src/share/vm/memory/universe.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 929
d593294016c3
child 1082
bd441136a5ce
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_universe.cpp.incl"
    28 // Known objects
    29 klassOop Universe::_boolArrayKlassObj                 = NULL;
    30 klassOop Universe::_byteArrayKlassObj                 = NULL;
    31 klassOop Universe::_charArrayKlassObj                 = NULL;
    32 klassOop Universe::_intArrayKlassObj                  = NULL;
    33 klassOop Universe::_shortArrayKlassObj                = NULL;
    34 klassOop Universe::_longArrayKlassObj                 = NULL;
    35 klassOop Universe::_singleArrayKlassObj               = NULL;
    36 klassOop Universe::_doubleArrayKlassObj               = NULL;
    37 klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
    38 klassOop Universe::_objectArrayKlassObj               = NULL;
    39 klassOop Universe::_symbolKlassObj                    = NULL;
    40 klassOop Universe::_methodKlassObj                    = NULL;
    41 klassOop Universe::_constMethodKlassObj               = NULL;
    42 klassOop Universe::_methodDataKlassObj                = NULL;
    43 klassOop Universe::_klassKlassObj                     = NULL;
    44 klassOop Universe::_arrayKlassKlassObj                = NULL;
    45 klassOop Universe::_objArrayKlassKlassObj             = NULL;
    46 klassOop Universe::_typeArrayKlassKlassObj            = NULL;
    47 klassOop Universe::_instanceKlassKlassObj             = NULL;
    48 klassOop Universe::_constantPoolKlassObj              = NULL;
    49 klassOop Universe::_constantPoolCacheKlassObj         = NULL;
    50 klassOop Universe::_compiledICHolderKlassObj          = NULL;
    51 klassOop Universe::_systemObjArrayKlassObj            = NULL;
    52 oop Universe::_int_mirror                             = NULL;
    53 oop Universe::_float_mirror                           = NULL;
    54 oop Universe::_double_mirror                          = NULL;
    55 oop Universe::_byte_mirror                            = NULL;
    56 oop Universe::_bool_mirror                            = NULL;
    57 oop Universe::_char_mirror                            = NULL;
    58 oop Universe::_long_mirror                            = NULL;
    59 oop Universe::_short_mirror                           = NULL;
    60 oop Universe::_void_mirror                            = NULL;
    61 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
    62 oop Universe::_main_thread_group                      = NULL;
    63 oop Universe::_system_thread_group                    = NULL;
    64 typeArrayOop Universe::_the_empty_byte_array          = NULL;
    65 typeArrayOop Universe::_the_empty_short_array         = NULL;
    66 typeArrayOop Universe::_the_empty_int_array           = NULL;
    67 objArrayOop Universe::_the_empty_system_obj_array     = NULL;
    68 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
    69 objArrayOop Universe::_the_array_interfaces_array     = NULL;
    70 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
    71 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
    72 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
    73 oop Universe::_out_of_memory_error_java_heap          = NULL;
    74 oop Universe::_out_of_memory_error_perm_gen           = NULL;
    75 oop Universe::_out_of_memory_error_array_size         = NULL;
    76 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
    77 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
    78 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
    79 bool Universe::_verify_in_progress                    = false;
    80 oop Universe::_null_ptr_exception_instance            = NULL;
    81 oop Universe::_arithmetic_exception_instance          = NULL;
    82 oop Universe::_virtual_machine_error_instance         = NULL;
    83 oop Universe::_vm_exception                           = NULL;
    84 oop Universe::_emptySymbol                            = NULL;
    86 // These variables are guarded by FullGCALot_lock.
    87 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
    88 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
    91 // Heap
    92 int             Universe::_verify_count = 0;
    94 int             Universe::_base_vtable_size = 0;
    95 bool            Universe::_bootstrapping = false;
    96 bool            Universe::_fully_initialized = false;
    98 size_t          Universe::_heap_capacity_at_last_gc;
    99 size_t          Universe::_heap_used_at_last_gc = 0;
   101 CollectedHeap*  Universe::_collectedHeap = NULL;
   102 address         Universe::_heap_base = NULL;
   105 void Universe::basic_type_classes_do(void f(klassOop)) {
   106   f(boolArrayKlassObj());
   107   f(byteArrayKlassObj());
   108   f(charArrayKlassObj());
   109   f(intArrayKlassObj());
   110   f(shortArrayKlassObj());
   111   f(longArrayKlassObj());
   112   f(singleArrayKlassObj());
   113   f(doubleArrayKlassObj());
   114 }
   117 void Universe::system_classes_do(void f(klassOop)) {
   118   f(symbolKlassObj());
   119   f(methodKlassObj());
   120   f(constMethodKlassObj());
   121   f(methodDataKlassObj());
   122   f(klassKlassObj());
   123   f(arrayKlassKlassObj());
   124   f(objArrayKlassKlassObj());
   125   f(typeArrayKlassKlassObj());
   126   f(instanceKlassKlassObj());
   127   f(constantPoolKlassObj());
   128   f(systemObjArrayKlassObj());
   129 }
   131 void Universe::oops_do(OopClosure* f, bool do_all) {
   133   f->do_oop((oop*) &_int_mirror);
   134   f->do_oop((oop*) &_float_mirror);
   135   f->do_oop((oop*) &_double_mirror);
   136   f->do_oop((oop*) &_byte_mirror);
   137   f->do_oop((oop*) &_bool_mirror);
   138   f->do_oop((oop*) &_char_mirror);
   139   f->do_oop((oop*) &_long_mirror);
   140   f->do_oop((oop*) &_short_mirror);
   141   f->do_oop((oop*) &_void_mirror);
   143   // It's important to iterate over these guys even if they are null,
   144   // since that's how shared heaps are restored.
   145   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
   146     f->do_oop((oop*) &_mirrors[i]);
   147   }
   148   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
   150   // %%% Consider moving those "shared oops" over here with the others.
   151   f->do_oop((oop*)&_boolArrayKlassObj);
   152   f->do_oop((oop*)&_byteArrayKlassObj);
   153   f->do_oop((oop*)&_charArrayKlassObj);
   154   f->do_oop((oop*)&_intArrayKlassObj);
   155   f->do_oop((oop*)&_shortArrayKlassObj);
   156   f->do_oop((oop*)&_longArrayKlassObj);
   157   f->do_oop((oop*)&_singleArrayKlassObj);
   158   f->do_oop((oop*)&_doubleArrayKlassObj);
   159   f->do_oop((oop*)&_objectArrayKlassObj);
   160   {
   161     for (int i = 0; i < T_VOID+1; i++) {
   162       if (_typeArrayKlassObjs[i] != NULL) {
   163         assert(i >= T_BOOLEAN, "checking");
   164         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
   165       } else if (do_all) {
   166         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
   167       }
   168     }
   169   }
   170   f->do_oop((oop*)&_symbolKlassObj);
   171   f->do_oop((oop*)&_methodKlassObj);
   172   f->do_oop((oop*)&_constMethodKlassObj);
   173   f->do_oop((oop*)&_methodDataKlassObj);
   174   f->do_oop((oop*)&_klassKlassObj);
   175   f->do_oop((oop*)&_arrayKlassKlassObj);
   176   f->do_oop((oop*)&_objArrayKlassKlassObj);
   177   f->do_oop((oop*)&_typeArrayKlassKlassObj);
   178   f->do_oop((oop*)&_instanceKlassKlassObj);
   179   f->do_oop((oop*)&_constantPoolKlassObj);
   180   f->do_oop((oop*)&_constantPoolCacheKlassObj);
   181   f->do_oop((oop*)&_compiledICHolderKlassObj);
   182   f->do_oop((oop*)&_systemObjArrayKlassObj);
   183   f->do_oop((oop*)&_the_empty_byte_array);
   184   f->do_oop((oop*)&_the_empty_short_array);
   185   f->do_oop((oop*)&_the_empty_int_array);
   186   f->do_oop((oop*)&_the_empty_system_obj_array);
   187   f->do_oop((oop*)&_the_empty_class_klass_array);
   188   f->do_oop((oop*)&_the_array_interfaces_array);
   189   _finalizer_register_cache->oops_do(f);
   190   _loader_addClass_cache->oops_do(f);
   191   _reflect_invoke_cache->oops_do(f);
   192   f->do_oop((oop*)&_out_of_memory_error_java_heap);
   193   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
   194   f->do_oop((oop*)&_out_of_memory_error_array_size);
   195   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
   196   if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
   197     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
   198   }
   199   f->do_oop((oop*)&_null_ptr_exception_instance);
   200   f->do_oop((oop*)&_arithmetic_exception_instance);
   201   f->do_oop((oop*)&_virtual_machine_error_instance);
   202   f->do_oop((oop*)&_main_thread_group);
   203   f->do_oop((oop*)&_system_thread_group);
   204   f->do_oop((oop*)&_vm_exception);
   205   f->do_oop((oop*)&_emptySymbol);
   206   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
   207 }
   210 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
   211   if (size < alignment || size % alignment != 0) {
   212     ResourceMark rm;
   213     stringStream st;
   214     st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
   215     char* error = st.as_string();
   216     vm_exit_during_initialization(error);
   217   }
   218 }
   221 void Universe::genesis(TRAPS) {
   222   ResourceMark rm;
   223   { FlagSetting fs(_bootstrapping, true);
   225     { MutexLocker mc(Compile_lock);
   227       // determine base vtable size; without that we cannot create the array klasses
   228       compute_base_vtable_size();
   230       if (!UseSharedSpaces) {
   231         _klassKlassObj          = klassKlass::create_klass(CHECK);
   232         _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
   234         _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
   235         _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
   236         _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
   238         _symbolKlassObj         = symbolKlass::create_klass(CHECK);
   240         _emptySymbol            = oopFactory::new_symbol("", CHECK);
   242         _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
   243         _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
   244         _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
   245         _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
   246         _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
   247         _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
   248         _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
   249         _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
   251         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
   252         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
   253         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
   254         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
   255         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
   256         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
   257         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
   258         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
   260         _methodKlassObj             = methodKlass::create_klass(CHECK);
   261         _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
   262         _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
   263         _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
   264         _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
   266         _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
   267         _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
   269         _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
   270         _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
   271         _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
   272         _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
   274         _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
   275         _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
   276       } else {
   277         FileMapInfo *mapinfo = FileMapInfo::current_info();
   278         char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
   279         void** vtbl_list = (void**)buffer;
   280         init_self_patching_vtbl_list(vtbl_list,
   281                                      CompactingPermGenGen::vtbl_list_size);
   282       }
   283     }
   285     vmSymbols::initialize(CHECK);
   287     SystemDictionary::initialize(CHECK);
   289     klassOop ok = SystemDictionary::object_klass();
   291     if (UseSharedSpaces) {
   292       // Verify shared interfaces array.
   293       assert(_the_array_interfaces_array->obj_at(0) ==
   294              SystemDictionary::cloneable_klass(), "u3");
   295       assert(_the_array_interfaces_array->obj_at(1) ==
   296              SystemDictionary::serializable_klass(), "u3");
   298       // Verify element klass for system obj array klass
   299       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
   300       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
   302       // Verify super class for the classes created above
   303       assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
   304       assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
   305       assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
   306       assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
   307       assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
   308       assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
   309       assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
   310       assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
   311       assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
   312       assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
   313     } else {
   314       // Set up shared interfaces array.  (Do this before supers are set up.)
   315       _the_array_interfaces_array->obj_at_put(0, SystemDictionary::cloneable_klass());
   316       _the_array_interfaces_array->obj_at_put(1, SystemDictionary::serializable_klass());
   318       // Set element klass for system obj array klass
   319       objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
   320       objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
   322       // Set super class for the classes created above
   323       Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
   324       Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
   325       Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
   326       Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
   327       Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
   328       Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
   329       Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
   330       Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
   331       Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
   332       Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
   333       Klass::cast(boolArrayKlassObj()     )->set_super(ok);
   334       Klass::cast(charArrayKlassObj()     )->set_super(ok);
   335       Klass::cast(singleArrayKlassObj()   )->set_super(ok);
   336       Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
   337       Klass::cast(byteArrayKlassObj()     )->set_super(ok);
   338       Klass::cast(shortArrayKlassObj()    )->set_super(ok);
   339       Klass::cast(intArrayKlassObj()      )->set_super(ok);
   340       Klass::cast(longArrayKlassObj()     )->set_super(ok);
   341       Klass::cast(constantPoolKlassObj()  )->set_super(ok);
   342       Klass::cast(systemObjArrayKlassObj())->set_super(ok);
   343     }
   345     Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
   346     Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
   347     Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
   348     Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
   349     Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
   350     Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
   351     Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
   352     Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
   353     Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
   354     Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
   355   } // end of core bootstrapping
   357   // Initialize _objectArrayKlass after core bootstraping to make
   358   // sure the super class is set up properly for _objectArrayKlass.
   359   _objectArrayKlassObj = instanceKlass::
   360     cast(SystemDictionary::object_klass())->array_klass(1, CHECK);
   361   // Add the class to the class hierarchy manually to make sure that
   362   // its vtable is initialized after core bootstrapping is completed.
   363   Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
   365   // Compute is_jdk version flags.
   366   // Only 1.3 or later has the java.lang.Shutdown class.
   367   // Only 1.4 or later has the java.lang.CharSequence interface.
   368   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
   369   if (JDK_Version::is_partially_initialized()) {
   370     uint8_t jdk_version;
   371     klassOop k = SystemDictionary::resolve_or_null(
   372         vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
   373     CLEAR_PENDING_EXCEPTION; // ignore exceptions
   374     if (k == NULL) {
   375       k = SystemDictionary::resolve_or_null(
   376           vmSymbolHandles::java_lang_CharSequence(), THREAD);
   377       CLEAR_PENDING_EXCEPTION; // ignore exceptions
   378       if (k == NULL) {
   379         k = SystemDictionary::resolve_or_null(
   380             vmSymbolHandles::java_lang_Shutdown(), THREAD);
   381         CLEAR_PENDING_EXCEPTION; // ignore exceptions
   382         if (k == NULL) {
   383           jdk_version = 2;
   384         } else {
   385           jdk_version = 3;
   386         }
   387       } else {
   388         jdk_version = 4;
   389       }
   390     } else {
   391       jdk_version = 5;
   392     }
   393     JDK_Version::fully_initialize(jdk_version);
   394   }
   396   #ifdef ASSERT
   397   if (FullGCALot) {
   398     // Allocate an array of dummy objects.
   399     // We'd like these to be at the bottom of the old generation,
   400     // so that when we free one and then collect,
   401     // (almost) the whole heap moves
   402     // and we find out if we actually update all the oops correctly.
   403     // But we can't allocate directly in the old generation,
   404     // so we allocate wherever, and hope that the first collection
   405     // moves these objects to the bottom of the old generation.
   406     // We can allocate directly in the permanent generation, so we do.
   407     int size;
   408     if (UseConcMarkSweepGC) {
   409       warning("Using +FullGCALot with concurrent mark sweep gc "
   410               "will not force all objects to relocate");
   411       size = FullGCALotDummies;
   412     } else {
   413       size = FullGCALotDummies * 2;
   414     }
   415     objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
   416     objArrayHandle dummy_array(THREAD, naked_array);
   417     int i = 0;
   418     while (i < size) {
   419       if (!UseConcMarkSweepGC) {
   420         // Allocate dummy in old generation
   421         oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_instance(CHECK);
   422         dummy_array->obj_at_put(i++, dummy);
   423       }
   424       // Allocate dummy in permanent generation
   425       oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_permanent_instance(CHECK);
   426       dummy_array->obj_at_put(i++, dummy);
   427     }
   428     {
   429       // Only modify the global variable inside the mutex.
   430       // If we had a race to here, the other dummy_array instances
   431       // and their elements just get dropped on the floor, which is fine.
   432       MutexLocker ml(FullGCALot_lock);
   433       if (_fullgc_alot_dummy_array == NULL) {
   434         _fullgc_alot_dummy_array = dummy_array();
   435       }
   436     }
   437     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
   438   }
   439   #endif
   440 }
   443 static inline void add_vtable(void** list, int* n, Klass* o, int count) {
   444   list[(*n)++] = *(void**)&o->vtbl_value();
   445   guarantee((*n) <= count, "vtable list too small.");
   446 }
   449 void Universe::init_self_patching_vtbl_list(void** list, int count) {
   450   int n = 0;
   451   { klassKlass o;             add_vtable(list, &n, &o, count); }
   452   { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
   453   { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
   454   { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
   455   { instanceKlass o;          add_vtable(list, &n, &o, count); }
   456   { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
   457   { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
   458   { symbolKlass o;            add_vtable(list, &n, &o, count); }
   459   { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
   460   { methodKlass o;            add_vtable(list, &n, &o, count); }
   461   { constMethodKlass o;       add_vtable(list, &n, &o, count); }
   462   { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
   463   { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
   464   { objArrayKlass o;          add_vtable(list, &n, &o, count); }
   465   { methodDataKlass o;        add_vtable(list, &n, &o, count); }
   466   { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
   467 }
   470 class FixupMirrorClosure: public ObjectClosure {
   471  public:
   472   virtual void do_object(oop obj) {
   473     if (obj->is_klass()) {
   474       EXCEPTION_MARK;
   475       KlassHandle k(THREAD, klassOop(obj));
   476       // We will never reach the CATCH below since Exceptions::_throw will cause
   477       // the VM to exit if an exception is thrown during initialization
   478       java_lang_Class::create_mirror(k, CATCH);
   479       // This call unconditionally creates a new mirror for k,
   480       // and links in k's component_mirror field if k is an array.
   481       // If k is an objArray, k's element type must already have
   482       // a mirror.  In other words, this closure must process
   483       // the component type of an objArray k before it processes k.
   484       // This works because the permgen iterator presents arrays
   485       // and their component types in order of creation.
   486     }
   487   }
   488 };
   490 void Universe::initialize_basic_type_mirrors(TRAPS) {
   491   if (UseSharedSpaces) {
   492     assert(_int_mirror != NULL, "already loaded");
   493     assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
   494   } else {
   496     assert(_int_mirror==NULL, "basic type mirrors already initialized");
   497     _int_mirror     =
   498       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
   499     _float_mirror   =
   500       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
   501     _double_mirror  =
   502       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
   503     _byte_mirror    =
   504       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
   505     _bool_mirror    =
   506       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
   507     _char_mirror    =
   508       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
   509     _long_mirror    =
   510       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
   511     _short_mirror   =
   512       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
   513     _void_mirror    =
   514       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
   516     _mirrors[T_INT]     = _int_mirror;
   517     _mirrors[T_FLOAT]   = _float_mirror;
   518     _mirrors[T_DOUBLE]  = _double_mirror;
   519     _mirrors[T_BYTE]    = _byte_mirror;
   520     _mirrors[T_BOOLEAN] = _bool_mirror;
   521     _mirrors[T_CHAR]    = _char_mirror;
   522     _mirrors[T_LONG]    = _long_mirror;
   523     _mirrors[T_SHORT]   = _short_mirror;
   524     _mirrors[T_VOID]    = _void_mirror;
   525     //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
   526     //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
   527   }
   528 }
   530 void Universe::fixup_mirrors(TRAPS) {
   531   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
   532   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
   533   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
   534   // that the number of objects allocated at this point is very small.
   535   assert(SystemDictionary::class_klass_loaded(), "java.lang.Class should be loaded");
   536   FixupMirrorClosure blk;
   537   Universe::heap()->permanent_object_iterate(&blk);
   538 }
   541 static bool has_run_finalizers_on_exit = false;
   543 void Universe::run_finalizers_on_exit() {
   544   if (has_run_finalizers_on_exit) return;
   545   has_run_finalizers_on_exit = true;
   547   // Called on VM exit. This ought to be run in a separate thread.
   548   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
   549   {
   550     PRESERVE_EXCEPTION_MARK;
   551     KlassHandle finalizer_klass(THREAD, SystemDictionary::finalizer_klass());
   552     JavaValue result(T_VOID);
   553     JavaCalls::call_static(
   554       &result,
   555       finalizer_klass,
   556       vmSymbolHandles::run_finalizers_on_exit_name(),
   557       vmSymbolHandles::void_method_signature(),
   558       THREAD
   559     );
   560     // Ignore any pending exceptions
   561     CLEAR_PENDING_EXCEPTION;
   562   }
   563 }
   566 // initialize_vtable could cause gc if
   567 // 1) we specified true to initialize_vtable and
   568 // 2) this ran after gc was enabled
   569 // In case those ever change we use handles for oops
   570 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
   571   // init vtable of k and all subclasses
   572   Klass* ko = k_h()->klass_part();
   573   klassVtable* vt = ko->vtable();
   574   if (vt) vt->initialize_vtable(false, CHECK);
   575   if (ko->oop_is_instance()) {
   576     instanceKlass* ik = (instanceKlass*)ko;
   577     for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
   578       reinitialize_vtable_of(s_h, CHECK);
   579     }
   580   }
   581 }
   584 void initialize_itable_for_klass(klassOop k, TRAPS) {
   585   instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
   586 }
   589 void Universe::reinitialize_itables(TRAPS) {
   590   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
   592 }
   595 bool Universe::on_page_boundary(void* addr) {
   596   return ((uintptr_t) addr) % os::vm_page_size() == 0;
   597 }
   600 bool Universe::should_fill_in_stack_trace(Handle throwable) {
   601   // never attempt to fill in the stack trace of preallocated errors that do not have
   602   // backtrace. These errors are kept alive forever and may be "re-used" when all
   603   // preallocated errors with backtrace have been consumed. Also need to avoid
   604   // a potential loop which could happen if an out of memory occurs when attempting
   605   // to allocate the backtrace.
   606   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
   607           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
   608           (throwable() != Universe::_out_of_memory_error_array_size) &&
   609           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
   610 }
   613 oop Universe::gen_out_of_memory_error(oop default_err) {
   614   // generate an out of memory error:
   615   // - if there is a preallocated error with backtrace available then return it wth
   616   //   a filled in stack trace.
   617   // - if there are no preallocated errors with backtrace available then return
   618   //   an error without backtrace.
   619   int next;
   620   if (_preallocated_out_of_memory_error_avail_count > 0) {
   621     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
   622     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
   623   } else {
   624     next = -1;
   625   }
   626   if (next < 0) {
   627     // all preallocated errors have been used.
   628     // return default
   629     return default_err;
   630   } else {
   631     // get the error object at the slot and set set it to NULL so that the
   632     // array isn't keeping it alive anymore.
   633     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
   634     assert(exc != NULL, "slot has been used already");
   635     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
   637     // use the message from the default error
   638     oop msg = java_lang_Throwable::message(default_err);
   639     assert(msg != NULL, "no message");
   640     java_lang_Throwable::set_message(exc, msg);
   642     // populate the stack trace and return it.
   643     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
   644     return exc;
   645   }
   646 }
   648 static intptr_t non_oop_bits = 0;
   650 void* Universe::non_oop_word() {
   651   // Neither the high bits nor the low bits of this value is allowed
   652   // to look like (respectively) the high or low bits of a real oop.
   653   //
   654   // High and low are CPU-specific notions, but low always includes
   655   // the low-order bit.  Since oops are always aligned at least mod 4,
   656   // setting the low-order bit will ensure that the low half of the
   657   // word will never look like that of a real oop.
   658   //
   659   // Using the OS-supplied non-memory-address word (usually 0 or -1)
   660   // will take care of the high bits, however many there are.
   662   if (non_oop_bits == 0) {
   663     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
   664   }
   666   return (void*)non_oop_bits;
   667 }
   669 jint universe_init() {
   670   assert(!Universe::_fully_initialized, "called after initialize_vtables");
   671   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
   672          "LogHeapWordSize is incorrect.");
   673   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
   674   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
   675             "oop size is not not a multiple of HeapWord size");
   676   TraceTime timer("Genesis", TraceStartupTime);
   677   GC_locker::lock();  // do not allow gc during bootstrapping
   678   JavaClasses::compute_hard_coded_offsets();
   680   // Get map info from shared archive file.
   681   if (DumpSharedSpaces)
   682     UseSharedSpaces = false;
   684   FileMapInfo* mapinfo = NULL;
   685   if (UseSharedSpaces) {
   686     mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
   687     memset(mapinfo, 0, sizeof(FileMapInfo));
   689     // Open the shared archive file, read and validate the header. If
   690     // initialization files, shared spaces [UseSharedSpaces] are
   691     // disabled and the file is closed.
   693     if (mapinfo->initialize()) {
   694       FileMapInfo::set_current_info(mapinfo);
   695     } else {
   696       assert(!mapinfo->is_open() && !UseSharedSpaces,
   697              "archive file not closed or shared spaces not disabled.");
   698     }
   699   }
   701   jint status = Universe::initialize_heap();
   702   if (status != JNI_OK) {
   703     return status;
   704   }
   706   // We have a heap so create the methodOop caches before
   707   // CompactingPermGenGen::initialize_oops() tries to populate them.
   708   Universe::_finalizer_register_cache = new LatestMethodOopCache();
   709   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
   710   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
   712   if (UseSharedSpaces) {
   714     // Read the data structures supporting the shared spaces (shared
   715     // system dictionary, symbol table, etc.).  After that, access to
   716     // the file (other than the mapped regions) is no longer needed, and
   717     // the file is closed. Closing the file does not affect the
   718     // currently mapped regions.
   720     CompactingPermGenGen::initialize_oops();
   721     mapinfo->close();
   723   } else {
   724     SymbolTable::create_table();
   725     StringTable::create_table();
   726     ClassLoader::create_package_info_table();
   727   }
   729   return JNI_OK;
   730 }
   732 jint Universe::initialize_heap() {
   734   if (UseParallelGC) {
   735 #ifndef SERIALGC
   736     Universe::_collectedHeap = new ParallelScavengeHeap();
   737 #else  // SERIALGC
   738     fatal("UseParallelGC not supported in java kernel vm.");
   739 #endif // SERIALGC
   741   } else if (UseG1GC) {
   742 #ifndef SERIALGC
   743     G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
   744     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
   745     Universe::_collectedHeap = g1h;
   746 #else  // SERIALGC
   747     fatal("UseG1GC not supported in java kernel vm.");
   748 #endif // SERIALGC
   750   } else {
   751     GenCollectorPolicy *gc_policy;
   753     if (UseSerialGC) {
   754       gc_policy = new MarkSweepPolicy();
   755     } else if (UseConcMarkSweepGC) {
   756 #ifndef SERIALGC
   757       if (UseAdaptiveSizePolicy) {
   758         gc_policy = new ASConcurrentMarkSweepPolicy();
   759       } else {
   760         gc_policy = new ConcurrentMarkSweepPolicy();
   761       }
   762 #else   // SERIALGC
   763     fatal("UseConcMarkSweepGC not supported in java kernel vm.");
   764 #endif // SERIALGC
   765     } else { // default old generation
   766       gc_policy = new MarkSweepPolicy();
   767     }
   769     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
   770   }
   772   jint status = Universe::heap()->initialize();
   773   if (status != JNI_OK) {
   774     return status;
   775   }
   776   if (UseCompressedOops) {
   777     // Subtract a page because something can get allocated at heap base.
   778     // This also makes implicit null checking work, because the
   779     // memory+1 page below heap_base needs to cause a signal.
   780     // See needs_explicit_null_check.
   781     // Only set the heap base for compressed oops because it indicates
   782     // compressed oops for pstack code.
   783     Universe::_heap_base = Universe::heap()->base() - os::vm_page_size();
   784   }
   786   // We will never reach the CATCH below since Exceptions::_throw will cause
   787   // the VM to exit if an exception is thrown during initialization
   789   if (UseTLAB) {
   790     assert(Universe::heap()->supports_tlab_allocation(),
   791            "Should support thread-local allocation buffers");
   792     ThreadLocalAllocBuffer::startup_initialization();
   793   }
   794   return JNI_OK;
   795 }
   797 // It's the caller's repsonsibility to ensure glitch-freedom
   798 // (if required).
   799 void Universe::update_heap_info_at_gc() {
   800   _heap_capacity_at_last_gc = heap()->capacity();
   801   _heap_used_at_last_gc     = heap()->used();
   802 }
   806 void universe2_init() {
   807   EXCEPTION_MARK;
   808   Universe::genesis(CATCH);
   809   // Although we'd like to verify here that the state of the heap
   810   // is good, we can't because the main thread has not yet added
   811   // itself to the threads list (so, using current interfaces
   812   // we can't "fill" its TLAB), unless TLABs are disabled.
   813   if (VerifyBeforeGC && !UseTLAB &&
   814       Universe::heap()->total_collections() >= VerifyGCStartAt) {
   815      Universe::heap()->prepare_for_verify();
   816      Universe::verify();   // make sure we're starting with a clean slate
   817   }
   818 }
   821 // This function is defined in JVM.cpp
   822 extern void initialize_converter_functions();
   824 bool universe_post_init() {
   825   Universe::_fully_initialized = true;
   826   EXCEPTION_MARK;
   827   { ResourceMark rm;
   828     Interpreter::initialize();      // needed for interpreter entry points
   829     if (!UseSharedSpaces) {
   830       KlassHandle ok_h(THREAD, SystemDictionary::object_klass());
   831       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
   832       Universe::reinitialize_itables(CHECK_false);
   833     }
   834   }
   836   klassOop k;
   837   instanceKlassHandle k_h;
   838   if (!UseSharedSpaces) {
   839     // Setup preallocated empty java.lang.Class array
   840     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::class_klass(), 0, CHECK_false);
   841     // Setup preallocated OutOfMemoryError errors
   842     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
   843     k_h = instanceKlassHandle(THREAD, k);
   844     Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
   845     Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
   846     Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
   847     Universe::_out_of_memory_error_gc_overhead_limit =
   848       k_h->allocate_permanent_instance(CHECK_false);
   850     // Setup preallocated NullPointerException
   851     // (this is currently used for a cheap & dirty solution in compiler exception handling)
   852     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
   853     Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   854     // Setup preallocated ArithmeticException
   855     // (this is currently used for a cheap & dirty solution in compiler exception handling)
   856     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
   857     Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   858     // Virtual Machine Error for when we get into a situation we can't resolve
   859     k = SystemDictionary::resolve_or_fail(
   860       vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
   861     bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
   862     if (!linked) {
   863       tty->print_cr("Unable to link/verify VirtualMachineError class");
   864       return false; // initialization failed
   865     }
   866     Universe::_virtual_machine_error_instance =
   867       instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
   868   }
   869   if (!DumpSharedSpaces) {
   870     // These are the only Java fields that are currently set during shared space dumping.
   871     // We prefer to not handle this generally, so we always reinitialize these detail messages.
   872     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
   873     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
   875     msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
   876     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
   878     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
   879     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
   881     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
   882     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
   884     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
   885     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
   887     // Setup the array of errors that have preallocated backtrace
   888     k = Universe::_out_of_memory_error_java_heap->klass();
   889     assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
   890     k_h = instanceKlassHandle(THREAD, k);
   892     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
   893     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
   894     for (int i=0; i<len; i++) {
   895       oop err = k_h->allocate_permanent_instance(CHECK_false);
   896       Handle err_h = Handle(THREAD, err);
   897       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
   898       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
   899     }
   900     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
   901   }
   904   // Setup static method for registering finalizers
   905   // The finalizer klass must be linked before looking up the method, in
   906   // case it needs to get rewritten.
   907   instanceKlass::cast(SystemDictionary::finalizer_klass())->link_class(CHECK_false);
   908   methodOop m = instanceKlass::cast(SystemDictionary::finalizer_klass())->find_method(
   909                                   vmSymbols::register_method_name(),
   910                                   vmSymbols::register_method_signature());
   911   if (m == NULL || !m->is_static()) {
   912     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
   913       "java.lang.ref.Finalizer.register", false);
   914   }
   915   Universe::_finalizer_register_cache->init(
   916     SystemDictionary::finalizer_klass(), m, CHECK_false);
   918   // Resolve on first use and initialize class.
   919   // Note: No race-condition here, since a resolve will always return the same result
   921   // Setup method for security checks
   922   k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
   923   k_h = instanceKlassHandle(THREAD, k);
   924   k_h->link_class(CHECK_false);
   925   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_array_object_object_signature());
   926   if (m == NULL || m->is_static()) {
   927     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
   928       "java.lang.reflect.Method.invoke", false);
   929   }
   930   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
   932   // Setup method for registering loaded classes in class loader vector
   933   instanceKlass::cast(SystemDictionary::classloader_klass())->link_class(CHECK_false);
   934   m = instanceKlass::cast(SystemDictionary::classloader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
   935   if (m == NULL || m->is_static()) {
   936     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
   937       "java.lang.ClassLoader.addClass", false);
   938   }
   939   Universe::_loader_addClass_cache->init(
   940     SystemDictionary::classloader_klass(), m, CHECK_false);
   942   // The folowing is initializing converter functions for serialization in
   943   // JVM.cpp. If we clean up the StrictMath code above we may want to find
   944   // a better solution for this as well.
   945   initialize_converter_functions();
   947   // This needs to be done before the first scavenge/gc, since
   948   // it's an input to soft ref clearing policy.
   949   {
   950     MutexLocker x(Heap_lock);
   951     Universe::update_heap_info_at_gc();
   952   }
   954   // ("weak") refs processing infrastructure initialization
   955   Universe::heap()->post_initialize();
   957   GC_locker::unlock();  // allow gc after bootstrapping
   959   MemoryService::set_universe_heap(Universe::_collectedHeap);
   960   return true;
   961 }
   964 void Universe::compute_base_vtable_size() {
   965   _base_vtable_size = ClassLoader::compute_Object_vtable();
   966 }
   969 // %%% The Universe::flush_foo methods belong in CodeCache.
   971 // Flushes compiled methods dependent on dependee.
   972 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
   973   assert_lock_strong(Compile_lock);
   975   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
   977   // CodeCache can only be updated by a thread_in_VM and they will all be
   978   // stopped dring the safepoint so CodeCache will be safe to update without
   979   // holding the CodeCache_lock.
   981   DepChange changes(dependee);
   983   // Compute the dependent nmethods
   984   if (CodeCache::mark_for_deoptimization(changes) > 0) {
   985     // At least one nmethod has been marked for deoptimization
   986     VM_Deoptimize op;
   987     VMThread::execute(&op);
   988   }
   989 }
   991 #ifdef HOTSWAP
   992 // Flushes compiled methods dependent on dependee in the evolutionary sense
   993 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
   994   // --- Compile_lock is not held. However we are at a safepoint.
   995   assert_locked_or_safepoint(Compile_lock);
   996   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
   998   // CodeCache can only be updated by a thread_in_VM and they will all be
   999   // stopped dring the safepoint so CodeCache will be safe to update without
  1000   // holding the CodeCache_lock.
  1002   // Compute the dependent nmethods
  1003   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
  1004     // At least one nmethod has been marked for deoptimization
  1006     // All this already happens inside a VM_Operation, so we'll do all the work here.
  1007     // Stuff copied from VM_Deoptimize and modified slightly.
  1009     // We do not want any GCs to happen while we are in the middle of this VM operation
  1010     ResourceMark rm;
  1011     DeoptimizationMarker dm;
  1013     // Deoptimize all activations depending on marked nmethods
  1014     Deoptimization::deoptimize_dependents();
  1016     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
  1017     CodeCache::make_marked_nmethods_not_entrant();
  1020 #endif // HOTSWAP
  1023 // Flushes compiled methods dependent on dependee
  1024 void Universe::flush_dependents_on_method(methodHandle m_h) {
  1025   // --- Compile_lock is not held. However we are at a safepoint.
  1026   assert_locked_or_safepoint(Compile_lock);
  1028   // CodeCache can only be updated by a thread_in_VM and they will all be
  1029   // stopped dring the safepoint so CodeCache will be safe to update without
  1030   // holding the CodeCache_lock.
  1032   // Compute the dependent nmethods
  1033   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
  1034     // At least one nmethod has been marked for deoptimization
  1036     // All this already happens inside a VM_Operation, so we'll do all the work here.
  1037     // Stuff copied from VM_Deoptimize and modified slightly.
  1039     // We do not want any GCs to happen while we are in the middle of this VM operation
  1040     ResourceMark rm;
  1041     DeoptimizationMarker dm;
  1043     // Deoptimize all activations depending on marked nmethods
  1044     Deoptimization::deoptimize_dependents();
  1046     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
  1047     CodeCache::make_marked_nmethods_not_entrant();
  1051 void Universe::print() { print_on(gclog_or_tty); }
  1053 void Universe::print_on(outputStream* st) {
  1054   st->print_cr("Heap");
  1055   heap()->print_on(st);
  1058 void Universe::print_heap_at_SIGBREAK() {
  1059   if (PrintHeapAtSIGBREAK) {
  1060     MutexLocker hl(Heap_lock);
  1061     print_on(tty);
  1062     tty->cr();
  1063     tty->flush();
  1067 void Universe::print_heap_before_gc(outputStream* st) {
  1068   st->print_cr("{Heap before GC invocations=%u (full %u):",
  1069                heap()->total_collections(),
  1070                heap()->total_full_collections());
  1071   heap()->print_on(st);
  1074 void Universe::print_heap_after_gc(outputStream* st) {
  1075   st->print_cr("Heap after GC invocations=%u (full %u):",
  1076                heap()->total_collections(),
  1077                heap()->total_full_collections());
  1078   heap()->print_on(st);
  1079   st->print_cr("}");
  1082 void Universe::verify(bool allow_dirty, bool silent) {
  1083   if (SharedSkipVerify) {
  1084     return;
  1087   // The use of _verify_in_progress is a temporary work around for
  1088   // 6320749.  Don't bother with a creating a class to set and clear
  1089   // it since it is only used in this method and the control flow is
  1090   // straight forward.
  1091   _verify_in_progress = true;
  1093   COMPILER2_PRESENT(
  1094     assert(!DerivedPointerTable::is_active(),
  1095          "DPT should not be active during verification "
  1096          "(of thread stacks below)");
  1099   ResourceMark rm;
  1100   HandleMark hm;  // Handles created during verification can be zapped
  1101   _verify_count++;
  1103   if (!silent) gclog_or_tty->print("[Verifying ");
  1104   if (!silent) gclog_or_tty->print("threads ");
  1105   Threads::verify();
  1106   heap()->verify(allow_dirty, silent);
  1108   if (!silent) gclog_or_tty->print("syms ");
  1109   SymbolTable::verify();
  1110   if (!silent) gclog_or_tty->print("strs ");
  1111   StringTable::verify();
  1113     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1114     if (!silent) gclog_or_tty->print("zone ");
  1115     CodeCache::verify();
  1117   if (!silent) gclog_or_tty->print("dict ");
  1118   SystemDictionary::verify();
  1119   if (!silent) gclog_or_tty->print("hand ");
  1120   JNIHandles::verify();
  1121   if (!silent) gclog_or_tty->print("C-heap ");
  1122   os::check_heap();
  1123   if (!silent) gclog_or_tty->print_cr("]");
  1125   _verify_in_progress = false;
  1128 // Oop verification (see MacroAssembler::verify_oop)
  1130 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
  1131 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
  1134 static void calculate_verify_data(uintptr_t verify_data[2],
  1135                                   HeapWord* low_boundary,
  1136                                   HeapWord* high_boundary) {
  1137   assert(low_boundary < high_boundary, "bad interval");
  1139   // decide which low-order bits we require to be clear:
  1140   size_t alignSize = MinObjAlignmentInBytes;
  1141   size_t min_object_size = oopDesc::header_size();
  1143   // make an inclusive limit:
  1144   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
  1145   uintptr_t min = (uintptr_t)low_boundary;
  1146   assert(min < max, "bad interval");
  1147   uintptr_t diff = max ^ min;
  1149   // throw away enough low-order bits to make the diff vanish
  1150   uintptr_t mask = (uintptr_t)(-1);
  1151   while ((mask & diff) != 0)
  1152     mask <<= 1;
  1153   uintptr_t bits = (min & mask);
  1154   assert(bits == (max & mask), "correct mask");
  1155   // check an intermediate value between min and max, just to make sure:
  1156   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
  1158   // require address alignment, too:
  1159   mask |= (alignSize - 1);
  1161   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
  1162     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
  1164   verify_data[0] = mask;
  1165   verify_data[1] = bits;
  1169 // Oop verification (see MacroAssembler::verify_oop)
  1170 #ifndef PRODUCT
  1172 uintptr_t Universe::verify_oop_mask() {
  1173   MemRegion m = heap()->reserved_region();
  1174   calculate_verify_data(_verify_oop_data,
  1175                         m.start(),
  1176                         m.end());
  1177   return _verify_oop_data[0];
  1182 uintptr_t Universe::verify_oop_bits() {
  1183   verify_oop_mask();
  1184   return _verify_oop_data[1];
  1188 uintptr_t Universe::verify_klass_mask() {
  1189   /* $$$
  1190   // A klass can never live in the new space.  Since the new and old
  1191   // spaces can change size, we must settle for bounds-checking against
  1192   // the bottom of the world, plus the smallest possible new and old
  1193   // space sizes that may arise during execution.
  1194   size_t min_new_size = Universe::new_size();   // in bytes
  1195   size_t min_old_size = Universe::old_size();   // in bytes
  1196   calculate_verify_data(_verify_klass_data,
  1197           (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
  1198           _perm_gen->high_boundary);
  1199                         */
  1200   // Why doesn't the above just say that klass's always live in the perm
  1201   // gen?  I'll see if that seems to work...
  1202   MemRegion permanent_reserved;
  1203   switch (Universe::heap()->kind()) {
  1204   default:
  1205     // ???: What if a CollectedHeap doesn't have a permanent generation?
  1206     ShouldNotReachHere();
  1207     break;
  1208   case CollectedHeap::GenCollectedHeap:
  1209   case CollectedHeap::G1CollectedHeap: {
  1210     SharedHeap* sh = (SharedHeap*) Universe::heap();
  1211     permanent_reserved = sh->perm_gen()->reserved();
  1212    break;
  1214 #ifndef SERIALGC
  1215   case CollectedHeap::ParallelScavengeHeap: {
  1216     ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
  1217     permanent_reserved = psh->perm_gen()->reserved();
  1218     break;
  1220 #endif // SERIALGC
  1222   calculate_verify_data(_verify_klass_data,
  1223                         permanent_reserved.start(),
  1224                         permanent_reserved.end());
  1226   return _verify_klass_data[0];
  1231 uintptr_t Universe::verify_klass_bits() {
  1232   verify_klass_mask();
  1233   return _verify_klass_data[1];
  1237 uintptr_t Universe::verify_mark_mask() {
  1238   return markOopDesc::lock_mask_in_place;
  1243 uintptr_t Universe::verify_mark_bits() {
  1244   intptr_t mask = verify_mark_mask();
  1245   intptr_t bits = (intptr_t)markOopDesc::prototype();
  1246   assert((bits & ~mask) == 0, "no stray header bits");
  1247   return bits;
  1249 #endif // PRODUCT
  1252 void Universe::compute_verify_oop_data() {
  1253   verify_oop_mask();
  1254   verify_oop_bits();
  1255   verify_mark_mask();
  1256   verify_mark_bits();
  1257   verify_klass_mask();
  1258   verify_klass_bits();
  1262 void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
  1263   if (!UseSharedSpaces) {
  1264     _klass = k;
  1266 #ifndef PRODUCT
  1267   else {
  1268     // sharing initilization should have already set up _klass
  1269     assert(_klass != NULL, "just checking");
  1271 #endif
  1273   _method_idnum = m->method_idnum();
  1274   assert(_method_idnum >= 0, "sanity check");
  1278 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
  1279   if (_prev_methods != NULL) {
  1280     for (int i = _prev_methods->length() - 1; i >= 0; i--) {
  1281       jweak method_ref = _prev_methods->at(i);
  1282       if (method_ref != NULL) {
  1283         JNIHandles::destroy_weak_global(method_ref);
  1286     delete _prev_methods;
  1287     _prev_methods = NULL;
  1292 void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
  1293   assert(Thread::current()->is_VM_thread(),
  1294     "only VMThread can add previous versions");
  1296   if (_prev_methods == NULL) {
  1297     // This is the first previous version so make some space.
  1298     // Start with 2 elements under the assumption that the class
  1299     // won't be redefined much.
  1300     _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
  1303   // RC_TRACE macro has an embedded ResourceMark
  1304   RC_TRACE(0x00000100,
  1305     ("add: %s(%s): adding prev version ref for cached method @%d",
  1306     method->name()->as_C_string(), method->signature()->as_C_string(),
  1307     _prev_methods->length()));
  1309   methodHandle method_h(method);
  1310   jweak method_ref = JNIHandles::make_weak_global(method_h);
  1311   _prev_methods->append(method_ref);
  1313   // Using weak references allows previous versions of the cached
  1314   // method to be GC'ed when they are no longer needed. Since the
  1315   // caller is the VMThread and we are at a safepoint, this is a good
  1316   // time to clear out unused weak references.
  1318   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
  1319     jweak method_ref = _prev_methods->at(i);
  1320     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
  1321     if (method_ref == NULL) {
  1322       _prev_methods->remove_at(i);
  1323       // Since we are traversing the array backwards, we don't have to
  1324       // do anything special with the index.
  1325       continue;  // robustness
  1328     methodOop m = (methodOop)JNIHandles::resolve(method_ref);
  1329     if (m == NULL) {
  1330       // this method entry has been GC'ed so remove it
  1331       JNIHandles::destroy_weak_global(method_ref);
  1332       _prev_methods->remove_at(i);
  1333     } else {
  1334       // RC_TRACE macro has an embedded ResourceMark
  1335       RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
  1336         m->name()->as_C_string(), m->signature()->as_C_string(), i));
  1339 } // end add_previous_version()
  1342 bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
  1343   instanceKlass* ik = instanceKlass::cast(klass());
  1344   methodOop check_method = ik->method_with_idnum(method_idnum());
  1345   assert(check_method != NULL, "sanity check");
  1346   if (check_method == method) {
  1347     // done with the easy case
  1348     return true;
  1351   if (_prev_methods != NULL) {
  1352     // The cached method has been redefined at least once so search
  1353     // the previous versions for a match.
  1354     for (int i = 0; i < _prev_methods->length(); i++) {
  1355       jweak method_ref = _prev_methods->at(i);
  1356       assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
  1357       if (method_ref == NULL) {
  1358         continue;  // robustness
  1361       check_method = (methodOop)JNIHandles::resolve(method_ref);
  1362       if (check_method == method) {
  1363         // a previous version matches
  1364         return true;
  1369   // either no previous versions or no previous version matched
  1370   return false;
  1374 methodOop LatestMethodOopCache::get_methodOop() {
  1375   instanceKlass* ik = instanceKlass::cast(klass());
  1376   methodOop m = ik->method_with_idnum(method_idnum());
  1377   assert(m != NULL, "sanity check");
  1378   return m;
  1382 #ifdef ASSERT
  1383 // Release dummy object(s) at bottom of heap
  1384 bool Universe::release_fullgc_alot_dummy() {
  1385   MutexLocker ml(FullGCALot_lock);
  1386   if (_fullgc_alot_dummy_array != NULL) {
  1387     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
  1388       // No more dummies to release, release entire array instead
  1389       _fullgc_alot_dummy_array = NULL;
  1390       return false;
  1392     if (!UseConcMarkSweepGC) {
  1393       // Release dummy at bottom of old generation
  1394       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  1396     // Release dummy at bottom of permanent generation
  1397     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  1399   return true;
  1402 #endif // ASSERT

mercurial