src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 23 Aug 2012 10:21:12 +0200

author
brutisso
date
Thu, 23 Aug 2012 10:21:12 +0200
changeset 4015
bb3f6194fedb
parent 3998
7383557659bd
child 4016
c9814fadeb38
permissions
-rw-r--r--

7178363: G1: Remove the serial code for PrintGCDetails and make it a special case of the parallel code
Summary: Also reviewed by vitalyd@gmail.com. Introduced the WorkerDataArray class. Fixed some minor logging bugs.
Reviewed-by: johnc, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj<mtGC> {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   uint        _length;
    89   uint        _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   uint         length() { return _length; }
   105   uint         survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
   203   friend class G1ParCopyClosure;
   204   friend class G1IsAliveClosure;
   205   friend class G1EvacuateFollowersClosure;
   206   friend class G1ParScanThreadState;
   207   friend class G1ParScanClosureSuper;
   208   friend class G1ParEvacuateFollowersClosure;
   209   friend class G1ParTask;
   210   friend class G1FreeGarbageRegionClosure;
   211   friend class RefineCardTableEntryClosure;
   212   friend class G1PrepareCompactClosure;
   213   friend class RegionSorter;
   214   friend class RegionResetter;
   215   friend class CountRCClosure;
   216   friend class EvacPopObjClosure;
   217   friend class G1ParCleanupCTTask;
   219   // Other related classes.
   220   friend class G1MarkSweep;
   222 private:
   223   // The one and only G1CollectedHeap, so static functions can find it.
   224   static G1CollectedHeap* _g1h;
   226   static size_t _humongous_object_threshold_in_words;
   228   // Storage for the G1 heap (excludes the permanent generation).
   229   VirtualSpace _g1_storage;
   230   MemRegion    _g1_reserved;
   232   // The part of _g1_storage that is currently committed.
   233   MemRegion _g1_committed;
   235   // The master free list. It will satisfy all new region allocations.
   236   MasterFreeRegionList      _free_list;
   238   // The secondary free list which contains regions that have been
   239   // freed up during the cleanup process. This will be appended to the
   240   // master free list when appropriate.
   241   SecondaryFreeRegionList   _secondary_free_list;
   243   // It keeps track of the old regions.
   244   MasterOldRegionSet        _old_set;
   246   // It keeps track of the humongous regions.
   247   MasterHumongousRegionSet  _humongous_set;
   249   // The number of regions we could create by expansion.
   250   uint _expansion_regions;
   252   // The block offset table for the G1 heap.
   253   G1BlockOffsetSharedArray* _bot_shared;
   255   // Tears down the region sets / lists so that they are empty and the
   256   // regions on the heap do not belong to a region set / list. The
   257   // only exception is the humongous set which we leave unaltered. If
   258   // free_list_only is true, it will only tear down the master free
   259   // list. It is called before a Full GC (free_list_only == false) or
   260   // before heap shrinking (free_list_only == true).
   261   void tear_down_region_sets(bool free_list_only);
   263   // Rebuilds the region sets / lists so that they are repopulated to
   264   // reflect the contents of the heap. The only exception is the
   265   // humongous set which was not torn down in the first place. If
   266   // free_list_only is true, it will only rebuild the master free
   267   // list. It is called after a Full GC (free_list_only == false) or
   268   // after heap shrinking (free_list_only == true).
   269   void rebuild_region_sets(bool free_list_only);
   271   // The sequence of all heap regions in the heap.
   272   HeapRegionSeq _hrs;
   274   // Alloc region used to satisfy mutator allocation requests.
   275   MutatorAllocRegion _mutator_alloc_region;
   277   // Alloc region used to satisfy allocation requests by the GC for
   278   // survivor objects.
   279   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   281   // PLAB sizing policy for survivors.
   282   PLABStats _survivor_plab_stats;
   284   // Alloc region used to satisfy allocation requests by the GC for
   285   // old objects.
   286   OldGCAllocRegion _old_gc_alloc_region;
   288   // PLAB sizing policy for tenured objects.
   289   PLABStats _old_plab_stats;
   291   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   292     PLABStats* stats = NULL;
   294     switch (purpose) {
   295     case GCAllocForSurvived:
   296       stats = &_survivor_plab_stats;
   297       break;
   298     case GCAllocForTenured:
   299       stats = &_old_plab_stats;
   300       break;
   301     default:
   302       assert(false, "unrecognized GCAllocPurpose");
   303     }
   305     return stats;
   306   }
   308   // The last old region we allocated to during the last GC.
   309   // Typically, it is not full so we should re-use it during the next GC.
   310   HeapRegion* _retained_old_gc_alloc_region;
   312   // It specifies whether we should attempt to expand the heap after a
   313   // region allocation failure. If heap expansion fails we set this to
   314   // false so that we don't re-attempt the heap expansion (it's likely
   315   // that subsequent expansion attempts will also fail if one fails).
   316   // Currently, it is only consulted during GC and it's reset at the
   317   // start of each GC.
   318   bool _expand_heap_after_alloc_failure;
   320   // It resets the mutator alloc region before new allocations can take place.
   321   void init_mutator_alloc_region();
   323   // It releases the mutator alloc region.
   324   void release_mutator_alloc_region();
   326   // It initializes the GC alloc regions at the start of a GC.
   327   void init_gc_alloc_regions();
   329   // It releases the GC alloc regions at the end of a GC.
   330   void release_gc_alloc_regions();
   332   // It does any cleanup that needs to be done on the GC alloc regions
   333   // before a Full GC.
   334   void abandon_gc_alloc_regions();
   336   // Helper for monitoring and management support.
   337   G1MonitoringSupport* _g1mm;
   339   // Determines PLAB size for a particular allocation purpose.
   340   size_t desired_plab_sz(GCAllocPurpose purpose);
   342   // Outside of GC pauses, the number of bytes used in all regions other
   343   // than the current allocation region.
   344   size_t _summary_bytes_used;
   346   // This is used for a quick test on whether a reference points into
   347   // the collection set or not. Basically, we have an array, with one
   348   // byte per region, and that byte denotes whether the corresponding
   349   // region is in the collection set or not. The entry corresponding
   350   // the bottom of the heap, i.e., region 0, is pointed to by
   351   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   352   // biased so that it actually points to address 0 of the address
   353   // space, to make the test as fast as possible (we can simply shift
   354   // the address to address into it, instead of having to subtract the
   355   // bottom of the heap from the address before shifting it; basically
   356   // it works in the same way the card table works).
   357   bool* _in_cset_fast_test;
   359   // The allocated array used for the fast test on whether a reference
   360   // points into the collection set or not. This field is also used to
   361   // free the array.
   362   bool* _in_cset_fast_test_base;
   364   // The length of the _in_cset_fast_test_base array.
   365   uint _in_cset_fast_test_length;
   367   volatile unsigned _gc_time_stamp;
   369   size_t* _surviving_young_words;
   371   G1HRPrinter _hr_printer;
   373   void setup_surviving_young_words();
   374   void update_surviving_young_words(size_t* surv_young_words);
   375   void cleanup_surviving_young_words();
   377   // It decides whether an explicit GC should start a concurrent cycle
   378   // instead of doing a STW GC. Currently, a concurrent cycle is
   379   // explicitly started if:
   380   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   381   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   382   // (c) cause == _g1_humongous_allocation
   383   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   385   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   386   // concurrent cycles) we have started.
   387   volatile unsigned int _old_marking_cycles_started;
   389   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   390   // concurrent cycles) we have completed.
   391   volatile unsigned int _old_marking_cycles_completed;
   393   // This is a non-product method that is helpful for testing. It is
   394   // called at the end of a GC and artificially expands the heap by
   395   // allocating a number of dead regions. This way we can induce very
   396   // frequent marking cycles and stress the cleanup / concurrent
   397   // cleanup code more (as all the regions that will be allocated by
   398   // this method will be found dead by the marking cycle).
   399   void allocate_dummy_regions() PRODUCT_RETURN;
   401   // Clear RSets after a compaction. It also resets the GC time stamps.
   402   void clear_rsets_post_compaction();
   404   // If the HR printer is active, dump the state of the regions in the
   405   // heap after a compaction.
   406   void print_hrs_post_compaction();
   408   double verify(bool guard, const char* msg);
   409   void verify_before_gc();
   410   void verify_after_gc();
   412   // These are macros so that, if the assert fires, we get the correct
   413   // line number, file, etc.
   415 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   416   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   417           (_extra_message_),                                                  \
   418           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   419           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   420           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   422 #define assert_heap_locked()                                                  \
   423   do {                                                                        \
   424     assert(Heap_lock->owned_by_self(),                                        \
   425            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   426   } while (0)
   428 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   429   do {                                                                        \
   430     assert(Heap_lock->owned_by_self() ||                                      \
   431            (SafepointSynchronize::is_at_safepoint() &&                        \
   432              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   433            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   434                                         "should be at a safepoint"));         \
   435   } while (0)
   437 #define assert_heap_locked_and_not_at_safepoint()                             \
   438   do {                                                                        \
   439     assert(Heap_lock->owned_by_self() &&                                      \
   440                                     !SafepointSynchronize::is_at_safepoint(), \
   441           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   442                                        "should not be at a safepoint"));      \
   443   } while (0)
   445 #define assert_heap_not_locked()                                              \
   446   do {                                                                        \
   447     assert(!Heap_lock->owned_by_self(),                                       \
   448         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   449   } while (0)
   451 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   452   do {                                                                        \
   453     assert(!Heap_lock->owned_by_self() &&                                     \
   454                                     !SafepointSynchronize::is_at_safepoint(), \
   455       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   456                                    "should not be at a safepoint"));          \
   457   } while (0)
   459 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   460   do {                                                                        \
   461     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   462               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   463            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   464   } while (0)
   466 #define assert_not_at_safepoint()                                             \
   467   do {                                                                        \
   468     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   469            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   470   } while (0)
   472 protected:
   474   // The young region list.
   475   YoungList*  _young_list;
   477   // The current policy object for the collector.
   478   G1CollectorPolicy* _g1_policy;
   480   // This is the second level of trying to allocate a new region. If
   481   // new_region() didn't find a region on the free_list, this call will
   482   // check whether there's anything available on the
   483   // secondary_free_list and/or wait for more regions to appear on
   484   // that list, if _free_regions_coming is set.
   485   HeapRegion* new_region_try_secondary_free_list();
   487   // Try to allocate a single non-humongous HeapRegion sufficient for
   488   // an allocation of the given word_size. If do_expand is true,
   489   // attempt to expand the heap if necessary to satisfy the allocation
   490   // request.
   491   HeapRegion* new_region(size_t word_size, bool do_expand);
   493   // Attempt to satisfy a humongous allocation request of the given
   494   // size by finding a contiguous set of free regions of num_regions
   495   // length and remove them from the master free list. Return the
   496   // index of the first region or G1_NULL_HRS_INDEX if the search
   497   // was unsuccessful.
   498   uint humongous_obj_allocate_find_first(uint num_regions,
   499                                          size_t word_size);
   501   // Initialize a contiguous set of free regions of length num_regions
   502   // and starting at index first so that they appear as a single
   503   // humongous region.
   504   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   505                                                       uint num_regions,
   506                                                       size_t word_size);
   508   // Attempt to allocate a humongous object of the given size. Return
   509   // NULL if unsuccessful.
   510   HeapWord* humongous_obj_allocate(size_t word_size);
   512   // The following two methods, allocate_new_tlab() and
   513   // mem_allocate(), are the two main entry points from the runtime
   514   // into the G1's allocation routines. They have the following
   515   // assumptions:
   516   //
   517   // * They should both be called outside safepoints.
   518   //
   519   // * They should both be called without holding the Heap_lock.
   520   //
   521   // * All allocation requests for new TLABs should go to
   522   //   allocate_new_tlab().
   523   //
   524   // * All non-TLAB allocation requests should go to mem_allocate().
   525   //
   526   // * If either call cannot satisfy the allocation request using the
   527   //   current allocating region, they will try to get a new one. If
   528   //   this fails, they will attempt to do an evacuation pause and
   529   //   retry the allocation.
   530   //
   531   // * If all allocation attempts fail, even after trying to schedule
   532   //   an evacuation pause, allocate_new_tlab() will return NULL,
   533   //   whereas mem_allocate() will attempt a heap expansion and/or
   534   //   schedule a Full GC.
   535   //
   536   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   537   //   should never be called with word_size being humongous. All
   538   //   humongous allocation requests should go to mem_allocate() which
   539   //   will satisfy them with a special path.
   541   virtual HeapWord* allocate_new_tlab(size_t word_size);
   543   virtual HeapWord* mem_allocate(size_t word_size,
   544                                  bool*  gc_overhead_limit_was_exceeded);
   546   // The following three methods take a gc_count_before_ret
   547   // parameter which is used to return the GC count if the method
   548   // returns NULL. Given that we are required to read the GC count
   549   // while holding the Heap_lock, and these paths will take the
   550   // Heap_lock at some point, it's easier to get them to read the GC
   551   // count while holding the Heap_lock before they return NULL instead
   552   // of the caller (namely: mem_allocate()) having to also take the
   553   // Heap_lock just to read the GC count.
   555   // First-level mutator allocation attempt: try to allocate out of
   556   // the mutator alloc region without taking the Heap_lock. This
   557   // should only be used for non-humongous allocations.
   558   inline HeapWord* attempt_allocation(size_t word_size,
   559                                       unsigned int* gc_count_before_ret);
   561   // Second-level mutator allocation attempt: take the Heap_lock and
   562   // retry the allocation attempt, potentially scheduling a GC
   563   // pause. This should only be used for non-humongous allocations.
   564   HeapWord* attempt_allocation_slow(size_t word_size,
   565                                     unsigned int* gc_count_before_ret);
   567   // Takes the Heap_lock and attempts a humongous allocation. It can
   568   // potentially schedule a GC pause.
   569   HeapWord* attempt_allocation_humongous(size_t word_size,
   570                                          unsigned int* gc_count_before_ret);
   572   // Allocation attempt that should be called during safepoints (e.g.,
   573   // at the end of a successful GC). expect_null_mutator_alloc_region
   574   // specifies whether the mutator alloc region is expected to be NULL
   575   // or not.
   576   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   577                                        bool expect_null_mutator_alloc_region);
   579   // It dirties the cards that cover the block so that so that the post
   580   // write barrier never queues anything when updating objects on this
   581   // block. It is assumed (and in fact we assert) that the block
   582   // belongs to a young region.
   583   inline void dirty_young_block(HeapWord* start, size_t word_size);
   585   // Allocate blocks during garbage collection. Will ensure an
   586   // allocation region, either by picking one or expanding the
   587   // heap, and then allocate a block of the given size. The block
   588   // may not be a humongous - it must fit into a single heap region.
   589   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   591   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   592                                     HeapRegion*    alloc_region,
   593                                     bool           par,
   594                                     size_t         word_size);
   596   // Ensure that no further allocations can happen in "r", bearing in mind
   597   // that parallel threads might be attempting allocations.
   598   void par_allocate_remaining_space(HeapRegion* r);
   600   // Allocation attempt during GC for a survivor object / PLAB.
   601   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   603   // Allocation attempt during GC for an old object / PLAB.
   604   inline HeapWord* old_attempt_allocation(size_t word_size);
   606   // These methods are the "callbacks" from the G1AllocRegion class.
   608   // For mutator alloc regions.
   609   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   610   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   611                                    size_t allocated_bytes);
   613   // For GC alloc regions.
   614   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   615                                   GCAllocPurpose ap);
   616   void retire_gc_alloc_region(HeapRegion* alloc_region,
   617                               size_t allocated_bytes, GCAllocPurpose ap);
   619   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   620   //   inspection request and should collect the entire heap
   621   // - if clear_all_soft_refs is true, all soft references should be
   622   //   cleared during the GC
   623   // - if explicit_gc is false, word_size describes the allocation that
   624   //   the GC should attempt (at least) to satisfy
   625   // - it returns false if it is unable to do the collection due to the
   626   //   GC locker being active, true otherwise
   627   bool do_collection(bool explicit_gc,
   628                      bool clear_all_soft_refs,
   629                      size_t word_size);
   631   // Callback from VM_G1CollectFull operation.
   632   // Perform a full collection.
   633   void do_full_collection(bool clear_all_soft_refs);
   635   // Resize the heap if necessary after a full collection.  If this is
   636   // after a collect-for allocation, "word_size" is the allocation size,
   637   // and will be considered part of the used portion of the heap.
   638   void resize_if_necessary_after_full_collection(size_t word_size);
   640   // Callback from VM_G1CollectForAllocation operation.
   641   // This function does everything necessary/possible to satisfy a
   642   // failed allocation request (including collection, expansion, etc.)
   643   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   645   // Attempting to expand the heap sufficiently
   646   // to support an allocation of the given "word_size".  If
   647   // successful, perform the allocation and return the address of the
   648   // allocated block, or else "NULL".
   649   HeapWord* expand_and_allocate(size_t word_size);
   651   // Process any reference objects discovered during
   652   // an incremental evacuation pause.
   653   void process_discovered_references();
   655   // Enqueue any remaining discovered references
   656   // after processing.
   657   void enqueue_discovered_references();
   659 public:
   661   G1MonitoringSupport* g1mm() {
   662     assert(_g1mm != NULL, "should have been initialized");
   663     return _g1mm;
   664   }
   666   // Expand the garbage-first heap by at least the given size (in bytes!).
   667   // Returns true if the heap was expanded by the requested amount;
   668   // false otherwise.
   669   // (Rounds up to a HeapRegion boundary.)
   670   bool expand(size_t expand_bytes);
   672   // Do anything common to GC's.
   673   virtual void gc_prologue(bool full);
   674   virtual void gc_epilogue(bool full);
   676   // We register a region with the fast "in collection set" test. We
   677   // simply set to true the array slot corresponding to this region.
   678   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   679     assert(_in_cset_fast_test_base != NULL, "sanity");
   680     assert(r->in_collection_set(), "invariant");
   681     uint index = r->hrs_index();
   682     assert(index < _in_cset_fast_test_length, "invariant");
   683     assert(!_in_cset_fast_test_base[index], "invariant");
   684     _in_cset_fast_test_base[index] = true;
   685   }
   687   // This is a fast test on whether a reference points into the
   688   // collection set or not. It does not assume that the reference
   689   // points into the heap; if it doesn't, it will return false.
   690   bool in_cset_fast_test(oop obj) {
   691     assert(_in_cset_fast_test != NULL, "sanity");
   692     if (_g1_committed.contains((HeapWord*) obj)) {
   693       // no need to subtract the bottom of the heap from obj,
   694       // _in_cset_fast_test is biased
   695       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
   696       bool ret = _in_cset_fast_test[index];
   697       // let's make sure the result is consistent with what the slower
   698       // test returns
   699       assert( ret || !obj_in_cs(obj), "sanity");
   700       assert(!ret ||  obj_in_cs(obj), "sanity");
   701       return ret;
   702     } else {
   703       return false;
   704     }
   705   }
   707   void clear_cset_fast_test() {
   708     assert(_in_cset_fast_test_base != NULL, "sanity");
   709     memset(_in_cset_fast_test_base, false,
   710            (size_t) _in_cset_fast_test_length * sizeof(bool));
   711   }
   713   // This is called at the start of either a concurrent cycle or a Full
   714   // GC to update the number of old marking cycles started.
   715   void increment_old_marking_cycles_started();
   717   // This is called at the end of either a concurrent cycle or a Full
   718   // GC to update the number of old marking cycles completed. Those two
   719   // can happen in a nested fashion, i.e., we start a concurrent
   720   // cycle, a Full GC happens half-way through it which ends first,
   721   // and then the cycle notices that a Full GC happened and ends
   722   // too. The concurrent parameter is a boolean to help us do a bit
   723   // tighter consistency checking in the method. If concurrent is
   724   // false, the caller is the inner caller in the nesting (i.e., the
   725   // Full GC). If concurrent is true, the caller is the outer caller
   726   // in this nesting (i.e., the concurrent cycle). Further nesting is
   727   // not currently supported. The end of this call also notifies
   728   // the FullGCCount_lock in case a Java thread is waiting for a full
   729   // GC to happen (e.g., it called System.gc() with
   730   // +ExplicitGCInvokesConcurrent).
   731   void increment_old_marking_cycles_completed(bool concurrent);
   733   unsigned int old_marking_cycles_completed() {
   734     return _old_marking_cycles_completed;
   735   }
   737   G1HRPrinter* hr_printer() { return &_hr_printer; }
   739 protected:
   741   // Shrink the garbage-first heap by at most the given size (in bytes!).
   742   // (Rounds down to a HeapRegion boundary.)
   743   virtual void shrink(size_t expand_bytes);
   744   void shrink_helper(size_t expand_bytes);
   746   #if TASKQUEUE_STATS
   747   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   748   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   749   void reset_taskqueue_stats();
   750   #endif // TASKQUEUE_STATS
   752   // Schedule the VM operation that will do an evacuation pause to
   753   // satisfy an allocation request of word_size. *succeeded will
   754   // return whether the VM operation was successful (it did do an
   755   // evacuation pause) or not (another thread beat us to it or the GC
   756   // locker was active). Given that we should not be holding the
   757   // Heap_lock when we enter this method, we will pass the
   758   // gc_count_before (i.e., total_collections()) as a parameter since
   759   // it has to be read while holding the Heap_lock. Currently, both
   760   // methods that call do_collection_pause() release the Heap_lock
   761   // before the call, so it's easy to read gc_count_before just before.
   762   HeapWord* do_collection_pause(size_t       word_size,
   763                                 unsigned int gc_count_before,
   764                                 bool*        succeeded);
   766   // The guts of the incremental collection pause, executed by the vm
   767   // thread. It returns false if it is unable to do the collection due
   768   // to the GC locker being active, true otherwise
   769   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   771   // Actually do the work of evacuating the collection set.
   772   void evacuate_collection_set();
   774   // The g1 remembered set of the heap.
   775   G1RemSet* _g1_rem_set;
   776   // And it's mod ref barrier set, used to track updates for the above.
   777   ModRefBarrierSet* _mr_bs;
   779   // A set of cards that cover the objects for which the Rsets should be updated
   780   // concurrently after the collection.
   781   DirtyCardQueueSet _dirty_card_queue_set;
   783   // The Heap Region Rem Set Iterator.
   784   HeapRegionRemSetIterator** _rem_set_iterator;
   786   // The closure used to refine a single card.
   787   RefineCardTableEntryClosure* _refine_cte_cl;
   789   // A function to check the consistency of dirty card logs.
   790   void check_ct_logs_at_safepoint();
   792   // A DirtyCardQueueSet that is used to hold cards that contain
   793   // references into the current collection set. This is used to
   794   // update the remembered sets of the regions in the collection
   795   // set in the event of an evacuation failure.
   796   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   798   // After a collection pause, make the regions in the CS into free
   799   // regions.
   800   void free_collection_set(HeapRegion* cs_head);
   802   // Abandon the current collection set without recording policy
   803   // statistics or updating free lists.
   804   void abandon_collection_set(HeapRegion* cs_head);
   806   // Applies "scan_non_heap_roots" to roots outside the heap,
   807   // "scan_rs" to roots inside the heap (having done "set_region" to
   808   // indicate the region in which the root resides), and does "scan_perm"
   809   // (setting the generation to the perm generation.)  If "scan_rs" is
   810   // NULL, then this step is skipped.  The "worker_i"
   811   // param is for use with parallel roots processing, and should be
   812   // the "i" of the calling parallel worker thread's work(i) function.
   813   // In the sequential case this param will be ignored.
   814   void g1_process_strong_roots(bool collecting_perm_gen,
   815                                ScanningOption so,
   816                                OopClosure* scan_non_heap_roots,
   817                                OopsInHeapRegionClosure* scan_rs,
   818                                OopsInGenClosure* scan_perm,
   819                                int worker_i);
   821   // Apply "blk" to all the weak roots of the system.  These include
   822   // JNI weak roots, the code cache, system dictionary, symbol table,
   823   // string table, and referents of reachable weak refs.
   824   void g1_process_weak_roots(OopClosure* root_closure,
   825                              OopClosure* non_root_closure);
   827   // Frees a non-humongous region by initializing its contents and
   828   // adding it to the free list that's passed as a parameter (this is
   829   // usually a local list which will be appended to the master free
   830   // list later). The used bytes of freed regions are accumulated in
   831   // pre_used. If par is true, the region's RSet will not be freed
   832   // up. The assumption is that this will be done later.
   833   void free_region(HeapRegion* hr,
   834                    size_t* pre_used,
   835                    FreeRegionList* free_list,
   836                    bool par);
   838   // Frees a humongous region by collapsing it into individual regions
   839   // and calling free_region() for each of them. The freed regions
   840   // will be added to the free list that's passed as a parameter (this
   841   // is usually a local list which will be appended to the master free
   842   // list later). The used bytes of freed regions are accumulated in
   843   // pre_used. If par is true, the region's RSet will not be freed
   844   // up. The assumption is that this will be done later.
   845   void free_humongous_region(HeapRegion* hr,
   846                              size_t* pre_used,
   847                              FreeRegionList* free_list,
   848                              HumongousRegionSet* humongous_proxy_set,
   849                              bool par);
   851   // Notifies all the necessary spaces that the committed space has
   852   // been updated (either expanded or shrunk). It should be called
   853   // after _g1_storage is updated.
   854   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   856   // The concurrent marker (and the thread it runs in.)
   857   ConcurrentMark* _cm;
   858   ConcurrentMarkThread* _cmThread;
   859   bool _mark_in_progress;
   861   // The concurrent refiner.
   862   ConcurrentG1Refine* _cg1r;
   864   // The parallel task queues
   865   RefToScanQueueSet *_task_queues;
   867   // True iff a evacuation has failed in the current collection.
   868   bool _evacuation_failed;
   870   // Set the attribute indicating whether evacuation has failed in the
   871   // current collection.
   872   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   874   // Failed evacuations cause some logical from-space objects to have
   875   // forwarding pointers to themselves.  Reset them.
   876   void remove_self_forwarding_pointers();
   878   // When one is non-null, so is the other.  Together, they each pair is
   879   // an object with a preserved mark, and its mark value.
   880   GrowableArray<oop>*     _objs_with_preserved_marks;
   881   GrowableArray<markOop>* _preserved_marks_of_objs;
   883   // Preserve the mark of "obj", if necessary, in preparation for its mark
   884   // word being overwritten with a self-forwarding-pointer.
   885   void preserve_mark_if_necessary(oop obj, markOop m);
   887   // The stack of evac-failure objects left to be scanned.
   888   GrowableArray<oop>*    _evac_failure_scan_stack;
   889   // The closure to apply to evac-failure objects.
   891   OopsInHeapRegionClosure* _evac_failure_closure;
   892   // Set the field above.
   893   void
   894   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   895     _evac_failure_closure = evac_failure_closure;
   896   }
   898   // Push "obj" on the scan stack.
   899   void push_on_evac_failure_scan_stack(oop obj);
   900   // Process scan stack entries until the stack is empty.
   901   void drain_evac_failure_scan_stack();
   902   // True iff an invocation of "drain_scan_stack" is in progress; to
   903   // prevent unnecessary recursion.
   904   bool _drain_in_progress;
   906   // Do any necessary initialization for evacuation-failure handling.
   907   // "cl" is the closure that will be used to process evac-failure
   908   // objects.
   909   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   910   // Do any necessary cleanup for evacuation-failure handling data
   911   // structures.
   912   void finalize_for_evac_failure();
   914   // An attempt to evacuate "obj" has failed; take necessary steps.
   915   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   916   void handle_evacuation_failure_common(oop obj, markOop m);
   918   // ("Weak") Reference processing support.
   919   //
   920   // G1 has 2 instances of the referece processor class. One
   921   // (_ref_processor_cm) handles reference object discovery
   922   // and subsequent processing during concurrent marking cycles.
   923   //
   924   // The other (_ref_processor_stw) handles reference object
   925   // discovery and processing during full GCs and incremental
   926   // evacuation pauses.
   927   //
   928   // During an incremental pause, reference discovery will be
   929   // temporarily disabled for _ref_processor_cm and will be
   930   // enabled for _ref_processor_stw. At the end of the evacuation
   931   // pause references discovered by _ref_processor_stw will be
   932   // processed and discovery will be disabled. The previous
   933   // setting for reference object discovery for _ref_processor_cm
   934   // will be re-instated.
   935   //
   936   // At the start of marking:
   937   //  * Discovery by the CM ref processor is verified to be inactive
   938   //    and it's discovered lists are empty.
   939   //  * Discovery by the CM ref processor is then enabled.
   940   //
   941   // At the end of marking:
   942   //  * Any references on the CM ref processor's discovered
   943   //    lists are processed (possibly MT).
   944   //
   945   // At the start of full GC we:
   946   //  * Disable discovery by the CM ref processor and
   947   //    empty CM ref processor's discovered lists
   948   //    (without processing any entries).
   949   //  * Verify that the STW ref processor is inactive and it's
   950   //    discovered lists are empty.
   951   //  * Temporarily set STW ref processor discovery as single threaded.
   952   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   953   //    field.
   954   //  * Finally enable discovery by the STW ref processor.
   955   //
   956   // The STW ref processor is used to record any discovered
   957   // references during the full GC.
   958   //
   959   // At the end of a full GC we:
   960   //  * Enqueue any reference objects discovered by the STW ref processor
   961   //    that have non-live referents. This has the side-effect of
   962   //    making the STW ref processor inactive by disabling discovery.
   963   //  * Verify that the CM ref processor is still inactive
   964   //    and no references have been placed on it's discovered
   965   //    lists (also checked as a precondition during initial marking).
   967   // The (stw) reference processor...
   968   ReferenceProcessor* _ref_processor_stw;
   970   // During reference object discovery, the _is_alive_non_header
   971   // closure (if non-null) is applied to the referent object to
   972   // determine whether the referent is live. If so then the
   973   // reference object does not need to be 'discovered' and can
   974   // be treated as a regular oop. This has the benefit of reducing
   975   // the number of 'discovered' reference objects that need to
   976   // be processed.
   977   //
   978   // Instance of the is_alive closure for embedding into the
   979   // STW reference processor as the _is_alive_non_header field.
   980   // Supplying a value for the _is_alive_non_header field is
   981   // optional but doing so prevents unnecessary additions to
   982   // the discovered lists during reference discovery.
   983   G1STWIsAliveClosure _is_alive_closure_stw;
   985   // The (concurrent marking) reference processor...
   986   ReferenceProcessor* _ref_processor_cm;
   988   // Instance of the concurrent mark is_alive closure for embedding
   989   // into the Concurrent Marking reference processor as the
   990   // _is_alive_non_header field. Supplying a value for the
   991   // _is_alive_non_header field is optional but doing so prevents
   992   // unnecessary additions to the discovered lists during reference
   993   // discovery.
   994   G1CMIsAliveClosure _is_alive_closure_cm;
   996   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   997   HeapRegion** _worker_cset_start_region;
   999   // Time stamp to validate the regions recorded in the cache
  1000   // used by G1CollectedHeap::start_cset_region_for_worker().
  1001   // The heap region entry for a given worker is valid iff
  1002   // the associated time stamp value matches the current value
  1003   // of G1CollectedHeap::_gc_time_stamp.
  1004   unsigned int* _worker_cset_start_region_time_stamp;
  1006   enum G1H_process_strong_roots_tasks {
  1007     G1H_PS_filter_satb_buffers,
  1008     G1H_PS_refProcessor_oops_do,
  1009     // Leave this one last.
  1010     G1H_PS_NumElements
  1011   };
  1013   SubTasksDone* _process_strong_tasks;
  1015   volatile bool _free_regions_coming;
  1017 public:
  1019   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1021   void set_refine_cte_cl_concurrency(bool concurrent);
  1023   RefToScanQueue *task_queue(int i) const;
  1025   // A set of cards where updates happened during the GC
  1026   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1028   // A DirtyCardQueueSet that is used to hold cards that contain
  1029   // references into the current collection set. This is used to
  1030   // update the remembered sets of the regions in the collection
  1031   // set in the event of an evacuation failure.
  1032   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1033         { return _into_cset_dirty_card_queue_set; }
  1035   // Create a G1CollectedHeap with the specified policy.
  1036   // Must call the initialize method afterwards.
  1037   // May not return if something goes wrong.
  1038   G1CollectedHeap(G1CollectorPolicy* policy);
  1040   // Initialize the G1CollectedHeap to have the initial and
  1041   // maximum sizes, permanent generation, and remembered and barrier sets
  1042   // specified by the policy object.
  1043   jint initialize();
  1045   // Initialize weak reference processing.
  1046   virtual void ref_processing_init();
  1048   void set_par_threads(uint t) {
  1049     SharedHeap::set_par_threads(t);
  1050     // Done in SharedHeap but oddly there are
  1051     // two _process_strong_tasks's in a G1CollectedHeap
  1052     // so do it here too.
  1053     _process_strong_tasks->set_n_threads(t);
  1056   // Set _n_par_threads according to a policy TBD.
  1057   void set_par_threads();
  1059   void set_n_termination(int t) {
  1060     _process_strong_tasks->set_n_threads(t);
  1063   virtual CollectedHeap::Name kind() const {
  1064     return CollectedHeap::G1CollectedHeap;
  1067   // The current policy object for the collector.
  1068   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1070   // Adaptive size policy.  No such thing for g1.
  1071   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1073   // The rem set and barrier set.
  1074   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1075   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1077   // The rem set iterator.
  1078   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1079     return _rem_set_iterator[i];
  1082   HeapRegionRemSetIterator* rem_set_iterator() {
  1083     return _rem_set_iterator[0];
  1086   unsigned get_gc_time_stamp() {
  1087     return _gc_time_stamp;
  1090   void reset_gc_time_stamp() {
  1091     _gc_time_stamp = 0;
  1092     OrderAccess::fence();
  1093     // Clear the cached CSet starting regions and time stamps.
  1094     // Their validity is dependent on the GC timestamp.
  1095     clear_cset_start_regions();
  1098   void check_gc_time_stamps() PRODUCT_RETURN;
  1100   void increment_gc_time_stamp() {
  1101     ++_gc_time_stamp;
  1102     OrderAccess::fence();
  1105   // Reset the given region's GC timestamp. If it's starts humongous,
  1106   // also reset the GC timestamp of its corresponding
  1107   // continues humongous regions too.
  1108   void reset_gc_time_stamps(HeapRegion* hr);
  1110   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1111                                   DirtyCardQueue* into_cset_dcq,
  1112                                   bool concurrent, int worker_i);
  1114   // The shared block offset table array.
  1115   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1117   // Reference Processing accessors
  1119   // The STW reference processor....
  1120   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1122   // The Concurent Marking reference processor...
  1123   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1125   virtual size_t capacity() const;
  1126   virtual size_t used() const;
  1127   // This should be called when we're not holding the heap lock. The
  1128   // result might be a bit inaccurate.
  1129   size_t used_unlocked() const;
  1130   size_t recalculate_used() const;
  1132   // These virtual functions do the actual allocation.
  1133   // Some heaps may offer a contiguous region for shared non-blocking
  1134   // allocation, via inlined code (by exporting the address of the top and
  1135   // end fields defining the extent of the contiguous allocation region.)
  1136   // But G1CollectedHeap doesn't yet support this.
  1138   // Return an estimate of the maximum allocation that could be performed
  1139   // without triggering any collection or expansion activity.  In a
  1140   // generational collector, for example, this is probably the largest
  1141   // allocation that could be supported (without expansion) in the youngest
  1142   // generation.  It is "unsafe" because no locks are taken; the result
  1143   // should be treated as an approximation, not a guarantee, for use in
  1144   // heuristic resizing decisions.
  1145   virtual size_t unsafe_max_alloc();
  1147   virtual bool is_maximal_no_gc() const {
  1148     return _g1_storage.uncommitted_size() == 0;
  1151   // The total number of regions in the heap.
  1152   uint n_regions() { return _hrs.length(); }
  1154   // The max number of regions in the heap.
  1155   uint max_regions() { return _hrs.max_length(); }
  1157   // The number of regions that are completely free.
  1158   uint free_regions() { return _free_list.length(); }
  1160   // The number of regions that are not completely free.
  1161   uint used_regions() { return n_regions() - free_regions(); }
  1163   // The number of regions available for "regular" expansion.
  1164   uint expansion_regions() { return _expansion_regions; }
  1166   // Factory method for HeapRegion instances. It will return NULL if
  1167   // the allocation fails.
  1168   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1170   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1171   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1172   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1173   void verify_dirty_young_regions() PRODUCT_RETURN;
  1175   // verify_region_sets() performs verification over the region
  1176   // lists. It will be compiled in the product code to be used when
  1177   // necessary (i.e., during heap verification).
  1178   void verify_region_sets();
  1180   // verify_region_sets_optional() is planted in the code for
  1181   // list verification in non-product builds (and it can be enabled in
  1182   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1183 #if HEAP_REGION_SET_FORCE_VERIFY
  1184   void verify_region_sets_optional() {
  1185     verify_region_sets();
  1187 #else // HEAP_REGION_SET_FORCE_VERIFY
  1188   void verify_region_sets_optional() { }
  1189 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1191 #ifdef ASSERT
  1192   bool is_on_master_free_list(HeapRegion* hr) {
  1193     return hr->containing_set() == &_free_list;
  1196   bool is_in_humongous_set(HeapRegion* hr) {
  1197     return hr->containing_set() == &_humongous_set;
  1199 #endif // ASSERT
  1201   // Wrapper for the region list operations that can be called from
  1202   // methods outside this class.
  1204   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1205     _secondary_free_list.add_as_tail(list);
  1208   void append_secondary_free_list() {
  1209     _free_list.add_as_head(&_secondary_free_list);
  1212   void append_secondary_free_list_if_not_empty_with_lock() {
  1213     // If the secondary free list looks empty there's no reason to
  1214     // take the lock and then try to append it.
  1215     if (!_secondary_free_list.is_empty()) {
  1216       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1217       append_secondary_free_list();
  1221   void old_set_remove(HeapRegion* hr) {
  1222     _old_set.remove(hr);
  1225   size_t non_young_capacity_bytes() {
  1226     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1229   void set_free_regions_coming();
  1230   void reset_free_regions_coming();
  1231   bool free_regions_coming() { return _free_regions_coming; }
  1232   void wait_while_free_regions_coming();
  1234   // Determine whether the given region is one that we are using as an
  1235   // old GC alloc region.
  1236   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1237     return hr == _retained_old_gc_alloc_region;
  1240   // Perform a collection of the heap; intended for use in implementing
  1241   // "System.gc".  This probably implies as full a collection as the
  1242   // "CollectedHeap" supports.
  1243   virtual void collect(GCCause::Cause cause);
  1245   // The same as above but assume that the caller holds the Heap_lock.
  1246   void collect_locked(GCCause::Cause cause);
  1248   // This interface assumes that it's being called by the
  1249   // vm thread. It collects the heap assuming that the
  1250   // heap lock is already held and that we are executing in
  1251   // the context of the vm thread.
  1252   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1254   // True iff a evacuation has failed in the most-recent collection.
  1255   bool evacuation_failed() { return _evacuation_failed; }
  1257   // It will free a region if it has allocated objects in it that are
  1258   // all dead. It calls either free_region() or
  1259   // free_humongous_region() depending on the type of the region that
  1260   // is passed to it.
  1261   void free_region_if_empty(HeapRegion* hr,
  1262                             size_t* pre_used,
  1263                             FreeRegionList* free_list,
  1264                             OldRegionSet* old_proxy_set,
  1265                             HumongousRegionSet* humongous_proxy_set,
  1266                             HRRSCleanupTask* hrrs_cleanup_task,
  1267                             bool par);
  1269   // It appends the free list to the master free list and updates the
  1270   // master humongous list according to the contents of the proxy
  1271   // list. It also adjusts the total used bytes according to pre_used
  1272   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1273   void update_sets_after_freeing_regions(size_t pre_used,
  1274                                        FreeRegionList* free_list,
  1275                                        OldRegionSet* old_proxy_set,
  1276                                        HumongousRegionSet* humongous_proxy_set,
  1277                                        bool par);
  1279   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1280   virtual bool is_in(const void* p) const;
  1282   // Return "TRUE" iff the given object address is within the collection
  1283   // set.
  1284   inline bool obj_in_cs(oop obj);
  1286   // Return "TRUE" iff the given object address is in the reserved
  1287   // region of g1 (excluding the permanent generation).
  1288   bool is_in_g1_reserved(const void* p) const {
  1289     return _g1_reserved.contains(p);
  1292   // Returns a MemRegion that corresponds to the space that has been
  1293   // reserved for the heap
  1294   MemRegion g1_reserved() {
  1295     return _g1_reserved;
  1298   // Returns a MemRegion that corresponds to the space that has been
  1299   // committed in the heap
  1300   MemRegion g1_committed() {
  1301     return _g1_committed;
  1304   virtual bool is_in_closed_subset(const void* p) const;
  1306   // This resets the card table to all zeros.  It is used after
  1307   // a collection pause which used the card table to claim cards.
  1308   void cleanUpCardTable();
  1310   // Iteration functions.
  1312   // Iterate over all the ref-containing fields of all objects, calling
  1313   // "cl.do_oop" on each.
  1314   virtual void oop_iterate(OopClosure* cl) {
  1315     oop_iterate(cl, true);
  1317   void oop_iterate(OopClosure* cl, bool do_perm);
  1319   // Same as above, restricted to a memory region.
  1320   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1321     oop_iterate(mr, cl, true);
  1323   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1325   // Iterate over all objects, calling "cl.do_object" on each.
  1326   virtual void object_iterate(ObjectClosure* cl) {
  1327     object_iterate(cl, true);
  1329   virtual void safe_object_iterate(ObjectClosure* cl) {
  1330     object_iterate(cl, true);
  1332   void object_iterate(ObjectClosure* cl, bool do_perm);
  1334   // Iterate over all objects allocated since the last collection, calling
  1335   // "cl.do_object" on each.  The heap must have been initialized properly
  1336   // to support this function, or else this call will fail.
  1337   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1339   // Iterate over all spaces in use in the heap, in ascending address order.
  1340   virtual void space_iterate(SpaceClosure* cl);
  1342   // Iterate over heap regions, in address order, terminating the
  1343   // iteration early if the "doHeapRegion" method returns "true".
  1344   void heap_region_iterate(HeapRegionClosure* blk) const;
  1346   // Return the region with the given index. It assumes the index is valid.
  1347   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1349   // Divide the heap region sequence into "chunks" of some size (the number
  1350   // of regions divided by the number of parallel threads times some
  1351   // overpartition factor, currently 4).  Assumes that this will be called
  1352   // in parallel by ParallelGCThreads worker threads with discinct worker
  1353   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1354   // calls will use the same "claim_value", and that that claim value is
  1355   // different from the claim_value of any heap region before the start of
  1356   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1357   // attempting to claim the first region in each chunk, and, if
  1358   // successful, applying the closure to each region in the chunk (and
  1359   // setting the claim value of the second and subsequent regions of the
  1360   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1361   // i.e., that a closure never attempt to abort a traversal.
  1362   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1363                                        uint worker,
  1364                                        uint no_of_par_workers,
  1365                                        jint claim_value);
  1367   // It resets all the region claim values to the default.
  1368   void reset_heap_region_claim_values();
  1370   // Resets the claim values of regions in the current
  1371   // collection set to the default.
  1372   void reset_cset_heap_region_claim_values();
  1374 #ifdef ASSERT
  1375   bool check_heap_region_claim_values(jint claim_value);
  1377   // Same as the routine above but only checks regions in the
  1378   // current collection set.
  1379   bool check_cset_heap_region_claim_values(jint claim_value);
  1380 #endif // ASSERT
  1382   // Clear the cached cset start regions and (more importantly)
  1383   // the time stamps. Called when we reset the GC time stamp.
  1384   void clear_cset_start_regions();
  1386   // Given the id of a worker, obtain or calculate a suitable
  1387   // starting region for iterating over the current collection set.
  1388   HeapRegion* start_cset_region_for_worker(int worker_i);
  1390   // This is a convenience method that is used by the
  1391   // HeapRegionIterator classes to calculate the starting region for
  1392   // each worker so that they do not all start from the same region.
  1393   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1395   // Iterate over the regions (if any) in the current collection set.
  1396   void collection_set_iterate(HeapRegionClosure* blk);
  1398   // As above but starting from region r
  1399   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1401   // Returns the first (lowest address) compactible space in the heap.
  1402   virtual CompactibleSpace* first_compactible_space();
  1404   // A CollectedHeap will contain some number of spaces.  This finds the
  1405   // space containing a given address, or else returns NULL.
  1406   virtual Space* space_containing(const void* addr) const;
  1408   // A G1CollectedHeap will contain some number of heap regions.  This
  1409   // finds the region containing a given address, or else returns NULL.
  1410   template <class T>
  1411   inline HeapRegion* heap_region_containing(const T addr) const;
  1413   // Like the above, but requires "addr" to be in the heap (to avoid a
  1414   // null-check), and unlike the above, may return an continuing humongous
  1415   // region.
  1416   template <class T>
  1417   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1419   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1420   // each address in the (reserved) heap is a member of exactly
  1421   // one block.  The defining characteristic of a block is that it is
  1422   // possible to find its size, and thus to progress forward to the next
  1423   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1424   // represent Java objects, or they might be free blocks in a
  1425   // free-list-based heap (or subheap), as long as the two kinds are
  1426   // distinguishable and the size of each is determinable.
  1428   // Returns the address of the start of the "block" that contains the
  1429   // address "addr".  We say "blocks" instead of "object" since some heaps
  1430   // may not pack objects densely; a chunk may either be an object or a
  1431   // non-object.
  1432   virtual HeapWord* block_start(const void* addr) const;
  1434   // Requires "addr" to be the start of a chunk, and returns its size.
  1435   // "addr + size" is required to be the start of a new chunk, or the end
  1436   // of the active area of the heap.
  1437   virtual size_t block_size(const HeapWord* addr) const;
  1439   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1440   // the block is an object.
  1441   virtual bool block_is_obj(const HeapWord* addr) const;
  1443   // Does this heap support heap inspection? (+PrintClassHistogram)
  1444   virtual bool supports_heap_inspection() const { return true; }
  1446   // Section on thread-local allocation buffers (TLABs)
  1447   // See CollectedHeap for semantics.
  1449   virtual bool supports_tlab_allocation() const;
  1450   virtual size_t tlab_capacity(Thread* thr) const;
  1451   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1453   // Can a compiler initialize a new object without store barriers?
  1454   // This permission only extends from the creation of a new object
  1455   // via a TLAB up to the first subsequent safepoint. If such permission
  1456   // is granted for this heap type, the compiler promises to call
  1457   // defer_store_barrier() below on any slow path allocation of
  1458   // a new object for which such initializing store barriers will
  1459   // have been elided. G1, like CMS, allows this, but should be
  1460   // ready to provide a compensating write barrier as necessary
  1461   // if that storage came out of a non-young region. The efficiency
  1462   // of this implementation depends crucially on being able to
  1463   // answer very efficiently in constant time whether a piece of
  1464   // storage in the heap comes from a young region or not.
  1465   // See ReduceInitialCardMarks.
  1466   virtual bool can_elide_tlab_store_barriers() const {
  1467     return true;
  1470   virtual bool card_mark_must_follow_store() const {
  1471     return true;
  1474   bool is_in_young(const oop obj) {
  1475     HeapRegion* hr = heap_region_containing(obj);
  1476     return hr != NULL && hr->is_young();
  1479 #ifdef ASSERT
  1480   virtual bool is_in_partial_collection(const void* p);
  1481 #endif
  1483   virtual bool is_scavengable(const void* addr);
  1485   // We don't need barriers for initializing stores to objects
  1486   // in the young gen: for the SATB pre-barrier, there is no
  1487   // pre-value that needs to be remembered; for the remembered-set
  1488   // update logging post-barrier, we don't maintain remembered set
  1489   // information for young gen objects.
  1490   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1491     return is_in_young(new_obj);
  1494   // Can a compiler elide a store barrier when it writes
  1495   // a permanent oop into the heap?  Applies when the compiler
  1496   // is storing x to the heap, where x->is_perm() is true.
  1497   virtual bool can_elide_permanent_oop_store_barriers() const {
  1498     // At least until perm gen collection is also G1-ified, at
  1499     // which point this should return false.
  1500     return true;
  1503   // Returns "true" iff the given word_size is "very large".
  1504   static bool isHumongous(size_t word_size) {
  1505     // Note this has to be strictly greater-than as the TLABs
  1506     // are capped at the humongous thresold and we want to
  1507     // ensure that we don't try to allocate a TLAB as
  1508     // humongous and that we don't allocate a humongous
  1509     // object in a TLAB.
  1510     return word_size > _humongous_object_threshold_in_words;
  1513   // Update mod union table with the set of dirty cards.
  1514   void updateModUnion();
  1516   // Set the mod union bits corresponding to the given memRegion.  Note
  1517   // that this is always a safe operation, since it doesn't clear any
  1518   // bits.
  1519   void markModUnionRange(MemRegion mr);
  1521   // Records the fact that a marking phase is no longer in progress.
  1522   void set_marking_complete() {
  1523     _mark_in_progress = false;
  1525   void set_marking_started() {
  1526     _mark_in_progress = true;
  1528   bool mark_in_progress() {
  1529     return _mark_in_progress;
  1532   // Print the maximum heap capacity.
  1533   virtual size_t max_capacity() const;
  1535   virtual jlong millis_since_last_gc();
  1537   // Perform any cleanup actions necessary before allowing a verification.
  1538   virtual void prepare_for_verify();
  1540   // Perform verification.
  1542   // vo == UsePrevMarking  -> use "prev" marking information,
  1543   // vo == UseNextMarking -> use "next" marking information
  1544   // vo == UseMarkWord    -> use the mark word in the object header
  1545   //
  1546   // NOTE: Only the "prev" marking information is guaranteed to be
  1547   // consistent most of the time, so most calls to this should use
  1548   // vo == UsePrevMarking.
  1549   // Currently, there is only one case where this is called with
  1550   // vo == UseNextMarking, which is to verify the "next" marking
  1551   // information at the end of remark.
  1552   // Currently there is only one place where this is called with
  1553   // vo == UseMarkWord, which is to verify the marking during a
  1554   // full GC.
  1555   void verify(bool silent, VerifyOption vo);
  1557   // Override; it uses the "prev" marking information
  1558   virtual void verify(bool silent);
  1559   virtual void print_on(outputStream* st) const;
  1560   virtual void print_extended_on(outputStream* st) const;
  1562   virtual void print_gc_threads_on(outputStream* st) const;
  1563   virtual void gc_threads_do(ThreadClosure* tc) const;
  1565   // Override
  1566   void print_tracing_info() const;
  1568   // The following two methods are helpful for debugging RSet issues.
  1569   void print_cset_rsets() PRODUCT_RETURN;
  1570   void print_all_rsets() PRODUCT_RETURN;
  1572   // Convenience function to be used in situations where the heap type can be
  1573   // asserted to be this type.
  1574   static G1CollectedHeap* heap();
  1576   void set_region_short_lived_locked(HeapRegion* hr);
  1577   // add appropriate methods for any other surv rate groups
  1579   YoungList* young_list() { return _young_list; }
  1581   // debugging
  1582   bool check_young_list_well_formed() {
  1583     return _young_list->check_list_well_formed();
  1586   bool check_young_list_empty(bool check_heap,
  1587                               bool check_sample = true);
  1589   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1590   // many of these need to be public.
  1592   // The functions below are helper functions that a subclass of
  1593   // "CollectedHeap" can use in the implementation of its virtual
  1594   // functions.
  1595   // This performs a concurrent marking of the live objects in a
  1596   // bitmap off to the side.
  1597   void doConcurrentMark();
  1599   bool isMarkedPrev(oop obj) const;
  1600   bool isMarkedNext(oop obj) const;
  1602   // Determine if an object is dead, given the object and also
  1603   // the region to which the object belongs. An object is dead
  1604   // iff a) it was not allocated since the last mark and b) it
  1605   // is not marked.
  1607   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1608     return
  1609       !hr->obj_allocated_since_prev_marking(obj) &&
  1610       !isMarkedPrev(obj);
  1613   // This function returns true when an object has been
  1614   // around since the previous marking and hasn't yet
  1615   // been marked during this marking.
  1617   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1618     return
  1619       !hr->obj_allocated_since_next_marking(obj) &&
  1620       !isMarkedNext(obj);
  1623   // Determine if an object is dead, given only the object itself.
  1624   // This will find the region to which the object belongs and
  1625   // then call the region version of the same function.
  1627   // Added if it is in permanent gen it isn't dead.
  1628   // Added if it is NULL it isn't dead.
  1630   bool is_obj_dead(const oop obj) const {
  1631     const HeapRegion* hr = heap_region_containing(obj);
  1632     if (hr == NULL) {
  1633       if (Universe::heap()->is_in_permanent(obj))
  1634         return false;
  1635       else if (obj == NULL) return false;
  1636       else return true;
  1638     else return is_obj_dead(obj, hr);
  1641   bool is_obj_ill(const oop obj) const {
  1642     const HeapRegion* hr = heap_region_containing(obj);
  1643     if (hr == NULL) {
  1644       if (Universe::heap()->is_in_permanent(obj))
  1645         return false;
  1646       else if (obj == NULL) return false;
  1647       else return true;
  1649     else return is_obj_ill(obj, hr);
  1652   // The methods below are here for convenience and dispatch the
  1653   // appropriate method depending on value of the given VerifyOption
  1654   // parameter. The options for that parameter are:
  1655   //
  1656   // vo == UsePrevMarking -> use "prev" marking information,
  1657   // vo == UseNextMarking -> use "next" marking information,
  1658   // vo == UseMarkWord    -> use mark word from object header
  1660   bool is_obj_dead_cond(const oop obj,
  1661                         const HeapRegion* hr,
  1662                         const VerifyOption vo) const {
  1663     switch (vo) {
  1664     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1665     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1666     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1667     default:                            ShouldNotReachHere();
  1669     return false; // keep some compilers happy
  1672   bool is_obj_dead_cond(const oop obj,
  1673                         const VerifyOption vo) const {
  1674     switch (vo) {
  1675     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1676     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1677     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1678     default:                            ShouldNotReachHere();
  1680     return false; // keep some compilers happy
  1683   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1684   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1685   bool is_marked(oop obj, VerifyOption vo);
  1686   const char* top_at_mark_start_str(VerifyOption vo);
  1688   // The following is just to alert the verification code
  1689   // that a full collection has occurred and that the
  1690   // remembered sets are no longer up to date.
  1691   bool _full_collection;
  1692   void set_full_collection() { _full_collection = true;}
  1693   void clear_full_collection() {_full_collection = false;}
  1694   bool full_collection() {return _full_collection;}
  1696   ConcurrentMark* concurrent_mark() const { return _cm; }
  1697   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1699   // The dirty cards region list is used to record a subset of regions
  1700   // whose cards need clearing. The list if populated during the
  1701   // remembered set scanning and drained during the card table
  1702   // cleanup. Although the methods are reentrant, population/draining
  1703   // phases must not overlap. For synchronization purposes the last
  1704   // element on the list points to itself.
  1705   HeapRegion* _dirty_cards_region_list;
  1706   void push_dirty_cards_region(HeapRegion* hr);
  1707   HeapRegion* pop_dirty_cards_region();
  1709 public:
  1710   void stop_conc_gc_threads();
  1712   size_t pending_card_num();
  1713   size_t cards_scanned();
  1715 protected:
  1716   size_t _max_heap_capacity;
  1717 };
  1719 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1720 private:
  1721   bool        _retired;
  1723 public:
  1724   G1ParGCAllocBuffer(size_t gclab_word_size);
  1726   void set_buf(HeapWord* buf) {
  1727     ParGCAllocBuffer::set_buf(buf);
  1728     _retired = false;
  1731   void retire(bool end_of_gc, bool retain) {
  1732     if (_retired)
  1733       return;
  1734     ParGCAllocBuffer::retire(end_of_gc, retain);
  1735     _retired = true;
  1737 };
  1739 class G1ParScanThreadState : public StackObj {
  1740 protected:
  1741   G1CollectedHeap* _g1h;
  1742   RefToScanQueue*  _refs;
  1743   DirtyCardQueue   _dcq;
  1744   CardTableModRefBS* _ct_bs;
  1745   G1RemSet* _g1_rem;
  1747   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1748   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1749   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1750   ageTable            _age_table;
  1752   size_t           _alloc_buffer_waste;
  1753   size_t           _undo_waste;
  1755   OopsInHeapRegionClosure*      _evac_failure_cl;
  1756   G1ParScanHeapEvacClosure*     _evac_cl;
  1757   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1759   int _hash_seed;
  1760   uint _queue_num;
  1762   size_t _term_attempts;
  1764   double _start;
  1765   double _start_strong_roots;
  1766   double _strong_roots_time;
  1767   double _start_term;
  1768   double _term_time;
  1770   // Map from young-age-index (0 == not young, 1 is youngest) to
  1771   // surviving words. base is what we get back from the malloc call
  1772   size_t* _surviving_young_words_base;
  1773   // this points into the array, as we use the first few entries for padding
  1774   size_t* _surviving_young_words;
  1776 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1778   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1780   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1782   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1783   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1785   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1786     if (!from->is_survivor()) {
  1787       _g1_rem->par_write_ref(from, p, tid);
  1791   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1792     // If the new value of the field points to the same region or
  1793     // is the to-space, we don't need to include it in the Rset updates.
  1794     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1795       size_t card_index = ctbs()->index_for(p);
  1796       // If the card hasn't been added to the buffer, do it.
  1797       if (ctbs()->mark_card_deferred(card_index)) {
  1798         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1803 public:
  1804   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1806   ~G1ParScanThreadState() {
  1807     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1810   RefToScanQueue*   refs()            { return _refs;             }
  1811   ageTable*         age_table()       { return &_age_table;       }
  1813   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1814     return _alloc_buffers[purpose];
  1817   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1818   size_t undo_waste() const                      { return _undo_waste; }
  1820 #ifdef ASSERT
  1821   bool verify_ref(narrowOop* ref) const;
  1822   bool verify_ref(oop* ref) const;
  1823   bool verify_task(StarTask ref) const;
  1824 #endif // ASSERT
  1826   template <class T> void push_on_queue(T* ref) {
  1827     assert(verify_ref(ref), "sanity");
  1828     refs()->push(ref);
  1831   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1832     if (G1DeferredRSUpdate) {
  1833       deferred_rs_update(from, p, tid);
  1834     } else {
  1835       immediate_rs_update(from, p, tid);
  1839   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1840     HeapWord* obj = NULL;
  1841     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1842     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1843       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1844       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1845       alloc_buf->flush_stats_and_retire(_g1h->stats_for_purpose(purpose),
  1846                                         false /* end_of_gc */,
  1847                                         false /* retain */);
  1849       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1850       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1851       // Otherwise.
  1852       alloc_buf->set_word_size(gclab_word_size);
  1853       alloc_buf->set_buf(buf);
  1855       obj = alloc_buf->allocate(word_sz);
  1856       assert(obj != NULL, "buffer was definitely big enough...");
  1857     } else {
  1858       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1860     return obj;
  1863   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1864     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1865     if (obj != NULL) return obj;
  1866     return allocate_slow(purpose, word_sz);
  1869   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1870     if (alloc_buffer(purpose)->contains(obj)) {
  1871       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1872              "should contain whole object");
  1873       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1874     } else {
  1875       CollectedHeap::fill_with_object(obj, word_sz);
  1876       add_to_undo_waste(word_sz);
  1880   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1881     _evac_failure_cl = evac_failure_cl;
  1883   OopsInHeapRegionClosure* evac_failure_closure() {
  1884     return _evac_failure_cl;
  1887   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1888     _evac_cl = evac_cl;
  1891   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1892     _partial_scan_cl = partial_scan_cl;
  1895   int* hash_seed() { return &_hash_seed; }
  1896   uint queue_num() { return _queue_num; }
  1898   size_t term_attempts() const  { return _term_attempts; }
  1899   void note_term_attempt() { _term_attempts++; }
  1901   void start_strong_roots() {
  1902     _start_strong_roots = os::elapsedTime();
  1904   void end_strong_roots() {
  1905     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1907   double strong_roots_time() const { return _strong_roots_time; }
  1909   void start_term_time() {
  1910     note_term_attempt();
  1911     _start_term = os::elapsedTime();
  1913   void end_term_time() {
  1914     _term_time += (os::elapsedTime() - _start_term);
  1916   double term_time() const { return _term_time; }
  1918   double elapsed_time() const {
  1919     return os::elapsedTime() - _start;
  1922   static void
  1923     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1924   void
  1925     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1927   size_t* surviving_young_words() {
  1928     // We add on to hide entry 0 which accumulates surviving words for
  1929     // age -1 regions (i.e. non-young ones)
  1930     return _surviving_young_words;
  1933   void retire_alloc_buffers() {
  1934     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1935       size_t waste = _alloc_buffers[ap]->words_remaining();
  1936       add_to_alloc_buffer_waste(waste);
  1937       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1938                                                  true /* end_of_gc */,
  1939                                                  false /* retain */);
  1943   template <class T> void deal_with_reference(T* ref_to_scan) {
  1944     if (has_partial_array_mask(ref_to_scan)) {
  1945       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1946     } else {
  1947       // Note: we can use "raw" versions of "region_containing" because
  1948       // "obj_to_scan" is definitely in the heap, and is not in a
  1949       // humongous region.
  1950       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1951       _evac_cl->set_region(r);
  1952       _evac_cl->do_oop_nv(ref_to_scan);
  1956   void deal_with_reference(StarTask ref) {
  1957     assert(verify_task(ref), "sanity");
  1958     if (ref.is_narrow()) {
  1959       deal_with_reference((narrowOop*)ref);
  1960     } else {
  1961       deal_with_reference((oop*)ref);
  1965 public:
  1966   void trim_queue();
  1967 };
  1969 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial