src/share/vm/runtime/thread.cpp

Tue, 09 Aug 2011 10:16:01 -0700

author
jmasa
date
Tue, 09 Aug 2011 10:16:01 -0700
changeset 3294
bca17e38de00
parent 3238
b20d64f83668
child 3427
94ec88ca68e2
permissions
-rw-r--r--

6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Summary: Select number of GC threads dynamically based on heap usage and number of Java threads
Reviewed-by: johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/oopFactory.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/instanceKlass.hpp"
    39 #include "oops/objArrayOop.hpp"
    40 #include "oops/oop.inline.hpp"
    41 #include "oops/symbol.hpp"
    42 #include "prims/jvm_misc.hpp"
    43 #include "prims/jvmtiExport.hpp"
    44 #include "prims/jvmtiThreadState.hpp"
    45 #include "prims/privilegedStack.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/arguments.hpp"
    48 #include "runtime/biasedLocking.hpp"
    49 #include "runtime/deoptimization.hpp"
    50 #include "runtime/fprofiler.hpp"
    51 #include "runtime/frame.inline.hpp"
    52 #include "runtime/init.hpp"
    53 #include "runtime/interfaceSupport.hpp"
    54 #include "runtime/java.hpp"
    55 #include "runtime/javaCalls.hpp"
    56 #include "runtime/jniPeriodicChecker.hpp"
    57 #include "runtime/memprofiler.hpp"
    58 #include "runtime/mutexLocker.hpp"
    59 #include "runtime/objectMonitor.hpp"
    60 #include "runtime/osThread.hpp"
    61 #include "runtime/safepoint.hpp"
    62 #include "runtime/sharedRuntime.hpp"
    63 #include "runtime/statSampler.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/task.hpp"
    66 #include "runtime/threadCritical.hpp"
    67 #include "runtime/threadLocalStorage.hpp"
    68 #include "runtime/vframe.hpp"
    69 #include "runtime/vframeArray.hpp"
    70 #include "runtime/vframe_hp.hpp"
    71 #include "runtime/vmThread.hpp"
    72 #include "runtime/vm_operations.hpp"
    73 #include "services/attachListener.hpp"
    74 #include "services/management.hpp"
    75 #include "services/threadService.hpp"
    76 #include "utilities/defaultStream.hpp"
    77 #include "utilities/dtrace.hpp"
    78 #include "utilities/events.hpp"
    79 #include "utilities/preserveException.hpp"
    80 #ifdef TARGET_OS_FAMILY_linux
    81 # include "os_linux.inline.hpp"
    82 # include "thread_linux.inline.hpp"
    83 #endif
    84 #ifdef TARGET_OS_FAMILY_solaris
    85 # include "os_solaris.inline.hpp"
    86 # include "thread_solaris.inline.hpp"
    87 #endif
    88 #ifdef TARGET_OS_FAMILY_windows
    89 # include "os_windows.inline.hpp"
    90 # include "thread_windows.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_bsd
    93 # include "os_bsd.inline.hpp"
    94 # include "thread_bsd.inline.hpp"
    95 #endif
    96 #ifndef SERIALGC
    97 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    98 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    99 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   100 #endif
   101 #ifdef COMPILER1
   102 #include "c1/c1_Compiler.hpp"
   103 #endif
   104 #ifdef COMPILER2
   105 #include "opto/c2compiler.hpp"
   106 #include "opto/idealGraphPrinter.hpp"
   107 #endif
   109 #ifdef DTRACE_ENABLED
   111 // Only bother with this argument setup if dtrace is available
   113 #ifndef USDT2
   114 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   115 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   116 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   117   intptr_t, intptr_t, bool);
   118 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   119   intptr_t, intptr_t, bool);
   121 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   122   {                                                                        \
   123     ResourceMark rm(this);                                                 \
   124     int len = 0;                                                           \
   125     const char* name = (javathread)->get_thread_name();                    \
   126     len = strlen(name);                                                    \
   127     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   128       name, len,                                                           \
   129       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   130       (javathread)->osthread()->thread_id(),                               \
   131       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   132   }
   134 #else /* USDT2 */
   136 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   137 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   139 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   140   {                                                                        \
   141     ResourceMark rm(this);                                                 \
   142     int len = 0;                                                           \
   143     const char* name = (javathread)->get_thread_name();                    \
   144     len = strlen(name);                                                    \
   145     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   146       (char *) name, len,                                                           \
   147       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   148       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   149       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   150   }
   152 #endif /* USDT2 */
   154 #else //  ndef DTRACE_ENABLED
   156 #define DTRACE_THREAD_PROBE(probe, javathread)
   158 #endif // ndef DTRACE_ENABLED
   160 // Class hierarchy
   161 // - Thread
   162 //   - VMThread
   163 //   - WatcherThread
   164 //   - ConcurrentMarkSweepThread
   165 //   - JavaThread
   166 //     - CompilerThread
   168 // ======= Thread ========
   170 // Support for forcing alignment of thread objects for biased locking
   171 void* Thread::operator new(size_t size) {
   172   if (UseBiasedLocking) {
   173     const int alignment = markOopDesc::biased_lock_alignment;
   174     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   175     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   176     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   177     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   178            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   179            "JavaThread alignment code overflowed allocated storage");
   180     if (TraceBiasedLocking) {
   181       if (aligned_addr != real_malloc_addr)
   182         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   183                       real_malloc_addr, aligned_addr);
   184     }
   185     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   186     return aligned_addr;
   187   } else {
   188     return CHeapObj::operator new(size);
   189   }
   190 }
   192 void Thread::operator delete(void* p) {
   193   if (UseBiasedLocking) {
   194     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   195     CHeapObj::operator delete(real_malloc_addr);
   196   } else {
   197     CHeapObj::operator delete(p);
   198   }
   199 }
   202 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   203 // JavaThread
   206 Thread::Thread() {
   207   // stack and get_thread
   208   set_stack_base(NULL);
   209   set_stack_size(0);
   210   set_self_raw_id(0);
   211   set_lgrp_id(-1);
   213   // allocated data structures
   214   set_osthread(NULL);
   215   set_resource_area(new ResourceArea());
   216   set_handle_area(new HandleArea(NULL));
   217   set_active_handles(NULL);
   218   set_free_handle_block(NULL);
   219   set_last_handle_mark(NULL);
   221   // This initial value ==> never claimed.
   222   _oops_do_parity = 0;
   224   // the handle mark links itself to last_handle_mark
   225   new HandleMark(this);
   227   // plain initialization
   228   debug_only(_owned_locks = NULL;)
   229   debug_only(_allow_allocation_count = 0;)
   230   NOT_PRODUCT(_allow_safepoint_count = 0;)
   231   NOT_PRODUCT(_skip_gcalot = false;)
   232   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   233   _jvmti_env_iteration_count = 0;
   234   set_allocated_bytes(0);
   235   _vm_operation_started_count = 0;
   236   _vm_operation_completed_count = 0;
   237   _current_pending_monitor = NULL;
   238   _current_pending_monitor_is_from_java = true;
   239   _current_waiting_monitor = NULL;
   240   _num_nested_signal = 0;
   241   omFreeList = NULL ;
   242   omFreeCount = 0 ;
   243   omFreeProvision = 32 ;
   244   omInUseList = NULL ;
   245   omInUseCount = 0 ;
   247   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   248   _suspend_flags = 0;
   250   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   251   _hashStateX = os::random() ;
   252   _hashStateY = 842502087 ;
   253   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   254   _hashStateW = 273326509 ;
   256   _OnTrap   = 0 ;
   257   _schedctl = NULL ;
   258   _Stalled  = 0 ;
   259   _TypeTag  = 0x2BAD ;
   261   // Many of the following fields are effectively final - immutable
   262   // Note that nascent threads can't use the Native Monitor-Mutex
   263   // construct until the _MutexEvent is initialized ...
   264   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   265   // we might instead use a stack of ParkEvents that we could provision on-demand.
   266   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   267   // and ::Release()
   268   _ParkEvent   = ParkEvent::Allocate (this) ;
   269   _SleepEvent  = ParkEvent::Allocate (this) ;
   270   _MutexEvent  = ParkEvent::Allocate (this) ;
   271   _MuxEvent    = ParkEvent::Allocate (this) ;
   273 #ifdef CHECK_UNHANDLED_OOPS
   274   if (CheckUnhandledOops) {
   275     _unhandled_oops = new UnhandledOops(this);
   276   }
   277 #endif // CHECK_UNHANDLED_OOPS
   278 #ifdef ASSERT
   279   if (UseBiasedLocking) {
   280     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   281     assert(this == _real_malloc_address ||
   282            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   283            "bug in forced alignment of thread objects");
   284   }
   285 #endif /* ASSERT */
   286 }
   288 void Thread::initialize_thread_local_storage() {
   289   // Note: Make sure this method only calls
   290   // non-blocking operations. Otherwise, it might not work
   291   // with the thread-startup/safepoint interaction.
   293   // During Java thread startup, safepoint code should allow this
   294   // method to complete because it may need to allocate memory to
   295   // store information for the new thread.
   297   // initialize structure dependent on thread local storage
   298   ThreadLocalStorage::set_thread(this);
   300   // set up any platform-specific state.
   301   os::initialize_thread();
   303 }
   305 void Thread::record_stack_base_and_size() {
   306   set_stack_base(os::current_stack_base());
   307   set_stack_size(os::current_stack_size());
   308 }
   311 Thread::~Thread() {
   312   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   313   ObjectSynchronizer::omFlush (this) ;
   315   // deallocate data structures
   316   delete resource_area();
   317   // since the handle marks are using the handle area, we have to deallocated the root
   318   // handle mark before deallocating the thread's handle area,
   319   assert(last_handle_mark() != NULL, "check we have an element");
   320   delete last_handle_mark();
   321   assert(last_handle_mark() == NULL, "check we have reached the end");
   323   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   324   // We NULL out the fields for good hygiene.
   325   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   326   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   327   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   328   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   330   delete handle_area();
   332   // osthread() can be NULL, if creation of thread failed.
   333   if (osthread() != NULL) os::free_thread(osthread());
   335   delete _SR_lock;
   337   // clear thread local storage if the Thread is deleting itself
   338   if (this == Thread::current()) {
   339     ThreadLocalStorage::set_thread(NULL);
   340   } else {
   341     // In the case where we're not the current thread, invalidate all the
   342     // caches in case some code tries to get the current thread or the
   343     // thread that was destroyed, and gets stale information.
   344     ThreadLocalStorage::invalidate_all();
   345   }
   346   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   347 }
   349 // NOTE: dummy function for assertion purpose.
   350 void Thread::run() {
   351   ShouldNotReachHere();
   352 }
   354 #ifdef ASSERT
   355 // Private method to check for dangling thread pointer
   356 void check_for_dangling_thread_pointer(Thread *thread) {
   357  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   358          "possibility of dangling Thread pointer");
   359 }
   360 #endif
   363 #ifndef PRODUCT
   364 // Tracing method for basic thread operations
   365 void Thread::trace(const char* msg, const Thread* const thread) {
   366   if (!TraceThreadEvents) return;
   367   ResourceMark rm;
   368   ThreadCritical tc;
   369   const char *name = "non-Java thread";
   370   int prio = -1;
   371   if (thread->is_Java_thread()
   372       && !thread->is_Compiler_thread()) {
   373     // The Threads_lock must be held to get information about
   374     // this thread but may not be in some situations when
   375     // tracing  thread events.
   376     bool release_Threads_lock = false;
   377     if (!Threads_lock->owned_by_self()) {
   378       Threads_lock->lock();
   379       release_Threads_lock = true;
   380     }
   381     JavaThread* jt = (JavaThread *)thread;
   382     name = (char *)jt->get_thread_name();
   383     oop thread_oop = jt->threadObj();
   384     if (thread_oop != NULL) {
   385       prio = java_lang_Thread::priority(thread_oop);
   386     }
   387     if (release_Threads_lock) {
   388       Threads_lock->unlock();
   389     }
   390   }
   391   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   392 }
   393 #endif
   396 ThreadPriority Thread::get_priority(const Thread* const thread) {
   397   trace("get priority", thread);
   398   ThreadPriority priority;
   399   // Can return an error!
   400   (void)os::get_priority(thread, priority);
   401   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   402   return priority;
   403 }
   405 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   406   trace("set priority", thread);
   407   debug_only(check_for_dangling_thread_pointer(thread);)
   408   // Can return an error!
   409   (void)os::set_priority(thread, priority);
   410 }
   413 void Thread::start(Thread* thread) {
   414   trace("start", thread);
   415   // Start is different from resume in that its safety is guaranteed by context or
   416   // being called from a Java method synchronized on the Thread object.
   417   if (!DisableStartThread) {
   418     if (thread->is_Java_thread()) {
   419       // Initialize the thread state to RUNNABLE before starting this thread.
   420       // Can not set it after the thread started because we do not know the
   421       // exact thread state at that time. It could be in MONITOR_WAIT or
   422       // in SLEEPING or some other state.
   423       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   424                                           java_lang_Thread::RUNNABLE);
   425     }
   426     os::start_thread(thread);
   427   }
   428 }
   430 // Enqueue a VM_Operation to do the job for us - sometime later
   431 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   432   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   433   VMThread::execute(vm_stop);
   434 }
   437 //
   438 // Check if an external suspend request has completed (or has been
   439 // cancelled). Returns true if the thread is externally suspended and
   440 // false otherwise.
   441 //
   442 // The bits parameter returns information about the code path through
   443 // the routine. Useful for debugging:
   444 //
   445 // set in is_ext_suspend_completed():
   446 // 0x00000001 - routine was entered
   447 // 0x00000010 - routine return false at end
   448 // 0x00000100 - thread exited (return false)
   449 // 0x00000200 - suspend request cancelled (return false)
   450 // 0x00000400 - thread suspended (return true)
   451 // 0x00001000 - thread is in a suspend equivalent state (return true)
   452 // 0x00002000 - thread is native and walkable (return true)
   453 // 0x00004000 - thread is native_trans and walkable (needed retry)
   454 //
   455 // set in wait_for_ext_suspend_completion():
   456 // 0x00010000 - routine was entered
   457 // 0x00020000 - suspend request cancelled before loop (return false)
   458 // 0x00040000 - thread suspended before loop (return true)
   459 // 0x00080000 - suspend request cancelled in loop (return false)
   460 // 0x00100000 - thread suspended in loop (return true)
   461 // 0x00200000 - suspend not completed during retry loop (return false)
   462 //
   464 // Helper class for tracing suspend wait debug bits.
   465 //
   466 // 0x00000100 indicates that the target thread exited before it could
   467 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   468 // 0x00080000 each indicate a cancelled suspend request so they don't
   469 // count as wait failures either.
   470 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   472 class TraceSuspendDebugBits : public StackObj {
   473  private:
   474   JavaThread * jt;
   475   bool         is_wait;
   476   bool         called_by_wait;  // meaningful when !is_wait
   477   uint32_t *   bits;
   479  public:
   480   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   481                         uint32_t *_bits) {
   482     jt             = _jt;
   483     is_wait        = _is_wait;
   484     called_by_wait = _called_by_wait;
   485     bits           = _bits;
   486   }
   488   ~TraceSuspendDebugBits() {
   489     if (!is_wait) {
   490 #if 1
   491       // By default, don't trace bits for is_ext_suspend_completed() calls.
   492       // That trace is very chatty.
   493       return;
   494 #else
   495       if (!called_by_wait) {
   496         // If tracing for is_ext_suspend_completed() is enabled, then only
   497         // trace calls to it from wait_for_ext_suspend_completion()
   498         return;
   499       }
   500 #endif
   501     }
   503     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   504       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   505         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   506         ResourceMark rm;
   508         tty->print_cr(
   509             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   510             jt->get_thread_name(), *bits);
   512         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   513       }
   514     }
   515   }
   516 };
   517 #undef DEBUG_FALSE_BITS
   520 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   521   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   523   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   524   bool do_trans_retry;           // flag to force the retry
   526   *bits |= 0x00000001;
   528   do {
   529     do_trans_retry = false;
   531     if (is_exiting()) {
   532       // Thread is in the process of exiting. This is always checked
   533       // first to reduce the risk of dereferencing a freed JavaThread.
   534       *bits |= 0x00000100;
   535       return false;
   536     }
   538     if (!is_external_suspend()) {
   539       // Suspend request is cancelled. This is always checked before
   540       // is_ext_suspended() to reduce the risk of a rogue resume
   541       // confusing the thread that made the suspend request.
   542       *bits |= 0x00000200;
   543       return false;
   544     }
   546     if (is_ext_suspended()) {
   547       // thread is suspended
   548       *bits |= 0x00000400;
   549       return true;
   550     }
   552     // Now that we no longer do hard suspends of threads running
   553     // native code, the target thread can be changing thread state
   554     // while we are in this routine:
   555     //
   556     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   557     //
   558     // We save a copy of the thread state as observed at this moment
   559     // and make our decision about suspend completeness based on the
   560     // copy. This closes the race where the thread state is seen as
   561     // _thread_in_native_trans in the if-thread_blocked check, but is
   562     // seen as _thread_blocked in if-thread_in_native_trans check.
   563     JavaThreadState save_state = thread_state();
   565     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   566       // If the thread's state is _thread_blocked and this blocking
   567       // condition is known to be equivalent to a suspend, then we can
   568       // consider the thread to be externally suspended. This means that
   569       // the code that sets _thread_blocked has been modified to do
   570       // self-suspension if the blocking condition releases. We also
   571       // used to check for CONDVAR_WAIT here, but that is now covered by
   572       // the _thread_blocked with self-suspension check.
   573       //
   574       // Return true since we wouldn't be here unless there was still an
   575       // external suspend request.
   576       *bits |= 0x00001000;
   577       return true;
   578     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   579       // Threads running native code will self-suspend on native==>VM/Java
   580       // transitions. If its stack is walkable (should always be the case
   581       // unless this function is called before the actual java_suspend()
   582       // call), then the wait is done.
   583       *bits |= 0x00002000;
   584       return true;
   585     } else if (!called_by_wait && !did_trans_retry &&
   586                save_state == _thread_in_native_trans &&
   587                frame_anchor()->walkable()) {
   588       // The thread is transitioning from thread_in_native to another
   589       // thread state. check_safepoint_and_suspend_for_native_trans()
   590       // will force the thread to self-suspend. If it hasn't gotten
   591       // there yet we may have caught the thread in-between the native
   592       // code check above and the self-suspend. Lucky us. If we were
   593       // called by wait_for_ext_suspend_completion(), then it
   594       // will be doing the retries so we don't have to.
   595       //
   596       // Since we use the saved thread state in the if-statement above,
   597       // there is a chance that the thread has already transitioned to
   598       // _thread_blocked by the time we get here. In that case, we will
   599       // make a single unnecessary pass through the logic below. This
   600       // doesn't hurt anything since we still do the trans retry.
   602       *bits |= 0x00004000;
   604       // Once the thread leaves thread_in_native_trans for another
   605       // thread state, we break out of this retry loop. We shouldn't
   606       // need this flag to prevent us from getting back here, but
   607       // sometimes paranoia is good.
   608       did_trans_retry = true;
   610       // We wait for the thread to transition to a more usable state.
   611       for (int i = 1; i <= SuspendRetryCount; i++) {
   612         // We used to do an "os::yield_all(i)" call here with the intention
   613         // that yielding would increase on each retry. However, the parameter
   614         // is ignored on Linux which means the yield didn't scale up. Waiting
   615         // on the SR_lock below provides a much more predictable scale up for
   616         // the delay. It also provides a simple/direct point to check for any
   617         // safepoint requests from the VMThread
   619         // temporarily drops SR_lock while doing wait with safepoint check
   620         // (if we're a JavaThread - the WatcherThread can also call this)
   621         // and increase delay with each retry
   622         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   624         // check the actual thread state instead of what we saved above
   625         if (thread_state() != _thread_in_native_trans) {
   626           // the thread has transitioned to another thread state so
   627           // try all the checks (except this one) one more time.
   628           do_trans_retry = true;
   629           break;
   630         }
   631       } // end retry loop
   634     }
   635   } while (do_trans_retry);
   637   *bits |= 0x00000010;
   638   return false;
   639 }
   641 //
   642 // Wait for an external suspend request to complete (or be cancelled).
   643 // Returns true if the thread is externally suspended and false otherwise.
   644 //
   645 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   646        uint32_t *bits) {
   647   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   648                              false /* !called_by_wait */, bits);
   650   // local flag copies to minimize SR_lock hold time
   651   bool is_suspended;
   652   bool pending;
   653   uint32_t reset_bits;
   655   // set a marker so is_ext_suspend_completed() knows we are the caller
   656   *bits |= 0x00010000;
   658   // We use reset_bits to reinitialize the bits value at the top of
   659   // each retry loop. This allows the caller to make use of any
   660   // unused bits for their own marking purposes.
   661   reset_bits = *bits;
   663   {
   664     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   665     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   666                                             delay, bits);
   667     pending = is_external_suspend();
   668   }
   669   // must release SR_lock to allow suspension to complete
   671   if (!pending) {
   672     // A cancelled suspend request is the only false return from
   673     // is_ext_suspend_completed() that keeps us from entering the
   674     // retry loop.
   675     *bits |= 0x00020000;
   676     return false;
   677   }
   679   if (is_suspended) {
   680     *bits |= 0x00040000;
   681     return true;
   682   }
   684   for (int i = 1; i <= retries; i++) {
   685     *bits = reset_bits;  // reinit to only track last retry
   687     // We used to do an "os::yield_all(i)" call here with the intention
   688     // that yielding would increase on each retry. However, the parameter
   689     // is ignored on Linux which means the yield didn't scale up. Waiting
   690     // on the SR_lock below provides a much more predictable scale up for
   691     // the delay. It also provides a simple/direct point to check for any
   692     // safepoint requests from the VMThread
   694     {
   695       MutexLocker ml(SR_lock());
   696       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   697       // can also call this)  and increase delay with each retry
   698       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   700       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   701                                               delay, bits);
   703       // It is possible for the external suspend request to be cancelled
   704       // (by a resume) before the actual suspend operation is completed.
   705       // Refresh our local copy to see if we still need to wait.
   706       pending = is_external_suspend();
   707     }
   709     if (!pending) {
   710       // A cancelled suspend request is the only false return from
   711       // is_ext_suspend_completed() that keeps us from staying in the
   712       // retry loop.
   713       *bits |= 0x00080000;
   714       return false;
   715     }
   717     if (is_suspended) {
   718       *bits |= 0x00100000;
   719       return true;
   720     }
   721   } // end retry loop
   723   // thread did not suspend after all our retries
   724   *bits |= 0x00200000;
   725   return false;
   726 }
   728 #ifndef PRODUCT
   729 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   731   // This should not need to be atomic as the only way for simultaneous
   732   // updates is via interrupts. Even then this should be rare or non-existant
   733   // and we don't care that much anyway.
   735   int index = _jmp_ring_index;
   736   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   737   _jmp_ring[index]._target = (intptr_t) target;
   738   _jmp_ring[index]._instruction = (intptr_t) instr;
   739   _jmp_ring[index]._file = file;
   740   _jmp_ring[index]._line = line;
   741 }
   742 #endif /* PRODUCT */
   744 // Called by flat profiler
   745 // Callers have already called wait_for_ext_suspend_completion
   746 // The assertion for that is currently too complex to put here:
   747 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   748   bool gotframe = false;
   749   // self suspension saves needed state.
   750   if (has_last_Java_frame() && _anchor.walkable()) {
   751      *_fr = pd_last_frame();
   752      gotframe = true;
   753   }
   754   return gotframe;
   755 }
   757 void Thread::interrupt(Thread* thread) {
   758   trace("interrupt", thread);
   759   debug_only(check_for_dangling_thread_pointer(thread);)
   760   os::interrupt(thread);
   761 }
   763 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   764   trace("is_interrupted", thread);
   765   debug_only(check_for_dangling_thread_pointer(thread);)
   766   // Note:  If clear_interrupted==false, this simply fetches and
   767   // returns the value of the field osthread()->interrupted().
   768   return os::is_interrupted(thread, clear_interrupted);
   769 }
   772 // GC Support
   773 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   774   jint thread_parity = _oops_do_parity;
   775   if (thread_parity != strong_roots_parity) {
   776     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   777     if (res == thread_parity) {
   778       return true;
   779     } else {
   780       guarantee(res == strong_roots_parity, "Or else what?");
   781       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   782          "Should only fail when parallel.");
   783       return false;
   784     }
   785   }
   786   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   787          "Should only fail when parallel.");
   788   return false;
   789 }
   791 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   792   active_handles()->oops_do(f);
   793   // Do oop for ThreadShadow
   794   f->do_oop((oop*)&_pending_exception);
   795   handle_area()->oops_do(f);
   796 }
   798 void Thread::nmethods_do(CodeBlobClosure* cf) {
   799   // no nmethods in a generic thread...
   800 }
   802 void Thread::print_on(outputStream* st) const {
   803   // get_priority assumes osthread initialized
   804   if (osthread() != NULL) {
   805     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   806     osthread()->print_on(st);
   807   }
   808   debug_only(if (WizardMode) print_owned_locks_on(st);)
   809 }
   811 // Thread::print_on_error() is called by fatal error handler. Don't use
   812 // any lock or allocate memory.
   813 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   814   if      (is_VM_thread())                  st->print("VMThread");
   815   else if (is_Compiler_thread())            st->print("CompilerThread");
   816   else if (is_Java_thread())                st->print("JavaThread");
   817   else if (is_GC_task_thread())             st->print("GCTaskThread");
   818   else if (is_Watcher_thread())             st->print("WatcherThread");
   819   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   820   else st->print("Thread");
   822   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   823             _stack_base - _stack_size, _stack_base);
   825   if (osthread()) {
   826     st->print(" [id=%d]", osthread()->thread_id());
   827   }
   828 }
   830 #ifdef ASSERT
   831 void Thread::print_owned_locks_on(outputStream* st) const {
   832   Monitor *cur = _owned_locks;
   833   if (cur == NULL) {
   834     st->print(" (no locks) ");
   835   } else {
   836     st->print_cr(" Locks owned:");
   837     while(cur) {
   838       cur->print_on(st);
   839       cur = cur->next();
   840     }
   841   }
   842 }
   844 static int ref_use_count  = 0;
   846 bool Thread::owns_locks_but_compiled_lock() const {
   847   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   848     if (cur != Compile_lock) return true;
   849   }
   850   return false;
   851 }
   854 #endif
   856 #ifndef PRODUCT
   858 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   859 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   860 // no threads which allow_vm_block's are held
   861 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   862     // Check if current thread is allowed to block at a safepoint
   863     if (!(_allow_safepoint_count == 0))
   864       fatal("Possible safepoint reached by thread that does not allow it");
   865     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   866       fatal("LEAF method calling lock?");
   867     }
   869 #ifdef ASSERT
   870     if (potential_vm_operation && is_Java_thread()
   871         && !Universe::is_bootstrapping()) {
   872       // Make sure we do not hold any locks that the VM thread also uses.
   873       // This could potentially lead to deadlocks
   874       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   875         // Threads_lock is special, since the safepoint synchronization will not start before this is
   876         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   877         // since it is used to transfer control between JavaThreads and the VMThread
   878         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   879         if ( (cur->allow_vm_block() &&
   880               cur != Threads_lock &&
   881               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   882               cur != VMOperationRequest_lock &&
   883               cur != VMOperationQueue_lock) ||
   884               cur->rank() == Mutex::special) {
   885           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   886         }
   887       }
   888     }
   890     if (GCALotAtAllSafepoints) {
   891       // We could enter a safepoint here and thus have a gc
   892       InterfaceSupport::check_gc_alot();
   893     }
   894 #endif
   895 }
   896 #endif
   898 bool Thread::is_in_stack(address adr) const {
   899   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   900   address end = os::current_stack_pointer();
   901   if (stack_base() >= adr && adr >= end) return true;
   903   return false;
   904 }
   907 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   908 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   909 // used for compilation in the future. If that change is made, the need for these methods
   910 // should be revisited, and they should be removed if possible.
   912 bool Thread::is_lock_owned(address adr) const {
   913   return on_local_stack(adr);
   914 }
   916 bool Thread::set_as_starting_thread() {
   917  // NOTE: this must be called inside the main thread.
   918   return os::create_main_thread((JavaThread*)this);
   919 }
   921 static void initialize_class(Symbol* class_name, TRAPS) {
   922   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   923   instanceKlass::cast(klass)->initialize(CHECK);
   924 }
   927 // Creates the initial ThreadGroup
   928 static Handle create_initial_thread_group(TRAPS) {
   929   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   930   instanceKlassHandle klass (THREAD, k);
   932   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   933   {
   934     JavaValue result(T_VOID);
   935     JavaCalls::call_special(&result,
   936                             system_instance,
   937                             klass,
   938                             vmSymbols::object_initializer_name(),
   939                             vmSymbols::void_method_signature(),
   940                             CHECK_NH);
   941   }
   942   Universe::set_system_thread_group(system_instance());
   944   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   945   {
   946     JavaValue result(T_VOID);
   947     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   948     JavaCalls::call_special(&result,
   949                             main_instance,
   950                             klass,
   951                             vmSymbols::object_initializer_name(),
   952                             vmSymbols::threadgroup_string_void_signature(),
   953                             system_instance,
   954                             string,
   955                             CHECK_NH);
   956   }
   957   return main_instance;
   958 }
   960 // Creates the initial Thread
   961 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   962   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   963   instanceKlassHandle klass (THREAD, k);
   964   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   966   java_lang_Thread::set_thread(thread_oop(), thread);
   967   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   968   thread->set_threadObj(thread_oop());
   970   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   972   JavaValue result(T_VOID);
   973   JavaCalls::call_special(&result, thread_oop,
   974                                    klass,
   975                                    vmSymbols::object_initializer_name(),
   976                                    vmSymbols::threadgroup_string_void_signature(),
   977                                    thread_group,
   978                                    string,
   979                                    CHECK_NULL);
   980   return thread_oop();
   981 }
   983 static void call_initializeSystemClass(TRAPS) {
   984   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   985   instanceKlassHandle klass (THREAD, k);
   987   JavaValue result(T_VOID);
   988   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   989                                          vmSymbols::void_method_signature(), CHECK);
   990 }
   992 // General purpose hook into Java code, run once when the VM is initialized.
   993 // The Java library method itself may be changed independently from the VM.
   994 static void call_postVMInitHook(TRAPS) {
   995   klassOop k = SystemDictionary::PostVMInitHook_klass();
   996   instanceKlassHandle klass (THREAD, k);
   997   if (klass.not_null()) {
   998     JavaValue result(T_VOID);
   999     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1000                                            vmSymbols::void_method_signature(),
  1001                                            CHECK);
  1005 static void reset_vm_info_property(TRAPS) {
  1006   // the vm info string
  1007   ResourceMark rm(THREAD);
  1008   const char *vm_info = VM_Version::vm_info_string();
  1010   // java.lang.System class
  1011   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1012   instanceKlassHandle klass (THREAD, k);
  1014   // setProperty arguments
  1015   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1016   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1018   // return value
  1019   JavaValue r(T_OBJECT);
  1021   // public static String setProperty(String key, String value);
  1022   JavaCalls::call_static(&r,
  1023                          klass,
  1024                          vmSymbols::setProperty_name(),
  1025                          vmSymbols::string_string_string_signature(),
  1026                          key_str,
  1027                          value_str,
  1028                          CHECK);
  1032 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1033   assert(thread_group.not_null(), "thread group should be specified");
  1034   assert(threadObj() == NULL, "should only create Java thread object once");
  1036   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1037   instanceKlassHandle klass (THREAD, k);
  1038   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1040   java_lang_Thread::set_thread(thread_oop(), this);
  1041   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1042   set_threadObj(thread_oop());
  1044   JavaValue result(T_VOID);
  1045   if (thread_name != NULL) {
  1046     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1047     // Thread gets assigned specified name and null target
  1048     JavaCalls::call_special(&result,
  1049                             thread_oop,
  1050                             klass,
  1051                             vmSymbols::object_initializer_name(),
  1052                             vmSymbols::threadgroup_string_void_signature(),
  1053                             thread_group, // Argument 1
  1054                             name,         // Argument 2
  1055                             THREAD);
  1056   } else {
  1057     // Thread gets assigned name "Thread-nnn" and null target
  1058     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1059     JavaCalls::call_special(&result,
  1060                             thread_oop,
  1061                             klass,
  1062                             vmSymbols::object_initializer_name(),
  1063                             vmSymbols::threadgroup_runnable_void_signature(),
  1064                             thread_group, // Argument 1
  1065                             Handle(),     // Argument 2
  1066                             THREAD);
  1070   if (daemon) {
  1071       java_lang_Thread::set_daemon(thread_oop());
  1074   if (HAS_PENDING_EXCEPTION) {
  1075     return;
  1078   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1079   Handle threadObj(this, this->threadObj());
  1081   JavaCalls::call_special(&result,
  1082                          thread_group,
  1083                          group,
  1084                          vmSymbols::add_method_name(),
  1085                          vmSymbols::thread_void_signature(),
  1086                          threadObj,          // Arg 1
  1087                          THREAD);
  1092 // NamedThread --  non-JavaThread subclasses with multiple
  1093 // uniquely named instances should derive from this.
  1094 NamedThread::NamedThread() : Thread() {
  1095   _name = NULL;
  1096   _processed_thread = NULL;
  1099 NamedThread::~NamedThread() {
  1100   if (_name != NULL) {
  1101     FREE_C_HEAP_ARRAY(char, _name);
  1102     _name = NULL;
  1106 void NamedThread::set_name(const char* format, ...) {
  1107   guarantee(_name == NULL, "Only get to set name once.");
  1108   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1109   guarantee(_name != NULL, "alloc failure");
  1110   va_list ap;
  1111   va_start(ap, format);
  1112   jio_vsnprintf(_name, max_name_len, format, ap);
  1113   va_end(ap);
  1116 // ======= WatcherThread ========
  1118 // The watcher thread exists to simulate timer interrupts.  It should
  1119 // be replaced by an abstraction over whatever native support for
  1120 // timer interrupts exists on the platform.
  1122 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1123 volatile bool  WatcherThread::_should_terminate = false;
  1125 WatcherThread::WatcherThread() : Thread() {
  1126   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1127   if (os::create_thread(this, os::watcher_thread)) {
  1128     _watcher_thread = this;
  1130     // Set the watcher thread to the highest OS priority which should not be
  1131     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1132     // is created. The only normal thread using this priority is the reference
  1133     // handler thread, which runs for very short intervals only.
  1134     // If the VMThread's priority is not lower than the WatcherThread profiling
  1135     // will be inaccurate.
  1136     os::set_priority(this, MaxPriority);
  1137     if (!DisableStartThread) {
  1138       os::start_thread(this);
  1143 void WatcherThread::run() {
  1144   assert(this == watcher_thread(), "just checking");
  1146   this->record_stack_base_and_size();
  1147   this->initialize_thread_local_storage();
  1148   this->set_active_handles(JNIHandleBlock::allocate_block());
  1149   while(!_should_terminate) {
  1150     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1151     assert(watcher_thread() == this,  "thread consistency check");
  1153     // Calculate how long it'll be until the next PeriodicTask work
  1154     // should be done, and sleep that amount of time.
  1155     size_t time_to_wait = PeriodicTask::time_to_wait();
  1157     // we expect this to timeout - we only ever get unparked when
  1158     // we should terminate
  1160       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1162       jlong prev_time = os::javaTimeNanos();
  1163       for (;;) {
  1164         int res= _SleepEvent->park(time_to_wait);
  1165         if (res == OS_TIMEOUT || _should_terminate)
  1166           break;
  1167         // spurious wakeup of some kind
  1168         jlong now = os::javaTimeNanos();
  1169         time_to_wait -= (now - prev_time) / 1000000;
  1170         if (time_to_wait <= 0)
  1171           break;
  1172         prev_time = now;
  1176     if (is_error_reported()) {
  1177       // A fatal error has happened, the error handler(VMError::report_and_die)
  1178       // should abort JVM after creating an error log file. However in some
  1179       // rare cases, the error handler itself might deadlock. Here we try to
  1180       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1181       //
  1182       // This code is in WatcherThread because WatcherThread wakes up
  1183       // periodically so the fatal error handler doesn't need to do anything;
  1184       // also because the WatcherThread is less likely to crash than other
  1185       // threads.
  1187       for (;;) {
  1188         if (!ShowMessageBoxOnError
  1189          && (OnError == NULL || OnError[0] == '\0')
  1190          && Arguments::abort_hook() == NULL) {
  1191              os::sleep(this, 2 * 60 * 1000, false);
  1192              fdStream err(defaultStream::output_fd());
  1193              err.print_raw_cr("# [ timer expired, abort... ]");
  1194              // skip atexit/vm_exit/vm_abort hooks
  1195              os::die();
  1198         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1199         // ShowMessageBoxOnError when it is ready to abort.
  1200         os::sleep(this, 5 * 1000, false);
  1204     PeriodicTask::real_time_tick(time_to_wait);
  1206     // If we have no more tasks left due to dynamic disenrollment,
  1207     // shut down the thread since we don't currently support dynamic enrollment
  1208     if (PeriodicTask::num_tasks() == 0) {
  1209       _should_terminate = true;
  1213   // Signal that it is terminated
  1215     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1216     _watcher_thread = NULL;
  1217     Terminator_lock->notify();
  1220   // Thread destructor usually does this..
  1221   ThreadLocalStorage::set_thread(NULL);
  1224 void WatcherThread::start() {
  1225   if (watcher_thread() == NULL) {
  1226     _should_terminate = false;
  1227     // Create the single instance of WatcherThread
  1228     new WatcherThread();
  1232 void WatcherThread::stop() {
  1233   // it is ok to take late safepoints here, if needed
  1234   MutexLocker mu(Terminator_lock);
  1235   _should_terminate = true;
  1236   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1238   Thread* watcher = watcher_thread();
  1239   if (watcher != NULL)
  1240     watcher->_SleepEvent->unpark();
  1242   while(watcher_thread() != NULL) {
  1243     // This wait should make safepoint checks, wait without a timeout,
  1244     // and wait as a suspend-equivalent condition.
  1245     //
  1246     // Note: If the FlatProfiler is running, then this thread is waiting
  1247     // for the WatcherThread to terminate and the WatcherThread, via the
  1248     // FlatProfiler task, is waiting for the external suspend request on
  1249     // this thread to complete. wait_for_ext_suspend_completion() will
  1250     // eventually timeout, but that takes time. Making this wait a
  1251     // suspend-equivalent condition solves that timeout problem.
  1252     //
  1253     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1254                           Mutex::_as_suspend_equivalent_flag);
  1258 void WatcherThread::print_on(outputStream* st) const {
  1259   st->print("\"%s\" ", name());
  1260   Thread::print_on(st);
  1261   st->cr();
  1264 // ======= JavaThread ========
  1266 // A JavaThread is a normal Java thread
  1268 void JavaThread::initialize() {
  1269   // Initialize fields
  1271   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1272   set_claimed_par_id(-1);
  1274   set_saved_exception_pc(NULL);
  1275   set_threadObj(NULL);
  1276   _anchor.clear();
  1277   set_entry_point(NULL);
  1278   set_jni_functions(jni_functions());
  1279   set_callee_target(NULL);
  1280   set_vm_result(NULL);
  1281   set_vm_result_2(NULL);
  1282   set_vframe_array_head(NULL);
  1283   set_vframe_array_last(NULL);
  1284   set_deferred_locals(NULL);
  1285   set_deopt_mark(NULL);
  1286   set_deopt_nmethod(NULL);
  1287   clear_must_deopt_id();
  1288   set_monitor_chunks(NULL);
  1289   set_next(NULL);
  1290   set_thread_state(_thread_new);
  1291   _terminated = _not_terminated;
  1292   _privileged_stack_top = NULL;
  1293   _array_for_gc = NULL;
  1294   _suspend_equivalent = false;
  1295   _in_deopt_handler = 0;
  1296   _doing_unsafe_access = false;
  1297   _stack_guard_state = stack_guard_unused;
  1298   _exception_oop = NULL;
  1299   _exception_pc  = 0;
  1300   _exception_handler_pc = 0;
  1301   _is_method_handle_return = 0;
  1302   _jvmti_thread_state= NULL;
  1303   _should_post_on_exceptions_flag = JNI_FALSE;
  1304   _jvmti_get_loaded_classes_closure = NULL;
  1305   _interp_only_mode    = 0;
  1306   _special_runtime_exit_condition = _no_async_condition;
  1307   _pending_async_exception = NULL;
  1308   _is_compiling = false;
  1309   _thread_stat = NULL;
  1310   _thread_stat = new ThreadStatistics();
  1311   _blocked_on_compilation = false;
  1312   _jni_active_critical = 0;
  1313   _do_not_unlock_if_synchronized = false;
  1314   _cached_monitor_info = NULL;
  1315   _parker = Parker::Allocate(this) ;
  1317 #ifndef PRODUCT
  1318   _jmp_ring_index = 0;
  1319   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1320     record_jump(NULL, NULL, NULL, 0);
  1322 #endif /* PRODUCT */
  1324   set_thread_profiler(NULL);
  1325   if (FlatProfiler::is_active()) {
  1326     // This is where we would decide to either give each thread it's own profiler
  1327     // or use one global one from FlatProfiler,
  1328     // or up to some count of the number of profiled threads, etc.
  1329     ThreadProfiler* pp = new ThreadProfiler();
  1330     pp->engage();
  1331     set_thread_profiler(pp);
  1334   // Setup safepoint state info for this thread
  1335   ThreadSafepointState::create(this);
  1337   debug_only(_java_call_counter = 0);
  1339   // JVMTI PopFrame support
  1340   _popframe_condition = popframe_inactive;
  1341   _popframe_preserved_args = NULL;
  1342   _popframe_preserved_args_size = 0;
  1344   pd_initialize();
  1347 #ifndef SERIALGC
  1348 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1349 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1350 #endif // !SERIALGC
  1352 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1353   Thread()
  1354 #ifndef SERIALGC
  1355   , _satb_mark_queue(&_satb_mark_queue_set),
  1356   _dirty_card_queue(&_dirty_card_queue_set)
  1357 #endif // !SERIALGC
  1359   initialize();
  1360   if (is_attaching_via_jni) {
  1361     _jni_attach_state = _attaching_via_jni;
  1362   } else {
  1363     _jni_attach_state = _not_attaching_via_jni;
  1365   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1368 bool JavaThread::reguard_stack(address cur_sp) {
  1369   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1370     return true; // Stack already guarded or guard pages not needed.
  1373   if (register_stack_overflow()) {
  1374     // For those architectures which have separate register and
  1375     // memory stacks, we must check the register stack to see if
  1376     // it has overflowed.
  1377     return false;
  1380   // Java code never executes within the yellow zone: the latter is only
  1381   // there to provoke an exception during stack banging.  If java code
  1382   // is executing there, either StackShadowPages should be larger, or
  1383   // some exception code in c1, c2 or the interpreter isn't unwinding
  1384   // when it should.
  1385   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1387   enable_stack_yellow_zone();
  1388   return true;
  1391 bool JavaThread::reguard_stack(void) {
  1392   return reguard_stack(os::current_stack_pointer());
  1396 void JavaThread::block_if_vm_exited() {
  1397   if (_terminated == _vm_exited) {
  1398     // _vm_exited is set at safepoint, and Threads_lock is never released
  1399     // we will block here forever
  1400     Threads_lock->lock_without_safepoint_check();
  1401     ShouldNotReachHere();
  1406 // Remove this ifdef when C1 is ported to the compiler interface.
  1407 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1409 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1410   Thread()
  1411 #ifndef SERIALGC
  1412   , _satb_mark_queue(&_satb_mark_queue_set),
  1413   _dirty_card_queue(&_dirty_card_queue_set)
  1414 #endif // !SERIALGC
  1416   if (TraceThreadEvents) {
  1417     tty->print_cr("creating thread %p", this);
  1419   initialize();
  1420   _jni_attach_state = _not_attaching_via_jni;
  1421   set_entry_point(entry_point);
  1422   // Create the native thread itself.
  1423   // %note runtime_23
  1424   os::ThreadType thr_type = os::java_thread;
  1425   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1426                                                      os::java_thread;
  1427   os::create_thread(this, thr_type, stack_sz);
  1429   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1430   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1431   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1432   // the exception consists of creating the exception object & initializing it, initialization
  1433   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1434   //
  1435   // The thread is still suspended when we reach here. Thread must be explicit started
  1436   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1437   // by calling Threads:add. The reason why this is not done here, is because the thread
  1438   // object must be fully initialized (take a look at JVM_Start)
  1441 JavaThread::~JavaThread() {
  1442   if (TraceThreadEvents) {
  1443       tty->print_cr("terminate thread %p", this);
  1446   // JSR166 -- return the parker to the free list
  1447   Parker::Release(_parker);
  1448   _parker = NULL ;
  1450   // Free any remaining  previous UnrollBlock
  1451   vframeArray* old_array = vframe_array_last();
  1453   if (old_array != NULL) {
  1454     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1455     old_array->set_unroll_block(NULL);
  1456     delete old_info;
  1457     delete old_array;
  1460   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1461   if (deferred != NULL) {
  1462     // This can only happen if thread is destroyed before deoptimization occurs.
  1463     assert(deferred->length() != 0, "empty array!");
  1464     do {
  1465       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1466       deferred->remove_at(0);
  1467       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1468       delete dlv;
  1469     } while (deferred->length() != 0);
  1470     delete deferred;
  1473   // All Java related clean up happens in exit
  1474   ThreadSafepointState::destroy(this);
  1475   if (_thread_profiler != NULL) delete _thread_profiler;
  1476   if (_thread_stat != NULL) delete _thread_stat;
  1480 // The first routine called by a new Java thread
  1481 void JavaThread::run() {
  1482   // initialize thread-local alloc buffer related fields
  1483   this->initialize_tlab();
  1485   // used to test validitity of stack trace backs
  1486   this->record_base_of_stack_pointer();
  1488   // Record real stack base and size.
  1489   this->record_stack_base_and_size();
  1491   // Initialize thread local storage; set before calling MutexLocker
  1492   this->initialize_thread_local_storage();
  1494   this->create_stack_guard_pages();
  1496   this->cache_global_variables();
  1498   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1499   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1500   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1502   assert(JavaThread::current() == this, "sanity check");
  1503   assert(!Thread::current()->owns_locks(), "sanity check");
  1505   DTRACE_THREAD_PROBE(start, this);
  1507   // This operation might block. We call that after all safepoint checks for a new thread has
  1508   // been completed.
  1509   this->set_active_handles(JNIHandleBlock::allocate_block());
  1511   if (JvmtiExport::should_post_thread_life()) {
  1512     JvmtiExport::post_thread_start(this);
  1515   // We call another function to do the rest so we are sure that the stack addresses used
  1516   // from there will be lower than the stack base just computed
  1517   thread_main_inner();
  1519   // Note, thread is no longer valid at this point!
  1523 void JavaThread::thread_main_inner() {
  1524   assert(JavaThread::current() == this, "sanity check");
  1525   assert(this->threadObj() != NULL, "just checking");
  1527   // Execute thread entry point unless this thread has a pending exception
  1528   // or has been stopped before starting.
  1529   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1530   if (!this->has_pending_exception() &&
  1531       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1533       ResourceMark rm(this);
  1534       this->set_native_thread_name(this->get_thread_name());
  1536     HandleMark hm(this);
  1537     this->entry_point()(this, this);
  1540   DTRACE_THREAD_PROBE(stop, this);
  1542   this->exit(false);
  1543   delete this;
  1547 static void ensure_join(JavaThread* thread) {
  1548   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1549   Handle threadObj(thread, thread->threadObj());
  1550   assert(threadObj.not_null(), "java thread object must exist");
  1551   ObjectLocker lock(threadObj, thread);
  1552   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1553   thread->clear_pending_exception();
  1554   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1555   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1556   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1557   // to complete once we've done the notify_all below
  1558   java_lang_Thread::set_thread(threadObj(), NULL);
  1559   lock.notify_all(thread);
  1560   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1561   thread->clear_pending_exception();
  1565 // For any new cleanup additions, please check to see if they need to be applied to
  1566 // cleanup_failed_attach_current_thread as well.
  1567 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1568   assert(this == JavaThread::current(),  "thread consistency check");
  1569   if (!InitializeJavaLangSystem) return;
  1571   HandleMark hm(this);
  1572   Handle uncaught_exception(this, this->pending_exception());
  1573   this->clear_pending_exception();
  1574   Handle threadObj(this, this->threadObj());
  1575   assert(threadObj.not_null(), "Java thread object should be created");
  1577   if (get_thread_profiler() != NULL) {
  1578     get_thread_profiler()->disengage();
  1579     ResourceMark rm;
  1580     get_thread_profiler()->print(get_thread_name());
  1584   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1586     EXCEPTION_MARK;
  1588     CLEAR_PENDING_EXCEPTION;
  1590   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1591   // has to be fixed by a runtime query method
  1592   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1593     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1594     // java.lang.Thread.dispatchUncaughtException
  1595     if (uncaught_exception.not_null()) {
  1596       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1597       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1598         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1600         EXCEPTION_MARK;
  1601         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1602         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1603         // so call ThreadGroup.uncaughtException()
  1604         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1605         CallInfo callinfo;
  1606         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1607         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1608                                            vmSymbols::dispatchUncaughtException_name(),
  1609                                            vmSymbols::throwable_void_signature(),
  1610                                            KlassHandle(), false, false, THREAD);
  1611         CLEAR_PENDING_EXCEPTION;
  1612         methodHandle method = callinfo.selected_method();
  1613         if (method.not_null()) {
  1614           JavaValue result(T_VOID);
  1615           JavaCalls::call_virtual(&result,
  1616                                   threadObj, thread_klass,
  1617                                   vmSymbols::dispatchUncaughtException_name(),
  1618                                   vmSymbols::throwable_void_signature(),
  1619                                   uncaught_exception,
  1620                                   THREAD);
  1621         } else {
  1622           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1623           JavaValue result(T_VOID);
  1624           JavaCalls::call_virtual(&result,
  1625                                   group, thread_group,
  1626                                   vmSymbols::uncaughtException_name(),
  1627                                   vmSymbols::thread_throwable_void_signature(),
  1628                                   threadObj,           // Arg 1
  1629                                   uncaught_exception,  // Arg 2
  1630                                   THREAD);
  1632         if (HAS_PENDING_EXCEPTION) {
  1633           ResourceMark rm(this);
  1634           jio_fprintf(defaultStream::error_stream(),
  1635                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1636                 " in thread \"%s\"\n",
  1637                 Klass::cast(pending_exception()->klass())->external_name(),
  1638                 get_thread_name());
  1639           CLEAR_PENDING_EXCEPTION;
  1644     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1645     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1646     // is deprecated anyhow.
  1647     { int count = 3;
  1648       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1649         EXCEPTION_MARK;
  1650         JavaValue result(T_VOID);
  1651         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1652         JavaCalls::call_virtual(&result,
  1653                               threadObj, thread_klass,
  1654                               vmSymbols::exit_method_name(),
  1655                               vmSymbols::void_method_signature(),
  1656                               THREAD);
  1657         CLEAR_PENDING_EXCEPTION;
  1661     // notify JVMTI
  1662     if (JvmtiExport::should_post_thread_life()) {
  1663       JvmtiExport::post_thread_end(this);
  1666     // We have notified the agents that we are exiting, before we go on,
  1667     // we must check for a pending external suspend request and honor it
  1668     // in order to not surprise the thread that made the suspend request.
  1669     while (true) {
  1671         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1672         if (!is_external_suspend()) {
  1673           set_terminated(_thread_exiting);
  1674           ThreadService::current_thread_exiting(this);
  1675           break;
  1677         // Implied else:
  1678         // Things get a little tricky here. We have a pending external
  1679         // suspend request, but we are holding the SR_lock so we
  1680         // can't just self-suspend. So we temporarily drop the lock
  1681         // and then self-suspend.
  1684       ThreadBlockInVM tbivm(this);
  1685       java_suspend_self();
  1687       // We're done with this suspend request, but we have to loop around
  1688       // and check again. Eventually we will get SR_lock without a pending
  1689       // external suspend request and will be able to mark ourselves as
  1690       // exiting.
  1692     // no more external suspends are allowed at this point
  1693   } else {
  1694     // before_exit() has already posted JVMTI THREAD_END events
  1697   // Notify waiters on thread object. This has to be done after exit() is called
  1698   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1699   // group should have the destroyed bit set before waiters are notified).
  1700   ensure_join(this);
  1701   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1703   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1704   // held by this thread must be released.  A detach operation must only
  1705   // get here if there are no Java frames on the stack.  Therefore, any
  1706   // owned monitors at this point MUST be JNI-acquired monitors which are
  1707   // pre-inflated and in the monitor cache.
  1708   //
  1709   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1710   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1711     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1712     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1713     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1716   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1717   // is in a consistent state, in case GC happens
  1718   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1720   if (active_handles() != NULL) {
  1721     JNIHandleBlock* block = active_handles();
  1722     set_active_handles(NULL);
  1723     JNIHandleBlock::release_block(block);
  1726   if (free_handle_block() != NULL) {
  1727     JNIHandleBlock* block = free_handle_block();
  1728     set_free_handle_block(NULL);
  1729     JNIHandleBlock::release_block(block);
  1732   // These have to be removed while this is still a valid thread.
  1733   remove_stack_guard_pages();
  1735   if (UseTLAB) {
  1736     tlab().make_parsable(true);  // retire TLAB
  1739   if (JvmtiEnv::environments_might_exist()) {
  1740     JvmtiExport::cleanup_thread(this);
  1743 #ifndef SERIALGC
  1744   // We must flush G1-related buffers before removing a thread from
  1745   // the list of active threads.
  1746   if (UseG1GC) {
  1747     flush_barrier_queues();
  1749 #endif
  1751   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1752   Threads::remove(this);
  1755 #ifndef SERIALGC
  1756 // Flush G1-related queues.
  1757 void JavaThread::flush_barrier_queues() {
  1758   satb_mark_queue().flush();
  1759   dirty_card_queue().flush();
  1762 void JavaThread::initialize_queues() {
  1763   assert(!SafepointSynchronize::is_at_safepoint(),
  1764          "we should not be at a safepoint");
  1766   ObjPtrQueue& satb_queue = satb_mark_queue();
  1767   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1768   // The SATB queue should have been constructed with its active
  1769   // field set to false.
  1770   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1771   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1772   // If we are creating the thread during a marking cycle, we should
  1773   // set the active field of the SATB queue to true.
  1774   if (satb_queue_set.is_active()) {
  1775     satb_queue.set_active(true);
  1778   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1779   // The dirty card queue should have been constructed with its
  1780   // active field set to true.
  1781   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1783 #endif // !SERIALGC
  1785 void JavaThread::cleanup_failed_attach_current_thread() {
  1786   if (get_thread_profiler() != NULL) {
  1787     get_thread_profiler()->disengage();
  1788     ResourceMark rm;
  1789     get_thread_profiler()->print(get_thread_name());
  1792   if (active_handles() != NULL) {
  1793     JNIHandleBlock* block = active_handles();
  1794     set_active_handles(NULL);
  1795     JNIHandleBlock::release_block(block);
  1798   if (free_handle_block() != NULL) {
  1799     JNIHandleBlock* block = free_handle_block();
  1800     set_free_handle_block(NULL);
  1801     JNIHandleBlock::release_block(block);
  1804   // These have to be removed while this is still a valid thread.
  1805   remove_stack_guard_pages();
  1807   if (UseTLAB) {
  1808     tlab().make_parsable(true);  // retire TLAB, if any
  1811 #ifndef SERIALGC
  1812   if (UseG1GC) {
  1813     flush_barrier_queues();
  1815 #endif
  1817   Threads::remove(this);
  1818   delete this;
  1824 JavaThread* JavaThread::active() {
  1825   Thread* thread = ThreadLocalStorage::thread();
  1826   assert(thread != NULL, "just checking");
  1827   if (thread->is_Java_thread()) {
  1828     return (JavaThread*) thread;
  1829   } else {
  1830     assert(thread->is_VM_thread(), "this must be a vm thread");
  1831     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1832     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1833     assert(ret->is_Java_thread(), "must be a Java thread");
  1834     return ret;
  1838 bool JavaThread::is_lock_owned(address adr) const {
  1839   if (Thread::is_lock_owned(adr)) return true;
  1841   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1842     if (chunk->contains(adr)) return true;
  1845   return false;
  1849 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1850   chunk->set_next(monitor_chunks());
  1851   set_monitor_chunks(chunk);
  1854 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1855   guarantee(monitor_chunks() != NULL, "must be non empty");
  1856   if (monitor_chunks() == chunk) {
  1857     set_monitor_chunks(chunk->next());
  1858   } else {
  1859     MonitorChunk* prev = monitor_chunks();
  1860     while (prev->next() != chunk) prev = prev->next();
  1861     prev->set_next(chunk->next());
  1865 // JVM support.
  1867 // Note: this function shouldn't block if it's called in
  1868 // _thread_in_native_trans state (such as from
  1869 // check_special_condition_for_native_trans()).
  1870 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1872   if (has_last_Java_frame() && has_async_condition()) {
  1873     // If we are at a polling page safepoint (not a poll return)
  1874     // then we must defer async exception because live registers
  1875     // will be clobbered by the exception path. Poll return is
  1876     // ok because the call we a returning from already collides
  1877     // with exception handling registers and so there is no issue.
  1878     // (The exception handling path kills call result registers but
  1879     //  this is ok since the exception kills the result anyway).
  1881     if (is_at_poll_safepoint()) {
  1882       // if the code we are returning to has deoptimized we must defer
  1883       // the exception otherwise live registers get clobbered on the
  1884       // exception path before deoptimization is able to retrieve them.
  1885       //
  1886       RegisterMap map(this, false);
  1887       frame caller_fr = last_frame().sender(&map);
  1888       assert(caller_fr.is_compiled_frame(), "what?");
  1889       if (caller_fr.is_deoptimized_frame()) {
  1890         if (TraceExceptions) {
  1891           ResourceMark rm;
  1892           tty->print_cr("deferred async exception at compiled safepoint");
  1894         return;
  1899   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1900   if (condition == _no_async_condition) {
  1901     // Conditions have changed since has_special_runtime_exit_condition()
  1902     // was called:
  1903     // - if we were here only because of an external suspend request,
  1904     //   then that was taken care of above (or cancelled) so we are done
  1905     // - if we were here because of another async request, then it has
  1906     //   been cleared between the has_special_runtime_exit_condition()
  1907     //   and now so again we are done
  1908     return;
  1911   // Check for pending async. exception
  1912   if (_pending_async_exception != NULL) {
  1913     // Only overwrite an already pending exception, if it is not a threadDeath.
  1914     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1916       // We cannot call Exceptions::_throw(...) here because we cannot block
  1917       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1919       if (TraceExceptions) {
  1920         ResourceMark rm;
  1921         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1922         if (has_last_Java_frame() ) {
  1923           frame f = last_frame();
  1924           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1926         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1928       _pending_async_exception = NULL;
  1929       clear_has_async_exception();
  1933   if (check_unsafe_error &&
  1934       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1935     condition = _no_async_condition;  // done
  1936     switch (thread_state()) {
  1937     case _thread_in_vm:
  1939         JavaThread* THREAD = this;
  1940         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1942     case _thread_in_native:
  1944         ThreadInVMfromNative tiv(this);
  1945         JavaThread* THREAD = this;
  1946         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1948     case _thread_in_Java:
  1950         ThreadInVMfromJava tiv(this);
  1951         JavaThread* THREAD = this;
  1952         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1954     default:
  1955       ShouldNotReachHere();
  1959   assert(condition == _no_async_condition || has_pending_exception() ||
  1960          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1961          "must have handled the async condition, if no exception");
  1964 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1965   //
  1966   // Check for pending external suspend. Internal suspend requests do
  1967   // not use handle_special_runtime_exit_condition().
  1968   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1969   // thread is not the current thread. In older versions of jdbx, jdbx
  1970   // threads could call into the VM with another thread's JNIEnv so we
  1971   // can be here operating on behalf of a suspended thread (4432884).
  1972   bool do_self_suspend = is_external_suspend_with_lock();
  1973   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1974     //
  1975     // Because thread is external suspended the safepoint code will count
  1976     // thread as at a safepoint. This can be odd because we can be here
  1977     // as _thread_in_Java which would normally transition to _thread_blocked
  1978     // at a safepoint. We would like to mark the thread as _thread_blocked
  1979     // before calling java_suspend_self like all other callers of it but
  1980     // we must then observe proper safepoint protocol. (We can't leave
  1981     // _thread_blocked with a safepoint in progress). However we can be
  1982     // here as _thread_in_native_trans so we can't use a normal transition
  1983     // constructor/destructor pair because they assert on that type of
  1984     // transition. We could do something like:
  1985     //
  1986     // JavaThreadState state = thread_state();
  1987     // set_thread_state(_thread_in_vm);
  1988     // {
  1989     //   ThreadBlockInVM tbivm(this);
  1990     //   java_suspend_self()
  1991     // }
  1992     // set_thread_state(_thread_in_vm_trans);
  1993     // if (safepoint) block;
  1994     // set_thread_state(state);
  1995     //
  1996     // but that is pretty messy. Instead we just go with the way the
  1997     // code has worked before and note that this is the only path to
  1998     // java_suspend_self that doesn't put the thread in _thread_blocked
  1999     // mode.
  2001     frame_anchor()->make_walkable(this);
  2002     java_suspend_self();
  2004     // We might be here for reasons in addition to the self-suspend request
  2005     // so check for other async requests.
  2008   if (check_asyncs) {
  2009     check_and_handle_async_exceptions();
  2013 void JavaThread::send_thread_stop(oop java_throwable)  {
  2014   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2015   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2016   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2018   // Do not throw asynchronous exceptions against the compiler thread
  2019   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2020   if (is_Compiler_thread()) return;
  2023     // Actually throw the Throwable against the target Thread - however
  2024     // only if there is no thread death exception installed already.
  2025     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2026       // If the topmost frame is a runtime stub, then we are calling into
  2027       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2028       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2029       // may not be valid
  2030       if (has_last_Java_frame()) {
  2031         frame f = last_frame();
  2032         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2033           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2034           RegisterMap reg_map(this, UseBiasedLocking);
  2035           frame compiled_frame = f.sender(&reg_map);
  2036           if (compiled_frame.can_be_deoptimized()) {
  2037             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2042       // Set async. pending exception in thread.
  2043       set_pending_async_exception(java_throwable);
  2045       if (TraceExceptions) {
  2046        ResourceMark rm;
  2047        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2049       // for AbortVMOnException flag
  2050       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2055   // Interrupt thread so it will wake up from a potential wait()
  2056   Thread::interrupt(this);
  2059 // External suspension mechanism.
  2060 //
  2061 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2062 // to any VM_locks and it is at a transition
  2063 // Self-suspension will happen on the transition out of the vm.
  2064 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2065 //
  2066 // Guarantees on return:
  2067 //   + Target thread will not execute any new bytecode (that's why we need to
  2068 //     force a safepoint)
  2069 //   + Target thread will not enter any new monitors
  2070 //
  2071 void JavaThread::java_suspend() {
  2072   { MutexLocker mu(Threads_lock);
  2073     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2074        return;
  2078   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2079     if (!is_external_suspend()) {
  2080       // a racing resume has cancelled us; bail out now
  2081       return;
  2084     // suspend is done
  2085     uint32_t debug_bits = 0;
  2086     // Warning: is_ext_suspend_completed() may temporarily drop the
  2087     // SR_lock to allow the thread to reach a stable thread state if
  2088     // it is currently in a transient thread state.
  2089     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2090                                  SuspendRetryDelay, &debug_bits) ) {
  2091       return;
  2095   VM_ForceSafepoint vm_suspend;
  2096   VMThread::execute(&vm_suspend);
  2099 // Part II of external suspension.
  2100 // A JavaThread self suspends when it detects a pending external suspend
  2101 // request. This is usually on transitions. It is also done in places
  2102 // where continuing to the next transition would surprise the caller,
  2103 // e.g., monitor entry.
  2104 //
  2105 // Returns the number of times that the thread self-suspended.
  2106 //
  2107 // Note: DO NOT call java_suspend_self() when you just want to block current
  2108 //       thread. java_suspend_self() is the second stage of cooperative
  2109 //       suspension for external suspend requests and should only be used
  2110 //       to complete an external suspend request.
  2111 //
  2112 int JavaThread::java_suspend_self() {
  2113   int ret = 0;
  2115   // we are in the process of exiting so don't suspend
  2116   if (is_exiting()) {
  2117      clear_external_suspend();
  2118      return ret;
  2121   assert(_anchor.walkable() ||
  2122     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2123     "must have walkable stack");
  2125   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2127   assert(!this->is_ext_suspended(),
  2128     "a thread trying to self-suspend should not already be suspended");
  2130   if (this->is_suspend_equivalent()) {
  2131     // If we are self-suspending as a result of the lifting of a
  2132     // suspend equivalent condition, then the suspend_equivalent
  2133     // flag is not cleared until we set the ext_suspended flag so
  2134     // that wait_for_ext_suspend_completion() returns consistent
  2135     // results.
  2136     this->clear_suspend_equivalent();
  2139   // A racing resume may have cancelled us before we grabbed SR_lock
  2140   // above. Or another external suspend request could be waiting for us
  2141   // by the time we return from SR_lock()->wait(). The thread
  2142   // that requested the suspension may already be trying to walk our
  2143   // stack and if we return now, we can change the stack out from under
  2144   // it. This would be a "bad thing (TM)" and cause the stack walker
  2145   // to crash. We stay self-suspended until there are no more pending
  2146   // external suspend requests.
  2147   while (is_external_suspend()) {
  2148     ret++;
  2149     this->set_ext_suspended();
  2151     // _ext_suspended flag is cleared by java_resume()
  2152     while (is_ext_suspended()) {
  2153       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2157   return ret;
  2160 #ifdef ASSERT
  2161 // verify the JavaThread has not yet been published in the Threads::list, and
  2162 // hence doesn't need protection from concurrent access at this stage
  2163 void JavaThread::verify_not_published() {
  2164   if (!Threads_lock->owned_by_self()) {
  2165    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2166    assert( !Threads::includes(this),
  2167            "java thread shouldn't have been published yet!");
  2169   else {
  2170    assert( !Threads::includes(this),
  2171            "java thread shouldn't have been published yet!");
  2174 #endif
  2176 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2177 // progress or when _suspend_flags is non-zero.
  2178 // Current thread needs to self-suspend if there is a suspend request and/or
  2179 // block if a safepoint is in progress.
  2180 // Async exception ISN'T checked.
  2181 // Note only the ThreadInVMfromNative transition can call this function
  2182 // directly and when thread state is _thread_in_native_trans
  2183 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2184   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2186   JavaThread *curJT = JavaThread::current();
  2187   bool do_self_suspend = thread->is_external_suspend();
  2189   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2191   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2192   // thread is not the current thread. In older versions of jdbx, jdbx
  2193   // threads could call into the VM with another thread's JNIEnv so we
  2194   // can be here operating on behalf of a suspended thread (4432884).
  2195   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2196     JavaThreadState state = thread->thread_state();
  2198     // We mark this thread_blocked state as a suspend-equivalent so
  2199     // that a caller to is_ext_suspend_completed() won't be confused.
  2200     // The suspend-equivalent state is cleared by java_suspend_self().
  2201     thread->set_suspend_equivalent();
  2203     // If the safepoint code sees the _thread_in_native_trans state, it will
  2204     // wait until the thread changes to other thread state. There is no
  2205     // guarantee on how soon we can obtain the SR_lock and complete the
  2206     // self-suspend request. It would be a bad idea to let safepoint wait for
  2207     // too long. Temporarily change the state to _thread_blocked to
  2208     // let the VM thread know that this thread is ready for GC. The problem
  2209     // of changing thread state is that safepoint could happen just after
  2210     // java_suspend_self() returns after being resumed, and VM thread will
  2211     // see the _thread_blocked state. We must check for safepoint
  2212     // after restoring the state and make sure we won't leave while a safepoint
  2213     // is in progress.
  2214     thread->set_thread_state(_thread_blocked);
  2215     thread->java_suspend_self();
  2216     thread->set_thread_state(state);
  2217     // Make sure new state is seen by VM thread
  2218     if (os::is_MP()) {
  2219       if (UseMembar) {
  2220         // Force a fence between the write above and read below
  2221         OrderAccess::fence();
  2222       } else {
  2223         // Must use this rather than serialization page in particular on Windows
  2224         InterfaceSupport::serialize_memory(thread);
  2229   if (SafepointSynchronize::do_call_back()) {
  2230     // If we are safepointing, then block the caller which may not be
  2231     // the same as the target thread (see above).
  2232     SafepointSynchronize::block(curJT);
  2235   if (thread->is_deopt_suspend()) {
  2236     thread->clear_deopt_suspend();
  2237     RegisterMap map(thread, false);
  2238     frame f = thread->last_frame();
  2239     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2240       f = f.sender(&map);
  2242     if (f.id() == thread->must_deopt_id()) {
  2243       thread->clear_must_deopt_id();
  2244       f.deoptimize(thread);
  2245     } else {
  2246       fatal("missed deoptimization!");
  2251 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2252 // progress or when _suspend_flags is non-zero.
  2253 // Current thread needs to self-suspend if there is a suspend request and/or
  2254 // block if a safepoint is in progress.
  2255 // Also check for pending async exception (not including unsafe access error).
  2256 // Note only the native==>VM/Java barriers can call this function and when
  2257 // thread state is _thread_in_native_trans.
  2258 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2259   check_safepoint_and_suspend_for_native_trans(thread);
  2261   if (thread->has_async_exception()) {
  2262     // We are in _thread_in_native_trans state, don't handle unsafe
  2263     // access error since that may block.
  2264     thread->check_and_handle_async_exceptions(false);
  2268 // We need to guarantee the Threads_lock here, since resumes are not
  2269 // allowed during safepoint synchronization
  2270 // Can only resume from an external suspension
  2271 void JavaThread::java_resume() {
  2272   assert_locked_or_safepoint(Threads_lock);
  2274   // Sanity check: thread is gone, has started exiting or the thread
  2275   // was not externally suspended.
  2276   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2277     return;
  2280   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2282   clear_external_suspend();
  2284   if (is_ext_suspended()) {
  2285     clear_ext_suspended();
  2286     SR_lock()->notify_all();
  2290 void JavaThread::create_stack_guard_pages() {
  2291   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2292   address low_addr = stack_base() - stack_size();
  2293   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2295   int allocate = os::allocate_stack_guard_pages();
  2296   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2298   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2299     warning("Attempt to allocate stack guard pages failed.");
  2300     return;
  2303   if (os::guard_memory((char *) low_addr, len)) {
  2304     _stack_guard_state = stack_guard_enabled;
  2305   } else {
  2306     warning("Attempt to protect stack guard pages failed.");
  2307     if (os::uncommit_memory((char *) low_addr, len)) {
  2308       warning("Attempt to deallocate stack guard pages failed.");
  2313 void JavaThread::remove_stack_guard_pages() {
  2314   if (_stack_guard_state == stack_guard_unused) return;
  2315   address low_addr = stack_base() - stack_size();
  2316   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2318   if (os::allocate_stack_guard_pages()) {
  2319     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2320       _stack_guard_state = stack_guard_unused;
  2321     } else {
  2322       warning("Attempt to deallocate stack guard pages failed.");
  2324   } else {
  2325     if (_stack_guard_state == stack_guard_unused) return;
  2326     if (os::unguard_memory((char *) low_addr, len)) {
  2327       _stack_guard_state = stack_guard_unused;
  2328     } else {
  2329         warning("Attempt to unprotect stack guard pages failed.");
  2334 void JavaThread::enable_stack_yellow_zone() {
  2335   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2336   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2338   // The base notation is from the stacks point of view, growing downward.
  2339   // We need to adjust it to work correctly with guard_memory()
  2340   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2342   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2343   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2345   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2346     _stack_guard_state = stack_guard_enabled;
  2347   } else {
  2348     warning("Attempt to guard stack yellow zone failed.");
  2350   enable_register_stack_guard();
  2353 void JavaThread::disable_stack_yellow_zone() {
  2354   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2355   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2357   // Simply return if called for a thread that does not use guard pages.
  2358   if (_stack_guard_state == stack_guard_unused) return;
  2360   // The base notation is from the stacks point of view, growing downward.
  2361   // We need to adjust it to work correctly with guard_memory()
  2362   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2364   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2365     _stack_guard_state = stack_guard_yellow_disabled;
  2366   } else {
  2367     warning("Attempt to unguard stack yellow zone failed.");
  2369   disable_register_stack_guard();
  2372 void JavaThread::enable_stack_red_zone() {
  2373   // The base notation is from the stacks point of view, growing downward.
  2374   // We need to adjust it to work correctly with guard_memory()
  2375   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2376   address base = stack_red_zone_base() - stack_red_zone_size();
  2378   guarantee(base < stack_base(),"Error calculating stack red zone");
  2379   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2381   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2382     warning("Attempt to guard stack red zone failed.");
  2386 void JavaThread::disable_stack_red_zone() {
  2387   // The base notation is from the stacks point of view, growing downward.
  2388   // We need to adjust it to work correctly with guard_memory()
  2389   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2390   address base = stack_red_zone_base() - stack_red_zone_size();
  2391   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2392     warning("Attempt to unguard stack red zone failed.");
  2396 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2397   // ignore is there is no stack
  2398   if (!has_last_Java_frame()) return;
  2399   // traverse the stack frames. Starts from top frame.
  2400   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2401     frame* fr = fst.current();
  2402     f(fr, fst.register_map());
  2407 #ifndef PRODUCT
  2408 // Deoptimization
  2409 // Function for testing deoptimization
  2410 void JavaThread::deoptimize() {
  2411   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2412   StackFrameStream fst(this, UseBiasedLocking);
  2413   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2414   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2415   // Iterate over all frames in the thread and deoptimize
  2416   for(; !fst.is_done(); fst.next()) {
  2417     if(fst.current()->can_be_deoptimized()) {
  2419       if (only_at) {
  2420         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2421         // consists of comma or carriage return separated numbers so
  2422         // search for the current bci in that string.
  2423         address pc = fst.current()->pc();
  2424         nmethod* nm =  (nmethod*) fst.current()->cb();
  2425         ScopeDesc* sd = nm->scope_desc_at( pc);
  2426         char buffer[8];
  2427         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2428         size_t len = strlen(buffer);
  2429         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2430         while (found != NULL) {
  2431           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2432               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2433             // Check that the bci found is bracketed by terminators.
  2434             break;
  2436           found = strstr(found + 1, buffer);
  2438         if (!found) {
  2439           continue;
  2443       if (DebugDeoptimization && !deopt) {
  2444         deopt = true; // One-time only print before deopt
  2445         tty->print_cr("[BEFORE Deoptimization]");
  2446         trace_frames();
  2447         trace_stack();
  2449       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2453   if (DebugDeoptimization && deopt) {
  2454     tty->print_cr("[AFTER Deoptimization]");
  2455     trace_frames();
  2460 // Make zombies
  2461 void JavaThread::make_zombies() {
  2462   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2463     if (fst.current()->can_be_deoptimized()) {
  2464       // it is a Java nmethod
  2465       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2466       nm->make_not_entrant();
  2470 #endif // PRODUCT
  2473 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2474   if (!has_last_Java_frame()) return;
  2475   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2476   StackFrameStream fst(this, UseBiasedLocking);
  2477   for(; !fst.is_done(); fst.next()) {
  2478     if (fst.current()->should_be_deoptimized()) {
  2479       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2485 // GC support
  2486 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2488 void JavaThread::gc_epilogue() {
  2489   frames_do(frame_gc_epilogue);
  2493 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2495 void JavaThread::gc_prologue() {
  2496   frames_do(frame_gc_prologue);
  2499 // If the caller is a NamedThread, then remember, in the current scope,
  2500 // the given JavaThread in its _processed_thread field.
  2501 class RememberProcessedThread: public StackObj {
  2502   NamedThread* _cur_thr;
  2503 public:
  2504   RememberProcessedThread(JavaThread* jthr) {
  2505     Thread* thread = Thread::current();
  2506     if (thread->is_Named_thread()) {
  2507       _cur_thr = (NamedThread *)thread;
  2508       _cur_thr->set_processed_thread(jthr);
  2509     } else {
  2510       _cur_thr = NULL;
  2514   ~RememberProcessedThread() {
  2515     if (_cur_thr) {
  2516       _cur_thr->set_processed_thread(NULL);
  2519 };
  2521 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2522   // Verify that the deferred card marks have been flushed.
  2523   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2525   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2526   // since there may be more than one thread using each ThreadProfiler.
  2528   // Traverse the GCHandles
  2529   Thread::oops_do(f, cf);
  2531   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2532           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2534   if (has_last_Java_frame()) {
  2535     // Record JavaThread to GC thread
  2536     RememberProcessedThread rpt(this);
  2538     // Traverse the privileged stack
  2539     if (_privileged_stack_top != NULL) {
  2540       _privileged_stack_top->oops_do(f);
  2543     // traverse the registered growable array
  2544     if (_array_for_gc != NULL) {
  2545       for (int index = 0; index < _array_for_gc->length(); index++) {
  2546         f->do_oop(_array_for_gc->adr_at(index));
  2550     // Traverse the monitor chunks
  2551     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2552       chunk->oops_do(f);
  2555     // Traverse the execution stack
  2556     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2557       fst.current()->oops_do(f, cf, fst.register_map());
  2561   // callee_target is never live across a gc point so NULL it here should
  2562   // it still contain a methdOop.
  2564   set_callee_target(NULL);
  2566   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2567   // If we have deferred set_locals there might be oops waiting to be
  2568   // written
  2569   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2570   if (list != NULL) {
  2571     for (int i = 0; i < list->length(); i++) {
  2572       list->at(i)->oops_do(f);
  2576   // Traverse instance variables at the end since the GC may be moving things
  2577   // around using this function
  2578   f->do_oop((oop*) &_threadObj);
  2579   f->do_oop((oop*) &_vm_result);
  2580   f->do_oop((oop*) &_vm_result_2);
  2581   f->do_oop((oop*) &_exception_oop);
  2582   f->do_oop((oop*) &_pending_async_exception);
  2584   if (jvmti_thread_state() != NULL) {
  2585     jvmti_thread_state()->oops_do(f);
  2589 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2590   Thread::nmethods_do(cf);  // (super method is a no-op)
  2592   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2593           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2595   if (has_last_Java_frame()) {
  2596     // Traverse the execution stack
  2597     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2598       fst.current()->nmethods_do(cf);
  2603 // Printing
  2604 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2605   switch (_thread_state) {
  2606   case _thread_uninitialized:     return "_thread_uninitialized";
  2607   case _thread_new:               return "_thread_new";
  2608   case _thread_new_trans:         return "_thread_new_trans";
  2609   case _thread_in_native:         return "_thread_in_native";
  2610   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2611   case _thread_in_vm:             return "_thread_in_vm";
  2612   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2613   case _thread_in_Java:           return "_thread_in_Java";
  2614   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2615   case _thread_blocked:           return "_thread_blocked";
  2616   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2617   default:                        return "unknown thread state";
  2621 #ifndef PRODUCT
  2622 void JavaThread::print_thread_state_on(outputStream *st) const {
  2623   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2624 };
  2625 void JavaThread::print_thread_state() const {
  2626   print_thread_state_on(tty);
  2627 };
  2628 #endif // PRODUCT
  2630 // Called by Threads::print() for VM_PrintThreads operation
  2631 void JavaThread::print_on(outputStream *st) const {
  2632   st->print("\"%s\" ", get_thread_name());
  2633   oop thread_oop = threadObj();
  2634   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2635   Thread::print_on(st);
  2636   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2637   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2638   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2639     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2641 #ifndef PRODUCT
  2642   print_thread_state_on(st);
  2643   _safepoint_state->print_on(st);
  2644 #endif // PRODUCT
  2647 // Called by fatal error handler. The difference between this and
  2648 // JavaThread::print() is that we can't grab lock or allocate memory.
  2649 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2650   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2651   oop thread_obj = threadObj();
  2652   if (thread_obj != NULL) {
  2653      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2655   st->print(" [");
  2656   st->print("%s", _get_thread_state_name(_thread_state));
  2657   if (osthread()) {
  2658     st->print(", id=%d", osthread()->thread_id());
  2660   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2661             _stack_base - _stack_size, _stack_base);
  2662   st->print("]");
  2663   return;
  2666 // Verification
  2668 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2670 void JavaThread::verify() {
  2671   // Verify oops in the thread.
  2672   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2674   // Verify the stack frames.
  2675   frames_do(frame_verify);
  2678 // CR 6300358 (sub-CR 2137150)
  2679 // Most callers of this method assume that it can't return NULL but a
  2680 // thread may not have a name whilst it is in the process of attaching to
  2681 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2682 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2683 // if vm exit occurs during initialization). These cases can all be accounted
  2684 // for such that this method never returns NULL.
  2685 const char* JavaThread::get_thread_name() const {
  2686 #ifdef ASSERT
  2687   // early safepoints can hit while current thread does not yet have TLS
  2688   if (!SafepointSynchronize::is_at_safepoint()) {
  2689     Thread *cur = Thread::current();
  2690     if (!(cur->is_Java_thread() && cur == this)) {
  2691       // Current JavaThreads are allowed to get their own name without
  2692       // the Threads_lock.
  2693       assert_locked_or_safepoint(Threads_lock);
  2696 #endif // ASSERT
  2697     return get_thread_name_string();
  2700 // Returns a non-NULL representation of this thread's name, or a suitable
  2701 // descriptive string if there is no set name
  2702 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2703   const char* name_str;
  2704   oop thread_obj = threadObj();
  2705   if (thread_obj != NULL) {
  2706     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2707     if (name != NULL) {
  2708       if (buf == NULL) {
  2709         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2711       else {
  2712         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2715     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2716       name_str = "<no-name - thread is attaching>";
  2718     else {
  2719       name_str = Thread::name();
  2722   else {
  2723     name_str = Thread::name();
  2725   assert(name_str != NULL, "unexpected NULL thread name");
  2726   return name_str;
  2730 const char* JavaThread::get_threadgroup_name() const {
  2731   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2732   oop thread_obj = threadObj();
  2733   if (thread_obj != NULL) {
  2734     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2735     if (thread_group != NULL) {
  2736       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2737       // ThreadGroup.name can be null
  2738       if (name != NULL) {
  2739         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2740         return str;
  2744   return NULL;
  2747 const char* JavaThread::get_parent_name() const {
  2748   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2749   oop thread_obj = threadObj();
  2750   if (thread_obj != NULL) {
  2751     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2752     if (thread_group != NULL) {
  2753       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2754       if (parent != NULL) {
  2755         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2756         // ThreadGroup.name can be null
  2757         if (name != NULL) {
  2758           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2759           return str;
  2764   return NULL;
  2767 ThreadPriority JavaThread::java_priority() const {
  2768   oop thr_oop = threadObj();
  2769   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2770   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2771   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2772   return priority;
  2775 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2777   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2778   // Link Java Thread object <-> C++ Thread
  2780   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2781   // and put it into a new Handle.  The Handle "thread_oop" can then
  2782   // be used to pass the C++ thread object to other methods.
  2784   // Set the Java level thread object (jthread) field of the
  2785   // new thread (a JavaThread *) to C++ thread object using the
  2786   // "thread_oop" handle.
  2788   // Set the thread field (a JavaThread *) of the
  2789   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2791   Handle thread_oop(Thread::current(),
  2792                     JNIHandles::resolve_non_null(jni_thread));
  2793   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2794     "must be initialized");
  2795   set_threadObj(thread_oop());
  2796   java_lang_Thread::set_thread(thread_oop(), this);
  2798   if (prio == NoPriority) {
  2799     prio = java_lang_Thread::priority(thread_oop());
  2800     assert(prio != NoPriority, "A valid priority should be present");
  2803   // Push the Java priority down to the native thread; needs Threads_lock
  2804   Thread::set_priority(this, prio);
  2806   // Add the new thread to the Threads list and set it in motion.
  2807   // We must have threads lock in order to call Threads::add.
  2808   // It is crucial that we do not block before the thread is
  2809   // added to the Threads list for if a GC happens, then the java_thread oop
  2810   // will not be visited by GC.
  2811   Threads::add(this);
  2814 oop JavaThread::current_park_blocker() {
  2815   // Support for JSR-166 locks
  2816   oop thread_oop = threadObj();
  2817   if (thread_oop != NULL &&
  2818       JDK_Version::current().supports_thread_park_blocker()) {
  2819     return java_lang_Thread::park_blocker(thread_oop);
  2821   return NULL;
  2825 void JavaThread::print_stack_on(outputStream* st) {
  2826   if (!has_last_Java_frame()) return;
  2827   ResourceMark rm;
  2828   HandleMark   hm;
  2830   RegisterMap reg_map(this);
  2831   vframe* start_vf = last_java_vframe(&reg_map);
  2832   int count = 0;
  2833   for (vframe* f = start_vf; f; f = f->sender() ) {
  2834     if (f->is_java_frame()) {
  2835       javaVFrame* jvf = javaVFrame::cast(f);
  2836       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2838       // Print out lock information
  2839       if (JavaMonitorsInStackTrace) {
  2840         jvf->print_lock_info_on(st, count);
  2842     } else {
  2843       // Ignore non-Java frames
  2846     // Bail-out case for too deep stacks
  2847     count++;
  2848     if (MaxJavaStackTraceDepth == count) return;
  2853 // JVMTI PopFrame support
  2854 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2855   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2856   if (in_bytes(size_in_bytes) != 0) {
  2857     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2858     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2859     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2863 void* JavaThread::popframe_preserved_args() {
  2864   return _popframe_preserved_args;
  2867 ByteSize JavaThread::popframe_preserved_args_size() {
  2868   return in_ByteSize(_popframe_preserved_args_size);
  2871 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2872   int sz = in_bytes(popframe_preserved_args_size());
  2873   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2874   return in_WordSize(sz / wordSize);
  2877 void JavaThread::popframe_free_preserved_args() {
  2878   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2879   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2880   _popframe_preserved_args = NULL;
  2881   _popframe_preserved_args_size = 0;
  2884 #ifndef PRODUCT
  2886 void JavaThread::trace_frames() {
  2887   tty->print_cr("[Describe stack]");
  2888   int frame_no = 1;
  2889   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2890     tty->print("  %d. ", frame_no++);
  2891     fst.current()->print_value_on(tty,this);
  2892     tty->cr();
  2896 class PrintAndVerifyOopClosure: public OopClosure {
  2897  protected:
  2898   template <class T> inline void do_oop_work(T* p) {
  2899     oop obj = oopDesc::load_decode_heap_oop(p);
  2900     if (obj == NULL) return;
  2901     tty->print(INTPTR_FORMAT ": ", p);
  2902     if (obj->is_oop_or_null()) {
  2903       if (obj->is_objArray()) {
  2904         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  2905       } else {
  2906         obj->print();
  2908     } else {
  2909       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  2911     tty->cr();
  2913  public:
  2914   virtual void do_oop(oop* p) { do_oop_work(p); }
  2915   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  2916 };
  2919 static void oops_print(frame* f, const RegisterMap *map) {
  2920   PrintAndVerifyOopClosure print;
  2921   f->print_value();
  2922   f->oops_do(&print, NULL, (RegisterMap*)map);
  2925 // Print our all the locations that contain oops and whether they are
  2926 // valid or not.  This useful when trying to find the oldest frame
  2927 // where an oop has gone bad since the frame walk is from youngest to
  2928 // oldest.
  2929 void JavaThread::trace_oops() {
  2930   tty->print_cr("[Trace oops]");
  2931   frames_do(oops_print);
  2935 #ifdef ASSERT
  2936 // Print or validate the layout of stack frames
  2937 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  2938   ResourceMark rm;
  2939   PRESERVE_EXCEPTION_MARK;
  2940   FrameValues values;
  2941   int frame_no = 0;
  2942   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  2943     fst.current()->describe(values, ++frame_no);
  2944     if (depth == frame_no) break;
  2946   if (validate_only) {
  2947     values.validate();
  2948   } else {
  2949     tty->print_cr("[Describe stack layout]");
  2950     values.print(this);
  2953 #endif
  2955 void JavaThread::trace_stack_from(vframe* start_vf) {
  2956   ResourceMark rm;
  2957   int vframe_no = 1;
  2958   for (vframe* f = start_vf; f; f = f->sender() ) {
  2959     if (f->is_java_frame()) {
  2960       javaVFrame::cast(f)->print_activation(vframe_no++);
  2961     } else {
  2962       f->print();
  2964     if (vframe_no > StackPrintLimit) {
  2965       tty->print_cr("...<more frames>...");
  2966       return;
  2972 void JavaThread::trace_stack() {
  2973   if (!has_last_Java_frame()) return;
  2974   ResourceMark rm;
  2975   HandleMark   hm;
  2976   RegisterMap reg_map(this);
  2977   trace_stack_from(last_java_vframe(&reg_map));
  2981 #endif // PRODUCT
  2984 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2985   assert(reg_map != NULL, "a map must be given");
  2986   frame f = last_frame();
  2987   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2988     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2990   return NULL;
  2994 klassOop JavaThread::security_get_caller_class(int depth) {
  2995   vframeStream vfst(this);
  2996   vfst.security_get_caller_frame(depth);
  2997   if (!vfst.at_end()) {
  2998     return vfst.method()->method_holder();
  3000   return NULL;
  3003 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3004   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3005   CompileBroker::compiler_thread_loop();
  3008 // Create a CompilerThread
  3009 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3010 : JavaThread(&compiler_thread_entry) {
  3011   _env   = NULL;
  3012   _log   = NULL;
  3013   _task  = NULL;
  3014   _queue = queue;
  3015   _counters = counters;
  3016   _buffer_blob = NULL;
  3017   _scanned_nmethod = NULL;
  3019 #ifndef PRODUCT
  3020   _ideal_graph_printer = NULL;
  3021 #endif
  3024 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3025   JavaThread::oops_do(f, cf);
  3026   if (_scanned_nmethod != NULL && cf != NULL) {
  3027     // Safepoints can occur when the sweeper is scanning an nmethod so
  3028     // process it here to make sure it isn't unloaded in the middle of
  3029     // a scan.
  3030     cf->do_code_blob(_scanned_nmethod);
  3034 // ======= Threads ========
  3036 // The Threads class links together all active threads, and provides
  3037 // operations over all threads.  It is protected by its own Mutex
  3038 // lock, which is also used in other contexts to protect thread
  3039 // operations from having the thread being operated on from exiting
  3040 // and going away unexpectedly (e.g., safepoint synchronization)
  3042 JavaThread* Threads::_thread_list = NULL;
  3043 int         Threads::_number_of_threads = 0;
  3044 int         Threads::_number_of_non_daemon_threads = 0;
  3045 int         Threads::_return_code = 0;
  3046 size_t      JavaThread::_stack_size_at_create = 0;
  3048 // All JavaThreads
  3049 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3051 void os_stream();
  3053 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3054 void Threads::threads_do(ThreadClosure* tc) {
  3055   assert_locked_or_safepoint(Threads_lock);
  3056   // ALL_JAVA_THREADS iterates through all JavaThreads
  3057   ALL_JAVA_THREADS(p) {
  3058     tc->do_thread(p);
  3060   // Someday we could have a table or list of all non-JavaThreads.
  3061   // For now, just manually iterate through them.
  3062   tc->do_thread(VMThread::vm_thread());
  3063   Universe::heap()->gc_threads_do(tc);
  3064   WatcherThread *wt = WatcherThread::watcher_thread();
  3065   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3066   // the data for WatcherThread is still valid upon being examined. However,
  3067   // considering that WatchThread terminates when the VM is on the way to
  3068   // exit at safepoint, the chance of the above is extremely small. The right
  3069   // way to prevent termination of WatcherThread would be to acquire
  3070   // Terminator_lock, but we can't do that without violating the lock rank
  3071   // checking in some cases.
  3072   if (wt != NULL)
  3073     tc->do_thread(wt);
  3075   // If CompilerThreads ever become non-JavaThreads, add them here
  3078 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3080   extern void JDK_Version_init();
  3082   // Check version
  3083   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3085   // Initialize the output stream module
  3086   ostream_init();
  3088   // Process java launcher properties.
  3089   Arguments::process_sun_java_launcher_properties(args);
  3091   // Initialize the os module before using TLS
  3092   os::init();
  3094   // Initialize system properties.
  3095   Arguments::init_system_properties();
  3097   // So that JDK version can be used as a discrimintor when parsing arguments
  3098   JDK_Version_init();
  3100   // Update/Initialize System properties after JDK version number is known
  3101   Arguments::init_version_specific_system_properties();
  3103   // Parse arguments
  3104   jint parse_result = Arguments::parse(args);
  3105   if (parse_result != JNI_OK) return parse_result;
  3107   if (PauseAtStartup) {
  3108     os::pause();
  3111 #ifndef USDT2
  3112   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3113 #else /* USDT2 */
  3114   HOTSPOT_VM_INIT_BEGIN();
  3115 #endif /* USDT2 */
  3117   // Record VM creation timing statistics
  3118   TraceVmCreationTime create_vm_timer;
  3119   create_vm_timer.start();
  3121   // Timing (must come after argument parsing)
  3122   TraceTime timer("Create VM", TraceStartupTime);
  3124   // Initialize the os module after parsing the args
  3125   jint os_init_2_result = os::init_2();
  3126   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3128   // Initialize output stream logging
  3129   ostream_init_log();
  3131   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3132   // Must be before create_vm_init_agents()
  3133   if (Arguments::init_libraries_at_startup()) {
  3134     convert_vm_init_libraries_to_agents();
  3137   // Launch -agentlib/-agentpath and converted -Xrun agents
  3138   if (Arguments::init_agents_at_startup()) {
  3139     create_vm_init_agents();
  3142   // Initialize Threads state
  3143   _thread_list = NULL;
  3144   _number_of_threads = 0;
  3145   _number_of_non_daemon_threads = 0;
  3147   // Initialize TLS
  3148   ThreadLocalStorage::init();
  3150   // Initialize global data structures and create system classes in heap
  3151   vm_init_globals();
  3153   // Attach the main thread to this os thread
  3154   JavaThread* main_thread = new JavaThread();
  3155   main_thread->set_thread_state(_thread_in_vm);
  3156   // must do this before set_active_handles and initialize_thread_local_storage
  3157   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3158   // change the stack size recorded here to one based on the java thread
  3159   // stacksize. This adjusted size is what is used to figure the placement
  3160   // of the guard pages.
  3161   main_thread->record_stack_base_and_size();
  3162   main_thread->initialize_thread_local_storage();
  3164   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3166   if (!main_thread->set_as_starting_thread()) {
  3167     vm_shutdown_during_initialization(
  3168       "Failed necessary internal allocation. Out of swap space");
  3169     delete main_thread;
  3170     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3171     return JNI_ENOMEM;
  3174   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3175   // crash Linux VM, see notes in os_linux.cpp.
  3176   main_thread->create_stack_guard_pages();
  3178   // Initialize Java-Level synchronization subsystem
  3179   ObjectMonitor::Initialize() ;
  3181   // Initialize global modules
  3182   jint status = init_globals();
  3183   if (status != JNI_OK) {
  3184     delete main_thread;
  3185     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3186     return status;
  3189   // Should be done after the heap is fully created
  3190   main_thread->cache_global_variables();
  3192   HandleMark hm;
  3194   { MutexLocker mu(Threads_lock);
  3195     Threads::add(main_thread);
  3198   // Any JVMTI raw monitors entered in onload will transition into
  3199   // real raw monitor. VM is setup enough here for raw monitor enter.
  3200   JvmtiExport::transition_pending_onload_raw_monitors();
  3202   if (VerifyBeforeGC &&
  3203       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3204     Universe::heap()->prepare_for_verify();
  3205     Universe::verify();   // make sure we're starting with a clean slate
  3208   // Create the VMThread
  3209   { TraceTime timer("Start VMThread", TraceStartupTime);
  3210     VMThread::create();
  3211     Thread* vmthread = VMThread::vm_thread();
  3213     if (!os::create_thread(vmthread, os::vm_thread))
  3214       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3216     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3217     // Monitors can have spurious returns, must always check another state flag
  3219       MutexLocker ml(Notify_lock);
  3220       os::start_thread(vmthread);
  3221       while (vmthread->active_handles() == NULL) {
  3222         Notify_lock->wait();
  3227   assert (Universe::is_fully_initialized(), "not initialized");
  3228   EXCEPTION_MARK;
  3230   // At this point, the Universe is initialized, but we have not executed
  3231   // any byte code.  Now is a good time (the only time) to dump out the
  3232   // internal state of the JVM for sharing.
  3234   if (DumpSharedSpaces) {
  3235     Universe::heap()->preload_and_dump(CHECK_0);
  3236     ShouldNotReachHere();
  3239   // Always call even when there are not JVMTI environments yet, since environments
  3240   // may be attached late and JVMTI must track phases of VM execution
  3241   JvmtiExport::enter_start_phase();
  3243   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3244   JvmtiExport::post_vm_start();
  3247     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3249     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3250       create_vm_init_libraries();
  3253     if (InitializeJavaLangString) {
  3254       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3255     } else {
  3256       warning("java.lang.String not initialized");
  3259     if (AggressiveOpts) {
  3261         // Forcibly initialize java/util/HashMap and mutate the private
  3262         // static final "frontCacheEnabled" field before we start creating instances
  3263 #ifdef ASSERT
  3264         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3265         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3266 #endif
  3267         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3268         KlassHandle k = KlassHandle(THREAD, k_o);
  3269         guarantee(k.not_null(), "Must find java/util/HashMap");
  3270         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3271         ik->initialize(CHECK_0);
  3272         fieldDescriptor fd;
  3273         // Possible we might not find this field; if so, don't break
  3274         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3275           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3279       if (UseStringCache) {
  3280         // Forcibly initialize java/lang/StringValue and mutate the private
  3281         // static final "stringCacheEnabled" field before we start creating instances
  3282         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3283         // Possible that StringValue isn't present: if so, silently don't break
  3284         if (k_o != NULL) {
  3285           KlassHandle k = KlassHandle(THREAD, k_o);
  3286           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3287           ik->initialize(CHECK_0);
  3288           fieldDescriptor fd;
  3289           // Possible we might not find this field: if so, silently don't break
  3290           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3291             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3297     // Initialize java_lang.System (needed before creating the thread)
  3298     if (InitializeJavaLangSystem) {
  3299       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3300       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3301       Handle thread_group = create_initial_thread_group(CHECK_0);
  3302       Universe::set_main_thread_group(thread_group());
  3303       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3304       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3305       main_thread->set_threadObj(thread_object);
  3306       // Set thread status to running since main thread has
  3307       // been started and running.
  3308       java_lang_Thread::set_thread_status(thread_object,
  3309                                           java_lang_Thread::RUNNABLE);
  3311       // The VM preresolve methods to these classes. Make sure that get initialized
  3312       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3313       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3314       // The VM creates & returns objects of this class. Make sure it's initialized.
  3315       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3316       call_initializeSystemClass(CHECK_0);
  3317     } else {
  3318       warning("java.lang.System not initialized");
  3321     // an instance of OutOfMemory exception has been allocated earlier
  3322     if (InitializeJavaLangExceptionsErrors) {
  3323       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3324       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3325       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3326       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3327       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3328       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3329       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3330     } else {
  3331       warning("java.lang.OutOfMemoryError has not been initialized");
  3332       warning("java.lang.NullPointerException has not been initialized");
  3333       warning("java.lang.ClassCastException has not been initialized");
  3334       warning("java.lang.ArrayStoreException has not been initialized");
  3335       warning("java.lang.ArithmeticException has not been initialized");
  3336       warning("java.lang.StackOverflowError has not been initialized");
  3340   // See        : bugid 4211085.
  3341   // Background : the static initializer of java.lang.Compiler tries to read
  3342   //              property"java.compiler" and read & write property "java.vm.info".
  3343   //              When a security manager is installed through the command line
  3344   //              option "-Djava.security.manager", the above properties are not
  3345   //              readable and the static initializer for java.lang.Compiler fails
  3346   //              resulting in a NoClassDefFoundError.  This can happen in any
  3347   //              user code which calls methods in java.lang.Compiler.
  3348   // Hack :       the hack is to pre-load and initialize this class, so that only
  3349   //              system domains are on the stack when the properties are read.
  3350   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3351   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3352   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3353   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3354   //              Once that is done, we should remove this hack.
  3355   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3357   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3358   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3359   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3360   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3361   // This should also be taken out as soon as 4211383 gets fixed.
  3362   reset_vm_info_property(CHECK_0);
  3364   quicken_jni_functions();
  3366   // Set flag that basic initialization has completed. Used by exceptions and various
  3367   // debug stuff, that does not work until all basic classes have been initialized.
  3368   set_init_completed();
  3370 #ifndef USDT2
  3371   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3372 #else /* USDT2 */
  3373   HOTSPOT_VM_INIT_END();
  3374 #endif /* USDT2 */
  3376   // record VM initialization completion time
  3377   Management::record_vm_init_completed();
  3379   // Compute system loader. Note that this has to occur after set_init_completed, since
  3380   // valid exceptions may be thrown in the process.
  3381   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3382   // set_init_completed has just been called, causing exceptions not to be shortcut
  3383   // anymore. We call vm_exit_during_initialization directly instead.
  3384   SystemDictionary::compute_java_system_loader(THREAD);
  3385   if (HAS_PENDING_EXCEPTION) {
  3386     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3389 #ifndef SERIALGC
  3390   // Support for ConcurrentMarkSweep. This should be cleaned up
  3391   // and better encapsulated. The ugly nested if test would go away
  3392   // once things are properly refactored. XXX YSR
  3393   if (UseConcMarkSweepGC || UseG1GC) {
  3394     if (UseConcMarkSweepGC) {
  3395       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3396     } else {
  3397       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3399     if (HAS_PENDING_EXCEPTION) {
  3400       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3403 #endif // SERIALGC
  3405   // Always call even when there are not JVMTI environments yet, since environments
  3406   // may be attached late and JVMTI must track phases of VM execution
  3407   JvmtiExport::enter_live_phase();
  3409   // Signal Dispatcher needs to be started before VMInit event is posted
  3410   os::signal_init();
  3412   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3413   if (!DisableAttachMechanism) {
  3414     if (StartAttachListener || AttachListener::init_at_startup()) {
  3415       AttachListener::init();
  3419   // Launch -Xrun agents
  3420   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3421   // back-end can launch with -Xdebug -Xrunjdwp.
  3422   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3423     create_vm_init_libraries();
  3426   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3427   JvmtiExport::post_vm_initialized();
  3429   if (CleanChunkPoolAsync) {
  3430     Chunk::start_chunk_pool_cleaner_task();
  3433   // initialize compiler(s)
  3434   CompileBroker::compilation_init();
  3436   Management::initialize(THREAD);
  3437   if (HAS_PENDING_EXCEPTION) {
  3438     // management agent fails to start possibly due to
  3439     // configuration problem and is responsible for printing
  3440     // stack trace if appropriate. Simply exit VM.
  3441     vm_exit(1);
  3444   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3445   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3446   if (MemProfiling)                   MemProfiler::engage();
  3447   StatSampler::engage();
  3448   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3450   BiasedLocking::init();
  3452   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3453     call_postVMInitHook(THREAD);
  3454     // The Java side of PostVMInitHook.run must deal with all
  3455     // exceptions and provide means of diagnosis.
  3456     if (HAS_PENDING_EXCEPTION) {
  3457       CLEAR_PENDING_EXCEPTION;
  3461   // Start up the WatcherThread if there are any periodic tasks
  3462   // NOTE:  All PeriodicTasks should be registered by now. If they
  3463   //   aren't, late joiners might appear to start slowly (we might
  3464   //   take a while to process their first tick).
  3465   if (PeriodicTask::num_tasks() > 0) {
  3466     WatcherThread::start();
  3469   // Give os specific code one last chance to start
  3470   os::init_3();
  3472   create_vm_timer.end();
  3473   return JNI_OK;
  3476 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3477 extern "C" {
  3478   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3480 // Find a command line agent library and return its entry point for
  3481 //         -agentlib:  -agentpath:   -Xrun
  3482 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3483 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3484   OnLoadEntry_t on_load_entry = NULL;
  3485   void *library = agent->os_lib();  // check if we have looked it up before
  3487   if (library == NULL) {
  3488     char buffer[JVM_MAXPATHLEN];
  3489     char ebuf[1024];
  3490     const char *name = agent->name();
  3491     const char *msg = "Could not find agent library ";
  3493     if (agent->is_absolute_path()) {
  3494       library = os::dll_load(name, ebuf, sizeof ebuf);
  3495       if (library == NULL) {
  3496         const char *sub_msg = " in absolute path, with error: ";
  3497         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3498         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3499         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3500         // If we can't find the agent, exit.
  3501         vm_exit_during_initialization(buf, NULL);
  3502         FREE_C_HEAP_ARRAY(char, buf);
  3504     } else {
  3505       // Try to load the agent from the standard dll directory
  3506       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3507       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3508 #ifdef KERNEL
  3509       // Download instrument dll
  3510       if (library == NULL && strcmp(name, "instrument") == 0) {
  3511         char *props = Arguments::get_kernel_properties();
  3512         char *home  = Arguments::get_java_home();
  3513         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3514                       " sun.jkernel.DownloadManager -download client_jvm";
  3515         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3516         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3517         jio_snprintf(cmd, length, fmt, home, props);
  3518         int status = os::fork_and_exec(cmd);
  3519         FreeHeap(props);
  3520         if (status == -1) {
  3521           warning(cmd);
  3522           vm_exit_during_initialization("fork_and_exec failed: %s",
  3523                                          strerror(errno));
  3525         FREE_C_HEAP_ARRAY(char, cmd);
  3526         // when this comes back the instrument.dll should be where it belongs.
  3527         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3529 #endif // KERNEL
  3530       if (library == NULL) { // Try the local directory
  3531         char ns[1] = {0};
  3532         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3533         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3534         if (library == NULL) {
  3535           const char *sub_msg = " on the library path, with error: ";
  3536           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3537           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3538           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3539           // If we can't find the agent, exit.
  3540           vm_exit_during_initialization(buf, NULL);
  3541           FREE_C_HEAP_ARRAY(char, buf);
  3545     agent->set_os_lib(library);
  3548   // Find the OnLoad function.
  3549   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3550     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3551     if (on_load_entry != NULL) break;
  3553   return on_load_entry;
  3556 // Find the JVM_OnLoad entry point
  3557 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3558   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3559   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3562 // Find the Agent_OnLoad entry point
  3563 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3564   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3565   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3568 // For backwards compatibility with -Xrun
  3569 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3570 // treated like -agentpath:
  3571 // Must be called before agent libraries are created
  3572 void Threads::convert_vm_init_libraries_to_agents() {
  3573   AgentLibrary* agent;
  3574   AgentLibrary* next;
  3576   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3577     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3578     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3580     // If there is an JVM_OnLoad function it will get called later,
  3581     // otherwise see if there is an Agent_OnLoad
  3582     if (on_load_entry == NULL) {
  3583       on_load_entry = lookup_agent_on_load(agent);
  3584       if (on_load_entry != NULL) {
  3585         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3586         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3587         Arguments::convert_library_to_agent(agent);
  3588       } else {
  3589         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3595 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3596 // Invokes Agent_OnLoad
  3597 // Called very early -- before JavaThreads exist
  3598 void Threads::create_vm_init_agents() {
  3599   extern struct JavaVM_ main_vm;
  3600   AgentLibrary* agent;
  3602   JvmtiExport::enter_onload_phase();
  3603   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3604     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3606     if (on_load_entry != NULL) {
  3607       // Invoke the Agent_OnLoad function
  3608       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3609       if (err != JNI_OK) {
  3610         vm_exit_during_initialization("agent library failed to init", agent->name());
  3612     } else {
  3613       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3616   JvmtiExport::enter_primordial_phase();
  3619 extern "C" {
  3620   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3623 void Threads::shutdown_vm_agents() {
  3624   // Send any Agent_OnUnload notifications
  3625   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3626   extern struct JavaVM_ main_vm;
  3627   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3629     // Find the Agent_OnUnload function.
  3630     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3631       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3632                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3634       // Invoke the Agent_OnUnload function
  3635       if (unload_entry != NULL) {
  3636         JavaThread* thread = JavaThread::current();
  3637         ThreadToNativeFromVM ttn(thread);
  3638         HandleMark hm(thread);
  3639         (*unload_entry)(&main_vm);
  3640         break;
  3646 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3647 // Invokes JVM_OnLoad
  3648 void Threads::create_vm_init_libraries() {
  3649   extern struct JavaVM_ main_vm;
  3650   AgentLibrary* agent;
  3652   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3653     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3655     if (on_load_entry != NULL) {
  3656       // Invoke the JVM_OnLoad function
  3657       JavaThread* thread = JavaThread::current();
  3658       ThreadToNativeFromVM ttn(thread);
  3659       HandleMark hm(thread);
  3660       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3661       if (err != JNI_OK) {
  3662         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3664     } else {
  3665       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3670 // Last thread running calls java.lang.Shutdown.shutdown()
  3671 void JavaThread::invoke_shutdown_hooks() {
  3672   HandleMark hm(this);
  3674   // We could get here with a pending exception, if so clear it now.
  3675   if (this->has_pending_exception()) {
  3676     this->clear_pending_exception();
  3679   EXCEPTION_MARK;
  3680   klassOop k =
  3681     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3682                                       THREAD);
  3683   if (k != NULL) {
  3684     // SystemDictionary::resolve_or_null will return null if there was
  3685     // an exception.  If we cannot load the Shutdown class, just don't
  3686     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3687     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3688     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3689     // was called, the Shutdown class would have already been loaded
  3690     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3691     instanceKlassHandle shutdown_klass (THREAD, k);
  3692     JavaValue result(T_VOID);
  3693     JavaCalls::call_static(&result,
  3694                            shutdown_klass,
  3695                            vmSymbols::shutdown_method_name(),
  3696                            vmSymbols::void_method_signature(),
  3697                            THREAD);
  3699   CLEAR_PENDING_EXCEPTION;
  3702 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3703 // the program falls off the end of main(). Another VM exit path is through
  3704 // vm_exit() when the program calls System.exit() to return a value or when
  3705 // there is a serious error in VM. The two shutdown paths are not exactly
  3706 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3707 // and VM_Exit op at VM level.
  3708 //
  3709 // Shutdown sequence:
  3710 //   + Wait until we are the last non-daemon thread to execute
  3711 //     <-- every thing is still working at this moment -->
  3712 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3713 //        shutdown hooks, run finalizers if finalization-on-exit
  3714 //   + Call before_exit(), prepare for VM exit
  3715 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3716 //        currently the only user of this mechanism is File.deleteOnExit())
  3717 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3718 //        post thread end and vm death events to JVMTI,
  3719 //        stop signal thread
  3720 //   + Call JavaThread::exit(), it will:
  3721 //      > release JNI handle blocks, remove stack guard pages
  3722 //      > remove this thread from Threads list
  3723 //     <-- no more Java code from this thread after this point -->
  3724 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3725 //     the compiler threads at safepoint
  3726 //     <-- do not use anything that could get blocked by Safepoint -->
  3727 //   + Disable tracing at JNI/JVM barriers
  3728 //   + Set _vm_exited flag for threads that are still running native code
  3729 //   + Delete this thread
  3730 //   + Call exit_globals()
  3731 //      > deletes tty
  3732 //      > deletes PerfMemory resources
  3733 //   + Return to caller
  3735 bool Threads::destroy_vm() {
  3736   JavaThread* thread = JavaThread::current();
  3738   // Wait until we are the last non-daemon thread to execute
  3739   { MutexLocker nu(Threads_lock);
  3740     while (Threads::number_of_non_daemon_threads() > 1 )
  3741       // This wait should make safepoint checks, wait without a timeout,
  3742       // and wait as a suspend-equivalent condition.
  3743       //
  3744       // Note: If the FlatProfiler is running and this thread is waiting
  3745       // for another non-daemon thread to finish, then the FlatProfiler
  3746       // is waiting for the external suspend request on this thread to
  3747       // complete. wait_for_ext_suspend_completion() will eventually
  3748       // timeout, but that takes time. Making this wait a suspend-
  3749       // equivalent condition solves that timeout problem.
  3750       //
  3751       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3752                          Mutex::_as_suspend_equivalent_flag);
  3755   // Hang forever on exit if we are reporting an error.
  3756   if (ShowMessageBoxOnError && is_error_reported()) {
  3757     os::infinite_sleep();
  3759   os::wait_for_keypress_at_exit();
  3761   if (JDK_Version::is_jdk12x_version()) {
  3762     // We are the last thread running, so check if finalizers should be run.
  3763     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3764     HandleMark rm(thread);
  3765     Universe::run_finalizers_on_exit();
  3766   } else {
  3767     // run Java level shutdown hooks
  3768     thread->invoke_shutdown_hooks();
  3771   before_exit(thread);
  3773   thread->exit(true);
  3775   // Stop VM thread.
  3777     // 4945125 The vm thread comes to a safepoint during exit.
  3778     // GC vm_operations can get caught at the safepoint, and the
  3779     // heap is unparseable if they are caught. Grab the Heap_lock
  3780     // to prevent this. The GC vm_operations will not be able to
  3781     // queue until after the vm thread is dead.
  3782     // After this point, we'll never emerge out of the safepoint before
  3783     // the VM exits, so concurrent GC threads do not need to be explicitly
  3784     // stopped; they remain inactive until the process exits.
  3785     // Note: some concurrent G1 threads may be running during a safepoint,
  3786     // but these will not be accessing the heap, just some G1-specific side
  3787     // data structures that are not accessed by any other threads but them
  3788     // after this point in a terminal safepoint.
  3790     MutexLocker ml(Heap_lock);
  3792     VMThread::wait_for_vm_thread_exit();
  3793     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3794     VMThread::destroy();
  3797   // clean up ideal graph printers
  3798 #if defined(COMPILER2) && !defined(PRODUCT)
  3799   IdealGraphPrinter::clean_up();
  3800 #endif
  3802   // Now, all Java threads are gone except daemon threads. Daemon threads
  3803   // running Java code or in VM are stopped by the Safepoint. However,
  3804   // daemon threads executing native code are still running.  But they
  3805   // will be stopped at native=>Java/VM barriers. Note that we can't
  3806   // simply kill or suspend them, as it is inherently deadlock-prone.
  3808 #ifndef PRODUCT
  3809   // disable function tracing at JNI/JVM barriers
  3810   TraceJNICalls = false;
  3811   TraceJVMCalls = false;
  3812   TraceRuntimeCalls = false;
  3813 #endif
  3815   VM_Exit::set_vm_exited();
  3817   notify_vm_shutdown();
  3819   delete thread;
  3821   // exit_globals() will delete tty
  3822   exit_globals();
  3824   return true;
  3828 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3829   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3830   return is_supported_jni_version(version);
  3834 jboolean Threads::is_supported_jni_version(jint version) {
  3835   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3836   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3837   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3838   return JNI_FALSE;
  3842 void Threads::add(JavaThread* p, bool force_daemon) {
  3843   // The threads lock must be owned at this point
  3844   assert_locked_or_safepoint(Threads_lock);
  3846   // See the comment for this method in thread.hpp for its purpose and
  3847   // why it is called here.
  3848   p->initialize_queues();
  3849   p->set_next(_thread_list);
  3850   _thread_list = p;
  3851   _number_of_threads++;
  3852   oop threadObj = p->threadObj();
  3853   bool daemon = true;
  3854   // Bootstrapping problem: threadObj can be null for initial
  3855   // JavaThread (or for threads attached via JNI)
  3856   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3857     _number_of_non_daemon_threads++;
  3858     daemon = false;
  3861   ThreadService::add_thread(p, daemon);
  3863   // Possible GC point.
  3864   Events::log("Thread added: " INTPTR_FORMAT, p);
  3867 void Threads::remove(JavaThread* p) {
  3868   // Extra scope needed for Thread_lock, so we can check
  3869   // that we do not remove thread without safepoint code notice
  3870   { MutexLocker ml(Threads_lock);
  3872     assert(includes(p), "p must be present");
  3874     JavaThread* current = _thread_list;
  3875     JavaThread* prev    = NULL;
  3877     while (current != p) {
  3878       prev    = current;
  3879       current = current->next();
  3882     if (prev) {
  3883       prev->set_next(current->next());
  3884     } else {
  3885       _thread_list = p->next();
  3887     _number_of_threads--;
  3888     oop threadObj = p->threadObj();
  3889     bool daemon = true;
  3890     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3891       _number_of_non_daemon_threads--;
  3892       daemon = false;
  3894       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3895       // on destroy_vm will wake up.
  3896       if (number_of_non_daemon_threads() == 1)
  3897         Threads_lock->notify_all();
  3899     ThreadService::remove_thread(p, daemon);
  3901     // Make sure that safepoint code disregard this thread. This is needed since
  3902     // the thread might mess around with locks after this point. This can cause it
  3903     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3904     // of this thread since it is removed from the queue.
  3905     p->set_terminated_value();
  3906   } // unlock Threads_lock
  3908   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3909   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3912 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3913 bool Threads::includes(JavaThread* p) {
  3914   assert(Threads_lock->is_locked(), "sanity check");
  3915   ALL_JAVA_THREADS(q) {
  3916     if (q == p ) {
  3917       return true;
  3920   return false;
  3923 // Operations on the Threads list for GC.  These are not explicitly locked,
  3924 // but the garbage collector must provide a safe context for them to run.
  3925 // In particular, these things should never be called when the Threads_lock
  3926 // is held by some other thread. (Note: the Safepoint abstraction also
  3927 // uses the Threads_lock to gurantee this property. It also makes sure that
  3928 // all threads gets blocked when exiting or starting).
  3930 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3931   ALL_JAVA_THREADS(p) {
  3932     p->oops_do(f, cf);
  3934   VMThread::vm_thread()->oops_do(f, cf);
  3937 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3938   // Introduce a mechanism allowing parallel threads to claim threads as
  3939   // root groups.  Overhead should be small enough to use all the time,
  3940   // even in sequential code.
  3941   SharedHeap* sh = SharedHeap::heap();
  3942   // Cannot yet substitute active_workers for n_par_threads
  3943   // because of G1CollectedHeap::verify() use of
  3944   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  3945   // turn off parallelism in process_strong_roots while active_workers
  3946   // is being used for parallelism elsewhere.
  3947   bool is_par = sh->n_par_threads() > 0;
  3948   assert(!is_par ||
  3949          (SharedHeap::heap()->n_par_threads() ==
  3950           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  3951   int cp = SharedHeap::heap()->strong_roots_parity();
  3952   ALL_JAVA_THREADS(p) {
  3953     if (p->claim_oops_do(is_par, cp)) {
  3954       p->oops_do(f, cf);
  3957   VMThread* vmt = VMThread::vm_thread();
  3958   if (vmt->claim_oops_do(is_par, cp)) {
  3959     vmt->oops_do(f, cf);
  3963 #ifndef SERIALGC
  3964 // Used by ParallelScavenge
  3965 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3966   ALL_JAVA_THREADS(p) {
  3967     q->enqueue(new ThreadRootsTask(p));
  3969   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3972 // Used by Parallel Old
  3973 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3974   ALL_JAVA_THREADS(p) {
  3975     q->enqueue(new ThreadRootsMarkingTask(p));
  3977   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3979 #endif // SERIALGC
  3981 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3982   ALL_JAVA_THREADS(p) {
  3983     p->nmethods_do(cf);
  3985   VMThread::vm_thread()->nmethods_do(cf);
  3988 void Threads::gc_epilogue() {
  3989   ALL_JAVA_THREADS(p) {
  3990     p->gc_epilogue();
  3994 void Threads::gc_prologue() {
  3995   ALL_JAVA_THREADS(p) {
  3996     p->gc_prologue();
  4000 void Threads::deoptimized_wrt_marked_nmethods() {
  4001   ALL_JAVA_THREADS(p) {
  4002     p->deoptimized_wrt_marked_nmethods();
  4007 // Get count Java threads that are waiting to enter the specified monitor.
  4008 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4009   address monitor, bool doLock) {
  4010   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4011     "must grab Threads_lock or be at safepoint");
  4012   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4014   int i = 0;
  4016     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4017     ALL_JAVA_THREADS(p) {
  4018       if (p->is_Compiler_thread()) continue;
  4020       address pending = (address)p->current_pending_monitor();
  4021       if (pending == monitor) {             // found a match
  4022         if (i < count) result->append(p);   // save the first count matches
  4023         i++;
  4027   return result;
  4031 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4032   assert(doLock ||
  4033          Threads_lock->owned_by_self() ||
  4034          SafepointSynchronize::is_at_safepoint(),
  4035          "must grab Threads_lock or be at safepoint");
  4037   // NULL owner means not locked so we can skip the search
  4038   if (owner == NULL) return NULL;
  4041     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4042     ALL_JAVA_THREADS(p) {
  4043       // first, see if owner is the address of a Java thread
  4044       if (owner == (address)p) return p;
  4047   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4048   if (UseHeavyMonitors) return NULL;
  4050   //
  4051   // If we didn't find a matching Java thread and we didn't force use of
  4052   // heavyweight monitors, then the owner is the stack address of the
  4053   // Lock Word in the owning Java thread's stack.
  4054   //
  4055   JavaThread* the_owner = NULL;
  4057     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4058     ALL_JAVA_THREADS(q) {
  4059       if (q->is_lock_owned(owner)) {
  4060         the_owner = q;
  4061         break;
  4065   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4066   return the_owner;
  4069 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4070 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4071   char buf[32];
  4072   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4074   st->print_cr("Full thread dump %s (%s %s):",
  4075                 Abstract_VM_Version::vm_name(),
  4076                 Abstract_VM_Version::vm_release(),
  4077                 Abstract_VM_Version::vm_info_string()
  4078                );
  4079   st->cr();
  4081 #ifndef SERIALGC
  4082   // Dump concurrent locks
  4083   ConcurrentLocksDump concurrent_locks;
  4084   if (print_concurrent_locks) {
  4085     concurrent_locks.dump_at_safepoint();
  4087 #endif // SERIALGC
  4089   ALL_JAVA_THREADS(p) {
  4090     ResourceMark rm;
  4091     p->print_on(st);
  4092     if (print_stacks) {
  4093       if (internal_format) {
  4094         p->trace_stack();
  4095       } else {
  4096         p->print_stack_on(st);
  4099     st->cr();
  4100 #ifndef SERIALGC
  4101     if (print_concurrent_locks) {
  4102       concurrent_locks.print_locks_on(p, st);
  4104 #endif // SERIALGC
  4107   VMThread::vm_thread()->print_on(st);
  4108   st->cr();
  4109   Universe::heap()->print_gc_threads_on(st);
  4110   WatcherThread* wt = WatcherThread::watcher_thread();
  4111   if (wt != NULL) wt->print_on(st);
  4112   st->cr();
  4113   CompileBroker::print_compiler_threads_on(st);
  4114   st->flush();
  4117 // Threads::print_on_error() is called by fatal error handler. It's possible
  4118 // that VM is not at safepoint and/or current thread is inside signal handler.
  4119 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4120 // memory (even in resource area), it might deadlock the error handler.
  4121 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4122   bool found_current = false;
  4123   st->print_cr("Java Threads: ( => current thread )");
  4124   ALL_JAVA_THREADS(thread) {
  4125     bool is_current = (current == thread);
  4126     found_current = found_current || is_current;
  4128     st->print("%s", is_current ? "=>" : "  ");
  4130     st->print(PTR_FORMAT, thread);
  4131     st->print(" ");
  4132     thread->print_on_error(st, buf, buflen);
  4133     st->cr();
  4135   st->cr();
  4137   st->print_cr("Other Threads:");
  4138   if (VMThread::vm_thread()) {
  4139     bool is_current = (current == VMThread::vm_thread());
  4140     found_current = found_current || is_current;
  4141     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4143     st->print(PTR_FORMAT, VMThread::vm_thread());
  4144     st->print(" ");
  4145     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4146     st->cr();
  4148   WatcherThread* wt = WatcherThread::watcher_thread();
  4149   if (wt != NULL) {
  4150     bool is_current = (current == wt);
  4151     found_current = found_current || is_current;
  4152     st->print("%s", is_current ? "=>" : "  ");
  4154     st->print(PTR_FORMAT, wt);
  4155     st->print(" ");
  4156     wt->print_on_error(st, buf, buflen);
  4157     st->cr();
  4159   if (!found_current) {
  4160     st->cr();
  4161     st->print("=>" PTR_FORMAT " (exited) ", current);
  4162     current->print_on_error(st, buf, buflen);
  4163     st->cr();
  4167 // Internal SpinLock and Mutex
  4168 // Based on ParkEvent
  4170 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4171 //
  4172 // We employ SpinLocks _only for low-contention, fixed-length
  4173 // short-duration critical sections where we're concerned
  4174 // about native mutex_t or HotSpot Mutex:: latency.
  4175 // The mux construct provides a spin-then-block mutual exclusion
  4176 // mechanism.
  4177 //
  4178 // Testing has shown that contention on the ListLock guarding gFreeList
  4179 // is common.  If we implement ListLock as a simple SpinLock it's common
  4180 // for the JVM to devolve to yielding with little progress.  This is true
  4181 // despite the fact that the critical sections protected by ListLock are
  4182 // extremely short.
  4183 //
  4184 // TODO-FIXME: ListLock should be of type SpinLock.
  4185 // We should make this a 1st-class type, integrated into the lock
  4186 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4187 // should have sufficient padding to avoid false-sharing and excessive
  4188 // cache-coherency traffic.
  4191 typedef volatile int SpinLockT ;
  4193 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4194   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4195      return ;   // normal fast-path return
  4198   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4199   TEVENT (SpinAcquire - ctx) ;
  4200   int ctr = 0 ;
  4201   int Yields = 0 ;
  4202   for (;;) {
  4203      while (*adr != 0) {
  4204         ++ctr ;
  4205         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4206            if (Yields > 5) {
  4207              // Consider using a simple NakedSleep() instead.
  4208              // Then SpinAcquire could be called by non-JVM threads
  4209              Thread::current()->_ParkEvent->park(1) ;
  4210            } else {
  4211              os::NakedYield() ;
  4212              ++Yields ;
  4214         } else {
  4215            SpinPause() ;
  4218      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4222 void Thread::SpinRelease (volatile int * adr) {
  4223   assert (*adr != 0, "invariant") ;
  4224   OrderAccess::fence() ;      // guarantee at least release consistency.
  4225   // Roach-motel semantics.
  4226   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4227   // but prior LDs and STs within the critical section can't be allowed
  4228   // to reorder or float past the ST that releases the lock.
  4229   *adr = 0 ;
  4232 // muxAcquire and muxRelease:
  4233 //
  4234 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4235 //    The LSB of the word is set IFF the lock is held.
  4236 //    The remainder of the word points to the head of a singly-linked list
  4237 //    of threads blocked on the lock.
  4238 //
  4239 // *  The current implementation of muxAcquire-muxRelease uses its own
  4240 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4241 //    minimizing the peak number of extant ParkEvent instances then
  4242 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4243 //    as certain invariants were satisfied.  Specifically, care would need
  4244 //    to be taken with regards to consuming unpark() "permits".
  4245 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4246 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4247 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4248 //    consume an unpark() permit intended for monitorenter, for instance.
  4249 //    One way around this would be to widen the restricted-range semaphore
  4250 //    implemented in park().  Another alternative would be to provide
  4251 //    multiple instances of the PlatformEvent() for each thread.  One
  4252 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4253 //
  4254 // *  Usage:
  4255 //    -- Only as leaf locks
  4256 //    -- for short-term locking only as muxAcquire does not perform
  4257 //       thread state transitions.
  4258 //
  4259 // Alternatives:
  4260 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4261 //    but with parking or spin-then-park instead of pure spinning.
  4262 // *  Use Taura-Oyama-Yonenzawa locks.
  4263 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4264 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4265 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4266 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4267 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4268 //    boundaries by using placement-new.
  4269 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4270 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4271 //    The validity of the backlinks must be ratified before we trust the value.
  4272 //    If the backlinks are invalid the exiting thread must back-track through the
  4273 //    the forward links, which are always trustworthy.
  4274 // *  Add a successor indication.  The LockWord is currently encoded as
  4275 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4276 //    to provide the usual futile-wakeup optimization.
  4277 //    See RTStt for details.
  4278 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4279 //
  4282 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4283 enum MuxBits { LOCKBIT = 1 } ;
  4285 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4286   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4287   if (w == 0) return ;
  4288   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4289      return ;
  4292   TEVENT (muxAcquire - Contention) ;
  4293   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4294   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4295   for (;;) {
  4296      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4298      // Optional spin phase: spin-then-park strategy
  4299      while (--its >= 0) {
  4300        w = *Lock ;
  4301        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4302           return ;
  4306      Self->reset() ;
  4307      Self->OnList = intptr_t(Lock) ;
  4308      // The following fence() isn't _strictly necessary as the subsequent
  4309      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4310      OrderAccess::fence();
  4311      for (;;) {
  4312         w = *Lock ;
  4313         if ((w & LOCKBIT) == 0) {
  4314             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4315                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4316                 return ;
  4318             continue ;      // Interference -- *Lock changed -- Just retry
  4320         assert (w & LOCKBIT, "invariant") ;
  4321         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4322         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4325      while (Self->OnList != 0) {
  4326         Self->park() ;
  4331 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4332   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4333   if (w == 0) return ;
  4334   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4335     return ;
  4338   TEVENT (muxAcquire - Contention) ;
  4339   ParkEvent * ReleaseAfter = NULL ;
  4340   if (ev == NULL) {
  4341     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4343   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4344   for (;;) {
  4345     guarantee (ev->OnList == 0, "invariant") ;
  4346     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4348     // Optional spin phase: spin-then-park strategy
  4349     while (--its >= 0) {
  4350       w = *Lock ;
  4351       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4352         if (ReleaseAfter != NULL) {
  4353           ParkEvent::Release (ReleaseAfter) ;
  4355         return ;
  4359     ev->reset() ;
  4360     ev->OnList = intptr_t(Lock) ;
  4361     // The following fence() isn't _strictly necessary as the subsequent
  4362     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4363     OrderAccess::fence();
  4364     for (;;) {
  4365       w = *Lock ;
  4366       if ((w & LOCKBIT) == 0) {
  4367         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4368           ev->OnList = 0 ;
  4369           // We call ::Release while holding the outer lock, thus
  4370           // artificially lengthening the critical section.
  4371           // Consider deferring the ::Release() until the subsequent unlock(),
  4372           // after we've dropped the outer lock.
  4373           if (ReleaseAfter != NULL) {
  4374             ParkEvent::Release (ReleaseAfter) ;
  4376           return ;
  4378         continue ;      // Interference -- *Lock changed -- Just retry
  4380       assert (w & LOCKBIT, "invariant") ;
  4381       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4382       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4385     while (ev->OnList != 0) {
  4386       ev->park() ;
  4391 // Release() must extract a successor from the list and then wake that thread.
  4392 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4393 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4394 // Release() would :
  4395 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4396 // (B) Extract a successor from the private list "in-hand"
  4397 // (C) attempt to CAS() the residual back into *Lock over null.
  4398 //     If there were any newly arrived threads and the CAS() would fail.
  4399 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4400 //     with the RATs and repeat as needed.  Alternately, Release() might
  4401 //     detach and extract a successor, but then pass the residual list to the wakee.
  4402 //     The wakee would be responsible for reattaching and remerging before it
  4403 //     competed for the lock.
  4404 //
  4405 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4406 // multiple concurrent pushers, but only one popper or detacher.
  4407 // This implementation pops from the head of the list.  This is unfair,
  4408 // but tends to provide excellent throughput as hot threads remain hot.
  4409 // (We wake recently run threads first).
  4411 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4412   for (;;) {
  4413     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4414     assert (w & LOCKBIT, "invariant") ;
  4415     if (w == LOCKBIT) return ;
  4416     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4417     assert (List != NULL, "invariant") ;
  4418     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4419     ParkEvent * nxt = List->ListNext ;
  4421     // The following CAS() releases the lock and pops the head element.
  4422     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4423       continue ;
  4425     List->OnList = 0 ;
  4426     OrderAccess::fence() ;
  4427     List->unpark () ;
  4428     return ;
  4433 void Threads::verify() {
  4434   ALL_JAVA_THREADS(p) {
  4435     p->verify();
  4437   VMThread* thread = VMThread::vm_thread();
  4438   if (thread != NULL) thread->verify();

mercurial