src/share/vm/memory/universe.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1014
0fbdb4381b99
parent 1077
660978a2a31a
child 1280
df6caf649ff7
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_universe.cpp.incl"
    28 // Known objects
    29 klassOop Universe::_boolArrayKlassObj                 = NULL;
    30 klassOop Universe::_byteArrayKlassObj                 = NULL;
    31 klassOop Universe::_charArrayKlassObj                 = NULL;
    32 klassOop Universe::_intArrayKlassObj                  = NULL;
    33 klassOop Universe::_shortArrayKlassObj                = NULL;
    34 klassOop Universe::_longArrayKlassObj                 = NULL;
    35 klassOop Universe::_singleArrayKlassObj               = NULL;
    36 klassOop Universe::_doubleArrayKlassObj               = NULL;
    37 klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
    38 klassOop Universe::_objectArrayKlassObj               = NULL;
    39 klassOop Universe::_symbolKlassObj                    = NULL;
    40 klassOop Universe::_methodKlassObj                    = NULL;
    41 klassOop Universe::_constMethodKlassObj               = NULL;
    42 klassOop Universe::_methodDataKlassObj                = NULL;
    43 klassOop Universe::_klassKlassObj                     = NULL;
    44 klassOop Universe::_arrayKlassKlassObj                = NULL;
    45 klassOop Universe::_objArrayKlassKlassObj             = NULL;
    46 klassOop Universe::_typeArrayKlassKlassObj            = NULL;
    47 klassOop Universe::_instanceKlassKlassObj             = NULL;
    48 klassOop Universe::_constantPoolKlassObj              = NULL;
    49 klassOop Universe::_constantPoolCacheKlassObj         = NULL;
    50 klassOop Universe::_compiledICHolderKlassObj          = NULL;
    51 klassOop Universe::_systemObjArrayKlassObj            = NULL;
    52 oop Universe::_int_mirror                             = NULL;
    53 oop Universe::_float_mirror                           = NULL;
    54 oop Universe::_double_mirror                          = NULL;
    55 oop Universe::_byte_mirror                            = NULL;
    56 oop Universe::_bool_mirror                            = NULL;
    57 oop Universe::_char_mirror                            = NULL;
    58 oop Universe::_long_mirror                            = NULL;
    59 oop Universe::_short_mirror                           = NULL;
    60 oop Universe::_void_mirror                            = NULL;
    61 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
    62 oop Universe::_main_thread_group                      = NULL;
    63 oop Universe::_system_thread_group                    = NULL;
    64 typeArrayOop Universe::_the_empty_byte_array          = NULL;
    65 typeArrayOop Universe::_the_empty_short_array         = NULL;
    66 typeArrayOop Universe::_the_empty_int_array           = NULL;
    67 objArrayOop Universe::_the_empty_system_obj_array     = NULL;
    68 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
    69 objArrayOop Universe::_the_array_interfaces_array     = NULL;
    70 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
    71 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
    72 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
    73 oop Universe::_out_of_memory_error_java_heap          = NULL;
    74 oop Universe::_out_of_memory_error_perm_gen           = NULL;
    75 oop Universe::_out_of_memory_error_array_size         = NULL;
    76 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
    77 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
    78 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
    79 bool Universe::_verify_in_progress                    = false;
    80 oop Universe::_null_ptr_exception_instance            = NULL;
    81 oop Universe::_arithmetic_exception_instance          = NULL;
    82 oop Universe::_virtual_machine_error_instance         = NULL;
    83 oop Universe::_vm_exception                           = NULL;
    84 oop Universe::_emptySymbol                            = NULL;
    86 // These variables are guarded by FullGCALot_lock.
    87 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
    88 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
    91 // Heap
    92 int             Universe::_verify_count = 0;
    94 int             Universe::_base_vtable_size = 0;
    95 bool            Universe::_bootstrapping = false;
    96 bool            Universe::_fully_initialized = false;
    98 size_t          Universe::_heap_capacity_at_last_gc;
    99 size_t          Universe::_heap_used_at_last_gc = 0;
   101 CollectedHeap*  Universe::_collectedHeap = NULL;
   103 NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
   106 void Universe::basic_type_classes_do(void f(klassOop)) {
   107   f(boolArrayKlassObj());
   108   f(byteArrayKlassObj());
   109   f(charArrayKlassObj());
   110   f(intArrayKlassObj());
   111   f(shortArrayKlassObj());
   112   f(longArrayKlassObj());
   113   f(singleArrayKlassObj());
   114   f(doubleArrayKlassObj());
   115 }
   118 void Universe::system_classes_do(void f(klassOop)) {
   119   f(symbolKlassObj());
   120   f(methodKlassObj());
   121   f(constMethodKlassObj());
   122   f(methodDataKlassObj());
   123   f(klassKlassObj());
   124   f(arrayKlassKlassObj());
   125   f(objArrayKlassKlassObj());
   126   f(typeArrayKlassKlassObj());
   127   f(instanceKlassKlassObj());
   128   f(constantPoolKlassObj());
   129   f(systemObjArrayKlassObj());
   130 }
   132 void Universe::oops_do(OopClosure* f, bool do_all) {
   134   f->do_oop((oop*) &_int_mirror);
   135   f->do_oop((oop*) &_float_mirror);
   136   f->do_oop((oop*) &_double_mirror);
   137   f->do_oop((oop*) &_byte_mirror);
   138   f->do_oop((oop*) &_bool_mirror);
   139   f->do_oop((oop*) &_char_mirror);
   140   f->do_oop((oop*) &_long_mirror);
   141   f->do_oop((oop*) &_short_mirror);
   142   f->do_oop((oop*) &_void_mirror);
   144   // It's important to iterate over these guys even if they are null,
   145   // since that's how shared heaps are restored.
   146   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
   147     f->do_oop((oop*) &_mirrors[i]);
   148   }
   149   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
   151   // %%% Consider moving those "shared oops" over here with the others.
   152   f->do_oop((oop*)&_boolArrayKlassObj);
   153   f->do_oop((oop*)&_byteArrayKlassObj);
   154   f->do_oop((oop*)&_charArrayKlassObj);
   155   f->do_oop((oop*)&_intArrayKlassObj);
   156   f->do_oop((oop*)&_shortArrayKlassObj);
   157   f->do_oop((oop*)&_longArrayKlassObj);
   158   f->do_oop((oop*)&_singleArrayKlassObj);
   159   f->do_oop((oop*)&_doubleArrayKlassObj);
   160   f->do_oop((oop*)&_objectArrayKlassObj);
   161   {
   162     for (int i = 0; i < T_VOID+1; i++) {
   163       if (_typeArrayKlassObjs[i] != NULL) {
   164         assert(i >= T_BOOLEAN, "checking");
   165         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
   166       } else if (do_all) {
   167         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
   168       }
   169     }
   170   }
   171   f->do_oop((oop*)&_symbolKlassObj);
   172   f->do_oop((oop*)&_methodKlassObj);
   173   f->do_oop((oop*)&_constMethodKlassObj);
   174   f->do_oop((oop*)&_methodDataKlassObj);
   175   f->do_oop((oop*)&_klassKlassObj);
   176   f->do_oop((oop*)&_arrayKlassKlassObj);
   177   f->do_oop((oop*)&_objArrayKlassKlassObj);
   178   f->do_oop((oop*)&_typeArrayKlassKlassObj);
   179   f->do_oop((oop*)&_instanceKlassKlassObj);
   180   f->do_oop((oop*)&_constantPoolKlassObj);
   181   f->do_oop((oop*)&_constantPoolCacheKlassObj);
   182   f->do_oop((oop*)&_compiledICHolderKlassObj);
   183   f->do_oop((oop*)&_systemObjArrayKlassObj);
   184   f->do_oop((oop*)&_the_empty_byte_array);
   185   f->do_oop((oop*)&_the_empty_short_array);
   186   f->do_oop((oop*)&_the_empty_int_array);
   187   f->do_oop((oop*)&_the_empty_system_obj_array);
   188   f->do_oop((oop*)&_the_empty_class_klass_array);
   189   f->do_oop((oop*)&_the_array_interfaces_array);
   190   _finalizer_register_cache->oops_do(f);
   191   _loader_addClass_cache->oops_do(f);
   192   _reflect_invoke_cache->oops_do(f);
   193   f->do_oop((oop*)&_out_of_memory_error_java_heap);
   194   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
   195   f->do_oop((oop*)&_out_of_memory_error_array_size);
   196   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
   197   if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
   198     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
   199   }
   200   f->do_oop((oop*)&_null_ptr_exception_instance);
   201   f->do_oop((oop*)&_arithmetic_exception_instance);
   202   f->do_oop((oop*)&_virtual_machine_error_instance);
   203   f->do_oop((oop*)&_main_thread_group);
   204   f->do_oop((oop*)&_system_thread_group);
   205   f->do_oop((oop*)&_vm_exception);
   206   f->do_oop((oop*)&_emptySymbol);
   207   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
   208 }
   211 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
   212   if (size < alignment || size % alignment != 0) {
   213     ResourceMark rm;
   214     stringStream st;
   215     st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
   216     char* error = st.as_string();
   217     vm_exit_during_initialization(error);
   218   }
   219 }
   222 void Universe::genesis(TRAPS) {
   223   ResourceMark rm;
   224   { FlagSetting fs(_bootstrapping, true);
   226     { MutexLocker mc(Compile_lock);
   228       // determine base vtable size; without that we cannot create the array klasses
   229       compute_base_vtable_size();
   231       if (!UseSharedSpaces) {
   232         _klassKlassObj          = klassKlass::create_klass(CHECK);
   233         _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
   235         _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
   236         _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
   237         _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
   239         _symbolKlassObj         = symbolKlass::create_klass(CHECK);
   241         _emptySymbol            = oopFactory::new_symbol("", CHECK);
   243         _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
   244         _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
   245         _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
   246         _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
   247         _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
   248         _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
   249         _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
   250         _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
   252         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
   253         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
   254         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
   255         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
   256         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
   257         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
   258         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
   259         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
   261         _methodKlassObj             = methodKlass::create_klass(CHECK);
   262         _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
   263         _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
   264         _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
   265         _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
   267         _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
   268         _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
   270         _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
   271         _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
   272         _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
   273         _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
   275         _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
   276         _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
   277       } else {
   278         FileMapInfo *mapinfo = FileMapInfo::current_info();
   279         char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
   280         void** vtbl_list = (void**)buffer;
   281         init_self_patching_vtbl_list(vtbl_list,
   282                                      CompactingPermGenGen::vtbl_list_size);
   283       }
   284     }
   286     vmSymbols::initialize(CHECK);
   288     SystemDictionary::initialize(CHECK);
   290     klassOop ok = SystemDictionary::object_klass();
   292     if (UseSharedSpaces) {
   293       // Verify shared interfaces array.
   294       assert(_the_array_interfaces_array->obj_at(0) ==
   295              SystemDictionary::cloneable_klass(), "u3");
   296       assert(_the_array_interfaces_array->obj_at(1) ==
   297              SystemDictionary::serializable_klass(), "u3");
   299       // Verify element klass for system obj array klass
   300       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
   301       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
   303       // Verify super class for the classes created above
   304       assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
   305       assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
   306       assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
   307       assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
   308       assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
   309       assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
   310       assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
   311       assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
   312       assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
   313       assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
   314     } else {
   315       // Set up shared interfaces array.  (Do this before supers are set up.)
   316       _the_array_interfaces_array->obj_at_put(0, SystemDictionary::cloneable_klass());
   317       _the_array_interfaces_array->obj_at_put(1, SystemDictionary::serializable_klass());
   319       // Set element klass for system obj array klass
   320       objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
   321       objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
   323       // Set super class for the classes created above
   324       Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
   325       Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
   326       Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
   327       Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
   328       Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
   329       Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
   330       Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
   331       Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
   332       Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
   333       Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
   334       Klass::cast(boolArrayKlassObj()     )->set_super(ok);
   335       Klass::cast(charArrayKlassObj()     )->set_super(ok);
   336       Klass::cast(singleArrayKlassObj()   )->set_super(ok);
   337       Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
   338       Klass::cast(byteArrayKlassObj()     )->set_super(ok);
   339       Klass::cast(shortArrayKlassObj()    )->set_super(ok);
   340       Klass::cast(intArrayKlassObj()      )->set_super(ok);
   341       Klass::cast(longArrayKlassObj()     )->set_super(ok);
   342       Klass::cast(constantPoolKlassObj()  )->set_super(ok);
   343       Klass::cast(systemObjArrayKlassObj())->set_super(ok);
   344     }
   346     Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
   347     Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
   348     Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
   349     Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
   350     Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
   351     Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
   352     Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
   353     Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
   354     Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
   355     Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
   356   } // end of core bootstrapping
   358   // Initialize _objectArrayKlass after core bootstraping to make
   359   // sure the super class is set up properly for _objectArrayKlass.
   360   _objectArrayKlassObj = instanceKlass::
   361     cast(SystemDictionary::object_klass())->array_klass(1, CHECK);
   362   // Add the class to the class hierarchy manually to make sure that
   363   // its vtable is initialized after core bootstrapping is completed.
   364   Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
   366   // Compute is_jdk version flags.
   367   // Only 1.3 or later has the java.lang.Shutdown class.
   368   // Only 1.4 or later has the java.lang.CharSequence interface.
   369   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
   370   if (JDK_Version::is_partially_initialized()) {
   371     uint8_t jdk_version;
   372     klassOop k = SystemDictionary::resolve_or_null(
   373         vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
   374     CLEAR_PENDING_EXCEPTION; // ignore exceptions
   375     if (k == NULL) {
   376       k = SystemDictionary::resolve_or_null(
   377           vmSymbolHandles::java_lang_CharSequence(), THREAD);
   378       CLEAR_PENDING_EXCEPTION; // ignore exceptions
   379       if (k == NULL) {
   380         k = SystemDictionary::resolve_or_null(
   381             vmSymbolHandles::java_lang_Shutdown(), THREAD);
   382         CLEAR_PENDING_EXCEPTION; // ignore exceptions
   383         if (k == NULL) {
   384           jdk_version = 2;
   385         } else {
   386           jdk_version = 3;
   387         }
   388       } else {
   389         jdk_version = 4;
   390       }
   391     } else {
   392       jdk_version = 5;
   393     }
   394     JDK_Version::fully_initialize(jdk_version);
   395   }
   397   #ifdef ASSERT
   398   if (FullGCALot) {
   399     // Allocate an array of dummy objects.
   400     // We'd like these to be at the bottom of the old generation,
   401     // so that when we free one and then collect,
   402     // (almost) the whole heap moves
   403     // and we find out if we actually update all the oops correctly.
   404     // But we can't allocate directly in the old generation,
   405     // so we allocate wherever, and hope that the first collection
   406     // moves these objects to the bottom of the old generation.
   407     // We can allocate directly in the permanent generation, so we do.
   408     int size;
   409     if (UseConcMarkSweepGC) {
   410       warning("Using +FullGCALot with concurrent mark sweep gc "
   411               "will not force all objects to relocate");
   412       size = FullGCALotDummies;
   413     } else {
   414       size = FullGCALotDummies * 2;
   415     }
   416     objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
   417     objArrayHandle dummy_array(THREAD, naked_array);
   418     int i = 0;
   419     while (i < size) {
   420       if (!UseConcMarkSweepGC) {
   421         // Allocate dummy in old generation
   422         oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_instance(CHECK);
   423         dummy_array->obj_at_put(i++, dummy);
   424       }
   425       // Allocate dummy in permanent generation
   426       oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_permanent_instance(CHECK);
   427       dummy_array->obj_at_put(i++, dummy);
   428     }
   429     {
   430       // Only modify the global variable inside the mutex.
   431       // If we had a race to here, the other dummy_array instances
   432       // and their elements just get dropped on the floor, which is fine.
   433       MutexLocker ml(FullGCALot_lock);
   434       if (_fullgc_alot_dummy_array == NULL) {
   435         _fullgc_alot_dummy_array = dummy_array();
   436       }
   437     }
   438     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
   439   }
   440   #endif
   441 }
   444 static inline void add_vtable(void** list, int* n, Klass* o, int count) {
   445   list[(*n)++] = *(void**)&o->vtbl_value();
   446   guarantee((*n) <= count, "vtable list too small.");
   447 }
   450 void Universe::init_self_patching_vtbl_list(void** list, int count) {
   451   int n = 0;
   452   { klassKlass o;             add_vtable(list, &n, &o, count); }
   453   { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
   454   { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
   455   { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
   456   { instanceKlass o;          add_vtable(list, &n, &o, count); }
   457   { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
   458   { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
   459   { symbolKlass o;            add_vtable(list, &n, &o, count); }
   460   { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
   461   { methodKlass o;            add_vtable(list, &n, &o, count); }
   462   { constMethodKlass o;       add_vtable(list, &n, &o, count); }
   463   { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
   464   { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
   465   { objArrayKlass o;          add_vtable(list, &n, &o, count); }
   466   { methodDataKlass o;        add_vtable(list, &n, &o, count); }
   467   { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
   468 }
   471 class FixupMirrorClosure: public ObjectClosure {
   472  public:
   473   virtual void do_object(oop obj) {
   474     if (obj->is_klass()) {
   475       EXCEPTION_MARK;
   476       KlassHandle k(THREAD, klassOop(obj));
   477       // We will never reach the CATCH below since Exceptions::_throw will cause
   478       // the VM to exit if an exception is thrown during initialization
   479       java_lang_Class::create_mirror(k, CATCH);
   480       // This call unconditionally creates a new mirror for k,
   481       // and links in k's component_mirror field if k is an array.
   482       // If k is an objArray, k's element type must already have
   483       // a mirror.  In other words, this closure must process
   484       // the component type of an objArray k before it processes k.
   485       // This works because the permgen iterator presents arrays
   486       // and their component types in order of creation.
   487     }
   488   }
   489 };
   491 void Universe::initialize_basic_type_mirrors(TRAPS) {
   492   if (UseSharedSpaces) {
   493     assert(_int_mirror != NULL, "already loaded");
   494     assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
   495   } else {
   497     assert(_int_mirror==NULL, "basic type mirrors already initialized");
   498     _int_mirror     =
   499       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
   500     _float_mirror   =
   501       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
   502     _double_mirror  =
   503       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
   504     _byte_mirror    =
   505       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
   506     _bool_mirror    =
   507       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
   508     _char_mirror    =
   509       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
   510     _long_mirror    =
   511       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
   512     _short_mirror   =
   513       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
   514     _void_mirror    =
   515       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
   517     _mirrors[T_INT]     = _int_mirror;
   518     _mirrors[T_FLOAT]   = _float_mirror;
   519     _mirrors[T_DOUBLE]  = _double_mirror;
   520     _mirrors[T_BYTE]    = _byte_mirror;
   521     _mirrors[T_BOOLEAN] = _bool_mirror;
   522     _mirrors[T_CHAR]    = _char_mirror;
   523     _mirrors[T_LONG]    = _long_mirror;
   524     _mirrors[T_SHORT]   = _short_mirror;
   525     _mirrors[T_VOID]    = _void_mirror;
   526     //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
   527     //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
   528   }
   529 }
   531 void Universe::fixup_mirrors(TRAPS) {
   532   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
   533   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
   534   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
   535   // that the number of objects allocated at this point is very small.
   536   assert(SystemDictionary::class_klass_loaded(), "java.lang.Class should be loaded");
   537   FixupMirrorClosure blk;
   538   Universe::heap()->permanent_object_iterate(&blk);
   539 }
   542 static bool has_run_finalizers_on_exit = false;
   544 void Universe::run_finalizers_on_exit() {
   545   if (has_run_finalizers_on_exit) return;
   546   has_run_finalizers_on_exit = true;
   548   // Called on VM exit. This ought to be run in a separate thread.
   549   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
   550   {
   551     PRESERVE_EXCEPTION_MARK;
   552     KlassHandle finalizer_klass(THREAD, SystemDictionary::finalizer_klass());
   553     JavaValue result(T_VOID);
   554     JavaCalls::call_static(
   555       &result,
   556       finalizer_klass,
   557       vmSymbolHandles::run_finalizers_on_exit_name(),
   558       vmSymbolHandles::void_method_signature(),
   559       THREAD
   560     );
   561     // Ignore any pending exceptions
   562     CLEAR_PENDING_EXCEPTION;
   563   }
   564 }
   567 // initialize_vtable could cause gc if
   568 // 1) we specified true to initialize_vtable and
   569 // 2) this ran after gc was enabled
   570 // In case those ever change we use handles for oops
   571 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
   572   // init vtable of k and all subclasses
   573   Klass* ko = k_h()->klass_part();
   574   klassVtable* vt = ko->vtable();
   575   if (vt) vt->initialize_vtable(false, CHECK);
   576   if (ko->oop_is_instance()) {
   577     instanceKlass* ik = (instanceKlass*)ko;
   578     for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
   579       reinitialize_vtable_of(s_h, CHECK);
   580     }
   581   }
   582 }
   585 void initialize_itable_for_klass(klassOop k, TRAPS) {
   586   instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
   587 }
   590 void Universe::reinitialize_itables(TRAPS) {
   591   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
   593 }
   596 bool Universe::on_page_boundary(void* addr) {
   597   return ((uintptr_t) addr) % os::vm_page_size() == 0;
   598 }
   601 bool Universe::should_fill_in_stack_trace(Handle throwable) {
   602   // never attempt to fill in the stack trace of preallocated errors that do not have
   603   // backtrace. These errors are kept alive forever and may be "re-used" when all
   604   // preallocated errors with backtrace have been consumed. Also need to avoid
   605   // a potential loop which could happen if an out of memory occurs when attempting
   606   // to allocate the backtrace.
   607   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
   608           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
   609           (throwable() != Universe::_out_of_memory_error_array_size) &&
   610           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
   611 }
   614 oop Universe::gen_out_of_memory_error(oop default_err) {
   615   // generate an out of memory error:
   616   // - if there is a preallocated error with backtrace available then return it wth
   617   //   a filled in stack trace.
   618   // - if there are no preallocated errors with backtrace available then return
   619   //   an error without backtrace.
   620   int next;
   621   if (_preallocated_out_of_memory_error_avail_count > 0) {
   622     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
   623     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
   624   } else {
   625     next = -1;
   626   }
   627   if (next < 0) {
   628     // all preallocated errors have been used.
   629     // return default
   630     return default_err;
   631   } else {
   632     // get the error object at the slot and set set it to NULL so that the
   633     // array isn't keeping it alive anymore.
   634     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
   635     assert(exc != NULL, "slot has been used already");
   636     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
   638     // use the message from the default error
   639     oop msg = java_lang_Throwable::message(default_err);
   640     assert(msg != NULL, "no message");
   641     java_lang_Throwable::set_message(exc, msg);
   643     // populate the stack trace and return it.
   644     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
   645     return exc;
   646   }
   647 }
   649 static intptr_t non_oop_bits = 0;
   651 void* Universe::non_oop_word() {
   652   // Neither the high bits nor the low bits of this value is allowed
   653   // to look like (respectively) the high or low bits of a real oop.
   654   //
   655   // High and low are CPU-specific notions, but low always includes
   656   // the low-order bit.  Since oops are always aligned at least mod 4,
   657   // setting the low-order bit will ensure that the low half of the
   658   // word will never look like that of a real oop.
   659   //
   660   // Using the OS-supplied non-memory-address word (usually 0 or -1)
   661   // will take care of the high bits, however many there are.
   663   if (non_oop_bits == 0) {
   664     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
   665   }
   667   return (void*)non_oop_bits;
   668 }
   670 jint universe_init() {
   671   assert(!Universe::_fully_initialized, "called after initialize_vtables");
   672   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
   673          "LogHeapWordSize is incorrect.");
   674   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
   675   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
   676             "oop size is not not a multiple of HeapWord size");
   677   TraceTime timer("Genesis", TraceStartupTime);
   678   GC_locker::lock();  // do not allow gc during bootstrapping
   679   JavaClasses::compute_hard_coded_offsets();
   681   // Get map info from shared archive file.
   682   if (DumpSharedSpaces)
   683     UseSharedSpaces = false;
   685   FileMapInfo* mapinfo = NULL;
   686   if (UseSharedSpaces) {
   687     mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
   688     memset(mapinfo, 0, sizeof(FileMapInfo));
   690     // Open the shared archive file, read and validate the header. If
   691     // initialization files, shared spaces [UseSharedSpaces] are
   692     // disabled and the file is closed.
   694     if (mapinfo->initialize()) {
   695       FileMapInfo::set_current_info(mapinfo);
   696     } else {
   697       assert(!mapinfo->is_open() && !UseSharedSpaces,
   698              "archive file not closed or shared spaces not disabled.");
   699     }
   700   }
   702   jint status = Universe::initialize_heap();
   703   if (status != JNI_OK) {
   704     return status;
   705   }
   707   // We have a heap so create the methodOop caches before
   708   // CompactingPermGenGen::initialize_oops() tries to populate them.
   709   Universe::_finalizer_register_cache = new LatestMethodOopCache();
   710   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
   711   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
   713   if (UseSharedSpaces) {
   715     // Read the data structures supporting the shared spaces (shared
   716     // system dictionary, symbol table, etc.).  After that, access to
   717     // the file (other than the mapped regions) is no longer needed, and
   718     // the file is closed. Closing the file does not affect the
   719     // currently mapped regions.
   721     CompactingPermGenGen::initialize_oops();
   722     mapinfo->close();
   724   } else {
   725     SymbolTable::create_table();
   726     StringTable::create_table();
   727     ClassLoader::create_package_info_table();
   728   }
   730   return JNI_OK;
   731 }
   733 // Choose the heap base address and oop encoding mode
   734 // when compressed oops are used:
   735 // Unscaled  - Use 32-bits oops without encoding when
   736 //     NarrowOopHeapBaseMin + heap_size < 4Gb
   737 // ZeroBased - Use zero based compressed oops with encoding when
   738 //     NarrowOopHeapBaseMin + heap_size < 32Gb
   739 // HeapBased - Use compressed oops with heap base + encoding.
   741 // 4Gb
   742 static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
   743 // 32Gb
   744 static const uint64_t OopEncodingHeapMax = NarrowOopHeapMax << LogMinObjAlignmentInBytes;
   746 char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
   747 #ifdef _LP64
   748   if (UseCompressedOops) {
   749     assert(mode == UnscaledNarrowOop  ||
   750            mode == ZeroBasedNarrowOop ||
   751            mode == HeapBasedNarrowOop, "mode is invalid");
   753     const size_t total_size = heap_size + HeapBaseMinAddress;
   754     if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
   755       if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
   756           (Universe::narrow_oop_shift() == 0)) {
   757         // Use 32-bits oops without encoding and
   758         // place heap's top on the 4Gb boundary
   759         return (char*)(NarrowOopHeapMax - heap_size);
   760       } else {
   761         // Can't reserve with NarrowOopShift == 0
   762         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
   763         if (mode == UnscaledNarrowOop ||
   764             mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
   765           // Use zero based compressed oops with encoding and
   766           // place heap's top on the 32Gb boundary in case
   767           // total_size > 4Gb or failed to reserve below 4Gb.
   768           return (char*)(OopEncodingHeapMax - heap_size);
   769         }
   770       }
   771     } else {
   772       // Can't reserve below 32Gb.
   773       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
   774     }
   775   }
   776 #endif
   777   return NULL; // also return NULL (don't care) for 32-bit VM
   778 }
   780 jint Universe::initialize_heap() {
   782   if (UseParallelGC) {
   783 #ifndef SERIALGC
   784     Universe::_collectedHeap = new ParallelScavengeHeap();
   785 #else  // SERIALGC
   786     fatal("UseParallelGC not supported in java kernel vm.");
   787 #endif // SERIALGC
   789   } else if (UseG1GC) {
   790 #ifndef SERIALGC
   791     G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
   792     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
   793     Universe::_collectedHeap = g1h;
   794 #else  // SERIALGC
   795     fatal("UseG1GC not supported in java kernel vm.");
   796 #endif // SERIALGC
   798   } else {
   799     GenCollectorPolicy *gc_policy;
   801     if (UseSerialGC) {
   802       gc_policy = new MarkSweepPolicy();
   803     } else if (UseConcMarkSweepGC) {
   804 #ifndef SERIALGC
   805       if (UseAdaptiveSizePolicy) {
   806         gc_policy = new ASConcurrentMarkSweepPolicy();
   807       } else {
   808         gc_policy = new ConcurrentMarkSweepPolicy();
   809       }
   810 #else   // SERIALGC
   811     fatal("UseConcMarkSweepGC not supported in java kernel vm.");
   812 #endif // SERIALGC
   813     } else { // default old generation
   814       gc_policy = new MarkSweepPolicy();
   815     }
   817     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
   818   }
   820   jint status = Universe::heap()->initialize();
   821   if (status != JNI_OK) {
   822     return status;
   823   }
   825 #ifdef _LP64
   826   if (UseCompressedOops) {
   827     // Subtract a page because something can get allocated at heap base.
   828     // This also makes implicit null checking work, because the
   829     // memory+1 page below heap_base needs to cause a signal.
   830     // See needs_explicit_null_check.
   831     // Only set the heap base for compressed oops because it indicates
   832     // compressed oops for pstack code.
   833     if (PrintCompressedOopsMode) {
   834       tty->cr();
   835       tty->print("heap address: "PTR_FORMAT, Universe::heap()->base());
   836     }
   837     if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
   838       // Can't reserve heap below 32Gb.
   839       Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
   840       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
   841       if (PrintCompressedOopsMode) {
   842         tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
   843       }
   844     } else {
   845       Universe::set_narrow_oop_base(0);
   846       if (PrintCompressedOopsMode) {
   847         tty->print(", zero based Compressed Oops");
   848       }
   849 #ifdef _WIN64
   850       if (!Universe::narrow_oop_use_implicit_null_checks()) {
   851         // Don't need guard page for implicit checks in indexed addressing
   852         // mode with zero based Compressed Oops.
   853         Universe::set_narrow_oop_use_implicit_null_checks(true);
   854       }
   855 #endif //  _WIN64
   856       if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
   857         // Can't reserve heap below 4Gb.
   858         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
   859       } else {
   860         assert(Universe::narrow_oop_shift() == 0, "use unscaled narrow oop");
   861         if (PrintCompressedOopsMode) {
   862           tty->print(", 32-bits Oops");
   863         }
   864       }
   865     }
   866     if (PrintCompressedOopsMode) {
   867       tty->cr();
   868       tty->cr();
   869     }
   870   }
   871   assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
   872          Universe::narrow_oop_base() == NULL, "invalid value");
   873   assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
   874          Universe::narrow_oop_shift() == 0, "invalid value");
   875 #endif
   877   // We will never reach the CATCH below since Exceptions::_throw will cause
   878   // the VM to exit if an exception is thrown during initialization
   880   if (UseTLAB) {
   881     assert(Universe::heap()->supports_tlab_allocation(),
   882            "Should support thread-local allocation buffers");
   883     ThreadLocalAllocBuffer::startup_initialization();
   884   }
   885   return JNI_OK;
   886 }
   888 // It's the caller's repsonsibility to ensure glitch-freedom
   889 // (if required).
   890 void Universe::update_heap_info_at_gc() {
   891   _heap_capacity_at_last_gc = heap()->capacity();
   892   _heap_used_at_last_gc     = heap()->used();
   893 }
   897 void universe2_init() {
   898   EXCEPTION_MARK;
   899   Universe::genesis(CATCH);
   900   // Although we'd like to verify here that the state of the heap
   901   // is good, we can't because the main thread has not yet added
   902   // itself to the threads list (so, using current interfaces
   903   // we can't "fill" its TLAB), unless TLABs are disabled.
   904   if (VerifyBeforeGC && !UseTLAB &&
   905       Universe::heap()->total_collections() >= VerifyGCStartAt) {
   906      Universe::heap()->prepare_for_verify();
   907      Universe::verify();   // make sure we're starting with a clean slate
   908   }
   909 }
   912 // This function is defined in JVM.cpp
   913 extern void initialize_converter_functions();
   915 bool universe_post_init() {
   916   Universe::_fully_initialized = true;
   917   EXCEPTION_MARK;
   918   { ResourceMark rm;
   919     Interpreter::initialize();      // needed for interpreter entry points
   920     if (!UseSharedSpaces) {
   921       KlassHandle ok_h(THREAD, SystemDictionary::object_klass());
   922       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
   923       Universe::reinitialize_itables(CHECK_false);
   924     }
   925   }
   927   klassOop k;
   928   instanceKlassHandle k_h;
   929   if (!UseSharedSpaces) {
   930     // Setup preallocated empty java.lang.Class array
   931     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::class_klass(), 0, CHECK_false);
   932     // Setup preallocated OutOfMemoryError errors
   933     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
   934     k_h = instanceKlassHandle(THREAD, k);
   935     Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
   936     Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
   937     Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
   938     Universe::_out_of_memory_error_gc_overhead_limit =
   939       k_h->allocate_permanent_instance(CHECK_false);
   941     // Setup preallocated NullPointerException
   942     // (this is currently used for a cheap & dirty solution in compiler exception handling)
   943     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
   944     Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   945     // Setup preallocated ArithmeticException
   946     // (this is currently used for a cheap & dirty solution in compiler exception handling)
   947     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
   948     Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   949     // Virtual Machine Error for when we get into a situation we can't resolve
   950     k = SystemDictionary::resolve_or_fail(
   951       vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
   952     bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
   953     if (!linked) {
   954       tty->print_cr("Unable to link/verify VirtualMachineError class");
   955       return false; // initialization failed
   956     }
   957     Universe::_virtual_machine_error_instance =
   958       instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   959   }
   960   if (!DumpSharedSpaces) {
   961     // These are the only Java fields that are currently set during shared space dumping.
   962     // We prefer to not handle this generally, so we always reinitialize these detail messages.
   963     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
   964     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
   966     msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
   967     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
   969     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
   970     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
   972     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
   973     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
   975     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
   976     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
   978     // Setup the array of errors that have preallocated backtrace
   979     k = Universe::_out_of_memory_error_java_heap->klass();
   980     assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
   981     k_h = instanceKlassHandle(THREAD, k);
   983     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
   984     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
   985     for (int i=0; i<len; i++) {
   986       oop err = k_h->allocate_permanent_instance(CHECK_false);
   987       Handle err_h = Handle(THREAD, err);
   988       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
   989       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
   990     }
   991     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
   992   }
   995   // Setup static method for registering finalizers
   996   // The finalizer klass must be linked before looking up the method, in
   997   // case it needs to get rewritten.
   998   instanceKlass::cast(SystemDictionary::finalizer_klass())->link_class(CHECK_false);
   999   methodOop m = instanceKlass::cast(SystemDictionary::finalizer_klass())->find_method(
  1000                                   vmSymbols::register_method_name(),
  1001                                   vmSymbols::register_method_signature());
  1002   if (m == NULL || !m->is_static()) {
  1003     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
  1004       "java.lang.ref.Finalizer.register", false);
  1006   Universe::_finalizer_register_cache->init(
  1007     SystemDictionary::finalizer_klass(), m, CHECK_false);
  1009   // Resolve on first use and initialize class.
  1010   // Note: No race-condition here, since a resolve will always return the same result
  1012   // Setup method for security checks
  1013   k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
  1014   k_h = instanceKlassHandle(THREAD, k);
  1015   k_h->link_class(CHECK_false);
  1016   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_array_object_object_signature());
  1017   if (m == NULL || m->is_static()) {
  1018     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
  1019       "java.lang.reflect.Method.invoke", false);
  1021   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
  1023   // Setup method for registering loaded classes in class loader vector
  1024   instanceKlass::cast(SystemDictionary::classloader_klass())->link_class(CHECK_false);
  1025   m = instanceKlass::cast(SystemDictionary::classloader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
  1026   if (m == NULL || m->is_static()) {
  1027     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
  1028       "java.lang.ClassLoader.addClass", false);
  1030   Universe::_loader_addClass_cache->init(
  1031     SystemDictionary::classloader_klass(), m, CHECK_false);
  1033   // The folowing is initializing converter functions for serialization in
  1034   // JVM.cpp. If we clean up the StrictMath code above we may want to find
  1035   // a better solution for this as well.
  1036   initialize_converter_functions();
  1038   // This needs to be done before the first scavenge/gc, since
  1039   // it's an input to soft ref clearing policy.
  1041     MutexLocker x(Heap_lock);
  1042     Universe::update_heap_info_at_gc();
  1045   // ("weak") refs processing infrastructure initialization
  1046   Universe::heap()->post_initialize();
  1048   GC_locker::unlock();  // allow gc after bootstrapping
  1050   MemoryService::set_universe_heap(Universe::_collectedHeap);
  1051   return true;
  1055 void Universe::compute_base_vtable_size() {
  1056   _base_vtable_size = ClassLoader::compute_Object_vtable();
  1060 // %%% The Universe::flush_foo methods belong in CodeCache.
  1062 // Flushes compiled methods dependent on dependee.
  1063 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
  1064   assert_lock_strong(Compile_lock);
  1066   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
  1068   // CodeCache can only be updated by a thread_in_VM and they will all be
  1069   // stopped dring the safepoint so CodeCache will be safe to update without
  1070   // holding the CodeCache_lock.
  1072   DepChange changes(dependee);
  1074   // Compute the dependent nmethods
  1075   if (CodeCache::mark_for_deoptimization(changes) > 0) {
  1076     // At least one nmethod has been marked for deoptimization
  1077     VM_Deoptimize op;
  1078     VMThread::execute(&op);
  1082 #ifdef HOTSWAP
  1083 // Flushes compiled methods dependent on dependee in the evolutionary sense
  1084 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
  1085   // --- Compile_lock is not held. However we are at a safepoint.
  1086   assert_locked_or_safepoint(Compile_lock);
  1087   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
  1089   // CodeCache can only be updated by a thread_in_VM and they will all be
  1090   // stopped dring the safepoint so CodeCache will be safe to update without
  1091   // holding the CodeCache_lock.
  1093   // Compute the dependent nmethods
  1094   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
  1095     // At least one nmethod has been marked for deoptimization
  1097     // All this already happens inside a VM_Operation, so we'll do all the work here.
  1098     // Stuff copied from VM_Deoptimize and modified slightly.
  1100     // We do not want any GCs to happen while we are in the middle of this VM operation
  1101     ResourceMark rm;
  1102     DeoptimizationMarker dm;
  1104     // Deoptimize all activations depending on marked nmethods
  1105     Deoptimization::deoptimize_dependents();
  1107     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
  1108     CodeCache::make_marked_nmethods_not_entrant();
  1111 #endif // HOTSWAP
  1114 // Flushes compiled methods dependent on dependee
  1115 void Universe::flush_dependents_on_method(methodHandle m_h) {
  1116   // --- Compile_lock is not held. However we are at a safepoint.
  1117   assert_locked_or_safepoint(Compile_lock);
  1119   // CodeCache can only be updated by a thread_in_VM and they will all be
  1120   // stopped dring the safepoint so CodeCache will be safe to update without
  1121   // holding the CodeCache_lock.
  1123   // Compute the dependent nmethods
  1124   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
  1125     // At least one nmethod has been marked for deoptimization
  1127     // All this already happens inside a VM_Operation, so we'll do all the work here.
  1128     // Stuff copied from VM_Deoptimize and modified slightly.
  1130     // We do not want any GCs to happen while we are in the middle of this VM operation
  1131     ResourceMark rm;
  1132     DeoptimizationMarker dm;
  1134     // Deoptimize all activations depending on marked nmethods
  1135     Deoptimization::deoptimize_dependents();
  1137     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
  1138     CodeCache::make_marked_nmethods_not_entrant();
  1142 void Universe::print() { print_on(gclog_or_tty); }
  1144 void Universe::print_on(outputStream* st) {
  1145   st->print_cr("Heap");
  1146   heap()->print_on(st);
  1149 void Universe::print_heap_at_SIGBREAK() {
  1150   if (PrintHeapAtSIGBREAK) {
  1151     MutexLocker hl(Heap_lock);
  1152     print_on(tty);
  1153     tty->cr();
  1154     tty->flush();
  1158 void Universe::print_heap_before_gc(outputStream* st) {
  1159   st->print_cr("{Heap before GC invocations=%u (full %u):",
  1160                heap()->total_collections(),
  1161                heap()->total_full_collections());
  1162   heap()->print_on(st);
  1165 void Universe::print_heap_after_gc(outputStream* st) {
  1166   st->print_cr("Heap after GC invocations=%u (full %u):",
  1167                heap()->total_collections(),
  1168                heap()->total_full_collections());
  1169   heap()->print_on(st);
  1170   st->print_cr("}");
  1173 void Universe::verify(bool allow_dirty, bool silent) {
  1174   if (SharedSkipVerify) {
  1175     return;
  1178   // The use of _verify_in_progress is a temporary work around for
  1179   // 6320749.  Don't bother with a creating a class to set and clear
  1180   // it since it is only used in this method and the control flow is
  1181   // straight forward.
  1182   _verify_in_progress = true;
  1184   COMPILER2_PRESENT(
  1185     assert(!DerivedPointerTable::is_active(),
  1186          "DPT should not be active during verification "
  1187          "(of thread stacks below)");
  1190   ResourceMark rm;
  1191   HandleMark hm;  // Handles created during verification can be zapped
  1192   _verify_count++;
  1194   if (!silent) gclog_or_tty->print("[Verifying ");
  1195   if (!silent) gclog_or_tty->print("threads ");
  1196   Threads::verify();
  1197   heap()->verify(allow_dirty, silent);
  1199   if (!silent) gclog_or_tty->print("syms ");
  1200   SymbolTable::verify();
  1201   if (!silent) gclog_or_tty->print("strs ");
  1202   StringTable::verify();
  1204     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1205     if (!silent) gclog_or_tty->print("zone ");
  1206     CodeCache::verify();
  1208   if (!silent) gclog_or_tty->print("dict ");
  1209   SystemDictionary::verify();
  1210   if (!silent) gclog_or_tty->print("hand ");
  1211   JNIHandles::verify();
  1212   if (!silent) gclog_or_tty->print("C-heap ");
  1213   os::check_heap();
  1214   if (!silent) gclog_or_tty->print_cr("]");
  1216   _verify_in_progress = false;
  1219 // Oop verification (see MacroAssembler::verify_oop)
  1221 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
  1222 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
  1225 static void calculate_verify_data(uintptr_t verify_data[2],
  1226                                   HeapWord* low_boundary,
  1227                                   HeapWord* high_boundary) {
  1228   assert(low_boundary < high_boundary, "bad interval");
  1230   // decide which low-order bits we require to be clear:
  1231   size_t alignSize = MinObjAlignmentInBytes;
  1232   size_t min_object_size = oopDesc::header_size();
  1234   // make an inclusive limit:
  1235   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
  1236   uintptr_t min = (uintptr_t)low_boundary;
  1237   assert(min < max, "bad interval");
  1238   uintptr_t diff = max ^ min;
  1240   // throw away enough low-order bits to make the diff vanish
  1241   uintptr_t mask = (uintptr_t)(-1);
  1242   while ((mask & diff) != 0)
  1243     mask <<= 1;
  1244   uintptr_t bits = (min & mask);
  1245   assert(bits == (max & mask), "correct mask");
  1246   // check an intermediate value between min and max, just to make sure:
  1247   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
  1249   // require address alignment, too:
  1250   mask |= (alignSize - 1);
  1252   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
  1253     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
  1255   verify_data[0] = mask;
  1256   verify_data[1] = bits;
  1260 // Oop verification (see MacroAssembler::verify_oop)
  1261 #ifndef PRODUCT
  1263 uintptr_t Universe::verify_oop_mask() {
  1264   MemRegion m = heap()->reserved_region();
  1265   calculate_verify_data(_verify_oop_data,
  1266                         m.start(),
  1267                         m.end());
  1268   return _verify_oop_data[0];
  1273 uintptr_t Universe::verify_oop_bits() {
  1274   verify_oop_mask();
  1275   return _verify_oop_data[1];
  1279 uintptr_t Universe::verify_klass_mask() {
  1280   /* $$$
  1281   // A klass can never live in the new space.  Since the new and old
  1282   // spaces can change size, we must settle for bounds-checking against
  1283   // the bottom of the world, plus the smallest possible new and old
  1284   // space sizes that may arise during execution.
  1285   size_t min_new_size = Universe::new_size();   // in bytes
  1286   size_t min_old_size = Universe::old_size();   // in bytes
  1287   calculate_verify_data(_verify_klass_data,
  1288           (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
  1289           _perm_gen->high_boundary);
  1290                         */
  1291   // Why doesn't the above just say that klass's always live in the perm
  1292   // gen?  I'll see if that seems to work...
  1293   MemRegion permanent_reserved;
  1294   switch (Universe::heap()->kind()) {
  1295   default:
  1296     // ???: What if a CollectedHeap doesn't have a permanent generation?
  1297     ShouldNotReachHere();
  1298     break;
  1299   case CollectedHeap::GenCollectedHeap:
  1300   case CollectedHeap::G1CollectedHeap: {
  1301     SharedHeap* sh = (SharedHeap*) Universe::heap();
  1302     permanent_reserved = sh->perm_gen()->reserved();
  1303    break;
  1305 #ifndef SERIALGC
  1306   case CollectedHeap::ParallelScavengeHeap: {
  1307     ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
  1308     permanent_reserved = psh->perm_gen()->reserved();
  1309     break;
  1311 #endif // SERIALGC
  1313   calculate_verify_data(_verify_klass_data,
  1314                         permanent_reserved.start(),
  1315                         permanent_reserved.end());
  1317   return _verify_klass_data[0];
  1322 uintptr_t Universe::verify_klass_bits() {
  1323   verify_klass_mask();
  1324   return _verify_klass_data[1];
  1328 uintptr_t Universe::verify_mark_mask() {
  1329   return markOopDesc::lock_mask_in_place;
  1334 uintptr_t Universe::verify_mark_bits() {
  1335   intptr_t mask = verify_mark_mask();
  1336   intptr_t bits = (intptr_t)markOopDesc::prototype();
  1337   assert((bits & ~mask) == 0, "no stray header bits");
  1338   return bits;
  1340 #endif // PRODUCT
  1343 void Universe::compute_verify_oop_data() {
  1344   verify_oop_mask();
  1345   verify_oop_bits();
  1346   verify_mark_mask();
  1347   verify_mark_bits();
  1348   verify_klass_mask();
  1349   verify_klass_bits();
  1353 void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
  1354   if (!UseSharedSpaces) {
  1355     _klass = k;
  1357 #ifndef PRODUCT
  1358   else {
  1359     // sharing initilization should have already set up _klass
  1360     assert(_klass != NULL, "just checking");
  1362 #endif
  1364   _method_idnum = m->method_idnum();
  1365   assert(_method_idnum >= 0, "sanity check");
  1369 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
  1370   if (_prev_methods != NULL) {
  1371     for (int i = _prev_methods->length() - 1; i >= 0; i--) {
  1372       jweak method_ref = _prev_methods->at(i);
  1373       if (method_ref != NULL) {
  1374         JNIHandles::destroy_weak_global(method_ref);
  1377     delete _prev_methods;
  1378     _prev_methods = NULL;
  1383 void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
  1384   assert(Thread::current()->is_VM_thread(),
  1385     "only VMThread can add previous versions");
  1387   if (_prev_methods == NULL) {
  1388     // This is the first previous version so make some space.
  1389     // Start with 2 elements under the assumption that the class
  1390     // won't be redefined much.
  1391     _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
  1394   // RC_TRACE macro has an embedded ResourceMark
  1395   RC_TRACE(0x00000100,
  1396     ("add: %s(%s): adding prev version ref for cached method @%d",
  1397     method->name()->as_C_string(), method->signature()->as_C_string(),
  1398     _prev_methods->length()));
  1400   methodHandle method_h(method);
  1401   jweak method_ref = JNIHandles::make_weak_global(method_h);
  1402   _prev_methods->append(method_ref);
  1404   // Using weak references allows previous versions of the cached
  1405   // method to be GC'ed when they are no longer needed. Since the
  1406   // caller is the VMThread and we are at a safepoint, this is a good
  1407   // time to clear out unused weak references.
  1409   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
  1410     jweak method_ref = _prev_methods->at(i);
  1411     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
  1412     if (method_ref == NULL) {
  1413       _prev_methods->remove_at(i);
  1414       // Since we are traversing the array backwards, we don't have to
  1415       // do anything special with the index.
  1416       continue;  // robustness
  1419     methodOop m = (methodOop)JNIHandles::resolve(method_ref);
  1420     if (m == NULL) {
  1421       // this method entry has been GC'ed so remove it
  1422       JNIHandles::destroy_weak_global(method_ref);
  1423       _prev_methods->remove_at(i);
  1424     } else {
  1425       // RC_TRACE macro has an embedded ResourceMark
  1426       RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
  1427         m->name()->as_C_string(), m->signature()->as_C_string(), i));
  1430 } // end add_previous_version()
  1433 bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
  1434   instanceKlass* ik = instanceKlass::cast(klass());
  1435   methodOop check_method = ik->method_with_idnum(method_idnum());
  1436   assert(check_method != NULL, "sanity check");
  1437   if (check_method == method) {
  1438     // done with the easy case
  1439     return true;
  1442   if (_prev_methods != NULL) {
  1443     // The cached method has been redefined at least once so search
  1444     // the previous versions for a match.
  1445     for (int i = 0; i < _prev_methods->length(); i++) {
  1446       jweak method_ref = _prev_methods->at(i);
  1447       assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
  1448       if (method_ref == NULL) {
  1449         continue;  // robustness
  1452       check_method = (methodOop)JNIHandles::resolve(method_ref);
  1453       if (check_method == method) {
  1454         // a previous version matches
  1455         return true;
  1460   // either no previous versions or no previous version matched
  1461   return false;
  1465 methodOop LatestMethodOopCache::get_methodOop() {
  1466   instanceKlass* ik = instanceKlass::cast(klass());
  1467   methodOop m = ik->method_with_idnum(method_idnum());
  1468   assert(m != NULL, "sanity check");
  1469   return m;
  1473 #ifdef ASSERT
  1474 // Release dummy object(s) at bottom of heap
  1475 bool Universe::release_fullgc_alot_dummy() {
  1476   MutexLocker ml(FullGCALot_lock);
  1477   if (_fullgc_alot_dummy_array != NULL) {
  1478     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
  1479       // No more dummies to release, release entire array instead
  1480       _fullgc_alot_dummy_array = NULL;
  1481       return false;
  1483     if (!UseConcMarkSweepGC) {
  1484       // Release dummy at bottom of old generation
  1485       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  1487     // Release dummy at bottom of permanent generation
  1488     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  1490   return true;
  1493 #endif // ASSERT

mercurial