src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 09 Aug 2011 10:16:01 -0700

author
jmasa
date
Tue, 09 Aug 2011 10:16:01 -0700
changeset 3294
bca17e38de00
parent 3175
4dfb2df418f2
child 3296
dc467e8b2c5e
permissions
-rw-r--r--

6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Summary: Select number of GC threads dynamically based on heap usage and number of Java threads
Reviewed-by: johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
    46     _g1(g1)
    47   {}
    49   void do_object(oop obj) {
    50     ShouldNotCallThis();
    51   }
    52   bool do_object_b(oop obj);
    53 };
    55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    56 // class, with one bit per (1<<_shifter) HeapWords.
    58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    59  protected:
    60   HeapWord* _bmStartWord;      // base address of range covered by map
    61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    62   const int _shifter;          // map to char or bit
    63   VirtualSpace _virtual_space; // underlying the bit map
    64   BitMap    _bm;               // the bit map itself
    66  public:
    67   // constructor
    68   CMBitMapRO(ReservedSpace rs, int shifter);
    70   enum { do_yield = true };
    72   // inquiries
    73   HeapWord* startWord()   const { return _bmStartWord; }
    74   size_t    sizeInWords() const { return _bmWordSize;  }
    75   // the following is one past the last word in space
    76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    78   // read marks
    80   bool isMarked(HeapWord* addr) const {
    81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    82            "outside underlying space?");
    83     return _bm.at(heapWordToOffset(addr));
    84   }
    86   // iteration
    87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    88   bool iterate(BitMapClosure* cl, MemRegion mr);
    90   // Return the address corresponding to the next marked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    94                                      HeapWord* limit = NULL) const;
    95   // Return the address corresponding to the next unmarked bit at or after
    96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    99                                        HeapWord* limit = NULL) const;
   101   // conversion utilities
   102   // XXX Fix these so that offsets are size_t's...
   103   HeapWord* offsetToHeapWord(size_t offset) const {
   104     return _bmStartWord + (offset << _shifter);
   105   }
   106   size_t heapWordToOffset(HeapWord* addr) const {
   107     return pointer_delta(addr, _bmStartWord) >> _shifter;
   108   }
   109   int heapWordDiffToOffsetDiff(size_t diff) const;
   110   HeapWord* nextWord(HeapWord* addr) {
   111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   112   }
   114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
   115                                    size_t    from_start_index,
   116                                    HeapWord* to_start_word,
   117                                    size_t    word_num);
   119   // debugging
   120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   121 };
   123 class CMBitMap : public CMBitMapRO {
   125  public:
   126   // constructor
   127   CMBitMap(ReservedSpace rs, int shifter) :
   128     CMBitMapRO(rs, shifter) {}
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by the CM collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   ConcurrentMark* _cm;
   169   oop*   _base;      // bottom of stack
   170   jint   _index;     // one more than last occupied index
   171   jint   _capacity;  // max #elements
   172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   175   bool   _overflow;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183   void allocate(size_t size);
   185   oop pop() {
   186     if (!isEmpty()) {
   187       return _base[--_index] ;
   188     }
   189     return NULL;
   190   }
   192   // If overflow happens, don't do the push, and record the overflow.
   193   // *Requires* that "ptr" is already marked.
   194   void push(oop ptr) {
   195     if (isFull()) {
   196       // Record overflow.
   197       _overflow = true;
   198       return;
   199     } else {
   200       _base[_index++] = ptr;
   201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   202     }
   203   }
   204   // Non-block impl.  Note: concurrency is allowed only with other
   205   // "par_push" operations, not with "pop" or "drain".  We would need
   206   // parallel versions of them if such concurrency was desired.
   207   void par_push(oop ptr);
   209   // Pushes the first "n" elements of "ptr_arr" on the stack.
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   212   void par_adjoin_arr(oop* ptr_arr, int n);
   214   // Pushes the first "n" elements of "ptr_arr" on the stack.
   215   // Locking impl: concurrency is allowed only with
   216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   217   // locking strategy.
   218   void par_push_arr(oop* ptr_arr, int n);
   220   // If returns false, the array was empty.  Otherwise, removes up to "max"
   221   // elements from the stack, and transfers them to "ptr_arr" in an
   222   // unspecified order.  The actual number transferred is given in "n" ("n
   223   // == 0" is deliberately redundant with the return value.)  Locking impl:
   224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   225   // operations, which use the same locking strategy.
   226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   228   // Drain the mark stack, applying the given closure to all fields of
   229   // objects on the stack.  (That is, continue until the stack is empty,
   230   // even if closure applications add entries to the stack.)  The "bm"
   231   // argument, if non-null, may be used to verify that only marked objects
   232   // are on the mark stack.  If "yield_after" is "true", then the
   233   // concurrent marker performing the drain offers to yield after
   234   // processing each object.  If a yield occurs, stops the drain operation
   235   // and returns false.  Otherwise, returns true.
   236   template<class OopClosureClass>
   237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   239   bool isEmpty()    { return _index == 0; }
   240   bool isFull()     { return _index == _capacity; }
   241   int maxElems()    { return _capacity; }
   243   bool overflow() { return _overflow; }
   244   void clear_overflow() { _overflow = false; }
   246   int  size() { return _index; }
   248   void setEmpty()   { _index = 0; clear_overflow(); }
   250   // Record the current size; a subsequent "oops_do" will iterate only over
   251   // indices valid at the time of this call.
   252   void set_oops_do_bound(jint bound = -1) {
   253     if (bound == -1) {
   254       _oops_do_bound = _index;
   255     } else {
   256       _oops_do_bound = bound;
   257     }
   258   }
   259   jint oops_do_bound() { return _oops_do_bound; }
   260   // iterate over the oops in the mark stack, up to the bound recorded via
   261   // the call above.
   262   void oops_do(OopClosure* f);
   263 };
   265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   266   MemRegion* _base;
   267   jint _capacity;
   268   jint _index;
   269   jint _oops_do_bound;
   270   bool _overflow;
   271 public:
   272   CMRegionStack();
   273   ~CMRegionStack();
   274   void allocate(size_t size);
   276   // This is lock-free; assumes that it will only be called in parallel
   277   // with other "push" operations (no pops).
   278   void push_lock_free(MemRegion mr);
   280   // Lock-free; assumes that it will only be called in parallel
   281   // with other "pop" operations (no pushes).
   282   MemRegion pop_lock_free();
   284 #if 0
   285   // The routines that manipulate the region stack with a lock are
   286   // not currently used. They should be retained, however, as a
   287   // diagnostic aid.
   289   // These two are the implementations that use a lock. They can be
   290   // called concurrently with each other but they should not be called
   291   // concurrently with the lock-free versions (push() / pop()).
   292   void push_with_lock(MemRegion mr);
   293   MemRegion pop_with_lock();
   294 #endif
   296   bool isEmpty()    { return _index == 0; }
   297   bool isFull()     { return _index == _capacity; }
   299   bool overflow() { return _overflow; }
   300   void clear_overflow() { _overflow = false; }
   302   int  size() { return _index; }
   304   // It iterates over the entries in the region stack and it
   305   // invalidates (i.e. assigns MemRegion()) the ones that point to
   306   // regions in the collection set.
   307   bool invalidate_entries_into_cset();
   309   // This gives an upper bound up to which the iteration in
   310   // invalidate_entries_into_cset() will reach. This prevents
   311   // newly-added entries to be unnecessarily scanned.
   312   void set_oops_do_bound() {
   313     _oops_do_bound = _index;
   314   }
   316   void setEmpty()   { _index = 0; clear_overflow(); }
   317 };
   319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   320 private:
   321 #ifndef PRODUCT
   322   uintx _num_remaining;
   323   bool _force;
   324 #endif // !defined(PRODUCT)
   326 public:
   327   void init() PRODUCT_RETURN;
   328   void update() PRODUCT_RETURN;
   329   bool should_force() PRODUCT_RETURN_( return false; );
   330 };
   332 // this will enable a variety of different statistics per GC task
   333 #define _MARKING_STATS_       0
   334 // this will enable the higher verbose levels
   335 #define _MARKING_VERBOSE_     0
   337 #if _MARKING_STATS_
   338 #define statsOnly(statement)  \
   339 do {                          \
   340   statement ;                 \
   341 } while (0)
   342 #else // _MARKING_STATS_
   343 #define statsOnly(statement)  \
   344 do {                          \
   345 } while (0)
   346 #endif // _MARKING_STATS_
   348 typedef enum {
   349   no_verbose  = 0,   // verbose turned off
   350   stats_verbose,     // only prints stats at the end of marking
   351   low_verbose,       // low verbose, mostly per region and per major event
   352   medium_verbose,    // a bit more detailed than low
   353   high_verbose       // per object verbose
   354 } CMVerboseLevel;
   357 class ConcurrentMarkThread;
   359 class ConcurrentMark: public CHeapObj {
   360   friend class ConcurrentMarkThread;
   361   friend class CMTask;
   362   friend class CMBitMapClosure;
   363   friend class CSMarkOopClosure;
   364   friend class CMGlobalObjectClosure;
   365   friend class CMRemarkTask;
   366   friend class CMConcurrentMarkingTask;
   367   friend class G1ParNoteEndTask;
   368   friend class CalcLiveObjectsClosure;
   369   friend class G1CMRefProcTaskProxy;
   370   friend class G1CMRefProcTaskExecutor;
   371   friend class G1CMParKeepAliveAndDrainClosure;
   372   friend class G1CMParDrainMarkingStackClosure;
   374 protected:
   375   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   376   G1CollectedHeap*      _g1h;        // the heap.
   377   size_t                _parallel_marking_threads; // the number of marking
   378                                                    // threads we're use
   379   size_t                _max_parallel_marking_threads; // max number of marking
   380                                                    // threads we'll ever use
   381   double                _sleep_factor; // how much we have to sleep, with
   382                                        // respect to the work we just did, to
   383                                        // meet the marking overhead goal
   384   double                _marking_task_overhead; // marking target overhead for
   385                                                 // a single task
   387   // same as the two above, but for the cleanup task
   388   double                _cleanup_sleep_factor;
   389   double                _cleanup_task_overhead;
   391   FreeRegionList        _cleanup_list;
   393   // CMS marking support structures
   394   CMBitMap                _markBitMap1;
   395   CMBitMap                _markBitMap2;
   396   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   397   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   398   bool                    _at_least_one_mark_complete;
   400   BitMap                  _region_bm;
   401   BitMap                  _card_bm;
   403   // Heap bounds
   404   HeapWord*               _heap_start;
   405   HeapWord*               _heap_end;
   407   // For gray objects
   408   CMMarkStack             _markStack; // Grey objects behind global finger.
   409   CMRegionStack           _regionStack; // Grey regions behind global finger.
   410   HeapWord* volatile      _finger;  // the global finger, region aligned,
   411                                     // always points to the end of the
   412                                     // last claimed region
   414   // marking tasks
   415   size_t                  _max_task_num; // maximum task number
   416   size_t                  _active_tasks; // task num currently active
   417   CMTask**                _tasks;        // task queue array (max_task_num len)
   418   CMTaskQueueSet*         _task_queues;  // task queue set
   419   ParallelTaskTerminator  _terminator;   // for termination
   421   // Two sync barriers that are used to synchronise tasks when an
   422   // overflow occurs. The algorithm is the following. All tasks enter
   423   // the first one to ensure that they have all stopped manipulating
   424   // the global data structures. After they exit it, they re-initialise
   425   // their data structures and task 0 re-initialises the global data
   426   // structures. Then, they enter the second sync barrier. This
   427   // ensure, that no task starts doing work before all data
   428   // structures (local and global) have been re-initialised. When they
   429   // exit it, they are free to start working again.
   430   WorkGangBarrierSync     _first_overflow_barrier_sync;
   431   WorkGangBarrierSync     _second_overflow_barrier_sync;
   434   // this is set by any task, when an overflow on the global data
   435   // structures is detected.
   436   volatile bool           _has_overflown;
   437   // true: marking is concurrent, false: we're in remark
   438   volatile bool           _concurrent;
   439   // set at the end of a Full GC so that marking aborts
   440   volatile bool           _has_aborted;
   442   // used when remark aborts due to an overflow to indicate that
   443   // another concurrent marking phase should start
   444   volatile bool           _restart_for_overflow;
   446   // This is true from the very start of concurrent marking until the
   447   // point when all the tasks complete their work. It is really used
   448   // to determine the points between the end of concurrent marking and
   449   // time of remark.
   450   volatile bool           _concurrent_marking_in_progress;
   452   // verbose level
   453   CMVerboseLevel          _verbose_level;
   455   // These two fields are used to implement the optimisation that
   456   // avoids pushing objects on the global/region stack if there are
   457   // no collection set regions above the lowest finger.
   459   // This is the lowest finger (among the global and local fingers),
   460   // which is calculated before a new collection set is chosen.
   461   HeapWord* _min_finger;
   462   // If this flag is true, objects/regions that are marked below the
   463   // finger should be pushed on the stack(s). If this is flag is
   464   // false, it is safe not to push them on the stack(s).
   465   bool      _should_gray_objects;
   467   // All of these times are in ms.
   468   NumberSeq _init_times;
   469   NumberSeq _remark_times;
   470   NumberSeq   _remark_mark_times;
   471   NumberSeq   _remark_weak_ref_times;
   472   NumberSeq _cleanup_times;
   473   double    _total_counting_time;
   474   double    _total_rs_scrub_time;
   476   double*   _accum_task_vtime;   // accumulated task vtime
   478   FlexibleWorkGang* _parallel_workers;
   480   ForceOverflowSettings _force_overflow_conc;
   481   ForceOverflowSettings _force_overflow_stw;
   483   void weakRefsWork(bool clear_all_soft_refs);
   485   void swapMarkBitMaps();
   487   // It resets the global marking data structures, as well as the
   488   // task local ones; should be called during initial mark.
   489   void reset();
   490   // It resets all the marking data structures.
   491   void clear_marking_state(bool clear_overflow = true);
   493   // It should be called to indicate which phase we're in (concurrent
   494   // mark or remark) and how many threads are currently active.
   495   void set_phase(size_t active_tasks, bool concurrent);
   496   // We do this after we're done with marking so that the marking data
   497   // structures are initialised to a sensible and predictable state.
   498   void set_non_marking_state();
   500   // prints all gathered CM-related statistics
   501   void print_stats();
   503   bool cleanup_list_is_empty() {
   504     return _cleanup_list.is_empty();
   505   }
   507   // accessor methods
   508   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   509   size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
   510   double sleep_factor()             { return _sleep_factor; }
   511   double marking_task_overhead()    { return _marking_task_overhead;}
   512   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   513   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   515   HeapWord*               finger()        { return _finger;   }
   516   bool                    concurrent()    { return _concurrent; }
   517   size_t                  active_tasks()  { return _active_tasks; }
   518   ParallelTaskTerminator* terminator()    { return &_terminator; }
   520   // It claims the next available region to be scanned by a marking
   521   // task. It might return NULL if the next region is empty or we have
   522   // run out of regions. In the latter case, out_of_regions()
   523   // determines whether we've really run out of regions or the task
   524   // should call claim_region() again.  This might seem a bit
   525   // awkward. Originally, the code was written so that claim_region()
   526   // either successfully returned with a non-empty region or there
   527   // were no more regions to be claimed. The problem with this was
   528   // that, in certain circumstances, it iterated over large chunks of
   529   // the heap finding only empty regions and, while it was working, it
   530   // was preventing the calling task to call its regular clock
   531   // method. So, this way, each task will spend very little time in
   532   // claim_region() and is allowed to call the regular clock method
   533   // frequently.
   534   HeapRegion* claim_region(int task);
   536   // It determines whether we've run out of regions to scan.
   537   bool        out_of_regions() { return _finger == _heap_end; }
   539   // Returns the task with the given id
   540   CMTask* task(int id) {
   541     assert(0 <= id && id < (int) _active_tasks,
   542            "task id not within active bounds");
   543     return _tasks[id];
   544   }
   546   // Returns the task queue with the given id
   547   CMTaskQueue* task_queue(int id) {
   548     assert(0 <= id && id < (int) _active_tasks,
   549            "task queue id not within active bounds");
   550     return (CMTaskQueue*) _task_queues->queue(id);
   551   }
   553   // Returns the task queue set
   554   CMTaskQueueSet* task_queues()  { return _task_queues; }
   556   // Access / manipulation of the overflow flag which is set to
   557   // indicate that the global stack or region stack has overflown
   558   bool has_overflown()           { return _has_overflown; }
   559   void set_has_overflown()       { _has_overflown = true; }
   560   void clear_has_overflown()     { _has_overflown = false; }
   562   bool has_aborted()             { return _has_aborted; }
   563   bool restart_for_overflow()    { return _restart_for_overflow; }
   565   // Methods to enter the two overflow sync barriers
   566   void enter_first_sync_barrier(int task_num);
   567   void enter_second_sync_barrier(int task_num);
   569   ForceOverflowSettings* force_overflow_conc() {
   570     return &_force_overflow_conc;
   571   }
   573   ForceOverflowSettings* force_overflow_stw() {
   574     return &_force_overflow_stw;
   575   }
   577   ForceOverflowSettings* force_overflow() {
   578     if (concurrent()) {
   579       return force_overflow_conc();
   580     } else {
   581       return force_overflow_stw();
   582     }
   583   }
   585 public:
   586   // Manipulation of the global mark stack.
   587   // Notice that the first mark_stack_push is CAS-based, whereas the
   588   // two below are Mutex-based. This is OK since the first one is only
   589   // called during evacuation pauses and doesn't compete with the
   590   // other two (which are called by the marking tasks during
   591   // concurrent marking or remark).
   592   bool mark_stack_push(oop p) {
   593     _markStack.par_push(p);
   594     if (_markStack.overflow()) {
   595       set_has_overflown();
   596       return false;
   597     }
   598     return true;
   599   }
   600   bool mark_stack_push(oop* arr, int n) {
   601     _markStack.par_push_arr(arr, n);
   602     if (_markStack.overflow()) {
   603       set_has_overflown();
   604       return false;
   605     }
   606     return true;
   607   }
   608   void mark_stack_pop(oop* arr, int max, int* n) {
   609     _markStack.par_pop_arr(arr, max, n);
   610   }
   611   size_t mark_stack_size()                { return _markStack.size(); }
   612   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   613   bool mark_stack_overflow()              { return _markStack.overflow(); }
   614   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   616   // (Lock-free) Manipulation of the region stack
   617   bool region_stack_push_lock_free(MemRegion mr) {
   618     // Currently we only call the lock-free version during evacuation
   619     // pauses.
   620     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   622     _regionStack.push_lock_free(mr);
   623     if (_regionStack.overflow()) {
   624       set_has_overflown();
   625       return false;
   626     }
   627     return true;
   628   }
   630   // Lock-free version of region-stack pop. Should only be
   631   // called in tandem with other lock-free pops.
   632   MemRegion region_stack_pop_lock_free() {
   633     return _regionStack.pop_lock_free();
   634   }
   636 #if 0
   637   // The routines that manipulate the region stack with a lock are
   638   // not currently used. They should be retained, however, as a
   639   // diagnostic aid.
   641   bool region_stack_push_with_lock(MemRegion mr) {
   642     // Currently we only call the lock-based version during either
   643     // concurrent marking or remark.
   644     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   645            "if we are at a safepoint it should be the remark safepoint");
   647     _regionStack.push_with_lock(mr);
   648     if (_regionStack.overflow()) {
   649       set_has_overflown();
   650       return false;
   651     }
   652     return true;
   653   }
   655   MemRegion region_stack_pop_with_lock() {
   656     // Currently we only call the lock-based version during either
   657     // concurrent marking or remark.
   658     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   659            "if we are at a safepoint it should be the remark safepoint");
   661     return _regionStack.pop_with_lock();
   662   }
   663 #endif
   665   int region_stack_size()               { return _regionStack.size(); }
   666   bool region_stack_overflow()          { return _regionStack.overflow(); }
   667   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   669   // Iterate over any regions that were aborted while draining the
   670   // region stack (any such regions are saved in the corresponding
   671   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   672   // any regions that point into the collection set.
   673   bool invalidate_aborted_regions_in_cset();
   675   // Returns true if there are any aborted memory regions.
   676   bool has_aborted_regions();
   678   bool concurrent_marking_in_progress() {
   679     return _concurrent_marking_in_progress;
   680   }
   681   void set_concurrent_marking_in_progress() {
   682     _concurrent_marking_in_progress = true;
   683   }
   684   void clear_concurrent_marking_in_progress() {
   685     _concurrent_marking_in_progress = false;
   686   }
   688   void update_accum_task_vtime(int i, double vtime) {
   689     _accum_task_vtime[i] += vtime;
   690   }
   692   double all_task_accum_vtime() {
   693     double ret = 0.0;
   694     for (int i = 0; i < (int)_max_task_num; ++i)
   695       ret += _accum_task_vtime[i];
   696     return ret;
   697   }
   699   // Attempts to steal an object from the task queues of other tasks
   700   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   701     return _task_queues->steal(task_num, hash_seed, obj);
   702   }
   704   // It grays an object by first marking it. Then, if it's behind the
   705   // global finger, it also pushes it on the global stack.
   706   void deal_with_reference(oop obj);
   708   ConcurrentMark(ReservedSpace rs, int max_regions);
   709   ~ConcurrentMark();
   710   ConcurrentMarkThread* cmThread() { return _cmThread; }
   712   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   713   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   715   // Returns the number of GC threads to be used in a concurrent
   716   // phase based on the number of GC threads being used in a STW
   717   // phase.
   718   size_t scale_parallel_threads(size_t n_par_threads);
   720   // Calculates the number of GC threads to be used in a concurrent phase.
   721   int calc_parallel_marking_threads();
   723   // The following three are interaction between CM and
   724   // G1CollectedHeap
   726   // This notifies CM that a root during initial-mark needs to be
   727   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   728   // future, we can experiment with pushing it on the stack and we can
   729   // do this without changing G1CollectedHeap.
   730   void grayRoot(oop p);
   731   // It's used during evacuation pauses to gray a region, if
   732   // necessary, and it's MT-safe. It assumes that the caller has
   733   // marked any objects on that region. If _should_gray_objects is
   734   // true and we're still doing concurrent marking, the region is
   735   // pushed on the region stack, if it is located below the global
   736   // finger, otherwise we do nothing.
   737   void grayRegionIfNecessary(MemRegion mr);
   738   // It's used during evacuation pauses to mark and, if necessary,
   739   // gray a single object and it's MT-safe. It assumes the caller did
   740   // not mark the object. If _should_gray_objects is true and we're
   741   // still doing concurrent marking, the objects is pushed on the
   742   // global stack, if it is located below the global finger, otherwise
   743   // we do nothing.
   744   void markAndGrayObjectIfNecessary(oop p);
   746   // It iterates over the heap and for each object it comes across it
   747   // will dump the contents of its reference fields, as well as
   748   // liveness information for the object and its referents. The dump
   749   // will be written to a file with the following name:
   750   // G1PrintReachableBaseFile + "." + str.
   751   // vo decides whether the prev (vo == UsePrevMarking), the next
   752   // (vo == UseNextMarking) marking information, or the mark word
   753   // (vo == UseMarkWord) will be used to determine the liveness of
   754   // each object / referent.
   755   // If all is true, all objects in the heap will be dumped, otherwise
   756   // only the live ones. In the dump the following symbols / breviations
   757   // are used:
   758   //   M : an explicitly live object (its bitmap bit is set)
   759   //   > : an implicitly live object (over tams)
   760   //   O : an object outside the G1 heap (typically: in the perm gen)
   761   //   NOT : a reference field whose referent is not live
   762   //   AND MARKED : indicates that an object is both explicitly and
   763   //   implicitly live (it should be one or the other, not both)
   764   void print_reachable(const char* str,
   765                        VerifyOption vo, bool all) PRODUCT_RETURN;
   767   // Clear the next marking bitmap (will be called concurrently).
   768   void clearNextBitmap();
   770   // These two do the work that needs to be done before and after the
   771   // initial root checkpoint. Since this checkpoint can be done at two
   772   // different points (i.e. an explicit pause or piggy-backed on a
   773   // young collection), then it's nice to be able to easily share the
   774   // pre/post code. It might be the case that we can put everything in
   775   // the post method. TP
   776   void checkpointRootsInitialPre();
   777   void checkpointRootsInitialPost();
   779   // Do concurrent phase of marking, to a tentative transitive closure.
   780   void markFromRoots();
   782   // Process all unprocessed SATB buffers. It is called at the
   783   // beginning of an evacuation pause.
   784   void drainAllSATBBuffers();
   786   void checkpointRootsFinal(bool clear_all_soft_refs);
   787   void checkpointRootsFinalWork();
   788   void calcDesiredRegions();
   789   void cleanup();
   790   void completeCleanup();
   792   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   793   // this carefully!
   794   void markPrev(oop p);
   795   void clear(oop p);
   796   // Clears marks for all objects in the given range, for both prev and
   797   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   798   // this carefully!
   799   void clearRangeBothMaps(MemRegion mr);
   801   // Record the current top of the mark and region stacks; a
   802   // subsequent oops_do() on the mark stack and
   803   // invalidate_entries_into_cset() on the region stack will iterate
   804   // only over indices valid at the time of this call.
   805   void set_oops_do_bound() {
   806     _markStack.set_oops_do_bound();
   807     _regionStack.set_oops_do_bound();
   808   }
   809   // Iterate over the oops in the mark stack and all local queues. It
   810   // also calls invalidate_entries_into_cset() on the region stack.
   811   void oops_do(OopClosure* f);
   812   // It is called at the end of an evacuation pause during marking so
   813   // that CM is notified of where the new end of the heap is. It
   814   // doesn't do anything if concurrent_marking_in_progress() is false,
   815   // unless the force parameter is true.
   816   void update_g1_committed(bool force = false);
   818   void complete_marking_in_collection_set();
   820   // It indicates that a new collection set is being chosen.
   821   void newCSet();
   823   // It registers a collection set heap region with CM. This is used
   824   // to determine whether any heap regions are located above the finger.
   825   void registerCSetRegion(HeapRegion* hr);
   827   // Resets the region fields of any active CMTask whose region fields
   828   // are in the collection set (i.e. the region currently claimed by
   829   // the CMTask will be evacuated and may be used, subsequently, as
   830   // an alloc region). When this happens the region fields in the CMTask
   831   // are stale and, hence, should be cleared causing the worker thread
   832   // to claim a new region.
   833   void reset_active_task_region_fields_in_cset();
   835   // Registers the maximum region-end associated with a set of
   836   // regions with CM. Again this is used to determine whether any
   837   // heap regions are located above the finger.
   838   void register_collection_set_finger(HeapWord* max_finger) {
   839     // max_finger is the highest heap region end of the regions currently
   840     // contained in the collection set. If this value is larger than
   841     // _min_finger then we need to gray objects.
   842     // This routine is like registerCSetRegion but for an entire
   843     // collection of regions.
   844     if (max_finger > _min_finger) {
   845       _should_gray_objects = true;
   846     }
   847   }
   849   // Returns "true" if at least one mark has been completed.
   850   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   852   bool isMarked(oop p) const {
   853     assert(p != NULL && p->is_oop(), "expected an oop");
   854     HeapWord* addr = (HeapWord*)p;
   855     assert(addr >= _nextMarkBitMap->startWord() ||
   856            addr < _nextMarkBitMap->endWord(), "in a region");
   858     return _nextMarkBitMap->isMarked(addr);
   859   }
   861   inline bool not_yet_marked(oop p) const;
   863   // XXX Debug code
   864   bool containing_card_is_marked(void* p);
   865   bool containing_cards_are_marked(void* start, void* last);
   867   bool isPrevMarked(oop p) const {
   868     assert(p != NULL && p->is_oop(), "expected an oop");
   869     HeapWord* addr = (HeapWord*)p;
   870     assert(addr >= _prevMarkBitMap->startWord() ||
   871            addr < _prevMarkBitMap->endWord(), "in a region");
   873     return _prevMarkBitMap->isMarked(addr);
   874   }
   876   inline bool do_yield_check(int worker_i = 0);
   877   inline bool should_yield();
   879   // Called to abort the marking cycle after a Full GC takes palce.
   880   void abort();
   882   // This prints the global/local fingers. It is used for debugging.
   883   NOT_PRODUCT(void print_finger();)
   885   void print_summary_info();
   887   void print_worker_threads_on(outputStream* st) const;
   889   // The following indicate whether a given verbose level has been
   890   // set. Notice that anything above stats is conditional to
   891   // _MARKING_VERBOSE_ having been set to 1
   892   bool verbose_stats() {
   893     return _verbose_level >= stats_verbose;
   894   }
   895   bool verbose_low() {
   896     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   897   }
   898   bool verbose_medium() {
   899     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   900   }
   901   bool verbose_high() {
   902     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   903   }
   904 };
   906 // A class representing a marking task.
   907 class CMTask : public TerminatorTerminator {
   908 private:
   909   enum PrivateConstants {
   910     // the regular clock call is called once the scanned words reaches
   911     // this limit
   912     words_scanned_period          = 12*1024,
   913     // the regular clock call is called once the number of visited
   914     // references reaches this limit
   915     refs_reached_period           = 384,
   916     // initial value for the hash seed, used in the work stealing code
   917     init_hash_seed                = 17,
   918     // how many entries will be transferred between global stack and
   919     // local queues
   920     global_stack_transfer_size    = 16
   921   };
   923   int                         _task_id;
   924   G1CollectedHeap*            _g1h;
   925   ConcurrentMark*             _cm;
   926   CMBitMap*                   _nextMarkBitMap;
   927   // the task queue of this task
   928   CMTaskQueue*                _task_queue;
   929 private:
   930   // the task queue set---needed for stealing
   931   CMTaskQueueSet*             _task_queues;
   932   // indicates whether the task has been claimed---this is only  for
   933   // debugging purposes
   934   bool                        _claimed;
   936   // number of calls to this task
   937   int                         _calls;
   939   // when the virtual timer reaches this time, the marking step should
   940   // exit
   941   double                      _time_target_ms;
   942   // the start time of the current marking step
   943   double                      _start_time_ms;
   945   // the oop closure used for iterations over oops
   946   G1CMOopClosure*             _cm_oop_closure;
   948   // the region this task is scanning, NULL if we're not scanning any
   949   HeapRegion*                 _curr_region;
   950   // the local finger of this task, NULL if we're not scanning a region
   951   HeapWord*                   _finger;
   952   // limit of the region this task is scanning, NULL if we're not scanning one
   953   HeapWord*                   _region_limit;
   955   // This is used only when we scan regions popped from the region
   956   // stack. It records what the last object on such a region we
   957   // scanned was. It is used to ensure that, if we abort region
   958   // iteration, we do not rescan the first part of the region. This
   959   // should be NULL when we're not scanning a region from the region
   960   // stack.
   961   HeapWord*                   _region_finger;
   963   // If we abort while scanning a region we record the remaining
   964   // unscanned portion and check this field when marking restarts.
   965   // This avoids having to push on the region stack while other
   966   // marking threads may still be popping regions.
   967   // If we were to push the unscanned portion directly to the
   968   // region stack then we would need to using locking versions
   969   // of the push and pop operations.
   970   MemRegion                   _aborted_region;
   972   // the number of words this task has scanned
   973   size_t                      _words_scanned;
   974   // When _words_scanned reaches this limit, the regular clock is
   975   // called. Notice that this might be decreased under certain
   976   // circumstances (i.e. when we believe that we did an expensive
   977   // operation).
   978   size_t                      _words_scanned_limit;
   979   // the initial value of _words_scanned_limit (i.e. what it was
   980   // before it was decreased).
   981   size_t                      _real_words_scanned_limit;
   983   // the number of references this task has visited
   984   size_t                      _refs_reached;
   985   // When _refs_reached reaches this limit, the regular clock is
   986   // called. Notice this this might be decreased under certain
   987   // circumstances (i.e. when we believe that we did an expensive
   988   // operation).
   989   size_t                      _refs_reached_limit;
   990   // the initial value of _refs_reached_limit (i.e. what it was before
   991   // it was decreased).
   992   size_t                      _real_refs_reached_limit;
   994   // used by the work stealing stuff
   995   int                         _hash_seed;
   996   // if this is true, then the task has aborted for some reason
   997   bool                        _has_aborted;
   998   // set when the task aborts because it has met its time quota
   999   bool                        _has_timed_out;
  1000   // true when we're draining SATB buffers; this avoids the task
  1001   // aborting due to SATB buffers being available (as we're already
  1002   // dealing with them)
  1003   bool                        _draining_satb_buffers;
  1005   // number sequence of past step times
  1006   NumberSeq                   _step_times_ms;
  1007   // elapsed time of this task
  1008   double                      _elapsed_time_ms;
  1009   // termination time of this task
  1010   double                      _termination_time_ms;
  1011   // when this task got into the termination protocol
  1012   double                      _termination_start_time_ms;
  1014   // true when the task is during a concurrent phase, false when it is
  1015   // in the remark phase (so, in the latter case, we do not have to
  1016   // check all the things that we have to check during the concurrent
  1017   // phase, i.e. SATB buffer availability...)
  1018   bool                        _concurrent;
  1020   TruncatedSeq                _marking_step_diffs_ms;
  1022   // LOTS of statistics related with this task
  1023 #if _MARKING_STATS_
  1024   NumberSeq                   _all_clock_intervals_ms;
  1025   double                      _interval_start_time_ms;
  1027   int                         _aborted;
  1028   int                         _aborted_overflow;
  1029   int                         _aborted_cm_aborted;
  1030   int                         _aborted_yield;
  1031   int                         _aborted_timed_out;
  1032   int                         _aborted_satb;
  1033   int                         _aborted_termination;
  1035   int                         _steal_attempts;
  1036   int                         _steals;
  1038   int                         _clock_due_to_marking;
  1039   int                         _clock_due_to_scanning;
  1041   int                         _local_pushes;
  1042   int                         _local_pops;
  1043   int                         _local_max_size;
  1044   int                         _objs_scanned;
  1046   int                         _global_pushes;
  1047   int                         _global_pops;
  1048   int                         _global_max_size;
  1050   int                         _global_transfers_to;
  1051   int                         _global_transfers_from;
  1053   int                         _region_stack_pops;
  1055   int                         _regions_claimed;
  1056   int                         _objs_found_on_bitmap;
  1058   int                         _satb_buffers_processed;
  1059 #endif // _MARKING_STATS_
  1061   // it updates the local fields after this task has claimed
  1062   // a new region to scan
  1063   void setup_for_region(HeapRegion* hr);
  1064   // it brings up-to-date the limit of the region
  1065   void update_region_limit();
  1067   // called when either the words scanned or the refs visited limit
  1068   // has been reached
  1069   void reached_limit();
  1070   // recalculates the words scanned and refs visited limits
  1071   void recalculate_limits();
  1072   // decreases the words scanned and refs visited limits when we reach
  1073   // an expensive operation
  1074   void decrease_limits();
  1075   // it checks whether the words scanned or refs visited reached their
  1076   // respective limit and calls reached_limit() if they have
  1077   void check_limits() {
  1078     if (_words_scanned >= _words_scanned_limit ||
  1079         _refs_reached >= _refs_reached_limit) {
  1080       reached_limit();
  1083   // this is supposed to be called regularly during a marking step as
  1084   // it checks a bunch of conditions that might cause the marking step
  1085   // to abort
  1086   void regular_clock_call();
  1087   bool concurrent() { return _concurrent; }
  1089 public:
  1090   // It resets the task; it should be called right at the beginning of
  1091   // a marking phase.
  1092   void reset(CMBitMap* _nextMarkBitMap);
  1093   // it clears all the fields that correspond to a claimed region.
  1094   void clear_region_fields();
  1096   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1098   // The main method of this class which performs a marking step
  1099   // trying not to exceed the given duration. However, it might exit
  1100   // prematurely, according to some conditions (i.e. SATB buffers are
  1101   // available for processing).
  1102   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1104   // These two calls start and stop the timer
  1105   void record_start_time() {
  1106     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1108   void record_end_time() {
  1109     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1112   // returns the task ID
  1113   int task_id() { return _task_id; }
  1115   // From TerminatorTerminator. It determines whether this task should
  1116   // exit the termination protocol after it's entered it.
  1117   virtual bool should_exit_termination();
  1119   // Resets the local region fields after a task has finished scanning a
  1120   // region; or when they have become stale as a result of the region
  1121   // being evacuated.
  1122   void giveup_current_region();
  1124   HeapWord* finger()            { return _finger; }
  1126   bool has_aborted()            { return _has_aborted; }
  1127   void set_has_aborted()        { _has_aborted = true; }
  1128   void clear_has_aborted()      { _has_aborted = false; }
  1129   bool has_timed_out()          { return _has_timed_out; }
  1130   bool claimed()                { return _claimed; }
  1132   // Support routines for the partially scanned region that may be
  1133   // recorded as a result of aborting while draining the CMRegionStack
  1134   MemRegion aborted_region()    { return _aborted_region; }
  1135   void set_aborted_region(MemRegion mr)
  1136                                 { _aborted_region = mr; }
  1138   // Clears any recorded partially scanned region
  1139   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1141   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1143   // It grays the object by marking it and, if necessary, pushing it
  1144   // on the local queue
  1145   inline void deal_with_reference(oop obj);
  1147   // It scans an object and visits its children.
  1148   void scan_object(oop obj);
  1150   // It pushes an object on the local queue.
  1151   inline void push(oop obj);
  1153   // These two move entries to/from the global stack.
  1154   void move_entries_to_global_stack();
  1155   void get_entries_from_global_stack();
  1157   // It pops and scans objects from the local queue. If partially is
  1158   // true, then it stops when the queue size is of a given limit. If
  1159   // partially is false, then it stops when the queue is empty.
  1160   void drain_local_queue(bool partially);
  1161   // It moves entries from the global stack to the local queue and
  1162   // drains the local queue. If partially is true, then it stops when
  1163   // both the global stack and the local queue reach a given size. If
  1164   // partially if false, it tries to empty them totally.
  1165   void drain_global_stack(bool partially);
  1166   // It keeps picking SATB buffers and processing them until no SATB
  1167   // buffers are available.
  1168   void drain_satb_buffers();
  1169   // It keeps popping regions from the region stack and processing
  1170   // them until the region stack is empty.
  1171   void drain_region_stack(BitMapClosure* closure);
  1173   // moves the local finger to a new location
  1174   inline void move_finger_to(HeapWord* new_finger) {
  1175     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1176     _finger = new_finger;
  1179   // moves the region finger to a new location
  1180   inline void move_region_finger_to(HeapWord* new_finger) {
  1181     assert(new_finger < _cm->finger(), "invariant");
  1182     _region_finger = new_finger;
  1185   CMTask(int task_num, ConcurrentMark *cm,
  1186          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1188   // it prints statistics associated with this task
  1189   void print_stats();
  1191 #if _MARKING_STATS_
  1192   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1193 #endif // _MARKING_STATS_
  1194 };
  1196 // Class that's used to to print out per-region liveness
  1197 // information. It's currently used at the end of marking and also
  1198 // after we sort the old regions at the end of the cleanup operation.
  1199 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1200 private:
  1201   outputStream* _out;
  1203   // Accumulators for these values.
  1204   size_t _total_used_bytes;
  1205   size_t _total_capacity_bytes;
  1206   size_t _total_prev_live_bytes;
  1207   size_t _total_next_live_bytes;
  1209   // These are set up when we come across a "stars humongous" region
  1210   // (as this is where most of this information is stored, not in the
  1211   // subsequent "continues humongous" regions). After that, for every
  1212   // region in a given humongous region series we deduce the right
  1213   // values for it by simply subtracting the appropriate amount from
  1214   // these fields. All these values should reach 0 after we've visited
  1215   // the last region in the series.
  1216   size_t _hum_used_bytes;
  1217   size_t _hum_capacity_bytes;
  1218   size_t _hum_prev_live_bytes;
  1219   size_t _hum_next_live_bytes;
  1221   static double perc(size_t val, size_t total) {
  1222     if (total == 0) {
  1223       return 0.0;
  1224     } else {
  1225       return 100.0 * ((double) val / (double) total);
  1229   static double bytes_to_mb(size_t val) {
  1230     return (double) val / (double) M;
  1233   // See the .cpp file.
  1234   size_t get_hum_bytes(size_t* hum_bytes);
  1235   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1236                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1238 public:
  1239   // The header and footer are printed in the constructor and
  1240   // destructor respectively.
  1241   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1242   virtual bool doHeapRegion(HeapRegion* r);
  1243   ~G1PrintRegionLivenessInfoClosure();
  1244 };
  1246 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial