src/share/vm/opto/parse2.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 472
73970d8c0b27
child 564
c0939256690b
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse2.cpp.incl"
    28 extern int explicit_null_checks_inserted,
    29            explicit_null_checks_elided;
    31 //---------------------------------array_load----------------------------------
    32 void Parse::array_load(BasicType elem_type) {
    33   const Type* elem = Type::TOP;
    34   Node* adr = array_addressing(elem_type, 0, &elem);
    35   if (stopped())  return;     // guarenteed null or range check
    36   _sp -= 2;                   // Pop array and index
    37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    39   push(ld);
    40 }
    43 //--------------------------------array_store----------------------------------
    44 void Parse::array_store(BasicType elem_type) {
    45   Node* adr = array_addressing(elem_type, 1);
    46   if (stopped())  return;     // guarenteed null or range check
    47   Node* val = pop();
    48   _sp -= 2;                   // Pop array and index
    49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    50   store_to_memory(control(), adr, val, elem_type, adr_type);
    51 }
    54 //------------------------------array_addressing-------------------------------
    55 // Pull array and index from the stack.  Compute pointer-to-element.
    56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    57   Node *idx   = peek(0+vals);   // Get from stack without popping
    58   Node *ary   = peek(1+vals);   // in case of exception
    60   // Null check the array base, with correct stack contents
    61   ary = do_null_check(ary, T_ARRAY);
    62   // Compile-time detect of null-exception?
    63   if (stopped())  return top();
    65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    66   const TypeInt*    sizetype = arytype->size();
    67   const Type*       elemtype = arytype->elem();
    69   if (UseUniqueSubclasses && result2 != NULL) {
    70     const Type* el = elemtype;
    71     if (elemtype->isa_narrowoop()) {
    72       el = elemtype->is_narrowoop()->make_oopptr();
    73     }
    74     const TypeInstPtr* toop = el->isa_instptr();
    75     if (toop) {
    76       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    77         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    78         const Type* subklass = Type::get_const_type(toop->klass());
    79         elemtype = subklass->join(el);
    80       }
    81     }
    82   }
    84   // Check for big class initializers with all constant offsets
    85   // feeding into a known-size array.
    86   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    87   // See if the highest idx value is less than the lowest array bound,
    88   // and if the idx value cannot be negative:
    89   bool need_range_check = true;
    90   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    91     need_range_check = false;
    92     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    93   }
    95   if (!arytype->klass()->is_loaded()) {
    96     // Only fails for some -Xcomp runs
    97     // The class is unloaded.  We have to run this bytecode in the interpreter.
    98     uncommon_trap(Deoptimization::Reason_unloaded,
    99                   Deoptimization::Action_reinterpret,
   100                   arytype->klass(), "!loaded array");
   101     return top();
   102   }
   104   // Do the range check
   105   if (GenerateRangeChecks && need_range_check) {
   106     // Range is constant in array-oop, so we can use the original state of mem
   107     Node* len = load_array_length(ary);
   108     // Test length vs index (standard trick using unsigned compare)
   109     Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   110     BoolTest::mask btest = BoolTest::lt;
   111     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   112     // Branch to failure if out of bounds
   113     { BuildCutout unless(this, tst, PROB_MAX);
   114       if (C->allow_range_check_smearing()) {
   115         // Do not use builtin_throw, since range checks are sometimes
   116         // made more stringent by an optimistic transformation.
   117         // This creates "tentative" range checks at this point,
   118         // which are not guaranteed to throw exceptions.
   119         // See IfNode::Ideal, is_range_check, adjust_check.
   120         uncommon_trap(Deoptimization::Reason_range_check,
   121                       Deoptimization::Action_make_not_entrant,
   122                       NULL, "range_check");
   123       } else {
   124         // If we have already recompiled with the range-check-widening
   125         // heroic optimization turned off, then we must really be throwing
   126         // range check exceptions.
   127         builtin_throw(Deoptimization::Reason_range_check, idx);
   128       }
   129     }
   130   }
   131   // Check for always knowing you are throwing a range-check exception
   132   if (stopped())  return top();
   134   Node* ptr = array_element_address( ary, idx, type, sizetype);
   136   if (result2 != NULL)  *result2 = elemtype;
   137   return ptr;
   138 }
   141 // returns IfNode
   142 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   143   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   144   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   145   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   146   return iff;
   147 }
   149 // return Region node
   150 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   151   Node *region  = new (C, 3) RegionNode(3); // 2 results
   152   record_for_igvn(region);
   153   region->init_req(1, iffalse);
   154   region->init_req(2, iftrue );
   155   _gvn.set_type(region, Type::CONTROL);
   156   region = _gvn.transform(region);
   157   set_control (region);
   158   return region;
   159 }
   162 //------------------------------helper for tableswitch-------------------------
   163 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   164   // True branch, use existing map info
   165   { PreserveJVMState pjvms(this);
   166     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   167     set_control( iftrue );
   168     profile_switch_case(prof_table_index);
   169     merge_new_path(dest_bci_if_true);
   170   }
   172   // False branch
   173   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   174   set_control( iffalse );
   175 }
   177 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   178   // True branch, use existing map info
   179   { PreserveJVMState pjvms(this);
   180     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   181     set_control( iffalse );
   182     profile_switch_case(prof_table_index);
   183     merge_new_path(dest_bci_if_true);
   184   }
   186   // False branch
   187   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   188   set_control( iftrue );
   189 }
   191 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   192   // False branch, use existing map and control()
   193   profile_switch_case(prof_table_index);
   194   merge_new_path(dest_bci);
   195 }
   198 extern "C" {
   199   static int jint_cmp(const void *i, const void *j) {
   200     int a = *(jint *)i;
   201     int b = *(jint *)j;
   202     return a > b ? 1 : a < b ? -1 : 0;
   203   }
   204 }
   207 // Default value for methodData switch indexing. Must be a negative value to avoid
   208 // conflict with any legal switch index.
   209 #define NullTableIndex -1
   211 class SwitchRange : public StackObj {
   212   // a range of integers coupled with a bci destination
   213   jint _lo;                     // inclusive lower limit
   214   jint _hi;                     // inclusive upper limit
   215   int _dest;
   216   int _table_index;             // index into method data table
   218 public:
   219   jint lo() const              { return _lo;   }
   220   jint hi() const              { return _hi;   }
   221   int  dest() const            { return _dest; }
   222   int  table_index() const     { return _table_index; }
   223   bool is_singleton() const    { return _lo == _hi; }
   225   void setRange(jint lo, jint hi, int dest, int table_index) {
   226     assert(lo <= hi, "must be a non-empty range");
   227     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   228   }
   229   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   230     assert(lo <= hi, "must be a non-empty range");
   231     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   232       _hi = hi;
   233       return true;
   234     }
   235     return false;
   236   }
   238   void set (jint value, int dest, int table_index) {
   239     setRange(value, value, dest, table_index);
   240   }
   241   bool adjoin(jint value, int dest, int table_index) {
   242     return adjoinRange(value, value, dest, table_index);
   243   }
   245   void print(ciEnv* env) {
   246     if (is_singleton())
   247       tty->print(" {%d}=>%d", lo(), dest());
   248     else if (lo() == min_jint)
   249       tty->print(" {..%d}=>%d", hi(), dest());
   250     else if (hi() == max_jint)
   251       tty->print(" {%d..}=>%d", lo(), dest());
   252     else
   253       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   254   }
   255 };
   258 //-------------------------------do_tableswitch--------------------------------
   259 void Parse::do_tableswitch() {
   260   Node* lookup = pop();
   262   // Get information about tableswitch
   263   int default_dest = iter().get_dest_table(0);
   264   int lo_index     = iter().get_int_table(1);
   265   int hi_index     = iter().get_int_table(2);
   266   int len          = hi_index - lo_index + 1;
   268   if (len < 1) {
   269     // If this is a backward branch, add safepoint
   270     maybe_add_safepoint(default_dest);
   271     merge(default_dest);
   272     return;
   273   }
   275   // generate decision tree, using trichotomy when possible
   276   int rnum = len+2;
   277   bool makes_backward_branch = false;
   278   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   279   int rp = -1;
   280   if (lo_index != min_jint) {
   281     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   282   }
   283   for (int j = 0; j < len; j++) {
   284     jint match_int = lo_index+j;
   285     int  dest      = iter().get_dest_table(j+3);
   286     makes_backward_branch |= (dest <= bci());
   287     int  table_index = method_data_update() ? j : NullTableIndex;
   288     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   289       ranges[++rp].set(match_int, dest, table_index);
   290     }
   291   }
   292   jint highest = lo_index+(len-1);
   293   assert(ranges[rp].hi() == highest, "");
   294   if (highest != max_jint
   295       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   296     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   297   }
   298   assert(rp < len+2, "not too many ranges");
   300   // Safepoint in case if backward branch observed
   301   if( makes_backward_branch && UseLoopSafepoints )
   302     add_safepoint();
   304   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   305 }
   308 //------------------------------do_lookupswitch--------------------------------
   309 void Parse::do_lookupswitch() {
   310   Node *lookup = pop();         // lookup value
   311   // Get information about lookupswitch
   312   int default_dest = iter().get_dest_table(0);
   313   int len          = iter().get_int_table(1);
   315   if (len < 1) {    // If this is a backward branch, add safepoint
   316     maybe_add_safepoint(default_dest);
   317     merge(default_dest);
   318     return;
   319   }
   321   // generate decision tree, using trichotomy when possible
   322   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   323   {
   324     for( int j = 0; j < len; j++ ) {
   325       table[j+j+0] = iter().get_int_table(2+j+j);
   326       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   327     }
   328     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   329   }
   331   int rnum = len*2+1;
   332   bool makes_backward_branch = false;
   333   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   334   int rp = -1;
   335   for( int j = 0; j < len; j++ ) {
   336     jint match_int   = table[j+j+0];
   337     int  dest        = table[j+j+1];
   338     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   339     int  table_index = method_data_update() ? j : NullTableIndex;
   340     makes_backward_branch |= (dest <= bci());
   341     if( match_int != next_lo ) {
   342       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   343     }
   344     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   345       ranges[++rp].set(match_int, dest, table_index);
   346     }
   347   }
   348   jint highest = table[2*(len-1)];
   349   assert(ranges[rp].hi() == highest, "");
   350   if( highest != max_jint
   351       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   352     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   353   }
   354   assert(rp < rnum, "not too many ranges");
   356   // Safepoint in case backward branch observed
   357   if( makes_backward_branch && UseLoopSafepoints )
   358     add_safepoint();
   360   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   361 }
   363 //----------------------------create_jump_tables-------------------------------
   364 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   365   // Are jumptables enabled
   366   if (!UseJumpTables)  return false;
   368   // Are jumptables supported
   369   if (!Matcher::has_match_rule(Op_Jump))  return false;
   371   // Don't make jump table if profiling
   372   if (method_data_update())  return false;
   374   // Decide if a guard is needed to lop off big ranges at either (or
   375   // both) end(s) of the input set. We'll call this the default target
   376   // even though we can't be sure that it is the true "default".
   378   bool needs_guard = false;
   379   int default_dest;
   380   int64 total_outlier_size = 0;
   381   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   382   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   384   if (lo->dest() == hi->dest()) {
   385     total_outlier_size = hi_size + lo_size;
   386     default_dest = lo->dest();
   387   } else if (lo_size > hi_size) {
   388     total_outlier_size = lo_size;
   389     default_dest = lo->dest();
   390   } else {
   391     total_outlier_size = hi_size;
   392     default_dest = hi->dest();
   393   }
   395   // If a guard test will eliminate very sparse end ranges, then
   396   // it is worth the cost of an extra jump.
   397   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   398     needs_guard = true;
   399     if (default_dest == lo->dest()) lo++;
   400     if (default_dest == hi->dest()) hi--;
   401   }
   403   // Find the total number of cases and ranges
   404   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   405   int num_range = hi - lo + 1;
   407   // Don't create table if: too large, too small, or too sparse.
   408   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   409     return false;
   410   if (num_cases > (MaxJumpTableSparseness * num_range))
   411     return false;
   413   // Normalize table lookups to zero
   414   int lowval = lo->lo();
   415   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   417   // Generate a guard to protect against input keyvals that aren't
   418   // in the switch domain.
   419   if (needs_guard) {
   420     Node*   size = _gvn.intcon(num_cases);
   421     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   422     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   423     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   424     jump_if_true_fork(iff, default_dest, NullTableIndex);
   425   }
   427   // Create an ideal node JumpTable that has projections
   428   // of all possible ranges for a switch statement
   429   // The key_val input must be converted to a pointer offset and scaled.
   430   // Compare Parse::array_addressing above.
   431 #ifdef _LP64
   432   // Clean the 32-bit int into a real 64-bit offset.
   433   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   434   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   435   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   436 #endif
   437   // Shift the value by wordsize so we have an index into the table, rather
   438   // than a switch value
   439   Node *shiftWord = _gvn.MakeConX(wordSize);
   440   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   442   // Create the JumpNode
   443   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   445   // These are the switch destinations hanging off the jumpnode
   446   int i = 0;
   447   for (SwitchRange* r = lo; r <= hi; r++) {
   448     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   449       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   450       {
   451         PreserveJVMState pjvms(this);
   452         set_control(input);
   453         jump_if_always_fork(r->dest(), r->table_index());
   454       }
   455     }
   456   }
   457   assert(i == num_cases, "miscount of cases");
   458   stop_and_kill_map();  // no more uses for this JVMS
   459   return true;
   460 }
   462 //----------------------------jump_switch_ranges-------------------------------
   463 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   464   Block* switch_block = block();
   466   if (switch_depth == 0) {
   467     // Do special processing for the top-level call.
   468     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   469     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   471     // Decrement pred-numbers for the unique set of nodes.
   472 #ifdef ASSERT
   473     // Ensure that the block's successors are a (duplicate-free) set.
   474     int successors_counted = 0;  // block occurrences in [hi..lo]
   475     int unique_successors = switch_block->num_successors();
   476     for (int i = 0; i < unique_successors; i++) {
   477       Block* target = switch_block->successor_at(i);
   479       // Check that the set of successors is the same in both places.
   480       int successors_found = 0;
   481       for (SwitchRange* p = lo; p <= hi; p++) {
   482         if (p->dest() == target->start())  successors_found++;
   483       }
   484       assert(successors_found > 0, "successor must be known");
   485       successors_counted += successors_found;
   486     }
   487     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   488 #endif
   490     // Maybe prune the inputs, based on the type of key_val.
   491     jint min_val = min_jint;
   492     jint max_val = max_jint;
   493     const TypeInt* ti = key_val->bottom_type()->isa_int();
   494     if (ti != NULL) {
   495       min_val = ti->_lo;
   496       max_val = ti->_hi;
   497       assert(min_val <= max_val, "invalid int type");
   498     }
   499     while (lo->hi() < min_val)  lo++;
   500     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   501     while (hi->lo() > max_val)  hi--;
   502     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   503   }
   505 #ifndef PRODUCT
   506   if (switch_depth == 0) {
   507     _max_switch_depth = 0;
   508     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   509   }
   510 #endif
   512   assert(lo <= hi, "must be a non-empty set of ranges");
   513   if (lo == hi) {
   514     jump_if_always_fork(lo->dest(), lo->table_index());
   515   } else {
   516     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   517     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   519     if (create_jump_tables(key_val, lo, hi)) return;
   521     int nr = hi - lo + 1;
   523     SwitchRange* mid = lo + nr/2;
   524     // if there is an easy choice, pivot at a singleton:
   525     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   527     assert(lo < mid && mid <= hi, "good pivot choice");
   528     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   529     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   531     Node *test_val = _gvn.intcon(mid->lo());
   533     if (mid->is_singleton()) {
   534       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   535       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   537       // Special Case:  If there are exactly three ranges, and the high
   538       // and low range each go to the same place, omit the "gt" test,
   539       // since it will not discriminate anything.
   540       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   541       if (eq_test_only) {
   542         assert(mid == hi-1, "");
   543       }
   545       // if there is a higher range, test for it and process it:
   546       if (mid < hi && !eq_test_only) {
   547         // two comparisons of same values--should enable 1 test for 2 branches
   548         // Use BoolTest::le instead of BoolTest::gt
   549         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   550         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   551         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   552         { PreserveJVMState pjvms(this);
   553           set_control(iffalse);
   554           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   555         }
   556         set_control(iftrue);
   557       }
   559     } else {
   560       // mid is a range, not a singleton, so treat mid..hi as a unit
   561       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   563       // if there is a higher range, test for it and process it:
   564       if (mid == hi) {
   565         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   566       } else {
   567         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   568         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   569         { PreserveJVMState pjvms(this);
   570           set_control(iftrue);
   571           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   572         }
   573         set_control(iffalse);
   574       }
   575     }
   577     // in any case, process the lower range
   578     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   579   }
   581   // Decrease pred_count for each successor after all is done.
   582   if (switch_depth == 0) {
   583     int unique_successors = switch_block->num_successors();
   584     for (int i = 0; i < unique_successors; i++) {
   585       Block* target = switch_block->successor_at(i);
   586       // Throw away the pre-allocated path for each unique successor.
   587       target->next_path_num();
   588     }
   589   }
   591 #ifndef PRODUCT
   592   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   593   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   594     SwitchRange* r;
   595     int nsing = 0;
   596     for( r = lo; r <= hi; r++ ) {
   597       if( r->is_singleton() )  nsing++;
   598     }
   599     tty->print(">>> ");
   600     _method->print_short_name();
   601     tty->print_cr(" switch decision tree");
   602     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   603                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   604     if (_max_switch_depth > _est_switch_depth) {
   605       tty->print_cr("******** BAD SWITCH DEPTH ********");
   606     }
   607     tty->print("   ");
   608     for( r = lo; r <= hi; r++ ) {
   609       r->print(env());
   610     }
   611     tty->print_cr("");
   612   }
   613 #endif
   614 }
   616 void Parse::modf() {
   617   Node *f2 = pop();
   618   Node *f1 = pop();
   619   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   620                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   621                               "frem", NULL, //no memory effects
   622                               f1, f2);
   623   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   625   push(res);
   626 }
   628 void Parse::modd() {
   629   Node *d2 = pop_pair();
   630   Node *d1 = pop_pair();
   631   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   632                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   633                               "drem", NULL, //no memory effects
   634                               d1, top(), d2, top());
   635   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   637 #ifdef ASSERT
   638   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   639   assert(res_top == top(), "second value must be top");
   640 #endif
   642   push_pair(res_d);
   643 }
   645 void Parse::l2f() {
   646   Node* f2 = pop();
   647   Node* f1 = pop();
   648   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   649                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   650                               "l2f", NULL, //no memory effects
   651                               f1, f2);
   652   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   654   push(res);
   655 }
   657 void Parse::do_irem() {
   658   // Must keep both values on the expression-stack during null-check
   659   do_null_check(peek(), T_INT);
   660   // Compile-time detect of null-exception?
   661   if (stopped())  return;
   663   Node* b = pop();
   664   Node* a = pop();
   666   const Type *t = _gvn.type(b);
   667   if (t != Type::TOP) {
   668     const TypeInt *ti = t->is_int();
   669     if (ti->is_con()) {
   670       int divisor = ti->get_con();
   671       // check for positive power of 2
   672       if (divisor > 0 &&
   673           (divisor & ~(divisor-1)) == divisor) {
   674         // yes !
   675         Node *mask = _gvn.intcon((divisor - 1));
   676         // Sigh, must handle negative dividends
   677         Node *zero = _gvn.intcon(0);
   678         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   679         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   680         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   681         Node *reg = jump_if_join(ift, iff);
   682         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   683         // Negative path; negate/and/negate
   684         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   685         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   686         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   687         phi->init_req(1, negn);
   688         // Fast positive case
   689         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   690         phi->init_req(2, andx);
   691         // Push the merge
   692         push( _gvn.transform(phi) );
   693         return;
   694       }
   695     }
   696   }
   697   // Default case
   698   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   699 }
   701 // Handle jsr and jsr_w bytecode
   702 void Parse::do_jsr() {
   703   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   705   // Store information about current state, tagged with new _jsr_bci
   706   int return_bci = iter().next_bci();
   707   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   709   // Update method data
   710   profile_taken_branch(jsr_bci);
   712   // The way we do things now, there is only one successor block
   713   // for the jsr, because the target code is cloned by ciTypeFlow.
   714   Block* target = successor_for_bci(jsr_bci);
   716   // What got pushed?
   717   const Type* ret_addr = target->peek();
   718   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   720   // Effect on jsr on stack
   721   push(_gvn.makecon(ret_addr));
   723   // Flow to the jsr.
   724   merge(jsr_bci);
   725 }
   727 // Handle ret bytecode
   728 void Parse::do_ret() {
   729   // Find to whom we return.
   730 #if 0 // %%%% MAKE THIS WORK
   731   Node* con = local();
   732   const TypePtr* tp = con->bottom_type()->isa_ptr();
   733   assert(tp && tp->singleton(), "");
   734   int return_bci = (int) tp->get_con();
   735   merge(return_bci);
   736 #else
   737   assert(block()->num_successors() == 1, "a ret can only go one place now");
   738   Block* target = block()->successor_at(0);
   739   assert(!target->is_ready(), "our arrival must be expected");
   740   profile_ret(target->flow()->start());
   741   int pnum = target->next_path_num();
   742   merge_common(target, pnum);
   743 #endif
   744 }
   746 //--------------------------dynamic_branch_prediction--------------------------
   747 // Try to gather dynamic branch prediction behavior.  Return a probability
   748 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   749 // if we need to use static prediction for some reason.
   750 float Parse::dynamic_branch_prediction(float &cnt) {
   751   ResourceMark rm;
   753   cnt  = COUNT_UNKNOWN;
   755   // Use MethodData information if it is available
   756   // FIXME: free the ProfileData structure
   757   ciMethodData* methodData = method()->method_data();
   758   if (!methodData->is_mature())  return PROB_UNKNOWN;
   759   ciProfileData* data = methodData->bci_to_data(bci());
   760   if (!data->is_JumpData())  return PROB_UNKNOWN;
   762   // get taken and not taken values
   763   int     taken = data->as_JumpData()->taken();
   764   int not_taken = 0;
   765   if (data->is_BranchData()) {
   766     not_taken = data->as_BranchData()->not_taken();
   767   }
   769   // scale the counts to be commensurate with invocation counts:
   770   taken = method()->scale_count(taken);
   771   not_taken = method()->scale_count(not_taken);
   773   // Give up if too few counts to be meaningful
   774   if (taken + not_taken < 40) {
   775     if (C->log() != NULL) {
   776       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   777     }
   778     return PROB_UNKNOWN;
   779   }
   781   // Compute frequency that we arrive here
   782   int sum = taken + not_taken;
   783   // Adjust, if this block is a cloned private block but the
   784   // Jump counts are shared.  Taken the private counts for
   785   // just this path instead of the shared counts.
   786   if( block()->count() > 0 )
   787     sum = block()->count();
   788   cnt = (float)sum / (float)FreqCountInvocations;
   790   // Pin probability to sane limits
   791   float prob;
   792   if( !taken )
   793     prob = (0+PROB_MIN) / 2;
   794   else if( !not_taken )
   795     prob = (1+PROB_MAX) / 2;
   796   else {                         // Compute probability of true path
   797     prob = (float)taken / (float)(taken + not_taken);
   798     if (prob > PROB_MAX)  prob = PROB_MAX;
   799     if (prob < PROB_MIN)   prob = PROB_MIN;
   800   }
   802   assert((cnt > 0.0f) && (prob > 0.0f),
   803          "Bad frequency assignment in if");
   805   if (C->log() != NULL) {
   806     const char* prob_str = NULL;
   807     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   808     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   809     char prob_str_buf[30];
   810     if (prob_str == NULL) {
   811       sprintf(prob_str_buf, "%g", prob);
   812       prob_str = prob_str_buf;
   813     }
   814     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   815                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   816   }
   817   return prob;
   818 }
   820 //-----------------------------branch_prediction-------------------------------
   821 float Parse::branch_prediction(float& cnt,
   822                                BoolTest::mask btest,
   823                                int target_bci) {
   824   float prob = dynamic_branch_prediction(cnt);
   825   // If prob is unknown, switch to static prediction
   826   if (prob != PROB_UNKNOWN)  return prob;
   828   prob = PROB_FAIR;                   // Set default value
   829   if (btest == BoolTest::eq)          // Exactly equal test?
   830     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   831   else if (btest == BoolTest::ne)
   832     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   834   // If this is a conditional test guarding a backwards branch,
   835   // assume its a loop-back edge.  Make it a likely taken branch.
   836   if (target_bci < bci()) {
   837     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   838       // Since it's an OSR, we probably have profile data, but since
   839       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   840       // Let's make a special check here for completely zero counts.
   841       ciMethodData* methodData = method()->method_data();
   842       if (!methodData->is_empty()) {
   843         ciProfileData* data = methodData->bci_to_data(bci());
   844         // Only stop for truly zero counts, which mean an unknown part
   845         // of the OSR-ed method, and we want to deopt to gather more stats.
   846         // If you have ANY counts, then this loop is simply 'cold' relative
   847         // to the OSR loop.
   848         if (data->as_BranchData()->taken() +
   849             data->as_BranchData()->not_taken() == 0 ) {
   850           // This is the only way to return PROB_UNKNOWN:
   851           return PROB_UNKNOWN;
   852         }
   853       }
   854     }
   855     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   856   }
   858   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   859   return prob;
   860 }
   862 // The magic constants are chosen so as to match the output of
   863 // branch_prediction() when the profile reports a zero taken count.
   864 // It is important to distinguish zero counts unambiguously, because
   865 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   866 // very small but nonzero probabilities, which if confused with zero
   867 // counts would keep the program recompiling indefinitely.
   868 bool Parse::seems_never_taken(float prob) {
   869   return prob < PROB_MIN;
   870 }
   872 inline void Parse::repush_if_args() {
   873 #ifndef PRODUCT
   874   if (PrintOpto && WizardMode) {
   875     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   876                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   877     method()->print_name(); tty->cr();
   878   }
   879 #endif
   880   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   881   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   882   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   883   assert(argument(0) != NULL, "must exist");
   884   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   885   _sp += bc_depth;
   886 }
   888 //----------------------------------do_ifnull----------------------------------
   889 void Parse::do_ifnull(BoolTest::mask btest) {
   890   int target_bci = iter().get_dest();
   892   Block* branch_block = successor_for_bci(target_bci);
   893   Block* next_block   = successor_for_bci(iter().next_bci());
   895   float cnt;
   896   float prob = branch_prediction(cnt, btest, target_bci);
   897   if (prob == PROB_UNKNOWN) {
   898     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   899 #ifndef PRODUCT
   900     if (PrintOpto && Verbose)
   901       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   902 #endif
   903     repush_if_args(); // to gather stats on loop
   904     // We need to mark this branch as taken so that if we recompile we will
   905     // see that it is possible. In the tiered system the interpreter doesn't
   906     // do profiling and by the time we get to the lower tier from the interpreter
   907     // the path may be cold again. Make sure it doesn't look untaken
   908     profile_taken_branch(target_bci, !ProfileInterpreter);
   909     uncommon_trap(Deoptimization::Reason_unreached,
   910                   Deoptimization::Action_reinterpret,
   911                   NULL, "cold");
   912     if (EliminateAutoBox) {
   913       // Mark the successor blocks as parsed
   914       branch_block->next_path_num();
   915       next_block->next_path_num();
   916     }
   917     return;
   918   }
   920   // If this is a backwards branch in the bytecodes, add Safepoint
   921   maybe_add_safepoint(target_bci);
   923   explicit_null_checks_inserted++;
   924   Node* a = null();
   925   Node* b = pop();
   926   Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
   928   // Make a cast-away-nullness that is control dependent on the test
   929   const Type *t = _gvn.type(b);
   930   const Type *t_not_null = t->join(TypePtr::NOTNULL);
   931   Node *cast = new (C, 2) CastPPNode(b,t_not_null);
   933   // Generate real control flow
   934   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   936   // Sanity check the probability value
   937   assert(prob > 0.0f,"Bad probability in Parser");
   938  // Need xform to put node in hash table
   939   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   940   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   941   // True branch
   942   { PreserveJVMState pjvms(this);
   943     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   944     set_control(iftrue);
   946     if (stopped()) {            // Path is dead?
   947       explicit_null_checks_elided++;
   948       if (EliminateAutoBox) {
   949         // Mark the successor block as parsed
   950         branch_block->next_path_num();
   951       }
   952     } else {                    // Path is live.
   953       // Update method data
   954       profile_taken_branch(target_bci);
   955       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   956       if (!stopped())
   957         merge(target_bci);
   958     }
   959   }
   961   // False branch
   962   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   963   set_control(iffalse);
   965   if (stopped()) {              // Path is dead?
   966     explicit_null_checks_elided++;
   967     if (EliminateAutoBox) {
   968       // Mark the successor block as parsed
   969       next_block->next_path_num();
   970     }
   971   } else  {                     // Path is live.
   972     // Update method data
   973     profile_not_taken_branch();
   974     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   975                         next_block, branch_block);
   976   }
   977 }
   979 //------------------------------------do_if------------------------------------
   980 void Parse::do_if(BoolTest::mask btest, Node* c) {
   981   int target_bci = iter().get_dest();
   983   Block* branch_block = successor_for_bci(target_bci);
   984   Block* next_block   = successor_for_bci(iter().next_bci());
   986   float cnt;
   987   float prob = branch_prediction(cnt, btest, target_bci);
   988   float untaken_prob = 1.0 - prob;
   990   if (prob == PROB_UNKNOWN) {
   991 #ifndef PRODUCT
   992     if (PrintOpto && Verbose)
   993       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   994 #endif
   995     repush_if_args(); // to gather stats on loop
   996     // We need to mark this branch as taken so that if we recompile we will
   997     // see that it is possible. In the tiered system the interpreter doesn't
   998     // do profiling and by the time we get to the lower tier from the interpreter
   999     // the path may be cold again. Make sure it doesn't look untaken
  1000     profile_taken_branch(target_bci, !ProfileInterpreter);
  1001     uncommon_trap(Deoptimization::Reason_unreached,
  1002                   Deoptimization::Action_reinterpret,
  1003                   NULL, "cold");
  1004     if (EliminateAutoBox) {
  1005       // Mark the successor blocks as parsed
  1006       branch_block->next_path_num();
  1007       next_block->next_path_num();
  1009     return;
  1012   // Sanity check the probability value
  1013   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1015   bool taken_if_true = true;
  1016   // Convert BoolTest to canonical form:
  1017   if (!BoolTest(btest).is_canonical()) {
  1018     btest         = BoolTest(btest).negate();
  1019     taken_if_true = false;
  1020     // prob is NOT updated here; it remains the probability of the taken
  1021     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1023   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1025   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1026   Node* tst = _gvn.transform(tst0);
  1027   BoolTest::mask taken_btest   = BoolTest::illegal;
  1028   BoolTest::mask untaken_btest = BoolTest::illegal;
  1030   if (tst->is_Bool()) {
  1031     // Refresh c from the transformed bool node, since it may be
  1032     // simpler than the original c.  Also re-canonicalize btest.
  1033     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1034     // That can arise from statements like: if (x instanceof C) ...
  1035     if (tst != tst0) {
  1036       // Canonicalize one more time since transform can change it.
  1037       btest = tst->as_Bool()->_test._test;
  1038       if (!BoolTest(btest).is_canonical()) {
  1039         // Reverse edges one more time...
  1040         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1041         btest = tst->as_Bool()->_test._test;
  1042         assert(BoolTest(btest).is_canonical(), "sanity");
  1043         taken_if_true = !taken_if_true;
  1045       c = tst->in(1);
  1047     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1048     taken_btest   = taken_if_true ?     btest : neg_btest;
  1049     untaken_btest = taken_if_true ? neg_btest :     btest;
  1052   // Generate real control flow
  1053   float true_prob = (taken_if_true ? prob : untaken_prob);
  1054   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1055   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1056   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1057   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1058   if (!taken_if_true) {  // Finish conversion to canonical form
  1059     Node* tmp      = taken_branch;
  1060     taken_branch   = untaken_branch;
  1061     untaken_branch = tmp;
  1064   // Branch is taken:
  1065   { PreserveJVMState pjvms(this);
  1066     taken_branch = _gvn.transform(taken_branch);
  1067     set_control(taken_branch);
  1069     if (stopped()) {
  1070       if (EliminateAutoBox) {
  1071         // Mark the successor block as parsed
  1072         branch_block->next_path_num();
  1074     } else {
  1075       // Update method data
  1076       profile_taken_branch(target_bci);
  1077       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1078       if (!stopped())
  1079         merge(target_bci);
  1083   untaken_branch = _gvn.transform(untaken_branch);
  1084   set_control(untaken_branch);
  1086   // Branch not taken.
  1087   if (stopped()) {
  1088     if (EliminateAutoBox) {
  1089       // Mark the successor block as parsed
  1090       next_block->next_path_num();
  1092   } else {
  1093     // Update method data
  1094     profile_not_taken_branch();
  1095     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1096                         next_block, branch_block);
  1100 //----------------------------adjust_map_after_if------------------------------
  1101 // Adjust the JVM state to reflect the result of taking this path.
  1102 // Basically, it means inspecting the CmpNode controlling this
  1103 // branch, seeing how it constrains a tested value, and then
  1104 // deciding if it's worth our while to encode this constraint
  1105 // as graph nodes in the current abstract interpretation map.
  1106 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1107                                 Block* path, Block* other_path) {
  1108   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1109     return;                             // nothing to do
  1111   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1113   int cop = c->Opcode();
  1114   if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1115     // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1116     //
  1117     // If this might possibly turn into an implicit null check,
  1118     // and the null has never yet been seen, we need to generate
  1119     // an uncommon trap, so as to recompile instead of suffering
  1120     // with very slow branches.  (We'll get the slow branches if
  1121     // the program ever changes phase and starts seeing nulls here.)
  1122     //
  1123     // The tests we worry about are of the form (p == null).
  1124     // We do not simply inspect for a null constant, since a node may
  1125     // optimize to 'null' later on.
  1126     repush_if_args();
  1127     // We need to mark this branch as taken so that if we recompile we will
  1128     // see that it is possible. In the tiered system the interpreter doesn't
  1129     // do profiling and by the time we get to the lower tier from the interpreter
  1130     // the path may be cold again. Make sure it doesn't look untaken
  1131     if (is_fallthrough) {
  1132       profile_not_taken_branch(!ProfileInterpreter);
  1133     } else {
  1134       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1136     uncommon_trap(Deoptimization::Reason_unreached,
  1137                   Deoptimization::Action_reinterpret,
  1138                   NULL,
  1139                   (is_fallthrough ? "taken always" : "taken never"));
  1140     return;
  1143   Node* val = c->in(1);
  1144   Node* con = c->in(2);
  1145   const Type* tcon = _gvn.type(con);
  1146   const Type* tval = _gvn.type(val);
  1147   bool have_con = tcon->singleton();
  1148   if (tval->singleton()) {
  1149     if (!have_con) {
  1150       // Swap, so constant is in con.
  1151       con  = val;
  1152       tcon = tval;
  1153       val  = c->in(2);
  1154       tval = _gvn.type(val);
  1155       btest = BoolTest(btest).commute();
  1156       have_con = true;
  1157     } else {
  1158       // Do we have two constants?  Then leave well enough alone.
  1159       have_con = false;
  1162   if (!have_con)                        // remaining adjustments need a con
  1163     return;
  1166   int val_in_map = map()->find_edge(val);
  1167   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1169     JVMState* jvms = this->jvms();
  1170     if (!(jvms->is_loc(val_in_map) ||
  1171           jvms->is_stk(val_in_map)))
  1172       return;                           // again, it would be useless
  1175   // Check for a comparison to a constant, and "know" that the compared
  1176   // value is constrained on this path.
  1177   assert(tcon->singleton(), "");
  1178   ConstraintCastNode* ccast = NULL;
  1179   Node* cast = NULL;
  1181   switch (btest) {
  1182   case BoolTest::eq:                    // Constant test?
  1184       const Type* tboth = tcon->join(tval);
  1185       if (tboth == tval)  break;        // Nothing to gain.
  1186       if (tcon->isa_int()) {
  1187         ccast = new (C, 2) CastIINode(val, tboth);
  1188       } else if (tcon == TypePtr::NULL_PTR) {
  1189         // Cast to null, but keep the pointer identity temporarily live.
  1190         ccast = new (C, 2) CastPPNode(val, tboth);
  1191       } else {
  1192         const TypeF* tf = tcon->isa_float_constant();
  1193         const TypeD* td = tcon->isa_double_constant();
  1194         // Exclude tests vs float/double 0 as these could be
  1195         // either +0 or -0.  Just because you are equal to +0
  1196         // doesn't mean you ARE +0!
  1197         if ((!tf || tf->_f != 0.0) &&
  1198             (!td || td->_d != 0.0))
  1199           cast = con;                   // Replace non-constant val by con.
  1202     break;
  1204   case BoolTest::ne:
  1205     if (tcon == TypePtr::NULL_PTR) {
  1206       cast = cast_not_null(val, false);
  1208     break;
  1210   default:
  1211     // (At this point we could record int range types with CastII.)
  1212     break;
  1215   if (ccast != NULL) {
  1216     const Type* tcc = ccast->as_Type()->type();
  1217     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1218     // Delay transform() call to allow recovery of pre-cast value
  1219     // at the control merge.
  1220     ccast->set_req(0, control());
  1221     _gvn.set_type_bottom(ccast);
  1222     record_for_igvn(ccast);
  1223     cast = ccast;
  1226   if (cast != NULL) {                   // Here's the payoff.
  1227     replace_in_map(val, cast);
  1232 //------------------------------do_one_bytecode--------------------------------
  1233 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1234 void Parse::do_one_bytecode() {
  1235   Node *a, *b, *c, *d;          // Handy temps
  1236   BoolTest::mask btest;
  1237   int i;
  1239   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1241   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1242                           "out of nodes parsing method")) {
  1243     return;
  1246 #ifdef ASSERT
  1247   // for setting breakpoints
  1248   if (TraceOptoParse) {
  1249     tty->print(" @");
  1250     dump_bci(bci());
  1252 #endif
  1254   switch (bc()) {
  1255   case Bytecodes::_nop:
  1256     // do nothing
  1257     break;
  1258   case Bytecodes::_lconst_0:
  1259     push_pair(longcon(0));
  1260     break;
  1262   case Bytecodes::_lconst_1:
  1263     push_pair(longcon(1));
  1264     break;
  1266   case Bytecodes::_fconst_0:
  1267     push(zerocon(T_FLOAT));
  1268     break;
  1270   case Bytecodes::_fconst_1:
  1271     push(makecon(TypeF::ONE));
  1272     break;
  1274   case Bytecodes::_fconst_2:
  1275     push(makecon(TypeF::make(2.0f)));
  1276     break;
  1278   case Bytecodes::_dconst_0:
  1279     push_pair(zerocon(T_DOUBLE));
  1280     break;
  1282   case Bytecodes::_dconst_1:
  1283     push_pair(makecon(TypeD::ONE));
  1284     break;
  1286   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1287   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1288   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1289   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1290   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1291   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1292   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1293   case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  1294   case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  1295   case Bytecodes::_aconst_null: push(null());  break;
  1296   case Bytecodes::_ldc:
  1297   case Bytecodes::_ldc_w:
  1298   case Bytecodes::_ldc2_w:
  1299     // If the constant is unresolved, run this BC once in the interpreter.
  1300     if (iter().is_unresolved_string()) {
  1301       uncommon_trap(Deoptimization::make_trap_request
  1302                     (Deoptimization::Reason_unloaded,
  1303                      Deoptimization::Action_reinterpret,
  1304                      iter().get_constant_index()),
  1305                     NULL, "unresolved_string");
  1306       break;
  1307     } else {
  1308       ciConstant constant = iter().get_constant();
  1309       if (constant.basic_type() == T_OBJECT) {
  1310         ciObject* c = constant.as_object();
  1311         if (c->is_klass()) {
  1312           // The constant returned for a klass is the ciKlass for the
  1313           // entry.  We want the java_mirror so get it.
  1314           ciKlass* klass = c->as_klass();
  1315           if (klass->is_loaded()) {
  1316             constant = ciConstant(T_OBJECT, klass->java_mirror());
  1317           } else {
  1318             uncommon_trap(Deoptimization::make_trap_request
  1319                           (Deoptimization::Reason_unloaded,
  1320                            Deoptimization::Action_reinterpret,
  1321                            iter().get_constant_index()),
  1322                           NULL, "unresolved_klass");
  1323             break;
  1327       push_constant(constant);
  1330     break;
  1332   case Bytecodes::_aload_0:
  1333     push( local(0) );
  1334     break;
  1335   case Bytecodes::_aload_1:
  1336     push( local(1) );
  1337     break;
  1338   case Bytecodes::_aload_2:
  1339     push( local(2) );
  1340     break;
  1341   case Bytecodes::_aload_3:
  1342     push( local(3) );
  1343     break;
  1344   case Bytecodes::_aload:
  1345     push( local(iter().get_index()) );
  1346     break;
  1348   case Bytecodes::_fload_0:
  1349   case Bytecodes::_iload_0:
  1350     push( local(0) );
  1351     break;
  1352   case Bytecodes::_fload_1:
  1353   case Bytecodes::_iload_1:
  1354     push( local(1) );
  1355     break;
  1356   case Bytecodes::_fload_2:
  1357   case Bytecodes::_iload_2:
  1358     push( local(2) );
  1359     break;
  1360   case Bytecodes::_fload_3:
  1361   case Bytecodes::_iload_3:
  1362     push( local(3) );
  1363     break;
  1364   case Bytecodes::_fload:
  1365   case Bytecodes::_iload:
  1366     push( local(iter().get_index()) );
  1367     break;
  1368   case Bytecodes::_lload_0:
  1369     push_pair_local( 0 );
  1370     break;
  1371   case Bytecodes::_lload_1:
  1372     push_pair_local( 1 );
  1373     break;
  1374   case Bytecodes::_lload_2:
  1375     push_pair_local( 2 );
  1376     break;
  1377   case Bytecodes::_lload_3:
  1378     push_pair_local( 3 );
  1379     break;
  1380   case Bytecodes::_lload:
  1381     push_pair_local( iter().get_index() );
  1382     break;
  1384   case Bytecodes::_dload_0:
  1385     push_pair_local(0);
  1386     break;
  1387   case Bytecodes::_dload_1:
  1388     push_pair_local(1);
  1389     break;
  1390   case Bytecodes::_dload_2:
  1391     push_pair_local(2);
  1392     break;
  1393   case Bytecodes::_dload_3:
  1394     push_pair_local(3);
  1395     break;
  1396   case Bytecodes::_dload:
  1397     push_pair_local(iter().get_index());
  1398     break;
  1399   case Bytecodes::_fstore_0:
  1400   case Bytecodes::_istore_0:
  1401   case Bytecodes::_astore_0:
  1402     set_local( 0, pop() );
  1403     break;
  1404   case Bytecodes::_fstore_1:
  1405   case Bytecodes::_istore_1:
  1406   case Bytecodes::_astore_1:
  1407     set_local( 1, pop() );
  1408     break;
  1409   case Bytecodes::_fstore_2:
  1410   case Bytecodes::_istore_2:
  1411   case Bytecodes::_astore_2:
  1412     set_local( 2, pop() );
  1413     break;
  1414   case Bytecodes::_fstore_3:
  1415   case Bytecodes::_istore_3:
  1416   case Bytecodes::_astore_3:
  1417     set_local( 3, pop() );
  1418     break;
  1419   case Bytecodes::_fstore:
  1420   case Bytecodes::_istore:
  1421   case Bytecodes::_astore:
  1422     set_local( iter().get_index(), pop() );
  1423     break;
  1424   // long stores
  1425   case Bytecodes::_lstore_0:
  1426     set_pair_local( 0, pop_pair() );
  1427     break;
  1428   case Bytecodes::_lstore_1:
  1429     set_pair_local( 1, pop_pair() );
  1430     break;
  1431   case Bytecodes::_lstore_2:
  1432     set_pair_local( 2, pop_pair() );
  1433     break;
  1434   case Bytecodes::_lstore_3:
  1435     set_pair_local( 3, pop_pair() );
  1436     break;
  1437   case Bytecodes::_lstore:
  1438     set_pair_local( iter().get_index(), pop_pair() );
  1439     break;
  1441   // double stores
  1442   case Bytecodes::_dstore_0:
  1443     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1444     break;
  1445   case Bytecodes::_dstore_1:
  1446     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1447     break;
  1448   case Bytecodes::_dstore_2:
  1449     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1450     break;
  1451   case Bytecodes::_dstore_3:
  1452     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1453     break;
  1454   case Bytecodes::_dstore:
  1455     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1456     break;
  1458   case Bytecodes::_pop:  _sp -= 1;   break;
  1459   case Bytecodes::_pop2: _sp -= 2;   break;
  1460   case Bytecodes::_swap:
  1461     a = pop();
  1462     b = pop();
  1463     push(a);
  1464     push(b);
  1465     break;
  1466   case Bytecodes::_dup:
  1467     a = pop();
  1468     push(a);
  1469     push(a);
  1470     break;
  1471   case Bytecodes::_dup_x1:
  1472     a = pop();
  1473     b = pop();
  1474     push( a );
  1475     push( b );
  1476     push( a );
  1477     break;
  1478   case Bytecodes::_dup_x2:
  1479     a = pop();
  1480     b = pop();
  1481     c = pop();
  1482     push( a );
  1483     push( c );
  1484     push( b );
  1485     push( a );
  1486     break;
  1487   case Bytecodes::_dup2:
  1488     a = pop();
  1489     b = pop();
  1490     push( b );
  1491     push( a );
  1492     push( b );
  1493     push( a );
  1494     break;
  1496   case Bytecodes::_dup2_x1:
  1497     // before: .. c, b, a
  1498     // after:  .. b, a, c, b, a
  1499     // not tested
  1500     a = pop();
  1501     b = pop();
  1502     c = pop();
  1503     push( b );
  1504     push( a );
  1505     push( c );
  1506     push( b );
  1507     push( a );
  1508     break;
  1509   case Bytecodes::_dup2_x2:
  1510     // before: .. d, c, b, a
  1511     // after:  .. b, a, d, c, b, a
  1512     // not tested
  1513     a = pop();
  1514     b = pop();
  1515     c = pop();
  1516     d = pop();
  1517     push( b );
  1518     push( a );
  1519     push( d );
  1520     push( c );
  1521     push( b );
  1522     push( a );
  1523     break;
  1525   case Bytecodes::_arraylength: {
  1526     // Must do null-check with value on expression stack
  1527     Node *ary = do_null_check(peek(), T_ARRAY);
  1528     // Compile-time detect of null-exception?
  1529     if (stopped())  return;
  1530     a = pop();
  1531     push(load_array_length(a));
  1532     break;
  1535   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1536   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1537   case Bytecodes::_iaload: array_load(T_INT);    break;
  1538   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1539   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1540   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1541   case Bytecodes::_laload: {
  1542     a = array_addressing(T_LONG, 0);
  1543     if (stopped())  return;     // guarenteed null or range check
  1544     _sp -= 2;                   // Pop array and index
  1545     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1546     break;
  1548   case Bytecodes::_daload: {
  1549     a = array_addressing(T_DOUBLE, 0);
  1550     if (stopped())  return;     // guarenteed null or range check
  1551     _sp -= 2;                   // Pop array and index
  1552     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1553     break;
  1555   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1556   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1557   case Bytecodes::_iastore: array_store(T_INT);   break;
  1558   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1559   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1560   case Bytecodes::_aastore: {
  1561     d = array_addressing(T_OBJECT, 1);
  1562     if (stopped())  return;     // guarenteed null or range check
  1563     array_store_check();
  1564     c = pop();                  // Oop to store
  1565     b = pop();                  // index (already used)
  1566     a = pop();                  // the array itself
  1567     const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
  1568     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1569     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1570     break;
  1572   case Bytecodes::_lastore: {
  1573     a = array_addressing(T_LONG, 2);
  1574     if (stopped())  return;     // guarenteed null or range check
  1575     c = pop_pair();
  1576     _sp -= 2;                   // Pop array and index
  1577     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1578     break;
  1580   case Bytecodes::_dastore: {
  1581     a = array_addressing(T_DOUBLE, 2);
  1582     if (stopped())  return;     // guarenteed null or range check
  1583     c = pop_pair();
  1584     _sp -= 2;                   // Pop array and index
  1585     c = dstore_rounding(c);
  1586     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1587     break;
  1589   case Bytecodes::_getfield:
  1590     do_getfield();
  1591     break;
  1593   case Bytecodes::_getstatic:
  1594     do_getstatic();
  1595     break;
  1597   case Bytecodes::_putfield:
  1598     do_putfield();
  1599     break;
  1601   case Bytecodes::_putstatic:
  1602     do_putstatic();
  1603     break;
  1605   case Bytecodes::_irem:
  1606     do_irem();
  1607     break;
  1608   case Bytecodes::_idiv:
  1609     // Must keep both values on the expression-stack during null-check
  1610     do_null_check(peek(), T_INT);
  1611     // Compile-time detect of null-exception?
  1612     if (stopped())  return;
  1613     b = pop();
  1614     a = pop();
  1615     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1616     break;
  1617   case Bytecodes::_imul:
  1618     b = pop(); a = pop();
  1619     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1620     break;
  1621   case Bytecodes::_iadd:
  1622     b = pop(); a = pop();
  1623     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1624     break;
  1625   case Bytecodes::_ineg:
  1626     a = pop();
  1627     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1628     break;
  1629   case Bytecodes::_isub:
  1630     b = pop(); a = pop();
  1631     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1632     break;
  1633   case Bytecodes::_iand:
  1634     b = pop(); a = pop();
  1635     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1636     break;
  1637   case Bytecodes::_ior:
  1638     b = pop(); a = pop();
  1639     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1640     break;
  1641   case Bytecodes::_ixor:
  1642     b = pop(); a = pop();
  1643     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1644     break;
  1645   case Bytecodes::_ishl:
  1646     b = pop(); a = pop();
  1647     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1648     break;
  1649   case Bytecodes::_ishr:
  1650     b = pop(); a = pop();
  1651     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1652     break;
  1653   case Bytecodes::_iushr:
  1654     b = pop(); a = pop();
  1655     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1656     break;
  1658   case Bytecodes::_fneg:
  1659     a = pop();
  1660     b = _gvn.transform(new (C, 2) NegFNode (a));
  1661     push(b);
  1662     break;
  1664   case Bytecodes::_fsub:
  1665     b = pop();
  1666     a = pop();
  1667     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1668     d = precision_rounding(c);
  1669     push( d );
  1670     break;
  1672   case Bytecodes::_fadd:
  1673     b = pop();
  1674     a = pop();
  1675     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1676     d = precision_rounding(c);
  1677     push( d );
  1678     break;
  1680   case Bytecodes::_fmul:
  1681     b = pop();
  1682     a = pop();
  1683     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1684     d = precision_rounding(c);
  1685     push( d );
  1686     break;
  1688   case Bytecodes::_fdiv:
  1689     b = pop();
  1690     a = pop();
  1691     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1692     d = precision_rounding(c);
  1693     push( d );
  1694     break;
  1696   case Bytecodes::_frem:
  1697     if (Matcher::has_match_rule(Op_ModF)) {
  1698       // Generate a ModF node.
  1699       b = pop();
  1700       a = pop();
  1701       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1702       d = precision_rounding(c);
  1703       push( d );
  1705     else {
  1706       // Generate a call.
  1707       modf();
  1709     break;
  1711   case Bytecodes::_fcmpl:
  1712     b = pop();
  1713     a = pop();
  1714     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1715     push(c);
  1716     break;
  1717   case Bytecodes::_fcmpg:
  1718     b = pop();
  1719     a = pop();
  1721     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1722     // which negates the result sign except for unordered.  Flip the unordered
  1723     // as well by using CmpF3 which implements unordered-lesser instead of
  1724     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1725     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1726     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1727     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1728     push(c);
  1729     break;
  1731   case Bytecodes::_f2i:
  1732     a = pop();
  1733     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1734     break;
  1736   case Bytecodes::_d2i:
  1737     a = pop_pair();
  1738     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1739     push( b );
  1740     break;
  1742   case Bytecodes::_f2d:
  1743     a = pop();
  1744     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1745     push_pair( b );
  1746     break;
  1748   case Bytecodes::_d2f:
  1749     a = pop_pair();
  1750     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1751     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1752     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1753     push( b );
  1754     break;
  1756   case Bytecodes::_l2f:
  1757     if (Matcher::convL2FSupported()) {
  1758       a = pop_pair();
  1759       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1760       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1761       // Rather than storing the result into an FP register then pushing
  1762       // out to memory to round, the machine instruction that implements
  1763       // ConvL2D is responsible for rounding.
  1764       // c = precision_rounding(b);
  1765       c = _gvn.transform(b);
  1766       push(c);
  1767     } else {
  1768       l2f();
  1770     break;
  1772   case Bytecodes::_l2d:
  1773     a = pop_pair();
  1774     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1775     // For i486.ad, rounding is always necessary (see _l2f above).
  1776     // c = dprecision_rounding(b);
  1777     c = _gvn.transform(b);
  1778     push_pair(c);
  1779     break;
  1781   case Bytecodes::_f2l:
  1782     a = pop();
  1783     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1784     push_pair(b);
  1785     break;
  1787   case Bytecodes::_d2l:
  1788     a = pop_pair();
  1789     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1790     push_pair(b);
  1791     break;
  1793   case Bytecodes::_dsub:
  1794     b = pop_pair();
  1795     a = pop_pair();
  1796     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1797     d = dprecision_rounding(c);
  1798     push_pair( d );
  1799     break;
  1801   case Bytecodes::_dadd:
  1802     b = pop_pair();
  1803     a = pop_pair();
  1804     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1805     d = dprecision_rounding(c);
  1806     push_pair( d );
  1807     break;
  1809   case Bytecodes::_dmul:
  1810     b = pop_pair();
  1811     a = pop_pair();
  1812     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1813     d = dprecision_rounding(c);
  1814     push_pair( d );
  1815     break;
  1817   case Bytecodes::_ddiv:
  1818     b = pop_pair();
  1819     a = pop_pair();
  1820     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1821     d = dprecision_rounding(c);
  1822     push_pair( d );
  1823     break;
  1825   case Bytecodes::_dneg:
  1826     a = pop_pair();
  1827     b = _gvn.transform(new (C, 2) NegDNode (a));
  1828     push_pair(b);
  1829     break;
  1831   case Bytecodes::_drem:
  1832     if (Matcher::has_match_rule(Op_ModD)) {
  1833       // Generate a ModD node.
  1834       b = pop_pair();
  1835       a = pop_pair();
  1836       // a % b
  1838       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1839       d = dprecision_rounding(c);
  1840       push_pair( d );
  1842     else {
  1843       // Generate a call.
  1844       modd();
  1846     break;
  1848   case Bytecodes::_dcmpl:
  1849     b = pop_pair();
  1850     a = pop_pair();
  1851     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1852     push(c);
  1853     break;
  1855   case Bytecodes::_dcmpg:
  1856     b = pop_pair();
  1857     a = pop_pair();
  1858     // Same as dcmpl but need to flip the unordered case.
  1859     // Commute the inputs, which negates the result sign except for unordered.
  1860     // Flip the unordered as well by using CmpD3 which implements
  1861     // unordered-lesser instead of unordered-greater semantics.
  1862     // Finally, negate the result bits.  Result is same as using a
  1863     // CmpD3Greater except we did it with CmpD3 alone.
  1864     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1865     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1866     push(c);
  1867     break;
  1870     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1871   case Bytecodes::_land:
  1872     b = pop_pair();
  1873     a = pop_pair();
  1874     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1875     push_pair(c);
  1876     break;
  1877   case Bytecodes::_lor:
  1878     b = pop_pair();
  1879     a = pop_pair();
  1880     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1881     push_pair(c);
  1882     break;
  1883   case Bytecodes::_lxor:
  1884     b = pop_pair();
  1885     a = pop_pair();
  1886     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1887     push_pair(c);
  1888     break;
  1890   case Bytecodes::_lshl:
  1891     b = pop();                  // the shift count
  1892     a = pop_pair();             // value to be shifted
  1893     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1894     push_pair(c);
  1895     break;
  1896   case Bytecodes::_lshr:
  1897     b = pop();                  // the shift count
  1898     a = pop_pair();             // value to be shifted
  1899     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1900     push_pair(c);
  1901     break;
  1902   case Bytecodes::_lushr:
  1903     b = pop();                  // the shift count
  1904     a = pop_pair();             // value to be shifted
  1905     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1906     push_pair(c);
  1907     break;
  1908   case Bytecodes::_lmul:
  1909     b = pop_pair();
  1910     a = pop_pair();
  1911     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1912     push_pair(c);
  1913     break;
  1915   case Bytecodes::_lrem:
  1916     // Must keep both values on the expression-stack during null-check
  1917     assert(peek(0) == top(), "long word order");
  1918     do_null_check(peek(1), T_LONG);
  1919     // Compile-time detect of null-exception?
  1920     if (stopped())  return;
  1921     b = pop_pair();
  1922     a = pop_pair();
  1923     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1924     push_pair(c);
  1925     break;
  1927   case Bytecodes::_ldiv:
  1928     // Must keep both values on the expression-stack during null-check
  1929     assert(peek(0) == top(), "long word order");
  1930     do_null_check(peek(1), T_LONG);
  1931     // Compile-time detect of null-exception?
  1932     if (stopped())  return;
  1933     b = pop_pair();
  1934     a = pop_pair();
  1935     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1936     push_pair(c);
  1937     break;
  1939   case Bytecodes::_ladd:
  1940     b = pop_pair();
  1941     a = pop_pair();
  1942     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1943     push_pair(c);
  1944     break;
  1945   case Bytecodes::_lsub:
  1946     b = pop_pair();
  1947     a = pop_pair();
  1948     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1949     push_pair(c);
  1950     break;
  1951   case Bytecodes::_lcmp:
  1952     // Safepoints are now inserted _before_ branches.  The long-compare
  1953     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1954     // slew of control flow.  These are usually followed by a CmpI vs zero and
  1955     // a branch; this pattern then optimizes to the obvious long-compare and
  1956     // branch.  However, if the branch is backwards there's a Safepoint
  1957     // inserted.  The inserted Safepoint captures the JVM state at the
  1958     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1959     // long-compare is used to control a loop the debug info will force
  1960     // computation of the 3-way value, even though the generated code uses a
  1961     // long-compare and branch.  We try to rectify the situation by inserting
  1962     // a SafePoint here and have it dominate and kill the safepoint added at a
  1963     // following backwards branch.  At this point the JVM state merely holds 2
  1964     // longs but not the 3-way value.
  1965     if( UseLoopSafepoints ) {
  1966       switch( iter().next_bc() ) {
  1967       case Bytecodes::_ifgt:
  1968       case Bytecodes::_iflt:
  1969       case Bytecodes::_ifge:
  1970       case Bytecodes::_ifle:
  1971       case Bytecodes::_ifne:
  1972       case Bytecodes::_ifeq:
  1973         // If this is a backwards branch in the bytecodes, add Safepoint
  1974         maybe_add_safepoint(iter().next_get_dest());
  1977     b = pop_pair();
  1978     a = pop_pair();
  1979     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1980     push(c);
  1981     break;
  1983   case Bytecodes::_lneg:
  1984     a = pop_pair();
  1985     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  1986     push_pair(b);
  1987     break;
  1988   case Bytecodes::_l2i:
  1989     a = pop_pair();
  1990     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  1991     break;
  1992   case Bytecodes::_i2l:
  1993     a = pop();
  1994     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  1995     push_pair(b);
  1996     break;
  1997   case Bytecodes::_i2b:
  1998     // Sign extend
  1999     a = pop();
  2000     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2001     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2002     push( a );
  2003     break;
  2004   case Bytecodes::_i2s:
  2005     a = pop();
  2006     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2007     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2008     push( a );
  2009     break;
  2010   case Bytecodes::_i2c:
  2011     a = pop();
  2012     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2013     break;
  2015   case Bytecodes::_i2f:
  2016     a = pop();
  2017     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2018     c = precision_rounding(b);
  2019     push (b);
  2020     break;
  2022   case Bytecodes::_i2d:
  2023     a = pop();
  2024     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2025     push_pair(b);
  2026     break;
  2028   case Bytecodes::_iinc:        // Increment local
  2029     i = iter().get_index();     // Get local index
  2030     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2031     break;
  2033   // Exit points of synchronized methods must have an unlock node
  2034   case Bytecodes::_return:
  2035     return_current(NULL);
  2036     break;
  2038   case Bytecodes::_ireturn:
  2039   case Bytecodes::_areturn:
  2040   case Bytecodes::_freturn:
  2041     return_current(pop());
  2042     break;
  2043   case Bytecodes::_lreturn:
  2044     return_current(pop_pair());
  2045     break;
  2046   case Bytecodes::_dreturn:
  2047     return_current(pop_pair());
  2048     break;
  2050   case Bytecodes::_athrow:
  2051     // null exception oop throws NULL pointer exception
  2052     do_null_check(peek(), T_OBJECT);
  2053     if (stopped())  return;
  2054     if (JvmtiExport::can_post_exceptions()) {
  2055       // "Full-speed throwing" is not necessary here,
  2056       // since we're notifying the VM on every throw.
  2057       uncommon_trap(Deoptimization::Reason_unhandled,
  2058                     Deoptimization::Action_none);
  2059       return;
  2061     // Hook the thrown exception directly to subsequent handlers.
  2062     if (BailoutToInterpreterForThrows) {
  2063       // Keep method interpreted from now on.
  2064       uncommon_trap(Deoptimization::Reason_unhandled,
  2065                     Deoptimization::Action_make_not_compilable);
  2066       return;
  2068     add_exception_state(make_exception_state(peek()));
  2069     break;
  2071   case Bytecodes::_goto:   // fall through
  2072   case Bytecodes::_goto_w: {
  2073     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2075     // If this is a backwards branch in the bytecodes, add Safepoint
  2076     maybe_add_safepoint(target_bci);
  2078     // Update method data
  2079     profile_taken_branch(target_bci);
  2081     // Merge the current control into the target basic block
  2082     merge(target_bci);
  2084     // See if we can get some profile data and hand it off to the next block
  2085     Block *target_block = block()->successor_for_bci(target_bci);
  2086     if (target_block->pred_count() != 1)  break;
  2087     ciMethodData* methodData = method()->method_data();
  2088     if (!methodData->is_mature())  break;
  2089     ciProfileData* data = methodData->bci_to_data(bci());
  2090     assert( data->is_JumpData(), "" );
  2091     int taken = ((ciJumpData*)data)->taken();
  2092     taken = method()->scale_count(taken);
  2093     target_block->set_count(taken);
  2094     break;
  2097   case Bytecodes::_ifnull:
  2098     do_ifnull(BoolTest::eq);
  2099     break;
  2100   case Bytecodes::_ifnonnull:
  2101     do_ifnull(BoolTest::ne);
  2102     break;
  2104   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2105   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2106   handle_if_acmp:
  2107     // If this is a backwards branch in the bytecodes, add Safepoint
  2108     maybe_add_safepoint(iter().get_dest());
  2109     a = pop();
  2110     b = pop();
  2111     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2112     do_if(btest, c);
  2113     break;
  2115   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2116   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2117   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2118   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2119   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2120   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2121   handle_ifxx:
  2122     // If this is a backwards branch in the bytecodes, add Safepoint
  2123     maybe_add_safepoint(iter().get_dest());
  2124     a = _gvn.intcon(0);
  2125     b = pop();
  2126     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2127     do_if(btest, c);
  2128     break;
  2130   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2131   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2132   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2133   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2134   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2135   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2136   handle_if_icmp:
  2137     // If this is a backwards branch in the bytecodes, add Safepoint
  2138     maybe_add_safepoint(iter().get_dest());
  2139     a = pop();
  2140     b = pop();
  2141     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2142     do_if(btest, c);
  2143     break;
  2145   case Bytecodes::_tableswitch:
  2146     do_tableswitch();
  2147     break;
  2149   case Bytecodes::_lookupswitch:
  2150     do_lookupswitch();
  2151     break;
  2153   case Bytecodes::_invokestatic:
  2154   case Bytecodes::_invokespecial:
  2155   case Bytecodes::_invokevirtual:
  2156   case Bytecodes::_invokeinterface:
  2157     do_call();
  2158     break;
  2159   case Bytecodes::_checkcast:
  2160     do_checkcast();
  2161     break;
  2162   case Bytecodes::_instanceof:
  2163     do_instanceof();
  2164     break;
  2165   case Bytecodes::_anewarray:
  2166     do_anewarray();
  2167     break;
  2168   case Bytecodes::_newarray:
  2169     do_newarray((BasicType)iter().get_index());
  2170     break;
  2171   case Bytecodes::_multianewarray:
  2172     do_multianewarray();
  2173     break;
  2174   case Bytecodes::_new:
  2175     do_new();
  2176     break;
  2178   case Bytecodes::_jsr:
  2179   case Bytecodes::_jsr_w:
  2180     do_jsr();
  2181     break;
  2183   case Bytecodes::_ret:
  2184     do_ret();
  2185     break;
  2188   case Bytecodes::_monitorenter:
  2189     do_monitor_enter();
  2190     break;
  2192   case Bytecodes::_monitorexit:
  2193     do_monitor_exit();
  2194     break;
  2196   case Bytecodes::_breakpoint:
  2197     // Breakpoint set concurrently to compile
  2198     // %%% use an uncommon trap?
  2199     C->record_failure("breakpoint in method");
  2200     return;
  2202   default:
  2203 #ifndef PRODUCT
  2204     map()->dump(99);
  2205 #endif
  2206     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2207     ShouldNotReachHere();
  2210 #ifndef PRODUCT
  2211   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2212   if(printer) {
  2213     char buffer[256];
  2214     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2215     bool old = printer->traverse_outs();
  2216     printer->set_traverse_outs(true);
  2217     printer->print_method(C, buffer, 3);
  2218     printer->set_traverse_outs(old);
  2220 #endif

mercurial