src/cpu/x86/vm/c1_Runtime1_x86.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1014
0fbdb4381b99
parent 1079
c517646eef23
child 1730
3cf667df43ef
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1_x86.cpp.incl"
    29 // Implementation of StubAssembler
    31 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
    32   // setup registers
    33   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    34   assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
    35   assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
    36   assert(args_size >= 0, "illegal args_size");
    38 #ifdef _LP64
    39   mov(c_rarg0, thread);
    40   set_num_rt_args(0); // Nothing on stack
    41 #else
    42   set_num_rt_args(1 + args_size);
    44   // push java thread (becomes first argument of C function)
    45   get_thread(thread);
    46   push(thread);
    47 #endif // _LP64
    49   set_last_Java_frame(thread, noreg, rbp, NULL);
    51   // do the call
    52   call(RuntimeAddress(entry));
    53   int call_offset = offset();
    54   // verify callee-saved register
    55 #ifdef ASSERT
    56   guarantee(thread != rax, "change this code");
    57   push(rax);
    58   { Label L;
    59     get_thread(rax);
    60     cmpptr(thread, rax);
    61     jcc(Assembler::equal, L);
    62     int3();
    63     stop("StubAssembler::call_RT: rdi not callee saved?");
    64     bind(L);
    65   }
    66   pop(rax);
    67 #endif
    68   reset_last_Java_frame(thread, true, false);
    70   // discard thread and arguments
    71   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
    73   // check for pending exceptions
    74   { Label L;
    75     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
    76     jcc(Assembler::equal, L);
    77     // exception pending => remove activation and forward to exception handler
    78     movptr(rax, Address(thread, Thread::pending_exception_offset()));
    79     // make sure that the vm_results are cleared
    80     if (oop_result1->is_valid()) {
    81       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
    82     }
    83     if (oop_result2->is_valid()) {
    84       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
    85     }
    86     if (frame_size() == no_frame_size) {
    87       leave();
    88       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
    89     } else if (_stub_id == Runtime1::forward_exception_id) {
    90       should_not_reach_here();
    91     } else {
    92       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
    93     }
    94     bind(L);
    95   }
    96   // get oop results if there are any and reset the values in the thread
    97   if (oop_result1->is_valid()) {
    98     movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
    99     movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   100     verify_oop(oop_result1);
   101   }
   102   if (oop_result2->is_valid()) {
   103     movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
   104     movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   105     verify_oop(oop_result2);
   106   }
   107   return call_offset;
   108 }
   111 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
   112 #ifdef _LP64
   113   mov(c_rarg1, arg1);
   114 #else
   115   push(arg1);
   116 #endif // _LP64
   117   return call_RT(oop_result1, oop_result2, entry, 1);
   118 }
   121 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
   122 #ifdef _LP64
   123   if (c_rarg1 == arg2) {
   124     if (c_rarg2 == arg1) {
   125       xchgq(arg1, arg2);
   126     } else {
   127       mov(c_rarg2, arg2);
   128       mov(c_rarg1, arg1);
   129     }
   130   } else {
   131     mov(c_rarg1, arg1);
   132     mov(c_rarg2, arg2);
   133   }
   134 #else
   135   push(arg2);
   136   push(arg1);
   137 #endif // _LP64
   138   return call_RT(oop_result1, oop_result2, entry, 2);
   139 }
   142 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
   143 #ifdef _LP64
   144   // if there is any conflict use the stack
   145   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   146       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   147       arg3 == c_rarg1 || arg1 == c_rarg2) {
   148     push(arg3);
   149     push(arg2);
   150     push(arg1);
   151     pop(c_rarg1);
   152     pop(c_rarg2);
   153     pop(c_rarg3);
   154   } else {
   155     mov(c_rarg1, arg1);
   156     mov(c_rarg2, arg2);
   157     mov(c_rarg3, arg3);
   158   }
   159 #else
   160   push(arg3);
   161   push(arg2);
   162   push(arg1);
   163 #endif // _LP64
   164   return call_RT(oop_result1, oop_result2, entry, 3);
   165 }
   168 // Implementation of StubFrame
   170 class StubFrame: public StackObj {
   171  private:
   172   StubAssembler* _sasm;
   174  public:
   175   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   176   void load_argument(int offset_in_words, Register reg);
   178   ~StubFrame();
   179 };
   182 #define __ _sasm->
   184 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   185   _sasm = sasm;
   186   __ set_info(name, must_gc_arguments);
   187   __ enter();
   188 }
   190 // load parameters that were stored with LIR_Assembler::store_parameter
   191 // Note: offsets for store_parameter and load_argument must match
   192 void StubFrame::load_argument(int offset_in_words, Register reg) {
   193   // rbp, + 0: link
   194   //     + 1: return address
   195   //     + 2: argument with offset 0
   196   //     + 3: argument with offset 1
   197   //     + 4: ...
   199   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   200 }
   203 StubFrame::~StubFrame() {
   204   __ leave();
   205   __ ret(0);
   206 }
   208 #undef __
   211 // Implementation of Runtime1
   213 #define __ sasm->
   215 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   216 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   218 // Stack layout for saving/restoring  all the registers needed during a runtime
   219 // call (this includes deoptimization)
   220 // Note: note that users of this frame may well have arguments to some runtime
   221 // while these values are on the stack. These positions neglect those arguments
   222 // but the code in save_live_registers will take the argument count into
   223 // account.
   224 //
   225 #ifdef _LP64
   226   #define SLOT2(x) x,
   227   #define SLOT_PER_WORD 2
   228 #else
   229   #define SLOT2(x)
   230   #define SLOT_PER_WORD 1
   231 #endif // _LP64
   233 enum reg_save_layout {
   234   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   235   // happen and will assert if the stack size we create is misaligned
   236 #ifdef _LP64
   237   align_dummy_0, align_dummy_1,
   238 #endif // _LP64
   239   dummy1, SLOT2(dummy1H)                                                                    // 0, 4
   240   dummy2, SLOT2(dummy2H)                                                                    // 8, 12
   241   // Two temps to be used as needed by users of save/restore callee registers
   242   temp_2_off, SLOT2(temp_2H_off)                                                            // 16, 20
   243   temp_1_off, SLOT2(temp_1H_off)                                                            // 24, 28
   244   xmm_regs_as_doubles_off,                                                                  // 32
   245   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   246   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   247   // fpu_state_end_off is exclusive
   248   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   249   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   250   extra_space_offset,                                                                       // 360
   251 #ifdef _LP64
   252   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   253   r14_off, r14H_off,                                                                        // 368, 372
   254   r13_off, r13H_off,                                                                        // 376, 380
   255   r12_off, r12H_off,                                                                        // 384, 388
   256   r11_off, r11H_off,                                                                        // 392, 396
   257   r10_off, r10H_off,                                                                        // 400, 404
   258   r9_off, r9H_off,                                                                          // 408, 412
   259   r8_off, r8H_off,                                                                          // 416, 420
   260   rdi_off, rdiH_off,                                                                        // 424, 428
   261 #else
   262   rdi_off = extra_space_offset,
   263 #endif // _LP64
   264   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   265   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   266   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   267   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   268   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   269   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   270   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   271   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   272   return_off, SLOT2(returnH_off)                                                            // 496, 500
   273   reg_save_frame_size,  // As noted: neglects any parameters to runtime                     // 504
   275 #ifdef _WIN64
   276   c_rarg0_off = rcx_off,
   277 #else
   278   c_rarg0_off = rdi_off,
   279 #endif // WIN64
   281   // equates
   283   // illegal instruction handler
   284   continue_dest_off = temp_1_off,
   286   // deoptimization equates
   287   fp0_off = float_regs_as_doubles_off, // slot for java float/double return value
   288   xmm0_off = xmm_regs_as_doubles_off,  // slot for java float/double return value
   289   deopt_type = temp_2_off,             // slot for type of deopt in progress
   290   ret_type = temp_1_off                // slot for return type
   291 };
   295 // Save off registers which might be killed by calls into the runtime.
   296 // Tries to smart of about FP registers.  In particular we separate
   297 // saving and describing the FPU registers for deoptimization since we
   298 // have to save the FPU registers twice if we describe them and on P4
   299 // saving FPU registers which don't contain anything appears
   300 // expensive.  The deopt blob is the only thing which needs to
   301 // describe FPU registers.  In all other cases it should be sufficient
   302 // to simply save their current value.
   304 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   305                                 bool save_fpu_registers = true) {
   307   // In 64bit all the args are in regs so there are no additional stack slots
   308   LP64_ONLY(num_rt_args = 0);
   309   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   310   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   311   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   313   // record saved value locations in an OopMap
   314   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   315   OopMap* map = new OopMap(frame_size_in_slots, 0);
   316   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   317   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   318   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   319   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   320   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   321   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   322 #ifdef _LP64
   323   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   324   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   325   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   326   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   327   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   328   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   329   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   330   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   332   // This is stupid but needed.
   333   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   334   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   335   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   336   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   337   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   338   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   342   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   343   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   344   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   345   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   346   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   347   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   348 #endif // _LP64
   350   if (save_fpu_registers) {
   351     if (UseSSE < 2) {
   352       int fpu_off = float_regs_as_doubles_off;
   353       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   354         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   355         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   356         // %%% This is really a waste but we'll keep things as they were for now
   357         if (true) {
   358           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   359         }
   360         fpu_off += 2;
   361       }
   362       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   363     }
   365     if (UseSSE >= 2) {
   366       int xmm_off = xmm_regs_as_doubles_off;
   367       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   368         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   369         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   370         // %%% This is really a waste but we'll keep things as they were for now
   371         if (true) {
   372           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   373         }
   374         xmm_off += 2;
   375       }
   376       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   378     } else if (UseSSE == 1) {
   379       int xmm_off = xmm_regs_as_doubles_off;
   380       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   381         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   382         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   383         xmm_off += 2;
   384       }
   385       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   386     }
   387   }
   389   return map;
   390 }
   392 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   393                                    bool save_fpu_registers = true) {
   394   __ block_comment("save_live_registers");
   396   // 64bit passes the args in regs to the c++ runtime
   397   int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread
   398   // frame_size = round_to(frame_size, 4);
   399   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   401   __ pusha();         // integer registers
   403   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   404   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   406   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   408 #ifdef ASSERT
   409   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   410 #endif
   412   if (save_fpu_registers) {
   413     if (UseSSE < 2) {
   414       // save FPU stack
   415       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   416       __ fwait();
   418 #ifdef ASSERT
   419       Label ok;
   420       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   421       __ jccb(Assembler::equal, ok);
   422       __ stop("corrupted control word detected");
   423       __ bind(ok);
   424 #endif
   426       // Reset the control word to guard against exceptions being unmasked
   427       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   428       // into the on stack copy and then reload that to make sure that the
   429       // current and future values are correct.
   430       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   431       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   433       // Save the FPU registers in de-opt-able form
   434       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   435       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   436       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   437       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   438       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   439       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   440       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   441       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   442     }
   444     if (UseSSE >= 2) {
   445       // save XMM registers
   446       // XMM registers can contain float or double values, but this is not known here,
   447       // so always save them as doubles.
   448       // note that float values are _not_ converted automatically, so for float values
   449       // the second word contains only garbage data.
   450       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   451       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   452       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   453       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   454       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   455       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   456       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   458 #ifdef _LP64
   459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   467 #endif // _LP64
   468     } else if (UseSSE == 1) {
   469       // save XMM registers as float because double not supported without SSE2
   470       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   471       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   472       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   473       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   474       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   475       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   476       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   477       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   478     }
   479   }
   481   // FPU stack must be empty now
   482   __ verify_FPU(0, "save_live_registers");
   484   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   485 }
   488 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   489   if (restore_fpu_registers) {
   490     if (UseSSE >= 2) {
   491       // restore XMM registers
   492       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   493       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   494       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   495       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   496       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   497       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   498       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   499       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   500 #ifdef _LP64
   501       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   502       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   503       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   504       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   505       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   506       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   507       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   508       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   509 #endif // _LP64
   510     } else if (UseSSE == 1) {
   511       // restore XMM registers
   512       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   513       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   514       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   515       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   516       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   517       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   518       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   519       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   520     }
   522     if (UseSSE < 2) {
   523       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   524     } else {
   525       // check that FPU stack is really empty
   526       __ verify_FPU(0, "restore_live_registers");
   527     }
   529   } else {
   530     // check that FPU stack is really empty
   531     __ verify_FPU(0, "restore_live_registers");
   532   }
   534 #ifdef ASSERT
   535   {
   536     Label ok;
   537     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   538     __ jcc(Assembler::equal, ok);
   539     __ stop("bad offsets in frame");
   540     __ bind(ok);
   541   }
   542 #endif // ASSERT
   544   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   545 }
   548 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   549   __ block_comment("restore_live_registers");
   551   restore_fpu(sasm, restore_fpu_registers);
   552   __ popa();
   553 }
   556 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   557   __ block_comment("restore_live_registers_except_rax");
   559   restore_fpu(sasm, restore_fpu_registers);
   561 #ifdef _LP64
   562   __ movptr(r15, Address(rsp, 0));
   563   __ movptr(r14, Address(rsp, wordSize));
   564   __ movptr(r13, Address(rsp, 2 * wordSize));
   565   __ movptr(r12, Address(rsp, 3 * wordSize));
   566   __ movptr(r11, Address(rsp, 4 * wordSize));
   567   __ movptr(r10, Address(rsp, 5 * wordSize));
   568   __ movptr(r9,  Address(rsp, 6 * wordSize));
   569   __ movptr(r8,  Address(rsp, 7 * wordSize));
   570   __ movptr(rdi, Address(rsp, 8 * wordSize));
   571   __ movptr(rsi, Address(rsp, 9 * wordSize));
   572   __ movptr(rbp, Address(rsp, 10 * wordSize));
   573   // skip rsp
   574   __ movptr(rbx, Address(rsp, 12 * wordSize));
   575   __ movptr(rdx, Address(rsp, 13 * wordSize));
   576   __ movptr(rcx, Address(rsp, 14 * wordSize));
   578   __ addptr(rsp, 16 * wordSize);
   579 #else
   581   __ pop(rdi);
   582   __ pop(rsi);
   583   __ pop(rbp);
   584   __ pop(rbx); // skip this value
   585   __ pop(rbx);
   586   __ pop(rdx);
   587   __ pop(rcx);
   588   __ addptr(rsp, BytesPerWord);
   589 #endif // _LP64
   590 }
   593 void Runtime1::initialize_pd() {
   594   // nothing to do
   595 }
   598 // target: the entry point of the method that creates and posts the exception oop
   599 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   601 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   602   // preserve all registers
   603   int num_rt_args = has_argument ? 2 : 1;
   604   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   606   // now all registers are saved and can be used freely
   607   // verify that no old value is used accidentally
   608   __ invalidate_registers(true, true, true, true, true, true);
   610   // registers used by this stub
   611   const Register temp_reg = rbx;
   613   // load argument for exception that is passed as an argument into the stub
   614   if (has_argument) {
   615 #ifdef _LP64
   616     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   617 #else
   618     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   619     __ push(temp_reg);
   620 #endif // _LP64
   621   }
   622   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   624   OopMapSet* oop_maps = new OopMapSet();
   625   oop_maps->add_gc_map(call_offset, oop_map);
   627   __ stop("should not reach here");
   629   return oop_maps;
   630 }
   633 void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) {
   634   // incoming parameters
   635   const Register exception_oop = rax;
   636   const Register exception_pc = rdx;
   637   // other registers used in this stub
   638   const Register real_return_addr = rbx;
   639   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   641   __ block_comment("generate_handle_exception");
   643 #ifdef TIERED
   644   // C2 can leave the fpu stack dirty
   645   if (UseSSE < 2 ) {
   646     __ empty_FPU_stack();
   647   }
   648 #endif // TIERED
   650   // verify that only rax, and rdx is valid at this time
   651   __ invalidate_registers(false, true, true, false, true, true);
   652   // verify that rax, contains a valid exception
   653   __ verify_not_null_oop(exception_oop);
   655   // load address of JavaThread object for thread-local data
   656   NOT_LP64(__ get_thread(thread);)
   658 #ifdef ASSERT
   659   // check that fields in JavaThread for exception oop and issuing pc are
   660   // empty before writing to them
   661   Label oop_empty;
   662   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   663   __ jcc(Assembler::equal, oop_empty);
   664   __ stop("exception oop already set");
   665   __ bind(oop_empty);
   667   Label pc_empty;
   668   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   669   __ jcc(Assembler::equal, pc_empty);
   670   __ stop("exception pc already set");
   671   __ bind(pc_empty);
   672 #endif
   674   // save exception oop and issuing pc into JavaThread
   675   // (exception handler will load it from here)
   676   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   677   __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
   679   // save real return address (pc that called this stub)
   680   __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord));
   681   __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr);
   683   // patch throwing pc into return address (has bci & oop map)
   684   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   686   // compute the exception handler.
   687   // the exception oop and the throwing pc are read from the fields in JavaThread
   688   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   689   oop_maps->add_gc_map(call_offset, oop_map);
   691   // rax,: handler address or NULL if no handler exists
   692   //      will be the deopt blob if nmethod was deoptimized while we looked up
   693   //      handler regardless of whether handler existed in the nmethod.
   695   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   696   __ invalidate_registers(false, true, true, true, true, true);
   698   // Do we have an exception handler in the nmethod?
   699   Label no_handler;
   700   Label done;
   701   __ testptr(rax, rax);
   702   __ jcc(Assembler::zero, no_handler);
   704   // exception handler found
   705   // patch the return address -> the stub will directly return to the exception handler
   706   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   708   // restore registers
   709   restore_live_registers(sasm, save_fpu_registers);
   711   // return to exception handler
   712   __ leave();
   713   __ ret(0);
   715   __ bind(no_handler);
   716   // no exception handler found in this method, so the exception is
   717   // forwarded to the caller (using the unwind code of the nmethod)
   718   // there is no need to restore the registers
   720   // restore the real return address that was saved before the RT-call
   721   __ movptr(real_return_addr, Address(rsp, temp_1_off * VMRegImpl::stack_slot_size));
   722   __ movptr(Address(rbp, 1*BytesPerWord), real_return_addr);
   724   // load address of JavaThread object for thread-local data
   725   NOT_LP64(__ get_thread(thread);)
   726   // restore exception oop into rax, (convention for unwind code)
   727   __ movptr(exception_oop, Address(thread, JavaThread::exception_oop_offset()));
   729   // clear exception fields in JavaThread because they are no longer needed
   730   // (fields must be cleared because they are processed by GC otherwise)
   731   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
   732   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
   734   // pop the stub frame off
   735   __ leave();
   737   generate_unwind_exception(sasm);
   738   __ stop("should not reach here");
   739 }
   742 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   743   // incoming parameters
   744   const Register exception_oop = rax;
   745   // other registers used in this stub
   746   const Register exception_pc = rdx;
   747   const Register handler_addr = rbx;
   748   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   750   // verify that only rax, is valid at this time
   751   __ invalidate_registers(false, true, true, true, true, true);
   753 #ifdef ASSERT
   754   // check that fields in JavaThread for exception oop and issuing pc are empty
   755   NOT_LP64(__ get_thread(thread);)
   756   Label oop_empty;
   757   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   758   __ jcc(Assembler::equal, oop_empty);
   759   __ stop("exception oop must be empty");
   760   __ bind(oop_empty);
   762   Label pc_empty;
   763   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   764   __ jcc(Assembler::equal, pc_empty);
   765   __ stop("exception pc must be empty");
   766   __ bind(pc_empty);
   767 #endif
   769   // clear the FPU stack in case any FPU results are left behind
   770   __ empty_FPU_stack();
   772   // leave activation of nmethod
   773   __ leave();
   774   // store return address (is on top of stack after leave)
   775   __ movptr(exception_pc, Address(rsp, 0));
   777   __ verify_oop(exception_oop);
   779   // save exception oop from rax, to stack before call
   780   __ push(exception_oop);
   782   // search the exception handler address of the caller (using the return address)
   783   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), exception_pc);
   784   // rax,: exception handler address of the caller
   786   // only rax, is valid at this time, all other registers have been destroyed by the call
   787   __ invalidate_registers(false, true, true, true, true, true);
   789   // move result of call into correct register
   790   __ movptr(handler_addr, rax);
   792   // restore exception oop in rax, (required convention of exception handler)
   793   __ pop(exception_oop);
   795   __ verify_oop(exception_oop);
   797   // get throwing pc (= return address).
   798   // rdx has been destroyed by the call, so it must be set again
   799   // the pop is also necessary to simulate the effect of a ret(0)
   800   __ pop(exception_pc);
   802   // verify that that there is really a valid exception in rax,
   803   __ verify_not_null_oop(exception_oop);
   805   // continue at exception handler (return address removed)
   806   // note: do *not* remove arguments when unwinding the
   807   //       activation since the caller assumes having
   808   //       all arguments on the stack when entering the
   809   //       runtime to determine the exception handler
   810   //       (GC happens at call site with arguments!)
   811   // rax,: exception oop
   812   // rdx: throwing pc
   813   // rbx,: exception handler
   814   __ jmp(handler_addr);
   815 }
   818 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   819   // use the maximum number of runtime-arguments here because it is difficult to
   820   // distinguish each RT-Call.
   821   // Note: This number affects also the RT-Call in generate_handle_exception because
   822   //       the oop-map is shared for all calls.
   823   const int num_rt_args = 2;  // thread + dummy
   825   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   826   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   828   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   830 #ifdef _LP64
   831   const Register thread = r15_thread;
   832   // No need to worry about dummy
   833   __ mov(c_rarg0, thread);
   834 #else
   835   __ push(rax); // push dummy
   837   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   838   // push java thread (becomes first argument of C function)
   839   __ get_thread(thread);
   840   __ push(thread);
   841 #endif // _LP64
   842   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   843   // do the call
   844   __ call(RuntimeAddress(target));
   845   OopMapSet* oop_maps = new OopMapSet();
   846   oop_maps->add_gc_map(__ offset(), oop_map);
   847   // verify callee-saved register
   848 #ifdef ASSERT
   849   guarantee(thread != rax, "change this code");
   850   __ push(rax);
   851   { Label L;
   852     __ get_thread(rax);
   853     __ cmpptr(thread, rax);
   854     __ jcc(Assembler::equal, L);
   855     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   856     __ bind(L);
   857   }
   858   __ pop(rax);
   859 #endif
   860   __ reset_last_Java_frame(thread, true, false);
   861 #ifndef _LP64
   862   __ pop(rcx); // discard thread arg
   863   __ pop(rcx); // discard dummy
   864 #endif // _LP64
   866   // check for pending exceptions
   867   { Label L;
   868     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   869     __ jcc(Assembler::equal, L);
   870     // exception pending => remove activation and forward to exception handler
   872     __ testptr(rax, rax);                                   // have we deoptimized?
   873     __ jump_cc(Assembler::equal,
   874                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   876     // the deopt blob expects exceptions in the special fields of
   877     // JavaThread, so copy and clear pending exception.
   879     // load and clear pending exception
   880     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   881     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   883     // check that there is really a valid exception
   884     __ verify_not_null_oop(rax);
   886     // load throwing pc: this is the return address of the stub
   887     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   889 #ifdef ASSERT
   890     // check that fields in JavaThread for exception oop and issuing pc are empty
   891     Label oop_empty;
   892     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   893     __ jcc(Assembler::equal, oop_empty);
   894     __ stop("exception oop must be empty");
   895     __ bind(oop_empty);
   897     Label pc_empty;
   898     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   899     __ jcc(Assembler::equal, pc_empty);
   900     __ stop("exception pc must be empty");
   901     __ bind(pc_empty);
   902 #endif
   904     // store exception oop and throwing pc to JavaThread
   905     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   906     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   908     restore_live_registers(sasm);
   910     __ leave();
   911     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   913     // Forward the exception directly to deopt blob. We can blow no
   914     // registers and must leave throwing pc on the stack.  A patch may
   915     // have values live in registers so the entry point with the
   916     // exception in tls.
   917     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   919     __ bind(L);
   920   }
   923   // Runtime will return true if the nmethod has been deoptimized during
   924   // the patching process. In that case we must do a deopt reexecute instead.
   926   Label reexecuteEntry, cont;
   928   __ testptr(rax, rax);                                 // have we deoptimized?
   929   __ jcc(Assembler::equal, cont);                       // no
   931   // Will reexecute. Proper return address is already on the stack we just restore
   932   // registers, pop all of our frame but the return address and jump to the deopt blob
   933   restore_live_registers(sasm);
   934   __ leave();
   935   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   937   __ bind(cont);
   938   restore_live_registers(sasm);
   939   __ leave();
   940   __ ret(0);
   942   return oop_maps;
   944 }
   947 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   949   // for better readability
   950   const bool must_gc_arguments = true;
   951   const bool dont_gc_arguments = false;
   953   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   954   bool save_fpu_registers = true;
   956   // stub code & info for the different stubs
   957   OopMapSet* oop_maps = NULL;
   958   switch (id) {
   959     case forward_exception_id:
   960       {
   961         // we're handling an exception in the context of a compiled
   962         // frame.  The registers have been saved in the standard
   963         // places.  Perform an exception lookup in the caller and
   964         // dispatch to the handler if found.  Otherwise unwind and
   965         // dispatch to the callers exception handler.
   967         const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   968         const Register exception_oop = rax;
   969         const Register exception_pc = rdx;
   971         // load pending exception oop into rax,
   972         __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   973         // clear pending exception
   974         __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   976         // load issuing PC (the return address for this stub) into rdx
   977         __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   979         // make sure that the vm_results are cleared (may be unnecessary)
   980         __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   981         __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   983         // verify that that there is really a valid exception in rax,
   984         __ verify_not_null_oop(exception_oop);
   987         oop_maps = new OopMapSet();
   988         OopMap* oop_map = generate_oop_map(sasm, 1);
   989         generate_handle_exception(sasm, oop_maps, oop_map);
   990         __ stop("should not reach here");
   991       }
   992       break;
   994     case new_instance_id:
   995     case fast_new_instance_id:
   996     case fast_new_instance_init_check_id:
   997       {
   998         Register klass = rdx; // Incoming
   999         Register obj   = rax; // Result
  1001         if (id == new_instance_id) {
  1002           __ set_info("new_instance", dont_gc_arguments);
  1003         } else if (id == fast_new_instance_id) {
  1004           __ set_info("fast new_instance", dont_gc_arguments);
  1005         } else {
  1006           assert(id == fast_new_instance_init_check_id, "bad StubID");
  1007           __ set_info("fast new_instance init check", dont_gc_arguments);
  1010         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
  1011             UseTLAB && FastTLABRefill) {
  1012           Label slow_path;
  1013           Register obj_size = rcx;
  1014           Register t1       = rbx;
  1015           Register t2       = rsi;
  1016           assert_different_registers(klass, obj, obj_size, t1, t2);
  1018           __ push(rdi);
  1019           __ push(rbx);
  1021           if (id == fast_new_instance_init_check_id) {
  1022             // make sure the klass is initialized
  1023             __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  1024             __ jcc(Assembler::notEqual, slow_path);
  1027 #ifdef ASSERT
  1028           // assert object can be fast path allocated
  1030             Label ok, not_ok;
  1031             __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1032             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1033             __ jcc(Assembler::lessEqual, not_ok);
  1034             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1035             __ jcc(Assembler::zero, ok);
  1036             __ bind(not_ok);
  1037             __ stop("assert(can be fast path allocated)");
  1038             __ should_not_reach_here();
  1039             __ bind(ok);
  1041 #endif // ASSERT
  1043           // if we got here then the TLAB allocation failed, so try
  1044           // refilling the TLAB or allocating directly from eden.
  1045           Label retry_tlab, try_eden;
  1046           __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass)
  1048           __ bind(retry_tlab);
  1050           // get the instance size (size is postive so movl is fine for 64bit)
  1051           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1052           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1053           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1054           __ verify_oop(obj);
  1055           __ pop(rbx);
  1056           __ pop(rdi);
  1057           __ ret(0);
  1059           __ bind(try_eden);
  1060           // get the instance size (size is postive so movl is fine for 64bit)
  1061           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1062           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1063           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1064           __ verify_oop(obj);
  1065           __ pop(rbx);
  1066           __ pop(rdi);
  1067           __ ret(0);
  1069           __ bind(slow_path);
  1070           __ pop(rbx);
  1071           __ pop(rdi);
  1074         __ enter();
  1075         OopMap* map = save_live_registers(sasm, 2);
  1076         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1077         oop_maps = new OopMapSet();
  1078         oop_maps->add_gc_map(call_offset, map);
  1079         restore_live_registers_except_rax(sasm);
  1080         __ verify_oop(obj);
  1081         __ leave();
  1082         __ ret(0);
  1084         // rax,: new instance
  1087       break;
  1089 #ifdef TIERED
  1090     case counter_overflow_id:
  1092         Register bci = rax;
  1093         __ enter();
  1094         OopMap* map = save_live_registers(sasm, 2);
  1095         // Retrieve bci
  1096         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1097         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci);
  1098         oop_maps = new OopMapSet();
  1099         oop_maps->add_gc_map(call_offset, map);
  1100         restore_live_registers(sasm);
  1101         __ leave();
  1102         __ ret(0);
  1104       break;
  1105 #endif // TIERED
  1107     case new_type_array_id:
  1108     case new_object_array_id:
  1110         Register length   = rbx; // Incoming
  1111         Register klass    = rdx; // Incoming
  1112         Register obj      = rax; // Result
  1114         if (id == new_type_array_id) {
  1115           __ set_info("new_type_array", dont_gc_arguments);
  1116         } else {
  1117           __ set_info("new_object_array", dont_gc_arguments);
  1120 #ifdef ASSERT
  1121         // assert object type is really an array of the proper kind
  1123           Label ok;
  1124           Register t0 = obj;
  1125           __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1126           __ sarl(t0, Klass::_lh_array_tag_shift);
  1127           int tag = ((id == new_type_array_id)
  1128                      ? Klass::_lh_array_tag_type_value
  1129                      : Klass::_lh_array_tag_obj_value);
  1130           __ cmpl(t0, tag);
  1131           __ jcc(Assembler::equal, ok);
  1132           __ stop("assert(is an array klass)");
  1133           __ should_not_reach_here();
  1134           __ bind(ok);
  1136 #endif // ASSERT
  1138         if (UseTLAB && FastTLABRefill) {
  1139           Register arr_size = rsi;
  1140           Register t1       = rcx;  // must be rcx for use as shift count
  1141           Register t2       = rdi;
  1142           Label slow_path;
  1143           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1145           // check that array length is small enough for fast path.
  1146           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1147           __ jcc(Assembler::above, slow_path);
  1149           // if we got here then the TLAB allocation failed, so try
  1150           // refilling the TLAB or allocating directly from eden.
  1151           Label retry_tlab, try_eden;
  1152           __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx, & rdx
  1154           __ bind(retry_tlab);
  1156           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1157           // since size is postive movl does right thing on 64bit
  1158           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1159           // since size is postive movl does right thing on 64bit
  1160           __ movl(arr_size, length);
  1161           assert(t1 == rcx, "fixed register usage");
  1162           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1163           __ shrptr(t1, Klass::_lh_header_size_shift);
  1164           __ andptr(t1, Klass::_lh_header_size_mask);
  1165           __ addptr(arr_size, t1);
  1166           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1167           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1169           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1171           __ initialize_header(obj, klass, length, t1, t2);
  1172           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1173           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1174           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1175           __ andptr(t1, Klass::_lh_header_size_mask);
  1176           __ subptr(arr_size, t1);  // body length
  1177           __ addptr(t1, obj);       // body start
  1178           __ initialize_body(t1, arr_size, 0, t2);
  1179           __ verify_oop(obj);
  1180           __ ret(0);
  1182           __ bind(try_eden);
  1183           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1184           // since size is postive movl does right thing on 64bit
  1185           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1186           // since size is postive movl does right thing on 64bit
  1187           __ movl(arr_size, length);
  1188           assert(t1 == rcx, "fixed register usage");
  1189           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1190           __ shrptr(t1, Klass::_lh_header_size_shift);
  1191           __ andptr(t1, Klass::_lh_header_size_mask);
  1192           __ addptr(arr_size, t1);
  1193           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1194           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1196           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1198           __ initialize_header(obj, klass, length, t1, t2);
  1199           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1200           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1201           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1202           __ andptr(t1, Klass::_lh_header_size_mask);
  1203           __ subptr(arr_size, t1);  // body length
  1204           __ addptr(t1, obj);       // body start
  1205           __ initialize_body(t1, arr_size, 0, t2);
  1206           __ verify_oop(obj);
  1207           __ ret(0);
  1209           __ bind(slow_path);
  1212         __ enter();
  1213         OopMap* map = save_live_registers(sasm, 3);
  1214         int call_offset;
  1215         if (id == new_type_array_id) {
  1216           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1217         } else {
  1218           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1221         oop_maps = new OopMapSet();
  1222         oop_maps->add_gc_map(call_offset, map);
  1223         restore_live_registers_except_rax(sasm);
  1225         __ verify_oop(obj);
  1226         __ leave();
  1227         __ ret(0);
  1229         // rax,: new array
  1231       break;
  1233     case new_multi_array_id:
  1234       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1235         // rax,: klass
  1236         // rbx,: rank
  1237         // rcx: address of 1st dimension
  1238         OopMap* map = save_live_registers(sasm, 4);
  1239         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1241         oop_maps = new OopMapSet();
  1242         oop_maps->add_gc_map(call_offset, map);
  1243         restore_live_registers_except_rax(sasm);
  1245         // rax,: new multi array
  1246         __ verify_oop(rax);
  1248       break;
  1250     case register_finalizer_id:
  1252         __ set_info("register_finalizer", dont_gc_arguments);
  1254         // This is called via call_runtime so the arguments
  1255         // will be place in C abi locations
  1257 #ifdef _LP64
  1258         __ verify_oop(c_rarg0);
  1259         __ mov(rax, c_rarg0);
  1260 #else
  1261         // The object is passed on the stack and we haven't pushed a
  1262         // frame yet so it's one work away from top of stack.
  1263         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1264         __ verify_oop(rax);
  1265 #endif // _LP64
  1267         // load the klass and check the has finalizer flag
  1268         Label register_finalizer;
  1269         Register t = rsi;
  1270         __ movptr(t, Address(rax, oopDesc::klass_offset_in_bytes()));
  1271         __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1272         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1273         __ jcc(Assembler::notZero, register_finalizer);
  1274         __ ret(0);
  1276         __ bind(register_finalizer);
  1277         __ enter();
  1278         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1279         int call_offset = __ call_RT(noreg, noreg,
  1280                                      CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1281         oop_maps = new OopMapSet();
  1282         oop_maps->add_gc_map(call_offset, oop_map);
  1284         // Now restore all the live registers
  1285         restore_live_registers(sasm);
  1287         __ leave();
  1288         __ ret(0);
  1290       break;
  1292     case throw_range_check_failed_id:
  1293       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1294         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1296       break;
  1298     case throw_index_exception_id:
  1299       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1300         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1302       break;
  1304     case throw_div0_exception_id:
  1305       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1306         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1308       break;
  1310     case throw_null_pointer_exception_id:
  1311       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1312         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1314       break;
  1316     case handle_exception_nofpu_id:
  1317       save_fpu_registers = false;
  1318       // fall through
  1319     case handle_exception_id:
  1320       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1321         oop_maps = new OopMapSet();
  1322         OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers);
  1323         generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers);
  1325       break;
  1327     case unwind_exception_id:
  1328       { __ set_info("unwind_exception", dont_gc_arguments);
  1329         // note: no stubframe since we are about to leave the current
  1330         //       activation and we are calling a leaf VM function only.
  1331         generate_unwind_exception(sasm);
  1333       break;
  1335     case throw_array_store_exception_id:
  1336       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1337         // tos + 0: link
  1338         //     + 1: return address
  1339         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false);
  1341       break;
  1343     case throw_class_cast_exception_id:
  1344       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1345         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1347       break;
  1349     case throw_incompatible_class_change_error_id:
  1350       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1351         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1353       break;
  1355     case slow_subtype_check_id:
  1357         // Typical calling sequence:
  1358         // __ push(klass_RInfo);  // object klass or other subclass
  1359         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1360         // __ call(slow_subtype_check);
  1361         // Note that the subclass is pushed first, and is therefore deepest.
  1362         // Previous versions of this code reversed the names 'sub' and 'super'.
  1363         // This was operationally harmless but made the code unreadable.
  1364         enum layout {
  1365           rax_off, SLOT2(raxH_off)
  1366           rcx_off, SLOT2(rcxH_off)
  1367           rsi_off, SLOT2(rsiH_off)
  1368           rdi_off, SLOT2(rdiH_off)
  1369           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1370           return_off, SLOT2(returnH_off)
  1371           sup_k_off, SLOT2(sup_kH_off)
  1372           klass_off, SLOT2(superH_off)
  1373           framesize,
  1374           result_off = klass_off  // deepest argument is also the return value
  1375         };
  1377         __ set_info("slow_subtype_check", dont_gc_arguments);
  1378         __ push(rdi);
  1379         __ push(rsi);
  1380         __ push(rcx);
  1381         __ push(rax);
  1383         // This is called by pushing args and not with C abi
  1384         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1385         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1387         Label miss;
  1388         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1390         // fallthrough on success:
  1391         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1392         __ pop(rax);
  1393         __ pop(rcx);
  1394         __ pop(rsi);
  1395         __ pop(rdi);
  1396         __ ret(0);
  1398         __ bind(miss);
  1399         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1400         __ pop(rax);
  1401         __ pop(rcx);
  1402         __ pop(rsi);
  1403         __ pop(rdi);
  1404         __ ret(0);
  1406       break;
  1408     case monitorenter_nofpu_id:
  1409       save_fpu_registers = false;
  1410       // fall through
  1411     case monitorenter_id:
  1413         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1414         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1416         // Called with store_parameter and not C abi
  1418         f.load_argument(1, rax); // rax,: object
  1419         f.load_argument(0, rbx); // rbx,: lock address
  1421         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1423         oop_maps = new OopMapSet();
  1424         oop_maps->add_gc_map(call_offset, map);
  1425         restore_live_registers(sasm, save_fpu_registers);
  1427       break;
  1429     case monitorexit_nofpu_id:
  1430       save_fpu_registers = false;
  1431       // fall through
  1432     case monitorexit_id:
  1434         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1435         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1437         // Called with store_parameter and not C abi
  1439         f.load_argument(0, rax); // rax,: lock address
  1441         // note: really a leaf routine but must setup last java sp
  1442         //       => use call_RT for now (speed can be improved by
  1443         //       doing last java sp setup manually)
  1444         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1446         oop_maps = new OopMapSet();
  1447         oop_maps->add_gc_map(call_offset, map);
  1448         restore_live_registers(sasm, save_fpu_registers);
  1451       break;
  1453     case access_field_patching_id:
  1454       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1455         // we should set up register map
  1456         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1458       break;
  1460     case load_klass_patching_id:
  1461       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1462         // we should set up register map
  1463         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1465       break;
  1467     case jvmti_exception_throw_id:
  1468       { // rax,: exception oop
  1469         StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
  1470         // Preserve all registers across this potentially blocking call
  1471         const int num_rt_args = 2;  // thread, exception oop
  1472         OopMap* map = save_live_registers(sasm, num_rt_args);
  1473         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
  1474         oop_maps = new OopMapSet();
  1475         oop_maps->add_gc_map(call_offset, map);
  1476         restore_live_registers(sasm);
  1478       break;
  1480     case dtrace_object_alloc_id:
  1481       { // rax,: object
  1482         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1483         // we can't gc here so skip the oopmap but make sure that all
  1484         // the live registers get saved.
  1485         save_live_registers(sasm, 1);
  1487         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1488         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1489         NOT_LP64(__ pop(rax));
  1491         restore_live_registers(sasm);
  1493       break;
  1495     case fpu2long_stub_id:
  1497         // rax, and rdx are destroyed, but should be free since the result is returned there
  1498         // preserve rsi,ecx
  1499         __ push(rsi);
  1500         __ push(rcx);
  1501         LP64_ONLY(__ push(rdx);)
  1503         // check for NaN
  1504         Label return0, do_return, return_min_jlong, do_convert;
  1506         Address value_high_word(rsp, wordSize + 4);
  1507         Address value_low_word(rsp, wordSize);
  1508         Address result_high_word(rsp, 3*wordSize + 4);
  1509         Address result_low_word(rsp, 3*wordSize);
  1511         __ subptr(rsp, 32);                    // more than enough on 32bit
  1512         __ fst_d(value_low_word);
  1513         __ movl(rax, value_high_word);
  1514         __ andl(rax, 0x7ff00000);
  1515         __ cmpl(rax, 0x7ff00000);
  1516         __ jcc(Assembler::notEqual, do_convert);
  1517         __ movl(rax, value_high_word);
  1518         __ andl(rax, 0xfffff);
  1519         __ orl(rax, value_low_word);
  1520         __ jcc(Assembler::notZero, return0);
  1522         __ bind(do_convert);
  1523         __ fnstcw(Address(rsp, 0));
  1524         __ movzwl(rax, Address(rsp, 0));
  1525         __ orl(rax, 0xc00);
  1526         __ movw(Address(rsp, 2), rax);
  1527         __ fldcw(Address(rsp, 2));
  1528         __ fwait();
  1529         __ fistp_d(result_low_word);
  1530         __ fldcw(Address(rsp, 0));
  1531         __ fwait();
  1532         // This gets the entire long in rax on 64bit
  1533         __ movptr(rax, result_low_word);
  1534         // testing of high bits
  1535         __ movl(rdx, result_high_word);
  1536         __ mov(rcx, rax);
  1537         // What the heck is the point of the next instruction???
  1538         __ xorl(rcx, 0x0);
  1539         __ movl(rsi, 0x80000000);
  1540         __ xorl(rsi, rdx);
  1541         __ orl(rcx, rsi);
  1542         __ jcc(Assembler::notEqual, do_return);
  1543         __ fldz();
  1544         __ fcomp_d(value_low_word);
  1545         __ fnstsw_ax();
  1546 #ifdef _LP64
  1547         __ testl(rax, 0x4100);  // ZF & CF == 0
  1548         __ jcc(Assembler::equal, return_min_jlong);
  1549 #else
  1550         __ sahf();
  1551         __ jcc(Assembler::above, return_min_jlong);
  1552 #endif // _LP64
  1553         // return max_jlong
  1554 #ifndef _LP64
  1555         __ movl(rdx, 0x7fffffff);
  1556         __ movl(rax, 0xffffffff);
  1557 #else
  1558         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1559 #endif // _LP64
  1560         __ jmp(do_return);
  1562         __ bind(return_min_jlong);
  1563 #ifndef _LP64
  1564         __ movl(rdx, 0x80000000);
  1565         __ xorl(rax, rax);
  1566 #else
  1567         __ mov64(rax, CONST64(0x8000000000000000));
  1568 #endif // _LP64
  1569         __ jmp(do_return);
  1571         __ bind(return0);
  1572         __ fpop();
  1573 #ifndef _LP64
  1574         __ xorptr(rdx,rdx);
  1575         __ xorptr(rax,rax);
  1576 #else
  1577         __ xorptr(rax, rax);
  1578 #endif // _LP64
  1580         __ bind(do_return);
  1581         __ addptr(rsp, 32);
  1582         LP64_ONLY(__ pop(rdx);)
  1583         __ pop(rcx);
  1584         __ pop(rsi);
  1585         __ ret(0);
  1587       break;
  1589 #ifndef SERIALGC
  1590     case g1_pre_barrier_slow_id:
  1592         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1593         // arg0 : previous value of memory
  1595         BarrierSet* bs = Universe::heap()->barrier_set();
  1596         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1597           __ movptr(rax, (int)id);
  1598           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1599           __ should_not_reach_here();
  1600           break;
  1603         __ push(rax);
  1604         __ push(rdx);
  1606         const Register pre_val = rax;
  1607         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1608         const Register tmp = rdx;
  1610         NOT_LP64(__ get_thread(thread);)
  1612         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1613                                              PtrQueue::byte_offset_of_active()));
  1615         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1616                                              PtrQueue::byte_offset_of_index()));
  1617         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1618                                         PtrQueue::byte_offset_of_buf()));
  1621         Label done;
  1622         Label runtime;
  1624         // Can we store original value in the thread's buffer?
  1626         LP64_ONLY(__ movslq(tmp, queue_index);)
  1627 #ifdef _LP64
  1628         __ cmpq(tmp, 0);
  1629 #else
  1630         __ cmpl(queue_index, 0);
  1631 #endif
  1632         __ jcc(Assembler::equal, runtime);
  1633 #ifdef _LP64
  1634         __ subq(tmp, wordSize);
  1635         __ movl(queue_index, tmp);
  1636         __ addq(tmp, buffer);
  1637 #else
  1638         __ subl(queue_index, wordSize);
  1639         __ movl(tmp, buffer);
  1640         __ addl(tmp, queue_index);
  1641 #endif
  1643         // prev_val (rax)
  1644         f.load_argument(0, pre_val);
  1645         __ movptr(Address(tmp, 0), pre_val);
  1646         __ jmp(done);
  1648         __ bind(runtime);
  1649         // load the pre-value
  1650         __ push(rcx);
  1651         f.load_argument(0, rcx);
  1652         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1653         __ pop(rcx);
  1655         __ bind(done);
  1656         __ pop(rdx);
  1657         __ pop(rax);
  1659       break;
  1661     case g1_post_barrier_slow_id:
  1663         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1666         // arg0: store_address
  1667         Address store_addr(rbp, 2*BytesPerWord);
  1669         BarrierSet* bs = Universe::heap()->barrier_set();
  1670         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1671         Label done;
  1672         Label runtime;
  1674         // At this point we know new_value is non-NULL and the new_value crosses regsion.
  1675         // Must check to see if card is already dirty
  1677         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1679         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1680                                              PtrQueue::byte_offset_of_index()));
  1681         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1682                                         PtrQueue::byte_offset_of_buf()));
  1684         __ push(rax);
  1685         __ push(rdx);
  1687         NOT_LP64(__ get_thread(thread);)
  1688         ExternalAddress cardtable((address)ct->byte_map_base);
  1689         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1691         const Register card_addr = rdx;
  1692 #ifdef _LP64
  1693         const Register tmp = rscratch1;
  1694         f.load_argument(0, card_addr);
  1695         __ shrq(card_addr, CardTableModRefBS::card_shift);
  1696         __ lea(tmp, cardtable);
  1697         // get the address of the card
  1698         __ addq(card_addr, tmp);
  1699 #else
  1700         const Register card_index = rdx;
  1701         f.load_argument(0, card_index);
  1702         __ shrl(card_index, CardTableModRefBS::card_shift);
  1704         Address index(noreg, card_index, Address::times_1);
  1705         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
  1706 #endif
  1708         __ cmpb(Address(card_addr, 0), 0);
  1709         __ jcc(Assembler::equal, done);
  1711         // storing region crossing non-NULL, card is clean.
  1712         // dirty card and log.
  1714         __ movb(Address(card_addr, 0), 0);
  1716         __ cmpl(queue_index, 0);
  1717         __ jcc(Assembler::equal, runtime);
  1718         __ subl(queue_index, wordSize);
  1720         const Register buffer_addr = rbx;
  1721         __ push(rbx);
  1723         __ movptr(buffer_addr, buffer);
  1725 #ifdef _LP64
  1726         __ movslq(rscratch1, queue_index);
  1727         __ addptr(buffer_addr, rscratch1);
  1728 #else
  1729         __ addptr(buffer_addr, queue_index);
  1730 #endif
  1731         __ movptr(Address(buffer_addr, 0), card_addr);
  1733         __ pop(rbx);
  1734         __ jmp(done);
  1736         __ bind(runtime);
  1737         NOT_LP64(__ push(rcx);)
  1738         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1739         NOT_LP64(__ pop(rcx);)
  1741         __ bind(done);
  1742         __ pop(rdx);
  1743         __ pop(rax);
  1746       break;
  1747 #endif // !SERIALGC
  1749     default:
  1750       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1751         __ movptr(rax, (int)id);
  1752         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1753         __ should_not_reach_here();
  1755       break;
  1757   return oop_maps;
  1760 #undef __

mercurial