src/share/vm/runtime/thread.cpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2497
3582bf76420e
child 2516
fb539912d338
child 2518
f36c9fe788b8
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "jvmtifiles/jvmtiEnv.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/instanceKlass.hpp"
    38 #include "oops/objArrayOop.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "oops/symbol.hpp"
    41 #include "prims/jvm_misc.hpp"
    42 #include "prims/jvmtiExport.hpp"
    43 #include "prims/jvmtiThreadState.hpp"
    44 #include "prims/privilegedStack.hpp"
    45 #include "runtime/aprofiler.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/deoptimization.hpp"
    49 #include "runtime/fprofiler.hpp"
    50 #include "runtime/frame.inline.hpp"
    51 #include "runtime/init.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/java.hpp"
    54 #include "runtime/javaCalls.hpp"
    55 #include "runtime/jniPeriodicChecker.hpp"
    56 #include "runtime/memprofiler.hpp"
    57 #include "runtime/mutexLocker.hpp"
    58 #include "runtime/objectMonitor.hpp"
    59 #include "runtime/osThread.hpp"
    60 #include "runtime/safepoint.hpp"
    61 #include "runtime/sharedRuntime.hpp"
    62 #include "runtime/statSampler.hpp"
    63 #include "runtime/stubRoutines.hpp"
    64 #include "runtime/task.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/threadLocalStorage.hpp"
    67 #include "runtime/vframe.hpp"
    68 #include "runtime/vframeArray.hpp"
    69 #include "runtime/vframe_hp.hpp"
    70 #include "runtime/vmThread.hpp"
    71 #include "runtime/vm_operations.hpp"
    72 #include "services/attachListener.hpp"
    73 #include "services/management.hpp"
    74 #include "services/threadService.hpp"
    75 #include "utilities/defaultStream.hpp"
    76 #include "utilities/dtrace.hpp"
    77 #include "utilities/events.hpp"
    78 #include "utilities/preserveException.hpp"
    79 #ifdef TARGET_OS_FAMILY_linux
    80 # include "os_linux.inline.hpp"
    81 # include "thread_linux.inline.hpp"
    82 #endif
    83 #ifdef TARGET_OS_FAMILY_solaris
    84 # include "os_solaris.inline.hpp"
    85 # include "thread_solaris.inline.hpp"
    86 #endif
    87 #ifdef TARGET_OS_FAMILY_windows
    88 # include "os_windows.inline.hpp"
    89 # include "thread_windows.inline.hpp"
    90 #endif
    91 #ifndef SERIALGC
    92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    95 #endif
    96 #ifdef COMPILER1
    97 #include "c1/c1_Compiler.hpp"
    98 #endif
    99 #ifdef COMPILER2
   100 #include "opto/c2compiler.hpp"
   101 #include "opto/idealGraphPrinter.hpp"
   102 #endif
   104 #ifdef DTRACE_ENABLED
   106 // Only bother with this argument setup if dtrace is available
   108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   110 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   111   intptr_t, intptr_t, bool);
   112 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   113   intptr_t, intptr_t, bool);
   115 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   116   {                                                                        \
   117     ResourceMark rm(this);                                                 \
   118     int len = 0;                                                           \
   119     const char* name = (javathread)->get_thread_name();                    \
   120     len = strlen(name);                                                    \
   121     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   122       name, len,                                                           \
   123       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   124       (javathread)->osthread()->thread_id(),                               \
   125       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   126   }
   128 #else //  ndef DTRACE_ENABLED
   130 #define DTRACE_THREAD_PROBE(probe, javathread)
   132 #endif // ndef DTRACE_ENABLED
   134 // Class hierarchy
   135 // - Thread
   136 //   - VMThread
   137 //   - WatcherThread
   138 //   - ConcurrentMarkSweepThread
   139 //   - JavaThread
   140 //     - CompilerThread
   142 // ======= Thread ========
   144 // Support for forcing alignment of thread objects for biased locking
   145 void* Thread::operator new(size_t size) {
   146   if (UseBiasedLocking) {
   147     const int alignment = markOopDesc::biased_lock_alignment;
   148     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   149     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   153            "JavaThread alignment code overflowed allocated storage");
   154     if (TraceBiasedLocking) {
   155       if (aligned_addr != real_malloc_addr)
   156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   157                       real_malloc_addr, aligned_addr);
   158     }
   159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   160     return aligned_addr;
   161   } else {
   162     return CHeapObj::operator new(size);
   163   }
   164 }
   166 void Thread::operator delete(void* p) {
   167   if (UseBiasedLocking) {
   168     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   169     CHeapObj::operator delete(real_malloc_addr);
   170   } else {
   171     CHeapObj::operator delete(p);
   172   }
   173 }
   176 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   177 // JavaThread
   180 Thread::Thread() {
   181   // stack and get_thread
   182   set_stack_base(NULL);
   183   set_stack_size(0);
   184   set_self_raw_id(0);
   185   set_lgrp_id(-1);
   187   // allocated data structures
   188   set_osthread(NULL);
   189   set_resource_area(new ResourceArea());
   190   set_handle_area(new HandleArea(NULL));
   191   set_active_handles(NULL);
   192   set_free_handle_block(NULL);
   193   set_last_handle_mark(NULL);
   195   // This initial value ==> never claimed.
   196   _oops_do_parity = 0;
   198   // the handle mark links itself to last_handle_mark
   199   new HandleMark(this);
   201   // plain initialization
   202   debug_only(_owned_locks = NULL;)
   203   debug_only(_allow_allocation_count = 0;)
   204   NOT_PRODUCT(_allow_safepoint_count = 0;)
   205   NOT_PRODUCT(_skip_gcalot = false;)
   206   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   207   _jvmti_env_iteration_count = 0;
   208   set_allocated_bytes(0);
   209   _vm_operation_started_count = 0;
   210   _vm_operation_completed_count = 0;
   211   _current_pending_monitor = NULL;
   212   _current_pending_monitor_is_from_java = true;
   213   _current_waiting_monitor = NULL;
   214   _num_nested_signal = 0;
   215   omFreeList = NULL ;
   216   omFreeCount = 0 ;
   217   omFreeProvision = 32 ;
   218   omInUseList = NULL ;
   219   omInUseCount = 0 ;
   221   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   222   _suspend_flags = 0;
   224   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   225   _hashStateX = os::random() ;
   226   _hashStateY = 842502087 ;
   227   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   228   _hashStateW = 273326509 ;
   230   _OnTrap   = 0 ;
   231   _schedctl = NULL ;
   232   _Stalled  = 0 ;
   233   _TypeTag  = 0x2BAD ;
   235   // Many of the following fields are effectively final - immutable
   236   // Note that nascent threads can't use the Native Monitor-Mutex
   237   // construct until the _MutexEvent is initialized ...
   238   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   239   // we might instead use a stack of ParkEvents that we could provision on-demand.
   240   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   241   // and ::Release()
   242   _ParkEvent   = ParkEvent::Allocate (this) ;
   243   _SleepEvent  = ParkEvent::Allocate (this) ;
   244   _MutexEvent  = ParkEvent::Allocate (this) ;
   245   _MuxEvent    = ParkEvent::Allocate (this) ;
   247 #ifdef CHECK_UNHANDLED_OOPS
   248   if (CheckUnhandledOops) {
   249     _unhandled_oops = new UnhandledOops(this);
   250   }
   251 #endif // CHECK_UNHANDLED_OOPS
   252 #ifdef ASSERT
   253   if (UseBiasedLocking) {
   254     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   255     assert(this == _real_malloc_address ||
   256            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   257            "bug in forced alignment of thread objects");
   258   }
   259 #endif /* ASSERT */
   260 }
   262 void Thread::initialize_thread_local_storage() {
   263   // Note: Make sure this method only calls
   264   // non-blocking operations. Otherwise, it might not work
   265   // with the thread-startup/safepoint interaction.
   267   // During Java thread startup, safepoint code should allow this
   268   // method to complete because it may need to allocate memory to
   269   // store information for the new thread.
   271   // initialize structure dependent on thread local storage
   272   ThreadLocalStorage::set_thread(this);
   274   // set up any platform-specific state.
   275   os::initialize_thread();
   277 }
   279 void Thread::record_stack_base_and_size() {
   280   set_stack_base(os::current_stack_base());
   281   set_stack_size(os::current_stack_size());
   282 }
   285 Thread::~Thread() {
   286   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   287   ObjectSynchronizer::omFlush (this) ;
   289   // deallocate data structures
   290   delete resource_area();
   291   // since the handle marks are using the handle area, we have to deallocated the root
   292   // handle mark before deallocating the thread's handle area,
   293   assert(last_handle_mark() != NULL, "check we have an element");
   294   delete last_handle_mark();
   295   assert(last_handle_mark() == NULL, "check we have reached the end");
   297   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   298   // We NULL out the fields for good hygiene.
   299   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   300   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   301   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   302   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   304   delete handle_area();
   306   // osthread() can be NULL, if creation of thread failed.
   307   if (osthread() != NULL) os::free_thread(osthread());
   309   delete _SR_lock;
   311   // clear thread local storage if the Thread is deleting itself
   312   if (this == Thread::current()) {
   313     ThreadLocalStorage::set_thread(NULL);
   314   } else {
   315     // In the case where we're not the current thread, invalidate all the
   316     // caches in case some code tries to get the current thread or the
   317     // thread that was destroyed, and gets stale information.
   318     ThreadLocalStorage::invalidate_all();
   319   }
   320   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   321 }
   323 // NOTE: dummy function for assertion purpose.
   324 void Thread::run() {
   325   ShouldNotReachHere();
   326 }
   328 #ifdef ASSERT
   329 // Private method to check for dangling thread pointer
   330 void check_for_dangling_thread_pointer(Thread *thread) {
   331  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   332          "possibility of dangling Thread pointer");
   333 }
   334 #endif
   337 #ifndef PRODUCT
   338 // Tracing method for basic thread operations
   339 void Thread::trace(const char* msg, const Thread* const thread) {
   340   if (!TraceThreadEvents) return;
   341   ResourceMark rm;
   342   ThreadCritical tc;
   343   const char *name = "non-Java thread";
   344   int prio = -1;
   345   if (thread->is_Java_thread()
   346       && !thread->is_Compiler_thread()) {
   347     // The Threads_lock must be held to get information about
   348     // this thread but may not be in some situations when
   349     // tracing  thread events.
   350     bool release_Threads_lock = false;
   351     if (!Threads_lock->owned_by_self()) {
   352       Threads_lock->lock();
   353       release_Threads_lock = true;
   354     }
   355     JavaThread* jt = (JavaThread *)thread;
   356     name = (char *)jt->get_thread_name();
   357     oop thread_oop = jt->threadObj();
   358     if (thread_oop != NULL) {
   359       prio = java_lang_Thread::priority(thread_oop);
   360     }
   361     if (release_Threads_lock) {
   362       Threads_lock->unlock();
   363     }
   364   }
   365   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   366 }
   367 #endif
   370 ThreadPriority Thread::get_priority(const Thread* const thread) {
   371   trace("get priority", thread);
   372   ThreadPriority priority;
   373   // Can return an error!
   374   (void)os::get_priority(thread, priority);
   375   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   376   return priority;
   377 }
   379 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   380   trace("set priority", thread);
   381   debug_only(check_for_dangling_thread_pointer(thread);)
   382   // Can return an error!
   383   (void)os::set_priority(thread, priority);
   384 }
   387 void Thread::start(Thread* thread) {
   388   trace("start", thread);
   389   // Start is different from resume in that its safety is guaranteed by context or
   390   // being called from a Java method synchronized on the Thread object.
   391   if (!DisableStartThread) {
   392     if (thread->is_Java_thread()) {
   393       // Initialize the thread state to RUNNABLE before starting this thread.
   394       // Can not set it after the thread started because we do not know the
   395       // exact thread state at that time. It could be in MONITOR_WAIT or
   396       // in SLEEPING or some other state.
   397       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   398                                           java_lang_Thread::RUNNABLE);
   399     }
   400     os::start_thread(thread);
   401   }
   402 }
   404 // Enqueue a VM_Operation to do the job for us - sometime later
   405 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   406   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   407   VMThread::execute(vm_stop);
   408 }
   411 //
   412 // Check if an external suspend request has completed (or has been
   413 // cancelled). Returns true if the thread is externally suspended and
   414 // false otherwise.
   415 //
   416 // The bits parameter returns information about the code path through
   417 // the routine. Useful for debugging:
   418 //
   419 // set in is_ext_suspend_completed():
   420 // 0x00000001 - routine was entered
   421 // 0x00000010 - routine return false at end
   422 // 0x00000100 - thread exited (return false)
   423 // 0x00000200 - suspend request cancelled (return false)
   424 // 0x00000400 - thread suspended (return true)
   425 // 0x00001000 - thread is in a suspend equivalent state (return true)
   426 // 0x00002000 - thread is native and walkable (return true)
   427 // 0x00004000 - thread is native_trans and walkable (needed retry)
   428 //
   429 // set in wait_for_ext_suspend_completion():
   430 // 0x00010000 - routine was entered
   431 // 0x00020000 - suspend request cancelled before loop (return false)
   432 // 0x00040000 - thread suspended before loop (return true)
   433 // 0x00080000 - suspend request cancelled in loop (return false)
   434 // 0x00100000 - thread suspended in loop (return true)
   435 // 0x00200000 - suspend not completed during retry loop (return false)
   436 //
   438 // Helper class for tracing suspend wait debug bits.
   439 //
   440 // 0x00000100 indicates that the target thread exited before it could
   441 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   442 // 0x00080000 each indicate a cancelled suspend request so they don't
   443 // count as wait failures either.
   444 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   446 class TraceSuspendDebugBits : public StackObj {
   447  private:
   448   JavaThread * jt;
   449   bool         is_wait;
   450   bool         called_by_wait;  // meaningful when !is_wait
   451   uint32_t *   bits;
   453  public:
   454   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   455                         uint32_t *_bits) {
   456     jt             = _jt;
   457     is_wait        = _is_wait;
   458     called_by_wait = _called_by_wait;
   459     bits           = _bits;
   460   }
   462   ~TraceSuspendDebugBits() {
   463     if (!is_wait) {
   464 #if 1
   465       // By default, don't trace bits for is_ext_suspend_completed() calls.
   466       // That trace is very chatty.
   467       return;
   468 #else
   469       if (!called_by_wait) {
   470         // If tracing for is_ext_suspend_completed() is enabled, then only
   471         // trace calls to it from wait_for_ext_suspend_completion()
   472         return;
   473       }
   474 #endif
   475     }
   477     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   478       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   479         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   480         ResourceMark rm;
   482         tty->print_cr(
   483             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   484             jt->get_thread_name(), *bits);
   486         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   487       }
   488     }
   489   }
   490 };
   491 #undef DEBUG_FALSE_BITS
   494 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   495   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   497   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   498   bool do_trans_retry;           // flag to force the retry
   500   *bits |= 0x00000001;
   502   do {
   503     do_trans_retry = false;
   505     if (is_exiting()) {
   506       // Thread is in the process of exiting. This is always checked
   507       // first to reduce the risk of dereferencing a freed JavaThread.
   508       *bits |= 0x00000100;
   509       return false;
   510     }
   512     if (!is_external_suspend()) {
   513       // Suspend request is cancelled. This is always checked before
   514       // is_ext_suspended() to reduce the risk of a rogue resume
   515       // confusing the thread that made the suspend request.
   516       *bits |= 0x00000200;
   517       return false;
   518     }
   520     if (is_ext_suspended()) {
   521       // thread is suspended
   522       *bits |= 0x00000400;
   523       return true;
   524     }
   526     // Now that we no longer do hard suspends of threads running
   527     // native code, the target thread can be changing thread state
   528     // while we are in this routine:
   529     //
   530     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   531     //
   532     // We save a copy of the thread state as observed at this moment
   533     // and make our decision about suspend completeness based on the
   534     // copy. This closes the race where the thread state is seen as
   535     // _thread_in_native_trans in the if-thread_blocked check, but is
   536     // seen as _thread_blocked in if-thread_in_native_trans check.
   537     JavaThreadState save_state = thread_state();
   539     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   540       // If the thread's state is _thread_blocked and this blocking
   541       // condition is known to be equivalent to a suspend, then we can
   542       // consider the thread to be externally suspended. This means that
   543       // the code that sets _thread_blocked has been modified to do
   544       // self-suspension if the blocking condition releases. We also
   545       // used to check for CONDVAR_WAIT here, but that is now covered by
   546       // the _thread_blocked with self-suspension check.
   547       //
   548       // Return true since we wouldn't be here unless there was still an
   549       // external suspend request.
   550       *bits |= 0x00001000;
   551       return true;
   552     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   553       // Threads running native code will self-suspend on native==>VM/Java
   554       // transitions. If its stack is walkable (should always be the case
   555       // unless this function is called before the actual java_suspend()
   556       // call), then the wait is done.
   557       *bits |= 0x00002000;
   558       return true;
   559     } else if (!called_by_wait && !did_trans_retry &&
   560                save_state == _thread_in_native_trans &&
   561                frame_anchor()->walkable()) {
   562       // The thread is transitioning from thread_in_native to another
   563       // thread state. check_safepoint_and_suspend_for_native_trans()
   564       // will force the thread to self-suspend. If it hasn't gotten
   565       // there yet we may have caught the thread in-between the native
   566       // code check above and the self-suspend. Lucky us. If we were
   567       // called by wait_for_ext_suspend_completion(), then it
   568       // will be doing the retries so we don't have to.
   569       //
   570       // Since we use the saved thread state in the if-statement above,
   571       // there is a chance that the thread has already transitioned to
   572       // _thread_blocked by the time we get here. In that case, we will
   573       // make a single unnecessary pass through the logic below. This
   574       // doesn't hurt anything since we still do the trans retry.
   576       *bits |= 0x00004000;
   578       // Once the thread leaves thread_in_native_trans for another
   579       // thread state, we break out of this retry loop. We shouldn't
   580       // need this flag to prevent us from getting back here, but
   581       // sometimes paranoia is good.
   582       did_trans_retry = true;
   584       // We wait for the thread to transition to a more usable state.
   585       for (int i = 1; i <= SuspendRetryCount; i++) {
   586         // We used to do an "os::yield_all(i)" call here with the intention
   587         // that yielding would increase on each retry. However, the parameter
   588         // is ignored on Linux which means the yield didn't scale up. Waiting
   589         // on the SR_lock below provides a much more predictable scale up for
   590         // the delay. It also provides a simple/direct point to check for any
   591         // safepoint requests from the VMThread
   593         // temporarily drops SR_lock while doing wait with safepoint check
   594         // (if we're a JavaThread - the WatcherThread can also call this)
   595         // and increase delay with each retry
   596         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598         // check the actual thread state instead of what we saved above
   599         if (thread_state() != _thread_in_native_trans) {
   600           // the thread has transitioned to another thread state so
   601           // try all the checks (except this one) one more time.
   602           do_trans_retry = true;
   603           break;
   604         }
   605       } // end retry loop
   608     }
   609   } while (do_trans_retry);
   611   *bits |= 0x00000010;
   612   return false;
   613 }
   615 //
   616 // Wait for an external suspend request to complete (or be cancelled).
   617 // Returns true if the thread is externally suspended and false otherwise.
   618 //
   619 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   620        uint32_t *bits) {
   621   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   622                              false /* !called_by_wait */, bits);
   624   // local flag copies to minimize SR_lock hold time
   625   bool is_suspended;
   626   bool pending;
   627   uint32_t reset_bits;
   629   // set a marker so is_ext_suspend_completed() knows we are the caller
   630   *bits |= 0x00010000;
   632   // We use reset_bits to reinitialize the bits value at the top of
   633   // each retry loop. This allows the caller to make use of any
   634   // unused bits for their own marking purposes.
   635   reset_bits = *bits;
   637   {
   638     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   639     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   640                                             delay, bits);
   641     pending = is_external_suspend();
   642   }
   643   // must release SR_lock to allow suspension to complete
   645   if (!pending) {
   646     // A cancelled suspend request is the only false return from
   647     // is_ext_suspend_completed() that keeps us from entering the
   648     // retry loop.
   649     *bits |= 0x00020000;
   650     return false;
   651   }
   653   if (is_suspended) {
   654     *bits |= 0x00040000;
   655     return true;
   656   }
   658   for (int i = 1; i <= retries; i++) {
   659     *bits = reset_bits;  // reinit to only track last retry
   661     // We used to do an "os::yield_all(i)" call here with the intention
   662     // that yielding would increase on each retry. However, the parameter
   663     // is ignored on Linux which means the yield didn't scale up. Waiting
   664     // on the SR_lock below provides a much more predictable scale up for
   665     // the delay. It also provides a simple/direct point to check for any
   666     // safepoint requests from the VMThread
   668     {
   669       MutexLocker ml(SR_lock());
   670       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   671       // can also call this)  and increase delay with each retry
   672       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   674       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   675                                               delay, bits);
   677       // It is possible for the external suspend request to be cancelled
   678       // (by a resume) before the actual suspend operation is completed.
   679       // Refresh our local copy to see if we still need to wait.
   680       pending = is_external_suspend();
   681     }
   683     if (!pending) {
   684       // A cancelled suspend request is the only false return from
   685       // is_ext_suspend_completed() that keeps us from staying in the
   686       // retry loop.
   687       *bits |= 0x00080000;
   688       return false;
   689     }
   691     if (is_suspended) {
   692       *bits |= 0x00100000;
   693       return true;
   694     }
   695   } // end retry loop
   697   // thread did not suspend after all our retries
   698   *bits |= 0x00200000;
   699   return false;
   700 }
   702 #ifndef PRODUCT
   703 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   705   // This should not need to be atomic as the only way for simultaneous
   706   // updates is via interrupts. Even then this should be rare or non-existant
   707   // and we don't care that much anyway.
   709   int index = _jmp_ring_index;
   710   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   711   _jmp_ring[index]._target = (intptr_t) target;
   712   _jmp_ring[index]._instruction = (intptr_t) instr;
   713   _jmp_ring[index]._file = file;
   714   _jmp_ring[index]._line = line;
   715 }
   716 #endif /* PRODUCT */
   718 // Called by flat profiler
   719 // Callers have already called wait_for_ext_suspend_completion
   720 // The assertion for that is currently too complex to put here:
   721 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   722   bool gotframe = false;
   723   // self suspension saves needed state.
   724   if (has_last_Java_frame() && _anchor.walkable()) {
   725      *_fr = pd_last_frame();
   726      gotframe = true;
   727   }
   728   return gotframe;
   729 }
   731 void Thread::interrupt(Thread* thread) {
   732   trace("interrupt", thread);
   733   debug_only(check_for_dangling_thread_pointer(thread);)
   734   os::interrupt(thread);
   735 }
   737 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   738   trace("is_interrupted", thread);
   739   debug_only(check_for_dangling_thread_pointer(thread);)
   740   // Note:  If clear_interrupted==false, this simply fetches and
   741   // returns the value of the field osthread()->interrupted().
   742   return os::is_interrupted(thread, clear_interrupted);
   743 }
   746 // GC Support
   747 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   748   jint thread_parity = _oops_do_parity;
   749   if (thread_parity != strong_roots_parity) {
   750     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   751     if (res == thread_parity) return true;
   752     else {
   753       guarantee(res == strong_roots_parity, "Or else what?");
   754       assert(SharedHeap::heap()->n_par_threads() > 0,
   755              "Should only fail when parallel.");
   756       return false;
   757     }
   758   }
   759   assert(SharedHeap::heap()->n_par_threads() > 0,
   760          "Should only fail when parallel.");
   761   return false;
   762 }
   764 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   765   active_handles()->oops_do(f);
   766   // Do oop for ThreadShadow
   767   f->do_oop((oop*)&_pending_exception);
   768   handle_area()->oops_do(f);
   769 }
   771 void Thread::nmethods_do(CodeBlobClosure* cf) {
   772   // no nmethods in a generic thread...
   773 }
   775 void Thread::print_on(outputStream* st) const {
   776   // get_priority assumes osthread initialized
   777   if (osthread() != NULL) {
   778     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   779     osthread()->print_on(st);
   780   }
   781   debug_only(if (WizardMode) print_owned_locks_on(st);)
   782 }
   784 // Thread::print_on_error() is called by fatal error handler. Don't use
   785 // any lock or allocate memory.
   786 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   787   if      (is_VM_thread())                  st->print("VMThread");
   788   else if (is_Compiler_thread())            st->print("CompilerThread");
   789   else if (is_Java_thread())                st->print("JavaThread");
   790   else if (is_GC_task_thread())             st->print("GCTaskThread");
   791   else if (is_Watcher_thread())             st->print("WatcherThread");
   792   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   793   else st->print("Thread");
   795   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   796             _stack_base - _stack_size, _stack_base);
   798   if (osthread()) {
   799     st->print(" [id=%d]", osthread()->thread_id());
   800   }
   801 }
   803 #ifdef ASSERT
   804 void Thread::print_owned_locks_on(outputStream* st) const {
   805   Monitor *cur = _owned_locks;
   806   if (cur == NULL) {
   807     st->print(" (no locks) ");
   808   } else {
   809     st->print_cr(" Locks owned:");
   810     while(cur) {
   811       cur->print_on(st);
   812       cur = cur->next();
   813     }
   814   }
   815 }
   817 static int ref_use_count  = 0;
   819 bool Thread::owns_locks_but_compiled_lock() const {
   820   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   821     if (cur != Compile_lock) return true;
   822   }
   823   return false;
   824 }
   827 #endif
   829 #ifndef PRODUCT
   831 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   832 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   833 // no threads which allow_vm_block's are held
   834 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   835     // Check if current thread is allowed to block at a safepoint
   836     if (!(_allow_safepoint_count == 0))
   837       fatal("Possible safepoint reached by thread that does not allow it");
   838     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   839       fatal("LEAF method calling lock?");
   840     }
   842 #ifdef ASSERT
   843     if (potential_vm_operation && is_Java_thread()
   844         && !Universe::is_bootstrapping()) {
   845       // Make sure we do not hold any locks that the VM thread also uses.
   846       // This could potentially lead to deadlocks
   847       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   848         // Threads_lock is special, since the safepoint synchronization will not start before this is
   849         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   850         // since it is used to transfer control between JavaThreads and the VMThread
   851         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   852         if ( (cur->allow_vm_block() &&
   853               cur != Threads_lock &&
   854               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   855               cur != VMOperationRequest_lock &&
   856               cur != VMOperationQueue_lock) ||
   857               cur->rank() == Mutex::special) {
   858           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   859         }
   860       }
   861     }
   863     if (GCALotAtAllSafepoints) {
   864       // We could enter a safepoint here and thus have a gc
   865       InterfaceSupport::check_gc_alot();
   866     }
   867 #endif
   868 }
   869 #endif
   871 bool Thread::is_in_stack(address adr) const {
   872   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   873   address end = os::current_stack_pointer();
   874   if (stack_base() >= adr && adr >= end) return true;
   876   return false;
   877 }
   880 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   881 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   882 // used for compilation in the future. If that change is made, the need for these methods
   883 // should be revisited, and they should be removed if possible.
   885 bool Thread::is_lock_owned(address adr) const {
   886   return on_local_stack(adr);
   887 }
   889 bool Thread::set_as_starting_thread() {
   890  // NOTE: this must be called inside the main thread.
   891   return os::create_main_thread((JavaThread*)this);
   892 }
   894 static void initialize_class(Symbol* class_name, TRAPS) {
   895   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   896   instanceKlass::cast(klass)->initialize(CHECK);
   897 }
   900 // Creates the initial ThreadGroup
   901 static Handle create_initial_thread_group(TRAPS) {
   902   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   903   instanceKlassHandle klass (THREAD, k);
   905   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   906   {
   907     JavaValue result(T_VOID);
   908     JavaCalls::call_special(&result,
   909                             system_instance,
   910                             klass,
   911                             vmSymbols::object_initializer_name(),
   912                             vmSymbols::void_method_signature(),
   913                             CHECK_NH);
   914   }
   915   Universe::set_system_thread_group(system_instance());
   917   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   918   {
   919     JavaValue result(T_VOID);
   920     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   921     JavaCalls::call_special(&result,
   922                             main_instance,
   923                             klass,
   924                             vmSymbols::object_initializer_name(),
   925                             vmSymbols::threadgroup_string_void_signature(),
   926                             system_instance,
   927                             string,
   928                             CHECK_NH);
   929   }
   930   return main_instance;
   931 }
   933 // Creates the initial Thread
   934 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   935   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   936   instanceKlassHandle klass (THREAD, k);
   937   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   939   java_lang_Thread::set_thread(thread_oop(), thread);
   940   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   941   thread->set_threadObj(thread_oop());
   943   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   945   JavaValue result(T_VOID);
   946   JavaCalls::call_special(&result, thread_oop,
   947                                    klass,
   948                                    vmSymbols::object_initializer_name(),
   949                                    vmSymbols::threadgroup_string_void_signature(),
   950                                    thread_group,
   951                                    string,
   952                                    CHECK_NULL);
   953   return thread_oop();
   954 }
   956 static void call_initializeSystemClass(TRAPS) {
   957   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   958   instanceKlassHandle klass (THREAD, k);
   960   JavaValue result(T_VOID);
   961   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   962                                          vmSymbols::void_method_signature(), CHECK);
   963 }
   965 #ifdef KERNEL
   966 static void set_jkernel_boot_classloader_hook(TRAPS) {
   967   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   968   instanceKlassHandle klass (THREAD, k);
   970   if (k == NULL) {
   971     // sun.jkernel.DownloadManager may not present in the JDK; just return
   972     return;
   973   }
   975   JavaValue result(T_VOID);
   976   JavaCalls::call_static(&result, klass, vmSymbols::setBootClassLoaderHook_name(),
   977                                          vmSymbols::void_method_signature(), CHECK);
   978 }
   979 #endif // KERNEL
   981 // General purpose hook into Java code, run once when the VM is initialized.
   982 // The Java library method itself may be changed independently from the VM.
   983 static void call_postVMInitHook(TRAPS) {
   984   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
   985   instanceKlassHandle klass (THREAD, k);
   986   if (klass.not_null()) {
   987     JavaValue result(T_VOID);
   988     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
   989                                            vmSymbols::void_method_signature(),
   990                                            CHECK);
   991   }
   992 }
   994 static void reset_vm_info_property(TRAPS) {
   995   // the vm info string
   996   ResourceMark rm(THREAD);
   997   const char *vm_info = VM_Version::vm_info_string();
   999   // java.lang.System class
  1000   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1001   instanceKlassHandle klass (THREAD, k);
  1003   // setProperty arguments
  1004   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1005   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1007   // return value
  1008   JavaValue r(T_OBJECT);
  1010   // public static String setProperty(String key, String value);
  1011   JavaCalls::call_static(&r,
  1012                          klass,
  1013                          vmSymbols::setProperty_name(),
  1014                          vmSymbols::string_string_string_signature(),
  1015                          key_str,
  1016                          value_str,
  1017                          CHECK);
  1021 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1022   assert(thread_group.not_null(), "thread group should be specified");
  1023   assert(threadObj() == NULL, "should only create Java thread object once");
  1025   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1026   instanceKlassHandle klass (THREAD, k);
  1027   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1029   java_lang_Thread::set_thread(thread_oop(), this);
  1030   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1031   set_threadObj(thread_oop());
  1033   JavaValue result(T_VOID);
  1034   if (thread_name != NULL) {
  1035     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1036     // Thread gets assigned specified name and null target
  1037     JavaCalls::call_special(&result,
  1038                             thread_oop,
  1039                             klass,
  1040                             vmSymbols::object_initializer_name(),
  1041                             vmSymbols::threadgroup_string_void_signature(),
  1042                             thread_group, // Argument 1
  1043                             name,         // Argument 2
  1044                             THREAD);
  1045   } else {
  1046     // Thread gets assigned name "Thread-nnn" and null target
  1047     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1048     JavaCalls::call_special(&result,
  1049                             thread_oop,
  1050                             klass,
  1051                             vmSymbols::object_initializer_name(),
  1052                             vmSymbols::threadgroup_runnable_void_signature(),
  1053                             thread_group, // Argument 1
  1054                             Handle(),     // Argument 2
  1055                             THREAD);
  1059   if (daemon) {
  1060       java_lang_Thread::set_daemon(thread_oop());
  1063   if (HAS_PENDING_EXCEPTION) {
  1064     return;
  1067   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1068   Handle threadObj(this, this->threadObj());
  1070   JavaCalls::call_special(&result,
  1071                          thread_group,
  1072                          group,
  1073                          vmSymbols::add_method_name(),
  1074                          vmSymbols::thread_void_signature(),
  1075                          threadObj,          // Arg 1
  1076                          THREAD);
  1081 // NamedThread --  non-JavaThread subclasses with multiple
  1082 // uniquely named instances should derive from this.
  1083 NamedThread::NamedThread() : Thread() {
  1084   _name = NULL;
  1085   _processed_thread = NULL;
  1088 NamedThread::~NamedThread() {
  1089   if (_name != NULL) {
  1090     FREE_C_HEAP_ARRAY(char, _name);
  1091     _name = NULL;
  1095 void NamedThread::set_name(const char* format, ...) {
  1096   guarantee(_name == NULL, "Only get to set name once.");
  1097   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1098   guarantee(_name != NULL, "alloc failure");
  1099   va_list ap;
  1100   va_start(ap, format);
  1101   jio_vsnprintf(_name, max_name_len, format, ap);
  1102   va_end(ap);
  1105 // ======= WatcherThread ========
  1107 // The watcher thread exists to simulate timer interrupts.  It should
  1108 // be replaced by an abstraction over whatever native support for
  1109 // timer interrupts exists on the platform.
  1111 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1112 volatile bool  WatcherThread::_should_terminate = false;
  1114 WatcherThread::WatcherThread() : Thread() {
  1115   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1116   if (os::create_thread(this, os::watcher_thread)) {
  1117     _watcher_thread = this;
  1119     // Set the watcher thread to the highest OS priority which should not be
  1120     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1121     // is created. The only normal thread using this priority is the reference
  1122     // handler thread, which runs for very short intervals only.
  1123     // If the VMThread's priority is not lower than the WatcherThread profiling
  1124     // will be inaccurate.
  1125     os::set_priority(this, MaxPriority);
  1126     if (!DisableStartThread) {
  1127       os::start_thread(this);
  1132 void WatcherThread::run() {
  1133   assert(this == watcher_thread(), "just checking");
  1135   this->record_stack_base_and_size();
  1136   this->initialize_thread_local_storage();
  1137   this->set_active_handles(JNIHandleBlock::allocate_block());
  1138   while(!_should_terminate) {
  1139     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1140     assert(watcher_thread() == this,  "thread consistency check");
  1142     // Calculate how long it'll be until the next PeriodicTask work
  1143     // should be done, and sleep that amount of time.
  1144     size_t time_to_wait = PeriodicTask::time_to_wait();
  1146     // we expect this to timeout - we only ever get unparked when
  1147     // we should terminate
  1149       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1151       jlong prev_time = os::javaTimeNanos();
  1152       for (;;) {
  1153         int res= _SleepEvent->park(time_to_wait);
  1154         if (res == OS_TIMEOUT || _should_terminate)
  1155           break;
  1156         // spurious wakeup of some kind
  1157         jlong now = os::javaTimeNanos();
  1158         time_to_wait -= (now - prev_time) / 1000000;
  1159         if (time_to_wait <= 0)
  1160           break;
  1161         prev_time = now;
  1165     if (is_error_reported()) {
  1166       // A fatal error has happened, the error handler(VMError::report_and_die)
  1167       // should abort JVM after creating an error log file. However in some
  1168       // rare cases, the error handler itself might deadlock. Here we try to
  1169       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1170       //
  1171       // This code is in WatcherThread because WatcherThread wakes up
  1172       // periodically so the fatal error handler doesn't need to do anything;
  1173       // also because the WatcherThread is less likely to crash than other
  1174       // threads.
  1176       for (;;) {
  1177         if (!ShowMessageBoxOnError
  1178          && (OnError == NULL || OnError[0] == '\0')
  1179          && Arguments::abort_hook() == NULL) {
  1180              os::sleep(this, 2 * 60 * 1000, false);
  1181              fdStream err(defaultStream::output_fd());
  1182              err.print_raw_cr("# [ timer expired, abort... ]");
  1183              // skip atexit/vm_exit/vm_abort hooks
  1184              os::die();
  1187         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1188         // ShowMessageBoxOnError when it is ready to abort.
  1189         os::sleep(this, 5 * 1000, false);
  1193     PeriodicTask::real_time_tick(time_to_wait);
  1195     // If we have no more tasks left due to dynamic disenrollment,
  1196     // shut down the thread since we don't currently support dynamic enrollment
  1197     if (PeriodicTask::num_tasks() == 0) {
  1198       _should_terminate = true;
  1202   // Signal that it is terminated
  1204     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1205     _watcher_thread = NULL;
  1206     Terminator_lock->notify();
  1209   // Thread destructor usually does this..
  1210   ThreadLocalStorage::set_thread(NULL);
  1213 void WatcherThread::start() {
  1214   if (watcher_thread() == NULL) {
  1215     _should_terminate = false;
  1216     // Create the single instance of WatcherThread
  1217     new WatcherThread();
  1221 void WatcherThread::stop() {
  1222   // it is ok to take late safepoints here, if needed
  1223   MutexLocker mu(Terminator_lock);
  1224   _should_terminate = true;
  1225   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1227   Thread* watcher = watcher_thread();
  1228   if (watcher != NULL)
  1229     watcher->_SleepEvent->unpark();
  1231   while(watcher_thread() != NULL) {
  1232     // This wait should make safepoint checks, wait without a timeout,
  1233     // and wait as a suspend-equivalent condition.
  1234     //
  1235     // Note: If the FlatProfiler is running, then this thread is waiting
  1236     // for the WatcherThread to terminate and the WatcherThread, via the
  1237     // FlatProfiler task, is waiting for the external suspend request on
  1238     // this thread to complete. wait_for_ext_suspend_completion() will
  1239     // eventually timeout, but that takes time. Making this wait a
  1240     // suspend-equivalent condition solves that timeout problem.
  1241     //
  1242     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1243                           Mutex::_as_suspend_equivalent_flag);
  1247 void WatcherThread::print_on(outputStream* st) const {
  1248   st->print("\"%s\" ", name());
  1249   Thread::print_on(st);
  1250   st->cr();
  1253 // ======= JavaThread ========
  1255 // A JavaThread is a normal Java thread
  1257 void JavaThread::initialize() {
  1258   // Initialize fields
  1260   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1261   set_claimed_par_id(-1);
  1263   set_saved_exception_pc(NULL);
  1264   set_threadObj(NULL);
  1265   _anchor.clear();
  1266   set_entry_point(NULL);
  1267   set_jni_functions(jni_functions());
  1268   set_callee_target(NULL);
  1269   set_vm_result(NULL);
  1270   set_vm_result_2(NULL);
  1271   set_vframe_array_head(NULL);
  1272   set_vframe_array_last(NULL);
  1273   set_deferred_locals(NULL);
  1274   set_deopt_mark(NULL);
  1275   set_deopt_nmethod(NULL);
  1276   clear_must_deopt_id();
  1277   set_monitor_chunks(NULL);
  1278   set_next(NULL);
  1279   set_thread_state(_thread_new);
  1280   _terminated = _not_terminated;
  1281   _privileged_stack_top = NULL;
  1282   _array_for_gc = NULL;
  1283   _suspend_equivalent = false;
  1284   _in_deopt_handler = 0;
  1285   _doing_unsafe_access = false;
  1286   _stack_guard_state = stack_guard_unused;
  1287   _exception_oop = NULL;
  1288   _exception_pc  = 0;
  1289   _exception_handler_pc = 0;
  1290   _exception_stack_size = 0;
  1291   _is_method_handle_return = 0;
  1292   _jvmti_thread_state= NULL;
  1293   _should_post_on_exceptions_flag = JNI_FALSE;
  1294   _jvmti_get_loaded_classes_closure = NULL;
  1295   _interp_only_mode    = 0;
  1296   _special_runtime_exit_condition = _no_async_condition;
  1297   _pending_async_exception = NULL;
  1298   _is_compiling = false;
  1299   _thread_stat = NULL;
  1300   _thread_stat = new ThreadStatistics();
  1301   _blocked_on_compilation = false;
  1302   _jni_active_critical = 0;
  1303   _do_not_unlock_if_synchronized = false;
  1304   _cached_monitor_info = NULL;
  1305   _parker = Parker::Allocate(this) ;
  1307 #ifndef PRODUCT
  1308   _jmp_ring_index = 0;
  1309   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1310     record_jump(NULL, NULL, NULL, 0);
  1312 #endif /* PRODUCT */
  1314   set_thread_profiler(NULL);
  1315   if (FlatProfiler::is_active()) {
  1316     // This is where we would decide to either give each thread it's own profiler
  1317     // or use one global one from FlatProfiler,
  1318     // or up to some count of the number of profiled threads, etc.
  1319     ThreadProfiler* pp = new ThreadProfiler();
  1320     pp->engage();
  1321     set_thread_profiler(pp);
  1324   // Setup safepoint state info for this thread
  1325   ThreadSafepointState::create(this);
  1327   debug_only(_java_call_counter = 0);
  1329   // JVMTI PopFrame support
  1330   _popframe_condition = popframe_inactive;
  1331   _popframe_preserved_args = NULL;
  1332   _popframe_preserved_args_size = 0;
  1334   pd_initialize();
  1337 #ifndef SERIALGC
  1338 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1339 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1340 #endif // !SERIALGC
  1342 JavaThread::JavaThread(bool is_attaching) :
  1343   Thread()
  1344 #ifndef SERIALGC
  1345   , _satb_mark_queue(&_satb_mark_queue_set),
  1346   _dirty_card_queue(&_dirty_card_queue_set)
  1347 #endif // !SERIALGC
  1349   initialize();
  1350   _is_attaching = is_attaching;
  1351   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1354 bool JavaThread::reguard_stack(address cur_sp) {
  1355   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1356     return true; // Stack already guarded or guard pages not needed.
  1359   if (register_stack_overflow()) {
  1360     // For those architectures which have separate register and
  1361     // memory stacks, we must check the register stack to see if
  1362     // it has overflowed.
  1363     return false;
  1366   // Java code never executes within the yellow zone: the latter is only
  1367   // there to provoke an exception during stack banging.  If java code
  1368   // is executing there, either StackShadowPages should be larger, or
  1369   // some exception code in c1, c2 or the interpreter isn't unwinding
  1370   // when it should.
  1371   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1373   enable_stack_yellow_zone();
  1374   return true;
  1377 bool JavaThread::reguard_stack(void) {
  1378   return reguard_stack(os::current_stack_pointer());
  1382 void JavaThread::block_if_vm_exited() {
  1383   if (_terminated == _vm_exited) {
  1384     // _vm_exited is set at safepoint, and Threads_lock is never released
  1385     // we will block here forever
  1386     Threads_lock->lock_without_safepoint_check();
  1387     ShouldNotReachHere();
  1392 // Remove this ifdef when C1 is ported to the compiler interface.
  1393 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1395 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1396   Thread()
  1397 #ifndef SERIALGC
  1398   , _satb_mark_queue(&_satb_mark_queue_set),
  1399   _dirty_card_queue(&_dirty_card_queue_set)
  1400 #endif // !SERIALGC
  1402   if (TraceThreadEvents) {
  1403     tty->print_cr("creating thread %p", this);
  1405   initialize();
  1406   _is_attaching = false;
  1407   set_entry_point(entry_point);
  1408   // Create the native thread itself.
  1409   // %note runtime_23
  1410   os::ThreadType thr_type = os::java_thread;
  1411   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1412                                                      os::java_thread;
  1413   os::create_thread(this, thr_type, stack_sz);
  1415   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1416   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1417   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1418   // the exception consists of creating the exception object & initializing it, initialization
  1419   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1420   //
  1421   // The thread is still suspended when we reach here. Thread must be explicit started
  1422   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1423   // by calling Threads:add. The reason why this is not done here, is because the thread
  1424   // object must be fully initialized (take a look at JVM_Start)
  1427 JavaThread::~JavaThread() {
  1428   if (TraceThreadEvents) {
  1429       tty->print_cr("terminate thread %p", this);
  1432   // JSR166 -- return the parker to the free list
  1433   Parker::Release(_parker);
  1434   _parker = NULL ;
  1436   // Free any remaining  previous UnrollBlock
  1437   vframeArray* old_array = vframe_array_last();
  1439   if (old_array != NULL) {
  1440     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1441     old_array->set_unroll_block(NULL);
  1442     delete old_info;
  1443     delete old_array;
  1446   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1447   if (deferred != NULL) {
  1448     // This can only happen if thread is destroyed before deoptimization occurs.
  1449     assert(deferred->length() != 0, "empty array!");
  1450     do {
  1451       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1452       deferred->remove_at(0);
  1453       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1454       delete dlv;
  1455     } while (deferred->length() != 0);
  1456     delete deferred;
  1459   // All Java related clean up happens in exit
  1460   ThreadSafepointState::destroy(this);
  1461   if (_thread_profiler != NULL) delete _thread_profiler;
  1462   if (_thread_stat != NULL) delete _thread_stat;
  1466 // The first routine called by a new Java thread
  1467 void JavaThread::run() {
  1468   // initialize thread-local alloc buffer related fields
  1469   this->initialize_tlab();
  1471   // used to test validitity of stack trace backs
  1472   this->record_base_of_stack_pointer();
  1474   // Record real stack base and size.
  1475   this->record_stack_base_and_size();
  1477   // Initialize thread local storage; set before calling MutexLocker
  1478   this->initialize_thread_local_storage();
  1480   this->create_stack_guard_pages();
  1482   this->cache_global_variables();
  1484   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1485   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1486   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1488   assert(JavaThread::current() == this, "sanity check");
  1489   assert(!Thread::current()->owns_locks(), "sanity check");
  1491   DTRACE_THREAD_PROBE(start, this);
  1493   // This operation might block. We call that after all safepoint checks for a new thread has
  1494   // been completed.
  1495   this->set_active_handles(JNIHandleBlock::allocate_block());
  1497   if (JvmtiExport::should_post_thread_life()) {
  1498     JvmtiExport::post_thread_start(this);
  1501   // We call another function to do the rest so we are sure that the stack addresses used
  1502   // from there will be lower than the stack base just computed
  1503   thread_main_inner();
  1505   // Note, thread is no longer valid at this point!
  1509 void JavaThread::thread_main_inner() {
  1510   assert(JavaThread::current() == this, "sanity check");
  1511   assert(this->threadObj() != NULL, "just checking");
  1513   // Execute thread entry point unless this thread has a pending exception
  1514   // or has been stopped before starting.
  1515   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1516   if (!this->has_pending_exception() &&
  1517       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1518     HandleMark hm(this);
  1519     this->entry_point()(this, this);
  1522   DTRACE_THREAD_PROBE(stop, this);
  1524   this->exit(false);
  1525   delete this;
  1529 static void ensure_join(JavaThread* thread) {
  1530   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1531   Handle threadObj(thread, thread->threadObj());
  1532   assert(threadObj.not_null(), "java thread object must exist");
  1533   ObjectLocker lock(threadObj, thread);
  1534   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1535   thread->clear_pending_exception();
  1536   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1537   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1538   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1539   // to complete once we've done the notify_all below
  1540   java_lang_Thread::set_thread(threadObj(), NULL);
  1541   lock.notify_all(thread);
  1542   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1543   thread->clear_pending_exception();
  1547 // For any new cleanup additions, please check to see if they need to be applied to
  1548 // cleanup_failed_attach_current_thread as well.
  1549 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1550   assert(this == JavaThread::current(),  "thread consistency check");
  1551   if (!InitializeJavaLangSystem) return;
  1553   HandleMark hm(this);
  1554   Handle uncaught_exception(this, this->pending_exception());
  1555   this->clear_pending_exception();
  1556   Handle threadObj(this, this->threadObj());
  1557   assert(threadObj.not_null(), "Java thread object should be created");
  1559   if (get_thread_profiler() != NULL) {
  1560     get_thread_profiler()->disengage();
  1561     ResourceMark rm;
  1562     get_thread_profiler()->print(get_thread_name());
  1566   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1568     EXCEPTION_MARK;
  1570     CLEAR_PENDING_EXCEPTION;
  1572   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1573   // has to be fixed by a runtime query method
  1574   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1575     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1576     // java.lang.Thread.dispatchUncaughtException
  1577     if (uncaught_exception.not_null()) {
  1578       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1579       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1580         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1582         EXCEPTION_MARK;
  1583         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1584         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1585         // so call ThreadGroup.uncaughtException()
  1586         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1587         CallInfo callinfo;
  1588         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1589         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1590                                            vmSymbols::dispatchUncaughtException_name(),
  1591                                            vmSymbols::throwable_void_signature(),
  1592                                            KlassHandle(), false, false, THREAD);
  1593         CLEAR_PENDING_EXCEPTION;
  1594         methodHandle method = callinfo.selected_method();
  1595         if (method.not_null()) {
  1596           JavaValue result(T_VOID);
  1597           JavaCalls::call_virtual(&result,
  1598                                   threadObj, thread_klass,
  1599                                   vmSymbols::dispatchUncaughtException_name(),
  1600                                   vmSymbols::throwable_void_signature(),
  1601                                   uncaught_exception,
  1602                                   THREAD);
  1603         } else {
  1604           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1605           JavaValue result(T_VOID);
  1606           JavaCalls::call_virtual(&result,
  1607                                   group, thread_group,
  1608                                   vmSymbols::uncaughtException_name(),
  1609                                   vmSymbols::thread_throwable_void_signature(),
  1610                                   threadObj,           // Arg 1
  1611                                   uncaught_exception,  // Arg 2
  1612                                   THREAD);
  1614         CLEAR_PENDING_EXCEPTION;
  1618     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1619     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1620     // is deprecated anyhow.
  1621     { int count = 3;
  1622       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1623         EXCEPTION_MARK;
  1624         JavaValue result(T_VOID);
  1625         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1626         JavaCalls::call_virtual(&result,
  1627                               threadObj, thread_klass,
  1628                               vmSymbols::exit_method_name(),
  1629                               vmSymbols::void_method_signature(),
  1630                               THREAD);
  1631         CLEAR_PENDING_EXCEPTION;
  1635     // notify JVMTI
  1636     if (JvmtiExport::should_post_thread_life()) {
  1637       JvmtiExport::post_thread_end(this);
  1640     // We have notified the agents that we are exiting, before we go on,
  1641     // we must check for a pending external suspend request and honor it
  1642     // in order to not surprise the thread that made the suspend request.
  1643     while (true) {
  1645         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1646         if (!is_external_suspend()) {
  1647           set_terminated(_thread_exiting);
  1648           ThreadService::current_thread_exiting(this);
  1649           break;
  1651         // Implied else:
  1652         // Things get a little tricky here. We have a pending external
  1653         // suspend request, but we are holding the SR_lock so we
  1654         // can't just self-suspend. So we temporarily drop the lock
  1655         // and then self-suspend.
  1658       ThreadBlockInVM tbivm(this);
  1659       java_suspend_self();
  1661       // We're done with this suspend request, but we have to loop around
  1662       // and check again. Eventually we will get SR_lock without a pending
  1663       // external suspend request and will be able to mark ourselves as
  1664       // exiting.
  1666     // no more external suspends are allowed at this point
  1667   } else {
  1668     // before_exit() has already posted JVMTI THREAD_END events
  1671   // Notify waiters on thread object. This has to be done after exit() is called
  1672   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1673   // group should have the destroyed bit set before waiters are notified).
  1674   ensure_join(this);
  1675   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1677   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1678   // held by this thread must be released.  A detach operation must only
  1679   // get here if there are no Java frames on the stack.  Therefore, any
  1680   // owned monitors at this point MUST be JNI-acquired monitors which are
  1681   // pre-inflated and in the monitor cache.
  1682   //
  1683   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1684   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1685     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1686     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1687     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1690   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1691   // is in a consistent state, in case GC happens
  1692   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1694   if (active_handles() != NULL) {
  1695     JNIHandleBlock* block = active_handles();
  1696     set_active_handles(NULL);
  1697     JNIHandleBlock::release_block(block);
  1700   if (free_handle_block() != NULL) {
  1701     JNIHandleBlock* block = free_handle_block();
  1702     set_free_handle_block(NULL);
  1703     JNIHandleBlock::release_block(block);
  1706   // These have to be removed while this is still a valid thread.
  1707   remove_stack_guard_pages();
  1709   if (UseTLAB) {
  1710     tlab().make_parsable(true);  // retire TLAB
  1713   if (JvmtiEnv::environments_might_exist()) {
  1714     JvmtiExport::cleanup_thread(this);
  1717 #ifndef SERIALGC
  1718   // We must flush G1-related buffers before removing a thread from
  1719   // the list of active threads.
  1720   if (UseG1GC) {
  1721     flush_barrier_queues();
  1723 #endif
  1725   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1726   Threads::remove(this);
  1729 #ifndef SERIALGC
  1730 // Flush G1-related queues.
  1731 void JavaThread::flush_barrier_queues() {
  1732   satb_mark_queue().flush();
  1733   dirty_card_queue().flush();
  1736 void JavaThread::initialize_queues() {
  1737   assert(!SafepointSynchronize::is_at_safepoint(),
  1738          "we should not be at a safepoint");
  1740   ObjPtrQueue& satb_queue = satb_mark_queue();
  1741   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1742   // The SATB queue should have been constructed with its active
  1743   // field set to false.
  1744   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1745   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1746   // If we are creating the thread during a marking cycle, we should
  1747   // set the active field of the SATB queue to true.
  1748   if (satb_queue_set.is_active()) {
  1749     satb_queue.set_active(true);
  1752   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1753   // The dirty card queue should have been constructed with its
  1754   // active field set to true.
  1755   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1757 #endif // !SERIALGC
  1759 void JavaThread::cleanup_failed_attach_current_thread() {
  1760   if (get_thread_profiler() != NULL) {
  1761     get_thread_profiler()->disengage();
  1762     ResourceMark rm;
  1763     get_thread_profiler()->print(get_thread_name());
  1766   if (active_handles() != NULL) {
  1767     JNIHandleBlock* block = active_handles();
  1768     set_active_handles(NULL);
  1769     JNIHandleBlock::release_block(block);
  1772   if (free_handle_block() != NULL) {
  1773     JNIHandleBlock* block = free_handle_block();
  1774     set_free_handle_block(NULL);
  1775     JNIHandleBlock::release_block(block);
  1778   // These have to be removed while this is still a valid thread.
  1779   remove_stack_guard_pages();
  1781   if (UseTLAB) {
  1782     tlab().make_parsable(true);  // retire TLAB, if any
  1785 #ifndef SERIALGC
  1786   if (UseG1GC) {
  1787     flush_barrier_queues();
  1789 #endif
  1791   Threads::remove(this);
  1792   delete this;
  1798 JavaThread* JavaThread::active() {
  1799   Thread* thread = ThreadLocalStorage::thread();
  1800   assert(thread != NULL, "just checking");
  1801   if (thread->is_Java_thread()) {
  1802     return (JavaThread*) thread;
  1803   } else {
  1804     assert(thread->is_VM_thread(), "this must be a vm thread");
  1805     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1806     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1807     assert(ret->is_Java_thread(), "must be a Java thread");
  1808     return ret;
  1812 bool JavaThread::is_lock_owned(address adr) const {
  1813   if (Thread::is_lock_owned(adr)) return true;
  1815   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1816     if (chunk->contains(adr)) return true;
  1819   return false;
  1823 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1824   chunk->set_next(monitor_chunks());
  1825   set_monitor_chunks(chunk);
  1828 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1829   guarantee(monitor_chunks() != NULL, "must be non empty");
  1830   if (monitor_chunks() == chunk) {
  1831     set_monitor_chunks(chunk->next());
  1832   } else {
  1833     MonitorChunk* prev = monitor_chunks();
  1834     while (prev->next() != chunk) prev = prev->next();
  1835     prev->set_next(chunk->next());
  1839 // JVM support.
  1841 // Note: this function shouldn't block if it's called in
  1842 // _thread_in_native_trans state (such as from
  1843 // check_special_condition_for_native_trans()).
  1844 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1846   if (has_last_Java_frame() && has_async_condition()) {
  1847     // If we are at a polling page safepoint (not a poll return)
  1848     // then we must defer async exception because live registers
  1849     // will be clobbered by the exception path. Poll return is
  1850     // ok because the call we a returning from already collides
  1851     // with exception handling registers and so there is no issue.
  1852     // (The exception handling path kills call result registers but
  1853     //  this is ok since the exception kills the result anyway).
  1855     if (is_at_poll_safepoint()) {
  1856       // if the code we are returning to has deoptimized we must defer
  1857       // the exception otherwise live registers get clobbered on the
  1858       // exception path before deoptimization is able to retrieve them.
  1859       //
  1860       RegisterMap map(this, false);
  1861       frame caller_fr = last_frame().sender(&map);
  1862       assert(caller_fr.is_compiled_frame(), "what?");
  1863       if (caller_fr.is_deoptimized_frame()) {
  1864         if (TraceExceptions) {
  1865           ResourceMark rm;
  1866           tty->print_cr("deferred async exception at compiled safepoint");
  1868         return;
  1873   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1874   if (condition == _no_async_condition) {
  1875     // Conditions have changed since has_special_runtime_exit_condition()
  1876     // was called:
  1877     // - if we were here only because of an external suspend request,
  1878     //   then that was taken care of above (or cancelled) so we are done
  1879     // - if we were here because of another async request, then it has
  1880     //   been cleared between the has_special_runtime_exit_condition()
  1881     //   and now so again we are done
  1882     return;
  1885   // Check for pending async. exception
  1886   if (_pending_async_exception != NULL) {
  1887     // Only overwrite an already pending exception, if it is not a threadDeath.
  1888     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1890       // We cannot call Exceptions::_throw(...) here because we cannot block
  1891       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1893       if (TraceExceptions) {
  1894         ResourceMark rm;
  1895         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1896         if (has_last_Java_frame() ) {
  1897           frame f = last_frame();
  1898           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1900         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1902       _pending_async_exception = NULL;
  1903       clear_has_async_exception();
  1907   if (check_unsafe_error &&
  1908       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1909     condition = _no_async_condition;  // done
  1910     switch (thread_state()) {
  1911     case _thread_in_vm:
  1913         JavaThread* THREAD = this;
  1914         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1916     case _thread_in_native:
  1918         ThreadInVMfromNative tiv(this);
  1919         JavaThread* THREAD = this;
  1920         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1922     case _thread_in_Java:
  1924         ThreadInVMfromJava tiv(this);
  1925         JavaThread* THREAD = this;
  1926         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1928     default:
  1929       ShouldNotReachHere();
  1933   assert(condition == _no_async_condition || has_pending_exception() ||
  1934          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1935          "must have handled the async condition, if no exception");
  1938 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1939   //
  1940   // Check for pending external suspend. Internal suspend requests do
  1941   // not use handle_special_runtime_exit_condition().
  1942   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1943   // thread is not the current thread. In older versions of jdbx, jdbx
  1944   // threads could call into the VM with another thread's JNIEnv so we
  1945   // can be here operating on behalf of a suspended thread (4432884).
  1946   bool do_self_suspend = is_external_suspend_with_lock();
  1947   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1948     //
  1949     // Because thread is external suspended the safepoint code will count
  1950     // thread as at a safepoint. This can be odd because we can be here
  1951     // as _thread_in_Java which would normally transition to _thread_blocked
  1952     // at a safepoint. We would like to mark the thread as _thread_blocked
  1953     // before calling java_suspend_self like all other callers of it but
  1954     // we must then observe proper safepoint protocol. (We can't leave
  1955     // _thread_blocked with a safepoint in progress). However we can be
  1956     // here as _thread_in_native_trans so we can't use a normal transition
  1957     // constructor/destructor pair because they assert on that type of
  1958     // transition. We could do something like:
  1959     //
  1960     // JavaThreadState state = thread_state();
  1961     // set_thread_state(_thread_in_vm);
  1962     // {
  1963     //   ThreadBlockInVM tbivm(this);
  1964     //   java_suspend_self()
  1965     // }
  1966     // set_thread_state(_thread_in_vm_trans);
  1967     // if (safepoint) block;
  1968     // set_thread_state(state);
  1969     //
  1970     // but that is pretty messy. Instead we just go with the way the
  1971     // code has worked before and note that this is the only path to
  1972     // java_suspend_self that doesn't put the thread in _thread_blocked
  1973     // mode.
  1975     frame_anchor()->make_walkable(this);
  1976     java_suspend_self();
  1978     // We might be here for reasons in addition to the self-suspend request
  1979     // so check for other async requests.
  1982   if (check_asyncs) {
  1983     check_and_handle_async_exceptions();
  1987 void JavaThread::send_thread_stop(oop java_throwable)  {
  1988   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1989   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1990   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1992   // Do not throw asynchronous exceptions against the compiler thread
  1993   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1994   if (is_Compiler_thread()) return;
  1997     // Actually throw the Throwable against the target Thread - however
  1998     // only if there is no thread death exception installed already.
  1999     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2000       // If the topmost frame is a runtime stub, then we are calling into
  2001       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2002       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2003       // may not be valid
  2004       if (has_last_Java_frame()) {
  2005         frame f = last_frame();
  2006         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2007           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2008           RegisterMap reg_map(this, UseBiasedLocking);
  2009           frame compiled_frame = f.sender(&reg_map);
  2010           if (compiled_frame.can_be_deoptimized()) {
  2011             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2016       // Set async. pending exception in thread.
  2017       set_pending_async_exception(java_throwable);
  2019       if (TraceExceptions) {
  2020        ResourceMark rm;
  2021        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2023       // for AbortVMOnException flag
  2024       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2029   // Interrupt thread so it will wake up from a potential wait()
  2030   Thread::interrupt(this);
  2033 // External suspension mechanism.
  2034 //
  2035 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2036 // to any VM_locks and it is at a transition
  2037 // Self-suspension will happen on the transition out of the vm.
  2038 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2039 //
  2040 // Guarantees on return:
  2041 //   + Target thread will not execute any new bytecode (that's why we need to
  2042 //     force a safepoint)
  2043 //   + Target thread will not enter any new monitors
  2044 //
  2045 void JavaThread::java_suspend() {
  2046   { MutexLocker mu(Threads_lock);
  2047     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2048        return;
  2052   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2053     if (!is_external_suspend()) {
  2054       // a racing resume has cancelled us; bail out now
  2055       return;
  2058     // suspend is done
  2059     uint32_t debug_bits = 0;
  2060     // Warning: is_ext_suspend_completed() may temporarily drop the
  2061     // SR_lock to allow the thread to reach a stable thread state if
  2062     // it is currently in a transient thread state.
  2063     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2064                                  SuspendRetryDelay, &debug_bits) ) {
  2065       return;
  2069   VM_ForceSafepoint vm_suspend;
  2070   VMThread::execute(&vm_suspend);
  2073 // Part II of external suspension.
  2074 // A JavaThread self suspends when it detects a pending external suspend
  2075 // request. This is usually on transitions. It is also done in places
  2076 // where continuing to the next transition would surprise the caller,
  2077 // e.g., monitor entry.
  2078 //
  2079 // Returns the number of times that the thread self-suspended.
  2080 //
  2081 // Note: DO NOT call java_suspend_self() when you just want to block current
  2082 //       thread. java_suspend_self() is the second stage of cooperative
  2083 //       suspension for external suspend requests and should only be used
  2084 //       to complete an external suspend request.
  2085 //
  2086 int JavaThread::java_suspend_self() {
  2087   int ret = 0;
  2089   // we are in the process of exiting so don't suspend
  2090   if (is_exiting()) {
  2091      clear_external_suspend();
  2092      return ret;
  2095   assert(_anchor.walkable() ||
  2096     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2097     "must have walkable stack");
  2099   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2101   assert(!this->is_ext_suspended(),
  2102     "a thread trying to self-suspend should not already be suspended");
  2104   if (this->is_suspend_equivalent()) {
  2105     // If we are self-suspending as a result of the lifting of a
  2106     // suspend equivalent condition, then the suspend_equivalent
  2107     // flag is not cleared until we set the ext_suspended flag so
  2108     // that wait_for_ext_suspend_completion() returns consistent
  2109     // results.
  2110     this->clear_suspend_equivalent();
  2113   // A racing resume may have cancelled us before we grabbed SR_lock
  2114   // above. Or another external suspend request could be waiting for us
  2115   // by the time we return from SR_lock()->wait(). The thread
  2116   // that requested the suspension may already be trying to walk our
  2117   // stack and if we return now, we can change the stack out from under
  2118   // it. This would be a "bad thing (TM)" and cause the stack walker
  2119   // to crash. We stay self-suspended until there are no more pending
  2120   // external suspend requests.
  2121   while (is_external_suspend()) {
  2122     ret++;
  2123     this->set_ext_suspended();
  2125     // _ext_suspended flag is cleared by java_resume()
  2126     while (is_ext_suspended()) {
  2127       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2131   return ret;
  2134 #ifdef ASSERT
  2135 // verify the JavaThread has not yet been published in the Threads::list, and
  2136 // hence doesn't need protection from concurrent access at this stage
  2137 void JavaThread::verify_not_published() {
  2138   if (!Threads_lock->owned_by_self()) {
  2139    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2140    assert( !Threads::includes(this),
  2141            "java thread shouldn't have been published yet!");
  2143   else {
  2144    assert( !Threads::includes(this),
  2145            "java thread shouldn't have been published yet!");
  2148 #endif
  2150 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2151 // progress or when _suspend_flags is non-zero.
  2152 // Current thread needs to self-suspend if there is a suspend request and/or
  2153 // block if a safepoint is in progress.
  2154 // Async exception ISN'T checked.
  2155 // Note only the ThreadInVMfromNative transition can call this function
  2156 // directly and when thread state is _thread_in_native_trans
  2157 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2158   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2160   JavaThread *curJT = JavaThread::current();
  2161   bool do_self_suspend = thread->is_external_suspend();
  2163   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2165   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2166   // thread is not the current thread. In older versions of jdbx, jdbx
  2167   // threads could call into the VM with another thread's JNIEnv so we
  2168   // can be here operating on behalf of a suspended thread (4432884).
  2169   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2170     JavaThreadState state = thread->thread_state();
  2172     // We mark this thread_blocked state as a suspend-equivalent so
  2173     // that a caller to is_ext_suspend_completed() won't be confused.
  2174     // The suspend-equivalent state is cleared by java_suspend_self().
  2175     thread->set_suspend_equivalent();
  2177     // If the safepoint code sees the _thread_in_native_trans state, it will
  2178     // wait until the thread changes to other thread state. There is no
  2179     // guarantee on how soon we can obtain the SR_lock and complete the
  2180     // self-suspend request. It would be a bad idea to let safepoint wait for
  2181     // too long. Temporarily change the state to _thread_blocked to
  2182     // let the VM thread know that this thread is ready for GC. The problem
  2183     // of changing thread state is that safepoint could happen just after
  2184     // java_suspend_self() returns after being resumed, and VM thread will
  2185     // see the _thread_blocked state. We must check for safepoint
  2186     // after restoring the state and make sure we won't leave while a safepoint
  2187     // is in progress.
  2188     thread->set_thread_state(_thread_blocked);
  2189     thread->java_suspend_self();
  2190     thread->set_thread_state(state);
  2191     // Make sure new state is seen by VM thread
  2192     if (os::is_MP()) {
  2193       if (UseMembar) {
  2194         // Force a fence between the write above and read below
  2195         OrderAccess::fence();
  2196       } else {
  2197         // Must use this rather than serialization page in particular on Windows
  2198         InterfaceSupport::serialize_memory(thread);
  2203   if (SafepointSynchronize::do_call_back()) {
  2204     // If we are safepointing, then block the caller which may not be
  2205     // the same as the target thread (see above).
  2206     SafepointSynchronize::block(curJT);
  2209   if (thread->is_deopt_suspend()) {
  2210     thread->clear_deopt_suspend();
  2211     RegisterMap map(thread, false);
  2212     frame f = thread->last_frame();
  2213     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2214       f = f.sender(&map);
  2216     if (f.id() == thread->must_deopt_id()) {
  2217       thread->clear_must_deopt_id();
  2218       f.deoptimize(thread);
  2219     } else {
  2220       fatal("missed deoptimization!");
  2225 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2226 // progress or when _suspend_flags is non-zero.
  2227 // Current thread needs to self-suspend if there is a suspend request and/or
  2228 // block if a safepoint is in progress.
  2229 // Also check for pending async exception (not including unsafe access error).
  2230 // Note only the native==>VM/Java barriers can call this function and when
  2231 // thread state is _thread_in_native_trans.
  2232 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2233   check_safepoint_and_suspend_for_native_trans(thread);
  2235   if (thread->has_async_exception()) {
  2236     // We are in _thread_in_native_trans state, don't handle unsafe
  2237     // access error since that may block.
  2238     thread->check_and_handle_async_exceptions(false);
  2242 // We need to guarantee the Threads_lock here, since resumes are not
  2243 // allowed during safepoint synchronization
  2244 // Can only resume from an external suspension
  2245 void JavaThread::java_resume() {
  2246   assert_locked_or_safepoint(Threads_lock);
  2248   // Sanity check: thread is gone, has started exiting or the thread
  2249   // was not externally suspended.
  2250   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2251     return;
  2254   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2256   clear_external_suspend();
  2258   if (is_ext_suspended()) {
  2259     clear_ext_suspended();
  2260     SR_lock()->notify_all();
  2264 void JavaThread::create_stack_guard_pages() {
  2265   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2266   address low_addr = stack_base() - stack_size();
  2267   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2269   int allocate = os::allocate_stack_guard_pages();
  2270   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2272   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2273     warning("Attempt to allocate stack guard pages failed.");
  2274     return;
  2277   if (os::guard_memory((char *) low_addr, len)) {
  2278     _stack_guard_state = stack_guard_enabled;
  2279   } else {
  2280     warning("Attempt to protect stack guard pages failed.");
  2281     if (os::uncommit_memory((char *) low_addr, len)) {
  2282       warning("Attempt to deallocate stack guard pages failed.");
  2287 void JavaThread::remove_stack_guard_pages() {
  2288   if (_stack_guard_state == stack_guard_unused) return;
  2289   address low_addr = stack_base() - stack_size();
  2290   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2292   if (os::allocate_stack_guard_pages()) {
  2293     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2294       _stack_guard_state = stack_guard_unused;
  2295     } else {
  2296       warning("Attempt to deallocate stack guard pages failed.");
  2298   } else {
  2299     if (_stack_guard_state == stack_guard_unused) return;
  2300     if (os::unguard_memory((char *) low_addr, len)) {
  2301       _stack_guard_state = stack_guard_unused;
  2302     } else {
  2303         warning("Attempt to unprotect stack guard pages failed.");
  2308 void JavaThread::enable_stack_yellow_zone() {
  2309   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2310   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2312   // The base notation is from the stacks point of view, growing downward.
  2313   // We need to adjust it to work correctly with guard_memory()
  2314   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2316   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2317   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2319   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2320     _stack_guard_state = stack_guard_enabled;
  2321   } else {
  2322     warning("Attempt to guard stack yellow zone failed.");
  2324   enable_register_stack_guard();
  2327 void JavaThread::disable_stack_yellow_zone() {
  2328   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2329   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2331   // Simply return if called for a thread that does not use guard pages.
  2332   if (_stack_guard_state == stack_guard_unused) return;
  2334   // The base notation is from the stacks point of view, growing downward.
  2335   // We need to adjust it to work correctly with guard_memory()
  2336   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2338   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2339     _stack_guard_state = stack_guard_yellow_disabled;
  2340   } else {
  2341     warning("Attempt to unguard stack yellow zone failed.");
  2343   disable_register_stack_guard();
  2346 void JavaThread::enable_stack_red_zone() {
  2347   // The base notation is from the stacks point of view, growing downward.
  2348   // We need to adjust it to work correctly with guard_memory()
  2349   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2350   address base = stack_red_zone_base() - stack_red_zone_size();
  2352   guarantee(base < stack_base(),"Error calculating stack red zone");
  2353   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2355   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2356     warning("Attempt to guard stack red zone failed.");
  2360 void JavaThread::disable_stack_red_zone() {
  2361   // The base notation is from the stacks point of view, growing downward.
  2362   // We need to adjust it to work correctly with guard_memory()
  2363   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2364   address base = stack_red_zone_base() - stack_red_zone_size();
  2365   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2366     warning("Attempt to unguard stack red zone failed.");
  2370 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2371   // ignore is there is no stack
  2372   if (!has_last_Java_frame()) return;
  2373   // traverse the stack frames. Starts from top frame.
  2374   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2375     frame* fr = fst.current();
  2376     f(fr, fst.register_map());
  2381 #ifndef PRODUCT
  2382 // Deoptimization
  2383 // Function for testing deoptimization
  2384 void JavaThread::deoptimize() {
  2385   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2386   StackFrameStream fst(this, UseBiasedLocking);
  2387   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2388   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2389   // Iterate over all frames in the thread and deoptimize
  2390   for(; !fst.is_done(); fst.next()) {
  2391     if(fst.current()->can_be_deoptimized()) {
  2393       if (only_at) {
  2394         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2395         // consists of comma or carriage return separated numbers so
  2396         // search for the current bci in that string.
  2397         address pc = fst.current()->pc();
  2398         nmethod* nm =  (nmethod*) fst.current()->cb();
  2399         ScopeDesc* sd = nm->scope_desc_at( pc);
  2400         char buffer[8];
  2401         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2402         size_t len = strlen(buffer);
  2403         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2404         while (found != NULL) {
  2405           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2406               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2407             // Check that the bci found is bracketed by terminators.
  2408             break;
  2410           found = strstr(found + 1, buffer);
  2412         if (!found) {
  2413           continue;
  2417       if (DebugDeoptimization && !deopt) {
  2418         deopt = true; // One-time only print before deopt
  2419         tty->print_cr("[BEFORE Deoptimization]");
  2420         trace_frames();
  2421         trace_stack();
  2423       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2427   if (DebugDeoptimization && deopt) {
  2428     tty->print_cr("[AFTER Deoptimization]");
  2429     trace_frames();
  2434 // Make zombies
  2435 void JavaThread::make_zombies() {
  2436   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2437     if (fst.current()->can_be_deoptimized()) {
  2438       // it is a Java nmethod
  2439       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2440       nm->make_not_entrant();
  2444 #endif // PRODUCT
  2447 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2448   if (!has_last_Java_frame()) return;
  2449   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2450   StackFrameStream fst(this, UseBiasedLocking);
  2451   for(; !fst.is_done(); fst.next()) {
  2452     if (fst.current()->should_be_deoptimized()) {
  2453       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2459 // GC support
  2460 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2462 void JavaThread::gc_epilogue() {
  2463   frames_do(frame_gc_epilogue);
  2467 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2469 void JavaThread::gc_prologue() {
  2470   frames_do(frame_gc_prologue);
  2473 // If the caller is a NamedThread, then remember, in the current scope,
  2474 // the given JavaThread in its _processed_thread field.
  2475 class RememberProcessedThread: public StackObj {
  2476   NamedThread* _cur_thr;
  2477 public:
  2478   RememberProcessedThread(JavaThread* jthr) {
  2479     Thread* thread = Thread::current();
  2480     if (thread->is_Named_thread()) {
  2481       _cur_thr = (NamedThread *)thread;
  2482       _cur_thr->set_processed_thread(jthr);
  2483     } else {
  2484       _cur_thr = NULL;
  2488   ~RememberProcessedThread() {
  2489     if (_cur_thr) {
  2490       _cur_thr->set_processed_thread(NULL);
  2493 };
  2495 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2496   // Verify that the deferred card marks have been flushed.
  2497   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2499   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2500   // since there may be more than one thread using each ThreadProfiler.
  2502   // Traverse the GCHandles
  2503   Thread::oops_do(f, cf);
  2505   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2506           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2508   if (has_last_Java_frame()) {
  2509     // Record JavaThread to GC thread
  2510     RememberProcessedThread rpt(this);
  2512     // Traverse the privileged stack
  2513     if (_privileged_stack_top != NULL) {
  2514       _privileged_stack_top->oops_do(f);
  2517     // traverse the registered growable array
  2518     if (_array_for_gc != NULL) {
  2519       for (int index = 0; index < _array_for_gc->length(); index++) {
  2520         f->do_oop(_array_for_gc->adr_at(index));
  2524     // Traverse the monitor chunks
  2525     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2526       chunk->oops_do(f);
  2529     // Traverse the execution stack
  2530     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2531       fst.current()->oops_do(f, cf, fst.register_map());
  2535   // callee_target is never live across a gc point so NULL it here should
  2536   // it still contain a methdOop.
  2538   set_callee_target(NULL);
  2540   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2541   // If we have deferred set_locals there might be oops waiting to be
  2542   // written
  2543   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2544   if (list != NULL) {
  2545     for (int i = 0; i < list->length(); i++) {
  2546       list->at(i)->oops_do(f);
  2550   // Traverse instance variables at the end since the GC may be moving things
  2551   // around using this function
  2552   f->do_oop((oop*) &_threadObj);
  2553   f->do_oop((oop*) &_vm_result);
  2554   f->do_oop((oop*) &_vm_result_2);
  2555   f->do_oop((oop*) &_exception_oop);
  2556   f->do_oop((oop*) &_pending_async_exception);
  2558   if (jvmti_thread_state() != NULL) {
  2559     jvmti_thread_state()->oops_do(f);
  2563 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2564   Thread::nmethods_do(cf);  // (super method is a no-op)
  2566   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2567           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2569   if (has_last_Java_frame()) {
  2570     // Traverse the execution stack
  2571     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2572       fst.current()->nmethods_do(cf);
  2577 // Printing
  2578 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2579   switch (_thread_state) {
  2580   case _thread_uninitialized:     return "_thread_uninitialized";
  2581   case _thread_new:               return "_thread_new";
  2582   case _thread_new_trans:         return "_thread_new_trans";
  2583   case _thread_in_native:         return "_thread_in_native";
  2584   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2585   case _thread_in_vm:             return "_thread_in_vm";
  2586   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2587   case _thread_in_Java:           return "_thread_in_Java";
  2588   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2589   case _thread_blocked:           return "_thread_blocked";
  2590   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2591   default:                        return "unknown thread state";
  2595 #ifndef PRODUCT
  2596 void JavaThread::print_thread_state_on(outputStream *st) const {
  2597   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2598 };
  2599 void JavaThread::print_thread_state() const {
  2600   print_thread_state_on(tty);
  2601 };
  2602 #endif // PRODUCT
  2604 // Called by Threads::print() for VM_PrintThreads operation
  2605 void JavaThread::print_on(outputStream *st) const {
  2606   st->print("\"%s\" ", get_thread_name());
  2607   oop thread_oop = threadObj();
  2608   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2609   Thread::print_on(st);
  2610   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2611   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2612   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2613     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2615 #ifndef PRODUCT
  2616   print_thread_state_on(st);
  2617   _safepoint_state->print_on(st);
  2618 #endif // PRODUCT
  2621 // Called by fatal error handler. The difference between this and
  2622 // JavaThread::print() is that we can't grab lock or allocate memory.
  2623 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2624   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2625   oop thread_obj = threadObj();
  2626   if (thread_obj != NULL) {
  2627      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2629   st->print(" [");
  2630   st->print("%s", _get_thread_state_name(_thread_state));
  2631   if (osthread()) {
  2632     st->print(", id=%d", osthread()->thread_id());
  2634   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2635             _stack_base - _stack_size, _stack_base);
  2636   st->print("]");
  2637   return;
  2640 // Verification
  2642 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2644 void JavaThread::verify() {
  2645   // Verify oops in the thread.
  2646   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2648   // Verify the stack frames.
  2649   frames_do(frame_verify);
  2652 // CR 6300358 (sub-CR 2137150)
  2653 // Most callers of this method assume that it can't return NULL but a
  2654 // thread may not have a name whilst it is in the process of attaching to
  2655 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2656 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2657 // if vm exit occurs during initialization). These cases can all be accounted
  2658 // for such that this method never returns NULL.
  2659 const char* JavaThread::get_thread_name() const {
  2660 #ifdef ASSERT
  2661   // early safepoints can hit while current thread does not yet have TLS
  2662   if (!SafepointSynchronize::is_at_safepoint()) {
  2663     Thread *cur = Thread::current();
  2664     if (!(cur->is_Java_thread() && cur == this)) {
  2665       // Current JavaThreads are allowed to get their own name without
  2666       // the Threads_lock.
  2667       assert_locked_or_safepoint(Threads_lock);
  2670 #endif // ASSERT
  2671     return get_thread_name_string();
  2674 // Returns a non-NULL representation of this thread's name, or a suitable
  2675 // descriptive string if there is no set name
  2676 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2677   const char* name_str;
  2678   oop thread_obj = threadObj();
  2679   if (thread_obj != NULL) {
  2680     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2681     if (name != NULL) {
  2682       if (buf == NULL) {
  2683         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2685       else {
  2686         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2689     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2690       name_str = "<no-name - thread is attaching>";
  2692     else {
  2693       name_str = Thread::name();
  2696   else {
  2697     name_str = Thread::name();
  2699   assert(name_str != NULL, "unexpected NULL thread name");
  2700   return name_str;
  2704 const char* JavaThread::get_threadgroup_name() const {
  2705   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2706   oop thread_obj = threadObj();
  2707   if (thread_obj != NULL) {
  2708     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2709     if (thread_group != NULL) {
  2710       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2711       // ThreadGroup.name can be null
  2712       if (name != NULL) {
  2713         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2714         return str;
  2718   return NULL;
  2721 const char* JavaThread::get_parent_name() const {
  2722   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2723   oop thread_obj = threadObj();
  2724   if (thread_obj != NULL) {
  2725     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2726     if (thread_group != NULL) {
  2727       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2728       if (parent != NULL) {
  2729         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2730         // ThreadGroup.name can be null
  2731         if (name != NULL) {
  2732           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2733           return str;
  2738   return NULL;
  2741 ThreadPriority JavaThread::java_priority() const {
  2742   oop thr_oop = threadObj();
  2743   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2744   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2745   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2746   return priority;
  2749 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2751   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2752   // Link Java Thread object <-> C++ Thread
  2754   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2755   // and put it into a new Handle.  The Handle "thread_oop" can then
  2756   // be used to pass the C++ thread object to other methods.
  2758   // Set the Java level thread object (jthread) field of the
  2759   // new thread (a JavaThread *) to C++ thread object using the
  2760   // "thread_oop" handle.
  2762   // Set the thread field (a JavaThread *) of the
  2763   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2765   Handle thread_oop(Thread::current(),
  2766                     JNIHandles::resolve_non_null(jni_thread));
  2767   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2768     "must be initialized");
  2769   set_threadObj(thread_oop());
  2770   java_lang_Thread::set_thread(thread_oop(), this);
  2772   if (prio == NoPriority) {
  2773     prio = java_lang_Thread::priority(thread_oop());
  2774     assert(prio != NoPriority, "A valid priority should be present");
  2777   // Push the Java priority down to the native thread; needs Threads_lock
  2778   Thread::set_priority(this, prio);
  2780   // Add the new thread to the Threads list and set it in motion.
  2781   // We must have threads lock in order to call Threads::add.
  2782   // It is crucial that we do not block before the thread is
  2783   // added to the Threads list for if a GC happens, then the java_thread oop
  2784   // will not be visited by GC.
  2785   Threads::add(this);
  2788 oop JavaThread::current_park_blocker() {
  2789   // Support for JSR-166 locks
  2790   oop thread_oop = threadObj();
  2791   if (thread_oop != NULL &&
  2792       JDK_Version::current().supports_thread_park_blocker()) {
  2793     return java_lang_Thread::park_blocker(thread_oop);
  2795   return NULL;
  2799 void JavaThread::print_stack_on(outputStream* st) {
  2800   if (!has_last_Java_frame()) return;
  2801   ResourceMark rm;
  2802   HandleMark   hm;
  2804   RegisterMap reg_map(this);
  2805   vframe* start_vf = last_java_vframe(&reg_map);
  2806   int count = 0;
  2807   for (vframe* f = start_vf; f; f = f->sender() ) {
  2808     if (f->is_java_frame()) {
  2809       javaVFrame* jvf = javaVFrame::cast(f);
  2810       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2812       // Print out lock information
  2813       if (JavaMonitorsInStackTrace) {
  2814         jvf->print_lock_info_on(st, count);
  2816     } else {
  2817       // Ignore non-Java frames
  2820     // Bail-out case for too deep stacks
  2821     count++;
  2822     if (MaxJavaStackTraceDepth == count) return;
  2827 // JVMTI PopFrame support
  2828 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2829   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2830   if (in_bytes(size_in_bytes) != 0) {
  2831     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2832     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2833     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2837 void* JavaThread::popframe_preserved_args() {
  2838   return _popframe_preserved_args;
  2841 ByteSize JavaThread::popframe_preserved_args_size() {
  2842   return in_ByteSize(_popframe_preserved_args_size);
  2845 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2846   int sz = in_bytes(popframe_preserved_args_size());
  2847   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2848   return in_WordSize(sz / wordSize);
  2851 void JavaThread::popframe_free_preserved_args() {
  2852   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2853   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2854   _popframe_preserved_args = NULL;
  2855   _popframe_preserved_args_size = 0;
  2858 #ifndef PRODUCT
  2860 void JavaThread::trace_frames() {
  2861   tty->print_cr("[Describe stack]");
  2862   int frame_no = 1;
  2863   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2864     tty->print("  %d. ", frame_no++);
  2865     fst.current()->print_value_on(tty,this);
  2866     tty->cr();
  2871 void JavaThread::trace_stack_from(vframe* start_vf) {
  2872   ResourceMark rm;
  2873   int vframe_no = 1;
  2874   for (vframe* f = start_vf; f; f = f->sender() ) {
  2875     if (f->is_java_frame()) {
  2876       javaVFrame::cast(f)->print_activation(vframe_no++);
  2877     } else {
  2878       f->print();
  2880     if (vframe_no > StackPrintLimit) {
  2881       tty->print_cr("...<more frames>...");
  2882       return;
  2888 void JavaThread::trace_stack() {
  2889   if (!has_last_Java_frame()) return;
  2890   ResourceMark rm;
  2891   HandleMark   hm;
  2892   RegisterMap reg_map(this);
  2893   trace_stack_from(last_java_vframe(&reg_map));
  2897 #endif // PRODUCT
  2900 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2901   assert(reg_map != NULL, "a map must be given");
  2902   frame f = last_frame();
  2903   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2904     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2906   return NULL;
  2910 klassOop JavaThread::security_get_caller_class(int depth) {
  2911   vframeStream vfst(this);
  2912   vfst.security_get_caller_frame(depth);
  2913   if (!vfst.at_end()) {
  2914     return vfst.method()->method_holder();
  2916   return NULL;
  2919 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2920   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2921   CompileBroker::compiler_thread_loop();
  2924 // Create a CompilerThread
  2925 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2926 : JavaThread(&compiler_thread_entry) {
  2927   _env   = NULL;
  2928   _log   = NULL;
  2929   _task  = NULL;
  2930   _queue = queue;
  2931   _counters = counters;
  2932   _buffer_blob = NULL;
  2934 #ifndef PRODUCT
  2935   _ideal_graph_printer = NULL;
  2936 #endif
  2940 // ======= Threads ========
  2942 // The Threads class links together all active threads, and provides
  2943 // operations over all threads.  It is protected by its own Mutex
  2944 // lock, which is also used in other contexts to protect thread
  2945 // operations from having the thread being operated on from exiting
  2946 // and going away unexpectedly (e.g., safepoint synchronization)
  2948 JavaThread* Threads::_thread_list = NULL;
  2949 int         Threads::_number_of_threads = 0;
  2950 int         Threads::_number_of_non_daemon_threads = 0;
  2951 int         Threads::_return_code = 0;
  2952 size_t      JavaThread::_stack_size_at_create = 0;
  2954 // All JavaThreads
  2955 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2957 void os_stream();
  2959 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2960 void Threads::threads_do(ThreadClosure* tc) {
  2961   assert_locked_or_safepoint(Threads_lock);
  2962   // ALL_JAVA_THREADS iterates through all JavaThreads
  2963   ALL_JAVA_THREADS(p) {
  2964     tc->do_thread(p);
  2966   // Someday we could have a table or list of all non-JavaThreads.
  2967   // For now, just manually iterate through them.
  2968   tc->do_thread(VMThread::vm_thread());
  2969   Universe::heap()->gc_threads_do(tc);
  2970   WatcherThread *wt = WatcherThread::watcher_thread();
  2971   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2972   // the data for WatcherThread is still valid upon being examined. However,
  2973   // considering that WatchThread terminates when the VM is on the way to
  2974   // exit at safepoint, the chance of the above is extremely small. The right
  2975   // way to prevent termination of WatcherThread would be to acquire
  2976   // Terminator_lock, but we can't do that without violating the lock rank
  2977   // checking in some cases.
  2978   if (wt != NULL)
  2979     tc->do_thread(wt);
  2981   // If CompilerThreads ever become non-JavaThreads, add them here
  2984 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2986   extern void JDK_Version_init();
  2988   // Check version
  2989   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2991   // Initialize the output stream module
  2992   ostream_init();
  2994   // Process java launcher properties.
  2995   Arguments::process_sun_java_launcher_properties(args);
  2997   // Initialize the os module before using TLS
  2998   os::init();
  3000   // Initialize system properties.
  3001   Arguments::init_system_properties();
  3003   // So that JDK version can be used as a discrimintor when parsing arguments
  3004   JDK_Version_init();
  3006   // Update/Initialize System properties after JDK version number is known
  3007   Arguments::init_version_specific_system_properties();
  3009   // Parse arguments
  3010   jint parse_result = Arguments::parse(args);
  3011   if (parse_result != JNI_OK) return parse_result;
  3013   if (PauseAtStartup) {
  3014     os::pause();
  3017   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3019   // Record VM creation timing statistics
  3020   TraceVmCreationTime create_vm_timer;
  3021   create_vm_timer.start();
  3023   // Timing (must come after argument parsing)
  3024   TraceTime timer("Create VM", TraceStartupTime);
  3026   // Initialize the os module after parsing the args
  3027   jint os_init_2_result = os::init_2();
  3028   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3030   // Initialize output stream logging
  3031   ostream_init_log();
  3033   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3034   // Must be before create_vm_init_agents()
  3035   if (Arguments::init_libraries_at_startup()) {
  3036     convert_vm_init_libraries_to_agents();
  3039   // Launch -agentlib/-agentpath and converted -Xrun agents
  3040   if (Arguments::init_agents_at_startup()) {
  3041     create_vm_init_agents();
  3044   // Initialize Threads state
  3045   _thread_list = NULL;
  3046   _number_of_threads = 0;
  3047   _number_of_non_daemon_threads = 0;
  3049   // Initialize TLS
  3050   ThreadLocalStorage::init();
  3052   // Initialize global data structures and create system classes in heap
  3053   vm_init_globals();
  3055   // Attach the main thread to this os thread
  3056   JavaThread* main_thread = new JavaThread();
  3057   main_thread->set_thread_state(_thread_in_vm);
  3058   // must do this before set_active_handles and initialize_thread_local_storage
  3059   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3060   // change the stack size recorded here to one based on the java thread
  3061   // stacksize. This adjusted size is what is used to figure the placement
  3062   // of the guard pages.
  3063   main_thread->record_stack_base_and_size();
  3064   main_thread->initialize_thread_local_storage();
  3066   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3068   if (!main_thread->set_as_starting_thread()) {
  3069     vm_shutdown_during_initialization(
  3070       "Failed necessary internal allocation. Out of swap space");
  3071     delete main_thread;
  3072     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3073     return JNI_ENOMEM;
  3076   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3077   // crash Linux VM, see notes in os_linux.cpp.
  3078   main_thread->create_stack_guard_pages();
  3080   // Initialize Java-Level synchronization subsystem
  3081   ObjectMonitor::Initialize() ;
  3083   // Initialize global modules
  3084   jint status = init_globals();
  3085   if (status != JNI_OK) {
  3086     delete main_thread;
  3087     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3088     return status;
  3091   // Should be done after the heap is fully created
  3092   main_thread->cache_global_variables();
  3094   HandleMark hm;
  3096   { MutexLocker mu(Threads_lock);
  3097     Threads::add(main_thread);
  3100   // Any JVMTI raw monitors entered in onload will transition into
  3101   // real raw monitor. VM is setup enough here for raw monitor enter.
  3102   JvmtiExport::transition_pending_onload_raw_monitors();
  3104   if (VerifyBeforeGC &&
  3105       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3106     Universe::heap()->prepare_for_verify();
  3107     Universe::verify();   // make sure we're starting with a clean slate
  3110   // Create the VMThread
  3111   { TraceTime timer("Start VMThread", TraceStartupTime);
  3112     VMThread::create();
  3113     Thread* vmthread = VMThread::vm_thread();
  3115     if (!os::create_thread(vmthread, os::vm_thread))
  3116       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3118     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3119     // Monitors can have spurious returns, must always check another state flag
  3121       MutexLocker ml(Notify_lock);
  3122       os::start_thread(vmthread);
  3123       while (vmthread->active_handles() == NULL) {
  3124         Notify_lock->wait();
  3129   assert (Universe::is_fully_initialized(), "not initialized");
  3130   EXCEPTION_MARK;
  3132   // At this point, the Universe is initialized, but we have not executed
  3133   // any byte code.  Now is a good time (the only time) to dump out the
  3134   // internal state of the JVM for sharing.
  3136   if (DumpSharedSpaces) {
  3137     Universe::heap()->preload_and_dump(CHECK_0);
  3138     ShouldNotReachHere();
  3141   // Always call even when there are not JVMTI environments yet, since environments
  3142   // may be attached late and JVMTI must track phases of VM execution
  3143   JvmtiExport::enter_start_phase();
  3145   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3146   JvmtiExport::post_vm_start();
  3149     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3151     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3152       create_vm_init_libraries();
  3155     if (InitializeJavaLangString) {
  3156       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3157     } else {
  3158       warning("java.lang.String not initialized");
  3161     if (AggressiveOpts) {
  3163         // Forcibly initialize java/util/HashMap and mutate the private
  3164         // static final "frontCacheEnabled" field before we start creating instances
  3165 #ifdef ASSERT
  3166         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3167         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3168 #endif
  3169         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3170         KlassHandle k = KlassHandle(THREAD, k_o);
  3171         guarantee(k.not_null(), "Must find java/util/HashMap");
  3172         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3173         ik->initialize(CHECK_0);
  3174         fieldDescriptor fd;
  3175         // Possible we might not find this field; if so, don't break
  3176         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3177           k()->bool_field_put(fd.offset(), true);
  3181       if (UseStringCache) {
  3182         // Forcibly initialize java/lang/StringValue and mutate the private
  3183         // static final "stringCacheEnabled" field before we start creating instances
  3184         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3185         // Possible that StringValue isn't present: if so, silently don't break
  3186         if (k_o != NULL) {
  3187           KlassHandle k = KlassHandle(THREAD, k_o);
  3188           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3189           ik->initialize(CHECK_0);
  3190           fieldDescriptor fd;
  3191           // Possible we might not find this field: if so, silently don't break
  3192           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3193             k()->bool_field_put(fd.offset(), true);
  3199     // Initialize java_lang.System (needed before creating the thread)
  3200     if (InitializeJavaLangSystem) {
  3201       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3202       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3203       Handle thread_group = create_initial_thread_group(CHECK_0);
  3204       Universe::set_main_thread_group(thread_group());
  3205       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3206       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3207       main_thread->set_threadObj(thread_object);
  3208       // Set thread status to running since main thread has
  3209       // been started and running.
  3210       java_lang_Thread::set_thread_status(thread_object,
  3211                                           java_lang_Thread::RUNNABLE);
  3213       // The VM preresolve methods to these classes. Make sure that get initialized
  3214       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3215       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3216       // The VM creates & returns objects of this class. Make sure it's initialized.
  3217       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3218       call_initializeSystemClass(CHECK_0);
  3219     } else {
  3220       warning("java.lang.System not initialized");
  3223     // an instance of OutOfMemory exception has been allocated earlier
  3224     if (InitializeJavaLangExceptionsErrors) {
  3225       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3226       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3227       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3228       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3229       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3230       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3231       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3232     } else {
  3233       warning("java.lang.OutOfMemoryError has not been initialized");
  3234       warning("java.lang.NullPointerException has not been initialized");
  3235       warning("java.lang.ClassCastException has not been initialized");
  3236       warning("java.lang.ArrayStoreException has not been initialized");
  3237       warning("java.lang.ArithmeticException has not been initialized");
  3238       warning("java.lang.StackOverflowError has not been initialized");
  3242   // See        : bugid 4211085.
  3243   // Background : the static initializer of java.lang.Compiler tries to read
  3244   //              property"java.compiler" and read & write property "java.vm.info".
  3245   //              When a security manager is installed through the command line
  3246   //              option "-Djava.security.manager", the above properties are not
  3247   //              readable and the static initializer for java.lang.Compiler fails
  3248   //              resulting in a NoClassDefFoundError.  This can happen in any
  3249   //              user code which calls methods in java.lang.Compiler.
  3250   // Hack :       the hack is to pre-load and initialize this class, so that only
  3251   //              system domains are on the stack when the properties are read.
  3252   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3253   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3254   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3255   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3256   //              Once that is done, we should remove this hack.
  3257   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3259   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3260   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3261   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3262   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3263   // This should also be taken out as soon as 4211383 gets fixed.
  3264   reset_vm_info_property(CHECK_0);
  3266   quicken_jni_functions();
  3268   // Set flag that basic initialization has completed. Used by exceptions and various
  3269   // debug stuff, that does not work until all basic classes have been initialized.
  3270   set_init_completed();
  3272   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3274   // record VM initialization completion time
  3275   Management::record_vm_init_completed();
  3277   // Compute system loader. Note that this has to occur after set_init_completed, since
  3278   // valid exceptions may be thrown in the process.
  3279   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3280   // set_init_completed has just been called, causing exceptions not to be shortcut
  3281   // anymore. We call vm_exit_during_initialization directly instead.
  3282   SystemDictionary::compute_java_system_loader(THREAD);
  3283   if (HAS_PENDING_EXCEPTION) {
  3284     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3287 #ifdef KERNEL
  3288   if (JDK_Version::is_gte_jdk17x_version()) {
  3289     set_jkernel_boot_classloader_hook(THREAD);
  3291 #endif // KERNEL
  3293 #ifndef SERIALGC
  3294   // Support for ConcurrentMarkSweep. This should be cleaned up
  3295   // and better encapsulated. The ugly nested if test would go away
  3296   // once things are properly refactored. XXX YSR
  3297   if (UseConcMarkSweepGC || UseG1GC) {
  3298     if (UseConcMarkSweepGC) {
  3299       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3300     } else {
  3301       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3303     if (HAS_PENDING_EXCEPTION) {
  3304       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3307 #endif // SERIALGC
  3309   // Always call even when there are not JVMTI environments yet, since environments
  3310   // may be attached late and JVMTI must track phases of VM execution
  3311   JvmtiExport::enter_live_phase();
  3313   // Signal Dispatcher needs to be started before VMInit event is posted
  3314   os::signal_init();
  3316   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3317   if (!DisableAttachMechanism) {
  3318     if (StartAttachListener || AttachListener::init_at_startup()) {
  3319       AttachListener::init();
  3323   // Launch -Xrun agents
  3324   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3325   // back-end can launch with -Xdebug -Xrunjdwp.
  3326   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3327     create_vm_init_libraries();
  3330   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3331   JvmtiExport::post_vm_initialized();
  3333   Chunk::start_chunk_pool_cleaner_task();
  3335   // initialize compiler(s)
  3336   CompileBroker::compilation_init();
  3338   Management::initialize(THREAD);
  3339   if (HAS_PENDING_EXCEPTION) {
  3340     // management agent fails to start possibly due to
  3341     // configuration problem and is responsible for printing
  3342     // stack trace if appropriate. Simply exit VM.
  3343     vm_exit(1);
  3346   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3347   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3348   if (MemProfiling)                   MemProfiler::engage();
  3349   StatSampler::engage();
  3350   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3352   BiasedLocking::init();
  3354   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3355     call_postVMInitHook(THREAD);
  3356     // The Java side of PostVMInitHook.run must deal with all
  3357     // exceptions and provide means of diagnosis.
  3358     if (HAS_PENDING_EXCEPTION) {
  3359       CLEAR_PENDING_EXCEPTION;
  3363   // Start up the WatcherThread if there are any periodic tasks
  3364   // NOTE:  All PeriodicTasks should be registered by now. If they
  3365   //   aren't, late joiners might appear to start slowly (we might
  3366   //   take a while to process their first tick).
  3367   if (PeriodicTask::num_tasks() > 0) {
  3368     WatcherThread::start();
  3371   // Give os specific code one last chance to start
  3372   os::init_3();
  3374   create_vm_timer.end();
  3375   return JNI_OK;
  3378 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3379 extern "C" {
  3380   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3382 // Find a command line agent library and return its entry point for
  3383 //         -agentlib:  -agentpath:   -Xrun
  3384 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3385 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3386   OnLoadEntry_t on_load_entry = NULL;
  3387   void *library = agent->os_lib();  // check if we have looked it up before
  3389   if (library == NULL) {
  3390     char buffer[JVM_MAXPATHLEN];
  3391     char ebuf[1024];
  3392     const char *name = agent->name();
  3393     const char *msg = "Could not find agent library ";
  3395     if (agent->is_absolute_path()) {
  3396       library = os::dll_load(name, ebuf, sizeof ebuf);
  3397       if (library == NULL) {
  3398         const char *sub_msg = " in absolute path, with error: ";
  3399         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3400         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3401         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3402         // If we can't find the agent, exit.
  3403         vm_exit_during_initialization(buf, NULL);
  3404         FREE_C_HEAP_ARRAY(char, buf);
  3406     } else {
  3407       // Try to load the agent from the standard dll directory
  3408       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3409       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3410 #ifdef KERNEL
  3411       // Download instrument dll
  3412       if (library == NULL && strcmp(name, "instrument") == 0) {
  3413         char *props = Arguments::get_kernel_properties();
  3414         char *home  = Arguments::get_java_home();
  3415         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3416                       " sun.jkernel.DownloadManager -download client_jvm";
  3417         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3418         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3419         jio_snprintf(cmd, length, fmt, home, props);
  3420         int status = os::fork_and_exec(cmd);
  3421         FreeHeap(props);
  3422         if (status == -1) {
  3423           warning(cmd);
  3424           vm_exit_during_initialization("fork_and_exec failed: %s",
  3425                                          strerror(errno));
  3427         FREE_C_HEAP_ARRAY(char, cmd);
  3428         // when this comes back the instrument.dll should be where it belongs.
  3429         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3431 #endif // KERNEL
  3432       if (library == NULL) { // Try the local directory
  3433         char ns[1] = {0};
  3434         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3435         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3436         if (library == NULL) {
  3437           const char *sub_msg = " on the library path, with error: ";
  3438           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3439           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3440           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3441           // If we can't find the agent, exit.
  3442           vm_exit_during_initialization(buf, NULL);
  3443           FREE_C_HEAP_ARRAY(char, buf);
  3447     agent->set_os_lib(library);
  3450   // Find the OnLoad function.
  3451   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3452     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3453     if (on_load_entry != NULL) break;
  3455   return on_load_entry;
  3458 // Find the JVM_OnLoad entry point
  3459 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3460   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3461   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3464 // Find the Agent_OnLoad entry point
  3465 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3466   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3467   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3470 // For backwards compatibility with -Xrun
  3471 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3472 // treated like -agentpath:
  3473 // Must be called before agent libraries are created
  3474 void Threads::convert_vm_init_libraries_to_agents() {
  3475   AgentLibrary* agent;
  3476   AgentLibrary* next;
  3478   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3479     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3480     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3482     // If there is an JVM_OnLoad function it will get called later,
  3483     // otherwise see if there is an Agent_OnLoad
  3484     if (on_load_entry == NULL) {
  3485       on_load_entry = lookup_agent_on_load(agent);
  3486       if (on_load_entry != NULL) {
  3487         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3488         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3489         Arguments::convert_library_to_agent(agent);
  3490       } else {
  3491         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3497 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3498 // Invokes Agent_OnLoad
  3499 // Called very early -- before JavaThreads exist
  3500 void Threads::create_vm_init_agents() {
  3501   extern struct JavaVM_ main_vm;
  3502   AgentLibrary* agent;
  3504   JvmtiExport::enter_onload_phase();
  3505   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3506     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3508     if (on_load_entry != NULL) {
  3509       // Invoke the Agent_OnLoad function
  3510       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3511       if (err != JNI_OK) {
  3512         vm_exit_during_initialization("agent library failed to init", agent->name());
  3514     } else {
  3515       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3518   JvmtiExport::enter_primordial_phase();
  3521 extern "C" {
  3522   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3525 void Threads::shutdown_vm_agents() {
  3526   // Send any Agent_OnUnload notifications
  3527   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3528   extern struct JavaVM_ main_vm;
  3529   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3531     // Find the Agent_OnUnload function.
  3532     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3533       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3534                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3536       // Invoke the Agent_OnUnload function
  3537       if (unload_entry != NULL) {
  3538         JavaThread* thread = JavaThread::current();
  3539         ThreadToNativeFromVM ttn(thread);
  3540         HandleMark hm(thread);
  3541         (*unload_entry)(&main_vm);
  3542         break;
  3548 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3549 // Invokes JVM_OnLoad
  3550 void Threads::create_vm_init_libraries() {
  3551   extern struct JavaVM_ main_vm;
  3552   AgentLibrary* agent;
  3554   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3555     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3557     if (on_load_entry != NULL) {
  3558       // Invoke the JVM_OnLoad function
  3559       JavaThread* thread = JavaThread::current();
  3560       ThreadToNativeFromVM ttn(thread);
  3561       HandleMark hm(thread);
  3562       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3563       if (err != JNI_OK) {
  3564         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3566     } else {
  3567       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3572 // Last thread running calls java.lang.Shutdown.shutdown()
  3573 void JavaThread::invoke_shutdown_hooks() {
  3574   HandleMark hm(this);
  3576   // We could get here with a pending exception, if so clear it now.
  3577   if (this->has_pending_exception()) {
  3578     this->clear_pending_exception();
  3581   EXCEPTION_MARK;
  3582   klassOop k =
  3583     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3584                                       THREAD);
  3585   if (k != NULL) {
  3586     // SystemDictionary::resolve_or_null will return null if there was
  3587     // an exception.  If we cannot load the Shutdown class, just don't
  3588     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3589     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3590     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3591     // was called, the Shutdown class would have already been loaded
  3592     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3593     instanceKlassHandle shutdown_klass (THREAD, k);
  3594     JavaValue result(T_VOID);
  3595     JavaCalls::call_static(&result,
  3596                            shutdown_klass,
  3597                            vmSymbols::shutdown_method_name(),
  3598                            vmSymbols::void_method_signature(),
  3599                            THREAD);
  3601   CLEAR_PENDING_EXCEPTION;
  3604 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3605 // the program falls off the end of main(). Another VM exit path is through
  3606 // vm_exit() when the program calls System.exit() to return a value or when
  3607 // there is a serious error in VM. The two shutdown paths are not exactly
  3608 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3609 // and VM_Exit op at VM level.
  3610 //
  3611 // Shutdown sequence:
  3612 //   + Wait until we are the last non-daemon thread to execute
  3613 //     <-- every thing is still working at this moment -->
  3614 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3615 //        shutdown hooks, run finalizers if finalization-on-exit
  3616 //   + Call before_exit(), prepare for VM exit
  3617 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3618 //        currently the only user of this mechanism is File.deleteOnExit())
  3619 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3620 //        post thread end and vm death events to JVMTI,
  3621 //        stop signal thread
  3622 //   + Call JavaThread::exit(), it will:
  3623 //      > release JNI handle blocks, remove stack guard pages
  3624 //      > remove this thread from Threads list
  3625 //     <-- no more Java code from this thread after this point -->
  3626 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3627 //     the compiler threads at safepoint
  3628 //     <-- do not use anything that could get blocked by Safepoint -->
  3629 //   + Disable tracing at JNI/JVM barriers
  3630 //   + Set _vm_exited flag for threads that are still running native code
  3631 //   + Delete this thread
  3632 //   + Call exit_globals()
  3633 //      > deletes tty
  3634 //      > deletes PerfMemory resources
  3635 //   + Return to caller
  3637 bool Threads::destroy_vm() {
  3638   JavaThread* thread = JavaThread::current();
  3640   // Wait until we are the last non-daemon thread to execute
  3641   { MutexLocker nu(Threads_lock);
  3642     while (Threads::number_of_non_daemon_threads() > 1 )
  3643       // This wait should make safepoint checks, wait without a timeout,
  3644       // and wait as a suspend-equivalent condition.
  3645       //
  3646       // Note: If the FlatProfiler is running and this thread is waiting
  3647       // for another non-daemon thread to finish, then the FlatProfiler
  3648       // is waiting for the external suspend request on this thread to
  3649       // complete. wait_for_ext_suspend_completion() will eventually
  3650       // timeout, but that takes time. Making this wait a suspend-
  3651       // equivalent condition solves that timeout problem.
  3652       //
  3653       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3654                          Mutex::_as_suspend_equivalent_flag);
  3657   // Hang forever on exit if we are reporting an error.
  3658   if (ShowMessageBoxOnError && is_error_reported()) {
  3659     os::infinite_sleep();
  3662   if (JDK_Version::is_jdk12x_version()) {
  3663     // We are the last thread running, so check if finalizers should be run.
  3664     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3665     HandleMark rm(thread);
  3666     Universe::run_finalizers_on_exit();
  3667   } else {
  3668     // run Java level shutdown hooks
  3669     thread->invoke_shutdown_hooks();
  3672   before_exit(thread);
  3674   thread->exit(true);
  3676   // Stop VM thread.
  3678     // 4945125 The vm thread comes to a safepoint during exit.
  3679     // GC vm_operations can get caught at the safepoint, and the
  3680     // heap is unparseable if they are caught. Grab the Heap_lock
  3681     // to prevent this. The GC vm_operations will not be able to
  3682     // queue until after the vm thread is dead.
  3683     MutexLocker ml(Heap_lock);
  3685     VMThread::wait_for_vm_thread_exit();
  3686     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3687     VMThread::destroy();
  3690   // clean up ideal graph printers
  3691 #if defined(COMPILER2) && !defined(PRODUCT)
  3692   IdealGraphPrinter::clean_up();
  3693 #endif
  3695   // Now, all Java threads are gone except daemon threads. Daemon threads
  3696   // running Java code or in VM are stopped by the Safepoint. However,
  3697   // daemon threads executing native code are still running.  But they
  3698   // will be stopped at native=>Java/VM barriers. Note that we can't
  3699   // simply kill or suspend them, as it is inherently deadlock-prone.
  3701 #ifndef PRODUCT
  3702   // disable function tracing at JNI/JVM barriers
  3703   TraceJNICalls = false;
  3704   TraceJVMCalls = false;
  3705   TraceRuntimeCalls = false;
  3706 #endif
  3708   VM_Exit::set_vm_exited();
  3710   notify_vm_shutdown();
  3712   delete thread;
  3714   // exit_globals() will delete tty
  3715   exit_globals();
  3717   return true;
  3721 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3722   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3723   return is_supported_jni_version(version);
  3727 jboolean Threads::is_supported_jni_version(jint version) {
  3728   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3729   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3730   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3731   return JNI_FALSE;
  3735 void Threads::add(JavaThread* p, bool force_daemon) {
  3736   // The threads lock must be owned at this point
  3737   assert_locked_or_safepoint(Threads_lock);
  3739   // See the comment for this method in thread.hpp for its purpose and
  3740   // why it is called here.
  3741   p->initialize_queues();
  3742   p->set_next(_thread_list);
  3743   _thread_list = p;
  3744   _number_of_threads++;
  3745   oop threadObj = p->threadObj();
  3746   bool daemon = true;
  3747   // Bootstrapping problem: threadObj can be null for initial
  3748   // JavaThread (or for threads attached via JNI)
  3749   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3750     _number_of_non_daemon_threads++;
  3751     daemon = false;
  3754   ThreadService::add_thread(p, daemon);
  3756   // Possible GC point.
  3757   Events::log("Thread added: " INTPTR_FORMAT, p);
  3760 void Threads::remove(JavaThread* p) {
  3761   // Extra scope needed for Thread_lock, so we can check
  3762   // that we do not remove thread without safepoint code notice
  3763   { MutexLocker ml(Threads_lock);
  3765     assert(includes(p), "p must be present");
  3767     JavaThread* current = _thread_list;
  3768     JavaThread* prev    = NULL;
  3770     while (current != p) {
  3771       prev    = current;
  3772       current = current->next();
  3775     if (prev) {
  3776       prev->set_next(current->next());
  3777     } else {
  3778       _thread_list = p->next();
  3780     _number_of_threads--;
  3781     oop threadObj = p->threadObj();
  3782     bool daemon = true;
  3783     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3784       _number_of_non_daemon_threads--;
  3785       daemon = false;
  3787       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3788       // on destroy_vm will wake up.
  3789       if (number_of_non_daemon_threads() == 1)
  3790         Threads_lock->notify_all();
  3792     ThreadService::remove_thread(p, daemon);
  3794     // Make sure that safepoint code disregard this thread. This is needed since
  3795     // the thread might mess around with locks after this point. This can cause it
  3796     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3797     // of this thread since it is removed from the queue.
  3798     p->set_terminated_value();
  3799   } // unlock Threads_lock
  3801   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3802   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3805 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3806 bool Threads::includes(JavaThread* p) {
  3807   assert(Threads_lock->is_locked(), "sanity check");
  3808   ALL_JAVA_THREADS(q) {
  3809     if (q == p ) {
  3810       return true;
  3813   return false;
  3816 // Operations on the Threads list for GC.  These are not explicitly locked,
  3817 // but the garbage collector must provide a safe context for them to run.
  3818 // In particular, these things should never be called when the Threads_lock
  3819 // is held by some other thread. (Note: the Safepoint abstraction also
  3820 // uses the Threads_lock to gurantee this property. It also makes sure that
  3821 // all threads gets blocked when exiting or starting).
  3823 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3824   ALL_JAVA_THREADS(p) {
  3825     p->oops_do(f, cf);
  3827   VMThread::vm_thread()->oops_do(f, cf);
  3830 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3831   // Introduce a mechanism allowing parallel threads to claim threads as
  3832   // root groups.  Overhead should be small enough to use all the time,
  3833   // even in sequential code.
  3834   SharedHeap* sh = SharedHeap::heap();
  3835   bool is_par = (sh->n_par_threads() > 0);
  3836   int cp = SharedHeap::heap()->strong_roots_parity();
  3837   ALL_JAVA_THREADS(p) {
  3838     if (p->claim_oops_do(is_par, cp)) {
  3839       p->oops_do(f, cf);
  3842   VMThread* vmt = VMThread::vm_thread();
  3843   if (vmt->claim_oops_do(is_par, cp))
  3844     vmt->oops_do(f, cf);
  3847 #ifndef SERIALGC
  3848 // Used by ParallelScavenge
  3849 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3850   ALL_JAVA_THREADS(p) {
  3851     q->enqueue(new ThreadRootsTask(p));
  3853   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3856 // Used by Parallel Old
  3857 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3858   ALL_JAVA_THREADS(p) {
  3859     q->enqueue(new ThreadRootsMarkingTask(p));
  3861   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3863 #endif // SERIALGC
  3865 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3866   ALL_JAVA_THREADS(p) {
  3867     p->nmethods_do(cf);
  3869   VMThread::vm_thread()->nmethods_do(cf);
  3872 void Threads::gc_epilogue() {
  3873   ALL_JAVA_THREADS(p) {
  3874     p->gc_epilogue();
  3878 void Threads::gc_prologue() {
  3879   ALL_JAVA_THREADS(p) {
  3880     p->gc_prologue();
  3884 void Threads::deoptimized_wrt_marked_nmethods() {
  3885   ALL_JAVA_THREADS(p) {
  3886     p->deoptimized_wrt_marked_nmethods();
  3891 // Get count Java threads that are waiting to enter the specified monitor.
  3892 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3893   address monitor, bool doLock) {
  3894   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3895     "must grab Threads_lock or be at safepoint");
  3896   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3898   int i = 0;
  3900     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3901     ALL_JAVA_THREADS(p) {
  3902       if (p->is_Compiler_thread()) continue;
  3904       address pending = (address)p->current_pending_monitor();
  3905       if (pending == monitor) {             // found a match
  3906         if (i < count) result->append(p);   // save the first count matches
  3907         i++;
  3911   return result;
  3915 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3916   assert(doLock ||
  3917          Threads_lock->owned_by_self() ||
  3918          SafepointSynchronize::is_at_safepoint(),
  3919          "must grab Threads_lock or be at safepoint");
  3921   // NULL owner means not locked so we can skip the search
  3922   if (owner == NULL) return NULL;
  3925     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3926     ALL_JAVA_THREADS(p) {
  3927       // first, see if owner is the address of a Java thread
  3928       if (owner == (address)p) return p;
  3931   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3932   if (UseHeavyMonitors) return NULL;
  3934   //
  3935   // If we didn't find a matching Java thread and we didn't force use of
  3936   // heavyweight monitors, then the owner is the stack address of the
  3937   // Lock Word in the owning Java thread's stack.
  3938   //
  3939   JavaThread* the_owner = NULL;
  3941     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3942     ALL_JAVA_THREADS(q) {
  3943       if (q->is_lock_owned(owner)) {
  3944         the_owner = q;
  3945         break;
  3949   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3950   return the_owner;
  3953 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3954 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3955   char buf[32];
  3956   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3958   st->print_cr("Full thread dump %s (%s %s):",
  3959                 Abstract_VM_Version::vm_name(),
  3960                 Abstract_VM_Version::vm_release(),
  3961                 Abstract_VM_Version::vm_info_string()
  3962                );
  3963   st->cr();
  3965 #ifndef SERIALGC
  3966   // Dump concurrent locks
  3967   ConcurrentLocksDump concurrent_locks;
  3968   if (print_concurrent_locks) {
  3969     concurrent_locks.dump_at_safepoint();
  3971 #endif // SERIALGC
  3973   ALL_JAVA_THREADS(p) {
  3974     ResourceMark rm;
  3975     p->print_on(st);
  3976     if (print_stacks) {
  3977       if (internal_format) {
  3978         p->trace_stack();
  3979       } else {
  3980         p->print_stack_on(st);
  3983     st->cr();
  3984 #ifndef SERIALGC
  3985     if (print_concurrent_locks) {
  3986       concurrent_locks.print_locks_on(p, st);
  3988 #endif // SERIALGC
  3991   VMThread::vm_thread()->print_on(st);
  3992   st->cr();
  3993   Universe::heap()->print_gc_threads_on(st);
  3994   WatcherThread* wt = WatcherThread::watcher_thread();
  3995   if (wt != NULL) wt->print_on(st);
  3996   st->cr();
  3997   CompileBroker::print_compiler_threads_on(st);
  3998   st->flush();
  4001 // Threads::print_on_error() is called by fatal error handler. It's possible
  4002 // that VM is not at safepoint and/or current thread is inside signal handler.
  4003 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4004 // memory (even in resource area), it might deadlock the error handler.
  4005 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4006   bool found_current = false;
  4007   st->print_cr("Java Threads: ( => current thread )");
  4008   ALL_JAVA_THREADS(thread) {
  4009     bool is_current = (current == thread);
  4010     found_current = found_current || is_current;
  4012     st->print("%s", is_current ? "=>" : "  ");
  4014     st->print(PTR_FORMAT, thread);
  4015     st->print(" ");
  4016     thread->print_on_error(st, buf, buflen);
  4017     st->cr();
  4019   st->cr();
  4021   st->print_cr("Other Threads:");
  4022   if (VMThread::vm_thread()) {
  4023     bool is_current = (current == VMThread::vm_thread());
  4024     found_current = found_current || is_current;
  4025     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4027     st->print(PTR_FORMAT, VMThread::vm_thread());
  4028     st->print(" ");
  4029     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4030     st->cr();
  4032   WatcherThread* wt = WatcherThread::watcher_thread();
  4033   if (wt != NULL) {
  4034     bool is_current = (current == wt);
  4035     found_current = found_current || is_current;
  4036     st->print("%s", is_current ? "=>" : "  ");
  4038     st->print(PTR_FORMAT, wt);
  4039     st->print(" ");
  4040     wt->print_on_error(st, buf, buflen);
  4041     st->cr();
  4043   if (!found_current) {
  4044     st->cr();
  4045     st->print("=>" PTR_FORMAT " (exited) ", current);
  4046     current->print_on_error(st, buf, buflen);
  4047     st->cr();
  4051 // Internal SpinLock and Mutex
  4052 // Based on ParkEvent
  4054 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4055 //
  4056 // We employ SpinLocks _only for low-contention, fixed-length
  4057 // short-duration critical sections where we're concerned
  4058 // about native mutex_t or HotSpot Mutex:: latency.
  4059 // The mux construct provides a spin-then-block mutual exclusion
  4060 // mechanism.
  4061 //
  4062 // Testing has shown that contention on the ListLock guarding gFreeList
  4063 // is common.  If we implement ListLock as a simple SpinLock it's common
  4064 // for the JVM to devolve to yielding with little progress.  This is true
  4065 // despite the fact that the critical sections protected by ListLock are
  4066 // extremely short.
  4067 //
  4068 // TODO-FIXME: ListLock should be of type SpinLock.
  4069 // We should make this a 1st-class type, integrated into the lock
  4070 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4071 // should have sufficient padding to avoid false-sharing and excessive
  4072 // cache-coherency traffic.
  4075 typedef volatile int SpinLockT ;
  4077 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4078   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4079      return ;   // normal fast-path return
  4082   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4083   TEVENT (SpinAcquire - ctx) ;
  4084   int ctr = 0 ;
  4085   int Yields = 0 ;
  4086   for (;;) {
  4087      while (*adr != 0) {
  4088         ++ctr ;
  4089         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4090            if (Yields > 5) {
  4091              // Consider using a simple NakedSleep() instead.
  4092              // Then SpinAcquire could be called by non-JVM threads
  4093              Thread::current()->_ParkEvent->park(1) ;
  4094            } else {
  4095              os::NakedYield() ;
  4096              ++Yields ;
  4098         } else {
  4099            SpinPause() ;
  4102      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4106 void Thread::SpinRelease (volatile int * adr) {
  4107   assert (*adr != 0, "invariant") ;
  4108   OrderAccess::fence() ;      // guarantee at least release consistency.
  4109   // Roach-motel semantics.
  4110   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4111   // but prior LDs and STs within the critical section can't be allowed
  4112   // to reorder or float past the ST that releases the lock.
  4113   *adr = 0 ;
  4116 // muxAcquire and muxRelease:
  4117 //
  4118 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4119 //    The LSB of the word is set IFF the lock is held.
  4120 //    The remainder of the word points to the head of a singly-linked list
  4121 //    of threads blocked on the lock.
  4122 //
  4123 // *  The current implementation of muxAcquire-muxRelease uses its own
  4124 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4125 //    minimizing the peak number of extant ParkEvent instances then
  4126 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4127 //    as certain invariants were satisfied.  Specifically, care would need
  4128 //    to be taken with regards to consuming unpark() "permits".
  4129 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4130 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4131 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4132 //    consume an unpark() permit intended for monitorenter, for instance.
  4133 //    One way around this would be to widen the restricted-range semaphore
  4134 //    implemented in park().  Another alternative would be to provide
  4135 //    multiple instances of the PlatformEvent() for each thread.  One
  4136 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4137 //
  4138 // *  Usage:
  4139 //    -- Only as leaf locks
  4140 //    -- for short-term locking only as muxAcquire does not perform
  4141 //       thread state transitions.
  4142 //
  4143 // Alternatives:
  4144 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4145 //    but with parking or spin-then-park instead of pure spinning.
  4146 // *  Use Taura-Oyama-Yonenzawa locks.
  4147 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4148 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4149 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4150 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4151 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4152 //    boundaries by using placement-new.
  4153 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4154 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4155 //    The validity of the backlinks must be ratified before we trust the value.
  4156 //    If the backlinks are invalid the exiting thread must back-track through the
  4157 //    the forward links, which are always trustworthy.
  4158 // *  Add a successor indication.  The LockWord is currently encoded as
  4159 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4160 //    to provide the usual futile-wakeup optimization.
  4161 //    See RTStt for details.
  4162 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4163 //
  4166 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4167 enum MuxBits { LOCKBIT = 1 } ;
  4169 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4170   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4171   if (w == 0) return ;
  4172   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4173      return ;
  4176   TEVENT (muxAcquire - Contention) ;
  4177   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4178   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4179   for (;;) {
  4180      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4182      // Optional spin phase: spin-then-park strategy
  4183      while (--its >= 0) {
  4184        w = *Lock ;
  4185        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4186           return ;
  4190      Self->reset() ;
  4191      Self->OnList = intptr_t(Lock) ;
  4192      // The following fence() isn't _strictly necessary as the subsequent
  4193      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4194      OrderAccess::fence();
  4195      for (;;) {
  4196         w = *Lock ;
  4197         if ((w & LOCKBIT) == 0) {
  4198             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4199                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4200                 return ;
  4202             continue ;      // Interference -- *Lock changed -- Just retry
  4204         assert (w & LOCKBIT, "invariant") ;
  4205         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4206         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4209      while (Self->OnList != 0) {
  4210         Self->park() ;
  4215 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4216   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4217   if (w == 0) return ;
  4218   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4219     return ;
  4222   TEVENT (muxAcquire - Contention) ;
  4223   ParkEvent * ReleaseAfter = NULL ;
  4224   if (ev == NULL) {
  4225     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4227   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4228   for (;;) {
  4229     guarantee (ev->OnList == 0, "invariant") ;
  4230     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4232     // Optional spin phase: spin-then-park strategy
  4233     while (--its >= 0) {
  4234       w = *Lock ;
  4235       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4236         if (ReleaseAfter != NULL) {
  4237           ParkEvent::Release (ReleaseAfter) ;
  4239         return ;
  4243     ev->reset() ;
  4244     ev->OnList = intptr_t(Lock) ;
  4245     // The following fence() isn't _strictly necessary as the subsequent
  4246     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4247     OrderAccess::fence();
  4248     for (;;) {
  4249       w = *Lock ;
  4250       if ((w & LOCKBIT) == 0) {
  4251         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4252           ev->OnList = 0 ;
  4253           // We call ::Release while holding the outer lock, thus
  4254           // artificially lengthening the critical section.
  4255           // Consider deferring the ::Release() until the subsequent unlock(),
  4256           // after we've dropped the outer lock.
  4257           if (ReleaseAfter != NULL) {
  4258             ParkEvent::Release (ReleaseAfter) ;
  4260           return ;
  4262         continue ;      // Interference -- *Lock changed -- Just retry
  4264       assert (w & LOCKBIT, "invariant") ;
  4265       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4266       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4269     while (ev->OnList != 0) {
  4270       ev->park() ;
  4275 // Release() must extract a successor from the list and then wake that thread.
  4276 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4277 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4278 // Release() would :
  4279 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4280 // (B) Extract a successor from the private list "in-hand"
  4281 // (C) attempt to CAS() the residual back into *Lock over null.
  4282 //     If there were any newly arrived threads and the CAS() would fail.
  4283 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4284 //     with the RATs and repeat as needed.  Alternately, Release() might
  4285 //     detach and extract a successor, but then pass the residual list to the wakee.
  4286 //     The wakee would be responsible for reattaching and remerging before it
  4287 //     competed for the lock.
  4288 //
  4289 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4290 // multiple concurrent pushers, but only one popper or detacher.
  4291 // This implementation pops from the head of the list.  This is unfair,
  4292 // but tends to provide excellent throughput as hot threads remain hot.
  4293 // (We wake recently run threads first).
  4295 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4296   for (;;) {
  4297     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4298     assert (w & LOCKBIT, "invariant") ;
  4299     if (w == LOCKBIT) return ;
  4300     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4301     assert (List != NULL, "invariant") ;
  4302     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4303     ParkEvent * nxt = List->ListNext ;
  4305     // The following CAS() releases the lock and pops the head element.
  4306     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4307       continue ;
  4309     List->OnList = 0 ;
  4310     OrderAccess::fence() ;
  4311     List->unpark () ;
  4312     return ;
  4317 void Threads::verify() {
  4318   ALL_JAVA_THREADS(p) {
  4319     p->verify();
  4321   VMThread* thread = VMThread::vm_thread();
  4322   if (thread != NULL) thread->verify();

mercurial