src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 21 Aug 2012 14:10:39 -0700

author
johnc
date
Tue, 21 Aug 2012 14:10:39 -0700
changeset 3998
7383557659bd
parent 3982
aaf61e68b255
child 4015
bb3f6194fedb
permissions
-rw-r--r--

7185699: G1: Prediction model discrepancies
Summary: Correct the result value of G1CollectedHeap::pending_card_num(). Change the code that calculates the GC efficiency of a non-young heap region to use historical data from mixed GCs and the actual number of live bytes when predicting how long it would take to collect the region. Changes were also reviewed by Thomas Schatzl.
Reviewed-by: azeemj, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj<mtGC> {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   uint        _length;
    89   uint        _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   uint         length() { return _length; }
   105   uint         survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
   203   friend class G1ParCopyClosure;
   204   friend class G1IsAliveClosure;
   205   friend class G1EvacuateFollowersClosure;
   206   friend class G1ParScanThreadState;
   207   friend class G1ParScanClosureSuper;
   208   friend class G1ParEvacuateFollowersClosure;
   209   friend class G1ParTask;
   210   friend class G1FreeGarbageRegionClosure;
   211   friend class RefineCardTableEntryClosure;
   212   friend class G1PrepareCompactClosure;
   213   friend class RegionSorter;
   214   friend class RegionResetter;
   215   friend class CountRCClosure;
   216   friend class EvacPopObjClosure;
   217   friend class G1ParCleanupCTTask;
   219   // Other related classes.
   220   friend class G1MarkSweep;
   222 private:
   223   // The one and only G1CollectedHeap, so static functions can find it.
   224   static G1CollectedHeap* _g1h;
   226   static size_t _humongous_object_threshold_in_words;
   228   // Storage for the G1 heap (excludes the permanent generation).
   229   VirtualSpace _g1_storage;
   230   MemRegion    _g1_reserved;
   232   // The part of _g1_storage that is currently committed.
   233   MemRegion _g1_committed;
   235   // The master free list. It will satisfy all new region allocations.
   236   MasterFreeRegionList      _free_list;
   238   // The secondary free list which contains regions that have been
   239   // freed up during the cleanup process. This will be appended to the
   240   // master free list when appropriate.
   241   SecondaryFreeRegionList   _secondary_free_list;
   243   // It keeps track of the old regions.
   244   MasterOldRegionSet        _old_set;
   246   // It keeps track of the humongous regions.
   247   MasterHumongousRegionSet  _humongous_set;
   249   // The number of regions we could create by expansion.
   250   uint _expansion_regions;
   252   // The block offset table for the G1 heap.
   253   G1BlockOffsetSharedArray* _bot_shared;
   255   // Tears down the region sets / lists so that they are empty and the
   256   // regions on the heap do not belong to a region set / list. The
   257   // only exception is the humongous set which we leave unaltered. If
   258   // free_list_only is true, it will only tear down the master free
   259   // list. It is called before a Full GC (free_list_only == false) or
   260   // before heap shrinking (free_list_only == true).
   261   void tear_down_region_sets(bool free_list_only);
   263   // Rebuilds the region sets / lists so that they are repopulated to
   264   // reflect the contents of the heap. The only exception is the
   265   // humongous set which was not torn down in the first place. If
   266   // free_list_only is true, it will only rebuild the master free
   267   // list. It is called after a Full GC (free_list_only == false) or
   268   // after heap shrinking (free_list_only == true).
   269   void rebuild_region_sets(bool free_list_only);
   271   // The sequence of all heap regions in the heap.
   272   HeapRegionSeq _hrs;
   274   // Alloc region used to satisfy mutator allocation requests.
   275   MutatorAllocRegion _mutator_alloc_region;
   277   // Alloc region used to satisfy allocation requests by the GC for
   278   // survivor objects.
   279   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   281   // PLAB sizing policy for survivors.
   282   PLABStats _survivor_plab_stats;
   284   // Alloc region used to satisfy allocation requests by the GC for
   285   // old objects.
   286   OldGCAllocRegion _old_gc_alloc_region;
   288   // PLAB sizing policy for tenured objects.
   289   PLABStats _old_plab_stats;
   291   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   292     PLABStats* stats = NULL;
   294     switch (purpose) {
   295     case GCAllocForSurvived:
   296       stats = &_survivor_plab_stats;
   297       break;
   298     case GCAllocForTenured:
   299       stats = &_old_plab_stats;
   300       break;
   301     default:
   302       assert(false, "unrecognized GCAllocPurpose");
   303     }
   305     return stats;
   306   }
   308   // The last old region we allocated to during the last GC.
   309   // Typically, it is not full so we should re-use it during the next GC.
   310   HeapRegion* _retained_old_gc_alloc_region;
   312   // It specifies whether we should attempt to expand the heap after a
   313   // region allocation failure. If heap expansion fails we set this to
   314   // false so that we don't re-attempt the heap expansion (it's likely
   315   // that subsequent expansion attempts will also fail if one fails).
   316   // Currently, it is only consulted during GC and it's reset at the
   317   // start of each GC.
   318   bool _expand_heap_after_alloc_failure;
   320   // It resets the mutator alloc region before new allocations can take place.
   321   void init_mutator_alloc_region();
   323   // It releases the mutator alloc region.
   324   void release_mutator_alloc_region();
   326   // It initializes the GC alloc regions at the start of a GC.
   327   void init_gc_alloc_regions();
   329   // It releases the GC alloc regions at the end of a GC.
   330   void release_gc_alloc_regions();
   332   // It does any cleanup that needs to be done on the GC alloc regions
   333   // before a Full GC.
   334   void abandon_gc_alloc_regions();
   336   // Helper for monitoring and management support.
   337   G1MonitoringSupport* _g1mm;
   339   // Determines PLAB size for a particular allocation purpose.
   340   size_t desired_plab_sz(GCAllocPurpose purpose);
   342   // Outside of GC pauses, the number of bytes used in all regions other
   343   // than the current allocation region.
   344   size_t _summary_bytes_used;
   346   // This is used for a quick test on whether a reference points into
   347   // the collection set or not. Basically, we have an array, with one
   348   // byte per region, and that byte denotes whether the corresponding
   349   // region is in the collection set or not. The entry corresponding
   350   // the bottom of the heap, i.e., region 0, is pointed to by
   351   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   352   // biased so that it actually points to address 0 of the address
   353   // space, to make the test as fast as possible (we can simply shift
   354   // the address to address into it, instead of having to subtract the
   355   // bottom of the heap from the address before shifting it; basically
   356   // it works in the same way the card table works).
   357   bool* _in_cset_fast_test;
   359   // The allocated array used for the fast test on whether a reference
   360   // points into the collection set or not. This field is also used to
   361   // free the array.
   362   bool* _in_cset_fast_test_base;
   364   // The length of the _in_cset_fast_test_base array.
   365   uint _in_cset_fast_test_length;
   367   volatile unsigned _gc_time_stamp;
   369   size_t* _surviving_young_words;
   371   G1HRPrinter _hr_printer;
   373   void setup_surviving_young_words();
   374   void update_surviving_young_words(size_t* surv_young_words);
   375   void cleanup_surviving_young_words();
   377   // It decides whether an explicit GC should start a concurrent cycle
   378   // instead of doing a STW GC. Currently, a concurrent cycle is
   379   // explicitly started if:
   380   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   381   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   382   // (c) cause == _g1_humongous_allocation
   383   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   385   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   386   // concurrent cycles) we have started.
   387   volatile unsigned int _old_marking_cycles_started;
   389   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   390   // concurrent cycles) we have completed.
   391   volatile unsigned int _old_marking_cycles_completed;
   393   // This is a non-product method that is helpful for testing. It is
   394   // called at the end of a GC and artificially expands the heap by
   395   // allocating a number of dead regions. This way we can induce very
   396   // frequent marking cycles and stress the cleanup / concurrent
   397   // cleanup code more (as all the regions that will be allocated by
   398   // this method will be found dead by the marking cycle).
   399   void allocate_dummy_regions() PRODUCT_RETURN;
   401   // Clear RSets after a compaction. It also resets the GC time stamps.
   402   void clear_rsets_post_compaction();
   404   // If the HR printer is active, dump the state of the regions in the
   405   // heap after a compaction.
   406   void print_hrs_post_compaction();
   408   // These are macros so that, if the assert fires, we get the correct
   409   // line number, file, etc.
   411 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   412   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   413           (_extra_message_),                                                  \
   414           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   415           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   416           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   418 #define assert_heap_locked()                                                  \
   419   do {                                                                        \
   420     assert(Heap_lock->owned_by_self(),                                        \
   421            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   422   } while (0)
   424 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   425   do {                                                                        \
   426     assert(Heap_lock->owned_by_self() ||                                      \
   427            (SafepointSynchronize::is_at_safepoint() &&                        \
   428              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   429            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   430                                         "should be at a safepoint"));         \
   431   } while (0)
   433 #define assert_heap_locked_and_not_at_safepoint()                             \
   434   do {                                                                        \
   435     assert(Heap_lock->owned_by_self() &&                                      \
   436                                     !SafepointSynchronize::is_at_safepoint(), \
   437           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   438                                        "should not be at a safepoint"));      \
   439   } while (0)
   441 #define assert_heap_not_locked()                                              \
   442   do {                                                                        \
   443     assert(!Heap_lock->owned_by_self(),                                       \
   444         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   445   } while (0)
   447 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   448   do {                                                                        \
   449     assert(!Heap_lock->owned_by_self() &&                                     \
   450                                     !SafepointSynchronize::is_at_safepoint(), \
   451       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   452                                    "should not be at a safepoint"));          \
   453   } while (0)
   455 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   456   do {                                                                        \
   457     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   458               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   459            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   460   } while (0)
   462 #define assert_not_at_safepoint()                                             \
   463   do {                                                                        \
   464     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   465            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   466   } while (0)
   468 protected:
   470   // The young region list.
   471   YoungList*  _young_list;
   473   // The current policy object for the collector.
   474   G1CollectorPolicy* _g1_policy;
   476   // This is the second level of trying to allocate a new region. If
   477   // new_region() didn't find a region on the free_list, this call will
   478   // check whether there's anything available on the
   479   // secondary_free_list and/or wait for more regions to appear on
   480   // that list, if _free_regions_coming is set.
   481   HeapRegion* new_region_try_secondary_free_list();
   483   // Try to allocate a single non-humongous HeapRegion sufficient for
   484   // an allocation of the given word_size. If do_expand is true,
   485   // attempt to expand the heap if necessary to satisfy the allocation
   486   // request.
   487   HeapRegion* new_region(size_t word_size, bool do_expand);
   489   // Attempt to satisfy a humongous allocation request of the given
   490   // size by finding a contiguous set of free regions of num_regions
   491   // length and remove them from the master free list. Return the
   492   // index of the first region or G1_NULL_HRS_INDEX if the search
   493   // was unsuccessful.
   494   uint humongous_obj_allocate_find_first(uint num_regions,
   495                                          size_t word_size);
   497   // Initialize a contiguous set of free regions of length num_regions
   498   // and starting at index first so that they appear as a single
   499   // humongous region.
   500   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   501                                                       uint num_regions,
   502                                                       size_t word_size);
   504   // Attempt to allocate a humongous object of the given size. Return
   505   // NULL if unsuccessful.
   506   HeapWord* humongous_obj_allocate(size_t word_size);
   508   // The following two methods, allocate_new_tlab() and
   509   // mem_allocate(), are the two main entry points from the runtime
   510   // into the G1's allocation routines. They have the following
   511   // assumptions:
   512   //
   513   // * They should both be called outside safepoints.
   514   //
   515   // * They should both be called without holding the Heap_lock.
   516   //
   517   // * All allocation requests for new TLABs should go to
   518   //   allocate_new_tlab().
   519   //
   520   // * All non-TLAB allocation requests should go to mem_allocate().
   521   //
   522   // * If either call cannot satisfy the allocation request using the
   523   //   current allocating region, they will try to get a new one. If
   524   //   this fails, they will attempt to do an evacuation pause and
   525   //   retry the allocation.
   526   //
   527   // * If all allocation attempts fail, even after trying to schedule
   528   //   an evacuation pause, allocate_new_tlab() will return NULL,
   529   //   whereas mem_allocate() will attempt a heap expansion and/or
   530   //   schedule a Full GC.
   531   //
   532   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   533   //   should never be called with word_size being humongous. All
   534   //   humongous allocation requests should go to mem_allocate() which
   535   //   will satisfy them with a special path.
   537   virtual HeapWord* allocate_new_tlab(size_t word_size);
   539   virtual HeapWord* mem_allocate(size_t word_size,
   540                                  bool*  gc_overhead_limit_was_exceeded);
   542   // The following three methods take a gc_count_before_ret
   543   // parameter which is used to return the GC count if the method
   544   // returns NULL. Given that we are required to read the GC count
   545   // while holding the Heap_lock, and these paths will take the
   546   // Heap_lock at some point, it's easier to get them to read the GC
   547   // count while holding the Heap_lock before they return NULL instead
   548   // of the caller (namely: mem_allocate()) having to also take the
   549   // Heap_lock just to read the GC count.
   551   // First-level mutator allocation attempt: try to allocate out of
   552   // the mutator alloc region without taking the Heap_lock. This
   553   // should only be used for non-humongous allocations.
   554   inline HeapWord* attempt_allocation(size_t word_size,
   555                                       unsigned int* gc_count_before_ret);
   557   // Second-level mutator allocation attempt: take the Heap_lock and
   558   // retry the allocation attempt, potentially scheduling a GC
   559   // pause. This should only be used for non-humongous allocations.
   560   HeapWord* attempt_allocation_slow(size_t word_size,
   561                                     unsigned int* gc_count_before_ret);
   563   // Takes the Heap_lock and attempts a humongous allocation. It can
   564   // potentially schedule a GC pause.
   565   HeapWord* attempt_allocation_humongous(size_t word_size,
   566                                          unsigned int* gc_count_before_ret);
   568   // Allocation attempt that should be called during safepoints (e.g.,
   569   // at the end of a successful GC). expect_null_mutator_alloc_region
   570   // specifies whether the mutator alloc region is expected to be NULL
   571   // or not.
   572   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   573                                        bool expect_null_mutator_alloc_region);
   575   // It dirties the cards that cover the block so that so that the post
   576   // write barrier never queues anything when updating objects on this
   577   // block. It is assumed (and in fact we assert) that the block
   578   // belongs to a young region.
   579   inline void dirty_young_block(HeapWord* start, size_t word_size);
   581   // Allocate blocks during garbage collection. Will ensure an
   582   // allocation region, either by picking one or expanding the
   583   // heap, and then allocate a block of the given size. The block
   584   // may not be a humongous - it must fit into a single heap region.
   585   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   587   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   588                                     HeapRegion*    alloc_region,
   589                                     bool           par,
   590                                     size_t         word_size);
   592   // Ensure that no further allocations can happen in "r", bearing in mind
   593   // that parallel threads might be attempting allocations.
   594   void par_allocate_remaining_space(HeapRegion* r);
   596   // Allocation attempt during GC for a survivor object / PLAB.
   597   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   599   // Allocation attempt during GC for an old object / PLAB.
   600   inline HeapWord* old_attempt_allocation(size_t word_size);
   602   // These methods are the "callbacks" from the G1AllocRegion class.
   604   // For mutator alloc regions.
   605   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   606   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   607                                    size_t allocated_bytes);
   609   // For GC alloc regions.
   610   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   611                                   GCAllocPurpose ap);
   612   void retire_gc_alloc_region(HeapRegion* alloc_region,
   613                               size_t allocated_bytes, GCAllocPurpose ap);
   615   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   616   //   inspection request and should collect the entire heap
   617   // - if clear_all_soft_refs is true, all soft references should be
   618   //   cleared during the GC
   619   // - if explicit_gc is false, word_size describes the allocation that
   620   //   the GC should attempt (at least) to satisfy
   621   // - it returns false if it is unable to do the collection due to the
   622   //   GC locker being active, true otherwise
   623   bool do_collection(bool explicit_gc,
   624                      bool clear_all_soft_refs,
   625                      size_t word_size);
   627   // Callback from VM_G1CollectFull operation.
   628   // Perform a full collection.
   629   void do_full_collection(bool clear_all_soft_refs);
   631   // Resize the heap if necessary after a full collection.  If this is
   632   // after a collect-for allocation, "word_size" is the allocation size,
   633   // and will be considered part of the used portion of the heap.
   634   void resize_if_necessary_after_full_collection(size_t word_size);
   636   // Callback from VM_G1CollectForAllocation operation.
   637   // This function does everything necessary/possible to satisfy a
   638   // failed allocation request (including collection, expansion, etc.)
   639   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   641   // Attempting to expand the heap sufficiently
   642   // to support an allocation of the given "word_size".  If
   643   // successful, perform the allocation and return the address of the
   644   // allocated block, or else "NULL".
   645   HeapWord* expand_and_allocate(size_t word_size);
   647   // Process any reference objects discovered during
   648   // an incremental evacuation pause.
   649   void process_discovered_references();
   651   // Enqueue any remaining discovered references
   652   // after processing.
   653   void enqueue_discovered_references();
   655 public:
   657   G1MonitoringSupport* g1mm() {
   658     assert(_g1mm != NULL, "should have been initialized");
   659     return _g1mm;
   660   }
   662   // Expand the garbage-first heap by at least the given size (in bytes!).
   663   // Returns true if the heap was expanded by the requested amount;
   664   // false otherwise.
   665   // (Rounds up to a HeapRegion boundary.)
   666   bool expand(size_t expand_bytes);
   668   // Do anything common to GC's.
   669   virtual void gc_prologue(bool full);
   670   virtual void gc_epilogue(bool full);
   672   // We register a region with the fast "in collection set" test. We
   673   // simply set to true the array slot corresponding to this region.
   674   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   675     assert(_in_cset_fast_test_base != NULL, "sanity");
   676     assert(r->in_collection_set(), "invariant");
   677     uint index = r->hrs_index();
   678     assert(index < _in_cset_fast_test_length, "invariant");
   679     assert(!_in_cset_fast_test_base[index], "invariant");
   680     _in_cset_fast_test_base[index] = true;
   681   }
   683   // This is a fast test on whether a reference points into the
   684   // collection set or not. It does not assume that the reference
   685   // points into the heap; if it doesn't, it will return false.
   686   bool in_cset_fast_test(oop obj) {
   687     assert(_in_cset_fast_test != NULL, "sanity");
   688     if (_g1_committed.contains((HeapWord*) obj)) {
   689       // no need to subtract the bottom of the heap from obj,
   690       // _in_cset_fast_test is biased
   691       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
   692       bool ret = _in_cset_fast_test[index];
   693       // let's make sure the result is consistent with what the slower
   694       // test returns
   695       assert( ret || !obj_in_cs(obj), "sanity");
   696       assert(!ret ||  obj_in_cs(obj), "sanity");
   697       return ret;
   698     } else {
   699       return false;
   700     }
   701   }
   703   void clear_cset_fast_test() {
   704     assert(_in_cset_fast_test_base != NULL, "sanity");
   705     memset(_in_cset_fast_test_base, false,
   706            (size_t) _in_cset_fast_test_length * sizeof(bool));
   707   }
   709   // This is called at the start of either a concurrent cycle or a Full
   710   // GC to update the number of old marking cycles started.
   711   void increment_old_marking_cycles_started();
   713   // This is called at the end of either a concurrent cycle or a Full
   714   // GC to update the number of old marking cycles completed. Those two
   715   // can happen in a nested fashion, i.e., we start a concurrent
   716   // cycle, a Full GC happens half-way through it which ends first,
   717   // and then the cycle notices that a Full GC happened and ends
   718   // too. The concurrent parameter is a boolean to help us do a bit
   719   // tighter consistency checking in the method. If concurrent is
   720   // false, the caller is the inner caller in the nesting (i.e., the
   721   // Full GC). If concurrent is true, the caller is the outer caller
   722   // in this nesting (i.e., the concurrent cycle). Further nesting is
   723   // not currently supported. The end of this call also notifies
   724   // the FullGCCount_lock in case a Java thread is waiting for a full
   725   // GC to happen (e.g., it called System.gc() with
   726   // +ExplicitGCInvokesConcurrent).
   727   void increment_old_marking_cycles_completed(bool concurrent);
   729   unsigned int old_marking_cycles_completed() {
   730     return _old_marking_cycles_completed;
   731   }
   733   G1HRPrinter* hr_printer() { return &_hr_printer; }
   735 protected:
   737   // Shrink the garbage-first heap by at most the given size (in bytes!).
   738   // (Rounds down to a HeapRegion boundary.)
   739   virtual void shrink(size_t expand_bytes);
   740   void shrink_helper(size_t expand_bytes);
   742   #if TASKQUEUE_STATS
   743   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   744   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   745   void reset_taskqueue_stats();
   746   #endif // TASKQUEUE_STATS
   748   // Schedule the VM operation that will do an evacuation pause to
   749   // satisfy an allocation request of word_size. *succeeded will
   750   // return whether the VM operation was successful (it did do an
   751   // evacuation pause) or not (another thread beat us to it or the GC
   752   // locker was active). Given that we should not be holding the
   753   // Heap_lock when we enter this method, we will pass the
   754   // gc_count_before (i.e., total_collections()) as a parameter since
   755   // it has to be read while holding the Heap_lock. Currently, both
   756   // methods that call do_collection_pause() release the Heap_lock
   757   // before the call, so it's easy to read gc_count_before just before.
   758   HeapWord* do_collection_pause(size_t       word_size,
   759                                 unsigned int gc_count_before,
   760                                 bool*        succeeded);
   762   // The guts of the incremental collection pause, executed by the vm
   763   // thread. It returns false if it is unable to do the collection due
   764   // to the GC locker being active, true otherwise
   765   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   767   // Actually do the work of evacuating the collection set.
   768   void evacuate_collection_set();
   770   // The g1 remembered set of the heap.
   771   G1RemSet* _g1_rem_set;
   772   // And it's mod ref barrier set, used to track updates for the above.
   773   ModRefBarrierSet* _mr_bs;
   775   // A set of cards that cover the objects for which the Rsets should be updated
   776   // concurrently after the collection.
   777   DirtyCardQueueSet _dirty_card_queue_set;
   779   // The Heap Region Rem Set Iterator.
   780   HeapRegionRemSetIterator** _rem_set_iterator;
   782   // The closure used to refine a single card.
   783   RefineCardTableEntryClosure* _refine_cte_cl;
   785   // A function to check the consistency of dirty card logs.
   786   void check_ct_logs_at_safepoint();
   788   // A DirtyCardQueueSet that is used to hold cards that contain
   789   // references into the current collection set. This is used to
   790   // update the remembered sets of the regions in the collection
   791   // set in the event of an evacuation failure.
   792   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   794   // After a collection pause, make the regions in the CS into free
   795   // regions.
   796   void free_collection_set(HeapRegion* cs_head);
   798   // Abandon the current collection set without recording policy
   799   // statistics or updating free lists.
   800   void abandon_collection_set(HeapRegion* cs_head);
   802   // Applies "scan_non_heap_roots" to roots outside the heap,
   803   // "scan_rs" to roots inside the heap (having done "set_region" to
   804   // indicate the region in which the root resides), and does "scan_perm"
   805   // (setting the generation to the perm generation.)  If "scan_rs" is
   806   // NULL, then this step is skipped.  The "worker_i"
   807   // param is for use with parallel roots processing, and should be
   808   // the "i" of the calling parallel worker thread's work(i) function.
   809   // In the sequential case this param will be ignored.
   810   void g1_process_strong_roots(bool collecting_perm_gen,
   811                                ScanningOption so,
   812                                OopClosure* scan_non_heap_roots,
   813                                OopsInHeapRegionClosure* scan_rs,
   814                                OopsInGenClosure* scan_perm,
   815                                int worker_i);
   817   // Apply "blk" to all the weak roots of the system.  These include
   818   // JNI weak roots, the code cache, system dictionary, symbol table,
   819   // string table, and referents of reachable weak refs.
   820   void g1_process_weak_roots(OopClosure* root_closure,
   821                              OopClosure* non_root_closure);
   823   // Frees a non-humongous region by initializing its contents and
   824   // adding it to the free list that's passed as a parameter (this is
   825   // usually a local list which will be appended to the master free
   826   // list later). The used bytes of freed regions are accumulated in
   827   // pre_used. If par is true, the region's RSet will not be freed
   828   // up. The assumption is that this will be done later.
   829   void free_region(HeapRegion* hr,
   830                    size_t* pre_used,
   831                    FreeRegionList* free_list,
   832                    bool par);
   834   // Frees a humongous region by collapsing it into individual regions
   835   // and calling free_region() for each of them. The freed regions
   836   // will be added to the free list that's passed as a parameter (this
   837   // is usually a local list which will be appended to the master free
   838   // list later). The used bytes of freed regions are accumulated in
   839   // pre_used. If par is true, the region's RSet will not be freed
   840   // up. The assumption is that this will be done later.
   841   void free_humongous_region(HeapRegion* hr,
   842                              size_t* pre_used,
   843                              FreeRegionList* free_list,
   844                              HumongousRegionSet* humongous_proxy_set,
   845                              bool par);
   847   // Notifies all the necessary spaces that the committed space has
   848   // been updated (either expanded or shrunk). It should be called
   849   // after _g1_storage is updated.
   850   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   852   // The concurrent marker (and the thread it runs in.)
   853   ConcurrentMark* _cm;
   854   ConcurrentMarkThread* _cmThread;
   855   bool _mark_in_progress;
   857   // The concurrent refiner.
   858   ConcurrentG1Refine* _cg1r;
   860   // The parallel task queues
   861   RefToScanQueueSet *_task_queues;
   863   // True iff a evacuation has failed in the current collection.
   864   bool _evacuation_failed;
   866   // Set the attribute indicating whether evacuation has failed in the
   867   // current collection.
   868   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   870   // Failed evacuations cause some logical from-space objects to have
   871   // forwarding pointers to themselves.  Reset them.
   872   void remove_self_forwarding_pointers();
   874   // When one is non-null, so is the other.  Together, they each pair is
   875   // an object with a preserved mark, and its mark value.
   876   GrowableArray<oop>*     _objs_with_preserved_marks;
   877   GrowableArray<markOop>* _preserved_marks_of_objs;
   879   // Preserve the mark of "obj", if necessary, in preparation for its mark
   880   // word being overwritten with a self-forwarding-pointer.
   881   void preserve_mark_if_necessary(oop obj, markOop m);
   883   // The stack of evac-failure objects left to be scanned.
   884   GrowableArray<oop>*    _evac_failure_scan_stack;
   885   // The closure to apply to evac-failure objects.
   887   OopsInHeapRegionClosure* _evac_failure_closure;
   888   // Set the field above.
   889   void
   890   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   891     _evac_failure_closure = evac_failure_closure;
   892   }
   894   // Push "obj" on the scan stack.
   895   void push_on_evac_failure_scan_stack(oop obj);
   896   // Process scan stack entries until the stack is empty.
   897   void drain_evac_failure_scan_stack();
   898   // True iff an invocation of "drain_scan_stack" is in progress; to
   899   // prevent unnecessary recursion.
   900   bool _drain_in_progress;
   902   // Do any necessary initialization for evacuation-failure handling.
   903   // "cl" is the closure that will be used to process evac-failure
   904   // objects.
   905   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   906   // Do any necessary cleanup for evacuation-failure handling data
   907   // structures.
   908   void finalize_for_evac_failure();
   910   // An attempt to evacuate "obj" has failed; take necessary steps.
   911   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   912   void handle_evacuation_failure_common(oop obj, markOop m);
   914   // ("Weak") Reference processing support.
   915   //
   916   // G1 has 2 instances of the referece processor class. One
   917   // (_ref_processor_cm) handles reference object discovery
   918   // and subsequent processing during concurrent marking cycles.
   919   //
   920   // The other (_ref_processor_stw) handles reference object
   921   // discovery and processing during full GCs and incremental
   922   // evacuation pauses.
   923   //
   924   // During an incremental pause, reference discovery will be
   925   // temporarily disabled for _ref_processor_cm and will be
   926   // enabled for _ref_processor_stw. At the end of the evacuation
   927   // pause references discovered by _ref_processor_stw will be
   928   // processed and discovery will be disabled. The previous
   929   // setting for reference object discovery for _ref_processor_cm
   930   // will be re-instated.
   931   //
   932   // At the start of marking:
   933   //  * Discovery by the CM ref processor is verified to be inactive
   934   //    and it's discovered lists are empty.
   935   //  * Discovery by the CM ref processor is then enabled.
   936   //
   937   // At the end of marking:
   938   //  * Any references on the CM ref processor's discovered
   939   //    lists are processed (possibly MT).
   940   //
   941   // At the start of full GC we:
   942   //  * Disable discovery by the CM ref processor and
   943   //    empty CM ref processor's discovered lists
   944   //    (without processing any entries).
   945   //  * Verify that the STW ref processor is inactive and it's
   946   //    discovered lists are empty.
   947   //  * Temporarily set STW ref processor discovery as single threaded.
   948   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   949   //    field.
   950   //  * Finally enable discovery by the STW ref processor.
   951   //
   952   // The STW ref processor is used to record any discovered
   953   // references during the full GC.
   954   //
   955   // At the end of a full GC we:
   956   //  * Enqueue any reference objects discovered by the STW ref processor
   957   //    that have non-live referents. This has the side-effect of
   958   //    making the STW ref processor inactive by disabling discovery.
   959   //  * Verify that the CM ref processor is still inactive
   960   //    and no references have been placed on it's discovered
   961   //    lists (also checked as a precondition during initial marking).
   963   // The (stw) reference processor...
   964   ReferenceProcessor* _ref_processor_stw;
   966   // During reference object discovery, the _is_alive_non_header
   967   // closure (if non-null) is applied to the referent object to
   968   // determine whether the referent is live. If so then the
   969   // reference object does not need to be 'discovered' and can
   970   // be treated as a regular oop. This has the benefit of reducing
   971   // the number of 'discovered' reference objects that need to
   972   // be processed.
   973   //
   974   // Instance of the is_alive closure for embedding into the
   975   // STW reference processor as the _is_alive_non_header field.
   976   // Supplying a value for the _is_alive_non_header field is
   977   // optional but doing so prevents unnecessary additions to
   978   // the discovered lists during reference discovery.
   979   G1STWIsAliveClosure _is_alive_closure_stw;
   981   // The (concurrent marking) reference processor...
   982   ReferenceProcessor* _ref_processor_cm;
   984   // Instance of the concurrent mark is_alive closure for embedding
   985   // into the Concurrent Marking reference processor as the
   986   // _is_alive_non_header field. Supplying a value for the
   987   // _is_alive_non_header field is optional but doing so prevents
   988   // unnecessary additions to the discovered lists during reference
   989   // discovery.
   990   G1CMIsAliveClosure _is_alive_closure_cm;
   992   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   993   HeapRegion** _worker_cset_start_region;
   995   // Time stamp to validate the regions recorded in the cache
   996   // used by G1CollectedHeap::start_cset_region_for_worker().
   997   // The heap region entry for a given worker is valid iff
   998   // the associated time stamp value matches the current value
   999   // of G1CollectedHeap::_gc_time_stamp.
  1000   unsigned int* _worker_cset_start_region_time_stamp;
  1002   enum G1H_process_strong_roots_tasks {
  1003     G1H_PS_filter_satb_buffers,
  1004     G1H_PS_refProcessor_oops_do,
  1005     // Leave this one last.
  1006     G1H_PS_NumElements
  1007   };
  1009   SubTasksDone* _process_strong_tasks;
  1011   volatile bool _free_regions_coming;
  1013 public:
  1015   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1017   void set_refine_cte_cl_concurrency(bool concurrent);
  1019   RefToScanQueue *task_queue(int i) const;
  1021   // A set of cards where updates happened during the GC
  1022   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1024   // A DirtyCardQueueSet that is used to hold cards that contain
  1025   // references into the current collection set. This is used to
  1026   // update the remembered sets of the regions in the collection
  1027   // set in the event of an evacuation failure.
  1028   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1029         { return _into_cset_dirty_card_queue_set; }
  1031   // Create a G1CollectedHeap with the specified policy.
  1032   // Must call the initialize method afterwards.
  1033   // May not return if something goes wrong.
  1034   G1CollectedHeap(G1CollectorPolicy* policy);
  1036   // Initialize the G1CollectedHeap to have the initial and
  1037   // maximum sizes, permanent generation, and remembered and barrier sets
  1038   // specified by the policy object.
  1039   jint initialize();
  1041   // Initialize weak reference processing.
  1042   virtual void ref_processing_init();
  1044   void set_par_threads(uint t) {
  1045     SharedHeap::set_par_threads(t);
  1046     // Done in SharedHeap but oddly there are
  1047     // two _process_strong_tasks's in a G1CollectedHeap
  1048     // so do it here too.
  1049     _process_strong_tasks->set_n_threads(t);
  1052   // Set _n_par_threads according to a policy TBD.
  1053   void set_par_threads();
  1055   void set_n_termination(int t) {
  1056     _process_strong_tasks->set_n_threads(t);
  1059   virtual CollectedHeap::Name kind() const {
  1060     return CollectedHeap::G1CollectedHeap;
  1063   // The current policy object for the collector.
  1064   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1066   // Adaptive size policy.  No such thing for g1.
  1067   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1069   // The rem set and barrier set.
  1070   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1071   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1073   // The rem set iterator.
  1074   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1075     return _rem_set_iterator[i];
  1078   HeapRegionRemSetIterator* rem_set_iterator() {
  1079     return _rem_set_iterator[0];
  1082   unsigned get_gc_time_stamp() {
  1083     return _gc_time_stamp;
  1086   void reset_gc_time_stamp() {
  1087     _gc_time_stamp = 0;
  1088     OrderAccess::fence();
  1089     // Clear the cached CSet starting regions and time stamps.
  1090     // Their validity is dependent on the GC timestamp.
  1091     clear_cset_start_regions();
  1094   void check_gc_time_stamps() PRODUCT_RETURN;
  1096   void increment_gc_time_stamp() {
  1097     ++_gc_time_stamp;
  1098     OrderAccess::fence();
  1101   // Reset the given region's GC timestamp. If it's starts humongous,
  1102   // also reset the GC timestamp of its corresponding
  1103   // continues humongous regions too.
  1104   void reset_gc_time_stamps(HeapRegion* hr);
  1106   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1107                                   DirtyCardQueue* into_cset_dcq,
  1108                                   bool concurrent, int worker_i);
  1110   // The shared block offset table array.
  1111   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1113   // Reference Processing accessors
  1115   // The STW reference processor....
  1116   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1118   // The Concurent Marking reference processor...
  1119   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1121   virtual size_t capacity() const;
  1122   virtual size_t used() const;
  1123   // This should be called when we're not holding the heap lock. The
  1124   // result might be a bit inaccurate.
  1125   size_t used_unlocked() const;
  1126   size_t recalculate_used() const;
  1128   // These virtual functions do the actual allocation.
  1129   // Some heaps may offer a contiguous region for shared non-blocking
  1130   // allocation, via inlined code (by exporting the address of the top and
  1131   // end fields defining the extent of the contiguous allocation region.)
  1132   // But G1CollectedHeap doesn't yet support this.
  1134   // Return an estimate of the maximum allocation that could be performed
  1135   // without triggering any collection or expansion activity.  In a
  1136   // generational collector, for example, this is probably the largest
  1137   // allocation that could be supported (without expansion) in the youngest
  1138   // generation.  It is "unsafe" because no locks are taken; the result
  1139   // should be treated as an approximation, not a guarantee, for use in
  1140   // heuristic resizing decisions.
  1141   virtual size_t unsafe_max_alloc();
  1143   virtual bool is_maximal_no_gc() const {
  1144     return _g1_storage.uncommitted_size() == 0;
  1147   // The total number of regions in the heap.
  1148   uint n_regions() { return _hrs.length(); }
  1150   // The max number of regions in the heap.
  1151   uint max_regions() { return _hrs.max_length(); }
  1153   // The number of regions that are completely free.
  1154   uint free_regions() { return _free_list.length(); }
  1156   // The number of regions that are not completely free.
  1157   uint used_regions() { return n_regions() - free_regions(); }
  1159   // The number of regions available for "regular" expansion.
  1160   uint expansion_regions() { return _expansion_regions; }
  1162   // Factory method for HeapRegion instances. It will return NULL if
  1163   // the allocation fails.
  1164   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1166   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1167   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1168   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1169   void verify_dirty_young_regions() PRODUCT_RETURN;
  1171   // verify_region_sets() performs verification over the region
  1172   // lists. It will be compiled in the product code to be used when
  1173   // necessary (i.e., during heap verification).
  1174   void verify_region_sets();
  1176   // verify_region_sets_optional() is planted in the code for
  1177   // list verification in non-product builds (and it can be enabled in
  1178   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1179 #if HEAP_REGION_SET_FORCE_VERIFY
  1180   void verify_region_sets_optional() {
  1181     verify_region_sets();
  1183 #else // HEAP_REGION_SET_FORCE_VERIFY
  1184   void verify_region_sets_optional() { }
  1185 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1187 #ifdef ASSERT
  1188   bool is_on_master_free_list(HeapRegion* hr) {
  1189     return hr->containing_set() == &_free_list;
  1192   bool is_in_humongous_set(HeapRegion* hr) {
  1193     return hr->containing_set() == &_humongous_set;
  1195 #endif // ASSERT
  1197   // Wrapper for the region list operations that can be called from
  1198   // methods outside this class.
  1200   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1201     _secondary_free_list.add_as_tail(list);
  1204   void append_secondary_free_list() {
  1205     _free_list.add_as_head(&_secondary_free_list);
  1208   void append_secondary_free_list_if_not_empty_with_lock() {
  1209     // If the secondary free list looks empty there's no reason to
  1210     // take the lock and then try to append it.
  1211     if (!_secondary_free_list.is_empty()) {
  1212       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1213       append_secondary_free_list();
  1217   void old_set_remove(HeapRegion* hr) {
  1218     _old_set.remove(hr);
  1221   size_t non_young_capacity_bytes() {
  1222     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1225   void set_free_regions_coming();
  1226   void reset_free_regions_coming();
  1227   bool free_regions_coming() { return _free_regions_coming; }
  1228   void wait_while_free_regions_coming();
  1230   // Determine whether the given region is one that we are using as an
  1231   // old GC alloc region.
  1232   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1233     return hr == _retained_old_gc_alloc_region;
  1236   // Perform a collection of the heap; intended for use in implementing
  1237   // "System.gc".  This probably implies as full a collection as the
  1238   // "CollectedHeap" supports.
  1239   virtual void collect(GCCause::Cause cause);
  1241   // The same as above but assume that the caller holds the Heap_lock.
  1242   void collect_locked(GCCause::Cause cause);
  1244   // This interface assumes that it's being called by the
  1245   // vm thread. It collects the heap assuming that the
  1246   // heap lock is already held and that we are executing in
  1247   // the context of the vm thread.
  1248   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1250   // True iff a evacuation has failed in the most-recent collection.
  1251   bool evacuation_failed() { return _evacuation_failed; }
  1253   // It will free a region if it has allocated objects in it that are
  1254   // all dead. It calls either free_region() or
  1255   // free_humongous_region() depending on the type of the region that
  1256   // is passed to it.
  1257   void free_region_if_empty(HeapRegion* hr,
  1258                             size_t* pre_used,
  1259                             FreeRegionList* free_list,
  1260                             OldRegionSet* old_proxy_set,
  1261                             HumongousRegionSet* humongous_proxy_set,
  1262                             HRRSCleanupTask* hrrs_cleanup_task,
  1263                             bool par);
  1265   // It appends the free list to the master free list and updates the
  1266   // master humongous list according to the contents of the proxy
  1267   // list. It also adjusts the total used bytes according to pre_used
  1268   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1269   void update_sets_after_freeing_regions(size_t pre_used,
  1270                                        FreeRegionList* free_list,
  1271                                        OldRegionSet* old_proxy_set,
  1272                                        HumongousRegionSet* humongous_proxy_set,
  1273                                        bool par);
  1275   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1276   virtual bool is_in(const void* p) const;
  1278   // Return "TRUE" iff the given object address is within the collection
  1279   // set.
  1280   inline bool obj_in_cs(oop obj);
  1282   // Return "TRUE" iff the given object address is in the reserved
  1283   // region of g1 (excluding the permanent generation).
  1284   bool is_in_g1_reserved(const void* p) const {
  1285     return _g1_reserved.contains(p);
  1288   // Returns a MemRegion that corresponds to the space that has been
  1289   // reserved for the heap
  1290   MemRegion g1_reserved() {
  1291     return _g1_reserved;
  1294   // Returns a MemRegion that corresponds to the space that has been
  1295   // committed in the heap
  1296   MemRegion g1_committed() {
  1297     return _g1_committed;
  1300   virtual bool is_in_closed_subset(const void* p) const;
  1302   // This resets the card table to all zeros.  It is used after
  1303   // a collection pause which used the card table to claim cards.
  1304   void cleanUpCardTable();
  1306   // Iteration functions.
  1308   // Iterate over all the ref-containing fields of all objects, calling
  1309   // "cl.do_oop" on each.
  1310   virtual void oop_iterate(OopClosure* cl) {
  1311     oop_iterate(cl, true);
  1313   void oop_iterate(OopClosure* cl, bool do_perm);
  1315   // Same as above, restricted to a memory region.
  1316   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1317     oop_iterate(mr, cl, true);
  1319   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1321   // Iterate over all objects, calling "cl.do_object" on each.
  1322   virtual void object_iterate(ObjectClosure* cl) {
  1323     object_iterate(cl, true);
  1325   virtual void safe_object_iterate(ObjectClosure* cl) {
  1326     object_iterate(cl, true);
  1328   void object_iterate(ObjectClosure* cl, bool do_perm);
  1330   // Iterate over all objects allocated since the last collection, calling
  1331   // "cl.do_object" on each.  The heap must have been initialized properly
  1332   // to support this function, or else this call will fail.
  1333   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1335   // Iterate over all spaces in use in the heap, in ascending address order.
  1336   virtual void space_iterate(SpaceClosure* cl);
  1338   // Iterate over heap regions, in address order, terminating the
  1339   // iteration early if the "doHeapRegion" method returns "true".
  1340   void heap_region_iterate(HeapRegionClosure* blk) const;
  1342   // Return the region with the given index. It assumes the index is valid.
  1343   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1345   // Divide the heap region sequence into "chunks" of some size (the number
  1346   // of regions divided by the number of parallel threads times some
  1347   // overpartition factor, currently 4).  Assumes that this will be called
  1348   // in parallel by ParallelGCThreads worker threads with discinct worker
  1349   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1350   // calls will use the same "claim_value", and that that claim value is
  1351   // different from the claim_value of any heap region before the start of
  1352   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1353   // attempting to claim the first region in each chunk, and, if
  1354   // successful, applying the closure to each region in the chunk (and
  1355   // setting the claim value of the second and subsequent regions of the
  1356   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1357   // i.e., that a closure never attempt to abort a traversal.
  1358   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1359                                        uint worker,
  1360                                        uint no_of_par_workers,
  1361                                        jint claim_value);
  1363   // It resets all the region claim values to the default.
  1364   void reset_heap_region_claim_values();
  1366   // Resets the claim values of regions in the current
  1367   // collection set to the default.
  1368   void reset_cset_heap_region_claim_values();
  1370 #ifdef ASSERT
  1371   bool check_heap_region_claim_values(jint claim_value);
  1373   // Same as the routine above but only checks regions in the
  1374   // current collection set.
  1375   bool check_cset_heap_region_claim_values(jint claim_value);
  1376 #endif // ASSERT
  1378   // Clear the cached cset start regions and (more importantly)
  1379   // the time stamps. Called when we reset the GC time stamp.
  1380   void clear_cset_start_regions();
  1382   // Given the id of a worker, obtain or calculate a suitable
  1383   // starting region for iterating over the current collection set.
  1384   HeapRegion* start_cset_region_for_worker(int worker_i);
  1386   // This is a convenience method that is used by the
  1387   // HeapRegionIterator classes to calculate the starting region for
  1388   // each worker so that they do not all start from the same region.
  1389   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1391   // Iterate over the regions (if any) in the current collection set.
  1392   void collection_set_iterate(HeapRegionClosure* blk);
  1394   // As above but starting from region r
  1395   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1397   // Returns the first (lowest address) compactible space in the heap.
  1398   virtual CompactibleSpace* first_compactible_space();
  1400   // A CollectedHeap will contain some number of spaces.  This finds the
  1401   // space containing a given address, or else returns NULL.
  1402   virtual Space* space_containing(const void* addr) const;
  1404   // A G1CollectedHeap will contain some number of heap regions.  This
  1405   // finds the region containing a given address, or else returns NULL.
  1406   template <class T>
  1407   inline HeapRegion* heap_region_containing(const T addr) const;
  1409   // Like the above, but requires "addr" to be in the heap (to avoid a
  1410   // null-check), and unlike the above, may return an continuing humongous
  1411   // region.
  1412   template <class T>
  1413   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1415   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1416   // each address in the (reserved) heap is a member of exactly
  1417   // one block.  The defining characteristic of a block is that it is
  1418   // possible to find its size, and thus to progress forward to the next
  1419   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1420   // represent Java objects, or they might be free blocks in a
  1421   // free-list-based heap (or subheap), as long as the two kinds are
  1422   // distinguishable and the size of each is determinable.
  1424   // Returns the address of the start of the "block" that contains the
  1425   // address "addr".  We say "blocks" instead of "object" since some heaps
  1426   // may not pack objects densely; a chunk may either be an object or a
  1427   // non-object.
  1428   virtual HeapWord* block_start(const void* addr) const;
  1430   // Requires "addr" to be the start of a chunk, and returns its size.
  1431   // "addr + size" is required to be the start of a new chunk, or the end
  1432   // of the active area of the heap.
  1433   virtual size_t block_size(const HeapWord* addr) const;
  1435   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1436   // the block is an object.
  1437   virtual bool block_is_obj(const HeapWord* addr) const;
  1439   // Does this heap support heap inspection? (+PrintClassHistogram)
  1440   virtual bool supports_heap_inspection() const { return true; }
  1442   // Section on thread-local allocation buffers (TLABs)
  1443   // See CollectedHeap for semantics.
  1445   virtual bool supports_tlab_allocation() const;
  1446   virtual size_t tlab_capacity(Thread* thr) const;
  1447   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1449   // Can a compiler initialize a new object without store barriers?
  1450   // This permission only extends from the creation of a new object
  1451   // via a TLAB up to the first subsequent safepoint. If such permission
  1452   // is granted for this heap type, the compiler promises to call
  1453   // defer_store_barrier() below on any slow path allocation of
  1454   // a new object for which such initializing store barriers will
  1455   // have been elided. G1, like CMS, allows this, but should be
  1456   // ready to provide a compensating write barrier as necessary
  1457   // if that storage came out of a non-young region. The efficiency
  1458   // of this implementation depends crucially on being able to
  1459   // answer very efficiently in constant time whether a piece of
  1460   // storage in the heap comes from a young region or not.
  1461   // See ReduceInitialCardMarks.
  1462   virtual bool can_elide_tlab_store_barriers() const {
  1463     return true;
  1466   virtual bool card_mark_must_follow_store() const {
  1467     return true;
  1470   bool is_in_young(const oop obj) {
  1471     HeapRegion* hr = heap_region_containing(obj);
  1472     return hr != NULL && hr->is_young();
  1475 #ifdef ASSERT
  1476   virtual bool is_in_partial_collection(const void* p);
  1477 #endif
  1479   virtual bool is_scavengable(const void* addr);
  1481   // We don't need barriers for initializing stores to objects
  1482   // in the young gen: for the SATB pre-barrier, there is no
  1483   // pre-value that needs to be remembered; for the remembered-set
  1484   // update logging post-barrier, we don't maintain remembered set
  1485   // information for young gen objects.
  1486   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1487     return is_in_young(new_obj);
  1490   // Can a compiler elide a store barrier when it writes
  1491   // a permanent oop into the heap?  Applies when the compiler
  1492   // is storing x to the heap, where x->is_perm() is true.
  1493   virtual bool can_elide_permanent_oop_store_barriers() const {
  1494     // At least until perm gen collection is also G1-ified, at
  1495     // which point this should return false.
  1496     return true;
  1499   // Returns "true" iff the given word_size is "very large".
  1500   static bool isHumongous(size_t word_size) {
  1501     // Note this has to be strictly greater-than as the TLABs
  1502     // are capped at the humongous thresold and we want to
  1503     // ensure that we don't try to allocate a TLAB as
  1504     // humongous and that we don't allocate a humongous
  1505     // object in a TLAB.
  1506     return word_size > _humongous_object_threshold_in_words;
  1509   // Update mod union table with the set of dirty cards.
  1510   void updateModUnion();
  1512   // Set the mod union bits corresponding to the given memRegion.  Note
  1513   // that this is always a safe operation, since it doesn't clear any
  1514   // bits.
  1515   void markModUnionRange(MemRegion mr);
  1517   // Records the fact that a marking phase is no longer in progress.
  1518   void set_marking_complete() {
  1519     _mark_in_progress = false;
  1521   void set_marking_started() {
  1522     _mark_in_progress = true;
  1524   bool mark_in_progress() {
  1525     return _mark_in_progress;
  1528   // Print the maximum heap capacity.
  1529   virtual size_t max_capacity() const;
  1531   virtual jlong millis_since_last_gc();
  1533   // Perform any cleanup actions necessary before allowing a verification.
  1534   virtual void prepare_for_verify();
  1536   // Perform verification.
  1538   // vo == UsePrevMarking  -> use "prev" marking information,
  1539   // vo == UseNextMarking -> use "next" marking information
  1540   // vo == UseMarkWord    -> use the mark word in the object header
  1541   //
  1542   // NOTE: Only the "prev" marking information is guaranteed to be
  1543   // consistent most of the time, so most calls to this should use
  1544   // vo == UsePrevMarking.
  1545   // Currently, there is only one case where this is called with
  1546   // vo == UseNextMarking, which is to verify the "next" marking
  1547   // information at the end of remark.
  1548   // Currently there is only one place where this is called with
  1549   // vo == UseMarkWord, which is to verify the marking during a
  1550   // full GC.
  1551   void verify(bool silent, VerifyOption vo);
  1553   // Override; it uses the "prev" marking information
  1554   virtual void verify(bool silent);
  1555   virtual void print_on(outputStream* st) const;
  1556   virtual void print_extended_on(outputStream* st) const;
  1558   virtual void print_gc_threads_on(outputStream* st) const;
  1559   virtual void gc_threads_do(ThreadClosure* tc) const;
  1561   // Override
  1562   void print_tracing_info() const;
  1564   // The following two methods are helpful for debugging RSet issues.
  1565   void print_cset_rsets() PRODUCT_RETURN;
  1566   void print_all_rsets() PRODUCT_RETURN;
  1568   // Convenience function to be used in situations where the heap type can be
  1569   // asserted to be this type.
  1570   static G1CollectedHeap* heap();
  1572   void set_region_short_lived_locked(HeapRegion* hr);
  1573   // add appropriate methods for any other surv rate groups
  1575   YoungList* young_list() { return _young_list; }
  1577   // debugging
  1578   bool check_young_list_well_formed() {
  1579     return _young_list->check_list_well_formed();
  1582   bool check_young_list_empty(bool check_heap,
  1583                               bool check_sample = true);
  1585   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1586   // many of these need to be public.
  1588   // The functions below are helper functions that a subclass of
  1589   // "CollectedHeap" can use in the implementation of its virtual
  1590   // functions.
  1591   // This performs a concurrent marking of the live objects in a
  1592   // bitmap off to the side.
  1593   void doConcurrentMark();
  1595   bool isMarkedPrev(oop obj) const;
  1596   bool isMarkedNext(oop obj) const;
  1598   // Determine if an object is dead, given the object and also
  1599   // the region to which the object belongs. An object is dead
  1600   // iff a) it was not allocated since the last mark and b) it
  1601   // is not marked.
  1603   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1604     return
  1605       !hr->obj_allocated_since_prev_marking(obj) &&
  1606       !isMarkedPrev(obj);
  1609   // This function returns true when an object has been
  1610   // around since the previous marking and hasn't yet
  1611   // been marked during this marking.
  1613   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1614     return
  1615       !hr->obj_allocated_since_next_marking(obj) &&
  1616       !isMarkedNext(obj);
  1619   // Determine if an object is dead, given only the object itself.
  1620   // This will find the region to which the object belongs and
  1621   // then call the region version of the same function.
  1623   // Added if it is in permanent gen it isn't dead.
  1624   // Added if it is NULL it isn't dead.
  1626   bool is_obj_dead(const oop obj) const {
  1627     const HeapRegion* hr = heap_region_containing(obj);
  1628     if (hr == NULL) {
  1629       if (Universe::heap()->is_in_permanent(obj))
  1630         return false;
  1631       else if (obj == NULL) return false;
  1632       else return true;
  1634     else return is_obj_dead(obj, hr);
  1637   bool is_obj_ill(const oop obj) const {
  1638     const HeapRegion* hr = heap_region_containing(obj);
  1639     if (hr == NULL) {
  1640       if (Universe::heap()->is_in_permanent(obj))
  1641         return false;
  1642       else if (obj == NULL) return false;
  1643       else return true;
  1645     else return is_obj_ill(obj, hr);
  1648   // The methods below are here for convenience and dispatch the
  1649   // appropriate method depending on value of the given VerifyOption
  1650   // parameter. The options for that parameter are:
  1651   //
  1652   // vo == UsePrevMarking -> use "prev" marking information,
  1653   // vo == UseNextMarking -> use "next" marking information,
  1654   // vo == UseMarkWord    -> use mark word from object header
  1656   bool is_obj_dead_cond(const oop obj,
  1657                         const HeapRegion* hr,
  1658                         const VerifyOption vo) const {
  1659     switch (vo) {
  1660     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1661     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1662     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1663     default:                            ShouldNotReachHere();
  1665     return false; // keep some compilers happy
  1668   bool is_obj_dead_cond(const oop obj,
  1669                         const VerifyOption vo) const {
  1670     switch (vo) {
  1671     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1672     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1673     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1674     default:                            ShouldNotReachHere();
  1676     return false; // keep some compilers happy
  1679   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1680   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1681   bool is_marked(oop obj, VerifyOption vo);
  1682   const char* top_at_mark_start_str(VerifyOption vo);
  1684   // The following is just to alert the verification code
  1685   // that a full collection has occurred and that the
  1686   // remembered sets are no longer up to date.
  1687   bool _full_collection;
  1688   void set_full_collection() { _full_collection = true;}
  1689   void clear_full_collection() {_full_collection = false;}
  1690   bool full_collection() {return _full_collection;}
  1692   ConcurrentMark* concurrent_mark() const { return _cm; }
  1693   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1695   // The dirty cards region list is used to record a subset of regions
  1696   // whose cards need clearing. The list if populated during the
  1697   // remembered set scanning and drained during the card table
  1698   // cleanup. Although the methods are reentrant, population/draining
  1699   // phases must not overlap. For synchronization purposes the last
  1700   // element on the list points to itself.
  1701   HeapRegion* _dirty_cards_region_list;
  1702   void push_dirty_cards_region(HeapRegion* hr);
  1703   HeapRegion* pop_dirty_cards_region();
  1705 public:
  1706   void stop_conc_gc_threads();
  1708   size_t pending_card_num();
  1709   size_t cards_scanned();
  1711 protected:
  1712   size_t _max_heap_capacity;
  1713 };
  1715 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1716 private:
  1717   bool        _retired;
  1719 public:
  1720   G1ParGCAllocBuffer(size_t gclab_word_size);
  1722   void set_buf(HeapWord* buf) {
  1723     ParGCAllocBuffer::set_buf(buf);
  1724     _retired = false;
  1727   void retire(bool end_of_gc, bool retain) {
  1728     if (_retired)
  1729       return;
  1730     ParGCAllocBuffer::retire(end_of_gc, retain);
  1731     _retired = true;
  1733 };
  1735 class G1ParScanThreadState : public StackObj {
  1736 protected:
  1737   G1CollectedHeap* _g1h;
  1738   RefToScanQueue*  _refs;
  1739   DirtyCardQueue   _dcq;
  1740   CardTableModRefBS* _ct_bs;
  1741   G1RemSet* _g1_rem;
  1743   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1744   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1745   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1746   ageTable            _age_table;
  1748   size_t           _alloc_buffer_waste;
  1749   size_t           _undo_waste;
  1751   OopsInHeapRegionClosure*      _evac_failure_cl;
  1752   G1ParScanHeapEvacClosure*     _evac_cl;
  1753   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1755   int _hash_seed;
  1756   uint _queue_num;
  1758   size_t _term_attempts;
  1760   double _start;
  1761   double _start_strong_roots;
  1762   double _strong_roots_time;
  1763   double _start_term;
  1764   double _term_time;
  1766   // Map from young-age-index (0 == not young, 1 is youngest) to
  1767   // surviving words. base is what we get back from the malloc call
  1768   size_t* _surviving_young_words_base;
  1769   // this points into the array, as we use the first few entries for padding
  1770   size_t* _surviving_young_words;
  1772 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1774   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1776   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1778   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1779   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1781   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1782     if (!from->is_survivor()) {
  1783       _g1_rem->par_write_ref(from, p, tid);
  1787   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1788     // If the new value of the field points to the same region or
  1789     // is the to-space, we don't need to include it in the Rset updates.
  1790     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1791       size_t card_index = ctbs()->index_for(p);
  1792       // If the card hasn't been added to the buffer, do it.
  1793       if (ctbs()->mark_card_deferred(card_index)) {
  1794         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1799 public:
  1800   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1802   ~G1ParScanThreadState() {
  1803     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1806   RefToScanQueue*   refs()            { return _refs;             }
  1807   ageTable*         age_table()       { return &_age_table;       }
  1809   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1810     return _alloc_buffers[purpose];
  1813   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1814   size_t undo_waste() const                      { return _undo_waste; }
  1816 #ifdef ASSERT
  1817   bool verify_ref(narrowOop* ref) const;
  1818   bool verify_ref(oop* ref) const;
  1819   bool verify_task(StarTask ref) const;
  1820 #endif // ASSERT
  1822   template <class T> void push_on_queue(T* ref) {
  1823     assert(verify_ref(ref), "sanity");
  1824     refs()->push(ref);
  1827   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1828     if (G1DeferredRSUpdate) {
  1829       deferred_rs_update(from, p, tid);
  1830     } else {
  1831       immediate_rs_update(from, p, tid);
  1835   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1836     HeapWord* obj = NULL;
  1837     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1838     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1839       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1840       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1841       alloc_buf->flush_stats_and_retire(_g1h->stats_for_purpose(purpose),
  1842                                         false /* end_of_gc */,
  1843                                         false /* retain */);
  1845       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1846       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1847       // Otherwise.
  1848       alloc_buf->set_word_size(gclab_word_size);
  1849       alloc_buf->set_buf(buf);
  1851       obj = alloc_buf->allocate(word_sz);
  1852       assert(obj != NULL, "buffer was definitely big enough...");
  1853     } else {
  1854       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1856     return obj;
  1859   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1860     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1861     if (obj != NULL) return obj;
  1862     return allocate_slow(purpose, word_sz);
  1865   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1866     if (alloc_buffer(purpose)->contains(obj)) {
  1867       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1868              "should contain whole object");
  1869       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1870     } else {
  1871       CollectedHeap::fill_with_object(obj, word_sz);
  1872       add_to_undo_waste(word_sz);
  1876   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1877     _evac_failure_cl = evac_failure_cl;
  1879   OopsInHeapRegionClosure* evac_failure_closure() {
  1880     return _evac_failure_cl;
  1883   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1884     _evac_cl = evac_cl;
  1887   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1888     _partial_scan_cl = partial_scan_cl;
  1891   int* hash_seed() { return &_hash_seed; }
  1892   uint queue_num() { return _queue_num; }
  1894   size_t term_attempts() const  { return _term_attempts; }
  1895   void note_term_attempt() { _term_attempts++; }
  1897   void start_strong_roots() {
  1898     _start_strong_roots = os::elapsedTime();
  1900   void end_strong_roots() {
  1901     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1903   double strong_roots_time() const { return _strong_roots_time; }
  1905   void start_term_time() {
  1906     note_term_attempt();
  1907     _start_term = os::elapsedTime();
  1909   void end_term_time() {
  1910     _term_time += (os::elapsedTime() - _start_term);
  1912   double term_time() const { return _term_time; }
  1914   double elapsed_time() const {
  1915     return os::elapsedTime() - _start;
  1918   static void
  1919     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1920   void
  1921     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1923   size_t* surviving_young_words() {
  1924     // We add on to hide entry 0 which accumulates surviving words for
  1925     // age -1 regions (i.e. non-young ones)
  1926     return _surviving_young_words;
  1929   void retire_alloc_buffers() {
  1930     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1931       size_t waste = _alloc_buffers[ap]->words_remaining();
  1932       add_to_alloc_buffer_waste(waste);
  1933       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1934                                                  true /* end_of_gc */,
  1935                                                  false /* retain */);
  1939   template <class T> void deal_with_reference(T* ref_to_scan) {
  1940     if (has_partial_array_mask(ref_to_scan)) {
  1941       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1942     } else {
  1943       // Note: we can use "raw" versions of "region_containing" because
  1944       // "obj_to_scan" is definitely in the heap, and is not in a
  1945       // humongous region.
  1946       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1947       _evac_cl->set_region(r);
  1948       _evac_cl->do_oop_nv(ref_to_scan);
  1952   void deal_with_reference(StarTask ref) {
  1953     assert(verify_task(ref), "sanity");
  1954     if (ref.is_narrow()) {
  1955       deal_with_reference((narrowOop*)ref);
  1956     } else {
  1957       deal_with_reference((oop*)ref);
  1961 public:
  1962   void trim_queue();
  1963 };
  1965 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial