src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 22 Sep 2011 10:57:37 -0700

author
johnc
date
Thu, 22 Sep 2011 10:57:37 -0700
changeset 3175
4dfb2df418f2
parent 3065
ff53346271fe
child 3294
bca17e38de00
permissions
-rw-r--r--

6484982: G1: process references during evacuation pauses
Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate.
Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
    46     _g1(g1)
    47   {}
    49   void do_object(oop obj) {
    50     ShouldNotCallThis();
    51   }
    52   bool do_object_b(oop obj);
    53 };
    55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    56 // class, with one bit per (1<<_shifter) HeapWords.
    58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    59  protected:
    60   HeapWord* _bmStartWord;      // base address of range covered by map
    61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    62   const int _shifter;          // map to char or bit
    63   VirtualSpace _virtual_space; // underlying the bit map
    64   BitMap    _bm;               // the bit map itself
    66  public:
    67   // constructor
    68   CMBitMapRO(ReservedSpace rs, int shifter);
    70   enum { do_yield = true };
    72   // inquiries
    73   HeapWord* startWord()   const { return _bmStartWord; }
    74   size_t    sizeInWords() const { return _bmWordSize;  }
    75   // the following is one past the last word in space
    76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    78   // read marks
    80   bool isMarked(HeapWord* addr) const {
    81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    82            "outside underlying space?");
    83     return _bm.at(heapWordToOffset(addr));
    84   }
    86   // iteration
    87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    88   bool iterate(BitMapClosure* cl, MemRegion mr);
    90   // Return the address corresponding to the next marked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    94                                      HeapWord* limit = NULL) const;
    95   // Return the address corresponding to the next unmarked bit at or after
    96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    99                                        HeapWord* limit = NULL) const;
   101   // conversion utilities
   102   // XXX Fix these so that offsets are size_t's...
   103   HeapWord* offsetToHeapWord(size_t offset) const {
   104     return _bmStartWord + (offset << _shifter);
   105   }
   106   size_t heapWordToOffset(HeapWord* addr) const {
   107     return pointer_delta(addr, _bmStartWord) >> _shifter;
   108   }
   109   int heapWordDiffToOffsetDiff(size_t diff) const;
   110   HeapWord* nextWord(HeapWord* addr) {
   111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   112   }
   114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
   115                                    size_t    from_start_index,
   116                                    HeapWord* to_start_word,
   117                                    size_t    word_num);
   119   // debugging
   120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   121 };
   123 class CMBitMap : public CMBitMapRO {
   125  public:
   126   // constructor
   127   CMBitMap(ReservedSpace rs, int shifter) :
   128     CMBitMapRO(rs, shifter) {}
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by the CM collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   ConcurrentMark* _cm;
   169   oop*   _base;      // bottom of stack
   170   jint   _index;     // one more than last occupied index
   171   jint   _capacity;  // max #elements
   172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   175   bool   _overflow;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183   void allocate(size_t size);
   185   oop pop() {
   186     if (!isEmpty()) {
   187       return _base[--_index] ;
   188     }
   189     return NULL;
   190   }
   192   // If overflow happens, don't do the push, and record the overflow.
   193   // *Requires* that "ptr" is already marked.
   194   void push(oop ptr) {
   195     if (isFull()) {
   196       // Record overflow.
   197       _overflow = true;
   198       return;
   199     } else {
   200       _base[_index++] = ptr;
   201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   202     }
   203   }
   204   // Non-block impl.  Note: concurrency is allowed only with other
   205   // "par_push" operations, not with "pop" or "drain".  We would need
   206   // parallel versions of them if such concurrency was desired.
   207   void par_push(oop ptr);
   209   // Pushes the first "n" elements of "ptr_arr" on the stack.
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   212   void par_adjoin_arr(oop* ptr_arr, int n);
   214   // Pushes the first "n" elements of "ptr_arr" on the stack.
   215   // Locking impl: concurrency is allowed only with
   216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   217   // locking strategy.
   218   void par_push_arr(oop* ptr_arr, int n);
   220   // If returns false, the array was empty.  Otherwise, removes up to "max"
   221   // elements from the stack, and transfers them to "ptr_arr" in an
   222   // unspecified order.  The actual number transferred is given in "n" ("n
   223   // == 0" is deliberately redundant with the return value.)  Locking impl:
   224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   225   // operations, which use the same locking strategy.
   226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   228   // Drain the mark stack, applying the given closure to all fields of
   229   // objects on the stack.  (That is, continue until the stack is empty,
   230   // even if closure applications add entries to the stack.)  The "bm"
   231   // argument, if non-null, may be used to verify that only marked objects
   232   // are on the mark stack.  If "yield_after" is "true", then the
   233   // concurrent marker performing the drain offers to yield after
   234   // processing each object.  If a yield occurs, stops the drain operation
   235   // and returns false.  Otherwise, returns true.
   236   template<class OopClosureClass>
   237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   239   bool isEmpty()    { return _index == 0; }
   240   bool isFull()     { return _index == _capacity; }
   241   int maxElems()    { return _capacity; }
   243   bool overflow() { return _overflow; }
   244   void clear_overflow() { _overflow = false; }
   246   int  size() { return _index; }
   248   void setEmpty()   { _index = 0; clear_overflow(); }
   250   // Record the current size; a subsequent "oops_do" will iterate only over
   251   // indices valid at the time of this call.
   252   void set_oops_do_bound(jint bound = -1) {
   253     if (bound == -1) {
   254       _oops_do_bound = _index;
   255     } else {
   256       _oops_do_bound = bound;
   257     }
   258   }
   259   jint oops_do_bound() { return _oops_do_bound; }
   260   // iterate over the oops in the mark stack, up to the bound recorded via
   261   // the call above.
   262   void oops_do(OopClosure* f);
   263 };
   265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   266   MemRegion* _base;
   267   jint _capacity;
   268   jint _index;
   269   jint _oops_do_bound;
   270   bool _overflow;
   271 public:
   272   CMRegionStack();
   273   ~CMRegionStack();
   274   void allocate(size_t size);
   276   // This is lock-free; assumes that it will only be called in parallel
   277   // with other "push" operations (no pops).
   278   void push_lock_free(MemRegion mr);
   280   // Lock-free; assumes that it will only be called in parallel
   281   // with other "pop" operations (no pushes).
   282   MemRegion pop_lock_free();
   284 #if 0
   285   // The routines that manipulate the region stack with a lock are
   286   // not currently used. They should be retained, however, as a
   287   // diagnostic aid.
   289   // These two are the implementations that use a lock. They can be
   290   // called concurrently with each other but they should not be called
   291   // concurrently with the lock-free versions (push() / pop()).
   292   void push_with_lock(MemRegion mr);
   293   MemRegion pop_with_lock();
   294 #endif
   296   bool isEmpty()    { return _index == 0; }
   297   bool isFull()     { return _index == _capacity; }
   299   bool overflow() { return _overflow; }
   300   void clear_overflow() { _overflow = false; }
   302   int  size() { return _index; }
   304   // It iterates over the entries in the region stack and it
   305   // invalidates (i.e. assigns MemRegion()) the ones that point to
   306   // regions in the collection set.
   307   bool invalidate_entries_into_cset();
   309   // This gives an upper bound up to which the iteration in
   310   // invalidate_entries_into_cset() will reach. This prevents
   311   // newly-added entries to be unnecessarily scanned.
   312   void set_oops_do_bound() {
   313     _oops_do_bound = _index;
   314   }
   316   void setEmpty()   { _index = 0; clear_overflow(); }
   317 };
   319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   320 private:
   321 #ifndef PRODUCT
   322   uintx _num_remaining;
   323   bool _force;
   324 #endif // !defined(PRODUCT)
   326 public:
   327   void init() PRODUCT_RETURN;
   328   void update() PRODUCT_RETURN;
   329   bool should_force() PRODUCT_RETURN_( return false; );
   330 };
   332 // this will enable a variety of different statistics per GC task
   333 #define _MARKING_STATS_       0
   334 // this will enable the higher verbose levels
   335 #define _MARKING_VERBOSE_     0
   337 #if _MARKING_STATS_
   338 #define statsOnly(statement)  \
   339 do {                          \
   340   statement ;                 \
   341 } while (0)
   342 #else // _MARKING_STATS_
   343 #define statsOnly(statement)  \
   344 do {                          \
   345 } while (0)
   346 #endif // _MARKING_STATS_
   348 typedef enum {
   349   no_verbose  = 0,   // verbose turned off
   350   stats_verbose,     // only prints stats at the end of marking
   351   low_verbose,       // low verbose, mostly per region and per major event
   352   medium_verbose,    // a bit more detailed than low
   353   high_verbose       // per object verbose
   354 } CMVerboseLevel;
   357 class ConcurrentMarkThread;
   359 class ConcurrentMark: public CHeapObj {
   360   friend class ConcurrentMarkThread;
   361   friend class CMTask;
   362   friend class CMBitMapClosure;
   363   friend class CSMarkOopClosure;
   364   friend class CMGlobalObjectClosure;
   365   friend class CMRemarkTask;
   366   friend class CMConcurrentMarkingTask;
   367   friend class G1ParNoteEndTask;
   368   friend class CalcLiveObjectsClosure;
   369   friend class G1CMRefProcTaskProxy;
   370   friend class G1CMRefProcTaskExecutor;
   371   friend class G1CMParKeepAliveAndDrainClosure;
   372   friend class G1CMParDrainMarkingStackClosure;
   374 protected:
   375   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   376   G1CollectedHeap*      _g1h;        // the heap.
   377   size_t                _parallel_marking_threads; // the number of marking
   378                                                    // threads we'll use
   379   double                _sleep_factor; // how much we have to sleep, with
   380                                        // respect to the work we just did, to
   381                                        // meet the marking overhead goal
   382   double                _marking_task_overhead; // marking target overhead for
   383                                                 // a single task
   385   // same as the two above, but for the cleanup task
   386   double                _cleanup_sleep_factor;
   387   double                _cleanup_task_overhead;
   389   FreeRegionList        _cleanup_list;
   391   // CMS marking support structures
   392   CMBitMap                _markBitMap1;
   393   CMBitMap                _markBitMap2;
   394   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   395   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   396   bool                    _at_least_one_mark_complete;
   398   BitMap                  _region_bm;
   399   BitMap                  _card_bm;
   401   // Heap bounds
   402   HeapWord*               _heap_start;
   403   HeapWord*               _heap_end;
   405   // For gray objects
   406   CMMarkStack             _markStack; // Grey objects behind global finger.
   407   CMRegionStack           _regionStack; // Grey regions behind global finger.
   408   HeapWord* volatile      _finger;  // the global finger, region aligned,
   409                                     // always points to the end of the
   410                                     // last claimed region
   412   // marking tasks
   413   size_t                  _max_task_num; // maximum task number
   414   size_t                  _active_tasks; // task num currently active
   415   CMTask**                _tasks;        // task queue array (max_task_num len)
   416   CMTaskQueueSet*         _task_queues;  // task queue set
   417   ParallelTaskTerminator  _terminator;   // for termination
   419   // Two sync barriers that are used to synchronise tasks when an
   420   // overflow occurs. The algorithm is the following. All tasks enter
   421   // the first one to ensure that they have all stopped manipulating
   422   // the global data structures. After they exit it, they re-initialise
   423   // their data structures and task 0 re-initialises the global data
   424   // structures. Then, they enter the second sync barrier. This
   425   // ensure, that no task starts doing work before all data
   426   // structures (local and global) have been re-initialised. When they
   427   // exit it, they are free to start working again.
   428   WorkGangBarrierSync     _first_overflow_barrier_sync;
   429   WorkGangBarrierSync     _second_overflow_barrier_sync;
   432   // this is set by any task, when an overflow on the global data
   433   // structures is detected.
   434   volatile bool           _has_overflown;
   435   // true: marking is concurrent, false: we're in remark
   436   volatile bool           _concurrent;
   437   // set at the end of a Full GC so that marking aborts
   438   volatile bool           _has_aborted;
   440   // used when remark aborts due to an overflow to indicate that
   441   // another concurrent marking phase should start
   442   volatile bool           _restart_for_overflow;
   444   // This is true from the very start of concurrent marking until the
   445   // point when all the tasks complete their work. It is really used
   446   // to determine the points between the end of concurrent marking and
   447   // time of remark.
   448   volatile bool           _concurrent_marking_in_progress;
   450   // verbose level
   451   CMVerboseLevel          _verbose_level;
   453   // These two fields are used to implement the optimisation that
   454   // avoids pushing objects on the global/region stack if there are
   455   // no collection set regions above the lowest finger.
   457   // This is the lowest finger (among the global and local fingers),
   458   // which is calculated before a new collection set is chosen.
   459   HeapWord* _min_finger;
   460   // If this flag is true, objects/regions that are marked below the
   461   // finger should be pushed on the stack(s). If this is flag is
   462   // false, it is safe not to push them on the stack(s).
   463   bool      _should_gray_objects;
   465   // All of these times are in ms.
   466   NumberSeq _init_times;
   467   NumberSeq _remark_times;
   468   NumberSeq   _remark_mark_times;
   469   NumberSeq   _remark_weak_ref_times;
   470   NumberSeq _cleanup_times;
   471   double    _total_counting_time;
   472   double    _total_rs_scrub_time;
   474   double*   _accum_task_vtime;   // accumulated task vtime
   476   WorkGang* _parallel_workers;
   478   ForceOverflowSettings _force_overflow_conc;
   479   ForceOverflowSettings _force_overflow_stw;
   481   void weakRefsWork(bool clear_all_soft_refs);
   483   void swapMarkBitMaps();
   485   // It resets the global marking data structures, as well as the
   486   // task local ones; should be called during initial mark.
   487   void reset();
   488   // It resets all the marking data structures.
   489   void clear_marking_state(bool clear_overflow = true);
   491   // It should be called to indicate which phase we're in (concurrent
   492   // mark or remark) and how many threads are currently active.
   493   void set_phase(size_t active_tasks, bool concurrent);
   494   // We do this after we're done with marking so that the marking data
   495   // structures are initialised to a sensible and predictable state.
   496   void set_non_marking_state();
   498   // prints all gathered CM-related statistics
   499   void print_stats();
   501   bool cleanup_list_is_empty() {
   502     return _cleanup_list.is_empty();
   503   }
   505   // accessor methods
   506   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   507   double sleep_factor()             { return _sleep_factor; }
   508   double marking_task_overhead()    { return _marking_task_overhead;}
   509   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   510   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   512   HeapWord*               finger()        { return _finger;   }
   513   bool                    concurrent()    { return _concurrent; }
   514   size_t                  active_tasks()  { return _active_tasks; }
   515   ParallelTaskTerminator* terminator()    { return &_terminator; }
   517   // It claims the next available region to be scanned by a marking
   518   // task. It might return NULL if the next region is empty or we have
   519   // run out of regions. In the latter case, out_of_regions()
   520   // determines whether we've really run out of regions or the task
   521   // should call claim_region() again.  This might seem a bit
   522   // awkward. Originally, the code was written so that claim_region()
   523   // either successfully returned with a non-empty region or there
   524   // were no more regions to be claimed. The problem with this was
   525   // that, in certain circumstances, it iterated over large chunks of
   526   // the heap finding only empty regions and, while it was working, it
   527   // was preventing the calling task to call its regular clock
   528   // method. So, this way, each task will spend very little time in
   529   // claim_region() and is allowed to call the regular clock method
   530   // frequently.
   531   HeapRegion* claim_region(int task);
   533   // It determines whether we've run out of regions to scan.
   534   bool        out_of_regions() { return _finger == _heap_end; }
   536   // Returns the task with the given id
   537   CMTask* task(int id) {
   538     assert(0 <= id && id < (int) _active_tasks,
   539            "task id not within active bounds");
   540     return _tasks[id];
   541   }
   543   // Returns the task queue with the given id
   544   CMTaskQueue* task_queue(int id) {
   545     assert(0 <= id && id < (int) _active_tasks,
   546            "task queue id not within active bounds");
   547     return (CMTaskQueue*) _task_queues->queue(id);
   548   }
   550   // Returns the task queue set
   551   CMTaskQueueSet* task_queues()  { return _task_queues; }
   553   // Access / manipulation of the overflow flag which is set to
   554   // indicate that the global stack or region stack has overflown
   555   bool has_overflown()           { return _has_overflown; }
   556   void set_has_overflown()       { _has_overflown = true; }
   557   void clear_has_overflown()     { _has_overflown = false; }
   559   bool has_aborted()             { return _has_aborted; }
   560   bool restart_for_overflow()    { return _restart_for_overflow; }
   562   // Methods to enter the two overflow sync barriers
   563   void enter_first_sync_barrier(int task_num);
   564   void enter_second_sync_barrier(int task_num);
   566   ForceOverflowSettings* force_overflow_conc() {
   567     return &_force_overflow_conc;
   568   }
   570   ForceOverflowSettings* force_overflow_stw() {
   571     return &_force_overflow_stw;
   572   }
   574   ForceOverflowSettings* force_overflow() {
   575     if (concurrent()) {
   576       return force_overflow_conc();
   577     } else {
   578       return force_overflow_stw();
   579     }
   580   }
   582 public:
   583   // Manipulation of the global mark stack.
   584   // Notice that the first mark_stack_push is CAS-based, whereas the
   585   // two below are Mutex-based. This is OK since the first one is only
   586   // called during evacuation pauses and doesn't compete with the
   587   // other two (which are called by the marking tasks during
   588   // concurrent marking or remark).
   589   bool mark_stack_push(oop p) {
   590     _markStack.par_push(p);
   591     if (_markStack.overflow()) {
   592       set_has_overflown();
   593       return false;
   594     }
   595     return true;
   596   }
   597   bool mark_stack_push(oop* arr, int n) {
   598     _markStack.par_push_arr(arr, n);
   599     if (_markStack.overflow()) {
   600       set_has_overflown();
   601       return false;
   602     }
   603     return true;
   604   }
   605   void mark_stack_pop(oop* arr, int max, int* n) {
   606     _markStack.par_pop_arr(arr, max, n);
   607   }
   608   size_t mark_stack_size()                { return _markStack.size(); }
   609   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   610   bool mark_stack_overflow()              { return _markStack.overflow(); }
   611   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   613   // (Lock-free) Manipulation of the region stack
   614   bool region_stack_push_lock_free(MemRegion mr) {
   615     // Currently we only call the lock-free version during evacuation
   616     // pauses.
   617     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   619     _regionStack.push_lock_free(mr);
   620     if (_regionStack.overflow()) {
   621       set_has_overflown();
   622       return false;
   623     }
   624     return true;
   625   }
   627   // Lock-free version of region-stack pop. Should only be
   628   // called in tandem with other lock-free pops.
   629   MemRegion region_stack_pop_lock_free() {
   630     return _regionStack.pop_lock_free();
   631   }
   633 #if 0
   634   // The routines that manipulate the region stack with a lock are
   635   // not currently used. They should be retained, however, as a
   636   // diagnostic aid.
   638   bool region_stack_push_with_lock(MemRegion mr) {
   639     // Currently we only call the lock-based version during either
   640     // concurrent marking or remark.
   641     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   642            "if we are at a safepoint it should be the remark safepoint");
   644     _regionStack.push_with_lock(mr);
   645     if (_regionStack.overflow()) {
   646       set_has_overflown();
   647       return false;
   648     }
   649     return true;
   650   }
   652   MemRegion region_stack_pop_with_lock() {
   653     // Currently we only call the lock-based version during either
   654     // concurrent marking or remark.
   655     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   656            "if we are at a safepoint it should be the remark safepoint");
   658     return _regionStack.pop_with_lock();
   659   }
   660 #endif
   662   int region_stack_size()               { return _regionStack.size(); }
   663   bool region_stack_overflow()          { return _regionStack.overflow(); }
   664   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   666   // Iterate over any regions that were aborted while draining the
   667   // region stack (any such regions are saved in the corresponding
   668   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   669   // any regions that point into the collection set.
   670   bool invalidate_aborted_regions_in_cset();
   672   // Returns true if there are any aborted memory regions.
   673   bool has_aborted_regions();
   675   bool concurrent_marking_in_progress() {
   676     return _concurrent_marking_in_progress;
   677   }
   678   void set_concurrent_marking_in_progress() {
   679     _concurrent_marking_in_progress = true;
   680   }
   681   void clear_concurrent_marking_in_progress() {
   682     _concurrent_marking_in_progress = false;
   683   }
   685   void update_accum_task_vtime(int i, double vtime) {
   686     _accum_task_vtime[i] += vtime;
   687   }
   689   double all_task_accum_vtime() {
   690     double ret = 0.0;
   691     for (int i = 0; i < (int)_max_task_num; ++i)
   692       ret += _accum_task_vtime[i];
   693     return ret;
   694   }
   696   // Attempts to steal an object from the task queues of other tasks
   697   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   698     return _task_queues->steal(task_num, hash_seed, obj);
   699   }
   701   // It grays an object by first marking it. Then, if it's behind the
   702   // global finger, it also pushes it on the global stack.
   703   void deal_with_reference(oop obj);
   705   ConcurrentMark(ReservedSpace rs, int max_regions);
   706   ~ConcurrentMark();
   707   ConcurrentMarkThread* cmThread() { return _cmThread; }
   709   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   710   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   712   // The following three are interaction between CM and
   713   // G1CollectedHeap
   715   // This notifies CM that a root during initial-mark needs to be
   716   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   717   // future, we can experiment with pushing it on the stack and we can
   718   // do this without changing G1CollectedHeap.
   719   void grayRoot(oop p);
   720   // It's used during evacuation pauses to gray a region, if
   721   // necessary, and it's MT-safe. It assumes that the caller has
   722   // marked any objects on that region. If _should_gray_objects is
   723   // true and we're still doing concurrent marking, the region is
   724   // pushed on the region stack, if it is located below the global
   725   // finger, otherwise we do nothing.
   726   void grayRegionIfNecessary(MemRegion mr);
   727   // It's used during evacuation pauses to mark and, if necessary,
   728   // gray a single object and it's MT-safe. It assumes the caller did
   729   // not mark the object. If _should_gray_objects is true and we're
   730   // still doing concurrent marking, the objects is pushed on the
   731   // global stack, if it is located below the global finger, otherwise
   732   // we do nothing.
   733   void markAndGrayObjectIfNecessary(oop p);
   735   // It iterates over the heap and for each object it comes across it
   736   // will dump the contents of its reference fields, as well as
   737   // liveness information for the object and its referents. The dump
   738   // will be written to a file with the following name:
   739   // G1PrintReachableBaseFile + "." + str.
   740   // vo decides whether the prev (vo == UsePrevMarking), the next
   741   // (vo == UseNextMarking) marking information, or the mark word
   742   // (vo == UseMarkWord) will be used to determine the liveness of
   743   // each object / referent.
   744   // If all is true, all objects in the heap will be dumped, otherwise
   745   // only the live ones. In the dump the following symbols / breviations
   746   // are used:
   747   //   M : an explicitly live object (its bitmap bit is set)
   748   //   > : an implicitly live object (over tams)
   749   //   O : an object outside the G1 heap (typically: in the perm gen)
   750   //   NOT : a reference field whose referent is not live
   751   //   AND MARKED : indicates that an object is both explicitly and
   752   //   implicitly live (it should be one or the other, not both)
   753   void print_reachable(const char* str,
   754                        VerifyOption vo, bool all) PRODUCT_RETURN;
   756   // Clear the next marking bitmap (will be called concurrently).
   757   void clearNextBitmap();
   759   // These two do the work that needs to be done before and after the
   760   // initial root checkpoint. Since this checkpoint can be done at two
   761   // different points (i.e. an explicit pause or piggy-backed on a
   762   // young collection), then it's nice to be able to easily share the
   763   // pre/post code. It might be the case that we can put everything in
   764   // the post method. TP
   765   void checkpointRootsInitialPre();
   766   void checkpointRootsInitialPost();
   768   // Do concurrent phase of marking, to a tentative transitive closure.
   769   void markFromRoots();
   771   // Process all unprocessed SATB buffers. It is called at the
   772   // beginning of an evacuation pause.
   773   void drainAllSATBBuffers();
   775   void checkpointRootsFinal(bool clear_all_soft_refs);
   776   void checkpointRootsFinalWork();
   777   void calcDesiredRegions();
   778   void cleanup();
   779   void completeCleanup();
   781   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   782   // this carefully!
   783   void markPrev(oop p);
   784   void clear(oop p);
   785   // Clears marks for all objects in the given range, for both prev and
   786   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   787   // this carefully!
   788   void clearRangeBothMaps(MemRegion mr);
   790   // Record the current top of the mark and region stacks; a
   791   // subsequent oops_do() on the mark stack and
   792   // invalidate_entries_into_cset() on the region stack will iterate
   793   // only over indices valid at the time of this call.
   794   void set_oops_do_bound() {
   795     _markStack.set_oops_do_bound();
   796     _regionStack.set_oops_do_bound();
   797   }
   798   // Iterate over the oops in the mark stack and all local queues. It
   799   // also calls invalidate_entries_into_cset() on the region stack.
   800   void oops_do(OopClosure* f);
   801   // It is called at the end of an evacuation pause during marking so
   802   // that CM is notified of where the new end of the heap is. It
   803   // doesn't do anything if concurrent_marking_in_progress() is false,
   804   // unless the force parameter is true.
   805   void update_g1_committed(bool force = false);
   807   void complete_marking_in_collection_set();
   809   // It indicates that a new collection set is being chosen.
   810   void newCSet();
   812   // It registers a collection set heap region with CM. This is used
   813   // to determine whether any heap regions are located above the finger.
   814   void registerCSetRegion(HeapRegion* hr);
   816   // Resets the region fields of any active CMTask whose region fields
   817   // are in the collection set (i.e. the region currently claimed by
   818   // the CMTask will be evacuated and may be used, subsequently, as
   819   // an alloc region). When this happens the region fields in the CMTask
   820   // are stale and, hence, should be cleared causing the worker thread
   821   // to claim a new region.
   822   void reset_active_task_region_fields_in_cset();
   824   // Registers the maximum region-end associated with a set of
   825   // regions with CM. Again this is used to determine whether any
   826   // heap regions are located above the finger.
   827   void register_collection_set_finger(HeapWord* max_finger) {
   828     // max_finger is the highest heap region end of the regions currently
   829     // contained in the collection set. If this value is larger than
   830     // _min_finger then we need to gray objects.
   831     // This routine is like registerCSetRegion but for an entire
   832     // collection of regions.
   833     if (max_finger > _min_finger) {
   834       _should_gray_objects = true;
   835     }
   836   }
   838   // Returns "true" if at least one mark has been completed.
   839   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   841   bool isMarked(oop p) const {
   842     assert(p != NULL && p->is_oop(), "expected an oop");
   843     HeapWord* addr = (HeapWord*)p;
   844     assert(addr >= _nextMarkBitMap->startWord() ||
   845            addr < _nextMarkBitMap->endWord(), "in a region");
   847     return _nextMarkBitMap->isMarked(addr);
   848   }
   850   inline bool not_yet_marked(oop p) const;
   852   // XXX Debug code
   853   bool containing_card_is_marked(void* p);
   854   bool containing_cards_are_marked(void* start, void* last);
   856   bool isPrevMarked(oop p) const {
   857     assert(p != NULL && p->is_oop(), "expected an oop");
   858     HeapWord* addr = (HeapWord*)p;
   859     assert(addr >= _prevMarkBitMap->startWord() ||
   860            addr < _prevMarkBitMap->endWord(), "in a region");
   862     return _prevMarkBitMap->isMarked(addr);
   863   }
   865   inline bool do_yield_check(int worker_i = 0);
   866   inline bool should_yield();
   868   // Called to abort the marking cycle after a Full GC takes palce.
   869   void abort();
   871   // This prints the global/local fingers. It is used for debugging.
   872   NOT_PRODUCT(void print_finger();)
   874   void print_summary_info();
   876   void print_worker_threads_on(outputStream* st) const;
   878   // The following indicate whether a given verbose level has been
   879   // set. Notice that anything above stats is conditional to
   880   // _MARKING_VERBOSE_ having been set to 1
   881   bool verbose_stats() {
   882     return _verbose_level >= stats_verbose;
   883   }
   884   bool verbose_low() {
   885     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   886   }
   887   bool verbose_medium() {
   888     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   889   }
   890   bool verbose_high() {
   891     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   892   }
   893 };
   895 // A class representing a marking task.
   896 class CMTask : public TerminatorTerminator {
   897 private:
   898   enum PrivateConstants {
   899     // the regular clock call is called once the scanned words reaches
   900     // this limit
   901     words_scanned_period          = 12*1024,
   902     // the regular clock call is called once the number of visited
   903     // references reaches this limit
   904     refs_reached_period           = 384,
   905     // initial value for the hash seed, used in the work stealing code
   906     init_hash_seed                = 17,
   907     // how many entries will be transferred between global stack and
   908     // local queues
   909     global_stack_transfer_size    = 16
   910   };
   912   int                         _task_id;
   913   G1CollectedHeap*            _g1h;
   914   ConcurrentMark*             _cm;
   915   CMBitMap*                   _nextMarkBitMap;
   916   // the task queue of this task
   917   CMTaskQueue*                _task_queue;
   918 private:
   919   // the task queue set---needed for stealing
   920   CMTaskQueueSet*             _task_queues;
   921   // indicates whether the task has been claimed---this is only  for
   922   // debugging purposes
   923   bool                        _claimed;
   925   // number of calls to this task
   926   int                         _calls;
   928   // when the virtual timer reaches this time, the marking step should
   929   // exit
   930   double                      _time_target_ms;
   931   // the start time of the current marking step
   932   double                      _start_time_ms;
   934   // the oop closure used for iterations over oops
   935   G1CMOopClosure*             _cm_oop_closure;
   937   // the region this task is scanning, NULL if we're not scanning any
   938   HeapRegion*                 _curr_region;
   939   // the local finger of this task, NULL if we're not scanning a region
   940   HeapWord*                   _finger;
   941   // limit of the region this task is scanning, NULL if we're not scanning one
   942   HeapWord*                   _region_limit;
   944   // This is used only when we scan regions popped from the region
   945   // stack. It records what the last object on such a region we
   946   // scanned was. It is used to ensure that, if we abort region
   947   // iteration, we do not rescan the first part of the region. This
   948   // should be NULL when we're not scanning a region from the region
   949   // stack.
   950   HeapWord*                   _region_finger;
   952   // If we abort while scanning a region we record the remaining
   953   // unscanned portion and check this field when marking restarts.
   954   // This avoids having to push on the region stack while other
   955   // marking threads may still be popping regions.
   956   // If we were to push the unscanned portion directly to the
   957   // region stack then we would need to using locking versions
   958   // of the push and pop operations.
   959   MemRegion                   _aborted_region;
   961   // the number of words this task has scanned
   962   size_t                      _words_scanned;
   963   // When _words_scanned reaches this limit, the regular clock is
   964   // called. Notice that this might be decreased under certain
   965   // circumstances (i.e. when we believe that we did an expensive
   966   // operation).
   967   size_t                      _words_scanned_limit;
   968   // the initial value of _words_scanned_limit (i.e. what it was
   969   // before it was decreased).
   970   size_t                      _real_words_scanned_limit;
   972   // the number of references this task has visited
   973   size_t                      _refs_reached;
   974   // When _refs_reached reaches this limit, the regular clock is
   975   // called. Notice this this might be decreased under certain
   976   // circumstances (i.e. when we believe that we did an expensive
   977   // operation).
   978   size_t                      _refs_reached_limit;
   979   // the initial value of _refs_reached_limit (i.e. what it was before
   980   // it was decreased).
   981   size_t                      _real_refs_reached_limit;
   983   // used by the work stealing stuff
   984   int                         _hash_seed;
   985   // if this is true, then the task has aborted for some reason
   986   bool                        _has_aborted;
   987   // set when the task aborts because it has met its time quota
   988   bool                        _has_timed_out;
   989   // true when we're draining SATB buffers; this avoids the task
   990   // aborting due to SATB buffers being available (as we're already
   991   // dealing with them)
   992   bool                        _draining_satb_buffers;
   994   // number sequence of past step times
   995   NumberSeq                   _step_times_ms;
   996   // elapsed time of this task
   997   double                      _elapsed_time_ms;
   998   // termination time of this task
   999   double                      _termination_time_ms;
  1000   // when this task got into the termination protocol
  1001   double                      _termination_start_time_ms;
  1003   // true when the task is during a concurrent phase, false when it is
  1004   // in the remark phase (so, in the latter case, we do not have to
  1005   // check all the things that we have to check during the concurrent
  1006   // phase, i.e. SATB buffer availability...)
  1007   bool                        _concurrent;
  1009   TruncatedSeq                _marking_step_diffs_ms;
  1011   // LOTS of statistics related with this task
  1012 #if _MARKING_STATS_
  1013   NumberSeq                   _all_clock_intervals_ms;
  1014   double                      _interval_start_time_ms;
  1016   int                         _aborted;
  1017   int                         _aborted_overflow;
  1018   int                         _aborted_cm_aborted;
  1019   int                         _aborted_yield;
  1020   int                         _aborted_timed_out;
  1021   int                         _aborted_satb;
  1022   int                         _aborted_termination;
  1024   int                         _steal_attempts;
  1025   int                         _steals;
  1027   int                         _clock_due_to_marking;
  1028   int                         _clock_due_to_scanning;
  1030   int                         _local_pushes;
  1031   int                         _local_pops;
  1032   int                         _local_max_size;
  1033   int                         _objs_scanned;
  1035   int                         _global_pushes;
  1036   int                         _global_pops;
  1037   int                         _global_max_size;
  1039   int                         _global_transfers_to;
  1040   int                         _global_transfers_from;
  1042   int                         _region_stack_pops;
  1044   int                         _regions_claimed;
  1045   int                         _objs_found_on_bitmap;
  1047   int                         _satb_buffers_processed;
  1048 #endif // _MARKING_STATS_
  1050   // it updates the local fields after this task has claimed
  1051   // a new region to scan
  1052   void setup_for_region(HeapRegion* hr);
  1053   // it brings up-to-date the limit of the region
  1054   void update_region_limit();
  1056   // called when either the words scanned or the refs visited limit
  1057   // has been reached
  1058   void reached_limit();
  1059   // recalculates the words scanned and refs visited limits
  1060   void recalculate_limits();
  1061   // decreases the words scanned and refs visited limits when we reach
  1062   // an expensive operation
  1063   void decrease_limits();
  1064   // it checks whether the words scanned or refs visited reached their
  1065   // respective limit and calls reached_limit() if they have
  1066   void check_limits() {
  1067     if (_words_scanned >= _words_scanned_limit ||
  1068         _refs_reached >= _refs_reached_limit) {
  1069       reached_limit();
  1072   // this is supposed to be called regularly during a marking step as
  1073   // it checks a bunch of conditions that might cause the marking step
  1074   // to abort
  1075   void regular_clock_call();
  1076   bool concurrent() { return _concurrent; }
  1078 public:
  1079   // It resets the task; it should be called right at the beginning of
  1080   // a marking phase.
  1081   void reset(CMBitMap* _nextMarkBitMap);
  1082   // it clears all the fields that correspond to a claimed region.
  1083   void clear_region_fields();
  1085   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1087   // The main method of this class which performs a marking step
  1088   // trying not to exceed the given duration. However, it might exit
  1089   // prematurely, according to some conditions (i.e. SATB buffers are
  1090   // available for processing).
  1091   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1093   // These two calls start and stop the timer
  1094   void record_start_time() {
  1095     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1097   void record_end_time() {
  1098     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1101   // returns the task ID
  1102   int task_id() { return _task_id; }
  1104   // From TerminatorTerminator. It determines whether this task should
  1105   // exit the termination protocol after it's entered it.
  1106   virtual bool should_exit_termination();
  1108   // Resets the local region fields after a task has finished scanning a
  1109   // region; or when they have become stale as a result of the region
  1110   // being evacuated.
  1111   void giveup_current_region();
  1113   HeapWord* finger()            { return _finger; }
  1115   bool has_aborted()            { return _has_aborted; }
  1116   void set_has_aborted()        { _has_aborted = true; }
  1117   void clear_has_aborted()      { _has_aborted = false; }
  1118   bool has_timed_out()          { return _has_timed_out; }
  1119   bool claimed()                { return _claimed; }
  1121   // Support routines for the partially scanned region that may be
  1122   // recorded as a result of aborting while draining the CMRegionStack
  1123   MemRegion aborted_region()    { return _aborted_region; }
  1124   void set_aborted_region(MemRegion mr)
  1125                                 { _aborted_region = mr; }
  1127   // Clears any recorded partially scanned region
  1128   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1130   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1132   // It grays the object by marking it and, if necessary, pushing it
  1133   // on the local queue
  1134   inline void deal_with_reference(oop obj);
  1136   // It scans an object and visits its children.
  1137   void scan_object(oop obj);
  1139   // It pushes an object on the local queue.
  1140   inline void push(oop obj);
  1142   // These two move entries to/from the global stack.
  1143   void move_entries_to_global_stack();
  1144   void get_entries_from_global_stack();
  1146   // It pops and scans objects from the local queue. If partially is
  1147   // true, then it stops when the queue size is of a given limit. If
  1148   // partially is false, then it stops when the queue is empty.
  1149   void drain_local_queue(bool partially);
  1150   // It moves entries from the global stack to the local queue and
  1151   // drains the local queue. If partially is true, then it stops when
  1152   // both the global stack and the local queue reach a given size. If
  1153   // partially if false, it tries to empty them totally.
  1154   void drain_global_stack(bool partially);
  1155   // It keeps picking SATB buffers and processing them until no SATB
  1156   // buffers are available.
  1157   void drain_satb_buffers();
  1158   // It keeps popping regions from the region stack and processing
  1159   // them until the region stack is empty.
  1160   void drain_region_stack(BitMapClosure* closure);
  1162   // moves the local finger to a new location
  1163   inline void move_finger_to(HeapWord* new_finger) {
  1164     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1165     _finger = new_finger;
  1168   // moves the region finger to a new location
  1169   inline void move_region_finger_to(HeapWord* new_finger) {
  1170     assert(new_finger < _cm->finger(), "invariant");
  1171     _region_finger = new_finger;
  1174   CMTask(int task_num, ConcurrentMark *cm,
  1175          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1177   // it prints statistics associated with this task
  1178   void print_stats();
  1180 #if _MARKING_STATS_
  1181   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1182 #endif // _MARKING_STATS_
  1183 };
  1185 // Class that's used to to print out per-region liveness
  1186 // information. It's currently used at the end of marking and also
  1187 // after we sort the old regions at the end of the cleanup operation.
  1188 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1189 private:
  1190   outputStream* _out;
  1192   // Accumulators for these values.
  1193   size_t _total_used_bytes;
  1194   size_t _total_capacity_bytes;
  1195   size_t _total_prev_live_bytes;
  1196   size_t _total_next_live_bytes;
  1198   // These are set up when we come across a "stars humongous" region
  1199   // (as this is where most of this information is stored, not in the
  1200   // subsequent "continues humongous" regions). After that, for every
  1201   // region in a given humongous region series we deduce the right
  1202   // values for it by simply subtracting the appropriate amount from
  1203   // these fields. All these values should reach 0 after we've visited
  1204   // the last region in the series.
  1205   size_t _hum_used_bytes;
  1206   size_t _hum_capacity_bytes;
  1207   size_t _hum_prev_live_bytes;
  1208   size_t _hum_next_live_bytes;
  1210   static double perc(size_t val, size_t total) {
  1211     if (total == 0) {
  1212       return 0.0;
  1213     } else {
  1214       return 100.0 * ((double) val / (double) total);
  1218   static double bytes_to_mb(size_t val) {
  1219     return (double) val / (double) M;
  1222   // See the .cpp file.
  1223   size_t get_hum_bytes(size_t* hum_bytes);
  1224   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1225                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1227 public:
  1228   // The header and footer are printed in the constructor and
  1229   // destructor respectively.
  1230   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1231   virtual bool doHeapRegion(HeapRegion* r);
  1232   ~G1PrintRegionLivenessInfoClosure();
  1233 };
  1235 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial