src/share/vm/code/relocInfo.cpp

Tue, 05 Jan 2010 16:12:26 -0800

author
never
date
Tue, 05 Jan 2010 16:12:26 -0800
changeset 1576
b1f619d38249
parent 435
a61af66fc99e
child 1907
c18cbe5936b8
child 1918
1a5913bf5e19
permissions
-rw-r--r--

6914002: unsigned compare problem after 5057818
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_relocInfo.cpp.incl"
    29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
    32 // Implementation of relocInfo
    34 #ifdef ASSERT
    35 relocInfo::relocInfo(relocType t, int off, int f) {
    36   assert(t != data_prefix_tag, "cannot build a prefix this way");
    37   assert((t & type_mask) == t, "wrong type");
    38   assert((f & format_mask) == f, "wrong format");
    39   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
    40   assert((off & (offset_unit-1)) == 0, "misaligned offset");
    41   (*this) = relocInfo(t, RAW_BITS, off, f);
    42 }
    43 #endif
    45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
    46   relocInfo* data = this+1;  // here's where the data might go
    47   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
    48   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
    49   relocInfo* data_limit = dest->locs_end();
    50   if (data_limit > data) {
    51     relocInfo suffix = (*this);
    52     data_limit = this->finish_prefix((short*) data_limit);
    53     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
    54     *data_limit = suffix;
    55     dest->set_locs_end(data_limit+1);
    56   }
    57 }
    59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
    60   assert(sizeof(relocInfo) == sizeof(short), "change this code");
    61   short* p = (short*)(this+1);
    62   assert(prefix_limit >= p, "must be a valid span of data");
    63   int plen = prefix_limit - p;
    64   if (plen == 0) {
    65     debug_only(_value = 0xFFFF);
    66     return this;                         // no data: remove self completely
    67   }
    68   if (plen == 1 && fits_into_immediate(p[0])) {
    69     (*this) = immediate_relocInfo(p[0]); // move data inside self
    70     return this+1;
    71   }
    72   // cannot compact, so just update the count and return the limit pointer
    73   (*this) = prefix_relocInfo(plen);   // write new datalen
    74   assert(data() + datalen() == prefix_limit, "pointers must line up");
    75   return (relocInfo*)prefix_limit;
    76 }
    79 void relocInfo::set_type(relocType t) {
    80   int old_offset = addr_offset();
    81   int old_format = format();
    82   (*this) = relocInfo(t, old_offset, old_format);
    83   assert(type()==(int)t, "sanity check");
    84   assert(addr_offset()==old_offset, "sanity check");
    85   assert(format()==old_format, "sanity check");
    86 }
    89 void relocInfo::set_format(int f) {
    90   int old_offset = addr_offset();
    91   assert((f & format_mask) == f, "wrong format");
    92   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
    93   assert(addr_offset()==old_offset, "sanity check");
    94 }
    97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
    98   bool found = false;
    99   while (itr->next() && !found) {
   100     if (itr->addr() == pc) {
   101       assert(itr->type()==old_type, "wrong relocInfo type found");
   102       itr->current()->set_type(new_type);
   103       found=true;
   104     }
   105   }
   106   assert(found, "no relocInfo found for pc");
   107 }
   110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
   111   change_reloc_info_for_address(itr, pc, old_type, none);
   112 }
   115 // ----------------------------------------------------------------------------------------------------
   116 // Implementation of RelocIterator
   118 void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
   119   initialize_misc();
   121   if (cb == NULL && begin != NULL) {
   122     // allow CodeBlob to be deduced from beginning address
   123     cb = CodeCache::find_blob(begin);
   124   }
   125   assert(cb != NULL, "must be able to deduce nmethod from other arguments");
   127   _code    = cb;
   128   _current = cb->relocation_begin()-1;
   129   _end     = cb->relocation_end();
   130   _addr    = (address) cb->instructions_begin();
   132   assert(!has_current(), "just checking");
   133   address code_end = cb->instructions_end();
   135   assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
   136  // FIX THIS  assert(limit == NULL || limit <= code_end,     "in bounds");
   137   set_limits(begin, limit);
   138 }
   141 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
   142   initialize_misc();
   144   _current = cs->locs_start()-1;
   145   _end     = cs->locs_end();
   146   _addr    = cs->start();
   147   _code    = NULL; // Not cb->blob();
   149   CodeBuffer* cb = cs->outer();
   150   assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
   151   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   152     _section_start[n] = cb->code_section(n)->start();
   153   }
   155   assert(!has_current(), "just checking");
   157   assert(begin == NULL || begin >= cs->start(), "in bounds");
   158   assert(limit == NULL || limit <= cs->end(),   "in bounds");
   159   set_limits(begin, limit);
   160 }
   163 enum { indexCardSize = 128 };
   164 struct RelocIndexEntry {
   165   jint addr_offset;          // offset from header_end of an addr()
   166   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
   167 };
   170 static inline int num_cards(int code_size) {
   171   return (code_size-1) / indexCardSize;
   172 }
   175 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
   176   if (!UseRelocIndex)  return locs_size;   // no index
   177   code_size = round_to(code_size, oopSize);
   178   locs_size = round_to(locs_size, oopSize);
   179   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
   180   // format of indexed relocs:
   181   //   relocation_begin:   relocInfo ...
   182   //   index:              (addr,reloc#) ...
   183   //                       indexSize           :relocation_end
   184   return locs_size + index_size + BytesPerInt;
   185 }
   188 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
   189   address relocation_begin = (address)dest_begin;
   190   address relocation_end   = (address)dest_end;
   191   int     total_size       = relocation_end - relocation_begin;
   192   int     locs_size        = dest_count * sizeof(relocInfo);
   193   if (!UseRelocIndex) {
   194     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
   195     return;
   196   }
   197   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
   198   int     ncards           = index_size / sizeof(RelocIndexEntry);
   199   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
   200   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
   201   jint*   index_size_addr  = (jint*)relocation_end - 1;
   203   assert(sizeof(jint) == BytesPerInt, "change this code");
   205   *index_size_addr = index_size;
   206   if (index_size != 0) {
   207     assert(index_size > 0, "checkin'");
   209     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
   210     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
   212     // walk over the relocations, and fill in index entries as we go
   213     RelocIterator iter;
   214     const address    initial_addr    = NULL;
   215     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
   217     iter._code    = NULL;
   218     iter._addr    = initial_addr;
   219     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
   220     iter._current = initial_current;
   221     iter._end     = dest_begin + dest_count;
   223     int i = 0;
   224     address next_card_addr = (address)indexCardSize;
   225     int addr_offset = 0;
   226     int reloc_offset = 0;
   227     while (true) {
   228       // Checkpoint the iterator before advancing it.
   229       addr_offset  = iter._addr    - initial_addr;
   230       reloc_offset = iter._current - initial_current;
   231       if (!iter.next())  break;
   232       while (iter.addr() >= next_card_addr) {
   233         index[i].addr_offset  = addr_offset;
   234         index[i].reloc_offset = reloc_offset;
   235         i++;
   236         next_card_addr += indexCardSize;
   237       }
   238     }
   239     while (i < ncards) {
   240       index[i].addr_offset  = addr_offset;
   241       index[i].reloc_offset = reloc_offset;
   242       i++;
   243     }
   244   }
   245 }
   248 void RelocIterator::set_limits(address begin, address limit) {
   249   int index_size = 0;
   250   if (UseRelocIndex && _code != NULL) {
   251     index_size = ((jint*)_end)[-1];
   252     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
   253   }
   255   _limit = limit;
   257   // the limit affects this next stuff:
   258   if (begin != NULL) {
   259 #ifdef ASSERT
   260     // In ASSERT mode we do not actually use the index, but simply
   261     // check that its contents would have led us to the right answer.
   262     address addrCheck = _addr;
   263     relocInfo* infoCheck = _current;
   264 #endif // ASSERT
   265     if (index_size > 0) {
   266       // skip ahead
   267       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
   268       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
   269       assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
   270       int card = (begin - _addr) / indexCardSize;
   271       if (card > 0) {
   272         if (index+card-1 < index_limit)  index += card-1;
   273         else                             index = index_limit - 1;
   274 #ifdef ASSERT
   275         addrCheck = _addr    + index->addr_offset;
   276         infoCheck = _current + index->reloc_offset;
   277 #else
   278         // Advance the iterator immediately to the last valid state
   279         // for the previous card.  Calling "next" will then advance
   280         // it to the first item on the required card.
   281         _addr    += index->addr_offset;
   282         _current += index->reloc_offset;
   283 #endif // ASSERT
   284       }
   285     }
   287     relocInfo* backup;
   288     address    backup_addr;
   289     while (true) {
   290       backup      = _current;
   291       backup_addr = _addr;
   292 #ifdef ASSERT
   293       if (backup == infoCheck) {
   294         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
   295       } else {
   296         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
   297       }
   298 #endif // ASSERT
   299       if (!next() || addr() >= begin) break;
   300     }
   301     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
   302     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
   303     // At this point, either we are at the first matching record,
   304     // or else there is no such record, and !has_current().
   305     // In either case, revert to the immediatly preceding state.
   306     _current = backup;
   307     _addr    = backup_addr;
   308     set_has_current(false);
   309   }
   310 }
   313 void RelocIterator::set_limit(address limit) {
   314   address code_end = (address)code() + code()->size();
   315   assert(limit == NULL || limit <= code_end, "in bounds");
   316   _limit = limit;
   317 }
   320 void PatchingRelocIterator:: prepass() {
   321   // turn breakpoints off during patching
   322   _init_state = (*this);        // save cursor
   323   while (next()) {
   324     if (type() == relocInfo::breakpoint_type) {
   325       breakpoint_reloc()->set_active(false);
   326     }
   327   }
   328   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
   329 }
   332 void PatchingRelocIterator:: postpass() {
   333   // turn breakpoints back on after patching
   334   (RelocIterator&)(*this) = _init_state;        // reset cursor again
   335   while (next()) {
   336     if (type() == relocInfo::breakpoint_type) {
   337       breakpoint_Relocation* bpt = breakpoint_reloc();
   338       bpt->set_active(bpt->enabled());
   339     }
   340   }
   341 }
   344 // All the strange bit-encodings are in here.
   345 // The idea is to encode relocation data which are small integers
   346 // very efficiently (a single extra halfword).  Larger chunks of
   347 // relocation data need a halfword header to hold their size.
   348 void RelocIterator::advance_over_prefix() {
   349   if (_current->is_datalen()) {
   350     _data    = (short*) _current->data();
   351     _datalen =          _current->datalen();
   352     _current += _datalen + 1;   // skip the embedded data & header
   353   } else {
   354     _databuf = _current->immediate();
   355     _data = &_databuf;
   356     _datalen = 1;
   357     _current++;                 // skip the header
   358   }
   359   // The client will see the following relocInfo, whatever that is.
   360   // It is the reloc to which the preceding data applies.
   361 }
   364 address RelocIterator::compute_section_start(int n) const {
   365 // This routine not only computes a section start, but also
   366 // memoizes it for later.
   367 #define CACHE ((RelocIterator*)this)->_section_start[n]
   368   CodeBlob* cb = code();
   369   guarantee(cb != NULL, "must have a code blob");
   370   if (n == CodeBuffer::SECT_INSTS)
   371     return CACHE = cb->instructions_begin();
   372   assert(cb->is_nmethod(), "only nmethods have these sections");
   373   nmethod* nm = (nmethod*) cb;
   374   address res = NULL;
   375   switch (n) {
   376   case CodeBuffer::SECT_STUBS:
   377     res = nm->stub_begin();
   378     break;
   379   case CodeBuffer::SECT_CONSTS:
   380     res = nm->consts_begin();
   381     break;
   382   default:
   383     ShouldNotReachHere();
   384   }
   385   assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
   386   CACHE = res;
   387   return res;
   388 #undef CACHE
   389 }
   392 Relocation* RelocIterator::reloc() {
   393   // (take the "switch" out-of-line)
   394   relocInfo::relocType t = type();
   395   if (false) {}
   396   #define EACH_TYPE(name)                             \
   397   else if (t == relocInfo::name##_type) {             \
   398     return name##_reloc();                            \
   399   }
   400   APPLY_TO_RELOCATIONS(EACH_TYPE);
   401   #undef EACH_TYPE
   402   assert(t == relocInfo::none, "must be padding");
   403   return new(_rh) Relocation();
   404 }
   407 //////// Methods for flyweight Relocation types
   410 RelocationHolder RelocationHolder::plus(int offset) const {
   411   if (offset != 0) {
   412     switch (type()) {
   413     case relocInfo::none:
   414       break;
   415     case relocInfo::oop_type:
   416       {
   417         oop_Relocation* r = (oop_Relocation*)reloc();
   418         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
   419       }
   420     default:
   421       ShouldNotReachHere();
   422     }
   423   }
   424   return (*this);
   425 }
   428 void Relocation::guarantee_size() {
   429   guarantee(false, "Make _relocbuf bigger!");
   430 }
   432     // some relocations can compute their own values
   433 address Relocation::value() {
   434   ShouldNotReachHere();
   435   return NULL;
   436 }
   439 void Relocation::set_value(address x) {
   440   ShouldNotReachHere();
   441 }
   444 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
   445   if (rtype == relocInfo::none)  return RelocationHolder::none;
   446   relocInfo ri = relocInfo(rtype, 0);
   447   RelocIterator itr;
   448   itr.set_current(ri);
   449   itr.reloc();
   450   return itr._rh;
   451 }
   454 static inline bool is_index(intptr_t index) {
   455   return 0 < index && index < os::vm_page_size();
   456 }
   459 int32_t Relocation::runtime_address_to_index(address runtime_address) {
   460   assert(!is_index((intptr_t)runtime_address), "must not look like an index");
   462   if (runtime_address == NULL)  return 0;
   464   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
   465   if (p != NULL && p->begin() == runtime_address) {
   466     assert(is_index(p->index()), "there must not be too many stubs");
   467     return (int32_t)p->index();
   468   } else {
   469     // Known "miscellaneous" non-stub pointers:
   470     // os::get_polling_page(), SafepointSynchronize::address_of_state()
   471     if (PrintRelocations) {
   472       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
   473     }
   474 #ifndef _LP64
   475     return (int32_t) (intptr_t)runtime_address;
   476 #else
   477     // didn't fit return non-index
   478     return -1;
   479 #endif /* _LP64 */
   480   }
   481 }
   484 address Relocation::index_to_runtime_address(int32_t index) {
   485   if (index == 0)  return NULL;
   487   if (is_index(index)) {
   488     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
   489     assert(p != NULL, "there must be a stub for this index");
   490     return p->begin();
   491   } else {
   492 #ifndef _LP64
   493     // this only works on 32bit machines
   494     return (address) ((intptr_t) index);
   495 #else
   496     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
   497     return NULL;
   498 #endif /* _LP64 */
   499   }
   500 }
   502 address Relocation::old_addr_for(address newa,
   503                                  const CodeBuffer* src, CodeBuffer* dest) {
   504   int sect = dest->section_index_of(newa);
   505   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   506   address ostart = src->code_section(sect)->start();
   507   address nstart = dest->code_section(sect)->start();
   508   return ostart + (newa - nstart);
   509 }
   511 address Relocation::new_addr_for(address olda,
   512                                  const CodeBuffer* src, CodeBuffer* dest) {
   513   debug_only(const CodeBuffer* src0 = src);
   514   int sect = CodeBuffer::SECT_NONE;
   515   // Look for olda in the source buffer, and all previous incarnations
   516   // if the source buffer has been expanded.
   517   for (; src != NULL; src = src->before_expand()) {
   518     sect = src->section_index_of(olda);
   519     if (sect != CodeBuffer::SECT_NONE)  break;
   520   }
   521   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   522   address ostart = src->code_section(sect)->start();
   523   address nstart = dest->code_section(sect)->start();
   524   return nstart + (olda - ostart);
   525 }
   527 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
   528   address addr0 = addr;
   529   if (addr0 == NULL || dest->allocates2(addr0))  return;
   530   CodeBuffer* cb = dest->outer();
   531   addr = new_addr_for(addr0, cb, cb);
   532   assert(allow_other_sections || dest->contains2(addr),
   533          "addr must be in required section");
   534 }
   537 void CallRelocation::set_destination(address x) {
   538   pd_set_call_destination(x);
   539 }
   541 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   542   // Usually a self-relative reference to an external routine.
   543   // On some platforms, the reference is absolute (not self-relative).
   544   // The enhanced use of pd_call_destination sorts this all out.
   545   address orig_addr = old_addr_for(addr(), src, dest);
   546   address callee    = pd_call_destination(orig_addr);
   547   // Reassert the callee address, this time in the new copy of the code.
   548   pd_set_call_destination(callee);
   549 }
   552 //// pack/unpack methods
   554 void oop_Relocation::pack_data_to(CodeSection* dest) {
   555   short* p = (short*) dest->locs_end();
   556   p = pack_2_ints_to(p, _oop_index, _offset);
   557   dest->set_locs_end((relocInfo*) p);
   558 }
   561 void oop_Relocation::unpack_data() {
   562   unpack_2_ints(_oop_index, _offset);
   563 }
   566 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
   567   short*  p     = (short*) dest->locs_end();
   568   address point =          dest->locs_point();
   570   // Try to make a pointer NULL first.
   571   if (_oop_limit >= point &&
   572       _oop_limit <= point + NativeCall::instruction_size) {
   573     _oop_limit = NULL;
   574   }
   575   // If the _oop_limit is NULL, it "defaults" to the end of the call.
   576   // See ic_call_Relocation::oop_limit() below.
   578   normalize_address(_first_oop, dest);
   579   normalize_address(_oop_limit, dest);
   580   jint x0 = scaled_offset_null_special(_first_oop, point);
   581   jint x1 = scaled_offset_null_special(_oop_limit, point);
   582   p = pack_2_ints_to(p, x0, x1);
   583   dest->set_locs_end((relocInfo*) p);
   584 }
   587 void virtual_call_Relocation::unpack_data() {
   588   jint x0, x1; unpack_2_ints(x0, x1);
   589   address point = addr();
   590   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
   591   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
   592 }
   595 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
   596   short* p = (short*) dest->locs_end();
   597   CodeSection* insts = dest->outer()->insts();
   598   normalize_address(_static_call, insts);
   599   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
   600   dest->set_locs_end((relocInfo*) p);
   601 }
   603 void static_stub_Relocation::unpack_data() {
   604   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
   605   _static_call = address_from_scaled_offset(unpack_1_int(), base);
   606 }
   609 void external_word_Relocation::pack_data_to(CodeSection* dest) {
   610   short* p = (short*) dest->locs_end();
   611   int32_t index = runtime_address_to_index(_target);
   612 #ifndef _LP64
   613   p = pack_1_int_to(p, index);
   614 #else
   615   if (is_index(index)) {
   616     p = pack_2_ints_to(p, index, 0);
   617   } else {
   618     jlong t = (jlong) _target;
   619     int32_t lo = low(t);
   620     int32_t hi = high(t);
   621     p = pack_2_ints_to(p, lo, hi);
   622     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
   623     assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
   624   }
   625 #endif /* _LP64 */
   626   dest->set_locs_end((relocInfo*) p);
   627 }
   630 void external_word_Relocation::unpack_data() {
   631 #ifndef _LP64
   632   _target = index_to_runtime_address(unpack_1_int());
   633 #else
   634   int32_t lo, hi;
   635   unpack_2_ints(lo, hi);
   636   jlong t = jlong_from(hi, lo);;
   637   if (is_index(t)) {
   638     _target = index_to_runtime_address(t);
   639   } else {
   640     _target = (address) t;
   641   }
   642 #endif /* _LP64 */
   643 }
   646 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
   647   short* p = (short*) dest->locs_end();
   648   normalize_address(_target, dest, true);
   650   // Check whether my target address is valid within this section.
   651   // If not, strengthen the relocation type to point to another section.
   652   int sindex = _section;
   653   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
   654       && (!dest->allocates(_target) || _target == dest->locs_point())) {
   655     sindex = dest->outer()->section_index_of(_target);
   656     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
   657     relocInfo* base = dest->locs_end() - 1;
   658     assert(base->type() == this->type(), "sanity");
   659     // Change the written type, to be section_word_type instead.
   660     base->set_type(relocInfo::section_word_type);
   661   }
   663   // Note: An internal_word relocation cannot refer to its own instruction,
   664   // because we reserve "0" to mean that the pointer itself is embedded
   665   // in the code stream.  We use a section_word relocation for such cases.
   667   if (sindex == CodeBuffer::SECT_NONE) {
   668     assert(type() == relocInfo::internal_word_type, "must be base class");
   669     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
   670     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
   671     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
   672     p = pack_1_int_to(p, x0);
   673   } else {
   674     assert(_target != NULL, "sanity");
   675     CodeSection* sect = dest->outer()->code_section(sindex);
   676     guarantee(sect->allocates2(_target), "must be in correct section");
   677     address base = sect->start();
   678     jint offset = scaled_offset(_target, base);
   679     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
   680     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
   681     p = pack_1_int_to(p, (offset << section_width) | sindex);
   682   }
   684   dest->set_locs_end((relocInfo*) p);
   685 }
   688 void internal_word_Relocation::unpack_data() {
   689   jint x0 = unpack_1_int();
   690   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
   691   _section = CodeBuffer::SECT_NONE;
   692 }
   695 void section_word_Relocation::unpack_data() {
   696   jint    x      = unpack_1_int();
   697   jint    offset = (x >> section_width);
   698   int     sindex = (x & ((1<<section_width)-1));
   699   address base   = binding()->section_start(sindex);
   701   _section = sindex;
   702   _target  = address_from_scaled_offset(offset, base);
   703 }
   706 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
   707   short* p = (short*) dest->locs_end();
   708   address point = dest->locs_point();
   710   *p++ = _bits;
   712   assert(_target != NULL, "sanity");
   714   if (internal())  normalize_address(_target, dest);
   716   jint target_bits =
   717     (jint)( internal() ? scaled_offset           (_target, point)
   718                        : runtime_address_to_index(_target) );
   719   if (settable()) {
   720     // save space for set_target later
   721     p = add_jint(p, target_bits);
   722   } else {
   723     p = add_var_int(p, target_bits);
   724   }
   726   for (int i = 0; i < instrlen(); i++) {
   727     // put placeholder words until bytes can be saved
   728     p = add_short(p, (short)0x7777);
   729   }
   731   dest->set_locs_end((relocInfo*) p);
   732 }
   735 void breakpoint_Relocation::unpack_data() {
   736   _bits = live_bits();
   738   int targetlen = datalen() - 1 - instrlen();
   739   jint target_bits = 0;
   740   if (targetlen == 0)       target_bits = 0;
   741   else if (targetlen == 1)  target_bits = *(data()+1);
   742   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
   743   else                      { ShouldNotReachHere(); }
   745   _target = internal() ? address_from_scaled_offset(target_bits, addr())
   746                        : index_to_runtime_address  (target_bits);
   747 }
   750 //// miscellaneous methods
   751 oop* oop_Relocation::oop_addr() {
   752   int n = _oop_index;
   753   if (n == 0) {
   754     // oop is stored in the code stream
   755     return (oop*) pd_address_in_code();
   756   } else {
   757     // oop is stored in table at CodeBlob::oops_begin
   758     return code()->oop_addr_at(n);
   759   }
   760 }
   763 oop oop_Relocation::oop_value() {
   764   oop v = *oop_addr();
   765   // clean inline caches store a special pseudo-null
   766   if (v == (oop)Universe::non_oop_word())  v = NULL;
   767   return v;
   768 }
   771 void oop_Relocation::fix_oop_relocation() {
   772   if (!oop_is_immediate()) {
   773     // get the oop from the pool, and re-insert it into the instruction:
   774     set_value(value());
   775   }
   776 }
   779 RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
   780                                                 oop* &oop_addr, bool *is_optimized) {
   781   assert(ic_call != NULL, "ic_call address must be set");
   782   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
   783   if (code == NULL) {
   784     if (ic_call != NULL) {
   785       code = CodeCache::find_blob(ic_call);
   786     } else if (first_oop != NULL) {
   787       code = CodeCache::find_blob(first_oop);
   788     }
   789     assert(code != NULL, "address to parse must be in CodeBlob");
   790   }
   791   assert(ic_call   == NULL || code->contains(ic_call),   "must be in CodeBlob");
   792   assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
   794   address oop_limit = NULL;
   796   if (ic_call != NULL) {
   797     // search for the ic_call at the given address
   798     RelocIterator iter(code, ic_call, ic_call+1);
   799     bool ret = iter.next();
   800     assert(ret == true, "relocInfo must exist at this address");
   801     assert(iter.addr() == ic_call, "must find ic_call");
   802     if (iter.type() == relocInfo::virtual_call_type) {
   803       virtual_call_Relocation* r = iter.virtual_call_reloc();
   804       first_oop = r->first_oop();
   805       oop_limit = r->oop_limit();
   806       *is_optimized = false;
   807     } else {
   808       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   809       *is_optimized = true;
   810       oop_addr = NULL;
   811       first_oop = NULL;
   812       return iter;
   813     }
   814   }
   816   // search for the first_oop, to get its oop_addr
   817   RelocIterator all_oops(code, first_oop);
   818   RelocIterator iter = all_oops;
   819   iter.set_limit(first_oop+1);
   820   bool found_oop = false;
   821   while (iter.next()) {
   822     if (iter.type() == relocInfo::oop_type) {
   823       assert(iter.addr() == first_oop, "must find first_oop");
   824       oop_addr = iter.oop_reloc()->oop_addr();
   825       found_oop = true;
   826       break;
   827     }
   828   }
   829   assert(found_oop, "must find first_oop");
   831   bool did_reset = false;
   832   while (ic_call == NULL) {
   833     // search forward for the ic_call matching the given first_oop
   834     while (iter.next()) {
   835       if (iter.type() == relocInfo::virtual_call_type) {
   836         virtual_call_Relocation* r = iter.virtual_call_reloc();
   837         if (r->first_oop() == first_oop) {
   838           ic_call   = r->addr();
   839           oop_limit = r->oop_limit();
   840           break;
   841         }
   842       }
   843     }
   844     guarantee(!did_reset, "cannot find ic_call");
   845     iter = RelocIterator(code); // search the whole CodeBlob
   846     did_reset = true;
   847   }
   849   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
   850   all_oops.set_limit(oop_limit);
   851   return all_oops;
   852 }
   855 address virtual_call_Relocation::first_oop() {
   856   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
   857   return _first_oop;
   858 }
   861 address virtual_call_Relocation::oop_limit() {
   862   if (_oop_limit == NULL)
   863     return addr() + NativeCall::instruction_size;
   864   else
   865     return _oop_limit;
   866 }
   870 void virtual_call_Relocation::clear_inline_cache() {
   871   // No stubs for ICs
   872   // Clean IC
   873   ResourceMark rm;
   874   CompiledIC* icache = CompiledIC_at(this);
   875   icache->set_to_clean();
   876 }
   879 void opt_virtual_call_Relocation::clear_inline_cache() {
   880   // No stubs for ICs
   881   // Clean IC
   882   ResourceMark rm;
   883   CompiledIC* icache = CompiledIC_at(this);
   884   icache->set_to_clean();
   885 }
   888 address opt_virtual_call_Relocation::static_stub() {
   889   // search for the static stub who points back to this static call
   890   address static_call_addr = addr();
   891   RelocIterator iter(code());
   892   while (iter.next()) {
   893     if (iter.type() == relocInfo::static_stub_type) {
   894       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   895         return iter.addr();
   896       }
   897     }
   898   }
   899   return NULL;
   900 }
   903 void static_call_Relocation::clear_inline_cache() {
   904   // Safe call site info
   905   CompiledStaticCall* handler = compiledStaticCall_at(this);
   906   handler->set_to_clean();
   907 }
   910 address static_call_Relocation::static_stub() {
   911   // search for the static stub who points back to this static call
   912   address static_call_addr = addr();
   913   RelocIterator iter(code());
   914   while (iter.next()) {
   915     if (iter.type() == relocInfo::static_stub_type) {
   916       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   917         return iter.addr();
   918       }
   919     }
   920   }
   921   return NULL;
   922 }
   925 void static_stub_Relocation::clear_inline_cache() {
   926   // Call stub is only used when calling the interpreted code.
   927   // It does not really need to be cleared, except that we want to clean out the methodoop.
   928   CompiledStaticCall::set_stub_to_clean(this);
   929 }
   932 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   933   address target = _target;
   934   if (target == NULL) {
   935     // An absolute embedded reference to an external location,
   936     // which means there is nothing to fix here.
   937     return;
   938   }
   939   // Probably this reference is absolute, not relative, so the
   940   // following is probably a no-op.
   941   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
   942   set_value(target);
   943 }
   946 address external_word_Relocation::target() {
   947   address target = _target;
   948   if (target == NULL) {
   949     target = pd_get_address_from_code();
   950   }
   951   return target;
   952 }
   955 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   956   address target = _target;
   957   if (target == NULL) {
   958     if (addr_in_const()) {
   959       target = new_addr_for(*(address*)addr(), src, dest);
   960     } else {
   961       target = new_addr_for(pd_get_address_from_code(), src, dest);
   962     }
   963   }
   964   set_value(target);
   965 }
   968 address internal_word_Relocation::target() {
   969   address target = _target;
   970   if (target == NULL) {
   971     target = pd_get_address_from_code();
   972   }
   973   return target;
   974 }
   977 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
   978   bool active    = false;
   979   bool enabled   = (kind == initialization);
   980   bool removable = (kind != safepoint);
   981   bool settable  = (target == NULL);
   983   int bits = kind;
   984   if (enabled)    bits |= enabled_state;
   985   if (internal)   bits |= internal_attr;
   986   if (removable)  bits |= removable_attr;
   987   if (settable)   bits |= settable_attr;
   989   _bits = bits | high_bit;
   990   _target = target;
   992   assert(this->kind()      == kind,      "kind encoded");
   993   assert(this->enabled()   == enabled,   "enabled encoded");
   994   assert(this->active()    == active,    "active encoded");
   995   assert(this->internal()  == internal,  "internal encoded");
   996   assert(this->removable() == removable, "removable encoded");
   997   assert(this->settable()  == settable,  "settable encoded");
   998 }
  1001 address breakpoint_Relocation::target() const {
  1002   return _target;
  1006 void breakpoint_Relocation::set_target(address x) {
  1007   assert(settable(), "must be settable");
  1008   jint target_bits =
  1009     (jint)(internal() ? scaled_offset           (x, addr())
  1010                       : runtime_address_to_index(x));
  1011   short* p = &live_bits() + 1;
  1012   p = add_jint(p, target_bits);
  1013   assert(p == instrs(), "new target must fit");
  1014   _target = x;
  1018 void breakpoint_Relocation::set_enabled(bool b) {
  1019   if (enabled() == b) return;
  1021   if (b) {
  1022     set_bits(bits() | enabled_state);
  1023   } else {
  1024     set_active(false);          // remove the actual breakpoint insn, if any
  1025     set_bits(bits() & ~enabled_state);
  1030 void breakpoint_Relocation::set_active(bool b) {
  1031   assert(!b || enabled(), "cannot activate a disabled breakpoint");
  1033   if (active() == b) return;
  1035   // %%% should probably seize a lock here (might not be the right lock)
  1036   //MutexLockerEx ml_patch(Patching_lock, true);
  1037   //if (active() == b)  return;         // recheck state after locking
  1039   if (b) {
  1040     set_bits(bits() | active_state);
  1041     if (instrlen() == 0)
  1042       fatal("breakpoints in original code must be undoable");
  1043     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
  1044   } else {
  1045     set_bits(bits() & ~active_state);
  1046     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
  1051 //---------------------------------------------------------------------------------
  1052 // Non-product code
  1054 #ifndef PRODUCT
  1056 static const char* reloc_type_string(relocInfo::relocType t) {
  1057   switch (t) {
  1058   #define EACH_CASE(name) \
  1059   case relocInfo::name##_type: \
  1060     return #name;
  1062   APPLY_TO_RELOCATIONS(EACH_CASE);
  1063   #undef EACH_CASE
  1065   case relocInfo::none:
  1066     return "none";
  1067   case relocInfo::data_prefix_tag:
  1068     return "prefix";
  1069   default:
  1070     return "UNKNOWN RELOC TYPE";
  1075 void RelocIterator::print_current() {
  1076   if (!has_current()) {
  1077     tty->print_cr("(no relocs)");
  1078     return;
  1080   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
  1081              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
  1082   if (current()->format() != 0)
  1083     tty->print(" format=%d", current()->format());
  1084   if (datalen() == 1) {
  1085     tty->print(" data=%d", data()[0]);
  1086   } else if (datalen() > 0) {
  1087     tty->print(" data={");
  1088     for (int i = 0; i < datalen(); i++) {
  1089       tty->print("%04x", data()[i] & 0xFFFF);
  1091     tty->print("}");
  1093   tty->print("]");
  1094   switch (type()) {
  1095   case relocInfo::oop_type:
  1097       oop_Relocation* r = oop_reloc();
  1098       oop* oop_addr  = NULL;
  1099       oop  raw_oop   = NULL;
  1100       oop  oop_value = NULL;
  1101       if (code() != NULL || r->oop_is_immediate()) {
  1102         oop_addr  = r->oop_addr();
  1103         raw_oop   = *oop_addr;
  1104         oop_value = r->oop_value();
  1106       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
  1107                  oop_addr, (address)raw_oop, r->offset());
  1108       // Do not print the oop by default--we want this routine to
  1109       // work even during GC or other inconvenient times.
  1110       if (WizardMode && oop_value != NULL) {
  1111         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
  1112         oop_value->print_value_on(tty);
  1114       break;
  1116   case relocInfo::external_word_type:
  1117   case relocInfo::internal_word_type:
  1118   case relocInfo::section_word_type:
  1120       DataRelocation* r = (DataRelocation*) reloc();
  1121       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
  1122       break;
  1124   case relocInfo::static_call_type:
  1125   case relocInfo::runtime_call_type:
  1127       CallRelocation* r = (CallRelocation*) reloc();
  1128       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
  1129       break;
  1131   case relocInfo::virtual_call_type:
  1133       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
  1134       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
  1135                  r->destination(), r->first_oop(), r->oop_limit());
  1136       break;
  1138   case relocInfo::static_stub_type:
  1140       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
  1141       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
  1142       break;
  1145   tty->cr();
  1149 void RelocIterator::print() {
  1150   RelocIterator save_this = (*this);
  1151   relocInfo* scan = _current;
  1152   if (!has_current())  scan += 1;  // nothing to scan here!
  1154   bool skip_next = has_current();
  1155   bool got_next;
  1156   while (true) {
  1157     got_next = (skip_next || next());
  1158     skip_next = false;
  1160     tty->print("         @" INTPTR_FORMAT ": ", scan);
  1161     relocInfo* newscan = _current+1;
  1162     if (!has_current())  newscan -= 1;  // nothing to scan here!
  1163     while (scan < newscan) {
  1164       tty->print("%04x", *(short*)scan & 0xFFFF);
  1165       scan++;
  1167     tty->cr();
  1169     if (!got_next)  break;
  1170     print_current();
  1173   (*this) = save_this;
  1176 // For the debugger:
  1177 extern "C"
  1178 void print_blob_locs(CodeBlob* cb) {
  1179   cb->print();
  1180   RelocIterator iter(cb);
  1181   iter.print();
  1183 extern "C"
  1184 void print_buf_locs(CodeBuffer* cb) {
  1185   FlagSetting fs(PrintRelocations, true);
  1186   cb->print();
  1188 #endif // !PRODUCT

mercurial