   if (reachable(pi4_adr)) {
  3901     // x ?<= pi/4
  3902     fld_d(pi4_adr);
  3903     fld_s(1);                // Stack:  X  PI/4  X
  3904     fabs();                  // Stack: |X| PI/4  X
  3905     fcmp(tmp);
  3906     jcc(Assembler::above, slow_case);
  3908     // fastest case: -pi/4 <= x <= pi/4
  3909     switch(trig) {
  3910     case 's':
  3911       fsin();
  3912       break;
  3913     case 'c':
  3914       fcos();
  3915       break;
  3916     case 't':
  3917       ftan();
  3918       break;
  3919     default:
  3920       assert(false, "bad intrinsic");
  3921       break;
  3923     jmp(done);
  3926   // slow case: runtime call
  3927   bind(slow_case);
  3929   switch(trig) {
  3930   case 's':
  3932       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  3934     break;
  3935   case 'c':
  3937       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  3939     break;
  3940   case 't':
  3942       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  3944     break;
  3945   default:
  3946     assert(false, "bad intrinsic");
  3947     break;
  3950   // Come here with result in F-TOS
  3951   bind(done);
  3953   if (tmp != noreg) {
  3954     pop(tmp);
  3959 // Look up the method for a megamorphic invokeinterface call.
  3960 // The target method is determined by <intf_klass, itable_index>.
  3961 // The receiver klass is in recv_klass.
  3962 // On success, the result will be in method_result, and execution falls through.
  3963 // On failure, execution transfers to the given label.
  3964 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3965                                              Register intf_klass,
  3966                                              RegisterOrConstant itable_index,
  3967                                              Register method_result,
  3968                                              Register scan_temp,
  3969                                              Label& L_no_such_interface) {
  3970   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3971   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3972          "caller must use same register for non-constant itable index as for method");
  3974   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3975   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3976   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3977   int scan_step   = itableOffsetEntry::size() * wordSize;
  3978   int vte_size    = vtableEntry::size() * wordSize;
  3979   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3980   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3982   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3984   // %%% Could store the aligned, prescaled offset in the klassoop.
  3985   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  3986   if (HeapWordsPerLong > 1) {
  3987     // Round up to align_object_offset boundary
  3988     // see code for InstanceKlass::start_of_itable!
  3989     round_to(scan_temp, BytesPerLong);
  3992   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3993   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3994   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3996   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  3997   //   if (scan->interface() == intf) {
  3998   //     result = (klass + scan->offset() + itable_index);
  3999   //   }
  4000   // }
  4001   Label search, found_method;
  4003   for (int peel = 1; peel >= 0; peel--) {
  4004     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4005     cmpptr(intf_klass, method_result);
  4007     if (peel) {
  4008       jccb(Assembler::equal, found_method);
  4009     } else {
  4010       jccb(Assembler::notEqual, search);
  4011       // (invert the test to fall through to found_method...)
  4014     if (!peel)  break;
  4016     bind(search);
  4018     // Check that the previous entry is non-null.  A null entry means that
  4019     // the receiver class doesn't implement the interface, and wasn't the
  4020     // same as when the caller was compiled.
  4021     testptr(method_result, method_result);
  4022     jcc(Assembler::zero, L_no_such_interface);
  4023     addptr(scan_temp, scan_step);
  4026   bind(found_method);
  4028   // Got a hit.
  4029   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4030   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4034 // virtual method calling
  4035 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4036                                            RegisterOrConstant vtable_index,
  4037                                            Register method_result) {
  4038   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4039   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4040   Address vtable_entry_addr(recv_klass,
  4041                             vtable_index, Address::times_ptr,
  4042                             base + vtableEntry::method_offset_in_bytes());
  4043   movptr(method_result, vtable_entry_addr);
  4047 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4048                            Register super_klass,
  4049                            Register temp_reg,
  4050                            Label& L_success) {
  4051   Label L_failure;
  4052   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4053   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4054   bind(L_failure);
  4058 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4059                                                    Register super_klass,
  4060                                                    Register temp_reg,
  4061                                                    Label* L_success,
  4062                                                    Label* L_failure,
  4063                                                    Label* L_slow_path,
  4064                                         RegisterOrConstant super_check_offset) {
  4065   assert_different_registers(sub_klass, super_klass, temp_reg);
  4066   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4067   if (super_check_offset.is_register()) {
  4068     assert_different_registers(sub_klass, super_klass,
  4069                                super_check_offset.as_register());
  4070   } else if (must_load_sco) {
  4071     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4074   Label L_fallthrough;
  4075   int label_nulls = 0;
  4076   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4077   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4078   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4079   assert(label_nulls <= 1, "at most one NULL in the batch");
  4081   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4082   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4083   Address super_check_offset_addr(super_klass, sco_offset);
  4085   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4086   // range of a jccb.  If this routine grows larger, reconsider at
  4087   // least some of these.
  4088 #define local_jcc(assembler_cond, label)                                \
  4089   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4090   else                             jcc( assembler_cond, label) /*omit semi*/
  4092   // Hacked jmp, which may only be used just before L_fallthrough.
  4093 #define final_jmp(label)                                                \
  4094   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4095   else                            jmp(label)                /*omit semi*/
  4097   // If the pointers are equal, we are done (e.g., String[] elements).
  4098   // This self-check enables sharing of secondary supertype arrays among
  4099   // non-primary types such as array-of-interface.  Otherwise, each such
  4100   // type would need its own customized SSA.
  4101   // We move this check to the front of the fast path because many
  4102   // type checks are in fact trivially successful in this manner,
  4103   // so we get a nicely predicted branch right at the start of the check.
  4104   cmpptr(sub_klass, super_klass);
  4105   local_jcc(Assembler::equal, *L_success);
  4107   // Check the supertype display:
  4108   if (must_load_sco) {
  4109     // Positive movl does right thing on LP64.
  4110     movl(temp_reg, super_check_offset_addr);
  4111     super_check_offset = RegisterOrConstant(temp_reg);
  4113   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4114   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4116   // This check has worked decisively for primary supers.
  4117   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4118   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4119   // This works in the same check above because of a tricky aliasing
  4120   // between the super_cache and the primary super display elements.
  4121   // (The 'super_check_addr' can address either, as the case requires.)
  4122   // Note that the cache is updated below if it does not help us find
  4123   // what we need immediately.
  4124   // So if it was a primary super, we can just fail immediately.
  4125   // Otherwise, it's the slow path for us (no success at this point).
  4127   if (super_check_offset.is_register()) {
  4128     local_jcc(Assembler::equal, *L_success);
  4129     cmpl(super_check_offset.as_register(), sc_offset);
  4130     if (L_failure == &L_fallthrough) {
  4131       local_jcc(Assembler::equal, *L_slow_path);
  4132     } else {
  4133       local_jcc(Assembler::notEqual, *L_failure);
  4134       final_jmp(*L_slow_path);
  4136   } else if (super_check_offset.as_constant() == sc_offset) {
  4137     // Need a slow path; fast failure is impossible.
  4138     if (L_slow_path == &L_fallthrough) {
  4139       local_jcc(Assembler::equal, *L_success);
  4140     } else {
  4141       local_jcc(Assembler::notEqual, *L_slow_path);
  4142       final_jmp(*L_success);
  4144   } else {
  4145     // No slow path; it's a fast decision.
  4146     if (L_failure == &L_fallthrough) {
  4147       local_jcc(Assembler::equal, *L_success);
  4148     } else {
  4149       local_jcc(Assembler::notEqual, *L_failure);
  4150       final_jmp(*L_success);
  4154   bind(L_fallthrough);
  4156 #undef local_jcc
  4157 #undef final_jmp
  4161 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  4162                                                    Register super_klass,
  4163                                                    Register temp_reg,
  4164                                                    Register temp2_reg,
  4165                                                    Label* L_success,
  4166                                                    Label* L_failure,
  4167                                                    bool set_cond_codes) {
  4168   assert_different_registers(sub_klass, super_klass, temp_reg);
  4169   if (temp2_reg != noreg)
  4170     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  4171 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  4173   Label L_fallthrough;
  4174   int label_nulls = 0;
  4175   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4176   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4177   assert(label_nulls <= 1, "at most one NULL in the batch");
  4179   // a couple of useful fields in sub_klass:
  4180   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  4181   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4182   Address secondary_supers_addr(sub_klass, ss_offset);
  4183   Address super_cache_addr(     sub_klass, sc_offset);
  4185   // Do a linear scan of the secondary super-klass chain.
  4186   // This code is rarely used, so simplicity is a virtue here.
  4187   // The repne_scan instruction uses fixed registers, which we must spill.
  4188   // Don't worry too much about pre-existing connections with the input regs.
  4190   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  4191   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  4193   // Get super_klass value into rax (even if it was in rdi or rcx).
  4194   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  4195   if (super_klass != rax || UseCompressedOops) {
  4196     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  4197     mov(rax, super_klass);
  4199   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  4200   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  4202 #ifndef PRODUCT
  4203   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  4204   ExternalAddress pst_counter_addr((address) pst_counter);
  4205   NOT_LP64(  incrementl(pst_counter_addr) );
  4206   LP64_ONLY( lea(rcx, pst_counter_addr) );
  4207   LP64_ONLY( incrementl(Address(rcx, 0)) );
  4208 #endif //PRODUCT
  4210   // We will consult the secondary-super array.
  4211   movptr(rdi, secondary_supers_addr);
  4212   // Load the array length.  (Positive movl does right thing on LP64.)
  4213   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  4214   // Skip to start of data.
  4215   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  4217   // Scan RCX words at [RDI] for an occurrence of RAX.
  4218   // Set NZ/Z based on last compare.
  4219   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  4220   // not change flags (only scas instruction which is repeated sets flags).
  4221   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  4223     testptr(rax,rax); // Set Z = 0
  4224     repne_scan();
  4226   // Unspill the temp. registers:
  4227   if (pushed_rdi)  pop(rdi);
  4228   if (pushed_rcx)  pop(rcx);
  4229   if (pushed_rax)  pop(rax);
  4231   if (set_cond_codes) {
  4232     // Special hack for the AD files:  rdi is guaranteed non-zero.
  4233     assert(!pushed_rdi, "rdi must be left non-NULL");
  4234     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  4237   if (L_failure == &L_fallthrough)
  4238         jccb(Assembler::notEqual, *L_failure);
  4239   else  jcc(Assembler::notEqual, *L_failure);
  4241   // Success.  Cache the super we found and proceed in triumph.
  4242   movptr(super_cache_addr, super_klass);
  4244   if (L_success != &L_fallthrough) {
  4245     jmp(*L_success);
  4248 #undef IS_A_TEMP
  4250   bind(L_fallthrough);
  4254 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  4255   if (VM_Version::supports_cmov()) {
  4256     cmovl(cc, dst, src);
  4257   } else {
  4258     Label L;
  4259     jccb(negate_condition(cc), L);
  4260     movl(dst, src);
  4261     bind(L);
  4265 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  4266   if (VM_Version::supports_cmov()) {
  4267     cmovl(cc, dst, src);
  4268   } else {
  4269     Label L;
  4270     jccb(negate_condition(cc), L);
  4271     movl(dst, src);
  4272     bind(L);
  4276 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4277   if (!VerifyOops) return;
  4279   // Pass register number to verify_oop_subroutine
  4280   const char* b = NULL;
  4282     ResourceMark rm;
  4283     stringStream ss;
  4284     ss.print("verify_oop: %s: %s", reg->name(), s);
  4285     b = code_string(ss.as_string());
  4287   BLOCK_COMMENT("verify_oop {");
  4288 #ifdef _LP64
  4289   push(rscratch1);                    // save r10, trashed by movptr()
  4290 #endif
  4291   push(rax);                          // save rax,
  4292   push(reg);                          // pass register argument
  4293   ExternalAddress buffer((address) b);
  4294   // avoid using pushptr, as it modifies scratch registers
  4295   // and our contract is not to modify anything
  4296   movptr(rax, buffer.addr());
  4297   push(rax);
  4298   // call indirectly to solve generation ordering problem
  4299   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4300   call(rax);
  4301   // Caller pops the arguments (oop, message) and restores rax, r10
  4302   BLOCK_COMMENT("} verify_oop");
  4306 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  4307                                                       Register tmp,
  4308                                                       int offset) {
  4309   intptr_t value = *delayed_value_addr;
  4310   if (value != 0)
  4311     return RegisterOrConstant(value + offset);
  4313   // load indirectly to solve generation ordering problem
  4314   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  4316 #ifdef ASSERT
  4317   { Label L;
  4318     testptr(tmp, tmp);
  4319     if (WizardMode) {
  4320       const char* buf = NULL;
  4322         ResourceMark rm;
  4323         stringStream ss;
  4324         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  4325         buf = code_string(ss.as_string());
  4327       jcc(Assembler::notZero, L);
  4328       STOP(buf);
  4329     } else {
  4330       jccb(Assembler::notZero, L);
  4331       hlt();
  4333     bind(L);
  4335 #endif
  4337   if (offset != 0)
  4338     addptr(tmp, offset);
  4340   return RegisterOrConstant(tmp);
  4344 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  4345                                          int extra_slot_offset) {
  4346   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  4347   int stackElementSize = Interpreter::stackElementSize;
  4348   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  4349 #ifdef ASSERT
  4350   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  4351   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  4352 #endif
  4353   Register             scale_reg    = noreg;
  4354   Address::ScaleFactor scale_factor = Address::no_scale;
  4355   if (arg_slot.is_constant()) {
  4356     offset += arg_slot.as_constant() * stackElementSize;
  4357   } else {
  4358     scale_reg    = arg_slot.as_register();
  4359     scale_factor = Address::times(stackElementSize);
  4361   offset += wordSize;           // return PC is on stack
  4362   return Address(rsp, scale_reg, scale_factor, offset);
  4366 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4367   if (!VerifyOops) return;
  4369   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  4370   // Pass register number to verify_oop_subroutine
  4371   const char* b = NULL;
  4373     ResourceMark rm;
  4374     stringStream ss;
  4375     ss.print("verify_oop_addr: %s", s);
  4376     b = code_string(ss.as_string());
  4378 #ifdef _LP64
  4379   push(rscratch1);                    // save r10, trashed by movptr()
  4380 #endif
  4381   push(rax);                          // save rax,
  4382   // addr may contain rsp so we will have to adjust it based on the push
  4383   // we just did (and on 64 bit we do two pushes)
  4384   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  4385   // stores rax into addr which is backwards of what was intended.
  4386   if (addr.uses(rsp)) {
  4387     lea(rax, addr);
  4388     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  4389   } else {
  4390     pushptr(addr);
  4393   ExternalAddress buffer((address) b);
  4394   // pass msg argument
  4395   // avoid using pushptr, as it modifies scratch registers
  4396   // and our contract is not to modify anything
  4397   movptr(rax, buffer.addr());
  4398   push(rax);
  4400   // call indirectly to solve generation ordering problem
  4401   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4402   call(rax);
  4403   // Caller pops the arguments (addr, message) and restores rax, r10.
  4406 void MacroAssembler::verify_tlab() {
  4407 #ifdef ASSERT
  4408   if (UseTLAB && VerifyOops) {
  4409     Label next, ok;
  4410     Register t1 = rsi;
  4411     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  4413     push(t1);
  4414     NOT_LP64(push(thread_reg));
  4415     NOT_LP64(get_thread(thread_reg));
  4417     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4418     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4419     jcc(Assembler::aboveEqual, next);
  4420     STOP("assert(top >= start)");
  4421     should_not_reach_here();
  4423     bind(next);
  4424     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4425     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4426     jcc(Assembler::aboveEqual, ok);
  4427     STOP("assert(top <= end)");
  4428     should_not_reach_here();
  4430     bind(ok);
  4431     NOT_LP64(pop(thread_reg));
  4432     pop(t1);
  4434 #endif
  4437 class ControlWord {
  4438  public:
  4439   int32_t _value;
  4441   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  4442   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  4443   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4444   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4445   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4446   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4447   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4448   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4450   void print() const {
  4451     // rounding control
  4452     const char* rc;
  4453     switch (rounding_control()) {
  4454       case 0: rc = "round near"; break;
  4455       case 1: rc = "round down"; break;
  4456       case 2: rc = "round up  "; break;
  4457       case 3: rc = "chop      "; break;
  4458     };
  4459     // precision control
  4460     const char* pc;
  4461     switch (precision_control()) {
  4462       case 0: pc = "24 bits "; break;
  4463       case 1: pc = "reserved"; break;
  4464       case 2: pc = "53 bits "; break;
  4465       case 3: pc = "64 bits "; break;
  4466     };
  4467     // flags
  4468     char f[9];
  4469     f[0] = ' ';
  4470     f[1] = ' ';
  4471     f[2] = (precision   ()) ? 'P' : 'p';
  4472     f[3] = (underflow   ()) ? 'U' : 'u';
  4473     f[4] = (overflow    ()) ? 'O' : 'o';
  4474     f[5] = (zero_divide ()) ? 'Z' : 'z';
  4475     f[6] = (denormalized()) ? 'D' : 'd';
  4476     f[7] = (invalid     ()) ? 'I' : 'i';
  4477     f[8] = '\x0';
  4478     // output
  4479     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  4482 };
  4484 class StatusWord {
  4485  public:
  4486   int32_t _value;
  4488   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  4489   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  4490   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  4491   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  4492   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  4493   int  top() const                     { return  (_value >> 11) & 7      ; }
  4494   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  4495   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  4496   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4497   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4498   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4499   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4500   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4501   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4503   void print() const {
  4504     // condition codes
  4505     char c[5];
  4506     c[0] = (C3()) ? '3' : '-';
  4507     c[1] = (C2()) ? '2' : '-';
  4508     c[2] = (C1()) ? '1' : '-';
  4509     c[3] = (C0()) ? '0' : '-';
  4510     c[4] = '\x0';
  4511     // flags
  4512     char f[9];
  4513     f[0] = (error_status()) ? 'E' : '-';
  4514     f[1] = (stack_fault ()) ? 'S' : '-';
  4515     f[2] = (precision   ()) ? 'P' : '-';
  4516     f[3] = (underflow   ()) ? 'U' : '-';
  4517     f[4] = (overflow    ()) ? 'O' : '-';
  4518     f[5] = (zero_divide ()) ? 'Z' : '-';
  4519     f[6] = (denormalized()) ? 'D' : '-';
  4520     f[7] = (invalid     ()) ? 'I' : '-';
  4521     f[8] = '\x0';
  4522     // output
  4523     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  4526 };
  4528 class TagWord {
  4529  public:
  4530   int32_t _value;
  4532   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  4534   void print() const {
  4535     printf("%04x", _value & 0xFFFF);
  4538 };
  4540 class FPU_Register {
  4541  public:
  4542   int32_t _m0;
  4543   int32_t _m1;
  4544   int16_t _ex;
  4546   bool is_indefinite() const           {
  4547     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  4550   void print() const {
  4551     char  sign = (_ex < 0) ? '-' : '+';
  4552     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  4553     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  4554   };
  4556 };
  4558 class FPU_State {
  4559  public:
  4560   enum {
  4561     register_size       = 10,
  4562     number_of_registers =  8,
  4563     register_mask       =  7
  4564   };
  4566   ControlWord  _control_word;
  4567   StatusWord   _status_word;
  4568   TagWord      _tag_word;
  4569   int32_t      _error_offset;
  4570   int32_t      _error_selector;
  4571   int32_t      _data_offset;
  4572   int32_t      _data_selector;
  4573   int8_t       _register[register_size * number_of_registers];
  4575   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  4576   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  4578   const char* tag_as_string(int tag) const {
  4579     switch (tag) {
  4580       case 0: return "valid";
  4581       case 1: return "zero";
  4582       case 2: return "special";
  4583       case 3: return "empty";
  4585     ShouldNotReachHere();
  4586     return NULL;
  4589   void print() const {
  4590     // print computation registers
  4591     { int t = _status_word.top();
  4592       for (int i = 0; i < number_of_registers; i++) {
  4593         int j = (i - t) & register_mask;
  4594         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  4595         st(j)->print();
  4596         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  4599     printf("\n");
  4600     // print control registers
  4601     printf("ctrl = "); _control_word.print(); printf("\n");
  4602     printf("stat = "); _status_word .print(); printf("\n");
  4603     printf("tags = "); _tag_word    .print(); printf("\n");
  4606 };
  4608 class Flag_Register {
  4609  public:
  4610   int32_t _value;
  4612   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  4613   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  4614   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  4615   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  4616   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  4617   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  4618   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  4620   void print() const {
  4621     // flags
  4622     char f[8];
  4623     f[0] = (overflow       ()) ? 'O' : '-';
  4624     f[1] = (direction      ()) ? 'D' : '-';
  4625     f[2] = (sign           ()) ? 'S' : '-';
  4626     f[3] = (zero           ()) ? 'Z' : '-';
  4627     f[4] = (auxiliary_carry()) ? 'A' : '-';
  4628     f[5] = (parity         ()) ? 'P' : '-';
  4629     f[6] = (carry          ()) ? 'C' : '-';
  4630     f[7] = '\x0';
  4631     // output
  4632     printf("%08x  flags = %s", _value, f);
  4635 };
  4637 class IU_Register {
  4638  public:
  4639   int32_t _value;
  4641   void print() const {
  4642     printf("%08x  %11d", _value, _value);
  4645 };
  4647 class IU_State {
  4648  public:
  4649   Flag_Register _eflags;
  4650   IU_Register   _rdi;
  4651   IU_Register   _rsi;
  4652   IU_Register   _rbp;
  4653   IU_Register   _rsp;
  4654   IU_Register   _rbx;
  4655   IU_Register   _rdx;
  4656   IU_Register   _rcx;
  4657   IU_Register   _rax;
  4659   void print() const {
  4660     // computation registers
  4661     printf("rax,  = "); _rax.print(); printf("\n");
  4662     printf("rbx,  = "); _rbx.print(); printf("\n");
  4663     printf("rcx  = "); _rcx.print(); printf("\n");
  4664     printf("rdx  = "); _rdx.print(); printf("\n");
  4665     printf("rdi  = "); _rdi.print(); printf("\n");
  4666     printf("rsi  = "); _rsi.print(); printf("\n");
  4667     printf("rbp,  = "); _rbp.print(); printf("\n");
  4668     printf("rsp  = "); _rsp.print(); printf("\n");
  4669     printf("\n");
  4670     // control registers
  4671     printf("flgs = "); _eflags.print(); printf("\n");
  4673 };
  4676 class CPU_State {
  4677  public:
  4678   FPU_State _fpu_state;
  4679   IU_State  _iu_state;
  4681   void print() const {
  4682     printf("--------------------------------------------------\n");
  4683     _iu_state .print();
  4684     printf("\n");
  4685     _fpu_state.print();
  4686     printf("--------------------------------------------------\n");
  4689 };
  4692 static void _print_CPU_state(CPU_State* state) {
  4693   state->print();
  4694 };
  4697 void MacroAssembler::print_CPU_state() {
  4698   push_CPU_state();
  4699   push(rsp);                // pass CPU state
  4700   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  4701   addptr(rsp, wordSize);       // discard argument
  4702   pop_CPU_state();
  4706 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  4707   static int counter = 0;
  4708   FPU_State* fs = &state->_fpu_state;
  4709   counter++;
  4710   // For leaf calls, only verify that the top few elements remain empty.
  4711   // We only need 1 empty at the top for C2 code.
  4712   if( stack_depth < 0 ) {
  4713     if( fs->tag_for_st(7) != 3 ) {
  4714       printf("FPR7 not empty\n");
  4715       state->print();
  4716       assert(false, "error");
  4717       return false;
  4719     return true;                // All other stack states do not matter
  4722   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  4723          "bad FPU control word");
  4725   // compute stack depth
  4726   int i = 0;
  4727   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  4728   int d = i;
  4729   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  4730   // verify findings
  4731   if (i != FPU_State::number_of_registers) {
  4732     // stack not contiguous
  4733     printf("%s: stack not contiguous at ST%d\n", s, i);
  4734     state->print();
  4735     assert(false, "error");
  4736     return false;
  4738   // check if computed stack depth corresponds to expected stack depth
  4739   if (stack_depth < 0) {
  4740     // expected stack depth is -stack_depth or less
  4741     if (d > -stack_depth) {
  4742       // too many elements on the stack
  4743       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  4744       state->print();
  4745       assert(false, "error");
  4746       return false;
  4748   } else {
  4749     // expected stack depth is stack_depth
  4750     if (d != stack_depth) {
  4751       // wrong stack depth
  4752       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  4753       state->print();
  4754       assert(false, "error");
  4755       return false;
  4758   // everything is cool
  4759   return true;
  4763 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  4764   if (!VerifyFPU) return;
  4765   push_CPU_state();
  4766   push(rsp);                // pass CPU state
  4767   ExternalAddress msg((address) s);
  4768   // pass message string s
  4769   pushptr(msg.addr());
  4770   push(stack_depth);        // pass stack depth
  4771   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  4772   addptr(rsp, 3 * wordSize);   // discard arguments
  4773   // check for error
  4774   { Label L;
  4775     testl(rax, rax);
  4776     jcc(Assembler::notZero, L);
  4777     int3();                  // break if error condition
  4778     bind(L);
  4780   pop_CPU_state();
  4783 void MacroAssembler::restore_cpu_control_state_after_jni() {
  4784   // Either restore the MXCSR register after returning from the JNI Call
  4785   // or verify that it wasn't changed (with -Xcheck:jni flag).
  4786   if (VM_Version::supports_sse()) {
  4787     if (RestoreMXCSROnJNICalls) {
  4788       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  4789     } else if (CheckJNICalls) {
  4790       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  4793   if (VM_Version::supports_avx()) {
  4794     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  4795     vzeroupper();
  4798 #ifndef _LP64
  4799   // Either restore the x87 floating pointer control word after returning
  4800   // from the JNI call or verify that it wasn't changed.
  4801   if (CheckJNICalls) {
  4802     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  4804 #endif // _LP64
  4808 void MacroAssembler::load_klass(Register dst, Register src) {
  4809 #ifdef _LP64
  4810   if (UseCompressedClassPointers) {
  4811     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4812     decode_klass_not_null(dst);
  4813   } else
  4814 #endif
  4815     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4818 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  4819   load_klass(dst, src);
  4820   movptr(dst, Address(dst, Klass::prototype_header_offset()));
  4823 void MacroAssembler::store_klass(Register dst, Register src) {
  4824 #ifdef _LP64
  4825   if (UseCompressedClassPointers) {
  4826     encode_klass_not_null(src);
  4827     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4828   } else
  4829 #endif
  4830     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4833 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  4834 #ifdef _LP64
  4835   // FIXME: Must change all places where we try to load the klass.
  4836   if (UseCompressedOops) {
  4837     movl(dst, src);
  4838     decode_heap_oop(dst);
  4839   } else
  4840 #endif
  4841     movptr(dst, src);
  4844 // Doesn't do verfication, generates fixed size code
  4845 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  4846 #ifdef _LP64
  4847   if (UseCompressedOops) {
  4848     movl(dst, src);
  4849     decode_heap_oop_not_null(dst);
  4850   } else
  4851 #endif
  4852     movptr(dst, src);
  4855 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  4856 #ifdef _LP64
  4857   if (UseCompressedOops) {
  4858     assert(!dst.uses(src), "not enough registers");
  4859     encode_heap_oop(src);
  4860     movl(dst, src);
  4861   } else
  4862 #endif
  4863     movptr(dst, src);
  4866 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  4867   assert_different_registers(src1, tmp);
  4868 #ifdef _LP64
  4869   if (UseCompressedOops) {
  4870     bool did_push = false;
  4871     if (tmp == noreg) {
  4872       tmp = rax;
  4873       push(tmp);
  4874       did_push = true;
  4875       assert(!src2.uses(rsp), "can't push");
  4877     load_heap_oop(tmp, src2);
  4878     cmpptr(src1, tmp);
  4879     if (did_push)  pop(tmp);
  4880   } else
  4881 #endif
  4882     cmpptr(src1, src2);
  4885 // Used for storing NULLs.
  4886 void MacroAssembler::store_heap_oop_null(Address dst) {
  4887 #ifdef _LP64
  4888   if (UseCompressedOops) {
  4889     movl(dst, (int32_t)NULL_WORD);
  4890   } else {
  4891     movslq(dst, (int32_t)NULL_WORD);
  4893 #else
  4894   movl(dst, (int32_t)NULL_WORD);
  4895 #endif
  4898 #ifdef _LP64
  4899 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  4900   if (UseCompressedClassPointers) {
  4901     // Store to klass gap in destination
  4902     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  4906 #ifdef ASSERT
  4907 void MacroAssembler::verify_heapbase(const char* msg) {
  4908   assert (UseCompressedOops, "should be compressed");
  4909   assert (Universe::heap() != NULL, "java heap should be initialized");
  4910   if (CheckCompressedOops) {
  4911     Label ok;
  4912     push(rscratch1); // cmpptr trashes rscratch1
  4913     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  4914     jcc(Assembler::equal, ok);
  4915     STOP(msg);
  4916     bind(ok);
  4917     pop(rscratch1);
  4920 #endif
  4922 // Algorithm must match oop.inline.hpp encode_heap_oop.
  4923 void MacroAssembler::encode_heap_oop(Register r) {
  4924 #ifdef ASSERT
  4925   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  4926 #endif
  4927   verify_oop(r, "broken oop in encode_heap_oop");
  4928   if (Universe::narrow_oop_base() == NULL) {
  4929     if (Universe::narrow_oop_shift() != 0) {
  4930       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4931       shrq(r, LogMinObjAlignmentInBytes);
  4933     return;
  4935   testq(r, r);
  4936   cmovq(Assembler::equal, r, r12_heapbase);
  4937   subq(r, r12_heapbase);
  4938   shrq(r, LogMinObjAlignmentInBytes);
  4941 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4942 #ifdef ASSERT
  4943   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  4944   if (CheckCompressedOops) {
  4945     Label ok;
  4946     testq(r, r);
  4947     jcc(Assembler::notEqual, ok);
  4948     STOP("null oop passed to encode_heap_oop_not_null");
  4949     bind(ok);
  4951 #endif
  4952   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  4953   if (Universe::narrow_oop_base() != NULL) {
  4954     subq(r, r12_heapbase);
  4956   if (Universe::narrow_oop_shift() != 0) {
  4957     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4958     shrq(r, LogMinObjAlignmentInBytes);
  4962 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  4963 #ifdef ASSERT
  4964   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  4965   if (CheckCompressedOops) {
  4966     Label ok;
  4967     testq(src, src);
  4968     jcc(Assembler::notEqual, ok);
  4969     STOP("null oop passed to encode_heap_oop_not_null2");
  4970     bind(ok);
  4972 #endif
  4973   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  4974   if (dst != src) {
  4975     movq(dst, src);
  4977   if (Universe::narrow_oop_base() != NULL) {
  4978     subq(dst, r12_heapbase);
  4980   if (Universe::narrow_oop_shift() != 0) {
  4981     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4982     shrq(dst, LogMinObjAlignmentInBytes);
  4986 void  MacroAssembler::decode_heap_oop(Register r) {
  4987 #ifdef ASSERT
  4988   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  4989 #endif
  4990   if (Universe::narrow_oop_base() == NULL) {
  4991     if (Universe::narrow_oop_shift() != 0) {
  4992       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4993       shlq(r, LogMinObjAlignmentInBytes);
  4995   } else {
  4996     Label done;
  4997     shlq(r, LogMinObjAlignmentInBytes);
  4998     jccb(Assembler::equal, done);
  4999     addq(r, r12_heapbase);
  5000     bind(done);
  5002   verify_oop(r, "broken oop in decode_heap_oop");
  5005 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5006   // Note: it will change flags
  5007   assert (UseCompressedOops, "should only be used for compressed headers");
  5008   assert (Universe::heap() != NULL, "java heap should be initialized");
  5009   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5010   // vtableStubs also counts instructions in pd_code_size_limit.
  5011   // Also do not verify_oop as this is called by verify_oop.
  5012   if (Universe::narrow_oop_shift() != 0) {
  5013     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5014     shlq(r, LogMinObjAlignmentInBytes);
  5015     if (Universe::narrow_oop_base() != NULL) {
  5016       addq(r, r12_heapbase);
  5018   } else {
  5019     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5023 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5024   // Note: it will change flags
  5025   assert (UseCompressedOops, "should only be used for compressed headers");
  5026   assert (Universe::heap() != NULL, "java heap should be initialized");
  5027   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5028   // vtableStubs also counts instructions in pd_code_size_limit.
  5029   // Also do not verify_oop as this is called by verify_oop.
  5030   if (Universe::narrow_oop_shift() != 0) {
  5031     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5032     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5033       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5034     } else {
  5035       if (dst != src) {
  5036         movq(dst, src);
  5038       shlq(dst, LogMinObjAlignmentInBytes);
  5039       if (Universe::narrow_oop_base() != NULL) {
  5040         addq(dst, r12_heapbase);
  5043   } else {
  5044     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5045     if (dst != src) {
  5046       movq(dst, src);
  5051 void MacroAssembler::encode_klass_not_null(Register r) {
  5052   if (Universe::narrow_klass_base() != NULL) {
  5053     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5054     assert(r != r12_heapbase, "Encoding a klass in r12");
  5055     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5056     subq(r, r12_heapbase);
  5058   if (Universe::narrow_klass_shift() != 0) {
  5059     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5060     shrq(r, LogKlassAlignmentInBytes);
  5062   if (Universe::narrow_klass_base() != NULL) {
  5063     reinit_heapbase();
  5067 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5068   if (dst == src) {
  5069     encode_klass_not_null(src);
  5070   } else {
  5071     if (Universe::narrow_klass_base() != NULL) {
  5072       mov64(dst, (int64_t)Universe::narrow_klass_base());
  5073       negq(dst);
  5074       addq(dst, src);
  5075     } else {
  5076       movptr(dst, src);
  5078     if (Universe::narrow_klass_shift() != 0) {
  5079       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5080       shrq(dst, LogKlassAlignmentInBytes);
  5085 // Function instr_size_for_decode_klass_not_null() counts the instructions
  5086 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  5087 // when (Universe::heap() != NULL).  Hence, if the instructions they
  5088 // generate change, then this method needs to be updated.
  5089 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  5090   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  5091   if (Universe::narrow_klass_base() != NULL) {
  5092     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  5093     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  5094   } else {
  5095     // longest load decode klass function, mov64, leaq
  5096     return 16;
  5100 // !!! If the instructions that get generated here change then function
  5101 // instr_size_for_decode_klass_not_null() needs to get updated.
  5102 void  MacroAssembler::decode_klass_not_null(Register r) {
  5103   // Note: it will change flags
  5104   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5105   assert(r != r12_heapbase, "Decoding a klass in r12");
  5106   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5107   // vtableStubs also counts instructions in pd_code_size_limit.
  5108   // Also do not verify_oop as this is called by verify_oop.
  5109   if (Universe::narrow_klass_shift() != 0) {
  5110     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5111     shlq(r, LogKlassAlignmentInBytes);
  5113   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5114   if (Universe::narrow_klass_base() != NULL) {
  5115     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5116     addq(r, r12_heapbase);
  5117     reinit_heapbase();
  5121 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5122   // Note: it will change flags
  5123   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5124   if (dst == src) {
  5125     decode_klass_not_null(dst);
  5126   } else {
  5127     // Cannot assert, unverified entry point counts instructions (see .ad file)
  5128     // vtableStubs also counts instructions in pd_code_size_limit.
  5129     // Also do not verify_oop as this is called by verify_oop.
  5130     mov64(dst, (int64_t)Universe::narrow_klass_base());
  5131     if (Universe::narrow_klass_shift() != 0) {
  5132       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5133       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  5134       leaq(dst, Address(dst, src, Address::times_8, 0));
  5135     } else {
  5136       addq(dst, src);
  5141 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  5142   assert (UseCompressedOops, "should only be used for compressed headers");
  5143   assert (Universe::heap() != NULL, "java heap should be initialized");
  5144   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5145   int oop_index = oop_recorder()->find_index(obj);
  5146   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5147   mov_narrow_oop(dst, oop_index, rspec);
  5150 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  5151   assert (UseCompressedOops, "should only be used for compressed headers");
  5152   assert (Universe::heap() != NULL, "java heap should be initialized");
  5153   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5154   int oop_index = oop_recorder()->find_index(obj);
  5155   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5156   mov_narrow_oop(dst, oop_index, rspec);
  5159 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  5160   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5161   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5162   int klass_index = oop_recorder()->find_index(k);
  5163   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5164   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5167 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  5168   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5169   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5170   int klass_index = oop_recorder()->find_index(k);
  5171   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5172   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5175 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  5176   assert (UseCompressedOops, "should only be used for compressed headers");
  5177   assert (Universe::heap() != NULL, "java heap should be initialized");
  5178   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5179   int oop_index = oop_recorder()->find_index(obj);
  5180   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5181   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5184 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  5185   assert (UseCompressedOops, "should only be used for compressed headers");
  5186   assert (Universe::heap() != NULL, "java heap should be initialized");
  5187   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5188   int oop_index = oop_recorder()->find_index(obj);
  5189   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5190   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5193 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  5194   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5195   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5196   int klass_index = oop_recorder()->find_index(k);
  5197   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5198   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5201 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  5202   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5203   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5204   int klass_index = oop_recorder()->find_index(k);
  5205   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5206   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  5209 void MacroAssembler::reinit_heapbase() {
  5210   if (UseCompressedOops || UseCompressedClassPointers) {
  5211     if (Universe::heap() != NULL) {
  5212       if (Universe::narrow_oop_base() == NULL) {
  5213         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
  5214       } else {
  5215         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
  5217     } else {
  5218       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5223 #endif // _LP64
  5226 // C2 compiled method's prolog code.
  5227 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  5229   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  5230   // NativeJump::patch_verified_entry will be able to patch out the entry
  5231   // code safely. The push to verify stack depth is ok at 5 bytes,
  5232   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  5233   // stack bang then we must use the 6 byte frame allocation even if
  5234   // we have no frame. :-(
  5236   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  5237   // Remove word for return addr
  5238   framesize -= wordSize;
  5240   // Calls to C2R adapters often do not accept exceptional returns.
  5241   // We require that their callers must bang for them.  But be careful, because
  5242   // some VM calls (such as call site linkage) can use several kilobytes of
  5243   // stack.  But the stack safety zone should account for that.
  5244   // See bugs 4446381, 4468289, 4497237.
  5245   if (stack_bang) {
  5246     generate_stack_overflow_check(framesize);
  5248     // We always push rbp, so that on return to interpreter rbp, will be
  5249     // restored correctly and we can correct the stack.
  5250     push(rbp);
  5251     // Remove word for ebp
  5252     framesize -= wordSize;
  5254     // Create frame
  5255     if (framesize) {
  5256       subptr(rsp, framesize);
  5258   } else {
  5259     // Create frame (force generation of a 4 byte immediate value)
  5260     subptr_imm32(rsp, framesize);
  5262     // Save RBP register now.
  5263     framesize -= wordSize;
  5264     movptr(Address(rsp, framesize), rbp);
  5267   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  5268     framesize -= wordSize;
  5269     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  5272 #ifndef _LP64
  5273   // If method sets FPU control word do it now
  5274   if (fp_mode_24b) {
  5275     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  5277   if (UseSSE >= 2 && VerifyFPU) {
  5278     verify_FPU(0, "FPU stack must be clean on entry");
  5280 #endif
  5282 #ifdef ASSERT
  5283   if (VerifyStackAtCalls) {
  5284     Label L;
  5285     push(rax);
  5286     mov(rax, rsp);
  5287     andptr(rax, StackAlignmentInBytes-1);
  5288     cmpptr(rax, StackAlignmentInBytes-wordSize);
  5289     pop(rax);
  5290     jcc(Assembler::equal, L);
  5291     STOP("Stack is not properly aligned!");
  5292     bind(L);
  5294 #endif
  5298 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  5299   // cnt - number of qwords (8-byte words).
  5300   // base - start address, qword aligned.
  5301   assert(base==rdi, "base register must be edi for rep stos");
  5302   assert(tmp==rax,   "tmp register must be eax for rep stos");
  5303   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  5305   xorptr(tmp, tmp);
  5306   if (UseFastStosb) {
  5307     shlptr(cnt,3); // convert to number of bytes
  5308     rep_stosb();
  5309   } else {
  5310     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  5311     rep_stos();
  5315 // IndexOf for constant substrings with size >= 8 chars
  5316 // which don't need to be loaded through stack.
  5317 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  5318                                       Register cnt1, Register cnt2,
  5319                                       int int_cnt2,  Register result,
  5320                                       XMMRegister vec, Register tmp) {
  5321   ShortBranchVerifier sbv(this);
  5322   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5324   // This method uses pcmpestri inxtruction with bound registers
  5325   //   inputs:
  5326   //     xmm - substring
  5327   //     rax - substring length (elements count)
  5328   //     mem - scanned string
  5329   //     rdx - string length (elements count)
  5330   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5331   //   outputs:
  5332   //     rcx - matched index in string
  5333   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5335   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  5336         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  5337         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  5339   // Note, inline_string_indexOf() generates checks:
  5340   // if (substr.count > string.count) return -1;
  5341   // if (substr.count == 0) return 0;
  5342   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  5344   // Load substring.
  5345   movdqu(vec, Address(str2, 0));
  5346   movl(cnt2, int_cnt2);
  5347   movptr(result, str1); // string addr
  5349   if (int_cnt2 > 8) {
  5350     jmpb(SCAN_TO_SUBSTR);
  5352     // Reload substr for rescan, this code
  5353     // is executed only for large substrings (> 8 chars)
  5354     bind(RELOAD_SUBSTR);
  5355     movdqu(vec, Address(str2, 0));
  5356     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  5358     bind(RELOAD_STR);
  5359     // We came here after the beginning of the substring was
  5360     // matched but the rest of it was not so we need to search
  5361     // again. Start from the next element after the previous match.
  5363     // cnt2 is number of substring reminding elements and
  5364     // cnt1 is number of string reminding elements when cmp failed.
  5365     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  5366     subl(cnt1, cnt2);
  5367     addl(cnt1, int_cnt2);
  5368     movl(cnt2, int_cnt2); // Now restore cnt2
  5370     decrementl(cnt1);     // Shift to next element
  5371     cmpl(cnt1, cnt2);
  5372     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5374     addptr(result, 2);
  5376   } // (int_cnt2 > 8)
  5378   // Scan string for start of substr in 16-byte vectors
  5379   bind(SCAN_TO_SUBSTR);
  5380   pcmpestri(vec, Address(result, 0), 0x0d);
  5381   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5382   subl(cnt1, 8);
  5383   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5384   cmpl(cnt1, cnt2);
  5385   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5386   addptr(result, 16);
  5387   jmpb(SCAN_TO_SUBSTR);
  5389   // Found a potential substr
  5390   bind(FOUND_CANDIDATE);
  5391   // Matched whole vector if first element matched (tmp(rcx) == 0).
  5392   if (int_cnt2 == 8) {
  5393     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  5394   } else { // int_cnt2 > 8
  5395     jccb(Assembler::overflow, FOUND_SUBSTR);
  5397   // After pcmpestri tmp(rcx) contains matched element index
  5398   // Compute start addr of substr
  5399   lea(result, Address(result, tmp, Address::times_2));
  5401   // Make sure string is still long enough
  5402   subl(cnt1, tmp);
  5403   cmpl(cnt1, cnt2);
  5404   if (int_cnt2 == 8) {
  5405     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5406   } else { // int_cnt2 > 8
  5407     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  5409   // Left less then substring.
  5411   bind(RET_NOT_FOUND);
  5412   movl(result, -1);
  5413   jmpb(EXIT);
  5415   if (int_cnt2 > 8) {
  5416     // This code is optimized for the case when whole substring
  5417     // is matched if its head is matched.
  5418     bind(MATCH_SUBSTR_HEAD);
  5419     pcmpestri(vec, Address(result, 0), 0x0d);
  5420     // Reload only string if does not match
  5421     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  5423     Label CONT_SCAN_SUBSTR;
  5424     // Compare the rest of substring (> 8 chars).
  5425     bind(FOUND_SUBSTR);
  5426     // First 8 chars are already matched.
  5427     negptr(cnt2);
  5428     addptr(cnt2, 8);
  5430     bind(SCAN_SUBSTR);
  5431     subl(cnt1, 8);
  5432     cmpl(cnt2, -8); // Do not read beyond substring
  5433     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  5434     // Back-up strings to avoid reading beyond substring:
  5435     // cnt1 = cnt1 - cnt2 + 8
  5436     addl(cnt1, cnt2); // cnt2 is negative
  5437     addl(cnt1, 8);
  5438     movl(cnt2, 8); negptr(cnt2);
  5439     bind(CONT_SCAN_SUBSTR);
  5440     if (int_cnt2 < (int)G) {
  5441       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  5442       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  5443     } else {
  5444       // calculate index in register to avoid integer overflow (int_cnt2*2)
  5445       movl(tmp, int_cnt2);
  5446       addptr(tmp, cnt2);
  5447       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  5448       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  5450     // Need to reload strings pointers if not matched whole vector
  5451     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5452     addptr(cnt2, 8);
  5453     jcc(Assembler::negative, SCAN_SUBSTR);
  5454     // Fall through if found full substring
  5456   } // (int_cnt2 > 8)
  5458   bind(RET_FOUND);
  5459   // Found result if we matched full small substring.
  5460   // Compute substr offset
  5461   subptr(result, str1);
  5462   shrl(result, 1); // index
  5463   bind(EXIT);
  5465 } // string_indexofC8
  5467 // Small strings are loaded through stack if they cross page boundary.
  5468 void MacroAssembler::string_indexof(Register str1, Register str2,
  5469                                     Register cnt1, Register cnt2,
  5470                                     int int_cnt2,  Register result,
  5471                                     XMMRegister vec, Register tmp) {
  5472   ShortBranchVerifier sbv(this);
  5473   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5474   //
  5475   // int_cnt2 is length of small (< 8 chars) constant substring
  5476   // or (-1) for non constant substring in which case its length
  5477   // is in cnt2 register.
  5478   //
  5479   // Note, inline_string_indexOf() generates checks:
  5480   // if (substr.count > string.count) return -1;
  5481   // if (substr.count == 0) return 0;
  5482   //
  5483   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  5485   // This method uses pcmpestri inxtruction with bound registers
  5486   //   inputs:
  5487   //     xmm - substring
  5488   //     rax - substring length (elements count)
  5489   //     mem - scanned string
  5490   //     rdx - string length (elements count)
  5491   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5492   //   outputs:
  5493   //     rcx - matched index in string
  5494   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5496   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  5497         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  5498         FOUND_CANDIDATE;
  5500   { //========================================================
  5501     // We don't know where these strings are located
  5502     // and we can't read beyond them. Load them through stack.
  5503     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  5505     movptr(tmp, rsp); // save old SP
  5507     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  5508       if (int_cnt2 == 1) {  // One char
  5509         load_unsigned_short(result, Address(str2, 0));
  5510         movdl(vec, result); // move 32 bits
  5511       } else if (int_cnt2 == 2) { // Two chars
  5512         movdl(vec, Address(str2, 0)); // move 32 bits
  5513       } else if (int_cnt2 == 4) { // Four chars
  5514         movq(vec, Address(str2, 0));  // move 64 bits
  5515       } else { // cnt2 = { 3, 5, 6, 7 }
  5516         // Array header size is 12 bytes in 32-bit VM
  5517         // + 6 bytes for 3 chars == 18 bytes,
  5518         // enough space to load vec and shift.
  5519         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  5520         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  5521         psrldq(vec, 16-(int_cnt2*2));
  5523     } else { // not constant substring
  5524       cmpl(cnt2, 8);
  5525       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  5527       // We can read beyond string if srt+16 does not cross page boundary
  5528       // since heaps are aligned and mapped by pages.
  5529       assert(os::vm_page_size() < (int)G, "default page should be small");
  5530       movl(result, str2); // We need only low 32 bits
  5531       andl(result, (os::vm_page_size()-1));
  5532       cmpl(result, (os::vm_page_size()-16));
  5533       jccb(Assembler::belowEqual, CHECK_STR);
  5535       // Move small strings to stack to allow load 16 bytes into vec.
  5536       subptr(rsp, 16);
  5537       int stk_offset = wordSize-2;
  5538       push(cnt2);
  5540       bind(COPY_SUBSTR);
  5541       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  5542       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5543       decrement(cnt2);
  5544       jccb(Assembler::notZero, COPY_SUBSTR);
  5546       pop(cnt2);
  5547       movptr(str2, rsp);  // New substring address
  5548     } // non constant
  5550     bind(CHECK_STR);
  5551     cmpl(cnt1, 8);
  5552     jccb(Assembler::aboveEqual, BIG_STRINGS);
  5554     // Check cross page boundary.
  5555     movl(result, str1); // We need only low 32 bits
  5556     andl(result, (os::vm_page_size()-1));
  5557     cmpl(result, (os::vm_page_size()-16));
  5558     jccb(Assembler::belowEqual, BIG_STRINGS);
  5560     subptr(rsp, 16);
  5561     int stk_offset = -2;
  5562     if (int_cnt2 < 0) { // not constant
  5563       push(cnt2);
  5564       stk_offset += wordSize;
  5566     movl(cnt2, cnt1);
  5568     bind(COPY_STR);
  5569     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  5570     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5571     decrement(cnt2);
  5572     jccb(Assembler::notZero, COPY_STR);
  5574     if (int_cnt2 < 0) { // not constant
  5575       pop(cnt2);
  5577     movptr(str1, rsp);  // New string address
  5579     bind(BIG_STRINGS);
  5580     // Load substring.
  5581     if (int_cnt2 < 0) { // -1
  5582       movdqu(vec, Address(str2, 0));
  5583       push(cnt2);       // substr count
  5584       push(str2);       // substr addr
  5585       push(str1);       // string addr
  5586     } else {
  5587       // Small (< 8 chars) constant substrings are loaded already.
  5588       movl(cnt2, int_cnt2);
  5590     push(tmp);  // original SP
  5592   } // Finished loading
  5594   //========================================================
  5595   // Start search
  5596   //
  5598   movptr(result, str1); // string addr
  5600   if (int_cnt2  < 0) {  // Only for non constant substring
  5601     jmpb(SCAN_TO_SUBSTR);
  5603     // SP saved at sp+0
  5604     // String saved at sp+1*wordSize
  5605     // Substr saved at sp+2*wordSize
  5606     // Substr count saved at sp+3*wordSize
  5608     // Reload substr for rescan, this code
  5609     // is executed only for large substrings (> 8 chars)
  5610     bind(RELOAD_SUBSTR);
  5611     movptr(str2, Address(rsp, 2*wordSize));
  5612     movl(cnt2, Address(rsp, 3*wordSize));
  5613     movdqu(vec, Address(str2, 0));
  5614     // We came here after the beginning of the substring was
  5615     // matched but the rest of it was not so we need to search
  5616     // again. Start from the next element after the previous match.
  5617     subptr(str1, result); // Restore counter
  5618     shrl(str1, 1);
  5619     addl(cnt1, str1);
  5620     decrementl(cnt1);   // Shift to next element
  5621     cmpl(cnt1, cnt2);
  5622     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5624     addptr(result, 2);
  5625   } // non constant
  5627   // Scan string for start of substr in 16-byte vectors
  5628   bind(SCAN_TO_SUBSTR);
  5629   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5630   pcmpestri(vec, Address(result, 0), 0x0d);
  5631   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5632   subl(cnt1, 8);
  5633   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5634   cmpl(cnt1, cnt2);
  5635   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5636   addptr(result, 16);
  5638   bind(ADJUST_STR);
  5639   cmpl(cnt1, 8); // Do not read beyond string
  5640   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5641   // Back-up string to avoid reading beyond string.
  5642   lea(result, Address(result, cnt1, Address::times_2, -16));
  5643   movl(cnt1, 8);
  5644   jmpb(SCAN_TO_SUBSTR);
  5646   // Found a potential substr
  5647   bind(FOUND_CANDIDATE);
  5648   // After pcmpestri tmp(rcx) contains matched element index
  5650   // Make sure string is still long enough
  5651   subl(cnt1, tmp);
  5652   cmpl(cnt1, cnt2);
  5653   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  5654   // Left less then substring.
  5656   bind(RET_NOT_FOUND);
  5657   movl(result, -1);
  5658   jmpb(CLEANUP);
  5660   bind(FOUND_SUBSTR);
  5661   // Compute start addr of substr
  5662   lea(result, Address(result, tmp, Address::times_2));
  5664   if (int_cnt2 > 0) { // Constant substring
  5665     // Repeat search for small substring (< 8 chars)
  5666     // from new point without reloading substring.
  5667     // Have to check that we don't read beyond string.
  5668     cmpl(tmp, 8-int_cnt2);
  5669     jccb(Assembler::greater, ADJUST_STR);
  5670     // Fall through if matched whole substring.
  5671   } else { // non constant
  5672     assert(int_cnt2 == -1, "should be != 0");
  5674     addl(tmp, cnt2);
  5675     // Found result if we matched whole substring.
  5676     cmpl(tmp, 8);
  5677     jccb(Assembler::lessEqual, RET_FOUND);
  5679     // Repeat search for small substring (<= 8 chars)
  5680     // from new point 'str1' without reloading substring.
  5681     cmpl(cnt2, 8);
  5682     // Have to check that we don't read beyond string.
  5683     jccb(Assembler::lessEqual, ADJUST_STR);
  5685     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  5686     // Compare the rest of substring (> 8 chars).
  5687     movptr(str1, result);
  5689     cmpl(tmp, cnt2);
  5690     // First 8 chars are already matched.
  5691     jccb(Assembler::equal, CHECK_NEXT);
  5693     bind(SCAN_SUBSTR);
  5694     pcmpestri(vec, Address(str1, 0), 0x0d);
  5695     // Need to reload strings pointers if not matched whole vector
  5696     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5698     bind(CHECK_NEXT);
  5699     subl(cnt2, 8);
  5700     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  5701     addptr(str1, 16);
  5702     addptr(str2, 16);
  5703     subl(cnt1, 8);
  5704     cmpl(cnt2, 8); // Do not read beyond substring
  5705     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  5706     // Back-up strings to avoid reading beyond substring.
  5707     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  5708     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  5709     subl(cnt1, cnt2);
  5710     movl(cnt2, 8);
  5711     addl(cnt1, 8);
  5712     bind(CONT_SCAN_SUBSTR);
  5713     movdqu(vec, Address(str2, 0));
  5714     jmpb(SCAN_SUBSTR);
  5716     bind(RET_FOUND_LONG);
  5717     movptr(str1, Address(rsp, wordSize));
  5718   } // non constant
  5720   bind(RET_FOUND);
  5721   // Compute substr offset
  5722   subptr(result, str1);
  5723   shrl(result, 1); // index
  5725   bind(CLEANUP);
  5726   pop(rsp); // restore SP
  5728 } // string_indexof
  5730 // Compare strings.
  5731 void MacroAssembler::string_compare(Register str1, Register str2,
  5732                                     Register cnt1, Register cnt2, Register result,
  5733                                     XMMRegister vec1) {
  5734   ShortBranchVerifier sbv(this);
  5735   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  5737   // Compute the minimum of the string lengths and the
  5738   // difference of the string lengths (stack).
  5739   // Do the conditional move stuff
  5740   movl(result, cnt1);
  5741   subl(cnt1, cnt2);
  5742   push(cnt1);
  5743   cmov32(Assembler::lessEqual, cnt2, result);
  5745   // Is the minimum length zero?
  5746   testl(cnt2, cnt2);
  5747   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  5749   // Compare first characters
  5750   load_unsigned_short(result, Address(str1, 0));
  5751   load_unsigned_short(cnt1, Address(str2, 0));
  5752   subl(result, cnt1);
  5753   jcc(Assembler::notZero,  POP_LABEL);
  5754   cmpl(cnt2, 1);
  5755   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5757   // Check if the strings start at the same location.
  5758   cmpptr(str1, str2);
  5759   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5761   Address::ScaleFactor scale = Address::times_2;
  5762   int stride = 8;
  5764   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  5765     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  5766     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  5767     Label COMPARE_TAIL_LONG;
  5768     int pcmpmask = 0x19;
  5770     // Setup to compare 16-chars (32-bytes) vectors,
  5771     // start from first character again because it has aligned address.
  5772     int stride2 = 16;
  5773     int adr_stride  = stride  << scale;
  5774     int adr_stride2 = stride2 << scale;
  5776     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5777     // rax and rdx are used by pcmpestri as elements counters
  5778     movl(result, cnt2);
  5779     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  5780     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  5782     // fast path : compare first 2 8-char vectors.
  5783     bind(COMPARE_16_CHARS);
  5784     movdqu(vec1, Address(str1, 0));
  5785     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5786     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  5788     movdqu(vec1, Address(str1, adr_stride));
  5789     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  5790     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  5791     addl(cnt1, stride);
  5793     // Compare the characters at index in cnt1
  5794     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  5795     load_unsigned_short(result, Address(str1, cnt1, scale));
  5796     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5797     subl(result, cnt2);
  5798     jmp(POP_LABEL);
  5800     // Setup the registers to start vector comparison loop
  5801     bind(COMPARE_WIDE_VECTORS);
  5802     lea(str1, Address(str1, result, scale));
  5803     lea(str2, Address(str2, result, scale));
  5804     subl(result, stride2);
  5805     subl(cnt2, stride2);
  5806     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  5807     negptr(result);
  5809     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  5810     bind(COMPARE_WIDE_VECTORS_LOOP);
  5811     vmovdqu(vec1, Address(str1, result, scale));
  5812     vpxor(vec1, Address(str2, result, scale));
  5813     vptest(vec1, vec1);
  5814     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  5815     addptr(result, stride2);
  5816     subl(cnt2, stride2);
  5817     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  5818     // clean upper bits of YMM registers
  5819     vzeroupper();
  5821     // compare wide vectors tail
  5822     bind(COMPARE_WIDE_TAIL);
  5823     testptr(result, result);
  5824     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5826     movl(result, stride2);
  5827     movl(cnt2, result);
  5828     negptr(result);
  5829     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  5831     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  5832     bind(VECTOR_NOT_EQUAL);
  5833     // clean upper bits of YMM registers
  5834     vzeroupper();
  5835     lea(str1, Address(str1, result, scale));
  5836     lea(str2, Address(str2, result, scale));
  5837     jmp(COMPARE_16_CHARS);
  5839     // Compare tail chars, length between 1 to 15 chars
  5840     bind(COMPARE_TAIL_LONG);
  5841     movl(cnt2, result);
  5842     cmpl(cnt2, stride);
  5843     jccb(Assembler::less, COMPARE_SMALL_STR);
  5845     movdqu(vec1, Address(str1, 0));
  5846     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5847     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  5848     subptr(cnt2, stride);
  5849     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5850     lea(str1, Address(str1, result, scale));
  5851     lea(str2, Address(str2, result, scale));
  5852     negptr(cnt2);
  5853     jmpb(WHILE_HEAD_LABEL);
  5855     bind(COMPARE_SMALL_STR);
  5856   } else if (UseSSE42Intrinsics) {
  5857     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  5858     int pcmpmask = 0x19;
  5859     // Setup to compare 8-char (16-byte) vectors,
  5860     // start from first character again because it has aligned address.
  5861     movl(result, cnt2);
  5862     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  5863     jccb(Assembler::zero, COMPARE_TAIL);
  5865     lea(str1, Address(str1, result, scale));
  5866     lea(str2, Address(str2, result, scale));
  5867     negptr(result);
  5869     // pcmpestri
  5870     //   inputs:
  5871     //     vec1- substring
  5872     //     rax - negative string length (elements count)
  5873     //     mem - scaned string
  5874     //     rdx - string length (elements count)
  5875     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  5876     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  5877     //   outputs:
  5878     //     rcx - first mismatched element index
  5879     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5881     bind(COMPARE_WIDE_VECTORS);
  5882     movdqu(vec1, Address(str1, result, scale));
  5883     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5884     // After pcmpestri cnt1(rcx) contains mismatched element index
  5886     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  5887     addptr(result, stride);
  5888     subptr(cnt2, stride);
  5889     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5891     // compare wide vectors tail
  5892     testptr(result, result);
  5893     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5895     movl(cnt2, stride);
  5896     movl(result, stride);
  5897     negptr(result);
  5898     movdqu(vec1, Address(str1, result, scale));
  5899     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5900     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  5902     // Mismatched characters in the vectors
  5903     bind(VECTOR_NOT_EQUAL);
  5904     addptr(cnt1, result);
  5905     load_unsigned_short(result, Address(str1, cnt1, scale));
  5906     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5907     subl(result, cnt2);
  5908     jmpb(POP_LABEL);
  5910     bind(COMPARE_TAIL); // limit is zero
  5911     movl(cnt2, result);
  5912     // Fallthru to tail compare
  5914   // Shift str2 and str1 to the end of the arrays, negate min
  5915   lea(str1, Address(str1, cnt2, scale));
  5916   lea(str2, Address(str2, cnt2, scale));
  5917   decrementl(cnt2);  // first character was compared already
  5918   negptr(cnt2);
  5920   // Compare the rest of the elements
  5921   bind(WHILE_HEAD_LABEL);
  5922   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  5923   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  5924   subl(result, cnt1);
  5925   jccb(Assembler::notZero, POP_LABEL);
  5926   increment(cnt2);
  5927   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  5929   // Strings are equal up to min length.  Return the length difference.
  5930   bind(LENGTH_DIFF_LABEL);
  5931   pop(result);
  5932   jmpb(DONE_LABEL);
  5934   // Discard the stored length difference
  5935   bind(POP_LABEL);
  5936   pop(cnt1);
  5938   // That's it
  5939   bind(DONE_LABEL);
  5942 // Compare char[] arrays aligned to 4 bytes or substrings.
  5943 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  5944                                         Register limit, Register result, Register chr,
  5945                                         XMMRegister vec1, XMMRegister vec2) {
  5946   ShortBranchVerifier sbv(this);
  5947   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  5949   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  5950   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  5952   // Check the input args
  5953   cmpptr(ary1, ary2);
  5954   jcc(Assembler::equal, TRUE_LABEL);
  5956   if (is_array_equ) {
  5957     // Need additional checks for arrays_equals.
  5958     testptr(ary1, ary1);
  5959     jcc(Assembler::zero, FALSE_LABEL);
  5960     testptr(ary2, ary2);
  5961     jcc(Assembler::zero, FALSE_LABEL);
  5963     // Check the lengths
  5964     movl(limit, Address(ary1, length_offset));
  5965     cmpl(limit, Address(ary2, length_offset));
  5966     jcc(Assembler::notEqual, FALSE_LABEL);
  5969   // count == 0
  5970   testl(limit, limit);
  5971   jcc(Assembler::zero, TRUE_LABEL);
  5973   if (is_array_equ) {
  5974     // Load array address
  5975     lea(ary1, Address(ary1, base_offset));
  5976     lea(ary2, Address(ary2, base_offset));
  5979   shll(limit, 1);      // byte count != 0
  5980   movl(result, limit); // copy
  5982   if (UseAVX >= 2) {
  5983     // With AVX2, use 32-byte vector compare
  5984     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  5986     // Compare 32-byte vectors
  5987     andl(result, 0x0000001e);  //   tail count (in bytes)
  5988     andl(limit, 0xffffffe0);   // vector count (in bytes)
  5989     jccb(Assembler::zero, COMPARE_TAIL);
  5991     lea(ary1, Address(ary1, limit, Address::times_1));
  5992     lea(ary2, Address(ary2, limit, Address::times_1));
  5993     negptr(limit);
  5995     bind(COMPARE_WIDE_VECTORS);
  5996     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  5997     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  5998     vpxor(vec1, vec2);
  6000     vptest(vec1, vec1);
  6001     jccb(Assembler::notZero, FALSE_LABEL);
  6002     addptr(limit, 32);
  6003     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6005     testl(result, result);
  6006     jccb(Assembler::zero, TRUE_LABEL);
  6008     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  6009     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  6010     vpxor(vec1, vec2);
  6012     vptest(vec1, vec1);
  6013     jccb(Assembler::notZero, FALSE_LABEL);
  6014     jmpb(TRUE_LABEL);
  6016     bind(COMPARE_TAIL); // limit is zero
  6017     movl(limit, result);
  6018     // Fallthru to tail compare
  6019   } else if (UseSSE42Intrinsics) {
  6020     // With SSE4.2, use double quad vector compare
  6021     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6023     // Compare 16-byte vectors
  6024     andl(result, 0x0000000e);  //   tail count (in bytes)
  6025     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6026     jccb(Assembler::zero, COMPARE_TAIL);
  6028     lea(ary1, Address(ary1, limit, Address::times_1));
  6029     lea(ary2, Address(ary2, limit, Address::times_1));
  6030     negptr(limit);
  6032     bind(COMPARE_WIDE_VECTORS);
  6033     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6034     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6035     pxor(vec1, vec2);
  6037     ptest(vec1, vec1);
  6038     jccb(Assembler::notZero, FALSE_LABEL);
  6039     addptr(limit, 16);
  6040     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6042     testl(result, result);
  6043     jccb(Assembler::zero, TRUE_LABEL);
  6045     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6046     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6047     pxor(vec1, vec2);
  6049     ptest(vec1, vec1);
  6050     jccb(Assembler::notZero, FALSE_LABEL);
  6051     jmpb(TRUE_LABEL);
  6053     bind(COMPARE_TAIL); // limit is zero
  6054     movl(limit, result);
  6055     // Fallthru to tail compare
  6058   // Compare 4-byte vectors
  6059   andl(limit, 0xfffffffc); // vector count (in bytes)
  6060   jccb(Assembler::zero, COMPARE_CHAR);
  6062   lea(ary1, Address(ary1, limit, Address::times_1));
  6063   lea(ary2, Address(ary2, limit, Address::times_1));
  6064   negptr(limit);
  6066   bind(COMPARE_VECTORS);
  6067   movl(chr, Address(ary1, limit, Address::times_1));
  6068   cmpl(chr, Address(ary2, limit, Address::times_1));
  6069   jccb(Assembler::notEqual, FALSE_LABEL);
  6070   addptr(limit, 4);
  6071   jcc(Assembler::notZero, COMPARE_VECTORS);
  6073   // Compare trailing char (final 2 bytes), if any
  6074   bind(COMPARE_CHAR);
  6075   testl(result, 0x2);   // tail  char
  6076   jccb(Assembler::zero, TRUE_LABEL);
  6077   load_unsigned_short(chr, Address(ary1, 0));
  6078   load_unsigned_short(limit, Address(ary2, 0));
  6079   cmpl(chr, limit);
  6080   jccb(Assembler::notEqual, FALSE_LABEL);
  6082   bind(TRUE_LABEL);
  6083   movl(result, 1);   // return true
  6084   jmpb(DONE);
  6086   bind(FALSE_LABEL);
  6087   xorl(result, result); // return false
  6089   // That's it
  6090   bind(DONE);
  6091   if (UseAVX >= 2) {
  6092     // clean upper bits of YMM registers
  6093     vzeroupper();
  6097 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6098                                    Register to, Register value, Register count,
  6099                                    Register rtmp, XMMRegister xtmp) {
  6100   ShortBranchVerifier sbv(this);
  6101   assert_different_registers(to, value, count, rtmp);
  6102   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  6103   Label L_fill_2_bytes, L_fill_4_bytes;
  6105   int shift = -1;
  6106   switch (t) {
  6107     case T_BYTE:
  6108       shift = 2;
  6109       break;
  6110     case T_SHORT:
  6111       shift = 1;
  6112       break;
  6113     case T_INT:
  6114       shift = 0;
  6115       break;
  6116     default: ShouldNotReachHere();
  6119   if (t == T_BYTE) {
  6120     andl(value, 0xff);
  6121     movl(rtmp, value);
  6122     shll(rtmp, 8);
  6123     orl(value, rtmp);
  6125   if (t == T_SHORT) {
  6126     andl(value, 0xffff);
  6128   if (t == T_BYTE || t == T_SHORT) {
  6129     movl(rtmp, value);
  6130     shll(rtmp, 16);
  6131     orl(value, rtmp);
  6134   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  6135   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  6136   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  6137     // align source address at 4 bytes address boundary
  6138     if (t == T_BYTE) {
  6139       // One byte misalignment happens only for byte arrays
  6140       testptr(to, 1);
  6141       jccb(Assembler::zero, L_skip_align1);
  6142       movb(Address(to, 0), value);
  6143       increment(to);
  6144       decrement(count);
  6145       BIND(L_skip_align1);
  6147     // Two bytes misalignment happens only for byte and short (char) arrays
  6148     testptr(to, 2);
  6149     jccb(Assembler::zero, L_skip_align2);
  6150     movw(Address(to, 0), value);
  6151     addptr(to, 2);
  6152     subl(count, 1<<(shift-1));
  6153     BIND(L_skip_align2);
  6155   if (UseSSE < 2) {
  6156     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6157     // Fill 32-byte chunks
  6158     subl(count, 8 << shift);
  6159     jcc(Assembler::less, L_check_fill_8_bytes);
  6160     align(16);
  6162     BIND(L_fill_32_bytes_loop);
  6164     for (int i = 0; i < 32; i += 4) {
  6165       movl(Address(to, i), value);
  6168     addptr(to, 32);
  6169     subl(count, 8 << shift);
  6170     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6171     BIND(L_check_fill_8_bytes);
  6172     addl(count, 8 << shift);
  6173     jccb(Assembler::zero, L_exit);
  6174     jmpb(L_fill_8_bytes);
  6176     //
  6177     // length is too short, just fill qwords
  6178     //
  6179     BIND(L_fill_8_bytes_loop);
  6180     movl(Address(to, 0), value);
  6181     movl(Address(to, 4), value);
  6182     addptr(to, 8);
  6183     BIND(L_fill_8_bytes);
  6184     subl(count, 1 << (shift + 1));
  6185     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6186     // fall through to fill 4 bytes
  6187   } else {
  6188     Label L_fill_32_bytes;
  6189     if (!UseUnalignedLoadStores) {
  6190       // align to 8 bytes, we know we are 4 byte aligned to start
  6191       testptr(to, 4);
  6192       jccb(Assembler::zero, L_fill_32_bytes);
  6193       movl(Address(to, 0), value);
  6194       addptr(to, 4);
  6195       subl(count, 1<<shift);
  6197     BIND(L_fill_32_bytes);
  6199       assert( UseSSE >= 2, "supported cpu only" );
  6200       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6201       movdl(xtmp, value);
  6202       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  6203         // Fill 64-byte chunks
  6204         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  6205         vpbroadcastd(xtmp, xtmp);
  6207         subl(count, 16 << shift);
  6208         jcc(Assembler::less, L_check_fill_32_bytes);
  6209         align(16);
  6211         BIND(L_fill_64_bytes_loop);
  6212         vmovdqu(Address(to, 0), xtmp);
  6213         vmovdqu(Address(to, 32), xtmp);
  6214         addptr(to, 64);
  6215         subl(count, 16 << shift);
  6216         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  6218         BIND(L_check_fill_32_bytes);
  6219         addl(count, 8 << shift);
  6220         jccb(Assembler::less, L_check_fill_8_bytes);
  6221         vmovdqu(Address(to, 0), xtmp);
  6222         addptr(to, 32);
  6223         subl(count, 8 << shift);
  6225         BIND(L_check_fill_8_bytes);
  6226         // clean upper bits of YMM registers
  6227         vzeroupper();
  6228       } else {
  6229         // Fill 32-byte chunks
  6230         pshufd(xtmp, xtmp, 0);
  6232         subl(count, 8 << shift);
  6233         jcc(Assembler::less, L_check_fill_8_bytes);
  6234         align(16);
  6236         BIND(L_fill_32_bytes_loop);
  6238         if (UseUnalignedLoadStores) {
  6239           movdqu(Address(to, 0), xtmp);
  6240           movdqu(Address(to, 16), xtmp);
  6241         } else {
  6242           movq(Address(to, 0), xtmp);
  6243           movq(Address(to, 8), xtmp);
  6244           movq(Address(to, 16), xtmp);
  6245           movq(Address(to, 24), xtmp);
  6248         addptr(to, 32);
  6249         subl(count, 8 << shift);
  6250         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6252         BIND(L_check_fill_8_bytes);
  6254       addl(count, 8 << shift);
  6255       jccb(Assembler::zero, L_exit);
  6256       jmpb(L_fill_8_bytes);
  6258       //
  6259       // length is too short, just fill qwords
  6260       //
  6261       BIND(L_fill_8_bytes_loop);
  6262       movq(Address(to, 0), xtmp);
  6263       addptr(to, 8);
  6264       BIND(L_fill_8_bytes);
  6265       subl(count, 1 << (shift + 1));
  6266       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6269   // fill trailing 4 bytes
  6270   BIND(L_fill_4_bytes);
  6271   testl(count, 1<<shift);
  6272   jccb(Assembler::zero, L_fill_2_bytes);
  6273   movl(Address(to, 0), value);
  6274   if (t == T_BYTE || t == T_SHORT) {
  6275     addptr(to, 4);
  6276     BIND(L_fill_2_bytes);
  6277     // fill trailing 2 bytes
  6278     testl(count, 1<<(shift-1));
  6279     jccb(Assembler::zero, L_fill_byte);
  6280     movw(Address(to, 0), value);
  6281     if (t == T_BYTE) {
  6282       addptr(to, 2);
  6283       BIND(L_fill_byte);
  6284       // fill trailing byte
  6285       testl(count, 1);
  6286       jccb(Assembler::zero, L_exit);
  6287       movb(Address(to, 0), value);
  6288     } else {
  6289       BIND(L_fill_byte);
  6291   } else {
  6292     BIND(L_fill_2_bytes);
  6294   BIND(L_exit);
  6297 // encode char[] to byte[] in ISO_8859_1
  6298 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  6299                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  6300                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  6301                                       Register tmp5, Register result) {
  6302   // rsi: src
  6303   // rdi: dst
  6304   // rdx: len
  6305   // rcx: tmp5
  6306   // rax: result
  6307   ShortBranchVerifier sbv(this);
  6308   assert_different_registers(src, dst, len, tmp5, result);
  6309   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  6311   // set result
  6312   xorl(result, result);
  6313   // check for zero length
  6314   testl(len, len);
  6315   jcc(Assembler::zero, L_done);
  6316   movl(result, len);
  6318   // Setup pointers
  6319   lea(src, Address(src, len, Address::times_2)); // char[]
  6320   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  6321   negptr(len);
  6323   if (UseSSE42Intrinsics || UseAVX >= 2) {
  6324     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  6325     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  6327     if (UseAVX >= 2) {
  6328       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  6329       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6330       movdl(tmp1Reg, tmp5);
  6331       vpbroadcastd(tmp1Reg, tmp1Reg);
  6332       jmpb(L_chars_32_check);
  6334       bind(L_copy_32_chars);
  6335       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  6336       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  6337       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6338       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6339       jccb(Assembler::notZero, L_copy_32_chars_exit);
  6340       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6341       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  6342       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  6344       bind(L_chars_32_check);
  6345       addptr(len, 32);
  6346       jccb(Assembler::lessEqual, L_copy_32_chars);
  6348       bind(L_copy_32_chars_exit);
  6349       subptr(len, 16);
  6350       jccb(Assembler::greater, L_copy_16_chars_exit);
  6352     } else if (UseSSE42Intrinsics) {
  6353       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6354       movdl(tmp1Reg, tmp5);
  6355       pshufd(tmp1Reg, tmp1Reg, 0);
  6356       jmpb(L_chars_16_check);
  6359     bind(L_copy_16_chars);
  6360     if (UseAVX >= 2) {
  6361       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  6362       vptest(tmp2Reg, tmp1Reg);
  6363       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6364       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  6365       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  6366     } else {
  6367       if (UseAVX > 0) {
  6368         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6369         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6370         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  6371       } else {
  6372         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6373         por(tmp2Reg, tmp3Reg);
  6374         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6375         por(tmp2Reg, tmp4Reg);
  6377       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6378       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6379       packuswb(tmp3Reg, tmp4Reg);
  6381     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  6383     bind(L_chars_16_check);
  6384     addptr(len, 16);
  6385     jccb(Assembler::lessEqual, L_copy_16_chars);
  6387     bind(L_copy_16_chars_exit);
  6388     if (UseAVX >= 2) {
  6389       // clean upper bits of YMM registers
  6390       vzeroupper();
  6392     subptr(len, 8);
  6393     jccb(Assembler::greater, L_copy_8_chars_exit);
  6395     bind(L_copy_8_chars);
  6396     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  6397     ptest(tmp3Reg, tmp1Reg);
  6398     jccb(Assembler::notZero, L_copy_8_chars_exit);
  6399     packuswb(tmp3Reg, tmp1Reg);
  6400     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  6401     addptr(len, 8);
  6402     jccb(Assembler::lessEqual, L_copy_8_chars);
  6404     bind(L_copy_8_chars_exit);
  6405     subptr(len, 8);
  6406     jccb(Assembler::zero, L_done);
  6409   bind(L_copy_1_char);
  6410   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  6411   testl(tmp5, 0xff00);      // check if Unicode char
  6412   jccb(Assembler::notZero, L_copy_1_char_exit);
  6413   movb(Address(dst, len, Address::times_1, 0), tmp5);
  6414   addptr(len, 1);
  6415   jccb(Assembler::less, L_copy_1_char);
  6417   bind(L_copy_1_char_exit);
  6418   addptr(result, len); // len is negative count of not processed elements
  6419   bind(L_done);
  6422 /**
  6423  * Emits code to update CRC-32 with a byte value according to constants in table
  6425  * @param [in,out]crc   Register containing the crc.
  6426  * @param [in]val       Register containing the byte to fold into the CRC.
  6427  * @param [in]table     Register containing the table of crc constants.
  6429  * uint32_t crc;
  6430  * val = crc_table[(val ^ crc) & 0xFF];
  6431  * crc = val ^ (crc >> 8);
  6433  */
  6434 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  6435   xorl(val, crc);
  6436   andl(val, 0xFF);
  6437   shrl(crc, 8); // unsigned shift
  6438   xorl(crc, Address(table, val, Address::times_4, 0));
  6441 /**
  6442  * Fold 128-bit data chunk
  6443  */
  6444 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  6445   vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  6446   vpclmulldq(xcrc, xK, xcrc); // [63:0]
  6447   vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  6448   pxor(xcrc, xtmp);
  6451 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  6452   vpclmulhdq(xtmp, xK, xcrc);
  6453   vpclmulldq(xcrc, xK, xcrc);
  6454   pxor(xcrc, xbuf);
  6455   pxor(xcrc, xtmp);
  6458 /**
  6459  * 8-bit folds to compute 32-bit CRC
  6461  * uint64_t xcrc;
  6462  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  6463  */
  6464 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  6465   movdl(tmp, xcrc);
  6466   andl(tmp, 0xFF);
  6467   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  6468   psrldq(xcrc, 1); // unsigned shift one byte
  6469   pxor(xcrc, xtmp);
  6472 /**
  6473  * uint32_t crc;
  6474  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  6475  */
  6476 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  6477   movl(tmp, crc);
  6478   andl(tmp, 0xFF);
  6479   shrl(crc, 8);
  6480   xorl(crc, Address(table, tmp, Address::times_4, 0));
  6483 /**
  6484  * @param crc   register containing existing CRC (32-bit)
  6485  * @param buf   register pointing to input byte buffer (byte*)
  6486  * @param len   register containing number of bytes
  6487  * @param table register that will contain address of CRC table
  6488  * @param tmp   scratch register
  6489  */
  6490 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  6491   assert_different_registers(crc, buf, len, table, tmp, rax);
  6493   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  6494   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  6496   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  6497   notl(crc); // ~crc
  6498   cmpl(len, 16);
  6499   jcc(Assembler::less, L_tail);
  6501   // Align buffer to 16 bytes
  6502   movl(tmp, buf);
  6503   andl(tmp, 0xF);
  6504   jccb(Assembler::zero, L_aligned);
  6505   subl(tmp,  16);
  6506   addl(len, tmp);
  6508   align(4);
  6509   BIND(L_align_loop);
  6510   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6511   update_byte_crc32(crc, rax, table);
  6512   increment(buf);
  6513   incrementl(tmp);
  6514   jccb(Assembler::less, L_align_loop);
  6516   BIND(L_aligned);
  6517   movl(tmp, len); // save
  6518   shrl(len, 4);
  6519   jcc(Assembler::zero, L_tail_restore);
  6521   // Fold crc into first bytes of vector
  6522   movdqa(xmm1, Address(buf, 0));
  6523   movdl(rax, xmm1);
  6524   xorl(crc, rax);
  6525   pinsrd(xmm1, crc, 0);
  6526   addptr(buf, 16);
  6527   subl(len, 4); // len > 0
  6528   jcc(Assembler::less, L_fold_tail);
  6530   movdqa(xmm2, Address(buf,  0));
  6531   movdqa(xmm3, Address(buf, 16));
  6532   movdqa(xmm4, Address(buf, 32));
  6533   addptr(buf, 48);
  6534   subl(len, 3);
  6535   jcc(Assembler::lessEqual, L_fold_512b);
  6537   // Fold total 512 bits of polynomial on each iteration,
  6538   // 128 bits per each of 4 parallel streams.
  6539   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  6541   align(32);
  6542   BIND(L_fold_512b_loop);
  6543   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6544   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  6545   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  6546   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  6547   addptr(buf, 64);
  6548   subl(len, 4);
  6549   jcc(Assembler::greater, L_fold_512b_loop);
  6551   // Fold 512 bits to 128 bits.
  6552   BIND(L_fold_512b);
  6553   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6554   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  6555   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  6556   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  6558   // Fold the rest of 128 bits data chunks
  6559   BIND(L_fold_tail);
  6560   addl(len, 3);
  6561   jccb(Assembler::lessEqual, L_fold_128b);
  6562   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6564   BIND(L_fold_tail_loop);
  6565   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6566   addptr(buf, 16);
  6567   decrementl(len);
  6568   jccb(Assembler::greater, L_fold_tail_loop);
  6570   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  6571   BIND(L_fold_128b);
  6572   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  6573   vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  6574   vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  6575   vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  6576   psrldq(xmm1, 8);
  6577   psrldq(xmm2, 4);
  6578   pxor(xmm0, xmm1);
  6579   pxor(xmm0, xmm2);
  6581   // 8 8-bit folds to compute 32-bit CRC.
  6582   for (int j = 0; j < 4; j++) {
  6583     fold_8bit_crc32(xmm0, table, xmm1, rax);
  6585   movdl(crc, xmm0); // mov 32 bits to general register
  6586   for (int j = 0; j < 4; j++) {
  6587     fold_8bit_crc32(crc, table, rax);
  6590   BIND(L_tail_restore);
  6591   movl(len, tmp); // restore
  6592   BIND(L_tail);
  6593   andl(len, 0xf);
  6594   jccb(Assembler::zero, L_exit);
  6596   // Fold the rest of bytes
  6597   align(4);
  6598   BIND(L_tail_loop);
  6599   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6600   update_byte_crc32(crc, rax, table);
  6601   increment(buf);
  6602   decrementl(len);
  6603   jccb(Assembler::greater, L_tail_loop);
  6605   BIND(L_exit);
  6606   notl(crc); // ~c
  6609 #undef BIND
  6610 #undef BLOCK_COMMENT
  6613 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  6614   switch (cond) {
  6615     // Note some conditions are synonyms for others
  6616     case Assembler::zero:         return Assembler::notZero;
  6617     case Assembler::notZero:      return Assembler::zero;
  6618     case Assembler::less:         return Assembler::greaterEqual;
  6619     case Assembler::lessEqual:    return Assembler::greater;
  6620     case Assembler::greater:      return Assembler::lessEqual;
  6621     case Assembler::greaterEqual: return Assembler::less;
  6622     case Assembler::below:        return Assembler::aboveEqual;
  6623     case Assembler::belowEqual:   return Assembler::above;
  6624     case Assembler::above:        return Assembler::belowEqual;
  6625     case Assembler::aboveEqual:   return Assembler::below;
  6626     case Assembler::overflow:     return Assembler::noOverflow;
  6627     case Assembler::noOverflow:   return Assembler::overflow;
  6628     case Assembler::negative:     return Assembler::positive;
  6629     case Assembler::positive:     return Assembler::negative;
  6630     case Assembler::parity:       return Assembler::noParity;
  6631     case Assembler::noParity:     return Assembler::parity;
  6633   ShouldNotReachHere(); return Assembler::overflow;
  6636 SkipIfEqual::SkipIfEqual(
  6637     MacroAssembler* masm, const bool* flag_addr, bool value) {
  6638   _masm = masm;
  6639   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  6640   _masm->jcc(Assembler::equal, _label);
  6643 SkipIfEqual::~SkipIfEqual() {
  6644   _masm->bind(_label);

mercurial