src/share/vm/runtime/thread.cpp

Wed, 11 Jan 2012 17:34:02 -0500

author
phh
date
Wed, 11 Jan 2012 17:34:02 -0500
changeset 3427
94ec88ca68e2
parent 3294
bca17e38de00
child 3499
aa3d708d67c4
permissions
-rw-r--r--

7115199: Add event tracing hooks and Java Flight Recorder infrastructure
Summary: Added a nop tracing infrastructure, JFR makefile changes and other infrastructure used only by JFR.
Reviewed-by: acorn, sspitsyn
Contributed-by: markus.gronlund@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/oopFactory.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/instanceKlass.hpp"
    39 #include "oops/objArrayOop.hpp"
    40 #include "oops/oop.inline.hpp"
    41 #include "oops/symbol.hpp"
    42 #include "prims/jvm_misc.hpp"
    43 #include "prims/jvmtiExport.hpp"
    44 #include "prims/jvmtiThreadState.hpp"
    45 #include "prims/privilegedStack.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/arguments.hpp"
    48 #include "runtime/biasedLocking.hpp"
    49 #include "runtime/deoptimization.hpp"
    50 #include "runtime/fprofiler.hpp"
    51 #include "runtime/frame.inline.hpp"
    52 #include "runtime/init.hpp"
    53 #include "runtime/interfaceSupport.hpp"
    54 #include "runtime/java.hpp"
    55 #include "runtime/javaCalls.hpp"
    56 #include "runtime/jniPeriodicChecker.hpp"
    57 #include "runtime/memprofiler.hpp"
    58 #include "runtime/mutexLocker.hpp"
    59 #include "runtime/objectMonitor.hpp"
    60 #include "runtime/osThread.hpp"
    61 #include "runtime/safepoint.hpp"
    62 #include "runtime/sharedRuntime.hpp"
    63 #include "runtime/statSampler.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/task.hpp"
    66 #include "runtime/threadCritical.hpp"
    67 #include "runtime/threadLocalStorage.hpp"
    68 #include "runtime/vframe.hpp"
    69 #include "runtime/vframeArray.hpp"
    70 #include "runtime/vframe_hp.hpp"
    71 #include "runtime/vmThread.hpp"
    72 #include "runtime/vm_operations.hpp"
    73 #include "services/attachListener.hpp"
    74 #include "services/management.hpp"
    75 #include "services/threadService.hpp"
    76 #include "trace/traceEventTypes.hpp"
    77 #include "utilities/defaultStream.hpp"
    78 #include "utilities/dtrace.hpp"
    79 #include "utilities/events.hpp"
    80 #include "utilities/preserveException.hpp"
    81 #ifdef TARGET_OS_FAMILY_linux
    82 # include "os_linux.inline.hpp"
    83 # include "thread_linux.inline.hpp"
    84 #endif
    85 #ifdef TARGET_OS_FAMILY_solaris
    86 # include "os_solaris.inline.hpp"
    87 # include "thread_solaris.inline.hpp"
    88 #endif
    89 #ifdef TARGET_OS_FAMILY_windows
    90 # include "os_windows.inline.hpp"
    91 # include "thread_windows.inline.hpp"
    92 #endif
    93 #ifdef TARGET_OS_FAMILY_bsd
    94 # include "os_bsd.inline.hpp"
    95 # include "thread_bsd.inline.hpp"
    96 #endif
    97 #ifndef SERIALGC
    98 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    99 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   100 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   101 #endif
   102 #ifdef COMPILER1
   103 #include "c1/c1_Compiler.hpp"
   104 #endif
   105 #ifdef COMPILER2
   106 #include "opto/c2compiler.hpp"
   107 #include "opto/idealGraphPrinter.hpp"
   108 #endif
   110 #ifdef DTRACE_ENABLED
   112 // Only bother with this argument setup if dtrace is available
   114 #ifndef USDT2
   115 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   117 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   118   intptr_t, intptr_t, bool);
   119 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   120   intptr_t, intptr_t, bool);
   122 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   123   {                                                                        \
   124     ResourceMark rm(this);                                                 \
   125     int len = 0;                                                           \
   126     const char* name = (javathread)->get_thread_name();                    \
   127     len = strlen(name);                                                    \
   128     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   129       name, len,                                                           \
   130       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   131       (javathread)->osthread()->thread_id(),                               \
   132       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   133   }
   135 #else /* USDT2 */
   137 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   138 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   140 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   141   {                                                                        \
   142     ResourceMark rm(this);                                                 \
   143     int len = 0;                                                           \
   144     const char* name = (javathread)->get_thread_name();                    \
   145     len = strlen(name);                                                    \
   146     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   147       (char *) name, len,                                                           \
   148       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   149       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   150       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   151   }
   153 #endif /* USDT2 */
   155 #else //  ndef DTRACE_ENABLED
   157 #define DTRACE_THREAD_PROBE(probe, javathread)
   159 #endif // ndef DTRACE_ENABLED
   161 // Class hierarchy
   162 // - Thread
   163 //   - VMThread
   164 //   - WatcherThread
   165 //   - ConcurrentMarkSweepThread
   166 //   - JavaThread
   167 //     - CompilerThread
   169 // ======= Thread ========
   171 // Support for forcing alignment of thread objects for biased locking
   172 void* Thread::operator new(size_t size) {
   173   if (UseBiasedLocking) {
   174     const int alignment = markOopDesc::biased_lock_alignment;
   175     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   176     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   177     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   178     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   179            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   180            "JavaThread alignment code overflowed allocated storage");
   181     if (TraceBiasedLocking) {
   182       if (aligned_addr != real_malloc_addr)
   183         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   184                       real_malloc_addr, aligned_addr);
   185     }
   186     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   187     return aligned_addr;
   188   } else {
   189     return CHeapObj::operator new(size);
   190   }
   191 }
   193 void Thread::operator delete(void* p) {
   194   if (UseBiasedLocking) {
   195     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   196     CHeapObj::operator delete(real_malloc_addr);
   197   } else {
   198     CHeapObj::operator delete(p);
   199   }
   200 }
   203 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   204 // JavaThread
   207 Thread::Thread() {
   208   // stack and get_thread
   209   set_stack_base(NULL);
   210   set_stack_size(0);
   211   set_self_raw_id(0);
   212   set_lgrp_id(-1);
   214   // allocated data structures
   215   set_osthread(NULL);
   216   set_resource_area(new ResourceArea());
   217   set_handle_area(new HandleArea(NULL));
   218   set_active_handles(NULL);
   219   set_free_handle_block(NULL);
   220   set_last_handle_mark(NULL);
   222   // This initial value ==> never claimed.
   223   _oops_do_parity = 0;
   225   // the handle mark links itself to last_handle_mark
   226   new HandleMark(this);
   228   // plain initialization
   229   debug_only(_owned_locks = NULL;)
   230   debug_only(_allow_allocation_count = 0;)
   231   NOT_PRODUCT(_allow_safepoint_count = 0;)
   232   NOT_PRODUCT(_skip_gcalot = false;)
   233   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   234   _jvmti_env_iteration_count = 0;
   235   set_allocated_bytes(0);
   236   set_trace_buffer(NULL);
   237   _vm_operation_started_count = 0;
   238   _vm_operation_completed_count = 0;
   239   _current_pending_monitor = NULL;
   240   _current_pending_monitor_is_from_java = true;
   241   _current_waiting_monitor = NULL;
   242   _num_nested_signal = 0;
   243   omFreeList = NULL ;
   244   omFreeCount = 0 ;
   245   omFreeProvision = 32 ;
   246   omInUseList = NULL ;
   247   omInUseCount = 0 ;
   249   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   250   _suspend_flags = 0;
   252   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   253   _hashStateX = os::random() ;
   254   _hashStateY = 842502087 ;
   255   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   256   _hashStateW = 273326509 ;
   258   _OnTrap   = 0 ;
   259   _schedctl = NULL ;
   260   _Stalled  = 0 ;
   261   _TypeTag  = 0x2BAD ;
   263   // Many of the following fields are effectively final - immutable
   264   // Note that nascent threads can't use the Native Monitor-Mutex
   265   // construct until the _MutexEvent is initialized ...
   266   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   267   // we might instead use a stack of ParkEvents that we could provision on-demand.
   268   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   269   // and ::Release()
   270   _ParkEvent   = ParkEvent::Allocate (this) ;
   271   _SleepEvent  = ParkEvent::Allocate (this) ;
   272   _MutexEvent  = ParkEvent::Allocate (this) ;
   273   _MuxEvent    = ParkEvent::Allocate (this) ;
   275 #ifdef CHECK_UNHANDLED_OOPS
   276   if (CheckUnhandledOops) {
   277     _unhandled_oops = new UnhandledOops(this);
   278   }
   279 #endif // CHECK_UNHANDLED_OOPS
   280 #ifdef ASSERT
   281   if (UseBiasedLocking) {
   282     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   283     assert(this == _real_malloc_address ||
   284            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   285            "bug in forced alignment of thread objects");
   286   }
   287 #endif /* ASSERT */
   288 }
   290 void Thread::initialize_thread_local_storage() {
   291   // Note: Make sure this method only calls
   292   // non-blocking operations. Otherwise, it might not work
   293   // with the thread-startup/safepoint interaction.
   295   // During Java thread startup, safepoint code should allow this
   296   // method to complete because it may need to allocate memory to
   297   // store information for the new thread.
   299   // initialize structure dependent on thread local storage
   300   ThreadLocalStorage::set_thread(this);
   302   // set up any platform-specific state.
   303   os::initialize_thread();
   305 }
   307 void Thread::record_stack_base_and_size() {
   308   set_stack_base(os::current_stack_base());
   309   set_stack_size(os::current_stack_size());
   310 }
   313 Thread::~Thread() {
   314   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   315   ObjectSynchronizer::omFlush (this) ;
   317   // deallocate data structures
   318   delete resource_area();
   319   // since the handle marks are using the handle area, we have to deallocated the root
   320   // handle mark before deallocating the thread's handle area,
   321   assert(last_handle_mark() != NULL, "check we have an element");
   322   delete last_handle_mark();
   323   assert(last_handle_mark() == NULL, "check we have reached the end");
   325   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   326   // We NULL out the fields for good hygiene.
   327   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   328   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   329   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   330   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   332   delete handle_area();
   334   // osthread() can be NULL, if creation of thread failed.
   335   if (osthread() != NULL) os::free_thread(osthread());
   337   delete _SR_lock;
   339   // clear thread local storage if the Thread is deleting itself
   340   if (this == Thread::current()) {
   341     ThreadLocalStorage::set_thread(NULL);
   342   } else {
   343     // In the case where we're not the current thread, invalidate all the
   344     // caches in case some code tries to get the current thread or the
   345     // thread that was destroyed, and gets stale information.
   346     ThreadLocalStorage::invalidate_all();
   347   }
   348   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   349 }
   351 // NOTE: dummy function for assertion purpose.
   352 void Thread::run() {
   353   ShouldNotReachHere();
   354 }
   356 #ifdef ASSERT
   357 // Private method to check for dangling thread pointer
   358 void check_for_dangling_thread_pointer(Thread *thread) {
   359  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   360          "possibility of dangling Thread pointer");
   361 }
   362 #endif
   365 #ifndef PRODUCT
   366 // Tracing method for basic thread operations
   367 void Thread::trace(const char* msg, const Thread* const thread) {
   368   if (!TraceThreadEvents) return;
   369   ResourceMark rm;
   370   ThreadCritical tc;
   371   const char *name = "non-Java thread";
   372   int prio = -1;
   373   if (thread->is_Java_thread()
   374       && !thread->is_Compiler_thread()) {
   375     // The Threads_lock must be held to get information about
   376     // this thread but may not be in some situations when
   377     // tracing  thread events.
   378     bool release_Threads_lock = false;
   379     if (!Threads_lock->owned_by_self()) {
   380       Threads_lock->lock();
   381       release_Threads_lock = true;
   382     }
   383     JavaThread* jt = (JavaThread *)thread;
   384     name = (char *)jt->get_thread_name();
   385     oop thread_oop = jt->threadObj();
   386     if (thread_oop != NULL) {
   387       prio = java_lang_Thread::priority(thread_oop);
   388     }
   389     if (release_Threads_lock) {
   390       Threads_lock->unlock();
   391     }
   392   }
   393   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   394 }
   395 #endif
   398 ThreadPriority Thread::get_priority(const Thread* const thread) {
   399   trace("get priority", thread);
   400   ThreadPriority priority;
   401   // Can return an error!
   402   (void)os::get_priority(thread, priority);
   403   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   404   return priority;
   405 }
   407 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   408   trace("set priority", thread);
   409   debug_only(check_for_dangling_thread_pointer(thread);)
   410   // Can return an error!
   411   (void)os::set_priority(thread, priority);
   412 }
   415 void Thread::start(Thread* thread) {
   416   trace("start", thread);
   417   // Start is different from resume in that its safety is guaranteed by context or
   418   // being called from a Java method synchronized on the Thread object.
   419   if (!DisableStartThread) {
   420     if (thread->is_Java_thread()) {
   421       // Initialize the thread state to RUNNABLE before starting this thread.
   422       // Can not set it after the thread started because we do not know the
   423       // exact thread state at that time. It could be in MONITOR_WAIT or
   424       // in SLEEPING or some other state.
   425       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   426                                           java_lang_Thread::RUNNABLE);
   427     }
   428     os::start_thread(thread);
   429   }
   430 }
   432 // Enqueue a VM_Operation to do the job for us - sometime later
   433 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   434   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   435   VMThread::execute(vm_stop);
   436 }
   439 //
   440 // Check if an external suspend request has completed (or has been
   441 // cancelled). Returns true if the thread is externally suspended and
   442 // false otherwise.
   443 //
   444 // The bits parameter returns information about the code path through
   445 // the routine. Useful for debugging:
   446 //
   447 // set in is_ext_suspend_completed():
   448 // 0x00000001 - routine was entered
   449 // 0x00000010 - routine return false at end
   450 // 0x00000100 - thread exited (return false)
   451 // 0x00000200 - suspend request cancelled (return false)
   452 // 0x00000400 - thread suspended (return true)
   453 // 0x00001000 - thread is in a suspend equivalent state (return true)
   454 // 0x00002000 - thread is native and walkable (return true)
   455 // 0x00004000 - thread is native_trans and walkable (needed retry)
   456 //
   457 // set in wait_for_ext_suspend_completion():
   458 // 0x00010000 - routine was entered
   459 // 0x00020000 - suspend request cancelled before loop (return false)
   460 // 0x00040000 - thread suspended before loop (return true)
   461 // 0x00080000 - suspend request cancelled in loop (return false)
   462 // 0x00100000 - thread suspended in loop (return true)
   463 // 0x00200000 - suspend not completed during retry loop (return false)
   464 //
   466 // Helper class for tracing suspend wait debug bits.
   467 //
   468 // 0x00000100 indicates that the target thread exited before it could
   469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   470 // 0x00080000 each indicate a cancelled suspend request so they don't
   471 // count as wait failures either.
   472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   474 class TraceSuspendDebugBits : public StackObj {
   475  private:
   476   JavaThread * jt;
   477   bool         is_wait;
   478   bool         called_by_wait;  // meaningful when !is_wait
   479   uint32_t *   bits;
   481  public:
   482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   483                         uint32_t *_bits) {
   484     jt             = _jt;
   485     is_wait        = _is_wait;
   486     called_by_wait = _called_by_wait;
   487     bits           = _bits;
   488   }
   490   ~TraceSuspendDebugBits() {
   491     if (!is_wait) {
   492 #if 1
   493       // By default, don't trace bits for is_ext_suspend_completed() calls.
   494       // That trace is very chatty.
   495       return;
   496 #else
   497       if (!called_by_wait) {
   498         // If tracing for is_ext_suspend_completed() is enabled, then only
   499         // trace calls to it from wait_for_ext_suspend_completion()
   500         return;
   501       }
   502 #endif
   503     }
   505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   508         ResourceMark rm;
   510         tty->print_cr(
   511             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   512             jt->get_thread_name(), *bits);
   514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   515       }
   516     }
   517   }
   518 };
   519 #undef DEBUG_FALSE_BITS
   522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   523   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   525   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   526   bool do_trans_retry;           // flag to force the retry
   528   *bits |= 0x00000001;
   530   do {
   531     do_trans_retry = false;
   533     if (is_exiting()) {
   534       // Thread is in the process of exiting. This is always checked
   535       // first to reduce the risk of dereferencing a freed JavaThread.
   536       *bits |= 0x00000100;
   537       return false;
   538     }
   540     if (!is_external_suspend()) {
   541       // Suspend request is cancelled. This is always checked before
   542       // is_ext_suspended() to reduce the risk of a rogue resume
   543       // confusing the thread that made the suspend request.
   544       *bits |= 0x00000200;
   545       return false;
   546     }
   548     if (is_ext_suspended()) {
   549       // thread is suspended
   550       *bits |= 0x00000400;
   551       return true;
   552     }
   554     // Now that we no longer do hard suspends of threads running
   555     // native code, the target thread can be changing thread state
   556     // while we are in this routine:
   557     //
   558     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   559     //
   560     // We save a copy of the thread state as observed at this moment
   561     // and make our decision about suspend completeness based on the
   562     // copy. This closes the race where the thread state is seen as
   563     // _thread_in_native_trans in the if-thread_blocked check, but is
   564     // seen as _thread_blocked in if-thread_in_native_trans check.
   565     JavaThreadState save_state = thread_state();
   567     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   568       // If the thread's state is _thread_blocked and this blocking
   569       // condition is known to be equivalent to a suspend, then we can
   570       // consider the thread to be externally suspended. This means that
   571       // the code that sets _thread_blocked has been modified to do
   572       // self-suspension if the blocking condition releases. We also
   573       // used to check for CONDVAR_WAIT here, but that is now covered by
   574       // the _thread_blocked with self-suspension check.
   575       //
   576       // Return true since we wouldn't be here unless there was still an
   577       // external suspend request.
   578       *bits |= 0x00001000;
   579       return true;
   580     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   581       // Threads running native code will self-suspend on native==>VM/Java
   582       // transitions. If its stack is walkable (should always be the case
   583       // unless this function is called before the actual java_suspend()
   584       // call), then the wait is done.
   585       *bits |= 0x00002000;
   586       return true;
   587     } else if (!called_by_wait && !did_trans_retry &&
   588                save_state == _thread_in_native_trans &&
   589                frame_anchor()->walkable()) {
   590       // The thread is transitioning from thread_in_native to another
   591       // thread state. check_safepoint_and_suspend_for_native_trans()
   592       // will force the thread to self-suspend. If it hasn't gotten
   593       // there yet we may have caught the thread in-between the native
   594       // code check above and the self-suspend. Lucky us. If we were
   595       // called by wait_for_ext_suspend_completion(), then it
   596       // will be doing the retries so we don't have to.
   597       //
   598       // Since we use the saved thread state in the if-statement above,
   599       // there is a chance that the thread has already transitioned to
   600       // _thread_blocked by the time we get here. In that case, we will
   601       // make a single unnecessary pass through the logic below. This
   602       // doesn't hurt anything since we still do the trans retry.
   604       *bits |= 0x00004000;
   606       // Once the thread leaves thread_in_native_trans for another
   607       // thread state, we break out of this retry loop. We shouldn't
   608       // need this flag to prevent us from getting back here, but
   609       // sometimes paranoia is good.
   610       did_trans_retry = true;
   612       // We wait for the thread to transition to a more usable state.
   613       for (int i = 1; i <= SuspendRetryCount; i++) {
   614         // We used to do an "os::yield_all(i)" call here with the intention
   615         // that yielding would increase on each retry. However, the parameter
   616         // is ignored on Linux which means the yield didn't scale up. Waiting
   617         // on the SR_lock below provides a much more predictable scale up for
   618         // the delay. It also provides a simple/direct point to check for any
   619         // safepoint requests from the VMThread
   621         // temporarily drops SR_lock while doing wait with safepoint check
   622         // (if we're a JavaThread - the WatcherThread can also call this)
   623         // and increase delay with each retry
   624         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   626         // check the actual thread state instead of what we saved above
   627         if (thread_state() != _thread_in_native_trans) {
   628           // the thread has transitioned to another thread state so
   629           // try all the checks (except this one) one more time.
   630           do_trans_retry = true;
   631           break;
   632         }
   633       } // end retry loop
   636     }
   637   } while (do_trans_retry);
   639   *bits |= 0x00000010;
   640   return false;
   641 }
   643 //
   644 // Wait for an external suspend request to complete (or be cancelled).
   645 // Returns true if the thread is externally suspended and false otherwise.
   646 //
   647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   648        uint32_t *bits) {
   649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   650                              false /* !called_by_wait */, bits);
   652   // local flag copies to minimize SR_lock hold time
   653   bool is_suspended;
   654   bool pending;
   655   uint32_t reset_bits;
   657   // set a marker so is_ext_suspend_completed() knows we are the caller
   658   *bits |= 0x00010000;
   660   // We use reset_bits to reinitialize the bits value at the top of
   661   // each retry loop. This allows the caller to make use of any
   662   // unused bits for their own marking purposes.
   663   reset_bits = *bits;
   665   {
   666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   668                                             delay, bits);
   669     pending = is_external_suspend();
   670   }
   671   // must release SR_lock to allow suspension to complete
   673   if (!pending) {
   674     // A cancelled suspend request is the only false return from
   675     // is_ext_suspend_completed() that keeps us from entering the
   676     // retry loop.
   677     *bits |= 0x00020000;
   678     return false;
   679   }
   681   if (is_suspended) {
   682     *bits |= 0x00040000;
   683     return true;
   684   }
   686   for (int i = 1; i <= retries; i++) {
   687     *bits = reset_bits;  // reinit to only track last retry
   689     // We used to do an "os::yield_all(i)" call here with the intention
   690     // that yielding would increase on each retry. However, the parameter
   691     // is ignored on Linux which means the yield didn't scale up. Waiting
   692     // on the SR_lock below provides a much more predictable scale up for
   693     // the delay. It also provides a simple/direct point to check for any
   694     // safepoint requests from the VMThread
   696     {
   697       MutexLocker ml(SR_lock());
   698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   699       // can also call this)  and increase delay with each retry
   700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   703                                               delay, bits);
   705       // It is possible for the external suspend request to be cancelled
   706       // (by a resume) before the actual suspend operation is completed.
   707       // Refresh our local copy to see if we still need to wait.
   708       pending = is_external_suspend();
   709     }
   711     if (!pending) {
   712       // A cancelled suspend request is the only false return from
   713       // is_ext_suspend_completed() that keeps us from staying in the
   714       // retry loop.
   715       *bits |= 0x00080000;
   716       return false;
   717     }
   719     if (is_suspended) {
   720       *bits |= 0x00100000;
   721       return true;
   722     }
   723   } // end retry loop
   725   // thread did not suspend after all our retries
   726   *bits |= 0x00200000;
   727   return false;
   728 }
   730 #ifndef PRODUCT
   731 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   733   // This should not need to be atomic as the only way for simultaneous
   734   // updates is via interrupts. Even then this should be rare or non-existant
   735   // and we don't care that much anyway.
   737   int index = _jmp_ring_index;
   738   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   739   _jmp_ring[index]._target = (intptr_t) target;
   740   _jmp_ring[index]._instruction = (intptr_t) instr;
   741   _jmp_ring[index]._file = file;
   742   _jmp_ring[index]._line = line;
   743 }
   744 #endif /* PRODUCT */
   746 // Called by flat profiler
   747 // Callers have already called wait_for_ext_suspend_completion
   748 // The assertion for that is currently too complex to put here:
   749 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   750   bool gotframe = false;
   751   // self suspension saves needed state.
   752   if (has_last_Java_frame() && _anchor.walkable()) {
   753      *_fr = pd_last_frame();
   754      gotframe = true;
   755   }
   756   return gotframe;
   757 }
   759 void Thread::interrupt(Thread* thread) {
   760   trace("interrupt", thread);
   761   debug_only(check_for_dangling_thread_pointer(thread);)
   762   os::interrupt(thread);
   763 }
   765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   766   trace("is_interrupted", thread);
   767   debug_only(check_for_dangling_thread_pointer(thread);)
   768   // Note:  If clear_interrupted==false, this simply fetches and
   769   // returns the value of the field osthread()->interrupted().
   770   return os::is_interrupted(thread, clear_interrupted);
   771 }
   774 // GC Support
   775 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   776   jint thread_parity = _oops_do_parity;
   777   if (thread_parity != strong_roots_parity) {
   778     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   779     if (res == thread_parity) {
   780       return true;
   781     } else {
   782       guarantee(res == strong_roots_parity, "Or else what?");
   783       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   784          "Should only fail when parallel.");
   785       return false;
   786     }
   787   }
   788   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   789          "Should only fail when parallel.");
   790   return false;
   791 }
   793 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   794   active_handles()->oops_do(f);
   795   // Do oop for ThreadShadow
   796   f->do_oop((oop*)&_pending_exception);
   797   handle_area()->oops_do(f);
   798 }
   800 void Thread::nmethods_do(CodeBlobClosure* cf) {
   801   // no nmethods in a generic thread...
   802 }
   804 void Thread::print_on(outputStream* st) const {
   805   // get_priority assumes osthread initialized
   806   if (osthread() != NULL) {
   807     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   808     osthread()->print_on(st);
   809   }
   810   debug_only(if (WizardMode) print_owned_locks_on(st);)
   811 }
   813 // Thread::print_on_error() is called by fatal error handler. Don't use
   814 // any lock or allocate memory.
   815 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   816   if      (is_VM_thread())                  st->print("VMThread");
   817   else if (is_Compiler_thread())            st->print("CompilerThread");
   818   else if (is_Java_thread())                st->print("JavaThread");
   819   else if (is_GC_task_thread())             st->print("GCTaskThread");
   820   else if (is_Watcher_thread())             st->print("WatcherThread");
   821   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   822   else st->print("Thread");
   824   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   825             _stack_base - _stack_size, _stack_base);
   827   if (osthread()) {
   828     st->print(" [id=%d]", osthread()->thread_id());
   829   }
   830 }
   832 #ifdef ASSERT
   833 void Thread::print_owned_locks_on(outputStream* st) const {
   834   Monitor *cur = _owned_locks;
   835   if (cur == NULL) {
   836     st->print(" (no locks) ");
   837   } else {
   838     st->print_cr(" Locks owned:");
   839     while(cur) {
   840       cur->print_on(st);
   841       cur = cur->next();
   842     }
   843   }
   844 }
   846 static int ref_use_count  = 0;
   848 bool Thread::owns_locks_but_compiled_lock() const {
   849   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   850     if (cur != Compile_lock) return true;
   851   }
   852   return false;
   853 }
   856 #endif
   858 #ifndef PRODUCT
   860 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   861 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   862 // no threads which allow_vm_block's are held
   863 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   864     // Check if current thread is allowed to block at a safepoint
   865     if (!(_allow_safepoint_count == 0))
   866       fatal("Possible safepoint reached by thread that does not allow it");
   867     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   868       fatal("LEAF method calling lock?");
   869     }
   871 #ifdef ASSERT
   872     if (potential_vm_operation && is_Java_thread()
   873         && !Universe::is_bootstrapping()) {
   874       // Make sure we do not hold any locks that the VM thread also uses.
   875       // This could potentially lead to deadlocks
   876       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   877         // Threads_lock is special, since the safepoint synchronization will not start before this is
   878         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   879         // since it is used to transfer control between JavaThreads and the VMThread
   880         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   881         if ( (cur->allow_vm_block() &&
   882               cur != Threads_lock &&
   883               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   884               cur != VMOperationRequest_lock &&
   885               cur != VMOperationQueue_lock) ||
   886               cur->rank() == Mutex::special) {
   887           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   888         }
   889       }
   890     }
   892     if (GCALotAtAllSafepoints) {
   893       // We could enter a safepoint here and thus have a gc
   894       InterfaceSupport::check_gc_alot();
   895     }
   896 #endif
   897 }
   898 #endif
   900 bool Thread::is_in_stack(address adr) const {
   901   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   902   address end = os::current_stack_pointer();
   903   if (stack_base() >= adr && adr >= end) return true;
   905   return false;
   906 }
   909 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   910 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   911 // used for compilation in the future. If that change is made, the need for these methods
   912 // should be revisited, and they should be removed if possible.
   914 bool Thread::is_lock_owned(address adr) const {
   915   return on_local_stack(adr);
   916 }
   918 bool Thread::set_as_starting_thread() {
   919  // NOTE: this must be called inside the main thread.
   920   return os::create_main_thread((JavaThread*)this);
   921 }
   923 static void initialize_class(Symbol* class_name, TRAPS) {
   924   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   925   instanceKlass::cast(klass)->initialize(CHECK);
   926 }
   929 // Creates the initial ThreadGroup
   930 static Handle create_initial_thread_group(TRAPS) {
   931   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   932   instanceKlassHandle klass (THREAD, k);
   934   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   935   {
   936     JavaValue result(T_VOID);
   937     JavaCalls::call_special(&result,
   938                             system_instance,
   939                             klass,
   940                             vmSymbols::object_initializer_name(),
   941                             vmSymbols::void_method_signature(),
   942                             CHECK_NH);
   943   }
   944   Universe::set_system_thread_group(system_instance());
   946   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   947   {
   948     JavaValue result(T_VOID);
   949     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   950     JavaCalls::call_special(&result,
   951                             main_instance,
   952                             klass,
   953                             vmSymbols::object_initializer_name(),
   954                             vmSymbols::threadgroup_string_void_signature(),
   955                             system_instance,
   956                             string,
   957                             CHECK_NH);
   958   }
   959   return main_instance;
   960 }
   962 // Creates the initial Thread
   963 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   964   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   965   instanceKlassHandle klass (THREAD, k);
   966   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   968   java_lang_Thread::set_thread(thread_oop(), thread);
   969   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   970   thread->set_threadObj(thread_oop());
   972   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   974   JavaValue result(T_VOID);
   975   JavaCalls::call_special(&result, thread_oop,
   976                                    klass,
   977                                    vmSymbols::object_initializer_name(),
   978                                    vmSymbols::threadgroup_string_void_signature(),
   979                                    thread_group,
   980                                    string,
   981                                    CHECK_NULL);
   982   return thread_oop();
   983 }
   985 static void call_initializeSystemClass(TRAPS) {
   986   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   987   instanceKlassHandle klass (THREAD, k);
   989   JavaValue result(T_VOID);
   990   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   991                                          vmSymbols::void_method_signature(), CHECK);
   992 }
   994 // General purpose hook into Java code, run once when the VM is initialized.
   995 // The Java library method itself may be changed independently from the VM.
   996 static void call_postVMInitHook(TRAPS) {
   997   klassOop k = SystemDictionary::PostVMInitHook_klass();
   998   instanceKlassHandle klass (THREAD, k);
   999   if (klass.not_null()) {
  1000     JavaValue result(T_VOID);
  1001     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1002                                            vmSymbols::void_method_signature(),
  1003                                            CHECK);
  1007 static void reset_vm_info_property(TRAPS) {
  1008   // the vm info string
  1009   ResourceMark rm(THREAD);
  1010   const char *vm_info = VM_Version::vm_info_string();
  1012   // java.lang.System class
  1013   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1014   instanceKlassHandle klass (THREAD, k);
  1016   // setProperty arguments
  1017   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1018   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1020   // return value
  1021   JavaValue r(T_OBJECT);
  1023   // public static String setProperty(String key, String value);
  1024   JavaCalls::call_static(&r,
  1025                          klass,
  1026                          vmSymbols::setProperty_name(),
  1027                          vmSymbols::string_string_string_signature(),
  1028                          key_str,
  1029                          value_str,
  1030                          CHECK);
  1034 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1035   assert(thread_group.not_null(), "thread group should be specified");
  1036   assert(threadObj() == NULL, "should only create Java thread object once");
  1038   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1039   instanceKlassHandle klass (THREAD, k);
  1040   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1042   java_lang_Thread::set_thread(thread_oop(), this);
  1043   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1044   set_threadObj(thread_oop());
  1046   JavaValue result(T_VOID);
  1047   if (thread_name != NULL) {
  1048     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1049     // Thread gets assigned specified name and null target
  1050     JavaCalls::call_special(&result,
  1051                             thread_oop,
  1052                             klass,
  1053                             vmSymbols::object_initializer_name(),
  1054                             vmSymbols::threadgroup_string_void_signature(),
  1055                             thread_group, // Argument 1
  1056                             name,         // Argument 2
  1057                             THREAD);
  1058   } else {
  1059     // Thread gets assigned name "Thread-nnn" and null target
  1060     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1061     JavaCalls::call_special(&result,
  1062                             thread_oop,
  1063                             klass,
  1064                             vmSymbols::object_initializer_name(),
  1065                             vmSymbols::threadgroup_runnable_void_signature(),
  1066                             thread_group, // Argument 1
  1067                             Handle(),     // Argument 2
  1068                             THREAD);
  1072   if (daemon) {
  1073       java_lang_Thread::set_daemon(thread_oop());
  1076   if (HAS_PENDING_EXCEPTION) {
  1077     return;
  1080   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1081   Handle threadObj(this, this->threadObj());
  1083   JavaCalls::call_special(&result,
  1084                          thread_group,
  1085                          group,
  1086                          vmSymbols::add_method_name(),
  1087                          vmSymbols::thread_void_signature(),
  1088                          threadObj,          // Arg 1
  1089                          THREAD);
  1094 // NamedThread --  non-JavaThread subclasses with multiple
  1095 // uniquely named instances should derive from this.
  1096 NamedThread::NamedThread() : Thread() {
  1097   _name = NULL;
  1098   _processed_thread = NULL;
  1101 NamedThread::~NamedThread() {
  1102   if (_name != NULL) {
  1103     FREE_C_HEAP_ARRAY(char, _name);
  1104     _name = NULL;
  1108 void NamedThread::set_name(const char* format, ...) {
  1109   guarantee(_name == NULL, "Only get to set name once.");
  1110   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1111   guarantee(_name != NULL, "alloc failure");
  1112   va_list ap;
  1113   va_start(ap, format);
  1114   jio_vsnprintf(_name, max_name_len, format, ap);
  1115   va_end(ap);
  1118 // ======= WatcherThread ========
  1120 // The watcher thread exists to simulate timer interrupts.  It should
  1121 // be replaced by an abstraction over whatever native support for
  1122 // timer interrupts exists on the platform.
  1124 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1125 volatile bool  WatcherThread::_should_terminate = false;
  1127 WatcherThread::WatcherThread() : Thread() {
  1128   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1129   if (os::create_thread(this, os::watcher_thread)) {
  1130     _watcher_thread = this;
  1132     // Set the watcher thread to the highest OS priority which should not be
  1133     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1134     // is created. The only normal thread using this priority is the reference
  1135     // handler thread, which runs for very short intervals only.
  1136     // If the VMThread's priority is not lower than the WatcherThread profiling
  1137     // will be inaccurate.
  1138     os::set_priority(this, MaxPriority);
  1139     if (!DisableStartThread) {
  1140       os::start_thread(this);
  1145 void WatcherThread::run() {
  1146   assert(this == watcher_thread(), "just checking");
  1148   this->record_stack_base_and_size();
  1149   this->initialize_thread_local_storage();
  1150   this->set_active_handles(JNIHandleBlock::allocate_block());
  1151   while(!_should_terminate) {
  1152     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1153     assert(watcher_thread() == this,  "thread consistency check");
  1155     // Calculate how long it'll be until the next PeriodicTask work
  1156     // should be done, and sleep that amount of time.
  1157     size_t time_to_wait = PeriodicTask::time_to_wait();
  1159     // we expect this to timeout - we only ever get unparked when
  1160     // we should terminate
  1162       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1164       jlong prev_time = os::javaTimeNanos();
  1165       for (;;) {
  1166         int res= _SleepEvent->park(time_to_wait);
  1167         if (res == OS_TIMEOUT || _should_terminate)
  1168           break;
  1169         // spurious wakeup of some kind
  1170         jlong now = os::javaTimeNanos();
  1171         time_to_wait -= (now - prev_time) / 1000000;
  1172         if (time_to_wait <= 0)
  1173           break;
  1174         prev_time = now;
  1178     if (is_error_reported()) {
  1179       // A fatal error has happened, the error handler(VMError::report_and_die)
  1180       // should abort JVM after creating an error log file. However in some
  1181       // rare cases, the error handler itself might deadlock. Here we try to
  1182       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1183       //
  1184       // This code is in WatcherThread because WatcherThread wakes up
  1185       // periodically so the fatal error handler doesn't need to do anything;
  1186       // also because the WatcherThread is less likely to crash than other
  1187       // threads.
  1189       for (;;) {
  1190         if (!ShowMessageBoxOnError
  1191          && (OnError == NULL || OnError[0] == '\0')
  1192          && Arguments::abort_hook() == NULL) {
  1193              os::sleep(this, 2 * 60 * 1000, false);
  1194              fdStream err(defaultStream::output_fd());
  1195              err.print_raw_cr("# [ timer expired, abort... ]");
  1196              // skip atexit/vm_exit/vm_abort hooks
  1197              os::die();
  1200         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1201         // ShowMessageBoxOnError when it is ready to abort.
  1202         os::sleep(this, 5 * 1000, false);
  1206     PeriodicTask::real_time_tick(time_to_wait);
  1208     // If we have no more tasks left due to dynamic disenrollment,
  1209     // shut down the thread since we don't currently support dynamic enrollment
  1210     if (PeriodicTask::num_tasks() == 0) {
  1211       _should_terminate = true;
  1215   // Signal that it is terminated
  1217     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1218     _watcher_thread = NULL;
  1219     Terminator_lock->notify();
  1222   // Thread destructor usually does this..
  1223   ThreadLocalStorage::set_thread(NULL);
  1226 void WatcherThread::start() {
  1227   if (watcher_thread() == NULL) {
  1228     _should_terminate = false;
  1229     // Create the single instance of WatcherThread
  1230     new WatcherThread();
  1234 void WatcherThread::stop() {
  1235   // it is ok to take late safepoints here, if needed
  1236   MutexLocker mu(Terminator_lock);
  1237   _should_terminate = true;
  1238   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1240   Thread* watcher = watcher_thread();
  1241   if (watcher != NULL)
  1242     watcher->_SleepEvent->unpark();
  1244   while(watcher_thread() != NULL) {
  1245     // This wait should make safepoint checks, wait without a timeout,
  1246     // and wait as a suspend-equivalent condition.
  1247     //
  1248     // Note: If the FlatProfiler is running, then this thread is waiting
  1249     // for the WatcherThread to terminate and the WatcherThread, via the
  1250     // FlatProfiler task, is waiting for the external suspend request on
  1251     // this thread to complete. wait_for_ext_suspend_completion() will
  1252     // eventually timeout, but that takes time. Making this wait a
  1253     // suspend-equivalent condition solves that timeout problem.
  1254     //
  1255     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1256                           Mutex::_as_suspend_equivalent_flag);
  1260 void WatcherThread::print_on(outputStream* st) const {
  1261   st->print("\"%s\" ", name());
  1262   Thread::print_on(st);
  1263   st->cr();
  1266 // ======= JavaThread ========
  1268 // A JavaThread is a normal Java thread
  1270 void JavaThread::initialize() {
  1271   // Initialize fields
  1273   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1274   set_claimed_par_id(-1);
  1276   set_saved_exception_pc(NULL);
  1277   set_threadObj(NULL);
  1278   _anchor.clear();
  1279   set_entry_point(NULL);
  1280   set_jni_functions(jni_functions());
  1281   set_callee_target(NULL);
  1282   set_vm_result(NULL);
  1283   set_vm_result_2(NULL);
  1284   set_vframe_array_head(NULL);
  1285   set_vframe_array_last(NULL);
  1286   set_deferred_locals(NULL);
  1287   set_deopt_mark(NULL);
  1288   set_deopt_nmethod(NULL);
  1289   clear_must_deopt_id();
  1290   set_monitor_chunks(NULL);
  1291   set_next(NULL);
  1292   set_thread_state(_thread_new);
  1293   _terminated = _not_terminated;
  1294   _privileged_stack_top = NULL;
  1295   _array_for_gc = NULL;
  1296   _suspend_equivalent = false;
  1297   _in_deopt_handler = 0;
  1298   _doing_unsafe_access = false;
  1299   _stack_guard_state = stack_guard_unused;
  1300   _exception_oop = NULL;
  1301   _exception_pc  = 0;
  1302   _exception_handler_pc = 0;
  1303   _is_method_handle_return = 0;
  1304   _jvmti_thread_state= NULL;
  1305   _should_post_on_exceptions_flag = JNI_FALSE;
  1306   _jvmti_get_loaded_classes_closure = NULL;
  1307   _interp_only_mode    = 0;
  1308   _special_runtime_exit_condition = _no_async_condition;
  1309   _pending_async_exception = NULL;
  1310   _is_compiling = false;
  1311   _thread_stat = NULL;
  1312   _thread_stat = new ThreadStatistics();
  1313   _blocked_on_compilation = false;
  1314   _jni_active_critical = 0;
  1315   _do_not_unlock_if_synchronized = false;
  1316   _cached_monitor_info = NULL;
  1317   _parker = Parker::Allocate(this) ;
  1319 #ifndef PRODUCT
  1320   _jmp_ring_index = 0;
  1321   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1322     record_jump(NULL, NULL, NULL, 0);
  1324 #endif /* PRODUCT */
  1326   set_thread_profiler(NULL);
  1327   if (FlatProfiler::is_active()) {
  1328     // This is where we would decide to either give each thread it's own profiler
  1329     // or use one global one from FlatProfiler,
  1330     // or up to some count of the number of profiled threads, etc.
  1331     ThreadProfiler* pp = new ThreadProfiler();
  1332     pp->engage();
  1333     set_thread_profiler(pp);
  1336   // Setup safepoint state info for this thread
  1337   ThreadSafepointState::create(this);
  1339   debug_only(_java_call_counter = 0);
  1341   // JVMTI PopFrame support
  1342   _popframe_condition = popframe_inactive;
  1343   _popframe_preserved_args = NULL;
  1344   _popframe_preserved_args_size = 0;
  1346   pd_initialize();
  1349 #ifndef SERIALGC
  1350 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1351 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1352 #endif // !SERIALGC
  1354 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1355   Thread()
  1356 #ifndef SERIALGC
  1357   , _satb_mark_queue(&_satb_mark_queue_set),
  1358   _dirty_card_queue(&_dirty_card_queue_set)
  1359 #endif // !SERIALGC
  1361   initialize();
  1362   if (is_attaching_via_jni) {
  1363     _jni_attach_state = _attaching_via_jni;
  1364   } else {
  1365     _jni_attach_state = _not_attaching_via_jni;
  1367   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1370 bool JavaThread::reguard_stack(address cur_sp) {
  1371   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1372     return true; // Stack already guarded or guard pages not needed.
  1375   if (register_stack_overflow()) {
  1376     // For those architectures which have separate register and
  1377     // memory stacks, we must check the register stack to see if
  1378     // it has overflowed.
  1379     return false;
  1382   // Java code never executes within the yellow zone: the latter is only
  1383   // there to provoke an exception during stack banging.  If java code
  1384   // is executing there, either StackShadowPages should be larger, or
  1385   // some exception code in c1, c2 or the interpreter isn't unwinding
  1386   // when it should.
  1387   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1389   enable_stack_yellow_zone();
  1390   return true;
  1393 bool JavaThread::reguard_stack(void) {
  1394   return reguard_stack(os::current_stack_pointer());
  1398 void JavaThread::block_if_vm_exited() {
  1399   if (_terminated == _vm_exited) {
  1400     // _vm_exited is set at safepoint, and Threads_lock is never released
  1401     // we will block here forever
  1402     Threads_lock->lock_without_safepoint_check();
  1403     ShouldNotReachHere();
  1408 // Remove this ifdef when C1 is ported to the compiler interface.
  1409 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1411 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1412   Thread()
  1413 #ifndef SERIALGC
  1414   , _satb_mark_queue(&_satb_mark_queue_set),
  1415   _dirty_card_queue(&_dirty_card_queue_set)
  1416 #endif // !SERIALGC
  1418   if (TraceThreadEvents) {
  1419     tty->print_cr("creating thread %p", this);
  1421   initialize();
  1422   _jni_attach_state = _not_attaching_via_jni;
  1423   set_entry_point(entry_point);
  1424   // Create the native thread itself.
  1425   // %note runtime_23
  1426   os::ThreadType thr_type = os::java_thread;
  1427   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1428                                                      os::java_thread;
  1429   os::create_thread(this, thr_type, stack_sz);
  1431   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1432   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1433   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1434   // the exception consists of creating the exception object & initializing it, initialization
  1435   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1436   //
  1437   // The thread is still suspended when we reach here. Thread must be explicit started
  1438   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1439   // by calling Threads:add. The reason why this is not done here, is because the thread
  1440   // object must be fully initialized (take a look at JVM_Start)
  1443 JavaThread::~JavaThread() {
  1444   if (TraceThreadEvents) {
  1445       tty->print_cr("terminate thread %p", this);
  1448   // JSR166 -- return the parker to the free list
  1449   Parker::Release(_parker);
  1450   _parker = NULL ;
  1452   // Free any remaining  previous UnrollBlock
  1453   vframeArray* old_array = vframe_array_last();
  1455   if (old_array != NULL) {
  1456     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1457     old_array->set_unroll_block(NULL);
  1458     delete old_info;
  1459     delete old_array;
  1462   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1463   if (deferred != NULL) {
  1464     // This can only happen if thread is destroyed before deoptimization occurs.
  1465     assert(deferred->length() != 0, "empty array!");
  1466     do {
  1467       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1468       deferred->remove_at(0);
  1469       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1470       delete dlv;
  1471     } while (deferred->length() != 0);
  1472     delete deferred;
  1475   // All Java related clean up happens in exit
  1476   ThreadSafepointState::destroy(this);
  1477   if (_thread_profiler != NULL) delete _thread_profiler;
  1478   if (_thread_stat != NULL) delete _thread_stat;
  1482 // The first routine called by a new Java thread
  1483 void JavaThread::run() {
  1484   // initialize thread-local alloc buffer related fields
  1485   this->initialize_tlab();
  1487   // used to test validitity of stack trace backs
  1488   this->record_base_of_stack_pointer();
  1490   // Record real stack base and size.
  1491   this->record_stack_base_and_size();
  1493   // Initialize thread local storage; set before calling MutexLocker
  1494   this->initialize_thread_local_storage();
  1496   this->create_stack_guard_pages();
  1498   this->cache_global_variables();
  1500   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1501   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1502   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1504   assert(JavaThread::current() == this, "sanity check");
  1505   assert(!Thread::current()->owns_locks(), "sanity check");
  1507   DTRACE_THREAD_PROBE(start, this);
  1509   // This operation might block. We call that after all safepoint checks for a new thread has
  1510   // been completed.
  1511   this->set_active_handles(JNIHandleBlock::allocate_block());
  1513   if (JvmtiExport::should_post_thread_life()) {
  1514     JvmtiExport::post_thread_start(this);
  1517   EVENT_BEGIN(TraceEventThreadStart, event);
  1518   EVENT_COMMIT(event,
  1519      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1521   // We call another function to do the rest so we are sure that the stack addresses used
  1522   // from there will be lower than the stack base just computed
  1523   thread_main_inner();
  1525   // Note, thread is no longer valid at this point!
  1529 void JavaThread::thread_main_inner() {
  1530   assert(JavaThread::current() == this, "sanity check");
  1531   assert(this->threadObj() != NULL, "just checking");
  1533   // Execute thread entry point unless this thread has a pending exception
  1534   // or has been stopped before starting.
  1535   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1536   if (!this->has_pending_exception() &&
  1537       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1539       ResourceMark rm(this);
  1540       this->set_native_thread_name(this->get_thread_name());
  1542     HandleMark hm(this);
  1543     this->entry_point()(this, this);
  1546   DTRACE_THREAD_PROBE(stop, this);
  1548   this->exit(false);
  1549   delete this;
  1553 static void ensure_join(JavaThread* thread) {
  1554   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1555   Handle threadObj(thread, thread->threadObj());
  1556   assert(threadObj.not_null(), "java thread object must exist");
  1557   ObjectLocker lock(threadObj, thread);
  1558   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1559   thread->clear_pending_exception();
  1560   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1561   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1562   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1563   // to complete once we've done the notify_all below
  1564   java_lang_Thread::set_thread(threadObj(), NULL);
  1565   lock.notify_all(thread);
  1566   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1567   thread->clear_pending_exception();
  1571 // For any new cleanup additions, please check to see if they need to be applied to
  1572 // cleanup_failed_attach_current_thread as well.
  1573 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1574   assert(this == JavaThread::current(),  "thread consistency check");
  1575   if (!InitializeJavaLangSystem) return;
  1577   HandleMark hm(this);
  1578   Handle uncaught_exception(this, this->pending_exception());
  1579   this->clear_pending_exception();
  1580   Handle threadObj(this, this->threadObj());
  1581   assert(threadObj.not_null(), "Java thread object should be created");
  1583   if (get_thread_profiler() != NULL) {
  1584     get_thread_profiler()->disengage();
  1585     ResourceMark rm;
  1586     get_thread_profiler()->print(get_thread_name());
  1590   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1592     EXCEPTION_MARK;
  1594     CLEAR_PENDING_EXCEPTION;
  1596   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1597   // has to be fixed by a runtime query method
  1598   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1599     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1600     // java.lang.Thread.dispatchUncaughtException
  1601     if (uncaught_exception.not_null()) {
  1602       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1603       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1604         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1606         EXCEPTION_MARK;
  1607         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1608         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1609         // so call ThreadGroup.uncaughtException()
  1610         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1611         CallInfo callinfo;
  1612         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1613         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1614                                            vmSymbols::dispatchUncaughtException_name(),
  1615                                            vmSymbols::throwable_void_signature(),
  1616                                            KlassHandle(), false, false, THREAD);
  1617         CLEAR_PENDING_EXCEPTION;
  1618         methodHandle method = callinfo.selected_method();
  1619         if (method.not_null()) {
  1620           JavaValue result(T_VOID);
  1621           JavaCalls::call_virtual(&result,
  1622                                   threadObj, thread_klass,
  1623                                   vmSymbols::dispatchUncaughtException_name(),
  1624                                   vmSymbols::throwable_void_signature(),
  1625                                   uncaught_exception,
  1626                                   THREAD);
  1627         } else {
  1628           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1629           JavaValue result(T_VOID);
  1630           JavaCalls::call_virtual(&result,
  1631                                   group, thread_group,
  1632                                   vmSymbols::uncaughtException_name(),
  1633                                   vmSymbols::thread_throwable_void_signature(),
  1634                                   threadObj,           // Arg 1
  1635                                   uncaught_exception,  // Arg 2
  1636                                   THREAD);
  1638         if (HAS_PENDING_EXCEPTION) {
  1639           ResourceMark rm(this);
  1640           jio_fprintf(defaultStream::error_stream(),
  1641                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1642                 " in thread \"%s\"\n",
  1643                 Klass::cast(pending_exception()->klass())->external_name(),
  1644                 get_thread_name());
  1645           CLEAR_PENDING_EXCEPTION;
  1650     // Called before the java thread exit since we want to read info
  1651     // from java_lang_Thread object
  1652     EVENT_BEGIN(TraceEventThreadEnd, event);
  1653     EVENT_COMMIT(event,
  1654         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1656     // Call after last event on thread
  1657     EVENT_THREAD_EXIT(this);
  1659     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1660     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1661     // is deprecated anyhow.
  1662     { int count = 3;
  1663       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1664         EXCEPTION_MARK;
  1665         JavaValue result(T_VOID);
  1666         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1667         JavaCalls::call_virtual(&result,
  1668                               threadObj, thread_klass,
  1669                               vmSymbols::exit_method_name(),
  1670                               vmSymbols::void_method_signature(),
  1671                               THREAD);
  1672         CLEAR_PENDING_EXCEPTION;
  1676     // notify JVMTI
  1677     if (JvmtiExport::should_post_thread_life()) {
  1678       JvmtiExport::post_thread_end(this);
  1681     // We have notified the agents that we are exiting, before we go on,
  1682     // we must check for a pending external suspend request and honor it
  1683     // in order to not surprise the thread that made the suspend request.
  1684     while (true) {
  1686         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1687         if (!is_external_suspend()) {
  1688           set_terminated(_thread_exiting);
  1689           ThreadService::current_thread_exiting(this);
  1690           break;
  1692         // Implied else:
  1693         // Things get a little tricky here. We have a pending external
  1694         // suspend request, but we are holding the SR_lock so we
  1695         // can't just self-suspend. So we temporarily drop the lock
  1696         // and then self-suspend.
  1699       ThreadBlockInVM tbivm(this);
  1700       java_suspend_self();
  1702       // We're done with this suspend request, but we have to loop around
  1703       // and check again. Eventually we will get SR_lock without a pending
  1704       // external suspend request and will be able to mark ourselves as
  1705       // exiting.
  1707     // no more external suspends are allowed at this point
  1708   } else {
  1709     // before_exit() has already posted JVMTI THREAD_END events
  1712   // Notify waiters on thread object. This has to be done after exit() is called
  1713   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1714   // group should have the destroyed bit set before waiters are notified).
  1715   ensure_join(this);
  1716   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1718   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1719   // held by this thread must be released.  A detach operation must only
  1720   // get here if there are no Java frames on the stack.  Therefore, any
  1721   // owned monitors at this point MUST be JNI-acquired monitors which are
  1722   // pre-inflated and in the monitor cache.
  1723   //
  1724   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1725   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1726     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1727     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1728     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1731   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1732   // is in a consistent state, in case GC happens
  1733   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1735   if (active_handles() != NULL) {
  1736     JNIHandleBlock* block = active_handles();
  1737     set_active_handles(NULL);
  1738     JNIHandleBlock::release_block(block);
  1741   if (free_handle_block() != NULL) {
  1742     JNIHandleBlock* block = free_handle_block();
  1743     set_free_handle_block(NULL);
  1744     JNIHandleBlock::release_block(block);
  1747   // These have to be removed while this is still a valid thread.
  1748   remove_stack_guard_pages();
  1750   if (UseTLAB) {
  1751     tlab().make_parsable(true);  // retire TLAB
  1754   if (JvmtiEnv::environments_might_exist()) {
  1755     JvmtiExport::cleanup_thread(this);
  1758 #ifndef SERIALGC
  1759   // We must flush G1-related buffers before removing a thread from
  1760   // the list of active threads.
  1761   if (UseG1GC) {
  1762     flush_barrier_queues();
  1764 #endif
  1766   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1767   Threads::remove(this);
  1770 #ifndef SERIALGC
  1771 // Flush G1-related queues.
  1772 void JavaThread::flush_barrier_queues() {
  1773   satb_mark_queue().flush();
  1774   dirty_card_queue().flush();
  1777 void JavaThread::initialize_queues() {
  1778   assert(!SafepointSynchronize::is_at_safepoint(),
  1779          "we should not be at a safepoint");
  1781   ObjPtrQueue& satb_queue = satb_mark_queue();
  1782   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1783   // The SATB queue should have been constructed with its active
  1784   // field set to false.
  1785   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1786   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1787   // If we are creating the thread during a marking cycle, we should
  1788   // set the active field of the SATB queue to true.
  1789   if (satb_queue_set.is_active()) {
  1790     satb_queue.set_active(true);
  1793   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1794   // The dirty card queue should have been constructed with its
  1795   // active field set to true.
  1796   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1798 #endif // !SERIALGC
  1800 void JavaThread::cleanup_failed_attach_current_thread() {
  1801   if (get_thread_profiler() != NULL) {
  1802     get_thread_profiler()->disengage();
  1803     ResourceMark rm;
  1804     get_thread_profiler()->print(get_thread_name());
  1807   if (active_handles() != NULL) {
  1808     JNIHandleBlock* block = active_handles();
  1809     set_active_handles(NULL);
  1810     JNIHandleBlock::release_block(block);
  1813   if (free_handle_block() != NULL) {
  1814     JNIHandleBlock* block = free_handle_block();
  1815     set_free_handle_block(NULL);
  1816     JNIHandleBlock::release_block(block);
  1819   // These have to be removed while this is still a valid thread.
  1820   remove_stack_guard_pages();
  1822   if (UseTLAB) {
  1823     tlab().make_parsable(true);  // retire TLAB, if any
  1826 #ifndef SERIALGC
  1827   if (UseG1GC) {
  1828     flush_barrier_queues();
  1830 #endif
  1832   Threads::remove(this);
  1833   delete this;
  1839 JavaThread* JavaThread::active() {
  1840   Thread* thread = ThreadLocalStorage::thread();
  1841   assert(thread != NULL, "just checking");
  1842   if (thread->is_Java_thread()) {
  1843     return (JavaThread*) thread;
  1844   } else {
  1845     assert(thread->is_VM_thread(), "this must be a vm thread");
  1846     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1847     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1848     assert(ret->is_Java_thread(), "must be a Java thread");
  1849     return ret;
  1853 bool JavaThread::is_lock_owned(address adr) const {
  1854   if (Thread::is_lock_owned(adr)) return true;
  1856   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1857     if (chunk->contains(adr)) return true;
  1860   return false;
  1864 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1865   chunk->set_next(monitor_chunks());
  1866   set_monitor_chunks(chunk);
  1869 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1870   guarantee(monitor_chunks() != NULL, "must be non empty");
  1871   if (monitor_chunks() == chunk) {
  1872     set_monitor_chunks(chunk->next());
  1873   } else {
  1874     MonitorChunk* prev = monitor_chunks();
  1875     while (prev->next() != chunk) prev = prev->next();
  1876     prev->set_next(chunk->next());
  1880 // JVM support.
  1882 // Note: this function shouldn't block if it's called in
  1883 // _thread_in_native_trans state (such as from
  1884 // check_special_condition_for_native_trans()).
  1885 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1887   if (has_last_Java_frame() && has_async_condition()) {
  1888     // If we are at a polling page safepoint (not a poll return)
  1889     // then we must defer async exception because live registers
  1890     // will be clobbered by the exception path. Poll return is
  1891     // ok because the call we a returning from already collides
  1892     // with exception handling registers and so there is no issue.
  1893     // (The exception handling path kills call result registers but
  1894     //  this is ok since the exception kills the result anyway).
  1896     if (is_at_poll_safepoint()) {
  1897       // if the code we are returning to has deoptimized we must defer
  1898       // the exception otherwise live registers get clobbered on the
  1899       // exception path before deoptimization is able to retrieve them.
  1900       //
  1901       RegisterMap map(this, false);
  1902       frame caller_fr = last_frame().sender(&map);
  1903       assert(caller_fr.is_compiled_frame(), "what?");
  1904       if (caller_fr.is_deoptimized_frame()) {
  1905         if (TraceExceptions) {
  1906           ResourceMark rm;
  1907           tty->print_cr("deferred async exception at compiled safepoint");
  1909         return;
  1914   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1915   if (condition == _no_async_condition) {
  1916     // Conditions have changed since has_special_runtime_exit_condition()
  1917     // was called:
  1918     // - if we were here only because of an external suspend request,
  1919     //   then that was taken care of above (or cancelled) so we are done
  1920     // - if we were here because of another async request, then it has
  1921     //   been cleared between the has_special_runtime_exit_condition()
  1922     //   and now so again we are done
  1923     return;
  1926   // Check for pending async. exception
  1927   if (_pending_async_exception != NULL) {
  1928     // Only overwrite an already pending exception, if it is not a threadDeath.
  1929     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1931       // We cannot call Exceptions::_throw(...) here because we cannot block
  1932       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1934       if (TraceExceptions) {
  1935         ResourceMark rm;
  1936         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1937         if (has_last_Java_frame() ) {
  1938           frame f = last_frame();
  1939           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1941         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1943       _pending_async_exception = NULL;
  1944       clear_has_async_exception();
  1948   if (check_unsafe_error &&
  1949       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1950     condition = _no_async_condition;  // done
  1951     switch (thread_state()) {
  1952     case _thread_in_vm:
  1954         JavaThread* THREAD = this;
  1955         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1957     case _thread_in_native:
  1959         ThreadInVMfromNative tiv(this);
  1960         JavaThread* THREAD = this;
  1961         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1963     case _thread_in_Java:
  1965         ThreadInVMfromJava tiv(this);
  1966         JavaThread* THREAD = this;
  1967         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1969     default:
  1970       ShouldNotReachHere();
  1974   assert(condition == _no_async_condition || has_pending_exception() ||
  1975          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1976          "must have handled the async condition, if no exception");
  1979 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1980   //
  1981   // Check for pending external suspend. Internal suspend requests do
  1982   // not use handle_special_runtime_exit_condition().
  1983   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1984   // thread is not the current thread. In older versions of jdbx, jdbx
  1985   // threads could call into the VM with another thread's JNIEnv so we
  1986   // can be here operating on behalf of a suspended thread (4432884).
  1987   bool do_self_suspend = is_external_suspend_with_lock();
  1988   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1989     //
  1990     // Because thread is external suspended the safepoint code will count
  1991     // thread as at a safepoint. This can be odd because we can be here
  1992     // as _thread_in_Java which would normally transition to _thread_blocked
  1993     // at a safepoint. We would like to mark the thread as _thread_blocked
  1994     // before calling java_suspend_self like all other callers of it but
  1995     // we must then observe proper safepoint protocol. (We can't leave
  1996     // _thread_blocked with a safepoint in progress). However we can be
  1997     // here as _thread_in_native_trans so we can't use a normal transition
  1998     // constructor/destructor pair because they assert on that type of
  1999     // transition. We could do something like:
  2000     //
  2001     // JavaThreadState state = thread_state();
  2002     // set_thread_state(_thread_in_vm);
  2003     // {
  2004     //   ThreadBlockInVM tbivm(this);
  2005     //   java_suspend_self()
  2006     // }
  2007     // set_thread_state(_thread_in_vm_trans);
  2008     // if (safepoint) block;
  2009     // set_thread_state(state);
  2010     //
  2011     // but that is pretty messy. Instead we just go with the way the
  2012     // code has worked before and note that this is the only path to
  2013     // java_suspend_self that doesn't put the thread in _thread_blocked
  2014     // mode.
  2016     frame_anchor()->make_walkable(this);
  2017     java_suspend_self();
  2019     // We might be here for reasons in addition to the self-suspend request
  2020     // so check for other async requests.
  2023   if (check_asyncs) {
  2024     check_and_handle_async_exceptions();
  2028 void JavaThread::send_thread_stop(oop java_throwable)  {
  2029   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2030   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2031   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2033   // Do not throw asynchronous exceptions against the compiler thread
  2034   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2035   if (is_Compiler_thread()) return;
  2038     // Actually throw the Throwable against the target Thread - however
  2039     // only if there is no thread death exception installed already.
  2040     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2041       // If the topmost frame is a runtime stub, then we are calling into
  2042       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2043       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2044       // may not be valid
  2045       if (has_last_Java_frame()) {
  2046         frame f = last_frame();
  2047         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2048           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2049           RegisterMap reg_map(this, UseBiasedLocking);
  2050           frame compiled_frame = f.sender(&reg_map);
  2051           if (compiled_frame.can_be_deoptimized()) {
  2052             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2057       // Set async. pending exception in thread.
  2058       set_pending_async_exception(java_throwable);
  2060       if (TraceExceptions) {
  2061        ResourceMark rm;
  2062        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2064       // for AbortVMOnException flag
  2065       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2070   // Interrupt thread so it will wake up from a potential wait()
  2071   Thread::interrupt(this);
  2074 // External suspension mechanism.
  2075 //
  2076 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2077 // to any VM_locks and it is at a transition
  2078 // Self-suspension will happen on the transition out of the vm.
  2079 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2080 //
  2081 // Guarantees on return:
  2082 //   + Target thread will not execute any new bytecode (that's why we need to
  2083 //     force a safepoint)
  2084 //   + Target thread will not enter any new monitors
  2085 //
  2086 void JavaThread::java_suspend() {
  2087   { MutexLocker mu(Threads_lock);
  2088     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2089        return;
  2093   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2094     if (!is_external_suspend()) {
  2095       // a racing resume has cancelled us; bail out now
  2096       return;
  2099     // suspend is done
  2100     uint32_t debug_bits = 0;
  2101     // Warning: is_ext_suspend_completed() may temporarily drop the
  2102     // SR_lock to allow the thread to reach a stable thread state if
  2103     // it is currently in a transient thread state.
  2104     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2105                                  SuspendRetryDelay, &debug_bits) ) {
  2106       return;
  2110   VM_ForceSafepoint vm_suspend;
  2111   VMThread::execute(&vm_suspend);
  2114 // Part II of external suspension.
  2115 // A JavaThread self suspends when it detects a pending external suspend
  2116 // request. This is usually on transitions. It is also done in places
  2117 // where continuing to the next transition would surprise the caller,
  2118 // e.g., monitor entry.
  2119 //
  2120 // Returns the number of times that the thread self-suspended.
  2121 //
  2122 // Note: DO NOT call java_suspend_self() when you just want to block current
  2123 //       thread. java_suspend_self() is the second stage of cooperative
  2124 //       suspension for external suspend requests and should only be used
  2125 //       to complete an external suspend request.
  2126 //
  2127 int JavaThread::java_suspend_self() {
  2128   int ret = 0;
  2130   // we are in the process of exiting so don't suspend
  2131   if (is_exiting()) {
  2132      clear_external_suspend();
  2133      return ret;
  2136   assert(_anchor.walkable() ||
  2137     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2138     "must have walkable stack");
  2140   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2142   assert(!this->is_ext_suspended(),
  2143     "a thread trying to self-suspend should not already be suspended");
  2145   if (this->is_suspend_equivalent()) {
  2146     // If we are self-suspending as a result of the lifting of a
  2147     // suspend equivalent condition, then the suspend_equivalent
  2148     // flag is not cleared until we set the ext_suspended flag so
  2149     // that wait_for_ext_suspend_completion() returns consistent
  2150     // results.
  2151     this->clear_suspend_equivalent();
  2154   // A racing resume may have cancelled us before we grabbed SR_lock
  2155   // above. Or another external suspend request could be waiting for us
  2156   // by the time we return from SR_lock()->wait(). The thread
  2157   // that requested the suspension may already be trying to walk our
  2158   // stack and if we return now, we can change the stack out from under
  2159   // it. This would be a "bad thing (TM)" and cause the stack walker
  2160   // to crash. We stay self-suspended until there are no more pending
  2161   // external suspend requests.
  2162   while (is_external_suspend()) {
  2163     ret++;
  2164     this->set_ext_suspended();
  2166     // _ext_suspended flag is cleared by java_resume()
  2167     while (is_ext_suspended()) {
  2168       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2172   return ret;
  2175 #ifdef ASSERT
  2176 // verify the JavaThread has not yet been published in the Threads::list, and
  2177 // hence doesn't need protection from concurrent access at this stage
  2178 void JavaThread::verify_not_published() {
  2179   if (!Threads_lock->owned_by_self()) {
  2180    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2181    assert( !Threads::includes(this),
  2182            "java thread shouldn't have been published yet!");
  2184   else {
  2185    assert( !Threads::includes(this),
  2186            "java thread shouldn't have been published yet!");
  2189 #endif
  2191 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2192 // progress or when _suspend_flags is non-zero.
  2193 // Current thread needs to self-suspend if there is a suspend request and/or
  2194 // block if a safepoint is in progress.
  2195 // Async exception ISN'T checked.
  2196 // Note only the ThreadInVMfromNative transition can call this function
  2197 // directly and when thread state is _thread_in_native_trans
  2198 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2199   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2201   JavaThread *curJT = JavaThread::current();
  2202   bool do_self_suspend = thread->is_external_suspend();
  2204   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2206   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2207   // thread is not the current thread. In older versions of jdbx, jdbx
  2208   // threads could call into the VM with another thread's JNIEnv so we
  2209   // can be here operating on behalf of a suspended thread (4432884).
  2210   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2211     JavaThreadState state = thread->thread_state();
  2213     // We mark this thread_blocked state as a suspend-equivalent so
  2214     // that a caller to is_ext_suspend_completed() won't be confused.
  2215     // The suspend-equivalent state is cleared by java_suspend_self().
  2216     thread->set_suspend_equivalent();
  2218     // If the safepoint code sees the _thread_in_native_trans state, it will
  2219     // wait until the thread changes to other thread state. There is no
  2220     // guarantee on how soon we can obtain the SR_lock and complete the
  2221     // self-suspend request. It would be a bad idea to let safepoint wait for
  2222     // too long. Temporarily change the state to _thread_blocked to
  2223     // let the VM thread know that this thread is ready for GC. The problem
  2224     // of changing thread state is that safepoint could happen just after
  2225     // java_suspend_self() returns after being resumed, and VM thread will
  2226     // see the _thread_blocked state. We must check for safepoint
  2227     // after restoring the state and make sure we won't leave while a safepoint
  2228     // is in progress.
  2229     thread->set_thread_state(_thread_blocked);
  2230     thread->java_suspend_self();
  2231     thread->set_thread_state(state);
  2232     // Make sure new state is seen by VM thread
  2233     if (os::is_MP()) {
  2234       if (UseMembar) {
  2235         // Force a fence between the write above and read below
  2236         OrderAccess::fence();
  2237       } else {
  2238         // Must use this rather than serialization page in particular on Windows
  2239         InterfaceSupport::serialize_memory(thread);
  2244   if (SafepointSynchronize::do_call_back()) {
  2245     // If we are safepointing, then block the caller which may not be
  2246     // the same as the target thread (see above).
  2247     SafepointSynchronize::block(curJT);
  2250   if (thread->is_deopt_suspend()) {
  2251     thread->clear_deopt_suspend();
  2252     RegisterMap map(thread, false);
  2253     frame f = thread->last_frame();
  2254     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2255       f = f.sender(&map);
  2257     if (f.id() == thread->must_deopt_id()) {
  2258       thread->clear_must_deopt_id();
  2259       f.deoptimize(thread);
  2260     } else {
  2261       fatal("missed deoptimization!");
  2266 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2267 // progress or when _suspend_flags is non-zero.
  2268 // Current thread needs to self-suspend if there is a suspend request and/or
  2269 // block if a safepoint is in progress.
  2270 // Also check for pending async exception (not including unsafe access error).
  2271 // Note only the native==>VM/Java barriers can call this function and when
  2272 // thread state is _thread_in_native_trans.
  2273 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2274   check_safepoint_and_suspend_for_native_trans(thread);
  2276   if (thread->has_async_exception()) {
  2277     // We are in _thread_in_native_trans state, don't handle unsafe
  2278     // access error since that may block.
  2279     thread->check_and_handle_async_exceptions(false);
  2283 // We need to guarantee the Threads_lock here, since resumes are not
  2284 // allowed during safepoint synchronization
  2285 // Can only resume from an external suspension
  2286 void JavaThread::java_resume() {
  2287   assert_locked_or_safepoint(Threads_lock);
  2289   // Sanity check: thread is gone, has started exiting or the thread
  2290   // was not externally suspended.
  2291   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2292     return;
  2295   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2297   clear_external_suspend();
  2299   if (is_ext_suspended()) {
  2300     clear_ext_suspended();
  2301     SR_lock()->notify_all();
  2305 void JavaThread::create_stack_guard_pages() {
  2306   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2307   address low_addr = stack_base() - stack_size();
  2308   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2310   int allocate = os::allocate_stack_guard_pages();
  2311   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2313   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2314     warning("Attempt to allocate stack guard pages failed.");
  2315     return;
  2318   if (os::guard_memory((char *) low_addr, len)) {
  2319     _stack_guard_state = stack_guard_enabled;
  2320   } else {
  2321     warning("Attempt to protect stack guard pages failed.");
  2322     if (os::uncommit_memory((char *) low_addr, len)) {
  2323       warning("Attempt to deallocate stack guard pages failed.");
  2328 void JavaThread::remove_stack_guard_pages() {
  2329   if (_stack_guard_state == stack_guard_unused) return;
  2330   address low_addr = stack_base() - stack_size();
  2331   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2333   if (os::allocate_stack_guard_pages()) {
  2334     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2335       _stack_guard_state = stack_guard_unused;
  2336     } else {
  2337       warning("Attempt to deallocate stack guard pages failed.");
  2339   } else {
  2340     if (_stack_guard_state == stack_guard_unused) return;
  2341     if (os::unguard_memory((char *) low_addr, len)) {
  2342       _stack_guard_state = stack_guard_unused;
  2343     } else {
  2344         warning("Attempt to unprotect stack guard pages failed.");
  2349 void JavaThread::enable_stack_yellow_zone() {
  2350   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2351   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2353   // The base notation is from the stacks point of view, growing downward.
  2354   // We need to adjust it to work correctly with guard_memory()
  2355   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2357   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2358   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2360   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2361     _stack_guard_state = stack_guard_enabled;
  2362   } else {
  2363     warning("Attempt to guard stack yellow zone failed.");
  2365   enable_register_stack_guard();
  2368 void JavaThread::disable_stack_yellow_zone() {
  2369   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2370   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2372   // Simply return if called for a thread that does not use guard pages.
  2373   if (_stack_guard_state == stack_guard_unused) return;
  2375   // The base notation is from the stacks point of view, growing downward.
  2376   // We need to adjust it to work correctly with guard_memory()
  2377   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2379   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2380     _stack_guard_state = stack_guard_yellow_disabled;
  2381   } else {
  2382     warning("Attempt to unguard stack yellow zone failed.");
  2384   disable_register_stack_guard();
  2387 void JavaThread::enable_stack_red_zone() {
  2388   // The base notation is from the stacks point of view, growing downward.
  2389   // We need to adjust it to work correctly with guard_memory()
  2390   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2391   address base = stack_red_zone_base() - stack_red_zone_size();
  2393   guarantee(base < stack_base(),"Error calculating stack red zone");
  2394   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2396   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2397     warning("Attempt to guard stack red zone failed.");
  2401 void JavaThread::disable_stack_red_zone() {
  2402   // The base notation is from the stacks point of view, growing downward.
  2403   // We need to adjust it to work correctly with guard_memory()
  2404   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2405   address base = stack_red_zone_base() - stack_red_zone_size();
  2406   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2407     warning("Attempt to unguard stack red zone failed.");
  2411 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2412   // ignore is there is no stack
  2413   if (!has_last_Java_frame()) return;
  2414   // traverse the stack frames. Starts from top frame.
  2415   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2416     frame* fr = fst.current();
  2417     f(fr, fst.register_map());
  2422 #ifndef PRODUCT
  2423 // Deoptimization
  2424 // Function for testing deoptimization
  2425 void JavaThread::deoptimize() {
  2426   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2427   StackFrameStream fst(this, UseBiasedLocking);
  2428   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2429   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2430   // Iterate over all frames in the thread and deoptimize
  2431   for(; !fst.is_done(); fst.next()) {
  2432     if(fst.current()->can_be_deoptimized()) {
  2434       if (only_at) {
  2435         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2436         // consists of comma or carriage return separated numbers so
  2437         // search for the current bci in that string.
  2438         address pc = fst.current()->pc();
  2439         nmethod* nm =  (nmethod*) fst.current()->cb();
  2440         ScopeDesc* sd = nm->scope_desc_at( pc);
  2441         char buffer[8];
  2442         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2443         size_t len = strlen(buffer);
  2444         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2445         while (found != NULL) {
  2446           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2447               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2448             // Check that the bci found is bracketed by terminators.
  2449             break;
  2451           found = strstr(found + 1, buffer);
  2453         if (!found) {
  2454           continue;
  2458       if (DebugDeoptimization && !deopt) {
  2459         deopt = true; // One-time only print before deopt
  2460         tty->print_cr("[BEFORE Deoptimization]");
  2461         trace_frames();
  2462         trace_stack();
  2464       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2468   if (DebugDeoptimization && deopt) {
  2469     tty->print_cr("[AFTER Deoptimization]");
  2470     trace_frames();
  2475 // Make zombies
  2476 void JavaThread::make_zombies() {
  2477   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2478     if (fst.current()->can_be_deoptimized()) {
  2479       // it is a Java nmethod
  2480       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2481       nm->make_not_entrant();
  2485 #endif // PRODUCT
  2488 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2489   if (!has_last_Java_frame()) return;
  2490   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2491   StackFrameStream fst(this, UseBiasedLocking);
  2492   for(; !fst.is_done(); fst.next()) {
  2493     if (fst.current()->should_be_deoptimized()) {
  2494       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2500 // GC support
  2501 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2503 void JavaThread::gc_epilogue() {
  2504   frames_do(frame_gc_epilogue);
  2508 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2510 void JavaThread::gc_prologue() {
  2511   frames_do(frame_gc_prologue);
  2514 // If the caller is a NamedThread, then remember, in the current scope,
  2515 // the given JavaThread in its _processed_thread field.
  2516 class RememberProcessedThread: public StackObj {
  2517   NamedThread* _cur_thr;
  2518 public:
  2519   RememberProcessedThread(JavaThread* jthr) {
  2520     Thread* thread = Thread::current();
  2521     if (thread->is_Named_thread()) {
  2522       _cur_thr = (NamedThread *)thread;
  2523       _cur_thr->set_processed_thread(jthr);
  2524     } else {
  2525       _cur_thr = NULL;
  2529   ~RememberProcessedThread() {
  2530     if (_cur_thr) {
  2531       _cur_thr->set_processed_thread(NULL);
  2534 };
  2536 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2537   // Verify that the deferred card marks have been flushed.
  2538   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2540   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2541   // since there may be more than one thread using each ThreadProfiler.
  2543   // Traverse the GCHandles
  2544   Thread::oops_do(f, cf);
  2546   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2547           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2549   if (has_last_Java_frame()) {
  2550     // Record JavaThread to GC thread
  2551     RememberProcessedThread rpt(this);
  2553     // Traverse the privileged stack
  2554     if (_privileged_stack_top != NULL) {
  2555       _privileged_stack_top->oops_do(f);
  2558     // traverse the registered growable array
  2559     if (_array_for_gc != NULL) {
  2560       for (int index = 0; index < _array_for_gc->length(); index++) {
  2561         f->do_oop(_array_for_gc->adr_at(index));
  2565     // Traverse the monitor chunks
  2566     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2567       chunk->oops_do(f);
  2570     // Traverse the execution stack
  2571     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2572       fst.current()->oops_do(f, cf, fst.register_map());
  2576   // callee_target is never live across a gc point so NULL it here should
  2577   // it still contain a methdOop.
  2579   set_callee_target(NULL);
  2581   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2582   // If we have deferred set_locals there might be oops waiting to be
  2583   // written
  2584   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2585   if (list != NULL) {
  2586     for (int i = 0; i < list->length(); i++) {
  2587       list->at(i)->oops_do(f);
  2591   // Traverse instance variables at the end since the GC may be moving things
  2592   // around using this function
  2593   f->do_oop((oop*) &_threadObj);
  2594   f->do_oop((oop*) &_vm_result);
  2595   f->do_oop((oop*) &_vm_result_2);
  2596   f->do_oop((oop*) &_exception_oop);
  2597   f->do_oop((oop*) &_pending_async_exception);
  2599   if (jvmti_thread_state() != NULL) {
  2600     jvmti_thread_state()->oops_do(f);
  2604 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2605   Thread::nmethods_do(cf);  // (super method is a no-op)
  2607   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2608           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2610   if (has_last_Java_frame()) {
  2611     // Traverse the execution stack
  2612     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2613       fst.current()->nmethods_do(cf);
  2618 // Printing
  2619 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2620   switch (_thread_state) {
  2621   case _thread_uninitialized:     return "_thread_uninitialized";
  2622   case _thread_new:               return "_thread_new";
  2623   case _thread_new_trans:         return "_thread_new_trans";
  2624   case _thread_in_native:         return "_thread_in_native";
  2625   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2626   case _thread_in_vm:             return "_thread_in_vm";
  2627   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2628   case _thread_in_Java:           return "_thread_in_Java";
  2629   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2630   case _thread_blocked:           return "_thread_blocked";
  2631   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2632   default:                        return "unknown thread state";
  2636 #ifndef PRODUCT
  2637 void JavaThread::print_thread_state_on(outputStream *st) const {
  2638   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2639 };
  2640 void JavaThread::print_thread_state() const {
  2641   print_thread_state_on(tty);
  2642 };
  2643 #endif // PRODUCT
  2645 // Called by Threads::print() for VM_PrintThreads operation
  2646 void JavaThread::print_on(outputStream *st) const {
  2647   st->print("\"%s\" ", get_thread_name());
  2648   oop thread_oop = threadObj();
  2649   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2650   Thread::print_on(st);
  2651   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2652   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2653   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2654     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2656 #ifndef PRODUCT
  2657   print_thread_state_on(st);
  2658   _safepoint_state->print_on(st);
  2659 #endif // PRODUCT
  2662 // Called by fatal error handler. The difference between this and
  2663 // JavaThread::print() is that we can't grab lock or allocate memory.
  2664 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2665   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2666   oop thread_obj = threadObj();
  2667   if (thread_obj != NULL) {
  2668      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2670   st->print(" [");
  2671   st->print("%s", _get_thread_state_name(_thread_state));
  2672   if (osthread()) {
  2673     st->print(", id=%d", osthread()->thread_id());
  2675   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2676             _stack_base - _stack_size, _stack_base);
  2677   st->print("]");
  2678   return;
  2681 // Verification
  2683 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2685 void JavaThread::verify() {
  2686   // Verify oops in the thread.
  2687   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2689   // Verify the stack frames.
  2690   frames_do(frame_verify);
  2693 // CR 6300358 (sub-CR 2137150)
  2694 // Most callers of this method assume that it can't return NULL but a
  2695 // thread may not have a name whilst it is in the process of attaching to
  2696 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2697 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2698 // if vm exit occurs during initialization). These cases can all be accounted
  2699 // for such that this method never returns NULL.
  2700 const char* JavaThread::get_thread_name() const {
  2701 #ifdef ASSERT
  2702   // early safepoints can hit while current thread does not yet have TLS
  2703   if (!SafepointSynchronize::is_at_safepoint()) {
  2704     Thread *cur = Thread::current();
  2705     if (!(cur->is_Java_thread() && cur == this)) {
  2706       // Current JavaThreads are allowed to get their own name without
  2707       // the Threads_lock.
  2708       assert_locked_or_safepoint(Threads_lock);
  2711 #endif // ASSERT
  2712     return get_thread_name_string();
  2715 // Returns a non-NULL representation of this thread's name, or a suitable
  2716 // descriptive string if there is no set name
  2717 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2718   const char* name_str;
  2719   oop thread_obj = threadObj();
  2720   if (thread_obj != NULL) {
  2721     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2722     if (name != NULL) {
  2723       if (buf == NULL) {
  2724         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2726       else {
  2727         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2730     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2731       name_str = "<no-name - thread is attaching>";
  2733     else {
  2734       name_str = Thread::name();
  2737   else {
  2738     name_str = Thread::name();
  2740   assert(name_str != NULL, "unexpected NULL thread name");
  2741   return name_str;
  2745 const char* JavaThread::get_threadgroup_name() const {
  2746   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2747   oop thread_obj = threadObj();
  2748   if (thread_obj != NULL) {
  2749     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2750     if (thread_group != NULL) {
  2751       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2752       // ThreadGroup.name can be null
  2753       if (name != NULL) {
  2754         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2755         return str;
  2759   return NULL;
  2762 const char* JavaThread::get_parent_name() const {
  2763   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2764   oop thread_obj = threadObj();
  2765   if (thread_obj != NULL) {
  2766     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2767     if (thread_group != NULL) {
  2768       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2769       if (parent != NULL) {
  2770         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2771         // ThreadGroup.name can be null
  2772         if (name != NULL) {
  2773           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2774           return str;
  2779   return NULL;
  2782 ThreadPriority JavaThread::java_priority() const {
  2783   oop thr_oop = threadObj();
  2784   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2785   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2786   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2787   return priority;
  2790 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2792   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2793   // Link Java Thread object <-> C++ Thread
  2795   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2796   // and put it into a new Handle.  The Handle "thread_oop" can then
  2797   // be used to pass the C++ thread object to other methods.
  2799   // Set the Java level thread object (jthread) field of the
  2800   // new thread (a JavaThread *) to C++ thread object using the
  2801   // "thread_oop" handle.
  2803   // Set the thread field (a JavaThread *) of the
  2804   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2806   Handle thread_oop(Thread::current(),
  2807                     JNIHandles::resolve_non_null(jni_thread));
  2808   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2809     "must be initialized");
  2810   set_threadObj(thread_oop());
  2811   java_lang_Thread::set_thread(thread_oop(), this);
  2813   if (prio == NoPriority) {
  2814     prio = java_lang_Thread::priority(thread_oop());
  2815     assert(prio != NoPriority, "A valid priority should be present");
  2818   // Push the Java priority down to the native thread; needs Threads_lock
  2819   Thread::set_priority(this, prio);
  2821   // Add the new thread to the Threads list and set it in motion.
  2822   // We must have threads lock in order to call Threads::add.
  2823   // It is crucial that we do not block before the thread is
  2824   // added to the Threads list for if a GC happens, then the java_thread oop
  2825   // will not be visited by GC.
  2826   Threads::add(this);
  2829 oop JavaThread::current_park_blocker() {
  2830   // Support for JSR-166 locks
  2831   oop thread_oop = threadObj();
  2832   if (thread_oop != NULL &&
  2833       JDK_Version::current().supports_thread_park_blocker()) {
  2834     return java_lang_Thread::park_blocker(thread_oop);
  2836   return NULL;
  2840 void JavaThread::print_stack_on(outputStream* st) {
  2841   if (!has_last_Java_frame()) return;
  2842   ResourceMark rm;
  2843   HandleMark   hm;
  2845   RegisterMap reg_map(this);
  2846   vframe* start_vf = last_java_vframe(&reg_map);
  2847   int count = 0;
  2848   for (vframe* f = start_vf; f; f = f->sender() ) {
  2849     if (f->is_java_frame()) {
  2850       javaVFrame* jvf = javaVFrame::cast(f);
  2851       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2853       // Print out lock information
  2854       if (JavaMonitorsInStackTrace) {
  2855         jvf->print_lock_info_on(st, count);
  2857     } else {
  2858       // Ignore non-Java frames
  2861     // Bail-out case for too deep stacks
  2862     count++;
  2863     if (MaxJavaStackTraceDepth == count) return;
  2868 // JVMTI PopFrame support
  2869 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2870   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2871   if (in_bytes(size_in_bytes) != 0) {
  2872     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2873     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2874     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2878 void* JavaThread::popframe_preserved_args() {
  2879   return _popframe_preserved_args;
  2882 ByteSize JavaThread::popframe_preserved_args_size() {
  2883   return in_ByteSize(_popframe_preserved_args_size);
  2886 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2887   int sz = in_bytes(popframe_preserved_args_size());
  2888   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2889   return in_WordSize(sz / wordSize);
  2892 void JavaThread::popframe_free_preserved_args() {
  2893   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2894   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2895   _popframe_preserved_args = NULL;
  2896   _popframe_preserved_args_size = 0;
  2899 #ifndef PRODUCT
  2901 void JavaThread::trace_frames() {
  2902   tty->print_cr("[Describe stack]");
  2903   int frame_no = 1;
  2904   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2905     tty->print("  %d. ", frame_no++);
  2906     fst.current()->print_value_on(tty,this);
  2907     tty->cr();
  2911 class PrintAndVerifyOopClosure: public OopClosure {
  2912  protected:
  2913   template <class T> inline void do_oop_work(T* p) {
  2914     oop obj = oopDesc::load_decode_heap_oop(p);
  2915     if (obj == NULL) return;
  2916     tty->print(INTPTR_FORMAT ": ", p);
  2917     if (obj->is_oop_or_null()) {
  2918       if (obj->is_objArray()) {
  2919         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  2920       } else {
  2921         obj->print();
  2923     } else {
  2924       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  2926     tty->cr();
  2928  public:
  2929   virtual void do_oop(oop* p) { do_oop_work(p); }
  2930   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  2931 };
  2934 static void oops_print(frame* f, const RegisterMap *map) {
  2935   PrintAndVerifyOopClosure print;
  2936   f->print_value();
  2937   f->oops_do(&print, NULL, (RegisterMap*)map);
  2940 // Print our all the locations that contain oops and whether they are
  2941 // valid or not.  This useful when trying to find the oldest frame
  2942 // where an oop has gone bad since the frame walk is from youngest to
  2943 // oldest.
  2944 void JavaThread::trace_oops() {
  2945   tty->print_cr("[Trace oops]");
  2946   frames_do(oops_print);
  2950 #ifdef ASSERT
  2951 // Print or validate the layout of stack frames
  2952 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  2953   ResourceMark rm;
  2954   PRESERVE_EXCEPTION_MARK;
  2955   FrameValues values;
  2956   int frame_no = 0;
  2957   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  2958     fst.current()->describe(values, ++frame_no);
  2959     if (depth == frame_no) break;
  2961   if (validate_only) {
  2962     values.validate();
  2963   } else {
  2964     tty->print_cr("[Describe stack layout]");
  2965     values.print(this);
  2968 #endif
  2970 void JavaThread::trace_stack_from(vframe* start_vf) {
  2971   ResourceMark rm;
  2972   int vframe_no = 1;
  2973   for (vframe* f = start_vf; f; f = f->sender() ) {
  2974     if (f->is_java_frame()) {
  2975       javaVFrame::cast(f)->print_activation(vframe_no++);
  2976     } else {
  2977       f->print();
  2979     if (vframe_no > StackPrintLimit) {
  2980       tty->print_cr("...<more frames>...");
  2981       return;
  2987 void JavaThread::trace_stack() {
  2988   if (!has_last_Java_frame()) return;
  2989   ResourceMark rm;
  2990   HandleMark   hm;
  2991   RegisterMap reg_map(this);
  2992   trace_stack_from(last_java_vframe(&reg_map));
  2996 #endif // PRODUCT
  2999 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3000   assert(reg_map != NULL, "a map must be given");
  3001   frame f = last_frame();
  3002   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3003     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3005   return NULL;
  3009 klassOop JavaThread::security_get_caller_class(int depth) {
  3010   vframeStream vfst(this);
  3011   vfst.security_get_caller_frame(depth);
  3012   if (!vfst.at_end()) {
  3013     return vfst.method()->method_holder();
  3015   return NULL;
  3018 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3019   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3020   CompileBroker::compiler_thread_loop();
  3023 // Create a CompilerThread
  3024 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3025 : JavaThread(&compiler_thread_entry) {
  3026   _env   = NULL;
  3027   _log   = NULL;
  3028   _task  = NULL;
  3029   _queue = queue;
  3030   _counters = counters;
  3031   _buffer_blob = NULL;
  3032   _scanned_nmethod = NULL;
  3034 #ifndef PRODUCT
  3035   _ideal_graph_printer = NULL;
  3036 #endif
  3039 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3040   JavaThread::oops_do(f, cf);
  3041   if (_scanned_nmethod != NULL && cf != NULL) {
  3042     // Safepoints can occur when the sweeper is scanning an nmethod so
  3043     // process it here to make sure it isn't unloaded in the middle of
  3044     // a scan.
  3045     cf->do_code_blob(_scanned_nmethod);
  3049 // ======= Threads ========
  3051 // The Threads class links together all active threads, and provides
  3052 // operations over all threads.  It is protected by its own Mutex
  3053 // lock, which is also used in other contexts to protect thread
  3054 // operations from having the thread being operated on from exiting
  3055 // and going away unexpectedly (e.g., safepoint synchronization)
  3057 JavaThread* Threads::_thread_list = NULL;
  3058 int         Threads::_number_of_threads = 0;
  3059 int         Threads::_number_of_non_daemon_threads = 0;
  3060 int         Threads::_return_code = 0;
  3061 size_t      JavaThread::_stack_size_at_create = 0;
  3063 // All JavaThreads
  3064 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3066 void os_stream();
  3068 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3069 void Threads::threads_do(ThreadClosure* tc) {
  3070   assert_locked_or_safepoint(Threads_lock);
  3071   // ALL_JAVA_THREADS iterates through all JavaThreads
  3072   ALL_JAVA_THREADS(p) {
  3073     tc->do_thread(p);
  3075   // Someday we could have a table or list of all non-JavaThreads.
  3076   // For now, just manually iterate through them.
  3077   tc->do_thread(VMThread::vm_thread());
  3078   Universe::heap()->gc_threads_do(tc);
  3079   WatcherThread *wt = WatcherThread::watcher_thread();
  3080   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3081   // the data for WatcherThread is still valid upon being examined. However,
  3082   // considering that WatchThread terminates when the VM is on the way to
  3083   // exit at safepoint, the chance of the above is extremely small. The right
  3084   // way to prevent termination of WatcherThread would be to acquire
  3085   // Terminator_lock, but we can't do that without violating the lock rank
  3086   // checking in some cases.
  3087   if (wt != NULL)
  3088     tc->do_thread(wt);
  3090   // If CompilerThreads ever become non-JavaThreads, add them here
  3093 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3095   extern void JDK_Version_init();
  3097   // Check version
  3098   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3100   // Initialize the output stream module
  3101   ostream_init();
  3103   // Process java launcher properties.
  3104   Arguments::process_sun_java_launcher_properties(args);
  3106   // Initialize the os module before using TLS
  3107   os::init();
  3109   // Initialize system properties.
  3110   Arguments::init_system_properties();
  3112   // So that JDK version can be used as a discrimintor when parsing arguments
  3113   JDK_Version_init();
  3115   // Update/Initialize System properties after JDK version number is known
  3116   Arguments::init_version_specific_system_properties();
  3118   // Parse arguments
  3119   jint parse_result = Arguments::parse(args);
  3120   if (parse_result != JNI_OK) return parse_result;
  3122   if (PauseAtStartup) {
  3123     os::pause();
  3126 #ifndef USDT2
  3127   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3128 #else /* USDT2 */
  3129   HOTSPOT_VM_INIT_BEGIN();
  3130 #endif /* USDT2 */
  3132   // Record VM creation timing statistics
  3133   TraceVmCreationTime create_vm_timer;
  3134   create_vm_timer.start();
  3136   // Timing (must come after argument parsing)
  3137   TraceTime timer("Create VM", TraceStartupTime);
  3139   // Initialize the os module after parsing the args
  3140   jint os_init_2_result = os::init_2();
  3141   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3143   // Initialize output stream logging
  3144   ostream_init_log();
  3146   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3147   // Must be before create_vm_init_agents()
  3148   if (Arguments::init_libraries_at_startup()) {
  3149     convert_vm_init_libraries_to_agents();
  3152   // Launch -agentlib/-agentpath and converted -Xrun agents
  3153   if (Arguments::init_agents_at_startup()) {
  3154     create_vm_init_agents();
  3157   // Initialize Threads state
  3158   _thread_list = NULL;
  3159   _number_of_threads = 0;
  3160   _number_of_non_daemon_threads = 0;
  3162   // Initialize TLS
  3163   ThreadLocalStorage::init();
  3165   // Initialize global data structures and create system classes in heap
  3166   vm_init_globals();
  3168   // Attach the main thread to this os thread
  3169   JavaThread* main_thread = new JavaThread();
  3170   main_thread->set_thread_state(_thread_in_vm);
  3171   // must do this before set_active_handles and initialize_thread_local_storage
  3172   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3173   // change the stack size recorded here to one based on the java thread
  3174   // stacksize. This adjusted size is what is used to figure the placement
  3175   // of the guard pages.
  3176   main_thread->record_stack_base_and_size();
  3177   main_thread->initialize_thread_local_storage();
  3179   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3181   if (!main_thread->set_as_starting_thread()) {
  3182     vm_shutdown_during_initialization(
  3183       "Failed necessary internal allocation. Out of swap space");
  3184     delete main_thread;
  3185     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3186     return JNI_ENOMEM;
  3189   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3190   // crash Linux VM, see notes in os_linux.cpp.
  3191   main_thread->create_stack_guard_pages();
  3193   // Initialize Java-Level synchronization subsystem
  3194   ObjectMonitor::Initialize() ;
  3196   // Initialize global modules
  3197   jint status = init_globals();
  3198   if (status != JNI_OK) {
  3199     delete main_thread;
  3200     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3201     return status;
  3204   // Must be run after init_ft which initializes ft_enabled
  3205   if (TRACE_INITIALIZE() != JNI_OK) {
  3206     vm_exit_during_initialization("Failed to initialize tracing backend");
  3209   // Should be done after the heap is fully created
  3210   main_thread->cache_global_variables();
  3212   HandleMark hm;
  3214   { MutexLocker mu(Threads_lock);
  3215     Threads::add(main_thread);
  3218   // Any JVMTI raw monitors entered in onload will transition into
  3219   // real raw monitor. VM is setup enough here for raw monitor enter.
  3220   JvmtiExport::transition_pending_onload_raw_monitors();
  3222   if (VerifyBeforeGC &&
  3223       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3224     Universe::heap()->prepare_for_verify();
  3225     Universe::verify();   // make sure we're starting with a clean slate
  3228   // Create the VMThread
  3229   { TraceTime timer("Start VMThread", TraceStartupTime);
  3230     VMThread::create();
  3231     Thread* vmthread = VMThread::vm_thread();
  3233     if (!os::create_thread(vmthread, os::vm_thread))
  3234       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3236     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3237     // Monitors can have spurious returns, must always check another state flag
  3239       MutexLocker ml(Notify_lock);
  3240       os::start_thread(vmthread);
  3241       while (vmthread->active_handles() == NULL) {
  3242         Notify_lock->wait();
  3247   assert (Universe::is_fully_initialized(), "not initialized");
  3248   EXCEPTION_MARK;
  3250   // At this point, the Universe is initialized, but we have not executed
  3251   // any byte code.  Now is a good time (the only time) to dump out the
  3252   // internal state of the JVM for sharing.
  3254   if (DumpSharedSpaces) {
  3255     Universe::heap()->preload_and_dump(CHECK_0);
  3256     ShouldNotReachHere();
  3259   // Always call even when there are not JVMTI environments yet, since environments
  3260   // may be attached late and JVMTI must track phases of VM execution
  3261   JvmtiExport::enter_start_phase();
  3263   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3264   JvmtiExport::post_vm_start();
  3267     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3269     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3270       create_vm_init_libraries();
  3273     if (InitializeJavaLangString) {
  3274       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3275     } else {
  3276       warning("java.lang.String not initialized");
  3279     if (AggressiveOpts) {
  3281         // Forcibly initialize java/util/HashMap and mutate the private
  3282         // static final "frontCacheEnabled" field before we start creating instances
  3283 #ifdef ASSERT
  3284         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3285         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3286 #endif
  3287         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3288         KlassHandle k = KlassHandle(THREAD, k_o);
  3289         guarantee(k.not_null(), "Must find java/util/HashMap");
  3290         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3291         ik->initialize(CHECK_0);
  3292         fieldDescriptor fd;
  3293         // Possible we might not find this field; if so, don't break
  3294         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3295           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3299       if (UseStringCache) {
  3300         // Forcibly initialize java/lang/StringValue and mutate the private
  3301         // static final "stringCacheEnabled" field before we start creating instances
  3302         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3303         // Possible that StringValue isn't present: if so, silently don't break
  3304         if (k_o != NULL) {
  3305           KlassHandle k = KlassHandle(THREAD, k_o);
  3306           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3307           ik->initialize(CHECK_0);
  3308           fieldDescriptor fd;
  3309           // Possible we might not find this field: if so, silently don't break
  3310           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3311             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3317     // Initialize java_lang.System (needed before creating the thread)
  3318     if (InitializeJavaLangSystem) {
  3319       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3320       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3321       Handle thread_group = create_initial_thread_group(CHECK_0);
  3322       Universe::set_main_thread_group(thread_group());
  3323       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3324       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3325       main_thread->set_threadObj(thread_object);
  3326       // Set thread status to running since main thread has
  3327       // been started and running.
  3328       java_lang_Thread::set_thread_status(thread_object,
  3329                                           java_lang_Thread::RUNNABLE);
  3331       // The VM preresolve methods to these classes. Make sure that get initialized
  3332       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3333       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3334       // The VM creates & returns objects of this class. Make sure it's initialized.
  3335       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3336       call_initializeSystemClass(CHECK_0);
  3337     } else {
  3338       warning("java.lang.System not initialized");
  3341     // an instance of OutOfMemory exception has been allocated earlier
  3342     if (InitializeJavaLangExceptionsErrors) {
  3343       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3344       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3345       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3346       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3347       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3348       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3349       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3350     } else {
  3351       warning("java.lang.OutOfMemoryError has not been initialized");
  3352       warning("java.lang.NullPointerException has not been initialized");
  3353       warning("java.lang.ClassCastException has not been initialized");
  3354       warning("java.lang.ArrayStoreException has not been initialized");
  3355       warning("java.lang.ArithmeticException has not been initialized");
  3356       warning("java.lang.StackOverflowError has not been initialized");
  3360   // See        : bugid 4211085.
  3361   // Background : the static initializer of java.lang.Compiler tries to read
  3362   //              property"java.compiler" and read & write property "java.vm.info".
  3363   //              When a security manager is installed through the command line
  3364   //              option "-Djava.security.manager", the above properties are not
  3365   //              readable and the static initializer for java.lang.Compiler fails
  3366   //              resulting in a NoClassDefFoundError.  This can happen in any
  3367   //              user code which calls methods in java.lang.Compiler.
  3368   // Hack :       the hack is to pre-load and initialize this class, so that only
  3369   //              system domains are on the stack when the properties are read.
  3370   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3371   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3372   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3373   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3374   //              Once that is done, we should remove this hack.
  3375   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3377   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3378   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3379   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3380   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3381   // This should also be taken out as soon as 4211383 gets fixed.
  3382   reset_vm_info_property(CHECK_0);
  3384   quicken_jni_functions();
  3386   // Set flag that basic initialization has completed. Used by exceptions and various
  3387   // debug stuff, that does not work until all basic classes have been initialized.
  3388   set_init_completed();
  3390 #ifndef USDT2
  3391   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3392 #else /* USDT2 */
  3393   HOTSPOT_VM_INIT_END();
  3394 #endif /* USDT2 */
  3396   // record VM initialization completion time
  3397   Management::record_vm_init_completed();
  3399   // Compute system loader. Note that this has to occur after set_init_completed, since
  3400   // valid exceptions may be thrown in the process.
  3401   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3402   // set_init_completed has just been called, causing exceptions not to be shortcut
  3403   // anymore. We call vm_exit_during_initialization directly instead.
  3404   SystemDictionary::compute_java_system_loader(THREAD);
  3405   if (HAS_PENDING_EXCEPTION) {
  3406     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3409 #ifndef SERIALGC
  3410   // Support for ConcurrentMarkSweep. This should be cleaned up
  3411   // and better encapsulated. The ugly nested if test would go away
  3412   // once things are properly refactored. XXX YSR
  3413   if (UseConcMarkSweepGC || UseG1GC) {
  3414     if (UseConcMarkSweepGC) {
  3415       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3416     } else {
  3417       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3419     if (HAS_PENDING_EXCEPTION) {
  3420       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3423 #endif // SERIALGC
  3425   // Always call even when there are not JVMTI environments yet, since environments
  3426   // may be attached late and JVMTI must track phases of VM execution
  3427   JvmtiExport::enter_live_phase();
  3429   // Signal Dispatcher needs to be started before VMInit event is posted
  3430   os::signal_init();
  3432   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3433   if (!DisableAttachMechanism) {
  3434     if (StartAttachListener || AttachListener::init_at_startup()) {
  3435       AttachListener::init();
  3439   // Launch -Xrun agents
  3440   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3441   // back-end can launch with -Xdebug -Xrunjdwp.
  3442   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3443     create_vm_init_libraries();
  3446   if (!TRACE_START()) {
  3447     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3450   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3451   JvmtiExport::post_vm_initialized();
  3453   if (CleanChunkPoolAsync) {
  3454     Chunk::start_chunk_pool_cleaner_task();
  3457   // initialize compiler(s)
  3458   CompileBroker::compilation_init();
  3460   Management::initialize(THREAD);
  3461   if (HAS_PENDING_EXCEPTION) {
  3462     // management agent fails to start possibly due to
  3463     // configuration problem and is responsible for printing
  3464     // stack trace if appropriate. Simply exit VM.
  3465     vm_exit(1);
  3468   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3469   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3470   if (MemProfiling)                   MemProfiler::engage();
  3471   StatSampler::engage();
  3472   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3474   BiasedLocking::init();
  3476   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3477     call_postVMInitHook(THREAD);
  3478     // The Java side of PostVMInitHook.run must deal with all
  3479     // exceptions and provide means of diagnosis.
  3480     if (HAS_PENDING_EXCEPTION) {
  3481       CLEAR_PENDING_EXCEPTION;
  3485   // Start up the WatcherThread if there are any periodic tasks
  3486   // NOTE:  All PeriodicTasks should be registered by now. If they
  3487   //   aren't, late joiners might appear to start slowly (we might
  3488   //   take a while to process their first tick).
  3489   if (PeriodicTask::num_tasks() > 0) {
  3490     WatcherThread::start();
  3493   // Give os specific code one last chance to start
  3494   os::init_3();
  3496   create_vm_timer.end();
  3497   return JNI_OK;
  3500 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3501 extern "C" {
  3502   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3504 // Find a command line agent library and return its entry point for
  3505 //         -agentlib:  -agentpath:   -Xrun
  3506 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3507 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3508   OnLoadEntry_t on_load_entry = NULL;
  3509   void *library = agent->os_lib();  // check if we have looked it up before
  3511   if (library == NULL) {
  3512     char buffer[JVM_MAXPATHLEN];
  3513     char ebuf[1024];
  3514     const char *name = agent->name();
  3515     const char *msg = "Could not find agent library ";
  3517     if (agent->is_absolute_path()) {
  3518       library = os::dll_load(name, ebuf, sizeof ebuf);
  3519       if (library == NULL) {
  3520         const char *sub_msg = " in absolute path, with error: ";
  3521         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3522         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3523         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3524         // If we can't find the agent, exit.
  3525         vm_exit_during_initialization(buf, NULL);
  3526         FREE_C_HEAP_ARRAY(char, buf);
  3528     } else {
  3529       // Try to load the agent from the standard dll directory
  3530       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3531       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3532 #ifdef KERNEL
  3533       // Download instrument dll
  3534       if (library == NULL && strcmp(name, "instrument") == 0) {
  3535         char *props = Arguments::get_kernel_properties();
  3536         char *home  = Arguments::get_java_home();
  3537         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3538                       " sun.jkernel.DownloadManager -download client_jvm";
  3539         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3540         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3541         jio_snprintf(cmd, length, fmt, home, props);
  3542         int status = os::fork_and_exec(cmd);
  3543         FreeHeap(props);
  3544         if (status == -1) {
  3545           warning(cmd);
  3546           vm_exit_during_initialization("fork_and_exec failed: %s",
  3547                                          strerror(errno));
  3549         FREE_C_HEAP_ARRAY(char, cmd);
  3550         // when this comes back the instrument.dll should be where it belongs.
  3551         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3553 #endif // KERNEL
  3554       if (library == NULL) { // Try the local directory
  3555         char ns[1] = {0};
  3556         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3557         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3558         if (library == NULL) {
  3559           const char *sub_msg = " on the library path, with error: ";
  3560           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3561           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3562           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3563           // If we can't find the agent, exit.
  3564           vm_exit_during_initialization(buf, NULL);
  3565           FREE_C_HEAP_ARRAY(char, buf);
  3569     agent->set_os_lib(library);
  3572   // Find the OnLoad function.
  3573   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3574     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3575     if (on_load_entry != NULL) break;
  3577   return on_load_entry;
  3580 // Find the JVM_OnLoad entry point
  3581 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3582   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3583   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3586 // Find the Agent_OnLoad entry point
  3587 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3588   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3589   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3592 // For backwards compatibility with -Xrun
  3593 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3594 // treated like -agentpath:
  3595 // Must be called before agent libraries are created
  3596 void Threads::convert_vm_init_libraries_to_agents() {
  3597   AgentLibrary* agent;
  3598   AgentLibrary* next;
  3600   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3601     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3602     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3604     // If there is an JVM_OnLoad function it will get called later,
  3605     // otherwise see if there is an Agent_OnLoad
  3606     if (on_load_entry == NULL) {
  3607       on_load_entry = lookup_agent_on_load(agent);
  3608       if (on_load_entry != NULL) {
  3609         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3610         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3611         Arguments::convert_library_to_agent(agent);
  3612       } else {
  3613         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3619 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3620 // Invokes Agent_OnLoad
  3621 // Called very early -- before JavaThreads exist
  3622 void Threads::create_vm_init_agents() {
  3623   extern struct JavaVM_ main_vm;
  3624   AgentLibrary* agent;
  3626   JvmtiExport::enter_onload_phase();
  3627   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3628     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3630     if (on_load_entry != NULL) {
  3631       // Invoke the Agent_OnLoad function
  3632       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3633       if (err != JNI_OK) {
  3634         vm_exit_during_initialization("agent library failed to init", agent->name());
  3636     } else {
  3637       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3640   JvmtiExport::enter_primordial_phase();
  3643 extern "C" {
  3644   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3647 void Threads::shutdown_vm_agents() {
  3648   // Send any Agent_OnUnload notifications
  3649   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3650   extern struct JavaVM_ main_vm;
  3651   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3653     // Find the Agent_OnUnload function.
  3654     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3655       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3656                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3658       // Invoke the Agent_OnUnload function
  3659       if (unload_entry != NULL) {
  3660         JavaThread* thread = JavaThread::current();
  3661         ThreadToNativeFromVM ttn(thread);
  3662         HandleMark hm(thread);
  3663         (*unload_entry)(&main_vm);
  3664         break;
  3670 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3671 // Invokes JVM_OnLoad
  3672 void Threads::create_vm_init_libraries() {
  3673   extern struct JavaVM_ main_vm;
  3674   AgentLibrary* agent;
  3676   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3677     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3679     if (on_load_entry != NULL) {
  3680       // Invoke the JVM_OnLoad function
  3681       JavaThread* thread = JavaThread::current();
  3682       ThreadToNativeFromVM ttn(thread);
  3683       HandleMark hm(thread);
  3684       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3685       if (err != JNI_OK) {
  3686         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3688     } else {
  3689       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3694 // Last thread running calls java.lang.Shutdown.shutdown()
  3695 void JavaThread::invoke_shutdown_hooks() {
  3696   HandleMark hm(this);
  3698   // We could get here with a pending exception, if so clear it now.
  3699   if (this->has_pending_exception()) {
  3700     this->clear_pending_exception();
  3703   EXCEPTION_MARK;
  3704   klassOop k =
  3705     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3706                                       THREAD);
  3707   if (k != NULL) {
  3708     // SystemDictionary::resolve_or_null will return null if there was
  3709     // an exception.  If we cannot load the Shutdown class, just don't
  3710     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3711     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3712     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3713     // was called, the Shutdown class would have already been loaded
  3714     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3715     instanceKlassHandle shutdown_klass (THREAD, k);
  3716     JavaValue result(T_VOID);
  3717     JavaCalls::call_static(&result,
  3718                            shutdown_klass,
  3719                            vmSymbols::shutdown_method_name(),
  3720                            vmSymbols::void_method_signature(),
  3721                            THREAD);
  3723   CLEAR_PENDING_EXCEPTION;
  3726 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3727 // the program falls off the end of main(). Another VM exit path is through
  3728 // vm_exit() when the program calls System.exit() to return a value or when
  3729 // there is a serious error in VM. The two shutdown paths are not exactly
  3730 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3731 // and VM_Exit op at VM level.
  3732 //
  3733 // Shutdown sequence:
  3734 //   + Wait until we are the last non-daemon thread to execute
  3735 //     <-- every thing is still working at this moment -->
  3736 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3737 //        shutdown hooks, run finalizers if finalization-on-exit
  3738 //   + Call before_exit(), prepare for VM exit
  3739 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3740 //        currently the only user of this mechanism is File.deleteOnExit())
  3741 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3742 //        post thread end and vm death events to JVMTI,
  3743 //        stop signal thread
  3744 //   + Call JavaThread::exit(), it will:
  3745 //      > release JNI handle blocks, remove stack guard pages
  3746 //      > remove this thread from Threads list
  3747 //     <-- no more Java code from this thread after this point -->
  3748 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3749 //     the compiler threads at safepoint
  3750 //     <-- do not use anything that could get blocked by Safepoint -->
  3751 //   + Disable tracing at JNI/JVM barriers
  3752 //   + Set _vm_exited flag for threads that are still running native code
  3753 //   + Delete this thread
  3754 //   + Call exit_globals()
  3755 //      > deletes tty
  3756 //      > deletes PerfMemory resources
  3757 //   + Return to caller
  3759 bool Threads::destroy_vm() {
  3760   JavaThread* thread = JavaThread::current();
  3762   // Wait until we are the last non-daemon thread to execute
  3763   { MutexLocker nu(Threads_lock);
  3764     while (Threads::number_of_non_daemon_threads() > 1 )
  3765       // This wait should make safepoint checks, wait without a timeout,
  3766       // and wait as a suspend-equivalent condition.
  3767       //
  3768       // Note: If the FlatProfiler is running and this thread is waiting
  3769       // for another non-daemon thread to finish, then the FlatProfiler
  3770       // is waiting for the external suspend request on this thread to
  3771       // complete. wait_for_ext_suspend_completion() will eventually
  3772       // timeout, but that takes time. Making this wait a suspend-
  3773       // equivalent condition solves that timeout problem.
  3774       //
  3775       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3776                          Mutex::_as_suspend_equivalent_flag);
  3779   // Hang forever on exit if we are reporting an error.
  3780   if (ShowMessageBoxOnError && is_error_reported()) {
  3781     os::infinite_sleep();
  3783   os::wait_for_keypress_at_exit();
  3785   if (JDK_Version::is_jdk12x_version()) {
  3786     // We are the last thread running, so check if finalizers should be run.
  3787     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3788     HandleMark rm(thread);
  3789     Universe::run_finalizers_on_exit();
  3790   } else {
  3791     // run Java level shutdown hooks
  3792     thread->invoke_shutdown_hooks();
  3795   before_exit(thread);
  3797   thread->exit(true);
  3799   // Stop VM thread.
  3801     // 4945125 The vm thread comes to a safepoint during exit.
  3802     // GC vm_operations can get caught at the safepoint, and the
  3803     // heap is unparseable if they are caught. Grab the Heap_lock
  3804     // to prevent this. The GC vm_operations will not be able to
  3805     // queue until after the vm thread is dead.
  3806     // After this point, we'll never emerge out of the safepoint before
  3807     // the VM exits, so concurrent GC threads do not need to be explicitly
  3808     // stopped; they remain inactive until the process exits.
  3809     // Note: some concurrent G1 threads may be running during a safepoint,
  3810     // but these will not be accessing the heap, just some G1-specific side
  3811     // data structures that are not accessed by any other threads but them
  3812     // after this point in a terminal safepoint.
  3814     MutexLocker ml(Heap_lock);
  3816     VMThread::wait_for_vm_thread_exit();
  3817     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3818     VMThread::destroy();
  3821   // clean up ideal graph printers
  3822 #if defined(COMPILER2) && !defined(PRODUCT)
  3823   IdealGraphPrinter::clean_up();
  3824 #endif
  3826   // Now, all Java threads are gone except daemon threads. Daemon threads
  3827   // running Java code or in VM are stopped by the Safepoint. However,
  3828   // daemon threads executing native code are still running.  But they
  3829   // will be stopped at native=>Java/VM barriers. Note that we can't
  3830   // simply kill or suspend them, as it is inherently deadlock-prone.
  3832 #ifndef PRODUCT
  3833   // disable function tracing at JNI/JVM barriers
  3834   TraceJNICalls = false;
  3835   TraceJVMCalls = false;
  3836   TraceRuntimeCalls = false;
  3837 #endif
  3839   VM_Exit::set_vm_exited();
  3841   notify_vm_shutdown();
  3843   delete thread;
  3845   // exit_globals() will delete tty
  3846   exit_globals();
  3848   return true;
  3852 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3853   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3854   return is_supported_jni_version(version);
  3858 jboolean Threads::is_supported_jni_version(jint version) {
  3859   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3860   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3861   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3862   return JNI_FALSE;
  3866 void Threads::add(JavaThread* p, bool force_daemon) {
  3867   // The threads lock must be owned at this point
  3868   assert_locked_or_safepoint(Threads_lock);
  3870   // See the comment for this method in thread.hpp for its purpose and
  3871   // why it is called here.
  3872   p->initialize_queues();
  3873   p->set_next(_thread_list);
  3874   _thread_list = p;
  3875   _number_of_threads++;
  3876   oop threadObj = p->threadObj();
  3877   bool daemon = true;
  3878   // Bootstrapping problem: threadObj can be null for initial
  3879   // JavaThread (or for threads attached via JNI)
  3880   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3881     _number_of_non_daemon_threads++;
  3882     daemon = false;
  3885   ThreadService::add_thread(p, daemon);
  3887   // Possible GC point.
  3888   Events::log("Thread added: " INTPTR_FORMAT, p);
  3891 void Threads::remove(JavaThread* p) {
  3892   // Extra scope needed for Thread_lock, so we can check
  3893   // that we do not remove thread without safepoint code notice
  3894   { MutexLocker ml(Threads_lock);
  3896     assert(includes(p), "p must be present");
  3898     JavaThread* current = _thread_list;
  3899     JavaThread* prev    = NULL;
  3901     while (current != p) {
  3902       prev    = current;
  3903       current = current->next();
  3906     if (prev) {
  3907       prev->set_next(current->next());
  3908     } else {
  3909       _thread_list = p->next();
  3911     _number_of_threads--;
  3912     oop threadObj = p->threadObj();
  3913     bool daemon = true;
  3914     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3915       _number_of_non_daemon_threads--;
  3916       daemon = false;
  3918       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3919       // on destroy_vm will wake up.
  3920       if (number_of_non_daemon_threads() == 1)
  3921         Threads_lock->notify_all();
  3923     ThreadService::remove_thread(p, daemon);
  3925     // Make sure that safepoint code disregard this thread. This is needed since
  3926     // the thread might mess around with locks after this point. This can cause it
  3927     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3928     // of this thread since it is removed from the queue.
  3929     p->set_terminated_value();
  3930   } // unlock Threads_lock
  3932   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3933   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3936 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3937 bool Threads::includes(JavaThread* p) {
  3938   assert(Threads_lock->is_locked(), "sanity check");
  3939   ALL_JAVA_THREADS(q) {
  3940     if (q == p ) {
  3941       return true;
  3944   return false;
  3947 // Operations on the Threads list for GC.  These are not explicitly locked,
  3948 // but the garbage collector must provide a safe context for them to run.
  3949 // In particular, these things should never be called when the Threads_lock
  3950 // is held by some other thread. (Note: the Safepoint abstraction also
  3951 // uses the Threads_lock to gurantee this property. It also makes sure that
  3952 // all threads gets blocked when exiting or starting).
  3954 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3955   ALL_JAVA_THREADS(p) {
  3956     p->oops_do(f, cf);
  3958   VMThread::vm_thread()->oops_do(f, cf);
  3961 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3962   // Introduce a mechanism allowing parallel threads to claim threads as
  3963   // root groups.  Overhead should be small enough to use all the time,
  3964   // even in sequential code.
  3965   SharedHeap* sh = SharedHeap::heap();
  3966   // Cannot yet substitute active_workers for n_par_threads
  3967   // because of G1CollectedHeap::verify() use of
  3968   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  3969   // turn off parallelism in process_strong_roots while active_workers
  3970   // is being used for parallelism elsewhere.
  3971   bool is_par = sh->n_par_threads() > 0;
  3972   assert(!is_par ||
  3973          (SharedHeap::heap()->n_par_threads() ==
  3974           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  3975   int cp = SharedHeap::heap()->strong_roots_parity();
  3976   ALL_JAVA_THREADS(p) {
  3977     if (p->claim_oops_do(is_par, cp)) {
  3978       p->oops_do(f, cf);
  3981   VMThread* vmt = VMThread::vm_thread();
  3982   if (vmt->claim_oops_do(is_par, cp)) {
  3983     vmt->oops_do(f, cf);
  3987 #ifndef SERIALGC
  3988 // Used by ParallelScavenge
  3989 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3990   ALL_JAVA_THREADS(p) {
  3991     q->enqueue(new ThreadRootsTask(p));
  3993   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3996 // Used by Parallel Old
  3997 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3998   ALL_JAVA_THREADS(p) {
  3999     q->enqueue(new ThreadRootsMarkingTask(p));
  4001   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4003 #endif // SERIALGC
  4005 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4006   ALL_JAVA_THREADS(p) {
  4007     p->nmethods_do(cf);
  4009   VMThread::vm_thread()->nmethods_do(cf);
  4012 void Threads::gc_epilogue() {
  4013   ALL_JAVA_THREADS(p) {
  4014     p->gc_epilogue();
  4018 void Threads::gc_prologue() {
  4019   ALL_JAVA_THREADS(p) {
  4020     p->gc_prologue();
  4024 void Threads::deoptimized_wrt_marked_nmethods() {
  4025   ALL_JAVA_THREADS(p) {
  4026     p->deoptimized_wrt_marked_nmethods();
  4031 // Get count Java threads that are waiting to enter the specified monitor.
  4032 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4033   address monitor, bool doLock) {
  4034   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4035     "must grab Threads_lock or be at safepoint");
  4036   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4038   int i = 0;
  4040     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4041     ALL_JAVA_THREADS(p) {
  4042       if (p->is_Compiler_thread()) continue;
  4044       address pending = (address)p->current_pending_monitor();
  4045       if (pending == monitor) {             // found a match
  4046         if (i < count) result->append(p);   // save the first count matches
  4047         i++;
  4051   return result;
  4055 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4056   assert(doLock ||
  4057          Threads_lock->owned_by_self() ||
  4058          SafepointSynchronize::is_at_safepoint(),
  4059          "must grab Threads_lock or be at safepoint");
  4061   // NULL owner means not locked so we can skip the search
  4062   if (owner == NULL) return NULL;
  4065     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4066     ALL_JAVA_THREADS(p) {
  4067       // first, see if owner is the address of a Java thread
  4068       if (owner == (address)p) return p;
  4071   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4072   if (UseHeavyMonitors) return NULL;
  4074   //
  4075   // If we didn't find a matching Java thread and we didn't force use of
  4076   // heavyweight monitors, then the owner is the stack address of the
  4077   // Lock Word in the owning Java thread's stack.
  4078   //
  4079   JavaThread* the_owner = NULL;
  4081     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4082     ALL_JAVA_THREADS(q) {
  4083       if (q->is_lock_owned(owner)) {
  4084         the_owner = q;
  4085         break;
  4089   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4090   return the_owner;
  4093 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4094 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4095   char buf[32];
  4096   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4098   st->print_cr("Full thread dump %s (%s %s):",
  4099                 Abstract_VM_Version::vm_name(),
  4100                 Abstract_VM_Version::vm_release(),
  4101                 Abstract_VM_Version::vm_info_string()
  4102                );
  4103   st->cr();
  4105 #ifndef SERIALGC
  4106   // Dump concurrent locks
  4107   ConcurrentLocksDump concurrent_locks;
  4108   if (print_concurrent_locks) {
  4109     concurrent_locks.dump_at_safepoint();
  4111 #endif // SERIALGC
  4113   ALL_JAVA_THREADS(p) {
  4114     ResourceMark rm;
  4115     p->print_on(st);
  4116     if (print_stacks) {
  4117       if (internal_format) {
  4118         p->trace_stack();
  4119       } else {
  4120         p->print_stack_on(st);
  4123     st->cr();
  4124 #ifndef SERIALGC
  4125     if (print_concurrent_locks) {
  4126       concurrent_locks.print_locks_on(p, st);
  4128 #endif // SERIALGC
  4131   VMThread::vm_thread()->print_on(st);
  4132   st->cr();
  4133   Universe::heap()->print_gc_threads_on(st);
  4134   WatcherThread* wt = WatcherThread::watcher_thread();
  4135   if (wt != NULL) wt->print_on(st);
  4136   st->cr();
  4137   CompileBroker::print_compiler_threads_on(st);
  4138   st->flush();
  4141 // Threads::print_on_error() is called by fatal error handler. It's possible
  4142 // that VM is not at safepoint and/or current thread is inside signal handler.
  4143 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4144 // memory (even in resource area), it might deadlock the error handler.
  4145 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4146   bool found_current = false;
  4147   st->print_cr("Java Threads: ( => current thread )");
  4148   ALL_JAVA_THREADS(thread) {
  4149     bool is_current = (current == thread);
  4150     found_current = found_current || is_current;
  4152     st->print("%s", is_current ? "=>" : "  ");
  4154     st->print(PTR_FORMAT, thread);
  4155     st->print(" ");
  4156     thread->print_on_error(st, buf, buflen);
  4157     st->cr();
  4159   st->cr();
  4161   st->print_cr("Other Threads:");
  4162   if (VMThread::vm_thread()) {
  4163     bool is_current = (current == VMThread::vm_thread());
  4164     found_current = found_current || is_current;
  4165     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4167     st->print(PTR_FORMAT, VMThread::vm_thread());
  4168     st->print(" ");
  4169     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4170     st->cr();
  4172   WatcherThread* wt = WatcherThread::watcher_thread();
  4173   if (wt != NULL) {
  4174     bool is_current = (current == wt);
  4175     found_current = found_current || is_current;
  4176     st->print("%s", is_current ? "=>" : "  ");
  4178     st->print(PTR_FORMAT, wt);
  4179     st->print(" ");
  4180     wt->print_on_error(st, buf, buflen);
  4181     st->cr();
  4183   if (!found_current) {
  4184     st->cr();
  4185     st->print("=>" PTR_FORMAT " (exited) ", current);
  4186     current->print_on_error(st, buf, buflen);
  4187     st->cr();
  4191 // Internal SpinLock and Mutex
  4192 // Based on ParkEvent
  4194 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4195 //
  4196 // We employ SpinLocks _only for low-contention, fixed-length
  4197 // short-duration critical sections where we're concerned
  4198 // about native mutex_t or HotSpot Mutex:: latency.
  4199 // The mux construct provides a spin-then-block mutual exclusion
  4200 // mechanism.
  4201 //
  4202 // Testing has shown that contention on the ListLock guarding gFreeList
  4203 // is common.  If we implement ListLock as a simple SpinLock it's common
  4204 // for the JVM to devolve to yielding with little progress.  This is true
  4205 // despite the fact that the critical sections protected by ListLock are
  4206 // extremely short.
  4207 //
  4208 // TODO-FIXME: ListLock should be of type SpinLock.
  4209 // We should make this a 1st-class type, integrated into the lock
  4210 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4211 // should have sufficient padding to avoid false-sharing and excessive
  4212 // cache-coherency traffic.
  4215 typedef volatile int SpinLockT ;
  4217 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4218   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4219      return ;   // normal fast-path return
  4222   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4223   TEVENT (SpinAcquire - ctx) ;
  4224   int ctr = 0 ;
  4225   int Yields = 0 ;
  4226   for (;;) {
  4227      while (*adr != 0) {
  4228         ++ctr ;
  4229         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4230            if (Yields > 5) {
  4231              // Consider using a simple NakedSleep() instead.
  4232              // Then SpinAcquire could be called by non-JVM threads
  4233              Thread::current()->_ParkEvent->park(1) ;
  4234            } else {
  4235              os::NakedYield() ;
  4236              ++Yields ;
  4238         } else {
  4239            SpinPause() ;
  4242      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4246 void Thread::SpinRelease (volatile int * adr) {
  4247   assert (*adr != 0, "invariant") ;
  4248   OrderAccess::fence() ;      // guarantee at least release consistency.
  4249   // Roach-motel semantics.
  4250   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4251   // but prior LDs and STs within the critical section can't be allowed
  4252   // to reorder or float past the ST that releases the lock.
  4253   *adr = 0 ;
  4256 // muxAcquire and muxRelease:
  4257 //
  4258 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4259 //    The LSB of the word is set IFF the lock is held.
  4260 //    The remainder of the word points to the head of a singly-linked list
  4261 //    of threads blocked on the lock.
  4262 //
  4263 // *  The current implementation of muxAcquire-muxRelease uses its own
  4264 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4265 //    minimizing the peak number of extant ParkEvent instances then
  4266 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4267 //    as certain invariants were satisfied.  Specifically, care would need
  4268 //    to be taken with regards to consuming unpark() "permits".
  4269 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4270 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4271 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4272 //    consume an unpark() permit intended for monitorenter, for instance.
  4273 //    One way around this would be to widen the restricted-range semaphore
  4274 //    implemented in park().  Another alternative would be to provide
  4275 //    multiple instances of the PlatformEvent() for each thread.  One
  4276 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4277 //
  4278 // *  Usage:
  4279 //    -- Only as leaf locks
  4280 //    -- for short-term locking only as muxAcquire does not perform
  4281 //       thread state transitions.
  4282 //
  4283 // Alternatives:
  4284 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4285 //    but with parking or spin-then-park instead of pure spinning.
  4286 // *  Use Taura-Oyama-Yonenzawa locks.
  4287 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4288 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4289 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4290 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4291 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4292 //    boundaries by using placement-new.
  4293 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4294 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4295 //    The validity of the backlinks must be ratified before we trust the value.
  4296 //    If the backlinks are invalid the exiting thread must back-track through the
  4297 //    the forward links, which are always trustworthy.
  4298 // *  Add a successor indication.  The LockWord is currently encoded as
  4299 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4300 //    to provide the usual futile-wakeup optimization.
  4301 //    See RTStt for details.
  4302 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4303 //
  4306 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4307 enum MuxBits { LOCKBIT = 1 } ;
  4309 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4310   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4311   if (w == 0) return ;
  4312   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4313      return ;
  4316   TEVENT (muxAcquire - Contention) ;
  4317   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4318   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4319   for (;;) {
  4320      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4322      // Optional spin phase: spin-then-park strategy
  4323      while (--its >= 0) {
  4324        w = *Lock ;
  4325        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4326           return ;
  4330      Self->reset() ;
  4331      Self->OnList = intptr_t(Lock) ;
  4332      // The following fence() isn't _strictly necessary as the subsequent
  4333      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4334      OrderAccess::fence();
  4335      for (;;) {
  4336         w = *Lock ;
  4337         if ((w & LOCKBIT) == 0) {
  4338             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4339                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4340                 return ;
  4342             continue ;      // Interference -- *Lock changed -- Just retry
  4344         assert (w & LOCKBIT, "invariant") ;
  4345         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4346         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4349      while (Self->OnList != 0) {
  4350         Self->park() ;
  4355 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4356   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4357   if (w == 0) return ;
  4358   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4359     return ;
  4362   TEVENT (muxAcquire - Contention) ;
  4363   ParkEvent * ReleaseAfter = NULL ;
  4364   if (ev == NULL) {
  4365     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4367   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4368   for (;;) {
  4369     guarantee (ev->OnList == 0, "invariant") ;
  4370     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4372     // Optional spin phase: spin-then-park strategy
  4373     while (--its >= 0) {
  4374       w = *Lock ;
  4375       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4376         if (ReleaseAfter != NULL) {
  4377           ParkEvent::Release (ReleaseAfter) ;
  4379         return ;
  4383     ev->reset() ;
  4384     ev->OnList = intptr_t(Lock) ;
  4385     // The following fence() isn't _strictly necessary as the subsequent
  4386     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4387     OrderAccess::fence();
  4388     for (;;) {
  4389       w = *Lock ;
  4390       if ((w & LOCKBIT) == 0) {
  4391         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4392           ev->OnList = 0 ;
  4393           // We call ::Release while holding the outer lock, thus
  4394           // artificially lengthening the critical section.
  4395           // Consider deferring the ::Release() until the subsequent unlock(),
  4396           // after we've dropped the outer lock.
  4397           if (ReleaseAfter != NULL) {
  4398             ParkEvent::Release (ReleaseAfter) ;
  4400           return ;
  4402         continue ;      // Interference -- *Lock changed -- Just retry
  4404       assert (w & LOCKBIT, "invariant") ;
  4405       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4406       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4409     while (ev->OnList != 0) {
  4410       ev->park() ;
  4415 // Release() must extract a successor from the list and then wake that thread.
  4416 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4417 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4418 // Release() would :
  4419 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4420 // (B) Extract a successor from the private list "in-hand"
  4421 // (C) attempt to CAS() the residual back into *Lock over null.
  4422 //     If there were any newly arrived threads and the CAS() would fail.
  4423 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4424 //     with the RATs and repeat as needed.  Alternately, Release() might
  4425 //     detach and extract a successor, but then pass the residual list to the wakee.
  4426 //     The wakee would be responsible for reattaching and remerging before it
  4427 //     competed for the lock.
  4428 //
  4429 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4430 // multiple concurrent pushers, but only one popper or detacher.
  4431 // This implementation pops from the head of the list.  This is unfair,
  4432 // but tends to provide excellent throughput as hot threads remain hot.
  4433 // (We wake recently run threads first).
  4435 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4436   for (;;) {
  4437     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4438     assert (w & LOCKBIT, "invariant") ;
  4439     if (w == LOCKBIT) return ;
  4440     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4441     assert (List != NULL, "invariant") ;
  4442     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4443     ParkEvent * nxt = List->ListNext ;
  4445     // The following CAS() releases the lock and pops the head element.
  4446     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4447       continue ;
  4449     List->OnList = 0 ;
  4450     OrderAccess::fence() ;
  4451     List->unpark () ;
  4452     return ;
  4457 void Threads::verify() {
  4458   ALL_JAVA_THREADS(p) {
  4459     p->verify();
  4461   VMThread* thread = VMThread::vm_thread();
  4462   if (thread != NULL) thread->verify();

mercurial