src/share/vm/runtime/thread.cpp

Tue, 08 Feb 2011 09:11:37 -0800

author
mchung
date
Tue, 08 Feb 2011 09:11:37 -0800
changeset 2518
f36c9fe788b8
parent 2497
3582bf76420e
child 2519
5197f3d713a1
permissions
-rw-r--r--

7017673: Remove setting of the sun.jkernel.DownloadManager as a boot classloader hook
Reviewed-by: alanb, dcubed, coleenp

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "jvmtifiles/jvmtiEnv.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/instanceKlass.hpp"
    38 #include "oops/objArrayOop.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "oops/symbol.hpp"
    41 #include "prims/jvm_misc.hpp"
    42 #include "prims/jvmtiExport.hpp"
    43 #include "prims/jvmtiThreadState.hpp"
    44 #include "prims/privilegedStack.hpp"
    45 #include "runtime/aprofiler.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/deoptimization.hpp"
    49 #include "runtime/fprofiler.hpp"
    50 #include "runtime/frame.inline.hpp"
    51 #include "runtime/init.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/java.hpp"
    54 #include "runtime/javaCalls.hpp"
    55 #include "runtime/jniPeriodicChecker.hpp"
    56 #include "runtime/memprofiler.hpp"
    57 #include "runtime/mutexLocker.hpp"
    58 #include "runtime/objectMonitor.hpp"
    59 #include "runtime/osThread.hpp"
    60 #include "runtime/safepoint.hpp"
    61 #include "runtime/sharedRuntime.hpp"
    62 #include "runtime/statSampler.hpp"
    63 #include "runtime/stubRoutines.hpp"
    64 #include "runtime/task.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/threadLocalStorage.hpp"
    67 #include "runtime/vframe.hpp"
    68 #include "runtime/vframeArray.hpp"
    69 #include "runtime/vframe_hp.hpp"
    70 #include "runtime/vmThread.hpp"
    71 #include "runtime/vm_operations.hpp"
    72 #include "services/attachListener.hpp"
    73 #include "services/management.hpp"
    74 #include "services/threadService.hpp"
    75 #include "utilities/defaultStream.hpp"
    76 #include "utilities/dtrace.hpp"
    77 #include "utilities/events.hpp"
    78 #include "utilities/preserveException.hpp"
    79 #ifdef TARGET_OS_FAMILY_linux
    80 # include "os_linux.inline.hpp"
    81 # include "thread_linux.inline.hpp"
    82 #endif
    83 #ifdef TARGET_OS_FAMILY_solaris
    84 # include "os_solaris.inline.hpp"
    85 # include "thread_solaris.inline.hpp"
    86 #endif
    87 #ifdef TARGET_OS_FAMILY_windows
    88 # include "os_windows.inline.hpp"
    89 # include "thread_windows.inline.hpp"
    90 #endif
    91 #ifndef SERIALGC
    92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    95 #endif
    96 #ifdef COMPILER1
    97 #include "c1/c1_Compiler.hpp"
    98 #endif
    99 #ifdef COMPILER2
   100 #include "opto/c2compiler.hpp"
   101 #include "opto/idealGraphPrinter.hpp"
   102 #endif
   104 #ifdef DTRACE_ENABLED
   106 // Only bother with this argument setup if dtrace is available
   108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   110 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   111   intptr_t, intptr_t, bool);
   112 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   113   intptr_t, intptr_t, bool);
   115 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   116   {                                                                        \
   117     ResourceMark rm(this);                                                 \
   118     int len = 0;                                                           \
   119     const char* name = (javathread)->get_thread_name();                    \
   120     len = strlen(name);                                                    \
   121     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   122       name, len,                                                           \
   123       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   124       (javathread)->osthread()->thread_id(),                               \
   125       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   126   }
   128 #else //  ndef DTRACE_ENABLED
   130 #define DTRACE_THREAD_PROBE(probe, javathread)
   132 #endif // ndef DTRACE_ENABLED
   134 // Class hierarchy
   135 // - Thread
   136 //   - VMThread
   137 //   - WatcherThread
   138 //   - ConcurrentMarkSweepThread
   139 //   - JavaThread
   140 //     - CompilerThread
   142 // ======= Thread ========
   144 // Support for forcing alignment of thread objects for biased locking
   145 void* Thread::operator new(size_t size) {
   146   if (UseBiasedLocking) {
   147     const int alignment = markOopDesc::biased_lock_alignment;
   148     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   149     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   153            "JavaThread alignment code overflowed allocated storage");
   154     if (TraceBiasedLocking) {
   155       if (aligned_addr != real_malloc_addr)
   156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   157                       real_malloc_addr, aligned_addr);
   158     }
   159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   160     return aligned_addr;
   161   } else {
   162     return CHeapObj::operator new(size);
   163   }
   164 }
   166 void Thread::operator delete(void* p) {
   167   if (UseBiasedLocking) {
   168     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   169     CHeapObj::operator delete(real_malloc_addr);
   170   } else {
   171     CHeapObj::operator delete(p);
   172   }
   173 }
   176 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   177 // JavaThread
   180 Thread::Thread() {
   181   // stack and get_thread
   182   set_stack_base(NULL);
   183   set_stack_size(0);
   184   set_self_raw_id(0);
   185   set_lgrp_id(-1);
   187   // allocated data structures
   188   set_osthread(NULL);
   189   set_resource_area(new ResourceArea());
   190   set_handle_area(new HandleArea(NULL));
   191   set_active_handles(NULL);
   192   set_free_handle_block(NULL);
   193   set_last_handle_mark(NULL);
   195   // This initial value ==> never claimed.
   196   _oops_do_parity = 0;
   198   // the handle mark links itself to last_handle_mark
   199   new HandleMark(this);
   201   // plain initialization
   202   debug_only(_owned_locks = NULL;)
   203   debug_only(_allow_allocation_count = 0;)
   204   NOT_PRODUCT(_allow_safepoint_count = 0;)
   205   NOT_PRODUCT(_skip_gcalot = false;)
   206   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   207   _jvmti_env_iteration_count = 0;
   208   set_allocated_bytes(0);
   209   _vm_operation_started_count = 0;
   210   _vm_operation_completed_count = 0;
   211   _current_pending_monitor = NULL;
   212   _current_pending_monitor_is_from_java = true;
   213   _current_waiting_monitor = NULL;
   214   _num_nested_signal = 0;
   215   omFreeList = NULL ;
   216   omFreeCount = 0 ;
   217   omFreeProvision = 32 ;
   218   omInUseList = NULL ;
   219   omInUseCount = 0 ;
   221   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   222   _suspend_flags = 0;
   224   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   225   _hashStateX = os::random() ;
   226   _hashStateY = 842502087 ;
   227   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   228   _hashStateW = 273326509 ;
   230   _OnTrap   = 0 ;
   231   _schedctl = NULL ;
   232   _Stalled  = 0 ;
   233   _TypeTag  = 0x2BAD ;
   235   // Many of the following fields are effectively final - immutable
   236   // Note that nascent threads can't use the Native Monitor-Mutex
   237   // construct until the _MutexEvent is initialized ...
   238   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   239   // we might instead use a stack of ParkEvents that we could provision on-demand.
   240   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   241   // and ::Release()
   242   _ParkEvent   = ParkEvent::Allocate (this) ;
   243   _SleepEvent  = ParkEvent::Allocate (this) ;
   244   _MutexEvent  = ParkEvent::Allocate (this) ;
   245   _MuxEvent    = ParkEvent::Allocate (this) ;
   247 #ifdef CHECK_UNHANDLED_OOPS
   248   if (CheckUnhandledOops) {
   249     _unhandled_oops = new UnhandledOops(this);
   250   }
   251 #endif // CHECK_UNHANDLED_OOPS
   252 #ifdef ASSERT
   253   if (UseBiasedLocking) {
   254     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   255     assert(this == _real_malloc_address ||
   256            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   257            "bug in forced alignment of thread objects");
   258   }
   259 #endif /* ASSERT */
   260 }
   262 void Thread::initialize_thread_local_storage() {
   263   // Note: Make sure this method only calls
   264   // non-blocking operations. Otherwise, it might not work
   265   // with the thread-startup/safepoint interaction.
   267   // During Java thread startup, safepoint code should allow this
   268   // method to complete because it may need to allocate memory to
   269   // store information for the new thread.
   271   // initialize structure dependent on thread local storage
   272   ThreadLocalStorage::set_thread(this);
   274   // set up any platform-specific state.
   275   os::initialize_thread();
   277 }
   279 void Thread::record_stack_base_and_size() {
   280   set_stack_base(os::current_stack_base());
   281   set_stack_size(os::current_stack_size());
   282 }
   285 Thread::~Thread() {
   286   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   287   ObjectSynchronizer::omFlush (this) ;
   289   // deallocate data structures
   290   delete resource_area();
   291   // since the handle marks are using the handle area, we have to deallocated the root
   292   // handle mark before deallocating the thread's handle area,
   293   assert(last_handle_mark() != NULL, "check we have an element");
   294   delete last_handle_mark();
   295   assert(last_handle_mark() == NULL, "check we have reached the end");
   297   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   298   // We NULL out the fields for good hygiene.
   299   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   300   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   301   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   302   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   304   delete handle_area();
   306   // osthread() can be NULL, if creation of thread failed.
   307   if (osthread() != NULL) os::free_thread(osthread());
   309   delete _SR_lock;
   311   // clear thread local storage if the Thread is deleting itself
   312   if (this == Thread::current()) {
   313     ThreadLocalStorage::set_thread(NULL);
   314   } else {
   315     // In the case where we're not the current thread, invalidate all the
   316     // caches in case some code tries to get the current thread or the
   317     // thread that was destroyed, and gets stale information.
   318     ThreadLocalStorage::invalidate_all();
   319   }
   320   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   321 }
   323 // NOTE: dummy function for assertion purpose.
   324 void Thread::run() {
   325   ShouldNotReachHere();
   326 }
   328 #ifdef ASSERT
   329 // Private method to check for dangling thread pointer
   330 void check_for_dangling_thread_pointer(Thread *thread) {
   331  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   332          "possibility of dangling Thread pointer");
   333 }
   334 #endif
   337 #ifndef PRODUCT
   338 // Tracing method for basic thread operations
   339 void Thread::trace(const char* msg, const Thread* const thread) {
   340   if (!TraceThreadEvents) return;
   341   ResourceMark rm;
   342   ThreadCritical tc;
   343   const char *name = "non-Java thread";
   344   int prio = -1;
   345   if (thread->is_Java_thread()
   346       && !thread->is_Compiler_thread()) {
   347     // The Threads_lock must be held to get information about
   348     // this thread but may not be in some situations when
   349     // tracing  thread events.
   350     bool release_Threads_lock = false;
   351     if (!Threads_lock->owned_by_self()) {
   352       Threads_lock->lock();
   353       release_Threads_lock = true;
   354     }
   355     JavaThread* jt = (JavaThread *)thread;
   356     name = (char *)jt->get_thread_name();
   357     oop thread_oop = jt->threadObj();
   358     if (thread_oop != NULL) {
   359       prio = java_lang_Thread::priority(thread_oop);
   360     }
   361     if (release_Threads_lock) {
   362       Threads_lock->unlock();
   363     }
   364   }
   365   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   366 }
   367 #endif
   370 ThreadPriority Thread::get_priority(const Thread* const thread) {
   371   trace("get priority", thread);
   372   ThreadPriority priority;
   373   // Can return an error!
   374   (void)os::get_priority(thread, priority);
   375   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   376   return priority;
   377 }
   379 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   380   trace("set priority", thread);
   381   debug_only(check_for_dangling_thread_pointer(thread);)
   382   // Can return an error!
   383   (void)os::set_priority(thread, priority);
   384 }
   387 void Thread::start(Thread* thread) {
   388   trace("start", thread);
   389   // Start is different from resume in that its safety is guaranteed by context or
   390   // being called from a Java method synchronized on the Thread object.
   391   if (!DisableStartThread) {
   392     if (thread->is_Java_thread()) {
   393       // Initialize the thread state to RUNNABLE before starting this thread.
   394       // Can not set it after the thread started because we do not know the
   395       // exact thread state at that time. It could be in MONITOR_WAIT or
   396       // in SLEEPING or some other state.
   397       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   398                                           java_lang_Thread::RUNNABLE);
   399     }
   400     os::start_thread(thread);
   401   }
   402 }
   404 // Enqueue a VM_Operation to do the job for us - sometime later
   405 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   406   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   407   VMThread::execute(vm_stop);
   408 }
   411 //
   412 // Check if an external suspend request has completed (or has been
   413 // cancelled). Returns true if the thread is externally suspended and
   414 // false otherwise.
   415 //
   416 // The bits parameter returns information about the code path through
   417 // the routine. Useful for debugging:
   418 //
   419 // set in is_ext_suspend_completed():
   420 // 0x00000001 - routine was entered
   421 // 0x00000010 - routine return false at end
   422 // 0x00000100 - thread exited (return false)
   423 // 0x00000200 - suspend request cancelled (return false)
   424 // 0x00000400 - thread suspended (return true)
   425 // 0x00001000 - thread is in a suspend equivalent state (return true)
   426 // 0x00002000 - thread is native and walkable (return true)
   427 // 0x00004000 - thread is native_trans and walkable (needed retry)
   428 //
   429 // set in wait_for_ext_suspend_completion():
   430 // 0x00010000 - routine was entered
   431 // 0x00020000 - suspend request cancelled before loop (return false)
   432 // 0x00040000 - thread suspended before loop (return true)
   433 // 0x00080000 - suspend request cancelled in loop (return false)
   434 // 0x00100000 - thread suspended in loop (return true)
   435 // 0x00200000 - suspend not completed during retry loop (return false)
   436 //
   438 // Helper class for tracing suspend wait debug bits.
   439 //
   440 // 0x00000100 indicates that the target thread exited before it could
   441 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   442 // 0x00080000 each indicate a cancelled suspend request so they don't
   443 // count as wait failures either.
   444 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   446 class TraceSuspendDebugBits : public StackObj {
   447  private:
   448   JavaThread * jt;
   449   bool         is_wait;
   450   bool         called_by_wait;  // meaningful when !is_wait
   451   uint32_t *   bits;
   453  public:
   454   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   455                         uint32_t *_bits) {
   456     jt             = _jt;
   457     is_wait        = _is_wait;
   458     called_by_wait = _called_by_wait;
   459     bits           = _bits;
   460   }
   462   ~TraceSuspendDebugBits() {
   463     if (!is_wait) {
   464 #if 1
   465       // By default, don't trace bits for is_ext_suspend_completed() calls.
   466       // That trace is very chatty.
   467       return;
   468 #else
   469       if (!called_by_wait) {
   470         // If tracing for is_ext_suspend_completed() is enabled, then only
   471         // trace calls to it from wait_for_ext_suspend_completion()
   472         return;
   473       }
   474 #endif
   475     }
   477     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   478       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   479         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   480         ResourceMark rm;
   482         tty->print_cr(
   483             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   484             jt->get_thread_name(), *bits);
   486         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   487       }
   488     }
   489   }
   490 };
   491 #undef DEBUG_FALSE_BITS
   494 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   495   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   497   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   498   bool do_trans_retry;           // flag to force the retry
   500   *bits |= 0x00000001;
   502   do {
   503     do_trans_retry = false;
   505     if (is_exiting()) {
   506       // Thread is in the process of exiting. This is always checked
   507       // first to reduce the risk of dereferencing a freed JavaThread.
   508       *bits |= 0x00000100;
   509       return false;
   510     }
   512     if (!is_external_suspend()) {
   513       // Suspend request is cancelled. This is always checked before
   514       // is_ext_suspended() to reduce the risk of a rogue resume
   515       // confusing the thread that made the suspend request.
   516       *bits |= 0x00000200;
   517       return false;
   518     }
   520     if (is_ext_suspended()) {
   521       // thread is suspended
   522       *bits |= 0x00000400;
   523       return true;
   524     }
   526     // Now that we no longer do hard suspends of threads running
   527     // native code, the target thread can be changing thread state
   528     // while we are in this routine:
   529     //
   530     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   531     //
   532     // We save a copy of the thread state as observed at this moment
   533     // and make our decision about suspend completeness based on the
   534     // copy. This closes the race where the thread state is seen as
   535     // _thread_in_native_trans in the if-thread_blocked check, but is
   536     // seen as _thread_blocked in if-thread_in_native_trans check.
   537     JavaThreadState save_state = thread_state();
   539     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   540       // If the thread's state is _thread_blocked and this blocking
   541       // condition is known to be equivalent to a suspend, then we can
   542       // consider the thread to be externally suspended. This means that
   543       // the code that sets _thread_blocked has been modified to do
   544       // self-suspension if the blocking condition releases. We also
   545       // used to check for CONDVAR_WAIT here, but that is now covered by
   546       // the _thread_blocked with self-suspension check.
   547       //
   548       // Return true since we wouldn't be here unless there was still an
   549       // external suspend request.
   550       *bits |= 0x00001000;
   551       return true;
   552     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   553       // Threads running native code will self-suspend on native==>VM/Java
   554       // transitions. If its stack is walkable (should always be the case
   555       // unless this function is called before the actual java_suspend()
   556       // call), then the wait is done.
   557       *bits |= 0x00002000;
   558       return true;
   559     } else if (!called_by_wait && !did_trans_retry &&
   560                save_state == _thread_in_native_trans &&
   561                frame_anchor()->walkable()) {
   562       // The thread is transitioning from thread_in_native to another
   563       // thread state. check_safepoint_and_suspend_for_native_trans()
   564       // will force the thread to self-suspend. If it hasn't gotten
   565       // there yet we may have caught the thread in-between the native
   566       // code check above and the self-suspend. Lucky us. If we were
   567       // called by wait_for_ext_suspend_completion(), then it
   568       // will be doing the retries so we don't have to.
   569       //
   570       // Since we use the saved thread state in the if-statement above,
   571       // there is a chance that the thread has already transitioned to
   572       // _thread_blocked by the time we get here. In that case, we will
   573       // make a single unnecessary pass through the logic below. This
   574       // doesn't hurt anything since we still do the trans retry.
   576       *bits |= 0x00004000;
   578       // Once the thread leaves thread_in_native_trans for another
   579       // thread state, we break out of this retry loop. We shouldn't
   580       // need this flag to prevent us from getting back here, but
   581       // sometimes paranoia is good.
   582       did_trans_retry = true;
   584       // We wait for the thread to transition to a more usable state.
   585       for (int i = 1; i <= SuspendRetryCount; i++) {
   586         // We used to do an "os::yield_all(i)" call here with the intention
   587         // that yielding would increase on each retry. However, the parameter
   588         // is ignored on Linux which means the yield didn't scale up. Waiting
   589         // on the SR_lock below provides a much more predictable scale up for
   590         // the delay. It also provides a simple/direct point to check for any
   591         // safepoint requests from the VMThread
   593         // temporarily drops SR_lock while doing wait with safepoint check
   594         // (if we're a JavaThread - the WatcherThread can also call this)
   595         // and increase delay with each retry
   596         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598         // check the actual thread state instead of what we saved above
   599         if (thread_state() != _thread_in_native_trans) {
   600           // the thread has transitioned to another thread state so
   601           // try all the checks (except this one) one more time.
   602           do_trans_retry = true;
   603           break;
   604         }
   605       } // end retry loop
   608     }
   609   } while (do_trans_retry);
   611   *bits |= 0x00000010;
   612   return false;
   613 }
   615 //
   616 // Wait for an external suspend request to complete (or be cancelled).
   617 // Returns true if the thread is externally suspended and false otherwise.
   618 //
   619 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   620        uint32_t *bits) {
   621   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   622                              false /* !called_by_wait */, bits);
   624   // local flag copies to minimize SR_lock hold time
   625   bool is_suspended;
   626   bool pending;
   627   uint32_t reset_bits;
   629   // set a marker so is_ext_suspend_completed() knows we are the caller
   630   *bits |= 0x00010000;
   632   // We use reset_bits to reinitialize the bits value at the top of
   633   // each retry loop. This allows the caller to make use of any
   634   // unused bits for their own marking purposes.
   635   reset_bits = *bits;
   637   {
   638     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   639     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   640                                             delay, bits);
   641     pending = is_external_suspend();
   642   }
   643   // must release SR_lock to allow suspension to complete
   645   if (!pending) {
   646     // A cancelled suspend request is the only false return from
   647     // is_ext_suspend_completed() that keeps us from entering the
   648     // retry loop.
   649     *bits |= 0x00020000;
   650     return false;
   651   }
   653   if (is_suspended) {
   654     *bits |= 0x00040000;
   655     return true;
   656   }
   658   for (int i = 1; i <= retries; i++) {
   659     *bits = reset_bits;  // reinit to only track last retry
   661     // We used to do an "os::yield_all(i)" call here with the intention
   662     // that yielding would increase on each retry. However, the parameter
   663     // is ignored on Linux which means the yield didn't scale up. Waiting
   664     // on the SR_lock below provides a much more predictable scale up for
   665     // the delay. It also provides a simple/direct point to check for any
   666     // safepoint requests from the VMThread
   668     {
   669       MutexLocker ml(SR_lock());
   670       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   671       // can also call this)  and increase delay with each retry
   672       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   674       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   675                                               delay, bits);
   677       // It is possible for the external suspend request to be cancelled
   678       // (by a resume) before the actual suspend operation is completed.
   679       // Refresh our local copy to see if we still need to wait.
   680       pending = is_external_suspend();
   681     }
   683     if (!pending) {
   684       // A cancelled suspend request is the only false return from
   685       // is_ext_suspend_completed() that keeps us from staying in the
   686       // retry loop.
   687       *bits |= 0x00080000;
   688       return false;
   689     }
   691     if (is_suspended) {
   692       *bits |= 0x00100000;
   693       return true;
   694     }
   695   } // end retry loop
   697   // thread did not suspend after all our retries
   698   *bits |= 0x00200000;
   699   return false;
   700 }
   702 #ifndef PRODUCT
   703 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   705   // This should not need to be atomic as the only way for simultaneous
   706   // updates is via interrupts. Even then this should be rare or non-existant
   707   // and we don't care that much anyway.
   709   int index = _jmp_ring_index;
   710   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   711   _jmp_ring[index]._target = (intptr_t) target;
   712   _jmp_ring[index]._instruction = (intptr_t) instr;
   713   _jmp_ring[index]._file = file;
   714   _jmp_ring[index]._line = line;
   715 }
   716 #endif /* PRODUCT */
   718 // Called by flat profiler
   719 // Callers have already called wait_for_ext_suspend_completion
   720 // The assertion for that is currently too complex to put here:
   721 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   722   bool gotframe = false;
   723   // self suspension saves needed state.
   724   if (has_last_Java_frame() && _anchor.walkable()) {
   725      *_fr = pd_last_frame();
   726      gotframe = true;
   727   }
   728   return gotframe;
   729 }
   731 void Thread::interrupt(Thread* thread) {
   732   trace("interrupt", thread);
   733   debug_only(check_for_dangling_thread_pointer(thread);)
   734   os::interrupt(thread);
   735 }
   737 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   738   trace("is_interrupted", thread);
   739   debug_only(check_for_dangling_thread_pointer(thread);)
   740   // Note:  If clear_interrupted==false, this simply fetches and
   741   // returns the value of the field osthread()->interrupted().
   742   return os::is_interrupted(thread, clear_interrupted);
   743 }
   746 // GC Support
   747 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   748   jint thread_parity = _oops_do_parity;
   749   if (thread_parity != strong_roots_parity) {
   750     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   751     if (res == thread_parity) return true;
   752     else {
   753       guarantee(res == strong_roots_parity, "Or else what?");
   754       assert(SharedHeap::heap()->n_par_threads() > 0,
   755              "Should only fail when parallel.");
   756       return false;
   757     }
   758   }
   759   assert(SharedHeap::heap()->n_par_threads() > 0,
   760          "Should only fail when parallel.");
   761   return false;
   762 }
   764 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   765   active_handles()->oops_do(f);
   766   // Do oop for ThreadShadow
   767   f->do_oop((oop*)&_pending_exception);
   768   handle_area()->oops_do(f);
   769 }
   771 void Thread::nmethods_do(CodeBlobClosure* cf) {
   772   // no nmethods in a generic thread...
   773 }
   775 void Thread::print_on(outputStream* st) const {
   776   // get_priority assumes osthread initialized
   777   if (osthread() != NULL) {
   778     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   779     osthread()->print_on(st);
   780   }
   781   debug_only(if (WizardMode) print_owned_locks_on(st);)
   782 }
   784 // Thread::print_on_error() is called by fatal error handler. Don't use
   785 // any lock or allocate memory.
   786 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   787   if      (is_VM_thread())                  st->print("VMThread");
   788   else if (is_Compiler_thread())            st->print("CompilerThread");
   789   else if (is_Java_thread())                st->print("JavaThread");
   790   else if (is_GC_task_thread())             st->print("GCTaskThread");
   791   else if (is_Watcher_thread())             st->print("WatcherThread");
   792   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   793   else st->print("Thread");
   795   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   796             _stack_base - _stack_size, _stack_base);
   798   if (osthread()) {
   799     st->print(" [id=%d]", osthread()->thread_id());
   800   }
   801 }
   803 #ifdef ASSERT
   804 void Thread::print_owned_locks_on(outputStream* st) const {
   805   Monitor *cur = _owned_locks;
   806   if (cur == NULL) {
   807     st->print(" (no locks) ");
   808   } else {
   809     st->print_cr(" Locks owned:");
   810     while(cur) {
   811       cur->print_on(st);
   812       cur = cur->next();
   813     }
   814   }
   815 }
   817 static int ref_use_count  = 0;
   819 bool Thread::owns_locks_but_compiled_lock() const {
   820   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   821     if (cur != Compile_lock) return true;
   822   }
   823   return false;
   824 }
   827 #endif
   829 #ifndef PRODUCT
   831 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   832 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   833 // no threads which allow_vm_block's are held
   834 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   835     // Check if current thread is allowed to block at a safepoint
   836     if (!(_allow_safepoint_count == 0))
   837       fatal("Possible safepoint reached by thread that does not allow it");
   838     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   839       fatal("LEAF method calling lock?");
   840     }
   842 #ifdef ASSERT
   843     if (potential_vm_operation && is_Java_thread()
   844         && !Universe::is_bootstrapping()) {
   845       // Make sure we do not hold any locks that the VM thread also uses.
   846       // This could potentially lead to deadlocks
   847       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   848         // Threads_lock is special, since the safepoint synchronization will not start before this is
   849         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   850         // since it is used to transfer control between JavaThreads and the VMThread
   851         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   852         if ( (cur->allow_vm_block() &&
   853               cur != Threads_lock &&
   854               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   855               cur != VMOperationRequest_lock &&
   856               cur != VMOperationQueue_lock) ||
   857               cur->rank() == Mutex::special) {
   858           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   859         }
   860       }
   861     }
   863     if (GCALotAtAllSafepoints) {
   864       // We could enter a safepoint here and thus have a gc
   865       InterfaceSupport::check_gc_alot();
   866     }
   867 #endif
   868 }
   869 #endif
   871 bool Thread::is_in_stack(address adr) const {
   872   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   873   address end = os::current_stack_pointer();
   874   if (stack_base() >= adr && adr >= end) return true;
   876   return false;
   877 }
   880 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   881 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   882 // used for compilation in the future. If that change is made, the need for these methods
   883 // should be revisited, and they should be removed if possible.
   885 bool Thread::is_lock_owned(address adr) const {
   886   return on_local_stack(adr);
   887 }
   889 bool Thread::set_as_starting_thread() {
   890  // NOTE: this must be called inside the main thread.
   891   return os::create_main_thread((JavaThread*)this);
   892 }
   894 static void initialize_class(Symbol* class_name, TRAPS) {
   895   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   896   instanceKlass::cast(klass)->initialize(CHECK);
   897 }
   900 // Creates the initial ThreadGroup
   901 static Handle create_initial_thread_group(TRAPS) {
   902   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   903   instanceKlassHandle klass (THREAD, k);
   905   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   906   {
   907     JavaValue result(T_VOID);
   908     JavaCalls::call_special(&result,
   909                             system_instance,
   910                             klass,
   911                             vmSymbols::object_initializer_name(),
   912                             vmSymbols::void_method_signature(),
   913                             CHECK_NH);
   914   }
   915   Universe::set_system_thread_group(system_instance());
   917   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   918   {
   919     JavaValue result(T_VOID);
   920     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   921     JavaCalls::call_special(&result,
   922                             main_instance,
   923                             klass,
   924                             vmSymbols::object_initializer_name(),
   925                             vmSymbols::threadgroup_string_void_signature(),
   926                             system_instance,
   927                             string,
   928                             CHECK_NH);
   929   }
   930   return main_instance;
   931 }
   933 // Creates the initial Thread
   934 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   935   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   936   instanceKlassHandle klass (THREAD, k);
   937   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   939   java_lang_Thread::set_thread(thread_oop(), thread);
   940   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   941   thread->set_threadObj(thread_oop());
   943   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   945   JavaValue result(T_VOID);
   946   JavaCalls::call_special(&result, thread_oop,
   947                                    klass,
   948                                    vmSymbols::object_initializer_name(),
   949                                    vmSymbols::threadgroup_string_void_signature(),
   950                                    thread_group,
   951                                    string,
   952                                    CHECK_NULL);
   953   return thread_oop();
   954 }
   956 static void call_initializeSystemClass(TRAPS) {
   957   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   958   instanceKlassHandle klass (THREAD, k);
   960   JavaValue result(T_VOID);
   961   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   962                                          vmSymbols::void_method_signature(), CHECK);
   963 }
   965 // General purpose hook into Java code, run once when the VM is initialized.
   966 // The Java library method itself may be changed independently from the VM.
   967 static void call_postVMInitHook(TRAPS) {
   968   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
   969   instanceKlassHandle klass (THREAD, k);
   970   if (klass.not_null()) {
   971     JavaValue result(T_VOID);
   972     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
   973                                            vmSymbols::void_method_signature(),
   974                                            CHECK);
   975   }
   976 }
   978 static void reset_vm_info_property(TRAPS) {
   979   // the vm info string
   980   ResourceMark rm(THREAD);
   981   const char *vm_info = VM_Version::vm_info_string();
   983   // java.lang.System class
   984   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   985   instanceKlassHandle klass (THREAD, k);
   987   // setProperty arguments
   988   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   989   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   991   // return value
   992   JavaValue r(T_OBJECT);
   994   // public static String setProperty(String key, String value);
   995   JavaCalls::call_static(&r,
   996                          klass,
   997                          vmSymbols::setProperty_name(),
   998                          vmSymbols::string_string_string_signature(),
   999                          key_str,
  1000                          value_str,
  1001                          CHECK);
  1005 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1006   assert(thread_group.not_null(), "thread group should be specified");
  1007   assert(threadObj() == NULL, "should only create Java thread object once");
  1009   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1010   instanceKlassHandle klass (THREAD, k);
  1011   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1013   java_lang_Thread::set_thread(thread_oop(), this);
  1014   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1015   set_threadObj(thread_oop());
  1017   JavaValue result(T_VOID);
  1018   if (thread_name != NULL) {
  1019     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1020     // Thread gets assigned specified name and null target
  1021     JavaCalls::call_special(&result,
  1022                             thread_oop,
  1023                             klass,
  1024                             vmSymbols::object_initializer_name(),
  1025                             vmSymbols::threadgroup_string_void_signature(),
  1026                             thread_group, // Argument 1
  1027                             name,         // Argument 2
  1028                             THREAD);
  1029   } else {
  1030     // Thread gets assigned name "Thread-nnn" and null target
  1031     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1032     JavaCalls::call_special(&result,
  1033                             thread_oop,
  1034                             klass,
  1035                             vmSymbols::object_initializer_name(),
  1036                             vmSymbols::threadgroup_runnable_void_signature(),
  1037                             thread_group, // Argument 1
  1038                             Handle(),     // Argument 2
  1039                             THREAD);
  1043   if (daemon) {
  1044       java_lang_Thread::set_daemon(thread_oop());
  1047   if (HAS_PENDING_EXCEPTION) {
  1048     return;
  1051   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1052   Handle threadObj(this, this->threadObj());
  1054   JavaCalls::call_special(&result,
  1055                          thread_group,
  1056                          group,
  1057                          vmSymbols::add_method_name(),
  1058                          vmSymbols::thread_void_signature(),
  1059                          threadObj,          // Arg 1
  1060                          THREAD);
  1065 // NamedThread --  non-JavaThread subclasses with multiple
  1066 // uniquely named instances should derive from this.
  1067 NamedThread::NamedThread() : Thread() {
  1068   _name = NULL;
  1069   _processed_thread = NULL;
  1072 NamedThread::~NamedThread() {
  1073   if (_name != NULL) {
  1074     FREE_C_HEAP_ARRAY(char, _name);
  1075     _name = NULL;
  1079 void NamedThread::set_name(const char* format, ...) {
  1080   guarantee(_name == NULL, "Only get to set name once.");
  1081   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1082   guarantee(_name != NULL, "alloc failure");
  1083   va_list ap;
  1084   va_start(ap, format);
  1085   jio_vsnprintf(_name, max_name_len, format, ap);
  1086   va_end(ap);
  1089 // ======= WatcherThread ========
  1091 // The watcher thread exists to simulate timer interrupts.  It should
  1092 // be replaced by an abstraction over whatever native support for
  1093 // timer interrupts exists on the platform.
  1095 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1096 volatile bool  WatcherThread::_should_terminate = false;
  1098 WatcherThread::WatcherThread() : Thread() {
  1099   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1100   if (os::create_thread(this, os::watcher_thread)) {
  1101     _watcher_thread = this;
  1103     // Set the watcher thread to the highest OS priority which should not be
  1104     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1105     // is created. The only normal thread using this priority is the reference
  1106     // handler thread, which runs for very short intervals only.
  1107     // If the VMThread's priority is not lower than the WatcherThread profiling
  1108     // will be inaccurate.
  1109     os::set_priority(this, MaxPriority);
  1110     if (!DisableStartThread) {
  1111       os::start_thread(this);
  1116 void WatcherThread::run() {
  1117   assert(this == watcher_thread(), "just checking");
  1119   this->record_stack_base_and_size();
  1120   this->initialize_thread_local_storage();
  1121   this->set_active_handles(JNIHandleBlock::allocate_block());
  1122   while(!_should_terminate) {
  1123     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1124     assert(watcher_thread() == this,  "thread consistency check");
  1126     // Calculate how long it'll be until the next PeriodicTask work
  1127     // should be done, and sleep that amount of time.
  1128     size_t time_to_wait = PeriodicTask::time_to_wait();
  1130     // we expect this to timeout - we only ever get unparked when
  1131     // we should terminate
  1133       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1135       jlong prev_time = os::javaTimeNanos();
  1136       for (;;) {
  1137         int res= _SleepEvent->park(time_to_wait);
  1138         if (res == OS_TIMEOUT || _should_terminate)
  1139           break;
  1140         // spurious wakeup of some kind
  1141         jlong now = os::javaTimeNanos();
  1142         time_to_wait -= (now - prev_time) / 1000000;
  1143         if (time_to_wait <= 0)
  1144           break;
  1145         prev_time = now;
  1149     if (is_error_reported()) {
  1150       // A fatal error has happened, the error handler(VMError::report_and_die)
  1151       // should abort JVM after creating an error log file. However in some
  1152       // rare cases, the error handler itself might deadlock. Here we try to
  1153       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1154       //
  1155       // This code is in WatcherThread because WatcherThread wakes up
  1156       // periodically so the fatal error handler doesn't need to do anything;
  1157       // also because the WatcherThread is less likely to crash than other
  1158       // threads.
  1160       for (;;) {
  1161         if (!ShowMessageBoxOnError
  1162          && (OnError == NULL || OnError[0] == '\0')
  1163          && Arguments::abort_hook() == NULL) {
  1164              os::sleep(this, 2 * 60 * 1000, false);
  1165              fdStream err(defaultStream::output_fd());
  1166              err.print_raw_cr("# [ timer expired, abort... ]");
  1167              // skip atexit/vm_exit/vm_abort hooks
  1168              os::die();
  1171         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1172         // ShowMessageBoxOnError when it is ready to abort.
  1173         os::sleep(this, 5 * 1000, false);
  1177     PeriodicTask::real_time_tick(time_to_wait);
  1179     // If we have no more tasks left due to dynamic disenrollment,
  1180     // shut down the thread since we don't currently support dynamic enrollment
  1181     if (PeriodicTask::num_tasks() == 0) {
  1182       _should_terminate = true;
  1186   // Signal that it is terminated
  1188     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1189     _watcher_thread = NULL;
  1190     Terminator_lock->notify();
  1193   // Thread destructor usually does this..
  1194   ThreadLocalStorage::set_thread(NULL);
  1197 void WatcherThread::start() {
  1198   if (watcher_thread() == NULL) {
  1199     _should_terminate = false;
  1200     // Create the single instance of WatcherThread
  1201     new WatcherThread();
  1205 void WatcherThread::stop() {
  1206   // it is ok to take late safepoints here, if needed
  1207   MutexLocker mu(Terminator_lock);
  1208   _should_terminate = true;
  1209   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1211   Thread* watcher = watcher_thread();
  1212   if (watcher != NULL)
  1213     watcher->_SleepEvent->unpark();
  1215   while(watcher_thread() != NULL) {
  1216     // This wait should make safepoint checks, wait without a timeout,
  1217     // and wait as a suspend-equivalent condition.
  1218     //
  1219     // Note: If the FlatProfiler is running, then this thread is waiting
  1220     // for the WatcherThread to terminate and the WatcherThread, via the
  1221     // FlatProfiler task, is waiting for the external suspend request on
  1222     // this thread to complete. wait_for_ext_suspend_completion() will
  1223     // eventually timeout, but that takes time. Making this wait a
  1224     // suspend-equivalent condition solves that timeout problem.
  1225     //
  1226     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1227                           Mutex::_as_suspend_equivalent_flag);
  1231 void WatcherThread::print_on(outputStream* st) const {
  1232   st->print("\"%s\" ", name());
  1233   Thread::print_on(st);
  1234   st->cr();
  1237 // ======= JavaThread ========
  1239 // A JavaThread is a normal Java thread
  1241 void JavaThread::initialize() {
  1242   // Initialize fields
  1244   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1245   set_claimed_par_id(-1);
  1247   set_saved_exception_pc(NULL);
  1248   set_threadObj(NULL);
  1249   _anchor.clear();
  1250   set_entry_point(NULL);
  1251   set_jni_functions(jni_functions());
  1252   set_callee_target(NULL);
  1253   set_vm_result(NULL);
  1254   set_vm_result_2(NULL);
  1255   set_vframe_array_head(NULL);
  1256   set_vframe_array_last(NULL);
  1257   set_deferred_locals(NULL);
  1258   set_deopt_mark(NULL);
  1259   set_deopt_nmethod(NULL);
  1260   clear_must_deopt_id();
  1261   set_monitor_chunks(NULL);
  1262   set_next(NULL);
  1263   set_thread_state(_thread_new);
  1264   _terminated = _not_terminated;
  1265   _privileged_stack_top = NULL;
  1266   _array_for_gc = NULL;
  1267   _suspend_equivalent = false;
  1268   _in_deopt_handler = 0;
  1269   _doing_unsafe_access = false;
  1270   _stack_guard_state = stack_guard_unused;
  1271   _exception_oop = NULL;
  1272   _exception_pc  = 0;
  1273   _exception_handler_pc = 0;
  1274   _exception_stack_size = 0;
  1275   _is_method_handle_return = 0;
  1276   _jvmti_thread_state= NULL;
  1277   _should_post_on_exceptions_flag = JNI_FALSE;
  1278   _jvmti_get_loaded_classes_closure = NULL;
  1279   _interp_only_mode    = 0;
  1280   _special_runtime_exit_condition = _no_async_condition;
  1281   _pending_async_exception = NULL;
  1282   _is_compiling = false;
  1283   _thread_stat = NULL;
  1284   _thread_stat = new ThreadStatistics();
  1285   _blocked_on_compilation = false;
  1286   _jni_active_critical = 0;
  1287   _do_not_unlock_if_synchronized = false;
  1288   _cached_monitor_info = NULL;
  1289   _parker = Parker::Allocate(this) ;
  1291 #ifndef PRODUCT
  1292   _jmp_ring_index = 0;
  1293   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1294     record_jump(NULL, NULL, NULL, 0);
  1296 #endif /* PRODUCT */
  1298   set_thread_profiler(NULL);
  1299   if (FlatProfiler::is_active()) {
  1300     // This is where we would decide to either give each thread it's own profiler
  1301     // or use one global one from FlatProfiler,
  1302     // or up to some count of the number of profiled threads, etc.
  1303     ThreadProfiler* pp = new ThreadProfiler();
  1304     pp->engage();
  1305     set_thread_profiler(pp);
  1308   // Setup safepoint state info for this thread
  1309   ThreadSafepointState::create(this);
  1311   debug_only(_java_call_counter = 0);
  1313   // JVMTI PopFrame support
  1314   _popframe_condition = popframe_inactive;
  1315   _popframe_preserved_args = NULL;
  1316   _popframe_preserved_args_size = 0;
  1318   pd_initialize();
  1321 #ifndef SERIALGC
  1322 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1323 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1324 #endif // !SERIALGC
  1326 JavaThread::JavaThread(bool is_attaching) :
  1327   Thread()
  1328 #ifndef SERIALGC
  1329   , _satb_mark_queue(&_satb_mark_queue_set),
  1330   _dirty_card_queue(&_dirty_card_queue_set)
  1331 #endif // !SERIALGC
  1333   initialize();
  1334   _is_attaching = is_attaching;
  1335   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1338 bool JavaThread::reguard_stack(address cur_sp) {
  1339   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1340     return true; // Stack already guarded or guard pages not needed.
  1343   if (register_stack_overflow()) {
  1344     // For those architectures which have separate register and
  1345     // memory stacks, we must check the register stack to see if
  1346     // it has overflowed.
  1347     return false;
  1350   // Java code never executes within the yellow zone: the latter is only
  1351   // there to provoke an exception during stack banging.  If java code
  1352   // is executing there, either StackShadowPages should be larger, or
  1353   // some exception code in c1, c2 or the interpreter isn't unwinding
  1354   // when it should.
  1355   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1357   enable_stack_yellow_zone();
  1358   return true;
  1361 bool JavaThread::reguard_stack(void) {
  1362   return reguard_stack(os::current_stack_pointer());
  1366 void JavaThread::block_if_vm_exited() {
  1367   if (_terminated == _vm_exited) {
  1368     // _vm_exited is set at safepoint, and Threads_lock is never released
  1369     // we will block here forever
  1370     Threads_lock->lock_without_safepoint_check();
  1371     ShouldNotReachHere();
  1376 // Remove this ifdef when C1 is ported to the compiler interface.
  1377 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1379 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1380   Thread()
  1381 #ifndef SERIALGC
  1382   , _satb_mark_queue(&_satb_mark_queue_set),
  1383   _dirty_card_queue(&_dirty_card_queue_set)
  1384 #endif // !SERIALGC
  1386   if (TraceThreadEvents) {
  1387     tty->print_cr("creating thread %p", this);
  1389   initialize();
  1390   _is_attaching = false;
  1391   set_entry_point(entry_point);
  1392   // Create the native thread itself.
  1393   // %note runtime_23
  1394   os::ThreadType thr_type = os::java_thread;
  1395   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1396                                                      os::java_thread;
  1397   os::create_thread(this, thr_type, stack_sz);
  1399   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1400   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1401   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1402   // the exception consists of creating the exception object & initializing it, initialization
  1403   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1404   //
  1405   // The thread is still suspended when we reach here. Thread must be explicit started
  1406   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1407   // by calling Threads:add. The reason why this is not done here, is because the thread
  1408   // object must be fully initialized (take a look at JVM_Start)
  1411 JavaThread::~JavaThread() {
  1412   if (TraceThreadEvents) {
  1413       tty->print_cr("terminate thread %p", this);
  1416   // JSR166 -- return the parker to the free list
  1417   Parker::Release(_parker);
  1418   _parker = NULL ;
  1420   // Free any remaining  previous UnrollBlock
  1421   vframeArray* old_array = vframe_array_last();
  1423   if (old_array != NULL) {
  1424     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1425     old_array->set_unroll_block(NULL);
  1426     delete old_info;
  1427     delete old_array;
  1430   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1431   if (deferred != NULL) {
  1432     // This can only happen if thread is destroyed before deoptimization occurs.
  1433     assert(deferred->length() != 0, "empty array!");
  1434     do {
  1435       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1436       deferred->remove_at(0);
  1437       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1438       delete dlv;
  1439     } while (deferred->length() != 0);
  1440     delete deferred;
  1443   // All Java related clean up happens in exit
  1444   ThreadSafepointState::destroy(this);
  1445   if (_thread_profiler != NULL) delete _thread_profiler;
  1446   if (_thread_stat != NULL) delete _thread_stat;
  1450 // The first routine called by a new Java thread
  1451 void JavaThread::run() {
  1452   // initialize thread-local alloc buffer related fields
  1453   this->initialize_tlab();
  1455   // used to test validitity of stack trace backs
  1456   this->record_base_of_stack_pointer();
  1458   // Record real stack base and size.
  1459   this->record_stack_base_and_size();
  1461   // Initialize thread local storage; set before calling MutexLocker
  1462   this->initialize_thread_local_storage();
  1464   this->create_stack_guard_pages();
  1466   this->cache_global_variables();
  1468   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1469   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1470   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1472   assert(JavaThread::current() == this, "sanity check");
  1473   assert(!Thread::current()->owns_locks(), "sanity check");
  1475   DTRACE_THREAD_PROBE(start, this);
  1477   // This operation might block. We call that after all safepoint checks for a new thread has
  1478   // been completed.
  1479   this->set_active_handles(JNIHandleBlock::allocate_block());
  1481   if (JvmtiExport::should_post_thread_life()) {
  1482     JvmtiExport::post_thread_start(this);
  1485   // We call another function to do the rest so we are sure that the stack addresses used
  1486   // from there will be lower than the stack base just computed
  1487   thread_main_inner();
  1489   // Note, thread is no longer valid at this point!
  1493 void JavaThread::thread_main_inner() {
  1494   assert(JavaThread::current() == this, "sanity check");
  1495   assert(this->threadObj() != NULL, "just checking");
  1497   // Execute thread entry point unless this thread has a pending exception
  1498   // or has been stopped before starting.
  1499   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1500   if (!this->has_pending_exception() &&
  1501       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1502     HandleMark hm(this);
  1503     this->entry_point()(this, this);
  1506   DTRACE_THREAD_PROBE(stop, this);
  1508   this->exit(false);
  1509   delete this;
  1513 static void ensure_join(JavaThread* thread) {
  1514   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1515   Handle threadObj(thread, thread->threadObj());
  1516   assert(threadObj.not_null(), "java thread object must exist");
  1517   ObjectLocker lock(threadObj, thread);
  1518   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1519   thread->clear_pending_exception();
  1520   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1521   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1522   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1523   // to complete once we've done the notify_all below
  1524   java_lang_Thread::set_thread(threadObj(), NULL);
  1525   lock.notify_all(thread);
  1526   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1527   thread->clear_pending_exception();
  1531 // For any new cleanup additions, please check to see if they need to be applied to
  1532 // cleanup_failed_attach_current_thread as well.
  1533 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1534   assert(this == JavaThread::current(),  "thread consistency check");
  1535   if (!InitializeJavaLangSystem) return;
  1537   HandleMark hm(this);
  1538   Handle uncaught_exception(this, this->pending_exception());
  1539   this->clear_pending_exception();
  1540   Handle threadObj(this, this->threadObj());
  1541   assert(threadObj.not_null(), "Java thread object should be created");
  1543   if (get_thread_profiler() != NULL) {
  1544     get_thread_profiler()->disengage();
  1545     ResourceMark rm;
  1546     get_thread_profiler()->print(get_thread_name());
  1550   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1552     EXCEPTION_MARK;
  1554     CLEAR_PENDING_EXCEPTION;
  1556   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1557   // has to be fixed by a runtime query method
  1558   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1559     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1560     // java.lang.Thread.dispatchUncaughtException
  1561     if (uncaught_exception.not_null()) {
  1562       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1563       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1564         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1566         EXCEPTION_MARK;
  1567         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1568         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1569         // so call ThreadGroup.uncaughtException()
  1570         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1571         CallInfo callinfo;
  1572         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1573         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1574                                            vmSymbols::dispatchUncaughtException_name(),
  1575                                            vmSymbols::throwable_void_signature(),
  1576                                            KlassHandle(), false, false, THREAD);
  1577         CLEAR_PENDING_EXCEPTION;
  1578         methodHandle method = callinfo.selected_method();
  1579         if (method.not_null()) {
  1580           JavaValue result(T_VOID);
  1581           JavaCalls::call_virtual(&result,
  1582                                   threadObj, thread_klass,
  1583                                   vmSymbols::dispatchUncaughtException_name(),
  1584                                   vmSymbols::throwable_void_signature(),
  1585                                   uncaught_exception,
  1586                                   THREAD);
  1587         } else {
  1588           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1589           JavaValue result(T_VOID);
  1590           JavaCalls::call_virtual(&result,
  1591                                   group, thread_group,
  1592                                   vmSymbols::uncaughtException_name(),
  1593                                   vmSymbols::thread_throwable_void_signature(),
  1594                                   threadObj,           // Arg 1
  1595                                   uncaught_exception,  // Arg 2
  1596                                   THREAD);
  1598         CLEAR_PENDING_EXCEPTION;
  1602     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1603     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1604     // is deprecated anyhow.
  1605     { int count = 3;
  1606       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1607         EXCEPTION_MARK;
  1608         JavaValue result(T_VOID);
  1609         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1610         JavaCalls::call_virtual(&result,
  1611                               threadObj, thread_klass,
  1612                               vmSymbols::exit_method_name(),
  1613                               vmSymbols::void_method_signature(),
  1614                               THREAD);
  1615         CLEAR_PENDING_EXCEPTION;
  1619     // notify JVMTI
  1620     if (JvmtiExport::should_post_thread_life()) {
  1621       JvmtiExport::post_thread_end(this);
  1624     // We have notified the agents that we are exiting, before we go on,
  1625     // we must check for a pending external suspend request and honor it
  1626     // in order to not surprise the thread that made the suspend request.
  1627     while (true) {
  1629         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1630         if (!is_external_suspend()) {
  1631           set_terminated(_thread_exiting);
  1632           ThreadService::current_thread_exiting(this);
  1633           break;
  1635         // Implied else:
  1636         // Things get a little tricky here. We have a pending external
  1637         // suspend request, but we are holding the SR_lock so we
  1638         // can't just self-suspend. So we temporarily drop the lock
  1639         // and then self-suspend.
  1642       ThreadBlockInVM tbivm(this);
  1643       java_suspend_self();
  1645       // We're done with this suspend request, but we have to loop around
  1646       // and check again. Eventually we will get SR_lock without a pending
  1647       // external suspend request and will be able to mark ourselves as
  1648       // exiting.
  1650     // no more external suspends are allowed at this point
  1651   } else {
  1652     // before_exit() has already posted JVMTI THREAD_END events
  1655   // Notify waiters on thread object. This has to be done after exit() is called
  1656   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1657   // group should have the destroyed bit set before waiters are notified).
  1658   ensure_join(this);
  1659   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1661   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1662   // held by this thread must be released.  A detach operation must only
  1663   // get here if there are no Java frames on the stack.  Therefore, any
  1664   // owned monitors at this point MUST be JNI-acquired monitors which are
  1665   // pre-inflated and in the monitor cache.
  1666   //
  1667   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1668   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1669     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1670     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1671     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1674   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1675   // is in a consistent state, in case GC happens
  1676   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1678   if (active_handles() != NULL) {
  1679     JNIHandleBlock* block = active_handles();
  1680     set_active_handles(NULL);
  1681     JNIHandleBlock::release_block(block);
  1684   if (free_handle_block() != NULL) {
  1685     JNIHandleBlock* block = free_handle_block();
  1686     set_free_handle_block(NULL);
  1687     JNIHandleBlock::release_block(block);
  1690   // These have to be removed while this is still a valid thread.
  1691   remove_stack_guard_pages();
  1693   if (UseTLAB) {
  1694     tlab().make_parsable(true);  // retire TLAB
  1697   if (JvmtiEnv::environments_might_exist()) {
  1698     JvmtiExport::cleanup_thread(this);
  1701 #ifndef SERIALGC
  1702   // We must flush G1-related buffers before removing a thread from
  1703   // the list of active threads.
  1704   if (UseG1GC) {
  1705     flush_barrier_queues();
  1707 #endif
  1709   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1710   Threads::remove(this);
  1713 #ifndef SERIALGC
  1714 // Flush G1-related queues.
  1715 void JavaThread::flush_barrier_queues() {
  1716   satb_mark_queue().flush();
  1717   dirty_card_queue().flush();
  1720 void JavaThread::initialize_queues() {
  1721   assert(!SafepointSynchronize::is_at_safepoint(),
  1722          "we should not be at a safepoint");
  1724   ObjPtrQueue& satb_queue = satb_mark_queue();
  1725   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1726   // The SATB queue should have been constructed with its active
  1727   // field set to false.
  1728   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1729   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1730   // If we are creating the thread during a marking cycle, we should
  1731   // set the active field of the SATB queue to true.
  1732   if (satb_queue_set.is_active()) {
  1733     satb_queue.set_active(true);
  1736   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1737   // The dirty card queue should have been constructed with its
  1738   // active field set to true.
  1739   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1741 #endif // !SERIALGC
  1743 void JavaThread::cleanup_failed_attach_current_thread() {
  1744   if (get_thread_profiler() != NULL) {
  1745     get_thread_profiler()->disengage();
  1746     ResourceMark rm;
  1747     get_thread_profiler()->print(get_thread_name());
  1750   if (active_handles() != NULL) {
  1751     JNIHandleBlock* block = active_handles();
  1752     set_active_handles(NULL);
  1753     JNIHandleBlock::release_block(block);
  1756   if (free_handle_block() != NULL) {
  1757     JNIHandleBlock* block = free_handle_block();
  1758     set_free_handle_block(NULL);
  1759     JNIHandleBlock::release_block(block);
  1762   // These have to be removed while this is still a valid thread.
  1763   remove_stack_guard_pages();
  1765   if (UseTLAB) {
  1766     tlab().make_parsable(true);  // retire TLAB, if any
  1769 #ifndef SERIALGC
  1770   if (UseG1GC) {
  1771     flush_barrier_queues();
  1773 #endif
  1775   Threads::remove(this);
  1776   delete this;
  1782 JavaThread* JavaThread::active() {
  1783   Thread* thread = ThreadLocalStorage::thread();
  1784   assert(thread != NULL, "just checking");
  1785   if (thread->is_Java_thread()) {
  1786     return (JavaThread*) thread;
  1787   } else {
  1788     assert(thread->is_VM_thread(), "this must be a vm thread");
  1789     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1790     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1791     assert(ret->is_Java_thread(), "must be a Java thread");
  1792     return ret;
  1796 bool JavaThread::is_lock_owned(address adr) const {
  1797   if (Thread::is_lock_owned(adr)) return true;
  1799   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1800     if (chunk->contains(adr)) return true;
  1803   return false;
  1807 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1808   chunk->set_next(monitor_chunks());
  1809   set_monitor_chunks(chunk);
  1812 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1813   guarantee(monitor_chunks() != NULL, "must be non empty");
  1814   if (monitor_chunks() == chunk) {
  1815     set_monitor_chunks(chunk->next());
  1816   } else {
  1817     MonitorChunk* prev = monitor_chunks();
  1818     while (prev->next() != chunk) prev = prev->next();
  1819     prev->set_next(chunk->next());
  1823 // JVM support.
  1825 // Note: this function shouldn't block if it's called in
  1826 // _thread_in_native_trans state (such as from
  1827 // check_special_condition_for_native_trans()).
  1828 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1830   if (has_last_Java_frame() && has_async_condition()) {
  1831     // If we are at a polling page safepoint (not a poll return)
  1832     // then we must defer async exception because live registers
  1833     // will be clobbered by the exception path. Poll return is
  1834     // ok because the call we a returning from already collides
  1835     // with exception handling registers and so there is no issue.
  1836     // (The exception handling path kills call result registers but
  1837     //  this is ok since the exception kills the result anyway).
  1839     if (is_at_poll_safepoint()) {
  1840       // if the code we are returning to has deoptimized we must defer
  1841       // the exception otherwise live registers get clobbered on the
  1842       // exception path before deoptimization is able to retrieve them.
  1843       //
  1844       RegisterMap map(this, false);
  1845       frame caller_fr = last_frame().sender(&map);
  1846       assert(caller_fr.is_compiled_frame(), "what?");
  1847       if (caller_fr.is_deoptimized_frame()) {
  1848         if (TraceExceptions) {
  1849           ResourceMark rm;
  1850           tty->print_cr("deferred async exception at compiled safepoint");
  1852         return;
  1857   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1858   if (condition == _no_async_condition) {
  1859     // Conditions have changed since has_special_runtime_exit_condition()
  1860     // was called:
  1861     // - if we were here only because of an external suspend request,
  1862     //   then that was taken care of above (or cancelled) so we are done
  1863     // - if we were here because of another async request, then it has
  1864     //   been cleared between the has_special_runtime_exit_condition()
  1865     //   and now so again we are done
  1866     return;
  1869   // Check for pending async. exception
  1870   if (_pending_async_exception != NULL) {
  1871     // Only overwrite an already pending exception, if it is not a threadDeath.
  1872     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1874       // We cannot call Exceptions::_throw(...) here because we cannot block
  1875       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1877       if (TraceExceptions) {
  1878         ResourceMark rm;
  1879         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1880         if (has_last_Java_frame() ) {
  1881           frame f = last_frame();
  1882           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1884         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1886       _pending_async_exception = NULL;
  1887       clear_has_async_exception();
  1891   if (check_unsafe_error &&
  1892       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1893     condition = _no_async_condition;  // done
  1894     switch (thread_state()) {
  1895     case _thread_in_vm:
  1897         JavaThread* THREAD = this;
  1898         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1900     case _thread_in_native:
  1902         ThreadInVMfromNative tiv(this);
  1903         JavaThread* THREAD = this;
  1904         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1906     case _thread_in_Java:
  1908         ThreadInVMfromJava tiv(this);
  1909         JavaThread* THREAD = this;
  1910         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1912     default:
  1913       ShouldNotReachHere();
  1917   assert(condition == _no_async_condition || has_pending_exception() ||
  1918          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1919          "must have handled the async condition, if no exception");
  1922 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1923   //
  1924   // Check for pending external suspend. Internal suspend requests do
  1925   // not use handle_special_runtime_exit_condition().
  1926   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1927   // thread is not the current thread. In older versions of jdbx, jdbx
  1928   // threads could call into the VM with another thread's JNIEnv so we
  1929   // can be here operating on behalf of a suspended thread (4432884).
  1930   bool do_self_suspend = is_external_suspend_with_lock();
  1931   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1932     //
  1933     // Because thread is external suspended the safepoint code will count
  1934     // thread as at a safepoint. This can be odd because we can be here
  1935     // as _thread_in_Java which would normally transition to _thread_blocked
  1936     // at a safepoint. We would like to mark the thread as _thread_blocked
  1937     // before calling java_suspend_self like all other callers of it but
  1938     // we must then observe proper safepoint protocol. (We can't leave
  1939     // _thread_blocked with a safepoint in progress). However we can be
  1940     // here as _thread_in_native_trans so we can't use a normal transition
  1941     // constructor/destructor pair because they assert on that type of
  1942     // transition. We could do something like:
  1943     //
  1944     // JavaThreadState state = thread_state();
  1945     // set_thread_state(_thread_in_vm);
  1946     // {
  1947     //   ThreadBlockInVM tbivm(this);
  1948     //   java_suspend_self()
  1949     // }
  1950     // set_thread_state(_thread_in_vm_trans);
  1951     // if (safepoint) block;
  1952     // set_thread_state(state);
  1953     //
  1954     // but that is pretty messy. Instead we just go with the way the
  1955     // code has worked before and note that this is the only path to
  1956     // java_suspend_self that doesn't put the thread in _thread_blocked
  1957     // mode.
  1959     frame_anchor()->make_walkable(this);
  1960     java_suspend_self();
  1962     // We might be here for reasons in addition to the self-suspend request
  1963     // so check for other async requests.
  1966   if (check_asyncs) {
  1967     check_and_handle_async_exceptions();
  1971 void JavaThread::send_thread_stop(oop java_throwable)  {
  1972   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1973   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1974   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1976   // Do not throw asynchronous exceptions against the compiler thread
  1977   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1978   if (is_Compiler_thread()) return;
  1981     // Actually throw the Throwable against the target Thread - however
  1982     // only if there is no thread death exception installed already.
  1983     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1984       // If the topmost frame is a runtime stub, then we are calling into
  1985       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1986       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1987       // may not be valid
  1988       if (has_last_Java_frame()) {
  1989         frame f = last_frame();
  1990         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1991           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1992           RegisterMap reg_map(this, UseBiasedLocking);
  1993           frame compiled_frame = f.sender(&reg_map);
  1994           if (compiled_frame.can_be_deoptimized()) {
  1995             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2000       // Set async. pending exception in thread.
  2001       set_pending_async_exception(java_throwable);
  2003       if (TraceExceptions) {
  2004        ResourceMark rm;
  2005        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2007       // for AbortVMOnException flag
  2008       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2013   // Interrupt thread so it will wake up from a potential wait()
  2014   Thread::interrupt(this);
  2017 // External suspension mechanism.
  2018 //
  2019 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2020 // to any VM_locks and it is at a transition
  2021 // Self-suspension will happen on the transition out of the vm.
  2022 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2023 //
  2024 // Guarantees on return:
  2025 //   + Target thread will not execute any new bytecode (that's why we need to
  2026 //     force a safepoint)
  2027 //   + Target thread will not enter any new monitors
  2028 //
  2029 void JavaThread::java_suspend() {
  2030   { MutexLocker mu(Threads_lock);
  2031     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2032        return;
  2036   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2037     if (!is_external_suspend()) {
  2038       // a racing resume has cancelled us; bail out now
  2039       return;
  2042     // suspend is done
  2043     uint32_t debug_bits = 0;
  2044     // Warning: is_ext_suspend_completed() may temporarily drop the
  2045     // SR_lock to allow the thread to reach a stable thread state if
  2046     // it is currently in a transient thread state.
  2047     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2048                                  SuspendRetryDelay, &debug_bits) ) {
  2049       return;
  2053   VM_ForceSafepoint vm_suspend;
  2054   VMThread::execute(&vm_suspend);
  2057 // Part II of external suspension.
  2058 // A JavaThread self suspends when it detects a pending external suspend
  2059 // request. This is usually on transitions. It is also done in places
  2060 // where continuing to the next transition would surprise the caller,
  2061 // e.g., monitor entry.
  2062 //
  2063 // Returns the number of times that the thread self-suspended.
  2064 //
  2065 // Note: DO NOT call java_suspend_self() when you just want to block current
  2066 //       thread. java_suspend_self() is the second stage of cooperative
  2067 //       suspension for external suspend requests and should only be used
  2068 //       to complete an external suspend request.
  2069 //
  2070 int JavaThread::java_suspend_self() {
  2071   int ret = 0;
  2073   // we are in the process of exiting so don't suspend
  2074   if (is_exiting()) {
  2075      clear_external_suspend();
  2076      return ret;
  2079   assert(_anchor.walkable() ||
  2080     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2081     "must have walkable stack");
  2083   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2085   assert(!this->is_ext_suspended(),
  2086     "a thread trying to self-suspend should not already be suspended");
  2088   if (this->is_suspend_equivalent()) {
  2089     // If we are self-suspending as a result of the lifting of a
  2090     // suspend equivalent condition, then the suspend_equivalent
  2091     // flag is not cleared until we set the ext_suspended flag so
  2092     // that wait_for_ext_suspend_completion() returns consistent
  2093     // results.
  2094     this->clear_suspend_equivalent();
  2097   // A racing resume may have cancelled us before we grabbed SR_lock
  2098   // above. Or another external suspend request could be waiting for us
  2099   // by the time we return from SR_lock()->wait(). The thread
  2100   // that requested the suspension may already be trying to walk our
  2101   // stack and if we return now, we can change the stack out from under
  2102   // it. This would be a "bad thing (TM)" and cause the stack walker
  2103   // to crash. We stay self-suspended until there are no more pending
  2104   // external suspend requests.
  2105   while (is_external_suspend()) {
  2106     ret++;
  2107     this->set_ext_suspended();
  2109     // _ext_suspended flag is cleared by java_resume()
  2110     while (is_ext_suspended()) {
  2111       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2115   return ret;
  2118 #ifdef ASSERT
  2119 // verify the JavaThread has not yet been published in the Threads::list, and
  2120 // hence doesn't need protection from concurrent access at this stage
  2121 void JavaThread::verify_not_published() {
  2122   if (!Threads_lock->owned_by_self()) {
  2123    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2124    assert( !Threads::includes(this),
  2125            "java thread shouldn't have been published yet!");
  2127   else {
  2128    assert( !Threads::includes(this),
  2129            "java thread shouldn't have been published yet!");
  2132 #endif
  2134 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2135 // progress or when _suspend_flags is non-zero.
  2136 // Current thread needs to self-suspend if there is a suspend request and/or
  2137 // block if a safepoint is in progress.
  2138 // Async exception ISN'T checked.
  2139 // Note only the ThreadInVMfromNative transition can call this function
  2140 // directly and when thread state is _thread_in_native_trans
  2141 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2142   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2144   JavaThread *curJT = JavaThread::current();
  2145   bool do_self_suspend = thread->is_external_suspend();
  2147   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2149   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2150   // thread is not the current thread. In older versions of jdbx, jdbx
  2151   // threads could call into the VM with another thread's JNIEnv so we
  2152   // can be here operating on behalf of a suspended thread (4432884).
  2153   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2154     JavaThreadState state = thread->thread_state();
  2156     // We mark this thread_blocked state as a suspend-equivalent so
  2157     // that a caller to is_ext_suspend_completed() won't be confused.
  2158     // The suspend-equivalent state is cleared by java_suspend_self().
  2159     thread->set_suspend_equivalent();
  2161     // If the safepoint code sees the _thread_in_native_trans state, it will
  2162     // wait until the thread changes to other thread state. There is no
  2163     // guarantee on how soon we can obtain the SR_lock and complete the
  2164     // self-suspend request. It would be a bad idea to let safepoint wait for
  2165     // too long. Temporarily change the state to _thread_blocked to
  2166     // let the VM thread know that this thread is ready for GC. The problem
  2167     // of changing thread state is that safepoint could happen just after
  2168     // java_suspend_self() returns after being resumed, and VM thread will
  2169     // see the _thread_blocked state. We must check for safepoint
  2170     // after restoring the state and make sure we won't leave while a safepoint
  2171     // is in progress.
  2172     thread->set_thread_state(_thread_blocked);
  2173     thread->java_suspend_self();
  2174     thread->set_thread_state(state);
  2175     // Make sure new state is seen by VM thread
  2176     if (os::is_MP()) {
  2177       if (UseMembar) {
  2178         // Force a fence between the write above and read below
  2179         OrderAccess::fence();
  2180       } else {
  2181         // Must use this rather than serialization page in particular on Windows
  2182         InterfaceSupport::serialize_memory(thread);
  2187   if (SafepointSynchronize::do_call_back()) {
  2188     // If we are safepointing, then block the caller which may not be
  2189     // the same as the target thread (see above).
  2190     SafepointSynchronize::block(curJT);
  2193   if (thread->is_deopt_suspend()) {
  2194     thread->clear_deopt_suspend();
  2195     RegisterMap map(thread, false);
  2196     frame f = thread->last_frame();
  2197     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2198       f = f.sender(&map);
  2200     if (f.id() == thread->must_deopt_id()) {
  2201       thread->clear_must_deopt_id();
  2202       f.deoptimize(thread);
  2203     } else {
  2204       fatal("missed deoptimization!");
  2209 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2210 // progress or when _suspend_flags is non-zero.
  2211 // Current thread needs to self-suspend if there is a suspend request and/or
  2212 // block if a safepoint is in progress.
  2213 // Also check for pending async exception (not including unsafe access error).
  2214 // Note only the native==>VM/Java barriers can call this function and when
  2215 // thread state is _thread_in_native_trans.
  2216 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2217   check_safepoint_and_suspend_for_native_trans(thread);
  2219   if (thread->has_async_exception()) {
  2220     // We are in _thread_in_native_trans state, don't handle unsafe
  2221     // access error since that may block.
  2222     thread->check_and_handle_async_exceptions(false);
  2226 // We need to guarantee the Threads_lock here, since resumes are not
  2227 // allowed during safepoint synchronization
  2228 // Can only resume from an external suspension
  2229 void JavaThread::java_resume() {
  2230   assert_locked_or_safepoint(Threads_lock);
  2232   // Sanity check: thread is gone, has started exiting or the thread
  2233   // was not externally suspended.
  2234   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2235     return;
  2238   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2240   clear_external_suspend();
  2242   if (is_ext_suspended()) {
  2243     clear_ext_suspended();
  2244     SR_lock()->notify_all();
  2248 void JavaThread::create_stack_guard_pages() {
  2249   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2250   address low_addr = stack_base() - stack_size();
  2251   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2253   int allocate = os::allocate_stack_guard_pages();
  2254   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2256   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2257     warning("Attempt to allocate stack guard pages failed.");
  2258     return;
  2261   if (os::guard_memory((char *) low_addr, len)) {
  2262     _stack_guard_state = stack_guard_enabled;
  2263   } else {
  2264     warning("Attempt to protect stack guard pages failed.");
  2265     if (os::uncommit_memory((char *) low_addr, len)) {
  2266       warning("Attempt to deallocate stack guard pages failed.");
  2271 void JavaThread::remove_stack_guard_pages() {
  2272   if (_stack_guard_state == stack_guard_unused) return;
  2273   address low_addr = stack_base() - stack_size();
  2274   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2276   if (os::allocate_stack_guard_pages()) {
  2277     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2278       _stack_guard_state = stack_guard_unused;
  2279     } else {
  2280       warning("Attempt to deallocate stack guard pages failed.");
  2282   } else {
  2283     if (_stack_guard_state == stack_guard_unused) return;
  2284     if (os::unguard_memory((char *) low_addr, len)) {
  2285       _stack_guard_state = stack_guard_unused;
  2286     } else {
  2287         warning("Attempt to unprotect stack guard pages failed.");
  2292 void JavaThread::enable_stack_yellow_zone() {
  2293   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2294   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2296   // The base notation is from the stacks point of view, growing downward.
  2297   // We need to adjust it to work correctly with guard_memory()
  2298   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2300   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2301   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2303   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2304     _stack_guard_state = stack_guard_enabled;
  2305   } else {
  2306     warning("Attempt to guard stack yellow zone failed.");
  2308   enable_register_stack_guard();
  2311 void JavaThread::disable_stack_yellow_zone() {
  2312   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2313   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2315   // Simply return if called for a thread that does not use guard pages.
  2316   if (_stack_guard_state == stack_guard_unused) return;
  2318   // The base notation is from the stacks point of view, growing downward.
  2319   // We need to adjust it to work correctly with guard_memory()
  2320   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2322   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2323     _stack_guard_state = stack_guard_yellow_disabled;
  2324   } else {
  2325     warning("Attempt to unguard stack yellow zone failed.");
  2327   disable_register_stack_guard();
  2330 void JavaThread::enable_stack_red_zone() {
  2331   // The base notation is from the stacks point of view, growing downward.
  2332   // We need to adjust it to work correctly with guard_memory()
  2333   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2334   address base = stack_red_zone_base() - stack_red_zone_size();
  2336   guarantee(base < stack_base(),"Error calculating stack red zone");
  2337   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2339   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2340     warning("Attempt to guard stack red zone failed.");
  2344 void JavaThread::disable_stack_red_zone() {
  2345   // The base notation is from the stacks point of view, growing downward.
  2346   // We need to adjust it to work correctly with guard_memory()
  2347   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2348   address base = stack_red_zone_base() - stack_red_zone_size();
  2349   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2350     warning("Attempt to unguard stack red zone failed.");
  2354 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2355   // ignore is there is no stack
  2356   if (!has_last_Java_frame()) return;
  2357   // traverse the stack frames. Starts from top frame.
  2358   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2359     frame* fr = fst.current();
  2360     f(fr, fst.register_map());
  2365 #ifndef PRODUCT
  2366 // Deoptimization
  2367 // Function for testing deoptimization
  2368 void JavaThread::deoptimize() {
  2369   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2370   StackFrameStream fst(this, UseBiasedLocking);
  2371   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2372   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2373   // Iterate over all frames in the thread and deoptimize
  2374   for(; !fst.is_done(); fst.next()) {
  2375     if(fst.current()->can_be_deoptimized()) {
  2377       if (only_at) {
  2378         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2379         // consists of comma or carriage return separated numbers so
  2380         // search for the current bci in that string.
  2381         address pc = fst.current()->pc();
  2382         nmethod* nm =  (nmethod*) fst.current()->cb();
  2383         ScopeDesc* sd = nm->scope_desc_at( pc);
  2384         char buffer[8];
  2385         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2386         size_t len = strlen(buffer);
  2387         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2388         while (found != NULL) {
  2389           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2390               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2391             // Check that the bci found is bracketed by terminators.
  2392             break;
  2394           found = strstr(found + 1, buffer);
  2396         if (!found) {
  2397           continue;
  2401       if (DebugDeoptimization && !deopt) {
  2402         deopt = true; // One-time only print before deopt
  2403         tty->print_cr("[BEFORE Deoptimization]");
  2404         trace_frames();
  2405         trace_stack();
  2407       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2411   if (DebugDeoptimization && deopt) {
  2412     tty->print_cr("[AFTER Deoptimization]");
  2413     trace_frames();
  2418 // Make zombies
  2419 void JavaThread::make_zombies() {
  2420   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2421     if (fst.current()->can_be_deoptimized()) {
  2422       // it is a Java nmethod
  2423       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2424       nm->make_not_entrant();
  2428 #endif // PRODUCT
  2431 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2432   if (!has_last_Java_frame()) return;
  2433   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2434   StackFrameStream fst(this, UseBiasedLocking);
  2435   for(; !fst.is_done(); fst.next()) {
  2436     if (fst.current()->should_be_deoptimized()) {
  2437       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2443 // GC support
  2444 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2446 void JavaThread::gc_epilogue() {
  2447   frames_do(frame_gc_epilogue);
  2451 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2453 void JavaThread::gc_prologue() {
  2454   frames_do(frame_gc_prologue);
  2457 // If the caller is a NamedThread, then remember, in the current scope,
  2458 // the given JavaThread in its _processed_thread field.
  2459 class RememberProcessedThread: public StackObj {
  2460   NamedThread* _cur_thr;
  2461 public:
  2462   RememberProcessedThread(JavaThread* jthr) {
  2463     Thread* thread = Thread::current();
  2464     if (thread->is_Named_thread()) {
  2465       _cur_thr = (NamedThread *)thread;
  2466       _cur_thr->set_processed_thread(jthr);
  2467     } else {
  2468       _cur_thr = NULL;
  2472   ~RememberProcessedThread() {
  2473     if (_cur_thr) {
  2474       _cur_thr->set_processed_thread(NULL);
  2477 };
  2479 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2480   // Verify that the deferred card marks have been flushed.
  2481   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2483   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2484   // since there may be more than one thread using each ThreadProfiler.
  2486   // Traverse the GCHandles
  2487   Thread::oops_do(f, cf);
  2489   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2490           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2492   if (has_last_Java_frame()) {
  2493     // Record JavaThread to GC thread
  2494     RememberProcessedThread rpt(this);
  2496     // Traverse the privileged stack
  2497     if (_privileged_stack_top != NULL) {
  2498       _privileged_stack_top->oops_do(f);
  2501     // traverse the registered growable array
  2502     if (_array_for_gc != NULL) {
  2503       for (int index = 0; index < _array_for_gc->length(); index++) {
  2504         f->do_oop(_array_for_gc->adr_at(index));
  2508     // Traverse the monitor chunks
  2509     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2510       chunk->oops_do(f);
  2513     // Traverse the execution stack
  2514     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2515       fst.current()->oops_do(f, cf, fst.register_map());
  2519   // callee_target is never live across a gc point so NULL it here should
  2520   // it still contain a methdOop.
  2522   set_callee_target(NULL);
  2524   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2525   // If we have deferred set_locals there might be oops waiting to be
  2526   // written
  2527   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2528   if (list != NULL) {
  2529     for (int i = 0; i < list->length(); i++) {
  2530       list->at(i)->oops_do(f);
  2534   // Traverse instance variables at the end since the GC may be moving things
  2535   // around using this function
  2536   f->do_oop((oop*) &_threadObj);
  2537   f->do_oop((oop*) &_vm_result);
  2538   f->do_oop((oop*) &_vm_result_2);
  2539   f->do_oop((oop*) &_exception_oop);
  2540   f->do_oop((oop*) &_pending_async_exception);
  2542   if (jvmti_thread_state() != NULL) {
  2543     jvmti_thread_state()->oops_do(f);
  2547 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2548   Thread::nmethods_do(cf);  // (super method is a no-op)
  2550   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2551           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2553   if (has_last_Java_frame()) {
  2554     // Traverse the execution stack
  2555     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2556       fst.current()->nmethods_do(cf);
  2561 // Printing
  2562 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2563   switch (_thread_state) {
  2564   case _thread_uninitialized:     return "_thread_uninitialized";
  2565   case _thread_new:               return "_thread_new";
  2566   case _thread_new_trans:         return "_thread_new_trans";
  2567   case _thread_in_native:         return "_thread_in_native";
  2568   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2569   case _thread_in_vm:             return "_thread_in_vm";
  2570   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2571   case _thread_in_Java:           return "_thread_in_Java";
  2572   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2573   case _thread_blocked:           return "_thread_blocked";
  2574   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2575   default:                        return "unknown thread state";
  2579 #ifndef PRODUCT
  2580 void JavaThread::print_thread_state_on(outputStream *st) const {
  2581   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2582 };
  2583 void JavaThread::print_thread_state() const {
  2584   print_thread_state_on(tty);
  2585 };
  2586 #endif // PRODUCT
  2588 // Called by Threads::print() for VM_PrintThreads operation
  2589 void JavaThread::print_on(outputStream *st) const {
  2590   st->print("\"%s\" ", get_thread_name());
  2591   oop thread_oop = threadObj();
  2592   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2593   Thread::print_on(st);
  2594   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2595   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2596   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2597     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2599 #ifndef PRODUCT
  2600   print_thread_state_on(st);
  2601   _safepoint_state->print_on(st);
  2602 #endif // PRODUCT
  2605 // Called by fatal error handler. The difference between this and
  2606 // JavaThread::print() is that we can't grab lock or allocate memory.
  2607 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2608   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2609   oop thread_obj = threadObj();
  2610   if (thread_obj != NULL) {
  2611      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2613   st->print(" [");
  2614   st->print("%s", _get_thread_state_name(_thread_state));
  2615   if (osthread()) {
  2616     st->print(", id=%d", osthread()->thread_id());
  2618   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2619             _stack_base - _stack_size, _stack_base);
  2620   st->print("]");
  2621   return;
  2624 // Verification
  2626 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2628 void JavaThread::verify() {
  2629   // Verify oops in the thread.
  2630   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2632   // Verify the stack frames.
  2633   frames_do(frame_verify);
  2636 // CR 6300358 (sub-CR 2137150)
  2637 // Most callers of this method assume that it can't return NULL but a
  2638 // thread may not have a name whilst it is in the process of attaching to
  2639 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2640 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2641 // if vm exit occurs during initialization). These cases can all be accounted
  2642 // for such that this method never returns NULL.
  2643 const char* JavaThread::get_thread_name() const {
  2644 #ifdef ASSERT
  2645   // early safepoints can hit while current thread does not yet have TLS
  2646   if (!SafepointSynchronize::is_at_safepoint()) {
  2647     Thread *cur = Thread::current();
  2648     if (!(cur->is_Java_thread() && cur == this)) {
  2649       // Current JavaThreads are allowed to get their own name without
  2650       // the Threads_lock.
  2651       assert_locked_or_safepoint(Threads_lock);
  2654 #endif // ASSERT
  2655     return get_thread_name_string();
  2658 // Returns a non-NULL representation of this thread's name, or a suitable
  2659 // descriptive string if there is no set name
  2660 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2661   const char* name_str;
  2662   oop thread_obj = threadObj();
  2663   if (thread_obj != NULL) {
  2664     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2665     if (name != NULL) {
  2666       if (buf == NULL) {
  2667         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2669       else {
  2670         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2673     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2674       name_str = "<no-name - thread is attaching>";
  2676     else {
  2677       name_str = Thread::name();
  2680   else {
  2681     name_str = Thread::name();
  2683   assert(name_str != NULL, "unexpected NULL thread name");
  2684   return name_str;
  2688 const char* JavaThread::get_threadgroup_name() const {
  2689   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2690   oop thread_obj = threadObj();
  2691   if (thread_obj != NULL) {
  2692     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2693     if (thread_group != NULL) {
  2694       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2695       // ThreadGroup.name can be null
  2696       if (name != NULL) {
  2697         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2698         return str;
  2702   return NULL;
  2705 const char* JavaThread::get_parent_name() const {
  2706   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2707   oop thread_obj = threadObj();
  2708   if (thread_obj != NULL) {
  2709     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2710     if (thread_group != NULL) {
  2711       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2712       if (parent != NULL) {
  2713         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2714         // ThreadGroup.name can be null
  2715         if (name != NULL) {
  2716           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2717           return str;
  2722   return NULL;
  2725 ThreadPriority JavaThread::java_priority() const {
  2726   oop thr_oop = threadObj();
  2727   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2728   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2729   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2730   return priority;
  2733 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2735   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2736   // Link Java Thread object <-> C++ Thread
  2738   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2739   // and put it into a new Handle.  The Handle "thread_oop" can then
  2740   // be used to pass the C++ thread object to other methods.
  2742   // Set the Java level thread object (jthread) field of the
  2743   // new thread (a JavaThread *) to C++ thread object using the
  2744   // "thread_oop" handle.
  2746   // Set the thread field (a JavaThread *) of the
  2747   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2749   Handle thread_oop(Thread::current(),
  2750                     JNIHandles::resolve_non_null(jni_thread));
  2751   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2752     "must be initialized");
  2753   set_threadObj(thread_oop());
  2754   java_lang_Thread::set_thread(thread_oop(), this);
  2756   if (prio == NoPriority) {
  2757     prio = java_lang_Thread::priority(thread_oop());
  2758     assert(prio != NoPriority, "A valid priority should be present");
  2761   // Push the Java priority down to the native thread; needs Threads_lock
  2762   Thread::set_priority(this, prio);
  2764   // Add the new thread to the Threads list and set it in motion.
  2765   // We must have threads lock in order to call Threads::add.
  2766   // It is crucial that we do not block before the thread is
  2767   // added to the Threads list for if a GC happens, then the java_thread oop
  2768   // will not be visited by GC.
  2769   Threads::add(this);
  2772 oop JavaThread::current_park_blocker() {
  2773   // Support for JSR-166 locks
  2774   oop thread_oop = threadObj();
  2775   if (thread_oop != NULL &&
  2776       JDK_Version::current().supports_thread_park_blocker()) {
  2777     return java_lang_Thread::park_blocker(thread_oop);
  2779   return NULL;
  2783 void JavaThread::print_stack_on(outputStream* st) {
  2784   if (!has_last_Java_frame()) return;
  2785   ResourceMark rm;
  2786   HandleMark   hm;
  2788   RegisterMap reg_map(this);
  2789   vframe* start_vf = last_java_vframe(&reg_map);
  2790   int count = 0;
  2791   for (vframe* f = start_vf; f; f = f->sender() ) {
  2792     if (f->is_java_frame()) {
  2793       javaVFrame* jvf = javaVFrame::cast(f);
  2794       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2796       // Print out lock information
  2797       if (JavaMonitorsInStackTrace) {
  2798         jvf->print_lock_info_on(st, count);
  2800     } else {
  2801       // Ignore non-Java frames
  2804     // Bail-out case for too deep stacks
  2805     count++;
  2806     if (MaxJavaStackTraceDepth == count) return;
  2811 // JVMTI PopFrame support
  2812 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2813   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2814   if (in_bytes(size_in_bytes) != 0) {
  2815     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2816     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2817     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2821 void* JavaThread::popframe_preserved_args() {
  2822   return _popframe_preserved_args;
  2825 ByteSize JavaThread::popframe_preserved_args_size() {
  2826   return in_ByteSize(_popframe_preserved_args_size);
  2829 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2830   int sz = in_bytes(popframe_preserved_args_size());
  2831   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2832   return in_WordSize(sz / wordSize);
  2835 void JavaThread::popframe_free_preserved_args() {
  2836   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2837   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2838   _popframe_preserved_args = NULL;
  2839   _popframe_preserved_args_size = 0;
  2842 #ifndef PRODUCT
  2844 void JavaThread::trace_frames() {
  2845   tty->print_cr("[Describe stack]");
  2846   int frame_no = 1;
  2847   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2848     tty->print("  %d. ", frame_no++);
  2849     fst.current()->print_value_on(tty,this);
  2850     tty->cr();
  2855 void JavaThread::trace_stack_from(vframe* start_vf) {
  2856   ResourceMark rm;
  2857   int vframe_no = 1;
  2858   for (vframe* f = start_vf; f; f = f->sender() ) {
  2859     if (f->is_java_frame()) {
  2860       javaVFrame::cast(f)->print_activation(vframe_no++);
  2861     } else {
  2862       f->print();
  2864     if (vframe_no > StackPrintLimit) {
  2865       tty->print_cr("...<more frames>...");
  2866       return;
  2872 void JavaThread::trace_stack() {
  2873   if (!has_last_Java_frame()) return;
  2874   ResourceMark rm;
  2875   HandleMark   hm;
  2876   RegisterMap reg_map(this);
  2877   trace_stack_from(last_java_vframe(&reg_map));
  2881 #endif // PRODUCT
  2884 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2885   assert(reg_map != NULL, "a map must be given");
  2886   frame f = last_frame();
  2887   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2888     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2890   return NULL;
  2894 klassOop JavaThread::security_get_caller_class(int depth) {
  2895   vframeStream vfst(this);
  2896   vfst.security_get_caller_frame(depth);
  2897   if (!vfst.at_end()) {
  2898     return vfst.method()->method_holder();
  2900   return NULL;
  2903 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2904   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2905   CompileBroker::compiler_thread_loop();
  2908 // Create a CompilerThread
  2909 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2910 : JavaThread(&compiler_thread_entry) {
  2911   _env   = NULL;
  2912   _log   = NULL;
  2913   _task  = NULL;
  2914   _queue = queue;
  2915   _counters = counters;
  2916   _buffer_blob = NULL;
  2918 #ifndef PRODUCT
  2919   _ideal_graph_printer = NULL;
  2920 #endif
  2924 // ======= Threads ========
  2926 // The Threads class links together all active threads, and provides
  2927 // operations over all threads.  It is protected by its own Mutex
  2928 // lock, which is also used in other contexts to protect thread
  2929 // operations from having the thread being operated on from exiting
  2930 // and going away unexpectedly (e.g., safepoint synchronization)
  2932 JavaThread* Threads::_thread_list = NULL;
  2933 int         Threads::_number_of_threads = 0;
  2934 int         Threads::_number_of_non_daemon_threads = 0;
  2935 int         Threads::_return_code = 0;
  2936 size_t      JavaThread::_stack_size_at_create = 0;
  2938 // All JavaThreads
  2939 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2941 void os_stream();
  2943 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2944 void Threads::threads_do(ThreadClosure* tc) {
  2945   assert_locked_or_safepoint(Threads_lock);
  2946   // ALL_JAVA_THREADS iterates through all JavaThreads
  2947   ALL_JAVA_THREADS(p) {
  2948     tc->do_thread(p);
  2950   // Someday we could have a table or list of all non-JavaThreads.
  2951   // For now, just manually iterate through them.
  2952   tc->do_thread(VMThread::vm_thread());
  2953   Universe::heap()->gc_threads_do(tc);
  2954   WatcherThread *wt = WatcherThread::watcher_thread();
  2955   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2956   // the data for WatcherThread is still valid upon being examined. However,
  2957   // considering that WatchThread terminates when the VM is on the way to
  2958   // exit at safepoint, the chance of the above is extremely small. The right
  2959   // way to prevent termination of WatcherThread would be to acquire
  2960   // Terminator_lock, but we can't do that without violating the lock rank
  2961   // checking in some cases.
  2962   if (wt != NULL)
  2963     tc->do_thread(wt);
  2965   // If CompilerThreads ever become non-JavaThreads, add them here
  2968 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2970   extern void JDK_Version_init();
  2972   // Check version
  2973   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2975   // Initialize the output stream module
  2976   ostream_init();
  2978   // Process java launcher properties.
  2979   Arguments::process_sun_java_launcher_properties(args);
  2981   // Initialize the os module before using TLS
  2982   os::init();
  2984   // Initialize system properties.
  2985   Arguments::init_system_properties();
  2987   // So that JDK version can be used as a discrimintor when parsing arguments
  2988   JDK_Version_init();
  2990   // Update/Initialize System properties after JDK version number is known
  2991   Arguments::init_version_specific_system_properties();
  2993   // Parse arguments
  2994   jint parse_result = Arguments::parse(args);
  2995   if (parse_result != JNI_OK) return parse_result;
  2997   if (PauseAtStartup) {
  2998     os::pause();
  3001   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3003   // Record VM creation timing statistics
  3004   TraceVmCreationTime create_vm_timer;
  3005   create_vm_timer.start();
  3007   // Timing (must come after argument parsing)
  3008   TraceTime timer("Create VM", TraceStartupTime);
  3010   // Initialize the os module after parsing the args
  3011   jint os_init_2_result = os::init_2();
  3012   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3014   // Initialize output stream logging
  3015   ostream_init_log();
  3017   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3018   // Must be before create_vm_init_agents()
  3019   if (Arguments::init_libraries_at_startup()) {
  3020     convert_vm_init_libraries_to_agents();
  3023   // Launch -agentlib/-agentpath and converted -Xrun agents
  3024   if (Arguments::init_agents_at_startup()) {
  3025     create_vm_init_agents();
  3028   // Initialize Threads state
  3029   _thread_list = NULL;
  3030   _number_of_threads = 0;
  3031   _number_of_non_daemon_threads = 0;
  3033   // Initialize TLS
  3034   ThreadLocalStorage::init();
  3036   // Initialize global data structures and create system classes in heap
  3037   vm_init_globals();
  3039   // Attach the main thread to this os thread
  3040   JavaThread* main_thread = new JavaThread();
  3041   main_thread->set_thread_state(_thread_in_vm);
  3042   // must do this before set_active_handles and initialize_thread_local_storage
  3043   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3044   // change the stack size recorded here to one based on the java thread
  3045   // stacksize. This adjusted size is what is used to figure the placement
  3046   // of the guard pages.
  3047   main_thread->record_stack_base_and_size();
  3048   main_thread->initialize_thread_local_storage();
  3050   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3052   if (!main_thread->set_as_starting_thread()) {
  3053     vm_shutdown_during_initialization(
  3054       "Failed necessary internal allocation. Out of swap space");
  3055     delete main_thread;
  3056     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3057     return JNI_ENOMEM;
  3060   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3061   // crash Linux VM, see notes in os_linux.cpp.
  3062   main_thread->create_stack_guard_pages();
  3064   // Initialize Java-Level synchronization subsystem
  3065   ObjectMonitor::Initialize() ;
  3067   // Initialize global modules
  3068   jint status = init_globals();
  3069   if (status != JNI_OK) {
  3070     delete main_thread;
  3071     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3072     return status;
  3075   // Should be done after the heap is fully created
  3076   main_thread->cache_global_variables();
  3078   HandleMark hm;
  3080   { MutexLocker mu(Threads_lock);
  3081     Threads::add(main_thread);
  3084   // Any JVMTI raw monitors entered in onload will transition into
  3085   // real raw monitor. VM is setup enough here for raw monitor enter.
  3086   JvmtiExport::transition_pending_onload_raw_monitors();
  3088   if (VerifyBeforeGC &&
  3089       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3090     Universe::heap()->prepare_for_verify();
  3091     Universe::verify();   // make sure we're starting with a clean slate
  3094   // Create the VMThread
  3095   { TraceTime timer("Start VMThread", TraceStartupTime);
  3096     VMThread::create();
  3097     Thread* vmthread = VMThread::vm_thread();
  3099     if (!os::create_thread(vmthread, os::vm_thread))
  3100       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3102     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3103     // Monitors can have spurious returns, must always check another state flag
  3105       MutexLocker ml(Notify_lock);
  3106       os::start_thread(vmthread);
  3107       while (vmthread->active_handles() == NULL) {
  3108         Notify_lock->wait();
  3113   assert (Universe::is_fully_initialized(), "not initialized");
  3114   EXCEPTION_MARK;
  3116   // At this point, the Universe is initialized, but we have not executed
  3117   // any byte code.  Now is a good time (the only time) to dump out the
  3118   // internal state of the JVM for sharing.
  3120   if (DumpSharedSpaces) {
  3121     Universe::heap()->preload_and_dump(CHECK_0);
  3122     ShouldNotReachHere();
  3125   // Always call even when there are not JVMTI environments yet, since environments
  3126   // may be attached late and JVMTI must track phases of VM execution
  3127   JvmtiExport::enter_start_phase();
  3129   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3130   JvmtiExport::post_vm_start();
  3133     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3135     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3136       create_vm_init_libraries();
  3139     if (InitializeJavaLangString) {
  3140       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3141     } else {
  3142       warning("java.lang.String not initialized");
  3145     if (AggressiveOpts) {
  3147         // Forcibly initialize java/util/HashMap and mutate the private
  3148         // static final "frontCacheEnabled" field before we start creating instances
  3149 #ifdef ASSERT
  3150         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3151         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3152 #endif
  3153         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3154         KlassHandle k = KlassHandle(THREAD, k_o);
  3155         guarantee(k.not_null(), "Must find java/util/HashMap");
  3156         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3157         ik->initialize(CHECK_0);
  3158         fieldDescriptor fd;
  3159         // Possible we might not find this field; if so, don't break
  3160         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3161           k()->bool_field_put(fd.offset(), true);
  3165       if (UseStringCache) {
  3166         // Forcibly initialize java/lang/StringValue and mutate the private
  3167         // static final "stringCacheEnabled" field before we start creating instances
  3168         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3169         // Possible that StringValue isn't present: if so, silently don't break
  3170         if (k_o != NULL) {
  3171           KlassHandle k = KlassHandle(THREAD, k_o);
  3172           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3173           ik->initialize(CHECK_0);
  3174           fieldDescriptor fd;
  3175           // Possible we might not find this field: if so, silently don't break
  3176           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3177             k()->bool_field_put(fd.offset(), true);
  3183     // Initialize java_lang.System (needed before creating the thread)
  3184     if (InitializeJavaLangSystem) {
  3185       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3186       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3187       Handle thread_group = create_initial_thread_group(CHECK_0);
  3188       Universe::set_main_thread_group(thread_group());
  3189       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3190       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3191       main_thread->set_threadObj(thread_object);
  3192       // Set thread status to running since main thread has
  3193       // been started and running.
  3194       java_lang_Thread::set_thread_status(thread_object,
  3195                                           java_lang_Thread::RUNNABLE);
  3197       // The VM preresolve methods to these classes. Make sure that get initialized
  3198       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3199       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3200       // The VM creates & returns objects of this class. Make sure it's initialized.
  3201       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3202       call_initializeSystemClass(CHECK_0);
  3203     } else {
  3204       warning("java.lang.System not initialized");
  3207     // an instance of OutOfMemory exception has been allocated earlier
  3208     if (InitializeJavaLangExceptionsErrors) {
  3209       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3210       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3211       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3212       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3213       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3214       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3215       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3216     } else {
  3217       warning("java.lang.OutOfMemoryError has not been initialized");
  3218       warning("java.lang.NullPointerException has not been initialized");
  3219       warning("java.lang.ClassCastException has not been initialized");
  3220       warning("java.lang.ArrayStoreException has not been initialized");
  3221       warning("java.lang.ArithmeticException has not been initialized");
  3222       warning("java.lang.StackOverflowError has not been initialized");
  3226   // See        : bugid 4211085.
  3227   // Background : the static initializer of java.lang.Compiler tries to read
  3228   //              property"java.compiler" and read & write property "java.vm.info".
  3229   //              When a security manager is installed through the command line
  3230   //              option "-Djava.security.manager", the above properties are not
  3231   //              readable and the static initializer for java.lang.Compiler fails
  3232   //              resulting in a NoClassDefFoundError.  This can happen in any
  3233   //              user code which calls methods in java.lang.Compiler.
  3234   // Hack :       the hack is to pre-load and initialize this class, so that only
  3235   //              system domains are on the stack when the properties are read.
  3236   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3237   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3238   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3239   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3240   //              Once that is done, we should remove this hack.
  3241   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3243   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3244   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3245   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3246   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3247   // This should also be taken out as soon as 4211383 gets fixed.
  3248   reset_vm_info_property(CHECK_0);
  3250   quicken_jni_functions();
  3252   // Set flag that basic initialization has completed. Used by exceptions and various
  3253   // debug stuff, that does not work until all basic classes have been initialized.
  3254   set_init_completed();
  3256   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3258   // record VM initialization completion time
  3259   Management::record_vm_init_completed();
  3261   // Compute system loader. Note that this has to occur after set_init_completed, since
  3262   // valid exceptions may be thrown in the process.
  3263   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3264   // set_init_completed has just been called, causing exceptions not to be shortcut
  3265   // anymore. We call vm_exit_during_initialization directly instead.
  3266   SystemDictionary::compute_java_system_loader(THREAD);
  3267   if (HAS_PENDING_EXCEPTION) {
  3268     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3271 #ifndef SERIALGC
  3272   // Support for ConcurrentMarkSweep. This should be cleaned up
  3273   // and better encapsulated. The ugly nested if test would go away
  3274   // once things are properly refactored. XXX YSR
  3275   if (UseConcMarkSweepGC || UseG1GC) {
  3276     if (UseConcMarkSweepGC) {
  3277       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3278     } else {
  3279       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3281     if (HAS_PENDING_EXCEPTION) {
  3282       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3285 #endif // SERIALGC
  3287   // Always call even when there are not JVMTI environments yet, since environments
  3288   // may be attached late and JVMTI must track phases of VM execution
  3289   JvmtiExport::enter_live_phase();
  3291   // Signal Dispatcher needs to be started before VMInit event is posted
  3292   os::signal_init();
  3294   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3295   if (!DisableAttachMechanism) {
  3296     if (StartAttachListener || AttachListener::init_at_startup()) {
  3297       AttachListener::init();
  3301   // Launch -Xrun agents
  3302   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3303   // back-end can launch with -Xdebug -Xrunjdwp.
  3304   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3305     create_vm_init_libraries();
  3308   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3309   JvmtiExport::post_vm_initialized();
  3311   Chunk::start_chunk_pool_cleaner_task();
  3313   // initialize compiler(s)
  3314   CompileBroker::compilation_init();
  3316   Management::initialize(THREAD);
  3317   if (HAS_PENDING_EXCEPTION) {
  3318     // management agent fails to start possibly due to
  3319     // configuration problem and is responsible for printing
  3320     // stack trace if appropriate. Simply exit VM.
  3321     vm_exit(1);
  3324   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3325   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3326   if (MemProfiling)                   MemProfiler::engage();
  3327   StatSampler::engage();
  3328   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3330   BiasedLocking::init();
  3332   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3333     call_postVMInitHook(THREAD);
  3334     // The Java side of PostVMInitHook.run must deal with all
  3335     // exceptions and provide means of diagnosis.
  3336     if (HAS_PENDING_EXCEPTION) {
  3337       CLEAR_PENDING_EXCEPTION;
  3341   // Start up the WatcherThread if there are any periodic tasks
  3342   // NOTE:  All PeriodicTasks should be registered by now. If they
  3343   //   aren't, late joiners might appear to start slowly (we might
  3344   //   take a while to process their first tick).
  3345   if (PeriodicTask::num_tasks() > 0) {
  3346     WatcherThread::start();
  3349   // Give os specific code one last chance to start
  3350   os::init_3();
  3352   create_vm_timer.end();
  3353   return JNI_OK;
  3356 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3357 extern "C" {
  3358   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3360 // Find a command line agent library and return its entry point for
  3361 //         -agentlib:  -agentpath:   -Xrun
  3362 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3363 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3364   OnLoadEntry_t on_load_entry = NULL;
  3365   void *library = agent->os_lib();  // check if we have looked it up before
  3367   if (library == NULL) {
  3368     char buffer[JVM_MAXPATHLEN];
  3369     char ebuf[1024];
  3370     const char *name = agent->name();
  3371     const char *msg = "Could not find agent library ";
  3373     if (agent->is_absolute_path()) {
  3374       library = os::dll_load(name, ebuf, sizeof ebuf);
  3375       if (library == NULL) {
  3376         const char *sub_msg = " in absolute path, with error: ";
  3377         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3378         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3379         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3380         // If we can't find the agent, exit.
  3381         vm_exit_during_initialization(buf, NULL);
  3382         FREE_C_HEAP_ARRAY(char, buf);
  3384     } else {
  3385       // Try to load the agent from the standard dll directory
  3386       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3387       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3388 #ifdef KERNEL
  3389       // Download instrument dll
  3390       if (library == NULL && strcmp(name, "instrument") == 0) {
  3391         char *props = Arguments::get_kernel_properties();
  3392         char *home  = Arguments::get_java_home();
  3393         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3394                       " sun.jkernel.DownloadManager -download client_jvm";
  3395         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3396         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3397         jio_snprintf(cmd, length, fmt, home, props);
  3398         int status = os::fork_and_exec(cmd);
  3399         FreeHeap(props);
  3400         if (status == -1) {
  3401           warning(cmd);
  3402           vm_exit_during_initialization("fork_and_exec failed: %s",
  3403                                          strerror(errno));
  3405         FREE_C_HEAP_ARRAY(char, cmd);
  3406         // when this comes back the instrument.dll should be where it belongs.
  3407         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3409 #endif // KERNEL
  3410       if (library == NULL) { // Try the local directory
  3411         char ns[1] = {0};
  3412         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3413         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3414         if (library == NULL) {
  3415           const char *sub_msg = " on the library path, with error: ";
  3416           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3417           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3418           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3419           // If we can't find the agent, exit.
  3420           vm_exit_during_initialization(buf, NULL);
  3421           FREE_C_HEAP_ARRAY(char, buf);
  3425     agent->set_os_lib(library);
  3428   // Find the OnLoad function.
  3429   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3430     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3431     if (on_load_entry != NULL) break;
  3433   return on_load_entry;
  3436 // Find the JVM_OnLoad entry point
  3437 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3438   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3439   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3442 // Find the Agent_OnLoad entry point
  3443 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3444   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3445   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3448 // For backwards compatibility with -Xrun
  3449 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3450 // treated like -agentpath:
  3451 // Must be called before agent libraries are created
  3452 void Threads::convert_vm_init_libraries_to_agents() {
  3453   AgentLibrary* agent;
  3454   AgentLibrary* next;
  3456   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3457     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3458     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3460     // If there is an JVM_OnLoad function it will get called later,
  3461     // otherwise see if there is an Agent_OnLoad
  3462     if (on_load_entry == NULL) {
  3463       on_load_entry = lookup_agent_on_load(agent);
  3464       if (on_load_entry != NULL) {
  3465         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3466         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3467         Arguments::convert_library_to_agent(agent);
  3468       } else {
  3469         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3475 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3476 // Invokes Agent_OnLoad
  3477 // Called very early -- before JavaThreads exist
  3478 void Threads::create_vm_init_agents() {
  3479   extern struct JavaVM_ main_vm;
  3480   AgentLibrary* agent;
  3482   JvmtiExport::enter_onload_phase();
  3483   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3484     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3486     if (on_load_entry != NULL) {
  3487       // Invoke the Agent_OnLoad function
  3488       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3489       if (err != JNI_OK) {
  3490         vm_exit_during_initialization("agent library failed to init", agent->name());
  3492     } else {
  3493       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3496   JvmtiExport::enter_primordial_phase();
  3499 extern "C" {
  3500   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3503 void Threads::shutdown_vm_agents() {
  3504   // Send any Agent_OnUnload notifications
  3505   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3506   extern struct JavaVM_ main_vm;
  3507   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3509     // Find the Agent_OnUnload function.
  3510     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3511       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3512                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3514       // Invoke the Agent_OnUnload function
  3515       if (unload_entry != NULL) {
  3516         JavaThread* thread = JavaThread::current();
  3517         ThreadToNativeFromVM ttn(thread);
  3518         HandleMark hm(thread);
  3519         (*unload_entry)(&main_vm);
  3520         break;
  3526 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3527 // Invokes JVM_OnLoad
  3528 void Threads::create_vm_init_libraries() {
  3529   extern struct JavaVM_ main_vm;
  3530   AgentLibrary* agent;
  3532   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3533     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3535     if (on_load_entry != NULL) {
  3536       // Invoke the JVM_OnLoad function
  3537       JavaThread* thread = JavaThread::current();
  3538       ThreadToNativeFromVM ttn(thread);
  3539       HandleMark hm(thread);
  3540       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3541       if (err != JNI_OK) {
  3542         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3544     } else {
  3545       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3550 // Last thread running calls java.lang.Shutdown.shutdown()
  3551 void JavaThread::invoke_shutdown_hooks() {
  3552   HandleMark hm(this);
  3554   // We could get here with a pending exception, if so clear it now.
  3555   if (this->has_pending_exception()) {
  3556     this->clear_pending_exception();
  3559   EXCEPTION_MARK;
  3560   klassOop k =
  3561     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3562                                       THREAD);
  3563   if (k != NULL) {
  3564     // SystemDictionary::resolve_or_null will return null if there was
  3565     // an exception.  If we cannot load the Shutdown class, just don't
  3566     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3567     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3568     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3569     // was called, the Shutdown class would have already been loaded
  3570     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3571     instanceKlassHandle shutdown_klass (THREAD, k);
  3572     JavaValue result(T_VOID);
  3573     JavaCalls::call_static(&result,
  3574                            shutdown_klass,
  3575                            vmSymbols::shutdown_method_name(),
  3576                            vmSymbols::void_method_signature(),
  3577                            THREAD);
  3579   CLEAR_PENDING_EXCEPTION;
  3582 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3583 // the program falls off the end of main(). Another VM exit path is through
  3584 // vm_exit() when the program calls System.exit() to return a value or when
  3585 // there is a serious error in VM. The two shutdown paths are not exactly
  3586 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3587 // and VM_Exit op at VM level.
  3588 //
  3589 // Shutdown sequence:
  3590 //   + Wait until we are the last non-daemon thread to execute
  3591 //     <-- every thing is still working at this moment -->
  3592 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3593 //        shutdown hooks, run finalizers if finalization-on-exit
  3594 //   + Call before_exit(), prepare for VM exit
  3595 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3596 //        currently the only user of this mechanism is File.deleteOnExit())
  3597 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3598 //        post thread end and vm death events to JVMTI,
  3599 //        stop signal thread
  3600 //   + Call JavaThread::exit(), it will:
  3601 //      > release JNI handle blocks, remove stack guard pages
  3602 //      > remove this thread from Threads list
  3603 //     <-- no more Java code from this thread after this point -->
  3604 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3605 //     the compiler threads at safepoint
  3606 //     <-- do not use anything that could get blocked by Safepoint -->
  3607 //   + Disable tracing at JNI/JVM barriers
  3608 //   + Set _vm_exited flag for threads that are still running native code
  3609 //   + Delete this thread
  3610 //   + Call exit_globals()
  3611 //      > deletes tty
  3612 //      > deletes PerfMemory resources
  3613 //   + Return to caller
  3615 bool Threads::destroy_vm() {
  3616   JavaThread* thread = JavaThread::current();
  3618   // Wait until we are the last non-daemon thread to execute
  3619   { MutexLocker nu(Threads_lock);
  3620     while (Threads::number_of_non_daemon_threads() > 1 )
  3621       // This wait should make safepoint checks, wait without a timeout,
  3622       // and wait as a suspend-equivalent condition.
  3623       //
  3624       // Note: If the FlatProfiler is running and this thread is waiting
  3625       // for another non-daemon thread to finish, then the FlatProfiler
  3626       // is waiting for the external suspend request on this thread to
  3627       // complete. wait_for_ext_suspend_completion() will eventually
  3628       // timeout, but that takes time. Making this wait a suspend-
  3629       // equivalent condition solves that timeout problem.
  3630       //
  3631       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3632                          Mutex::_as_suspend_equivalent_flag);
  3635   // Hang forever on exit if we are reporting an error.
  3636   if (ShowMessageBoxOnError && is_error_reported()) {
  3637     os::infinite_sleep();
  3640   if (JDK_Version::is_jdk12x_version()) {
  3641     // We are the last thread running, so check if finalizers should be run.
  3642     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3643     HandleMark rm(thread);
  3644     Universe::run_finalizers_on_exit();
  3645   } else {
  3646     // run Java level shutdown hooks
  3647     thread->invoke_shutdown_hooks();
  3650   before_exit(thread);
  3652   thread->exit(true);
  3654   // Stop VM thread.
  3656     // 4945125 The vm thread comes to a safepoint during exit.
  3657     // GC vm_operations can get caught at the safepoint, and the
  3658     // heap is unparseable if they are caught. Grab the Heap_lock
  3659     // to prevent this. The GC vm_operations will not be able to
  3660     // queue until after the vm thread is dead.
  3661     MutexLocker ml(Heap_lock);
  3663     VMThread::wait_for_vm_thread_exit();
  3664     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3665     VMThread::destroy();
  3668   // clean up ideal graph printers
  3669 #if defined(COMPILER2) && !defined(PRODUCT)
  3670   IdealGraphPrinter::clean_up();
  3671 #endif
  3673   // Now, all Java threads are gone except daemon threads. Daemon threads
  3674   // running Java code or in VM are stopped by the Safepoint. However,
  3675   // daemon threads executing native code are still running.  But they
  3676   // will be stopped at native=>Java/VM barriers. Note that we can't
  3677   // simply kill or suspend them, as it is inherently deadlock-prone.
  3679 #ifndef PRODUCT
  3680   // disable function tracing at JNI/JVM barriers
  3681   TraceJNICalls = false;
  3682   TraceJVMCalls = false;
  3683   TraceRuntimeCalls = false;
  3684 #endif
  3686   VM_Exit::set_vm_exited();
  3688   notify_vm_shutdown();
  3690   delete thread;
  3692   // exit_globals() will delete tty
  3693   exit_globals();
  3695   return true;
  3699 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3700   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3701   return is_supported_jni_version(version);
  3705 jboolean Threads::is_supported_jni_version(jint version) {
  3706   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3707   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3708   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3709   return JNI_FALSE;
  3713 void Threads::add(JavaThread* p, bool force_daemon) {
  3714   // The threads lock must be owned at this point
  3715   assert_locked_or_safepoint(Threads_lock);
  3717   // See the comment for this method in thread.hpp for its purpose and
  3718   // why it is called here.
  3719   p->initialize_queues();
  3720   p->set_next(_thread_list);
  3721   _thread_list = p;
  3722   _number_of_threads++;
  3723   oop threadObj = p->threadObj();
  3724   bool daemon = true;
  3725   // Bootstrapping problem: threadObj can be null for initial
  3726   // JavaThread (or for threads attached via JNI)
  3727   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3728     _number_of_non_daemon_threads++;
  3729     daemon = false;
  3732   ThreadService::add_thread(p, daemon);
  3734   // Possible GC point.
  3735   Events::log("Thread added: " INTPTR_FORMAT, p);
  3738 void Threads::remove(JavaThread* p) {
  3739   // Extra scope needed for Thread_lock, so we can check
  3740   // that we do not remove thread without safepoint code notice
  3741   { MutexLocker ml(Threads_lock);
  3743     assert(includes(p), "p must be present");
  3745     JavaThread* current = _thread_list;
  3746     JavaThread* prev    = NULL;
  3748     while (current != p) {
  3749       prev    = current;
  3750       current = current->next();
  3753     if (prev) {
  3754       prev->set_next(current->next());
  3755     } else {
  3756       _thread_list = p->next();
  3758     _number_of_threads--;
  3759     oop threadObj = p->threadObj();
  3760     bool daemon = true;
  3761     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3762       _number_of_non_daemon_threads--;
  3763       daemon = false;
  3765       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3766       // on destroy_vm will wake up.
  3767       if (number_of_non_daemon_threads() == 1)
  3768         Threads_lock->notify_all();
  3770     ThreadService::remove_thread(p, daemon);
  3772     // Make sure that safepoint code disregard this thread. This is needed since
  3773     // the thread might mess around with locks after this point. This can cause it
  3774     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3775     // of this thread since it is removed from the queue.
  3776     p->set_terminated_value();
  3777   } // unlock Threads_lock
  3779   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3780   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3783 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3784 bool Threads::includes(JavaThread* p) {
  3785   assert(Threads_lock->is_locked(), "sanity check");
  3786   ALL_JAVA_THREADS(q) {
  3787     if (q == p ) {
  3788       return true;
  3791   return false;
  3794 // Operations on the Threads list for GC.  These are not explicitly locked,
  3795 // but the garbage collector must provide a safe context for them to run.
  3796 // In particular, these things should never be called when the Threads_lock
  3797 // is held by some other thread. (Note: the Safepoint abstraction also
  3798 // uses the Threads_lock to gurantee this property. It also makes sure that
  3799 // all threads gets blocked when exiting or starting).
  3801 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3802   ALL_JAVA_THREADS(p) {
  3803     p->oops_do(f, cf);
  3805   VMThread::vm_thread()->oops_do(f, cf);
  3808 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3809   // Introduce a mechanism allowing parallel threads to claim threads as
  3810   // root groups.  Overhead should be small enough to use all the time,
  3811   // even in sequential code.
  3812   SharedHeap* sh = SharedHeap::heap();
  3813   bool is_par = (sh->n_par_threads() > 0);
  3814   int cp = SharedHeap::heap()->strong_roots_parity();
  3815   ALL_JAVA_THREADS(p) {
  3816     if (p->claim_oops_do(is_par, cp)) {
  3817       p->oops_do(f, cf);
  3820   VMThread* vmt = VMThread::vm_thread();
  3821   if (vmt->claim_oops_do(is_par, cp))
  3822     vmt->oops_do(f, cf);
  3825 #ifndef SERIALGC
  3826 // Used by ParallelScavenge
  3827 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3828   ALL_JAVA_THREADS(p) {
  3829     q->enqueue(new ThreadRootsTask(p));
  3831   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3834 // Used by Parallel Old
  3835 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3836   ALL_JAVA_THREADS(p) {
  3837     q->enqueue(new ThreadRootsMarkingTask(p));
  3839   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3841 #endif // SERIALGC
  3843 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3844   ALL_JAVA_THREADS(p) {
  3845     p->nmethods_do(cf);
  3847   VMThread::vm_thread()->nmethods_do(cf);
  3850 void Threads::gc_epilogue() {
  3851   ALL_JAVA_THREADS(p) {
  3852     p->gc_epilogue();
  3856 void Threads::gc_prologue() {
  3857   ALL_JAVA_THREADS(p) {
  3858     p->gc_prologue();
  3862 void Threads::deoptimized_wrt_marked_nmethods() {
  3863   ALL_JAVA_THREADS(p) {
  3864     p->deoptimized_wrt_marked_nmethods();
  3869 // Get count Java threads that are waiting to enter the specified monitor.
  3870 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3871   address monitor, bool doLock) {
  3872   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3873     "must grab Threads_lock or be at safepoint");
  3874   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3876   int i = 0;
  3878     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3879     ALL_JAVA_THREADS(p) {
  3880       if (p->is_Compiler_thread()) continue;
  3882       address pending = (address)p->current_pending_monitor();
  3883       if (pending == monitor) {             // found a match
  3884         if (i < count) result->append(p);   // save the first count matches
  3885         i++;
  3889   return result;
  3893 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3894   assert(doLock ||
  3895          Threads_lock->owned_by_self() ||
  3896          SafepointSynchronize::is_at_safepoint(),
  3897          "must grab Threads_lock or be at safepoint");
  3899   // NULL owner means not locked so we can skip the search
  3900   if (owner == NULL) return NULL;
  3903     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3904     ALL_JAVA_THREADS(p) {
  3905       // first, see if owner is the address of a Java thread
  3906       if (owner == (address)p) return p;
  3909   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3910   if (UseHeavyMonitors) return NULL;
  3912   //
  3913   // If we didn't find a matching Java thread and we didn't force use of
  3914   // heavyweight monitors, then the owner is the stack address of the
  3915   // Lock Word in the owning Java thread's stack.
  3916   //
  3917   JavaThread* the_owner = NULL;
  3919     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3920     ALL_JAVA_THREADS(q) {
  3921       if (q->is_lock_owned(owner)) {
  3922         the_owner = q;
  3923         break;
  3927   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3928   return the_owner;
  3931 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3932 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3933   char buf[32];
  3934   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3936   st->print_cr("Full thread dump %s (%s %s):",
  3937                 Abstract_VM_Version::vm_name(),
  3938                 Abstract_VM_Version::vm_release(),
  3939                 Abstract_VM_Version::vm_info_string()
  3940                );
  3941   st->cr();
  3943 #ifndef SERIALGC
  3944   // Dump concurrent locks
  3945   ConcurrentLocksDump concurrent_locks;
  3946   if (print_concurrent_locks) {
  3947     concurrent_locks.dump_at_safepoint();
  3949 #endif // SERIALGC
  3951   ALL_JAVA_THREADS(p) {
  3952     ResourceMark rm;
  3953     p->print_on(st);
  3954     if (print_stacks) {
  3955       if (internal_format) {
  3956         p->trace_stack();
  3957       } else {
  3958         p->print_stack_on(st);
  3961     st->cr();
  3962 #ifndef SERIALGC
  3963     if (print_concurrent_locks) {
  3964       concurrent_locks.print_locks_on(p, st);
  3966 #endif // SERIALGC
  3969   VMThread::vm_thread()->print_on(st);
  3970   st->cr();
  3971   Universe::heap()->print_gc_threads_on(st);
  3972   WatcherThread* wt = WatcherThread::watcher_thread();
  3973   if (wt != NULL) wt->print_on(st);
  3974   st->cr();
  3975   CompileBroker::print_compiler_threads_on(st);
  3976   st->flush();
  3979 // Threads::print_on_error() is called by fatal error handler. It's possible
  3980 // that VM is not at safepoint and/or current thread is inside signal handler.
  3981 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3982 // memory (even in resource area), it might deadlock the error handler.
  3983 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3984   bool found_current = false;
  3985   st->print_cr("Java Threads: ( => current thread )");
  3986   ALL_JAVA_THREADS(thread) {
  3987     bool is_current = (current == thread);
  3988     found_current = found_current || is_current;
  3990     st->print("%s", is_current ? "=>" : "  ");
  3992     st->print(PTR_FORMAT, thread);
  3993     st->print(" ");
  3994     thread->print_on_error(st, buf, buflen);
  3995     st->cr();
  3997   st->cr();
  3999   st->print_cr("Other Threads:");
  4000   if (VMThread::vm_thread()) {
  4001     bool is_current = (current == VMThread::vm_thread());
  4002     found_current = found_current || is_current;
  4003     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4005     st->print(PTR_FORMAT, VMThread::vm_thread());
  4006     st->print(" ");
  4007     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4008     st->cr();
  4010   WatcherThread* wt = WatcherThread::watcher_thread();
  4011   if (wt != NULL) {
  4012     bool is_current = (current == wt);
  4013     found_current = found_current || is_current;
  4014     st->print("%s", is_current ? "=>" : "  ");
  4016     st->print(PTR_FORMAT, wt);
  4017     st->print(" ");
  4018     wt->print_on_error(st, buf, buflen);
  4019     st->cr();
  4021   if (!found_current) {
  4022     st->cr();
  4023     st->print("=>" PTR_FORMAT " (exited) ", current);
  4024     current->print_on_error(st, buf, buflen);
  4025     st->cr();
  4029 // Internal SpinLock and Mutex
  4030 // Based on ParkEvent
  4032 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4033 //
  4034 // We employ SpinLocks _only for low-contention, fixed-length
  4035 // short-duration critical sections where we're concerned
  4036 // about native mutex_t or HotSpot Mutex:: latency.
  4037 // The mux construct provides a spin-then-block mutual exclusion
  4038 // mechanism.
  4039 //
  4040 // Testing has shown that contention on the ListLock guarding gFreeList
  4041 // is common.  If we implement ListLock as a simple SpinLock it's common
  4042 // for the JVM to devolve to yielding with little progress.  This is true
  4043 // despite the fact that the critical sections protected by ListLock are
  4044 // extremely short.
  4045 //
  4046 // TODO-FIXME: ListLock should be of type SpinLock.
  4047 // We should make this a 1st-class type, integrated into the lock
  4048 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4049 // should have sufficient padding to avoid false-sharing and excessive
  4050 // cache-coherency traffic.
  4053 typedef volatile int SpinLockT ;
  4055 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4056   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4057      return ;   // normal fast-path return
  4060   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4061   TEVENT (SpinAcquire - ctx) ;
  4062   int ctr = 0 ;
  4063   int Yields = 0 ;
  4064   for (;;) {
  4065      while (*adr != 0) {
  4066         ++ctr ;
  4067         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4068            if (Yields > 5) {
  4069              // Consider using a simple NakedSleep() instead.
  4070              // Then SpinAcquire could be called by non-JVM threads
  4071              Thread::current()->_ParkEvent->park(1) ;
  4072            } else {
  4073              os::NakedYield() ;
  4074              ++Yields ;
  4076         } else {
  4077            SpinPause() ;
  4080      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4084 void Thread::SpinRelease (volatile int * adr) {
  4085   assert (*adr != 0, "invariant") ;
  4086   OrderAccess::fence() ;      // guarantee at least release consistency.
  4087   // Roach-motel semantics.
  4088   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4089   // but prior LDs and STs within the critical section can't be allowed
  4090   // to reorder or float past the ST that releases the lock.
  4091   *adr = 0 ;
  4094 // muxAcquire and muxRelease:
  4095 //
  4096 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4097 //    The LSB of the word is set IFF the lock is held.
  4098 //    The remainder of the word points to the head of a singly-linked list
  4099 //    of threads blocked on the lock.
  4100 //
  4101 // *  The current implementation of muxAcquire-muxRelease uses its own
  4102 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4103 //    minimizing the peak number of extant ParkEvent instances then
  4104 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4105 //    as certain invariants were satisfied.  Specifically, care would need
  4106 //    to be taken with regards to consuming unpark() "permits".
  4107 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4108 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4109 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4110 //    consume an unpark() permit intended for monitorenter, for instance.
  4111 //    One way around this would be to widen the restricted-range semaphore
  4112 //    implemented in park().  Another alternative would be to provide
  4113 //    multiple instances of the PlatformEvent() for each thread.  One
  4114 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4115 //
  4116 // *  Usage:
  4117 //    -- Only as leaf locks
  4118 //    -- for short-term locking only as muxAcquire does not perform
  4119 //       thread state transitions.
  4120 //
  4121 // Alternatives:
  4122 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4123 //    but with parking or spin-then-park instead of pure spinning.
  4124 // *  Use Taura-Oyama-Yonenzawa locks.
  4125 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4126 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4127 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4128 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4129 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4130 //    boundaries by using placement-new.
  4131 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4132 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4133 //    The validity of the backlinks must be ratified before we trust the value.
  4134 //    If the backlinks are invalid the exiting thread must back-track through the
  4135 //    the forward links, which are always trustworthy.
  4136 // *  Add a successor indication.  The LockWord is currently encoded as
  4137 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4138 //    to provide the usual futile-wakeup optimization.
  4139 //    See RTStt for details.
  4140 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4141 //
  4144 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4145 enum MuxBits { LOCKBIT = 1 } ;
  4147 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4148   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4149   if (w == 0) return ;
  4150   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4151      return ;
  4154   TEVENT (muxAcquire - Contention) ;
  4155   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4156   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4157   for (;;) {
  4158      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4160      // Optional spin phase: spin-then-park strategy
  4161      while (--its >= 0) {
  4162        w = *Lock ;
  4163        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4164           return ;
  4168      Self->reset() ;
  4169      Self->OnList = intptr_t(Lock) ;
  4170      // The following fence() isn't _strictly necessary as the subsequent
  4171      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4172      OrderAccess::fence();
  4173      for (;;) {
  4174         w = *Lock ;
  4175         if ((w & LOCKBIT) == 0) {
  4176             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4177                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4178                 return ;
  4180             continue ;      // Interference -- *Lock changed -- Just retry
  4182         assert (w & LOCKBIT, "invariant") ;
  4183         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4184         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4187      while (Self->OnList != 0) {
  4188         Self->park() ;
  4193 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4194   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4195   if (w == 0) return ;
  4196   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4197     return ;
  4200   TEVENT (muxAcquire - Contention) ;
  4201   ParkEvent * ReleaseAfter = NULL ;
  4202   if (ev == NULL) {
  4203     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4205   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4206   for (;;) {
  4207     guarantee (ev->OnList == 0, "invariant") ;
  4208     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4210     // Optional spin phase: spin-then-park strategy
  4211     while (--its >= 0) {
  4212       w = *Lock ;
  4213       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4214         if (ReleaseAfter != NULL) {
  4215           ParkEvent::Release (ReleaseAfter) ;
  4217         return ;
  4221     ev->reset() ;
  4222     ev->OnList = intptr_t(Lock) ;
  4223     // The following fence() isn't _strictly necessary as the subsequent
  4224     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4225     OrderAccess::fence();
  4226     for (;;) {
  4227       w = *Lock ;
  4228       if ((w & LOCKBIT) == 0) {
  4229         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4230           ev->OnList = 0 ;
  4231           // We call ::Release while holding the outer lock, thus
  4232           // artificially lengthening the critical section.
  4233           // Consider deferring the ::Release() until the subsequent unlock(),
  4234           // after we've dropped the outer lock.
  4235           if (ReleaseAfter != NULL) {
  4236             ParkEvent::Release (ReleaseAfter) ;
  4238           return ;
  4240         continue ;      // Interference -- *Lock changed -- Just retry
  4242       assert (w & LOCKBIT, "invariant") ;
  4243       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4244       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4247     while (ev->OnList != 0) {
  4248       ev->park() ;
  4253 // Release() must extract a successor from the list and then wake that thread.
  4254 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4255 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4256 // Release() would :
  4257 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4258 // (B) Extract a successor from the private list "in-hand"
  4259 // (C) attempt to CAS() the residual back into *Lock over null.
  4260 //     If there were any newly arrived threads and the CAS() would fail.
  4261 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4262 //     with the RATs and repeat as needed.  Alternately, Release() might
  4263 //     detach and extract a successor, but then pass the residual list to the wakee.
  4264 //     The wakee would be responsible for reattaching and remerging before it
  4265 //     competed for the lock.
  4266 //
  4267 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4268 // multiple concurrent pushers, but only one popper or detacher.
  4269 // This implementation pops from the head of the list.  This is unfair,
  4270 // but tends to provide excellent throughput as hot threads remain hot.
  4271 // (We wake recently run threads first).
  4273 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4274   for (;;) {
  4275     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4276     assert (w & LOCKBIT, "invariant") ;
  4277     if (w == LOCKBIT) return ;
  4278     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4279     assert (List != NULL, "invariant") ;
  4280     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4281     ParkEvent * nxt = List->ListNext ;
  4283     // The following CAS() releases the lock and pops the head element.
  4284     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4285       continue ;
  4287     List->OnList = 0 ;
  4288     OrderAccess::fence() ;
  4289     List->unpark () ;
  4290     return ;
  4295 void Threads::verify() {
  4296   ALL_JAVA_THREADS(p) {
  4297     p->verify();
  4299   VMThread* thread = VMThread::vm_thread();
  4300   if (thread != NULL) thread->verify();

mercurial