src/share/vm/opto/parse2.cpp

Wed, 05 Mar 2008 11:33:31 -0800

author
kvn
date
Wed, 05 Mar 2008 11:33:31 -0800
changeset 472
73970d8c0b27
parent 452
ff5961f4c095
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6671250: In Parse::do_if() old Cmp node 'c' should be replaced with new one after BoolNode transformation
Summary: In Parse::do_if() 'c' (CmpNode) node may be changed during BoolNode transformation so 'c' may became dead but the node is referenced later in the code.
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse2.cpp.incl"
    28 extern int explicit_null_checks_inserted,
    29            explicit_null_checks_elided;
    31 //---------------------------------array_load----------------------------------
    32 void Parse::array_load(BasicType elem_type) {
    33   const Type* elem = Type::TOP;
    34   Node* adr = array_addressing(elem_type, 0, &elem);
    35   if (stopped())  return;     // guarenteed null or range check
    36   _sp -= 2;                   // Pop array and index
    37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    39   push(ld);
    40 }
    43 //--------------------------------array_store----------------------------------
    44 void Parse::array_store(BasicType elem_type) {
    45   Node* adr = array_addressing(elem_type, 1);
    46   if (stopped())  return;     // guarenteed null or range check
    47   Node* val = pop();
    48   _sp -= 2;                   // Pop array and index
    49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    50   store_to_memory(control(), adr, val, elem_type, adr_type);
    51 }
    54 //------------------------------array_addressing-------------------------------
    55 // Pull array and index from the stack.  Compute pointer-to-element.
    56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    57   Node *idx   = peek(0+vals);   // Get from stack without popping
    58   Node *ary   = peek(1+vals);   // in case of exception
    60   // Null check the array base, with correct stack contents
    61   ary = do_null_check(ary, T_ARRAY);
    62   // Compile-time detect of null-exception?
    63   if (stopped())  return top();
    65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    66   const TypeInt*    sizetype = arytype->size();
    67   const Type*       elemtype = arytype->elem();
    69   if (UseUniqueSubclasses && result2 != NULL) {
    70     const TypeInstPtr* toop = elemtype->isa_instptr();
    71     if (toop) {
    72       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    73         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    74         const Type* subklass = Type::get_const_type(toop->klass());
    75         elemtype = subklass->join(elemtype);
    76       }
    77     }
    78   }
    80   // Check for big class initializers with all constant offsets
    81   // feeding into a known-size array.
    82   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    83   // See if the highest idx value is less than the lowest array bound,
    84   // and if the idx value cannot be negative:
    85   bool need_range_check = true;
    86   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    87     need_range_check = false;
    88     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    89   }
    91   if (!arytype->klass()->is_loaded()) {
    92     // Only fails for some -Xcomp runs
    93     // The class is unloaded.  We have to run this bytecode in the interpreter.
    94     uncommon_trap(Deoptimization::Reason_unloaded,
    95                   Deoptimization::Action_reinterpret,
    96                   arytype->klass(), "!loaded array");
    97     return top();
    98   }
   100   // Do the range check
   101   if (GenerateRangeChecks && need_range_check) {
   102     // Range is constant in array-oop, so we can use the original state of mem
   103     Node* len = load_array_length(ary);
   104     // Test length vs index (standard trick using unsigned compare)
   105     Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   106     BoolTest::mask btest = BoolTest::lt;
   107     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   108     // Branch to failure if out of bounds
   109     { BuildCutout unless(this, tst, PROB_MAX);
   110       if (C->allow_range_check_smearing()) {
   111         // Do not use builtin_throw, since range checks are sometimes
   112         // made more stringent by an optimistic transformation.
   113         // This creates "tentative" range checks at this point,
   114         // which are not guaranteed to throw exceptions.
   115         // See IfNode::Ideal, is_range_check, adjust_check.
   116         uncommon_trap(Deoptimization::Reason_range_check,
   117                       Deoptimization::Action_make_not_entrant,
   118                       NULL, "range_check");
   119       } else {
   120         // If we have already recompiled with the range-check-widening
   121         // heroic optimization turned off, then we must really be throwing
   122         // range check exceptions.
   123         builtin_throw(Deoptimization::Reason_range_check, idx);
   124       }
   125     }
   126   }
   127   // Check for always knowing you are throwing a range-check exception
   128   if (stopped())  return top();
   130   Node* ptr = array_element_address( ary, idx, type, sizetype);
   132   if (result2 != NULL)  *result2 = elemtype;
   133   return ptr;
   134 }
   137 // returns IfNode
   138 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   139   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   140   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   141   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   142   return iff;
   143 }
   145 // return Region node
   146 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   147   Node *region  = new (C, 3) RegionNode(3); // 2 results
   148   record_for_igvn(region);
   149   region->init_req(1, iffalse);
   150   region->init_req(2, iftrue );
   151   _gvn.set_type(region, Type::CONTROL);
   152   region = _gvn.transform(region);
   153   set_control (region);
   154   return region;
   155 }
   158 //------------------------------helper for tableswitch-------------------------
   159 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   160   // True branch, use existing map info
   161   { PreserveJVMState pjvms(this);
   162     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   163     set_control( iftrue );
   164     profile_switch_case(prof_table_index);
   165     merge_new_path(dest_bci_if_true);
   166   }
   168   // False branch
   169   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   170   set_control( iffalse );
   171 }
   173 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   174   // True branch, use existing map info
   175   { PreserveJVMState pjvms(this);
   176     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   177     set_control( iffalse );
   178     profile_switch_case(prof_table_index);
   179     merge_new_path(dest_bci_if_true);
   180   }
   182   // False branch
   183   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   184   set_control( iftrue );
   185 }
   187 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   188   // False branch, use existing map and control()
   189   profile_switch_case(prof_table_index);
   190   merge_new_path(dest_bci);
   191 }
   194 extern "C" {
   195   static int jint_cmp(const void *i, const void *j) {
   196     int a = *(jint *)i;
   197     int b = *(jint *)j;
   198     return a > b ? 1 : a < b ? -1 : 0;
   199   }
   200 }
   203 // Default value for methodData switch indexing. Must be a negative value to avoid
   204 // conflict with any legal switch index.
   205 #define NullTableIndex -1
   207 class SwitchRange : public StackObj {
   208   // a range of integers coupled with a bci destination
   209   jint _lo;                     // inclusive lower limit
   210   jint _hi;                     // inclusive upper limit
   211   int _dest;
   212   int _table_index;             // index into method data table
   214 public:
   215   jint lo() const              { return _lo;   }
   216   jint hi() const              { return _hi;   }
   217   int  dest() const            { return _dest; }
   218   int  table_index() const     { return _table_index; }
   219   bool is_singleton() const    { return _lo == _hi; }
   221   void setRange(jint lo, jint hi, int dest, int table_index) {
   222     assert(lo <= hi, "must be a non-empty range");
   223     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   224   }
   225   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   226     assert(lo <= hi, "must be a non-empty range");
   227     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   228       _hi = hi;
   229       return true;
   230     }
   231     return false;
   232   }
   234   void set (jint value, int dest, int table_index) {
   235     setRange(value, value, dest, table_index);
   236   }
   237   bool adjoin(jint value, int dest, int table_index) {
   238     return adjoinRange(value, value, dest, table_index);
   239   }
   241   void print(ciEnv* env) {
   242     if (is_singleton())
   243       tty->print(" {%d}=>%d", lo(), dest());
   244     else if (lo() == min_jint)
   245       tty->print(" {..%d}=>%d", hi(), dest());
   246     else if (hi() == max_jint)
   247       tty->print(" {%d..}=>%d", lo(), dest());
   248     else
   249       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   250   }
   251 };
   254 //-------------------------------do_tableswitch--------------------------------
   255 void Parse::do_tableswitch() {
   256   Node* lookup = pop();
   258   // Get information about tableswitch
   259   int default_dest = iter().get_dest_table(0);
   260   int lo_index     = iter().get_int_table(1);
   261   int hi_index     = iter().get_int_table(2);
   262   int len          = hi_index - lo_index + 1;
   264   if (len < 1) {
   265     // If this is a backward branch, add safepoint
   266     maybe_add_safepoint(default_dest);
   267     merge(default_dest);
   268     return;
   269   }
   271   // generate decision tree, using trichotomy when possible
   272   int rnum = len+2;
   273   bool makes_backward_branch = false;
   274   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   275   int rp = -1;
   276   if (lo_index != min_jint) {
   277     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   278   }
   279   for (int j = 0; j < len; j++) {
   280     jint match_int = lo_index+j;
   281     int  dest      = iter().get_dest_table(j+3);
   282     makes_backward_branch |= (dest <= bci());
   283     int  table_index = method_data_update() ? j : NullTableIndex;
   284     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   285       ranges[++rp].set(match_int, dest, table_index);
   286     }
   287   }
   288   jint highest = lo_index+(len-1);
   289   assert(ranges[rp].hi() == highest, "");
   290   if (highest != max_jint
   291       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   292     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   293   }
   294   assert(rp < len+2, "not too many ranges");
   296   // Safepoint in case if backward branch observed
   297   if( makes_backward_branch && UseLoopSafepoints )
   298     add_safepoint();
   300   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   301 }
   304 //------------------------------do_lookupswitch--------------------------------
   305 void Parse::do_lookupswitch() {
   306   Node *lookup = pop();         // lookup value
   307   // Get information about lookupswitch
   308   int default_dest = iter().get_dest_table(0);
   309   int len          = iter().get_int_table(1);
   311   if (len < 1) {    // If this is a backward branch, add safepoint
   312     maybe_add_safepoint(default_dest);
   313     merge(default_dest);
   314     return;
   315   }
   317   // generate decision tree, using trichotomy when possible
   318   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   319   {
   320     for( int j = 0; j < len; j++ ) {
   321       table[j+j+0] = iter().get_int_table(2+j+j);
   322       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   323     }
   324     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   325   }
   327   int rnum = len*2+1;
   328   bool makes_backward_branch = false;
   329   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   330   int rp = -1;
   331   for( int j = 0; j < len; j++ ) {
   332     jint match_int   = table[j+j+0];
   333     int  dest        = table[j+j+1];
   334     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   335     int  table_index = method_data_update() ? j : NullTableIndex;
   336     makes_backward_branch |= (dest <= bci());
   337     if( match_int != next_lo ) {
   338       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   339     }
   340     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   341       ranges[++rp].set(match_int, dest, table_index);
   342     }
   343   }
   344   jint highest = table[2*(len-1)];
   345   assert(ranges[rp].hi() == highest, "");
   346   if( highest != max_jint
   347       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   348     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   349   }
   350   assert(rp < rnum, "not too many ranges");
   352   // Safepoint in case backward branch observed
   353   if( makes_backward_branch && UseLoopSafepoints )
   354     add_safepoint();
   356   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   357 }
   359 //----------------------------create_jump_tables-------------------------------
   360 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   361   // Are jumptables enabled
   362   if (!UseJumpTables)  return false;
   364   // Are jumptables supported
   365   if (!Matcher::has_match_rule(Op_Jump))  return false;
   367   // Don't make jump table if profiling
   368   if (method_data_update())  return false;
   370   // Decide if a guard is needed to lop off big ranges at either (or
   371   // both) end(s) of the input set. We'll call this the default target
   372   // even though we can't be sure that it is the true "default".
   374   bool needs_guard = false;
   375   int default_dest;
   376   int64 total_outlier_size = 0;
   377   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   378   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   380   if (lo->dest() == hi->dest()) {
   381     total_outlier_size = hi_size + lo_size;
   382     default_dest = lo->dest();
   383   } else if (lo_size > hi_size) {
   384     total_outlier_size = lo_size;
   385     default_dest = lo->dest();
   386   } else {
   387     total_outlier_size = hi_size;
   388     default_dest = hi->dest();
   389   }
   391   // If a guard test will eliminate very sparse end ranges, then
   392   // it is worth the cost of an extra jump.
   393   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   394     needs_guard = true;
   395     if (default_dest == lo->dest()) lo++;
   396     if (default_dest == hi->dest()) hi--;
   397   }
   399   // Find the total number of cases and ranges
   400   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   401   int num_range = hi - lo + 1;
   403   // Don't create table if: too large, too small, or too sparse.
   404   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   405     return false;
   406   if (num_cases > (MaxJumpTableSparseness * num_range))
   407     return false;
   409   // Normalize table lookups to zero
   410   int lowval = lo->lo();
   411   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   413   // Generate a guard to protect against input keyvals that aren't
   414   // in the switch domain.
   415   if (needs_guard) {
   416     Node*   size = _gvn.intcon(num_cases);
   417     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   418     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   419     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   420     jump_if_true_fork(iff, default_dest, NullTableIndex);
   421   }
   423   // Create an ideal node JumpTable that has projections
   424   // of all possible ranges for a switch statement
   425   // The key_val input must be converted to a pointer offset and scaled.
   426   // Compare Parse::array_addressing above.
   427 #ifdef _LP64
   428   // Clean the 32-bit int into a real 64-bit offset.
   429   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   430   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   431   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   432 #endif
   433   // Shift the value by wordsize so we have an index into the table, rather
   434   // than a switch value
   435   Node *shiftWord = _gvn.MakeConX(wordSize);
   436   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   438   // Create the JumpNode
   439   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   441   // These are the switch destinations hanging off the jumpnode
   442   int i = 0;
   443   for (SwitchRange* r = lo; r <= hi; r++) {
   444     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   445       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   446       {
   447         PreserveJVMState pjvms(this);
   448         set_control(input);
   449         jump_if_always_fork(r->dest(), r->table_index());
   450       }
   451     }
   452   }
   453   assert(i == num_cases, "miscount of cases");
   454   stop_and_kill_map();  // no more uses for this JVMS
   455   return true;
   456 }
   458 //----------------------------jump_switch_ranges-------------------------------
   459 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   460   Block* switch_block = block();
   462   if (switch_depth == 0) {
   463     // Do special processing for the top-level call.
   464     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   465     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   467     // Decrement pred-numbers for the unique set of nodes.
   468 #ifdef ASSERT
   469     // Ensure that the block's successors are a (duplicate-free) set.
   470     int successors_counted = 0;  // block occurrences in [hi..lo]
   471     int unique_successors = switch_block->num_successors();
   472     for (int i = 0; i < unique_successors; i++) {
   473       Block* target = switch_block->successor_at(i);
   475       // Check that the set of successors is the same in both places.
   476       int successors_found = 0;
   477       for (SwitchRange* p = lo; p <= hi; p++) {
   478         if (p->dest() == target->start())  successors_found++;
   479       }
   480       assert(successors_found > 0, "successor must be known");
   481       successors_counted += successors_found;
   482     }
   483     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   484 #endif
   486     // Maybe prune the inputs, based on the type of key_val.
   487     jint min_val = min_jint;
   488     jint max_val = max_jint;
   489     const TypeInt* ti = key_val->bottom_type()->isa_int();
   490     if (ti != NULL) {
   491       min_val = ti->_lo;
   492       max_val = ti->_hi;
   493       assert(min_val <= max_val, "invalid int type");
   494     }
   495     while (lo->hi() < min_val)  lo++;
   496     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   497     while (hi->lo() > max_val)  hi--;
   498     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   499   }
   501 #ifndef PRODUCT
   502   if (switch_depth == 0) {
   503     _max_switch_depth = 0;
   504     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   505   }
   506 #endif
   508   assert(lo <= hi, "must be a non-empty set of ranges");
   509   if (lo == hi) {
   510     jump_if_always_fork(lo->dest(), lo->table_index());
   511   } else {
   512     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   513     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   515     if (create_jump_tables(key_val, lo, hi)) return;
   517     int nr = hi - lo + 1;
   519     SwitchRange* mid = lo + nr/2;
   520     // if there is an easy choice, pivot at a singleton:
   521     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   523     assert(lo < mid && mid <= hi, "good pivot choice");
   524     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   525     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   527     Node *test_val = _gvn.intcon(mid->lo());
   529     if (mid->is_singleton()) {
   530       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   531       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   533       // Special Case:  If there are exactly three ranges, and the high
   534       // and low range each go to the same place, omit the "gt" test,
   535       // since it will not discriminate anything.
   536       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   537       if (eq_test_only) {
   538         assert(mid == hi-1, "");
   539       }
   541       // if there is a higher range, test for it and process it:
   542       if (mid < hi && !eq_test_only) {
   543         // two comparisons of same values--should enable 1 test for 2 branches
   544         // Use BoolTest::le instead of BoolTest::gt
   545         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   546         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   547         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   548         { PreserveJVMState pjvms(this);
   549           set_control(iffalse);
   550           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   551         }
   552         set_control(iftrue);
   553       }
   555     } else {
   556       // mid is a range, not a singleton, so treat mid..hi as a unit
   557       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   559       // if there is a higher range, test for it and process it:
   560       if (mid == hi) {
   561         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   562       } else {
   563         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   564         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   565         { PreserveJVMState pjvms(this);
   566           set_control(iftrue);
   567           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   568         }
   569         set_control(iffalse);
   570       }
   571     }
   573     // in any case, process the lower range
   574     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   575   }
   577   // Decrease pred_count for each successor after all is done.
   578   if (switch_depth == 0) {
   579     int unique_successors = switch_block->num_successors();
   580     for (int i = 0; i < unique_successors; i++) {
   581       Block* target = switch_block->successor_at(i);
   582       // Throw away the pre-allocated path for each unique successor.
   583       target->next_path_num();
   584     }
   585   }
   587 #ifndef PRODUCT
   588   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   589   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   590     SwitchRange* r;
   591     int nsing = 0;
   592     for( r = lo; r <= hi; r++ ) {
   593       if( r->is_singleton() )  nsing++;
   594     }
   595     tty->print(">>> ");
   596     _method->print_short_name();
   597     tty->print_cr(" switch decision tree");
   598     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   599                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   600     if (_max_switch_depth > _est_switch_depth) {
   601       tty->print_cr("******** BAD SWITCH DEPTH ********");
   602     }
   603     tty->print("   ");
   604     for( r = lo; r <= hi; r++ ) {
   605       r->print(env());
   606     }
   607     tty->print_cr("");
   608   }
   609 #endif
   610 }
   612 void Parse::modf() {
   613   Node *f2 = pop();
   614   Node *f1 = pop();
   615   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   616                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   617                               "frem", NULL, //no memory effects
   618                               f1, f2);
   619   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   621   push(res);
   622 }
   624 void Parse::modd() {
   625   Node *d2 = pop_pair();
   626   Node *d1 = pop_pair();
   627   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   628                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   629                               "drem", NULL, //no memory effects
   630                               d1, top(), d2, top());
   631   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   633 #ifdef ASSERT
   634   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   635   assert(res_top == top(), "second value must be top");
   636 #endif
   638   push_pair(res_d);
   639 }
   641 void Parse::l2f() {
   642   Node* f2 = pop();
   643   Node* f1 = pop();
   644   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   645                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   646                               "l2f", NULL, //no memory effects
   647                               f1, f2);
   648   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   650   push(res);
   651 }
   653 void Parse::do_irem() {
   654   // Must keep both values on the expression-stack during null-check
   655   do_null_check(peek(), T_INT);
   656   // Compile-time detect of null-exception?
   657   if (stopped())  return;
   659   Node* b = pop();
   660   Node* a = pop();
   662   const Type *t = _gvn.type(b);
   663   if (t != Type::TOP) {
   664     const TypeInt *ti = t->is_int();
   665     if (ti->is_con()) {
   666       int divisor = ti->get_con();
   667       // check for positive power of 2
   668       if (divisor > 0 &&
   669           (divisor & ~(divisor-1)) == divisor) {
   670         // yes !
   671         Node *mask = _gvn.intcon((divisor - 1));
   672         // Sigh, must handle negative dividends
   673         Node *zero = _gvn.intcon(0);
   674         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   675         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   676         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   677         Node *reg = jump_if_join(ift, iff);
   678         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   679         // Negative path; negate/and/negate
   680         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   681         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   682         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   683         phi->init_req(1, negn);
   684         // Fast positive case
   685         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   686         phi->init_req(2, andx);
   687         // Push the merge
   688         push( _gvn.transform(phi) );
   689         return;
   690       }
   691     }
   692   }
   693   // Default case
   694   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   695 }
   697 // Handle jsr and jsr_w bytecode
   698 void Parse::do_jsr() {
   699   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   701   // Store information about current state, tagged with new _jsr_bci
   702   int return_bci = iter().next_bci();
   703   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   705   // Update method data
   706   profile_taken_branch(jsr_bci);
   708   // The way we do things now, there is only one successor block
   709   // for the jsr, because the target code is cloned by ciTypeFlow.
   710   Block* target = successor_for_bci(jsr_bci);
   712   // What got pushed?
   713   const Type* ret_addr = target->peek();
   714   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   716   // Effect on jsr on stack
   717   push(_gvn.makecon(ret_addr));
   719   // Flow to the jsr.
   720   merge(jsr_bci);
   721 }
   723 // Handle ret bytecode
   724 void Parse::do_ret() {
   725   // Find to whom we return.
   726 #if 0 // %%%% MAKE THIS WORK
   727   Node* con = local();
   728   const TypePtr* tp = con->bottom_type()->isa_ptr();
   729   assert(tp && tp->singleton(), "");
   730   int return_bci = (int) tp->get_con();
   731   merge(return_bci);
   732 #else
   733   assert(block()->num_successors() == 1, "a ret can only go one place now");
   734   Block* target = block()->successor_at(0);
   735   assert(!target->is_ready(), "our arrival must be expected");
   736   profile_ret(target->flow()->start());
   737   int pnum = target->next_path_num();
   738   merge_common(target, pnum);
   739 #endif
   740 }
   742 //--------------------------dynamic_branch_prediction--------------------------
   743 // Try to gather dynamic branch prediction behavior.  Return a probability
   744 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   745 // if we need to use static prediction for some reason.
   746 float Parse::dynamic_branch_prediction(float &cnt) {
   747   ResourceMark rm;
   749   cnt  = COUNT_UNKNOWN;
   751   // Use MethodData information if it is available
   752   // FIXME: free the ProfileData structure
   753   ciMethodData* methodData = method()->method_data();
   754   if (!methodData->is_mature())  return PROB_UNKNOWN;
   755   ciProfileData* data = methodData->bci_to_data(bci());
   756   if (!data->is_JumpData())  return PROB_UNKNOWN;
   758   // get taken and not taken values
   759   int     taken = data->as_JumpData()->taken();
   760   int not_taken = 0;
   761   if (data->is_BranchData()) {
   762     not_taken = data->as_BranchData()->not_taken();
   763   }
   765   // scale the counts to be commensurate with invocation counts:
   766   taken = method()->scale_count(taken);
   767   not_taken = method()->scale_count(not_taken);
   769   // Give up if too few counts to be meaningful
   770   if (taken + not_taken < 40) {
   771     if (C->log() != NULL) {
   772       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   773     }
   774     return PROB_UNKNOWN;
   775   }
   777   // Compute frequency that we arrive here
   778   int sum = taken + not_taken;
   779   // Adjust, if this block is a cloned private block but the
   780   // Jump counts are shared.  Taken the private counts for
   781   // just this path instead of the shared counts.
   782   if( block()->count() > 0 )
   783     sum = block()->count();
   784   cnt = (float)sum / (float)FreqCountInvocations;
   786   // Pin probability to sane limits
   787   float prob;
   788   if( !taken )
   789     prob = (0+PROB_MIN) / 2;
   790   else if( !not_taken )
   791     prob = (1+PROB_MAX) / 2;
   792   else {                         // Compute probability of true path
   793     prob = (float)taken / (float)(taken + not_taken);
   794     if (prob > PROB_MAX)  prob = PROB_MAX;
   795     if (prob < PROB_MIN)   prob = PROB_MIN;
   796   }
   798   assert((cnt > 0.0f) && (prob > 0.0f),
   799          "Bad frequency assignment in if");
   801   if (C->log() != NULL) {
   802     const char* prob_str = NULL;
   803     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   804     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   805     char prob_str_buf[30];
   806     if (prob_str == NULL) {
   807       sprintf(prob_str_buf, "%g", prob);
   808       prob_str = prob_str_buf;
   809     }
   810     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   811                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   812   }
   813   return prob;
   814 }
   816 //-----------------------------branch_prediction-------------------------------
   817 float Parse::branch_prediction(float& cnt,
   818                                BoolTest::mask btest,
   819                                int target_bci) {
   820   float prob = dynamic_branch_prediction(cnt);
   821   // If prob is unknown, switch to static prediction
   822   if (prob != PROB_UNKNOWN)  return prob;
   824   prob = PROB_FAIR;                   // Set default value
   825   if (btest == BoolTest::eq)          // Exactly equal test?
   826     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   827   else if (btest == BoolTest::ne)
   828     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   830   // If this is a conditional test guarding a backwards branch,
   831   // assume its a loop-back edge.  Make it a likely taken branch.
   832   if (target_bci < bci()) {
   833     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   834       // Since it's an OSR, we probably have profile data, but since
   835       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   836       // Let's make a special check here for completely zero counts.
   837       ciMethodData* methodData = method()->method_data();
   838       if (!methodData->is_empty()) {
   839         ciProfileData* data = methodData->bci_to_data(bci());
   840         // Only stop for truly zero counts, which mean an unknown part
   841         // of the OSR-ed method, and we want to deopt to gather more stats.
   842         // If you have ANY counts, then this loop is simply 'cold' relative
   843         // to the OSR loop.
   844         if (data->as_BranchData()->taken() +
   845             data->as_BranchData()->not_taken() == 0 ) {
   846           // This is the only way to return PROB_UNKNOWN:
   847           return PROB_UNKNOWN;
   848         }
   849       }
   850     }
   851     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   852   }
   854   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   855   return prob;
   856 }
   858 // The magic constants are chosen so as to match the output of
   859 // branch_prediction() when the profile reports a zero taken count.
   860 // It is important to distinguish zero counts unambiguously, because
   861 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   862 // very small but nonzero probabilities, which if confused with zero
   863 // counts would keep the program recompiling indefinitely.
   864 bool Parse::seems_never_taken(float prob) {
   865   return prob < PROB_MIN;
   866 }
   868 inline void Parse::repush_if_args() {
   869 #ifndef PRODUCT
   870   if (PrintOpto && WizardMode) {
   871     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   872                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   873     method()->print_name(); tty->cr();
   874   }
   875 #endif
   876   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   877   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   878   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   879   assert(argument(0) != NULL, "must exist");
   880   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   881   _sp += bc_depth;
   882 }
   884 //----------------------------------do_ifnull----------------------------------
   885 void Parse::do_ifnull(BoolTest::mask btest) {
   886   int target_bci = iter().get_dest();
   888   Block* branch_block = successor_for_bci(target_bci);
   889   Block* next_block   = successor_for_bci(iter().next_bci());
   891   float cnt;
   892   float prob = branch_prediction(cnt, btest, target_bci);
   893   if (prob == PROB_UNKNOWN) {
   894     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   895 #ifndef PRODUCT
   896     if (PrintOpto && Verbose)
   897       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   898 #endif
   899     repush_if_args(); // to gather stats on loop
   900     // We need to mark this branch as taken so that if we recompile we will
   901     // see that it is possible. In the tiered system the interpreter doesn't
   902     // do profiling and by the time we get to the lower tier from the interpreter
   903     // the path may be cold again. Make sure it doesn't look untaken
   904     profile_taken_branch(target_bci, !ProfileInterpreter);
   905     uncommon_trap(Deoptimization::Reason_unreached,
   906                   Deoptimization::Action_reinterpret,
   907                   NULL, "cold");
   908     if (EliminateAutoBox) {
   909       // Mark the successor blocks as parsed
   910       branch_block->next_path_num();
   911       next_block->next_path_num();
   912     }
   913     return;
   914   }
   916   // If this is a backwards branch in the bytecodes, add Safepoint
   917   maybe_add_safepoint(target_bci);
   919   explicit_null_checks_inserted++;
   920   Node* a = null();
   921   Node* b = pop();
   922   Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
   924   // Make a cast-away-nullness that is control dependent on the test
   925   const Type *t = _gvn.type(b);
   926   const Type *t_not_null = t->join(TypePtr::NOTNULL);
   927   Node *cast = new (C, 2) CastPPNode(b,t_not_null);
   929   // Generate real control flow
   930   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   932   // Sanity check the probability value
   933   assert(prob > 0.0f,"Bad probability in Parser");
   934  // Need xform to put node in hash table
   935   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   936   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   937   // True branch
   938   { PreserveJVMState pjvms(this);
   939     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   940     set_control(iftrue);
   942     if (stopped()) {            // Path is dead?
   943       explicit_null_checks_elided++;
   944       if (EliminateAutoBox) {
   945         // Mark the successor block as parsed
   946         branch_block->next_path_num();
   947       }
   948     } else {                    // Path is live.
   949       // Update method data
   950       profile_taken_branch(target_bci);
   951       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   952       if (!stopped())
   953         merge(target_bci);
   954     }
   955   }
   957   // False branch
   958   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   959   set_control(iffalse);
   961   if (stopped()) {              // Path is dead?
   962     explicit_null_checks_elided++;
   963     if (EliminateAutoBox) {
   964       // Mark the successor block as parsed
   965       next_block->next_path_num();
   966     }
   967   } else  {                     // Path is live.
   968     // Update method data
   969     profile_not_taken_branch();
   970     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   971                         next_block, branch_block);
   972   }
   973 }
   975 //------------------------------------do_if------------------------------------
   976 void Parse::do_if(BoolTest::mask btest, Node* c) {
   977   int target_bci = iter().get_dest();
   979   Block* branch_block = successor_for_bci(target_bci);
   980   Block* next_block   = successor_for_bci(iter().next_bci());
   982   float cnt;
   983   float prob = branch_prediction(cnt, btest, target_bci);
   984   float untaken_prob = 1.0 - prob;
   986   if (prob == PROB_UNKNOWN) {
   987 #ifndef PRODUCT
   988     if (PrintOpto && Verbose)
   989       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   990 #endif
   991     repush_if_args(); // to gather stats on loop
   992     // We need to mark this branch as taken so that if we recompile we will
   993     // see that it is possible. In the tiered system the interpreter doesn't
   994     // do profiling and by the time we get to the lower tier from the interpreter
   995     // the path may be cold again. Make sure it doesn't look untaken
   996     profile_taken_branch(target_bci, !ProfileInterpreter);
   997     uncommon_trap(Deoptimization::Reason_unreached,
   998                   Deoptimization::Action_reinterpret,
   999                   NULL, "cold");
  1000     if (EliminateAutoBox) {
  1001       // Mark the successor blocks as parsed
  1002       branch_block->next_path_num();
  1003       next_block->next_path_num();
  1005     return;
  1008   // Sanity check the probability value
  1009   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1011   bool taken_if_true = true;
  1012   // Convert BoolTest to canonical form:
  1013   if (!BoolTest(btest).is_canonical()) {
  1014     btest         = BoolTest(btest).negate();
  1015     taken_if_true = false;
  1016     // prob is NOT updated here; it remains the probability of the taken
  1017     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1019   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1021   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1022   Node* tst = _gvn.transform(tst0);
  1023   BoolTest::mask taken_btest   = BoolTest::illegal;
  1024   BoolTest::mask untaken_btest = BoolTest::illegal;
  1026   if (tst->is_Bool()) {
  1027     // Refresh c from the transformed bool node, since it may be
  1028     // simpler than the original c.  Also re-canonicalize btest.
  1029     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1030     // That can arise from statements like: if (x instanceof C) ...
  1031     if (tst != tst0) {
  1032       // Canonicalize one more time since transform can change it.
  1033       btest = tst->as_Bool()->_test._test;
  1034       if (!BoolTest(btest).is_canonical()) {
  1035         // Reverse edges one more time...
  1036         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1037         btest = tst->as_Bool()->_test._test;
  1038         assert(BoolTest(btest).is_canonical(), "sanity");
  1039         taken_if_true = !taken_if_true;
  1041       c = tst->in(1);
  1043     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1044     taken_btest   = taken_if_true ?     btest : neg_btest;
  1045     untaken_btest = taken_if_true ? neg_btest :     btest;
  1048   // Generate real control flow
  1049   float true_prob = (taken_if_true ? prob : untaken_prob);
  1050   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1051   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1052   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1053   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1054   if (!taken_if_true) {  // Finish conversion to canonical form
  1055     Node* tmp      = taken_branch;
  1056     taken_branch   = untaken_branch;
  1057     untaken_branch = tmp;
  1060   // Branch is taken:
  1061   { PreserveJVMState pjvms(this);
  1062     taken_branch = _gvn.transform(taken_branch);
  1063     set_control(taken_branch);
  1065     if (stopped()) {
  1066       if (EliminateAutoBox) {
  1067         // Mark the successor block as parsed
  1068         branch_block->next_path_num();
  1070     } else {
  1071       // Update method data
  1072       profile_taken_branch(target_bci);
  1073       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1074       if (!stopped())
  1075         merge(target_bci);
  1079   untaken_branch = _gvn.transform(untaken_branch);
  1080   set_control(untaken_branch);
  1082   // Branch not taken.
  1083   if (stopped()) {
  1084     if (EliminateAutoBox) {
  1085       // Mark the successor block as parsed
  1086       next_block->next_path_num();
  1088   } else {
  1089     // Update method data
  1090     profile_not_taken_branch();
  1091     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1092                         next_block, branch_block);
  1096 //----------------------------adjust_map_after_if------------------------------
  1097 // Adjust the JVM state to reflect the result of taking this path.
  1098 // Basically, it means inspecting the CmpNode controlling this
  1099 // branch, seeing how it constrains a tested value, and then
  1100 // deciding if it's worth our while to encode this constraint
  1101 // as graph nodes in the current abstract interpretation map.
  1102 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1103                                 Block* path, Block* other_path) {
  1104   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1105     return;                             // nothing to do
  1107   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1109   int cop = c->Opcode();
  1110   if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1111     // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1112     //
  1113     // If this might possibly turn into an implicit null check,
  1114     // and the null has never yet been seen, we need to generate
  1115     // an uncommon trap, so as to recompile instead of suffering
  1116     // with very slow branches.  (We'll get the slow branches if
  1117     // the program ever changes phase and starts seeing nulls here.)
  1118     //
  1119     // The tests we worry about are of the form (p == null).
  1120     // We do not simply inspect for a null constant, since a node may
  1121     // optimize to 'null' later on.
  1122     repush_if_args();
  1123     // We need to mark this branch as taken so that if we recompile we will
  1124     // see that it is possible. In the tiered system the interpreter doesn't
  1125     // do profiling and by the time we get to the lower tier from the interpreter
  1126     // the path may be cold again. Make sure it doesn't look untaken
  1127     if (is_fallthrough) {
  1128       profile_not_taken_branch(!ProfileInterpreter);
  1129     } else {
  1130       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1132     uncommon_trap(Deoptimization::Reason_unreached,
  1133                   Deoptimization::Action_reinterpret,
  1134                   NULL,
  1135                   (is_fallthrough ? "taken always" : "taken never"));
  1136     return;
  1139   Node* val = c->in(1);
  1140   Node* con = c->in(2);
  1141   const Type* tcon = _gvn.type(con);
  1142   const Type* tval = _gvn.type(val);
  1143   bool have_con = tcon->singleton();
  1144   if (tval->singleton()) {
  1145     if (!have_con) {
  1146       // Swap, so constant is in con.
  1147       con  = val;
  1148       tcon = tval;
  1149       val  = c->in(2);
  1150       tval = _gvn.type(val);
  1151       btest = BoolTest(btest).commute();
  1152       have_con = true;
  1153     } else {
  1154       // Do we have two constants?  Then leave well enough alone.
  1155       have_con = false;
  1158   if (!have_con)                        // remaining adjustments need a con
  1159     return;
  1162   int val_in_map = map()->find_edge(val);
  1163   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1165     JVMState* jvms = this->jvms();
  1166     if (!(jvms->is_loc(val_in_map) ||
  1167           jvms->is_stk(val_in_map)))
  1168       return;                           // again, it would be useless
  1171   // Check for a comparison to a constant, and "know" that the compared
  1172   // value is constrained on this path.
  1173   assert(tcon->singleton(), "");
  1174   ConstraintCastNode* ccast = NULL;
  1175   Node* cast = NULL;
  1177   switch (btest) {
  1178   case BoolTest::eq:                    // Constant test?
  1180       const Type* tboth = tcon->join(tval);
  1181       if (tboth == tval)  break;        // Nothing to gain.
  1182       if (tcon->isa_int()) {
  1183         ccast = new (C, 2) CastIINode(val, tboth);
  1184       } else if (tcon == TypePtr::NULL_PTR) {
  1185         // Cast to null, but keep the pointer identity temporarily live.
  1186         ccast = new (C, 2) CastPPNode(val, tboth);
  1187       } else {
  1188         const TypeF* tf = tcon->isa_float_constant();
  1189         const TypeD* td = tcon->isa_double_constant();
  1190         // Exclude tests vs float/double 0 as these could be
  1191         // either +0 or -0.  Just because you are equal to +0
  1192         // doesn't mean you ARE +0!
  1193         if ((!tf || tf->_f != 0.0) &&
  1194             (!td || td->_d != 0.0))
  1195           cast = con;                   // Replace non-constant val by con.
  1198     break;
  1200   case BoolTest::ne:
  1201     if (tcon == TypePtr::NULL_PTR) {
  1202       cast = cast_not_null(val, false);
  1204     break;
  1206   default:
  1207     // (At this point we could record int range types with CastII.)
  1208     break;
  1211   if (ccast != NULL) {
  1212     const Type* tcc = ccast->as_Type()->type();
  1213     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1214     // Delay transform() call to allow recovery of pre-cast value
  1215     // at the control merge.
  1216     ccast->set_req(0, control());
  1217     _gvn.set_type_bottom(ccast);
  1218     record_for_igvn(ccast);
  1219     cast = ccast;
  1222   if (cast != NULL) {                   // Here's the payoff.
  1223     replace_in_map(val, cast);
  1228 //------------------------------do_one_bytecode--------------------------------
  1229 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1230 void Parse::do_one_bytecode() {
  1231   Node *a, *b, *c, *d;          // Handy temps
  1232   BoolTest::mask btest;
  1233   int i;
  1235   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1237   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1238                           "out of nodes parsing method")) {
  1239     return;
  1242 #ifdef ASSERT
  1243   // for setting breakpoints
  1244   if (TraceOptoParse) {
  1245     tty->print(" @");
  1246     dump_bci(bci());
  1248 #endif
  1250   switch (bc()) {
  1251   case Bytecodes::_nop:
  1252     // do nothing
  1253     break;
  1254   case Bytecodes::_lconst_0:
  1255     push_pair(longcon(0));
  1256     break;
  1258   case Bytecodes::_lconst_1:
  1259     push_pair(longcon(1));
  1260     break;
  1262   case Bytecodes::_fconst_0:
  1263     push(zerocon(T_FLOAT));
  1264     break;
  1266   case Bytecodes::_fconst_1:
  1267     push(makecon(TypeF::ONE));
  1268     break;
  1270   case Bytecodes::_fconst_2:
  1271     push(makecon(TypeF::make(2.0f)));
  1272     break;
  1274   case Bytecodes::_dconst_0:
  1275     push_pair(zerocon(T_DOUBLE));
  1276     break;
  1278   case Bytecodes::_dconst_1:
  1279     push_pair(makecon(TypeD::ONE));
  1280     break;
  1282   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1283   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1284   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1285   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1286   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1287   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1288   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1289   case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  1290   case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  1291   case Bytecodes::_aconst_null: push(null());  break;
  1292   case Bytecodes::_ldc:
  1293   case Bytecodes::_ldc_w:
  1294   case Bytecodes::_ldc2_w:
  1295     // If the constant is unresolved, run this BC once in the interpreter.
  1296     if (iter().is_unresolved_string()) {
  1297       uncommon_trap(Deoptimization::make_trap_request
  1298                     (Deoptimization::Reason_unloaded,
  1299                      Deoptimization::Action_reinterpret,
  1300                      iter().get_constant_index()),
  1301                     NULL, "unresolved_string");
  1302       break;
  1303     } else {
  1304       ciConstant constant = iter().get_constant();
  1305       if (constant.basic_type() == T_OBJECT) {
  1306         ciObject* c = constant.as_object();
  1307         if (c->is_klass()) {
  1308           // The constant returned for a klass is the ciKlass for the
  1309           // entry.  We want the java_mirror so get it.
  1310           ciKlass* klass = c->as_klass();
  1311           if (klass->is_loaded()) {
  1312             constant = ciConstant(T_OBJECT, klass->java_mirror());
  1313           } else {
  1314             uncommon_trap(Deoptimization::make_trap_request
  1315                           (Deoptimization::Reason_unloaded,
  1316                            Deoptimization::Action_reinterpret,
  1317                            iter().get_constant_index()),
  1318                           NULL, "unresolved_klass");
  1319             break;
  1323       push_constant(constant);
  1326     break;
  1328   case Bytecodes::_aload_0:
  1329     push( local(0) );
  1330     break;
  1331   case Bytecodes::_aload_1:
  1332     push( local(1) );
  1333     break;
  1334   case Bytecodes::_aload_2:
  1335     push( local(2) );
  1336     break;
  1337   case Bytecodes::_aload_3:
  1338     push( local(3) );
  1339     break;
  1340   case Bytecodes::_aload:
  1341     push( local(iter().get_index()) );
  1342     break;
  1344   case Bytecodes::_fload_0:
  1345   case Bytecodes::_iload_0:
  1346     push( local(0) );
  1347     break;
  1348   case Bytecodes::_fload_1:
  1349   case Bytecodes::_iload_1:
  1350     push( local(1) );
  1351     break;
  1352   case Bytecodes::_fload_2:
  1353   case Bytecodes::_iload_2:
  1354     push( local(2) );
  1355     break;
  1356   case Bytecodes::_fload_3:
  1357   case Bytecodes::_iload_3:
  1358     push( local(3) );
  1359     break;
  1360   case Bytecodes::_fload:
  1361   case Bytecodes::_iload:
  1362     push( local(iter().get_index()) );
  1363     break;
  1364   case Bytecodes::_lload_0:
  1365     push_pair_local( 0 );
  1366     break;
  1367   case Bytecodes::_lload_1:
  1368     push_pair_local( 1 );
  1369     break;
  1370   case Bytecodes::_lload_2:
  1371     push_pair_local( 2 );
  1372     break;
  1373   case Bytecodes::_lload_3:
  1374     push_pair_local( 3 );
  1375     break;
  1376   case Bytecodes::_lload:
  1377     push_pair_local( iter().get_index() );
  1378     break;
  1380   case Bytecodes::_dload_0:
  1381     push_pair_local(0);
  1382     break;
  1383   case Bytecodes::_dload_1:
  1384     push_pair_local(1);
  1385     break;
  1386   case Bytecodes::_dload_2:
  1387     push_pair_local(2);
  1388     break;
  1389   case Bytecodes::_dload_3:
  1390     push_pair_local(3);
  1391     break;
  1392   case Bytecodes::_dload:
  1393     push_pair_local(iter().get_index());
  1394     break;
  1395   case Bytecodes::_fstore_0:
  1396   case Bytecodes::_istore_0:
  1397   case Bytecodes::_astore_0:
  1398     set_local( 0, pop() );
  1399     break;
  1400   case Bytecodes::_fstore_1:
  1401   case Bytecodes::_istore_1:
  1402   case Bytecodes::_astore_1:
  1403     set_local( 1, pop() );
  1404     break;
  1405   case Bytecodes::_fstore_2:
  1406   case Bytecodes::_istore_2:
  1407   case Bytecodes::_astore_2:
  1408     set_local( 2, pop() );
  1409     break;
  1410   case Bytecodes::_fstore_3:
  1411   case Bytecodes::_istore_3:
  1412   case Bytecodes::_astore_3:
  1413     set_local( 3, pop() );
  1414     break;
  1415   case Bytecodes::_fstore:
  1416   case Bytecodes::_istore:
  1417   case Bytecodes::_astore:
  1418     set_local( iter().get_index(), pop() );
  1419     break;
  1420   // long stores
  1421   case Bytecodes::_lstore_0:
  1422     set_pair_local( 0, pop_pair() );
  1423     break;
  1424   case Bytecodes::_lstore_1:
  1425     set_pair_local( 1, pop_pair() );
  1426     break;
  1427   case Bytecodes::_lstore_2:
  1428     set_pair_local( 2, pop_pair() );
  1429     break;
  1430   case Bytecodes::_lstore_3:
  1431     set_pair_local( 3, pop_pair() );
  1432     break;
  1433   case Bytecodes::_lstore:
  1434     set_pair_local( iter().get_index(), pop_pair() );
  1435     break;
  1437   // double stores
  1438   case Bytecodes::_dstore_0:
  1439     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1440     break;
  1441   case Bytecodes::_dstore_1:
  1442     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1443     break;
  1444   case Bytecodes::_dstore_2:
  1445     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1446     break;
  1447   case Bytecodes::_dstore_3:
  1448     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1449     break;
  1450   case Bytecodes::_dstore:
  1451     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1452     break;
  1454   case Bytecodes::_pop:  _sp -= 1;   break;
  1455   case Bytecodes::_pop2: _sp -= 2;   break;
  1456   case Bytecodes::_swap:
  1457     a = pop();
  1458     b = pop();
  1459     push(a);
  1460     push(b);
  1461     break;
  1462   case Bytecodes::_dup:
  1463     a = pop();
  1464     push(a);
  1465     push(a);
  1466     break;
  1467   case Bytecodes::_dup_x1:
  1468     a = pop();
  1469     b = pop();
  1470     push( a );
  1471     push( b );
  1472     push( a );
  1473     break;
  1474   case Bytecodes::_dup_x2:
  1475     a = pop();
  1476     b = pop();
  1477     c = pop();
  1478     push( a );
  1479     push( c );
  1480     push( b );
  1481     push( a );
  1482     break;
  1483   case Bytecodes::_dup2:
  1484     a = pop();
  1485     b = pop();
  1486     push( b );
  1487     push( a );
  1488     push( b );
  1489     push( a );
  1490     break;
  1492   case Bytecodes::_dup2_x1:
  1493     // before: .. c, b, a
  1494     // after:  .. b, a, c, b, a
  1495     // not tested
  1496     a = pop();
  1497     b = pop();
  1498     c = pop();
  1499     push( b );
  1500     push( a );
  1501     push( c );
  1502     push( b );
  1503     push( a );
  1504     break;
  1505   case Bytecodes::_dup2_x2:
  1506     // before: .. d, c, b, a
  1507     // after:  .. b, a, d, c, b, a
  1508     // not tested
  1509     a = pop();
  1510     b = pop();
  1511     c = pop();
  1512     d = pop();
  1513     push( b );
  1514     push( a );
  1515     push( d );
  1516     push( c );
  1517     push( b );
  1518     push( a );
  1519     break;
  1521   case Bytecodes::_arraylength: {
  1522     // Must do null-check with value on expression stack
  1523     Node *ary = do_null_check(peek(), T_ARRAY);
  1524     // Compile-time detect of null-exception?
  1525     if (stopped())  return;
  1526     a = pop();
  1527     push(load_array_length(a));
  1528     break;
  1531   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1532   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1533   case Bytecodes::_iaload: array_load(T_INT);    break;
  1534   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1535   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1536   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1537   case Bytecodes::_laload: {
  1538     a = array_addressing(T_LONG, 0);
  1539     if (stopped())  return;     // guarenteed null or range check
  1540     _sp -= 2;                   // Pop array and index
  1541     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1542     break;
  1544   case Bytecodes::_daload: {
  1545     a = array_addressing(T_DOUBLE, 0);
  1546     if (stopped())  return;     // guarenteed null or range check
  1547     _sp -= 2;                   // Pop array and index
  1548     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1549     break;
  1551   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1552   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1553   case Bytecodes::_iastore: array_store(T_INT);   break;
  1554   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1555   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1556   case Bytecodes::_aastore: {
  1557     d = array_addressing(T_OBJECT, 1);
  1558     if (stopped())  return;     // guarenteed null or range check
  1559     array_store_check();
  1560     c = pop();                  // Oop to store
  1561     b = pop();                  // index (already used)
  1562     a = pop();                  // the array itself
  1563     const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
  1564     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1565     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1566     break;
  1568   case Bytecodes::_lastore: {
  1569     a = array_addressing(T_LONG, 2);
  1570     if (stopped())  return;     // guarenteed null or range check
  1571     c = pop_pair();
  1572     _sp -= 2;                   // Pop array and index
  1573     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1574     break;
  1576   case Bytecodes::_dastore: {
  1577     a = array_addressing(T_DOUBLE, 2);
  1578     if (stopped())  return;     // guarenteed null or range check
  1579     c = pop_pair();
  1580     _sp -= 2;                   // Pop array and index
  1581     c = dstore_rounding(c);
  1582     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1583     break;
  1585   case Bytecodes::_getfield:
  1586     do_getfield();
  1587     break;
  1589   case Bytecodes::_getstatic:
  1590     do_getstatic();
  1591     break;
  1593   case Bytecodes::_putfield:
  1594     do_putfield();
  1595     break;
  1597   case Bytecodes::_putstatic:
  1598     do_putstatic();
  1599     break;
  1601   case Bytecodes::_irem:
  1602     do_irem();
  1603     break;
  1604   case Bytecodes::_idiv:
  1605     // Must keep both values on the expression-stack during null-check
  1606     do_null_check(peek(), T_INT);
  1607     // Compile-time detect of null-exception?
  1608     if (stopped())  return;
  1609     b = pop();
  1610     a = pop();
  1611     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1612     break;
  1613   case Bytecodes::_imul:
  1614     b = pop(); a = pop();
  1615     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1616     break;
  1617   case Bytecodes::_iadd:
  1618     b = pop(); a = pop();
  1619     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1620     break;
  1621   case Bytecodes::_ineg:
  1622     a = pop();
  1623     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1624     break;
  1625   case Bytecodes::_isub:
  1626     b = pop(); a = pop();
  1627     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1628     break;
  1629   case Bytecodes::_iand:
  1630     b = pop(); a = pop();
  1631     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1632     break;
  1633   case Bytecodes::_ior:
  1634     b = pop(); a = pop();
  1635     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1636     break;
  1637   case Bytecodes::_ixor:
  1638     b = pop(); a = pop();
  1639     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1640     break;
  1641   case Bytecodes::_ishl:
  1642     b = pop(); a = pop();
  1643     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1644     break;
  1645   case Bytecodes::_ishr:
  1646     b = pop(); a = pop();
  1647     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1648     break;
  1649   case Bytecodes::_iushr:
  1650     b = pop(); a = pop();
  1651     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1652     break;
  1654   case Bytecodes::_fneg:
  1655     a = pop();
  1656     b = _gvn.transform(new (C, 2) NegFNode (a));
  1657     push(b);
  1658     break;
  1660   case Bytecodes::_fsub:
  1661     b = pop();
  1662     a = pop();
  1663     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1664     d = precision_rounding(c);
  1665     push( d );
  1666     break;
  1668   case Bytecodes::_fadd:
  1669     b = pop();
  1670     a = pop();
  1671     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1672     d = precision_rounding(c);
  1673     push( d );
  1674     break;
  1676   case Bytecodes::_fmul:
  1677     b = pop();
  1678     a = pop();
  1679     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1680     d = precision_rounding(c);
  1681     push( d );
  1682     break;
  1684   case Bytecodes::_fdiv:
  1685     b = pop();
  1686     a = pop();
  1687     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1688     d = precision_rounding(c);
  1689     push( d );
  1690     break;
  1692   case Bytecodes::_frem:
  1693     if (Matcher::has_match_rule(Op_ModF)) {
  1694       // Generate a ModF node.
  1695       b = pop();
  1696       a = pop();
  1697       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1698       d = precision_rounding(c);
  1699       push( d );
  1701     else {
  1702       // Generate a call.
  1703       modf();
  1705     break;
  1707   case Bytecodes::_fcmpl:
  1708     b = pop();
  1709     a = pop();
  1710     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1711     push(c);
  1712     break;
  1713   case Bytecodes::_fcmpg:
  1714     b = pop();
  1715     a = pop();
  1717     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1718     // which negates the result sign except for unordered.  Flip the unordered
  1719     // as well by using CmpF3 which implements unordered-lesser instead of
  1720     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1721     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1722     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1723     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1724     push(c);
  1725     break;
  1727   case Bytecodes::_f2i:
  1728     a = pop();
  1729     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1730     break;
  1732   case Bytecodes::_d2i:
  1733     a = pop_pair();
  1734     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1735     push( b );
  1736     break;
  1738   case Bytecodes::_f2d:
  1739     a = pop();
  1740     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1741     push_pair( b );
  1742     break;
  1744   case Bytecodes::_d2f:
  1745     a = pop_pair();
  1746     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1747     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1748     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1749     push( b );
  1750     break;
  1752   case Bytecodes::_l2f:
  1753     if (Matcher::convL2FSupported()) {
  1754       a = pop_pair();
  1755       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1756       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1757       // Rather than storing the result into an FP register then pushing
  1758       // out to memory to round, the machine instruction that implements
  1759       // ConvL2D is responsible for rounding.
  1760       // c = precision_rounding(b);
  1761       c = _gvn.transform(b);
  1762       push(c);
  1763     } else {
  1764       l2f();
  1766     break;
  1768   case Bytecodes::_l2d:
  1769     a = pop_pair();
  1770     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1771     // For i486.ad, rounding is always necessary (see _l2f above).
  1772     // c = dprecision_rounding(b);
  1773     c = _gvn.transform(b);
  1774     push_pair(c);
  1775     break;
  1777   case Bytecodes::_f2l:
  1778     a = pop();
  1779     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1780     push_pair(b);
  1781     break;
  1783   case Bytecodes::_d2l:
  1784     a = pop_pair();
  1785     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1786     push_pair(b);
  1787     break;
  1789   case Bytecodes::_dsub:
  1790     b = pop_pair();
  1791     a = pop_pair();
  1792     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1793     d = dprecision_rounding(c);
  1794     push_pair( d );
  1795     break;
  1797   case Bytecodes::_dadd:
  1798     b = pop_pair();
  1799     a = pop_pair();
  1800     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1801     d = dprecision_rounding(c);
  1802     push_pair( d );
  1803     break;
  1805   case Bytecodes::_dmul:
  1806     b = pop_pair();
  1807     a = pop_pair();
  1808     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1809     d = dprecision_rounding(c);
  1810     push_pair( d );
  1811     break;
  1813   case Bytecodes::_ddiv:
  1814     b = pop_pair();
  1815     a = pop_pair();
  1816     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1817     d = dprecision_rounding(c);
  1818     push_pair( d );
  1819     break;
  1821   case Bytecodes::_dneg:
  1822     a = pop_pair();
  1823     b = _gvn.transform(new (C, 2) NegDNode (a));
  1824     push_pair(b);
  1825     break;
  1827   case Bytecodes::_drem:
  1828     if (Matcher::has_match_rule(Op_ModD)) {
  1829       // Generate a ModD node.
  1830       b = pop_pair();
  1831       a = pop_pair();
  1832       // a % b
  1834       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1835       d = dprecision_rounding(c);
  1836       push_pair( d );
  1838     else {
  1839       // Generate a call.
  1840       modd();
  1842     break;
  1844   case Bytecodes::_dcmpl:
  1845     b = pop_pair();
  1846     a = pop_pair();
  1847     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1848     push(c);
  1849     break;
  1851   case Bytecodes::_dcmpg:
  1852     b = pop_pair();
  1853     a = pop_pair();
  1854     // Same as dcmpl but need to flip the unordered case.
  1855     // Commute the inputs, which negates the result sign except for unordered.
  1856     // Flip the unordered as well by using CmpD3 which implements
  1857     // unordered-lesser instead of unordered-greater semantics.
  1858     // Finally, negate the result bits.  Result is same as using a
  1859     // CmpD3Greater except we did it with CmpD3 alone.
  1860     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1861     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1862     push(c);
  1863     break;
  1866     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1867   case Bytecodes::_land:
  1868     b = pop_pair();
  1869     a = pop_pair();
  1870     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1871     push_pair(c);
  1872     break;
  1873   case Bytecodes::_lor:
  1874     b = pop_pair();
  1875     a = pop_pair();
  1876     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1877     push_pair(c);
  1878     break;
  1879   case Bytecodes::_lxor:
  1880     b = pop_pair();
  1881     a = pop_pair();
  1882     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1883     push_pair(c);
  1884     break;
  1886   case Bytecodes::_lshl:
  1887     b = pop();                  // the shift count
  1888     a = pop_pair();             // value to be shifted
  1889     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1890     push_pair(c);
  1891     break;
  1892   case Bytecodes::_lshr:
  1893     b = pop();                  // the shift count
  1894     a = pop_pair();             // value to be shifted
  1895     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1896     push_pair(c);
  1897     break;
  1898   case Bytecodes::_lushr:
  1899     b = pop();                  // the shift count
  1900     a = pop_pair();             // value to be shifted
  1901     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1902     push_pair(c);
  1903     break;
  1904   case Bytecodes::_lmul:
  1905     b = pop_pair();
  1906     a = pop_pair();
  1907     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1908     push_pair(c);
  1909     break;
  1911   case Bytecodes::_lrem:
  1912     // Must keep both values on the expression-stack during null-check
  1913     assert(peek(0) == top(), "long word order");
  1914     do_null_check(peek(1), T_LONG);
  1915     // Compile-time detect of null-exception?
  1916     if (stopped())  return;
  1917     b = pop_pair();
  1918     a = pop_pair();
  1919     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1920     push_pair(c);
  1921     break;
  1923   case Bytecodes::_ldiv:
  1924     // Must keep both values on the expression-stack during null-check
  1925     assert(peek(0) == top(), "long word order");
  1926     do_null_check(peek(1), T_LONG);
  1927     // Compile-time detect of null-exception?
  1928     if (stopped())  return;
  1929     b = pop_pair();
  1930     a = pop_pair();
  1931     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1932     push_pair(c);
  1933     break;
  1935   case Bytecodes::_ladd:
  1936     b = pop_pair();
  1937     a = pop_pair();
  1938     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1939     push_pair(c);
  1940     break;
  1941   case Bytecodes::_lsub:
  1942     b = pop_pair();
  1943     a = pop_pair();
  1944     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1945     push_pair(c);
  1946     break;
  1947   case Bytecodes::_lcmp:
  1948     // Safepoints are now inserted _before_ branches.  The long-compare
  1949     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1950     // slew of control flow.  These are usually followed by a CmpI vs zero and
  1951     // a branch; this pattern then optimizes to the obvious long-compare and
  1952     // branch.  However, if the branch is backwards there's a Safepoint
  1953     // inserted.  The inserted Safepoint captures the JVM state at the
  1954     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1955     // long-compare is used to control a loop the debug info will force
  1956     // computation of the 3-way value, even though the generated code uses a
  1957     // long-compare and branch.  We try to rectify the situation by inserting
  1958     // a SafePoint here and have it dominate and kill the safepoint added at a
  1959     // following backwards branch.  At this point the JVM state merely holds 2
  1960     // longs but not the 3-way value.
  1961     if( UseLoopSafepoints ) {
  1962       switch( iter().next_bc() ) {
  1963       case Bytecodes::_ifgt:
  1964       case Bytecodes::_iflt:
  1965       case Bytecodes::_ifge:
  1966       case Bytecodes::_ifle:
  1967       case Bytecodes::_ifne:
  1968       case Bytecodes::_ifeq:
  1969         // If this is a backwards branch in the bytecodes, add Safepoint
  1970         maybe_add_safepoint(iter().next_get_dest());
  1973     b = pop_pair();
  1974     a = pop_pair();
  1975     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1976     push(c);
  1977     break;
  1979   case Bytecodes::_lneg:
  1980     a = pop_pair();
  1981     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  1982     push_pair(b);
  1983     break;
  1984   case Bytecodes::_l2i:
  1985     a = pop_pair();
  1986     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  1987     break;
  1988   case Bytecodes::_i2l:
  1989     a = pop();
  1990     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  1991     push_pair(b);
  1992     break;
  1993   case Bytecodes::_i2b:
  1994     // Sign extend
  1995     a = pop();
  1996     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  1997     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  1998     push( a );
  1999     break;
  2000   case Bytecodes::_i2s:
  2001     a = pop();
  2002     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2003     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2004     push( a );
  2005     break;
  2006   case Bytecodes::_i2c:
  2007     a = pop();
  2008     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2009     break;
  2011   case Bytecodes::_i2f:
  2012     a = pop();
  2013     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2014     c = precision_rounding(b);
  2015     push (b);
  2016     break;
  2018   case Bytecodes::_i2d:
  2019     a = pop();
  2020     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2021     push_pair(b);
  2022     break;
  2024   case Bytecodes::_iinc:        // Increment local
  2025     i = iter().get_index();     // Get local index
  2026     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2027     break;
  2029   // Exit points of synchronized methods must have an unlock node
  2030   case Bytecodes::_return:
  2031     return_current(NULL);
  2032     break;
  2034   case Bytecodes::_ireturn:
  2035   case Bytecodes::_areturn:
  2036   case Bytecodes::_freturn:
  2037     return_current(pop());
  2038     break;
  2039   case Bytecodes::_lreturn:
  2040     return_current(pop_pair());
  2041     break;
  2042   case Bytecodes::_dreturn:
  2043     return_current(pop_pair());
  2044     break;
  2046   case Bytecodes::_athrow:
  2047     // null exception oop throws NULL pointer exception
  2048     do_null_check(peek(), T_OBJECT);
  2049     if (stopped())  return;
  2050     if (JvmtiExport::can_post_exceptions()) {
  2051       // "Full-speed throwing" is not necessary here,
  2052       // since we're notifying the VM on every throw.
  2053       uncommon_trap(Deoptimization::Reason_unhandled,
  2054                     Deoptimization::Action_none);
  2055       return;
  2057     // Hook the thrown exception directly to subsequent handlers.
  2058     if (BailoutToInterpreterForThrows) {
  2059       // Keep method interpreted from now on.
  2060       uncommon_trap(Deoptimization::Reason_unhandled,
  2061                     Deoptimization::Action_make_not_compilable);
  2062       return;
  2064     add_exception_state(make_exception_state(peek()));
  2065     break;
  2067   case Bytecodes::_goto:   // fall through
  2068   case Bytecodes::_goto_w: {
  2069     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2071     // If this is a backwards branch in the bytecodes, add Safepoint
  2072     maybe_add_safepoint(target_bci);
  2074     // Update method data
  2075     profile_taken_branch(target_bci);
  2077     // Merge the current control into the target basic block
  2078     merge(target_bci);
  2080     // See if we can get some profile data and hand it off to the next block
  2081     Block *target_block = block()->successor_for_bci(target_bci);
  2082     if (target_block->pred_count() != 1)  break;
  2083     ciMethodData* methodData = method()->method_data();
  2084     if (!methodData->is_mature())  break;
  2085     ciProfileData* data = methodData->bci_to_data(bci());
  2086     assert( data->is_JumpData(), "" );
  2087     int taken = ((ciJumpData*)data)->taken();
  2088     taken = method()->scale_count(taken);
  2089     target_block->set_count(taken);
  2090     break;
  2093   case Bytecodes::_ifnull:
  2094     do_ifnull(BoolTest::eq);
  2095     break;
  2096   case Bytecodes::_ifnonnull:
  2097     do_ifnull(BoolTest::ne);
  2098     break;
  2100   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2101   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2102   handle_if_acmp:
  2103     // If this is a backwards branch in the bytecodes, add Safepoint
  2104     maybe_add_safepoint(iter().get_dest());
  2105     a = pop();
  2106     b = pop();
  2107     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2108     do_if(btest, c);
  2109     break;
  2111   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2112   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2113   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2114   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2115   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2116   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2117   handle_ifxx:
  2118     // If this is a backwards branch in the bytecodes, add Safepoint
  2119     maybe_add_safepoint(iter().get_dest());
  2120     a = _gvn.intcon(0);
  2121     b = pop();
  2122     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2123     do_if(btest, c);
  2124     break;
  2126   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2127   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2128   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2129   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2130   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2131   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2132   handle_if_icmp:
  2133     // If this is a backwards branch in the bytecodes, add Safepoint
  2134     maybe_add_safepoint(iter().get_dest());
  2135     a = pop();
  2136     b = pop();
  2137     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2138     do_if(btest, c);
  2139     break;
  2141   case Bytecodes::_tableswitch:
  2142     do_tableswitch();
  2143     break;
  2145   case Bytecodes::_lookupswitch:
  2146     do_lookupswitch();
  2147     break;
  2149   case Bytecodes::_invokestatic:
  2150   case Bytecodes::_invokespecial:
  2151   case Bytecodes::_invokevirtual:
  2152   case Bytecodes::_invokeinterface:
  2153     do_call();
  2154     break;
  2155   case Bytecodes::_checkcast:
  2156     do_checkcast();
  2157     break;
  2158   case Bytecodes::_instanceof:
  2159     do_instanceof();
  2160     break;
  2161   case Bytecodes::_anewarray:
  2162     do_anewarray();
  2163     break;
  2164   case Bytecodes::_newarray:
  2165     do_newarray((BasicType)iter().get_index());
  2166     break;
  2167   case Bytecodes::_multianewarray:
  2168     do_multianewarray();
  2169     break;
  2170   case Bytecodes::_new:
  2171     do_new();
  2172     break;
  2174   case Bytecodes::_jsr:
  2175   case Bytecodes::_jsr_w:
  2176     do_jsr();
  2177     break;
  2179   case Bytecodes::_ret:
  2180     do_ret();
  2181     break;
  2184   case Bytecodes::_monitorenter:
  2185     do_monitor_enter();
  2186     break;
  2188   case Bytecodes::_monitorexit:
  2189     do_monitor_exit();
  2190     break;
  2192   case Bytecodes::_breakpoint:
  2193     // Breakpoint set concurrently to compile
  2194     // %%% use an uncommon trap?
  2195     C->record_failure("breakpoint in method");
  2196     return;
  2198   default:
  2199 #ifndef PRODUCT
  2200     map()->dump(99);
  2201 #endif
  2202     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2203     ShouldNotReachHere();
  2206 #ifndef PRODUCT
  2207   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2208   if(printer) {
  2209     char buffer[256];
  2210     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2211     bool old = printer->traverse_outs();
  2212     printer->set_traverse_outs(true);
  2213     printer->print_method(C, buffer, 3);
  2214     printer->set_traverse_outs(old);
  2216 #endif

mercurial