src/share/vm/code/relocInfo.cpp

Thu, 20 May 2010 06:34:23 -0700

author
twisti
date
Thu, 20 May 2010 06:34:23 -0700
changeset 1918
1a5913bf5e19
parent 435
a61af66fc99e
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6951083: oops and relocations should part of nmethod not CodeBlob
Summary: This moves the oops from Codeblob to nmethod.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_relocInfo.cpp.incl"
    29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
    32 // Implementation of relocInfo
    34 #ifdef ASSERT
    35 relocInfo::relocInfo(relocType t, int off, int f) {
    36   assert(t != data_prefix_tag, "cannot build a prefix this way");
    37   assert((t & type_mask) == t, "wrong type");
    38   assert((f & format_mask) == f, "wrong format");
    39   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
    40   assert((off & (offset_unit-1)) == 0, "misaligned offset");
    41   (*this) = relocInfo(t, RAW_BITS, off, f);
    42 }
    43 #endif
    45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
    46   relocInfo* data = this+1;  // here's where the data might go
    47   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
    48   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
    49   relocInfo* data_limit = dest->locs_end();
    50   if (data_limit > data) {
    51     relocInfo suffix = (*this);
    52     data_limit = this->finish_prefix((short*) data_limit);
    53     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
    54     *data_limit = suffix;
    55     dest->set_locs_end(data_limit+1);
    56   }
    57 }
    59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
    60   assert(sizeof(relocInfo) == sizeof(short), "change this code");
    61   short* p = (short*)(this+1);
    62   assert(prefix_limit >= p, "must be a valid span of data");
    63   int plen = prefix_limit - p;
    64   if (plen == 0) {
    65     debug_only(_value = 0xFFFF);
    66     return this;                         // no data: remove self completely
    67   }
    68   if (plen == 1 && fits_into_immediate(p[0])) {
    69     (*this) = immediate_relocInfo(p[0]); // move data inside self
    70     return this+1;
    71   }
    72   // cannot compact, so just update the count and return the limit pointer
    73   (*this) = prefix_relocInfo(plen);   // write new datalen
    74   assert(data() + datalen() == prefix_limit, "pointers must line up");
    75   return (relocInfo*)prefix_limit;
    76 }
    79 void relocInfo::set_type(relocType t) {
    80   int old_offset = addr_offset();
    81   int old_format = format();
    82   (*this) = relocInfo(t, old_offset, old_format);
    83   assert(type()==(int)t, "sanity check");
    84   assert(addr_offset()==old_offset, "sanity check");
    85   assert(format()==old_format, "sanity check");
    86 }
    89 void relocInfo::set_format(int f) {
    90   int old_offset = addr_offset();
    91   assert((f & format_mask) == f, "wrong format");
    92   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
    93   assert(addr_offset()==old_offset, "sanity check");
    94 }
    97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
    98   bool found = false;
    99   while (itr->next() && !found) {
   100     if (itr->addr() == pc) {
   101       assert(itr->type()==old_type, "wrong relocInfo type found");
   102       itr->current()->set_type(new_type);
   103       found=true;
   104     }
   105   }
   106   assert(found, "no relocInfo found for pc");
   107 }
   110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
   111   change_reloc_info_for_address(itr, pc, old_type, none);
   112 }
   115 // ----------------------------------------------------------------------------------------------------
   116 // Implementation of RelocIterator
   118 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
   119   initialize_misc();
   121   if (nm == NULL && begin != NULL) {
   122     // allow nmethod to be deduced from beginning address
   123     CodeBlob* cb = CodeCache::find_blob(begin);
   124     nm = cb->as_nmethod_or_null();
   125   }
   126   assert(nm != NULL, "must be able to deduce nmethod from other arguments");
   128   _code    = nm;
   129   _current = nm->relocation_begin() - 1;
   130   _end     = nm->relocation_end();
   131   _addr    = (address) nm->instructions_begin();
   133   assert(!has_current(), "just checking");
   134   address code_end = nm->instructions_end();
   136   assert(begin == NULL || begin >= nm->instructions_begin(), "in bounds");
   137  // FIX THIS  assert(limit == NULL || limit <= code_end,     "in bounds");
   138   set_limits(begin, limit);
   139 }
   142 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
   143   initialize_misc();
   145   _current = cs->locs_start()-1;
   146   _end     = cs->locs_end();
   147   _addr    = cs->start();
   148   _code    = NULL; // Not cb->blob();
   150   CodeBuffer* cb = cs->outer();
   151   assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
   152   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   153     _section_start[n] = cb->code_section(n)->start();
   154   }
   156   assert(!has_current(), "just checking");
   158   assert(begin == NULL || begin >= cs->start(), "in bounds");
   159   assert(limit == NULL || limit <= cs->end(),   "in bounds");
   160   set_limits(begin, limit);
   161 }
   164 enum { indexCardSize = 128 };
   165 struct RelocIndexEntry {
   166   jint addr_offset;          // offset from header_end of an addr()
   167   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
   168 };
   171 static inline int num_cards(int code_size) {
   172   return (code_size-1) / indexCardSize;
   173 }
   176 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
   177   if (!UseRelocIndex)  return locs_size;   // no index
   178   code_size = round_to(code_size, oopSize);
   179   locs_size = round_to(locs_size, oopSize);
   180   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
   181   // format of indexed relocs:
   182   //   relocation_begin:   relocInfo ...
   183   //   index:              (addr,reloc#) ...
   184   //                       indexSize           :relocation_end
   185   return locs_size + index_size + BytesPerInt;
   186 }
   189 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
   190   address relocation_begin = (address)dest_begin;
   191   address relocation_end   = (address)dest_end;
   192   int     total_size       = relocation_end - relocation_begin;
   193   int     locs_size        = dest_count * sizeof(relocInfo);
   194   if (!UseRelocIndex) {
   195     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
   196     return;
   197   }
   198   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
   199   int     ncards           = index_size / sizeof(RelocIndexEntry);
   200   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
   201   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
   202   jint*   index_size_addr  = (jint*)relocation_end - 1;
   204   assert(sizeof(jint) == BytesPerInt, "change this code");
   206   *index_size_addr = index_size;
   207   if (index_size != 0) {
   208     assert(index_size > 0, "checkin'");
   210     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
   211     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
   213     // walk over the relocations, and fill in index entries as we go
   214     RelocIterator iter;
   215     const address    initial_addr    = NULL;
   216     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
   218     iter._code    = NULL;
   219     iter._addr    = initial_addr;
   220     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
   221     iter._current = initial_current;
   222     iter._end     = dest_begin + dest_count;
   224     int i = 0;
   225     address next_card_addr = (address)indexCardSize;
   226     int addr_offset = 0;
   227     int reloc_offset = 0;
   228     while (true) {
   229       // Checkpoint the iterator before advancing it.
   230       addr_offset  = iter._addr    - initial_addr;
   231       reloc_offset = iter._current - initial_current;
   232       if (!iter.next())  break;
   233       while (iter.addr() >= next_card_addr) {
   234         index[i].addr_offset  = addr_offset;
   235         index[i].reloc_offset = reloc_offset;
   236         i++;
   237         next_card_addr += indexCardSize;
   238       }
   239     }
   240     while (i < ncards) {
   241       index[i].addr_offset  = addr_offset;
   242       index[i].reloc_offset = reloc_offset;
   243       i++;
   244     }
   245   }
   246 }
   249 void RelocIterator::set_limits(address begin, address limit) {
   250   int index_size = 0;
   251   if (UseRelocIndex && _code != NULL) {
   252     index_size = ((jint*)_end)[-1];
   253     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
   254   }
   256   _limit = limit;
   258   // the limit affects this next stuff:
   259   if (begin != NULL) {
   260 #ifdef ASSERT
   261     // In ASSERT mode we do not actually use the index, but simply
   262     // check that its contents would have led us to the right answer.
   263     address addrCheck = _addr;
   264     relocInfo* infoCheck = _current;
   265 #endif // ASSERT
   266     if (index_size > 0) {
   267       // skip ahead
   268       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
   269       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
   270       assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
   271       int card = (begin - _addr) / indexCardSize;
   272       if (card > 0) {
   273         if (index+card-1 < index_limit)  index += card-1;
   274         else                             index = index_limit - 1;
   275 #ifdef ASSERT
   276         addrCheck = _addr    + index->addr_offset;
   277         infoCheck = _current + index->reloc_offset;
   278 #else
   279         // Advance the iterator immediately to the last valid state
   280         // for the previous card.  Calling "next" will then advance
   281         // it to the first item on the required card.
   282         _addr    += index->addr_offset;
   283         _current += index->reloc_offset;
   284 #endif // ASSERT
   285       }
   286     }
   288     relocInfo* backup;
   289     address    backup_addr;
   290     while (true) {
   291       backup      = _current;
   292       backup_addr = _addr;
   293 #ifdef ASSERT
   294       if (backup == infoCheck) {
   295         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
   296       } else {
   297         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
   298       }
   299 #endif // ASSERT
   300       if (!next() || addr() >= begin) break;
   301     }
   302     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
   303     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
   304     // At this point, either we are at the first matching record,
   305     // or else there is no such record, and !has_current().
   306     // In either case, revert to the immediatly preceding state.
   307     _current = backup;
   308     _addr    = backup_addr;
   309     set_has_current(false);
   310   }
   311 }
   314 void RelocIterator::set_limit(address limit) {
   315   address code_end = (address)code() + code()->size();
   316   assert(limit == NULL || limit <= code_end, "in bounds");
   317   _limit = limit;
   318 }
   321 void PatchingRelocIterator:: prepass() {
   322   // turn breakpoints off during patching
   323   _init_state = (*this);        // save cursor
   324   while (next()) {
   325     if (type() == relocInfo::breakpoint_type) {
   326       breakpoint_reloc()->set_active(false);
   327     }
   328   }
   329   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
   330 }
   333 void PatchingRelocIterator:: postpass() {
   334   // turn breakpoints back on after patching
   335   (RelocIterator&)(*this) = _init_state;        // reset cursor again
   336   while (next()) {
   337     if (type() == relocInfo::breakpoint_type) {
   338       breakpoint_Relocation* bpt = breakpoint_reloc();
   339       bpt->set_active(bpt->enabled());
   340     }
   341   }
   342 }
   345 // All the strange bit-encodings are in here.
   346 // The idea is to encode relocation data which are small integers
   347 // very efficiently (a single extra halfword).  Larger chunks of
   348 // relocation data need a halfword header to hold their size.
   349 void RelocIterator::advance_over_prefix() {
   350   if (_current->is_datalen()) {
   351     _data    = (short*) _current->data();
   352     _datalen =          _current->datalen();
   353     _current += _datalen + 1;   // skip the embedded data & header
   354   } else {
   355     _databuf = _current->immediate();
   356     _data = &_databuf;
   357     _datalen = 1;
   358     _current++;                 // skip the header
   359   }
   360   // The client will see the following relocInfo, whatever that is.
   361   // It is the reloc to which the preceding data applies.
   362 }
   365 address RelocIterator::compute_section_start(int n) const {
   366 // This routine not only computes a section start, but also
   367 // memoizes it for later.
   368 #define CACHE ((RelocIterator*)this)->_section_start[n]
   369   CodeBlob* cb = code();
   370   guarantee(cb != NULL, "must have a code blob");
   371   if (n == CodeBuffer::SECT_INSTS)
   372     return CACHE = cb->instructions_begin();
   373   assert(cb->is_nmethod(), "only nmethods have these sections");
   374   nmethod* nm = (nmethod*) cb;
   375   address res = NULL;
   376   switch (n) {
   377   case CodeBuffer::SECT_STUBS:
   378     res = nm->stub_begin();
   379     break;
   380   case CodeBuffer::SECT_CONSTS:
   381     res = nm->consts_begin();
   382     break;
   383   default:
   384     ShouldNotReachHere();
   385   }
   386   assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
   387   CACHE = res;
   388   return res;
   389 #undef CACHE
   390 }
   393 Relocation* RelocIterator::reloc() {
   394   // (take the "switch" out-of-line)
   395   relocInfo::relocType t = type();
   396   if (false) {}
   397   #define EACH_TYPE(name)                             \
   398   else if (t == relocInfo::name##_type) {             \
   399     return name##_reloc();                            \
   400   }
   401   APPLY_TO_RELOCATIONS(EACH_TYPE);
   402   #undef EACH_TYPE
   403   assert(t == relocInfo::none, "must be padding");
   404   return new(_rh) Relocation();
   405 }
   408 //////// Methods for flyweight Relocation types
   411 RelocationHolder RelocationHolder::plus(int offset) const {
   412   if (offset != 0) {
   413     switch (type()) {
   414     case relocInfo::none:
   415       break;
   416     case relocInfo::oop_type:
   417       {
   418         oop_Relocation* r = (oop_Relocation*)reloc();
   419         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
   420       }
   421     default:
   422       ShouldNotReachHere();
   423     }
   424   }
   425   return (*this);
   426 }
   429 void Relocation::guarantee_size() {
   430   guarantee(false, "Make _relocbuf bigger!");
   431 }
   433     // some relocations can compute their own values
   434 address Relocation::value() {
   435   ShouldNotReachHere();
   436   return NULL;
   437 }
   440 void Relocation::set_value(address x) {
   441   ShouldNotReachHere();
   442 }
   445 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
   446   if (rtype == relocInfo::none)  return RelocationHolder::none;
   447   relocInfo ri = relocInfo(rtype, 0);
   448   RelocIterator itr;
   449   itr.set_current(ri);
   450   itr.reloc();
   451   return itr._rh;
   452 }
   455 static inline bool is_index(intptr_t index) {
   456   return 0 < index && index < os::vm_page_size();
   457 }
   460 int32_t Relocation::runtime_address_to_index(address runtime_address) {
   461   assert(!is_index((intptr_t)runtime_address), "must not look like an index");
   463   if (runtime_address == NULL)  return 0;
   465   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
   466   if (p != NULL && p->begin() == runtime_address) {
   467     assert(is_index(p->index()), "there must not be too many stubs");
   468     return (int32_t)p->index();
   469   } else {
   470     // Known "miscellaneous" non-stub pointers:
   471     // os::get_polling_page(), SafepointSynchronize::address_of_state()
   472     if (PrintRelocations) {
   473       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
   474     }
   475 #ifndef _LP64
   476     return (int32_t) (intptr_t)runtime_address;
   477 #else
   478     // didn't fit return non-index
   479     return -1;
   480 #endif /* _LP64 */
   481   }
   482 }
   485 address Relocation::index_to_runtime_address(int32_t index) {
   486   if (index == 0)  return NULL;
   488   if (is_index(index)) {
   489     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
   490     assert(p != NULL, "there must be a stub for this index");
   491     return p->begin();
   492   } else {
   493 #ifndef _LP64
   494     // this only works on 32bit machines
   495     return (address) ((intptr_t) index);
   496 #else
   497     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
   498     return NULL;
   499 #endif /* _LP64 */
   500   }
   501 }
   503 address Relocation::old_addr_for(address newa,
   504                                  const CodeBuffer* src, CodeBuffer* dest) {
   505   int sect = dest->section_index_of(newa);
   506   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   507   address ostart = src->code_section(sect)->start();
   508   address nstart = dest->code_section(sect)->start();
   509   return ostart + (newa - nstart);
   510 }
   512 address Relocation::new_addr_for(address olda,
   513                                  const CodeBuffer* src, CodeBuffer* dest) {
   514   debug_only(const CodeBuffer* src0 = src);
   515   int sect = CodeBuffer::SECT_NONE;
   516   // Look for olda in the source buffer, and all previous incarnations
   517   // if the source buffer has been expanded.
   518   for (; src != NULL; src = src->before_expand()) {
   519     sect = src->section_index_of(olda);
   520     if (sect != CodeBuffer::SECT_NONE)  break;
   521   }
   522   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   523   address ostart = src->code_section(sect)->start();
   524   address nstart = dest->code_section(sect)->start();
   525   return nstart + (olda - ostart);
   526 }
   528 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
   529   address addr0 = addr;
   530   if (addr0 == NULL || dest->allocates2(addr0))  return;
   531   CodeBuffer* cb = dest->outer();
   532   addr = new_addr_for(addr0, cb, cb);
   533   assert(allow_other_sections || dest->contains2(addr),
   534          "addr must be in required section");
   535 }
   538 void CallRelocation::set_destination(address x) {
   539   pd_set_call_destination(x);
   540 }
   542 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   543   // Usually a self-relative reference to an external routine.
   544   // On some platforms, the reference is absolute (not self-relative).
   545   // The enhanced use of pd_call_destination sorts this all out.
   546   address orig_addr = old_addr_for(addr(), src, dest);
   547   address callee    = pd_call_destination(orig_addr);
   548   // Reassert the callee address, this time in the new copy of the code.
   549   pd_set_call_destination(callee);
   550 }
   553 //// pack/unpack methods
   555 void oop_Relocation::pack_data_to(CodeSection* dest) {
   556   short* p = (short*) dest->locs_end();
   557   p = pack_2_ints_to(p, _oop_index, _offset);
   558   dest->set_locs_end((relocInfo*) p);
   559 }
   562 void oop_Relocation::unpack_data() {
   563   unpack_2_ints(_oop_index, _offset);
   564 }
   567 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
   568   short*  p     = (short*) dest->locs_end();
   569   address point =          dest->locs_point();
   571   // Try to make a pointer NULL first.
   572   if (_oop_limit >= point &&
   573       _oop_limit <= point + NativeCall::instruction_size) {
   574     _oop_limit = NULL;
   575   }
   576   // If the _oop_limit is NULL, it "defaults" to the end of the call.
   577   // See ic_call_Relocation::oop_limit() below.
   579   normalize_address(_first_oop, dest);
   580   normalize_address(_oop_limit, dest);
   581   jint x0 = scaled_offset_null_special(_first_oop, point);
   582   jint x1 = scaled_offset_null_special(_oop_limit, point);
   583   p = pack_2_ints_to(p, x0, x1);
   584   dest->set_locs_end((relocInfo*) p);
   585 }
   588 void virtual_call_Relocation::unpack_data() {
   589   jint x0, x1; unpack_2_ints(x0, x1);
   590   address point = addr();
   591   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
   592   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
   593 }
   596 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
   597   short* p = (short*) dest->locs_end();
   598   CodeSection* insts = dest->outer()->insts();
   599   normalize_address(_static_call, insts);
   600   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
   601   dest->set_locs_end((relocInfo*) p);
   602 }
   604 void static_stub_Relocation::unpack_data() {
   605   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
   606   _static_call = address_from_scaled_offset(unpack_1_int(), base);
   607 }
   610 void external_word_Relocation::pack_data_to(CodeSection* dest) {
   611   short* p = (short*) dest->locs_end();
   612   int32_t index = runtime_address_to_index(_target);
   613 #ifndef _LP64
   614   p = pack_1_int_to(p, index);
   615 #else
   616   if (is_index(index)) {
   617     p = pack_2_ints_to(p, index, 0);
   618   } else {
   619     jlong t = (jlong) _target;
   620     int32_t lo = low(t);
   621     int32_t hi = high(t);
   622     p = pack_2_ints_to(p, lo, hi);
   623     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
   624     assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
   625   }
   626 #endif /* _LP64 */
   627   dest->set_locs_end((relocInfo*) p);
   628 }
   631 void external_word_Relocation::unpack_data() {
   632 #ifndef _LP64
   633   _target = index_to_runtime_address(unpack_1_int());
   634 #else
   635   int32_t lo, hi;
   636   unpack_2_ints(lo, hi);
   637   jlong t = jlong_from(hi, lo);;
   638   if (is_index(t)) {
   639     _target = index_to_runtime_address(t);
   640   } else {
   641     _target = (address) t;
   642   }
   643 #endif /* _LP64 */
   644 }
   647 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
   648   short* p = (short*) dest->locs_end();
   649   normalize_address(_target, dest, true);
   651   // Check whether my target address is valid within this section.
   652   // If not, strengthen the relocation type to point to another section.
   653   int sindex = _section;
   654   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
   655       && (!dest->allocates(_target) || _target == dest->locs_point())) {
   656     sindex = dest->outer()->section_index_of(_target);
   657     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
   658     relocInfo* base = dest->locs_end() - 1;
   659     assert(base->type() == this->type(), "sanity");
   660     // Change the written type, to be section_word_type instead.
   661     base->set_type(relocInfo::section_word_type);
   662   }
   664   // Note: An internal_word relocation cannot refer to its own instruction,
   665   // because we reserve "0" to mean that the pointer itself is embedded
   666   // in the code stream.  We use a section_word relocation for such cases.
   668   if (sindex == CodeBuffer::SECT_NONE) {
   669     assert(type() == relocInfo::internal_word_type, "must be base class");
   670     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
   671     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
   672     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
   673     p = pack_1_int_to(p, x0);
   674   } else {
   675     assert(_target != NULL, "sanity");
   676     CodeSection* sect = dest->outer()->code_section(sindex);
   677     guarantee(sect->allocates2(_target), "must be in correct section");
   678     address base = sect->start();
   679     jint offset = scaled_offset(_target, base);
   680     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
   681     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
   682     p = pack_1_int_to(p, (offset << section_width) | sindex);
   683   }
   685   dest->set_locs_end((relocInfo*) p);
   686 }
   689 void internal_word_Relocation::unpack_data() {
   690   jint x0 = unpack_1_int();
   691   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
   692   _section = CodeBuffer::SECT_NONE;
   693 }
   696 void section_word_Relocation::unpack_data() {
   697   jint    x      = unpack_1_int();
   698   jint    offset = (x >> section_width);
   699   int     sindex = (x & ((1<<section_width)-1));
   700   address base   = binding()->section_start(sindex);
   702   _section = sindex;
   703   _target  = address_from_scaled_offset(offset, base);
   704 }
   707 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
   708   short* p = (short*) dest->locs_end();
   709   address point = dest->locs_point();
   711   *p++ = _bits;
   713   assert(_target != NULL, "sanity");
   715   if (internal())  normalize_address(_target, dest);
   717   jint target_bits =
   718     (jint)( internal() ? scaled_offset           (_target, point)
   719                        : runtime_address_to_index(_target) );
   720   if (settable()) {
   721     // save space for set_target later
   722     p = add_jint(p, target_bits);
   723   } else {
   724     p = add_var_int(p, target_bits);
   725   }
   727   for (int i = 0; i < instrlen(); i++) {
   728     // put placeholder words until bytes can be saved
   729     p = add_short(p, (short)0x7777);
   730   }
   732   dest->set_locs_end((relocInfo*) p);
   733 }
   736 void breakpoint_Relocation::unpack_data() {
   737   _bits = live_bits();
   739   int targetlen = datalen() - 1 - instrlen();
   740   jint target_bits = 0;
   741   if (targetlen == 0)       target_bits = 0;
   742   else if (targetlen == 1)  target_bits = *(data()+1);
   743   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
   744   else                      { ShouldNotReachHere(); }
   746   _target = internal() ? address_from_scaled_offset(target_bits, addr())
   747                        : index_to_runtime_address  (target_bits);
   748 }
   751 //// miscellaneous methods
   752 oop* oop_Relocation::oop_addr() {
   753   int n = _oop_index;
   754   if (n == 0) {
   755     // oop is stored in the code stream
   756     return (oop*) pd_address_in_code();
   757   } else {
   758     // oop is stored in table at nmethod::oops_begin
   759     return code()->oop_addr_at(n);
   760   }
   761 }
   764 oop oop_Relocation::oop_value() {
   765   oop v = *oop_addr();
   766   // clean inline caches store a special pseudo-null
   767   if (v == (oop)Universe::non_oop_word())  v = NULL;
   768   return v;
   769 }
   772 void oop_Relocation::fix_oop_relocation() {
   773   if (!oop_is_immediate()) {
   774     // get the oop from the pool, and re-insert it into the instruction:
   775     set_value(value());
   776   }
   777 }
   780 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
   781                                                 oop* &oop_addr, bool *is_optimized) {
   782   assert(ic_call != NULL, "ic_call address must be set");
   783   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
   784   if (nm == NULL) {
   785     CodeBlob* code;
   786     if (ic_call != NULL) {
   787       code = CodeCache::find_blob(ic_call);
   788     } else if (first_oop != NULL) {
   789       code = CodeCache::find_blob(first_oop);
   790     }
   791     nm = code->as_nmethod_or_null();
   792     assert(nm != NULL, "address to parse must be in nmethod");
   793   }
   794   assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
   795   assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
   797   address oop_limit = NULL;
   799   if (ic_call != NULL) {
   800     // search for the ic_call at the given address
   801     RelocIterator iter(nm, ic_call, ic_call+1);
   802     bool ret = iter.next();
   803     assert(ret == true, "relocInfo must exist at this address");
   804     assert(iter.addr() == ic_call, "must find ic_call");
   805     if (iter.type() == relocInfo::virtual_call_type) {
   806       virtual_call_Relocation* r = iter.virtual_call_reloc();
   807       first_oop = r->first_oop();
   808       oop_limit = r->oop_limit();
   809       *is_optimized = false;
   810     } else {
   811       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   812       *is_optimized = true;
   813       oop_addr = NULL;
   814       first_oop = NULL;
   815       return iter;
   816     }
   817   }
   819   // search for the first_oop, to get its oop_addr
   820   RelocIterator all_oops(nm, first_oop);
   821   RelocIterator iter = all_oops;
   822   iter.set_limit(first_oop+1);
   823   bool found_oop = false;
   824   while (iter.next()) {
   825     if (iter.type() == relocInfo::oop_type) {
   826       assert(iter.addr() == first_oop, "must find first_oop");
   827       oop_addr = iter.oop_reloc()->oop_addr();
   828       found_oop = true;
   829       break;
   830     }
   831   }
   832   assert(found_oop, "must find first_oop");
   834   bool did_reset = false;
   835   while (ic_call == NULL) {
   836     // search forward for the ic_call matching the given first_oop
   837     while (iter.next()) {
   838       if (iter.type() == relocInfo::virtual_call_type) {
   839         virtual_call_Relocation* r = iter.virtual_call_reloc();
   840         if (r->first_oop() == first_oop) {
   841           ic_call   = r->addr();
   842           oop_limit = r->oop_limit();
   843           break;
   844         }
   845       }
   846     }
   847     guarantee(!did_reset, "cannot find ic_call");
   848     iter = RelocIterator(nm); // search the whole nmethod
   849     did_reset = true;
   850   }
   852   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
   853   all_oops.set_limit(oop_limit);
   854   return all_oops;
   855 }
   858 address virtual_call_Relocation::first_oop() {
   859   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
   860   return _first_oop;
   861 }
   864 address virtual_call_Relocation::oop_limit() {
   865   if (_oop_limit == NULL)
   866     return addr() + NativeCall::instruction_size;
   867   else
   868     return _oop_limit;
   869 }
   873 void virtual_call_Relocation::clear_inline_cache() {
   874   // No stubs for ICs
   875   // Clean IC
   876   ResourceMark rm;
   877   CompiledIC* icache = CompiledIC_at(this);
   878   icache->set_to_clean();
   879 }
   882 void opt_virtual_call_Relocation::clear_inline_cache() {
   883   // No stubs for ICs
   884   // Clean IC
   885   ResourceMark rm;
   886   CompiledIC* icache = CompiledIC_at(this);
   887   icache->set_to_clean();
   888 }
   891 address opt_virtual_call_Relocation::static_stub() {
   892   // search for the static stub who points back to this static call
   893   address static_call_addr = addr();
   894   RelocIterator iter(code());
   895   while (iter.next()) {
   896     if (iter.type() == relocInfo::static_stub_type) {
   897       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   898         return iter.addr();
   899       }
   900     }
   901   }
   902   return NULL;
   903 }
   906 void static_call_Relocation::clear_inline_cache() {
   907   // Safe call site info
   908   CompiledStaticCall* handler = compiledStaticCall_at(this);
   909   handler->set_to_clean();
   910 }
   913 address static_call_Relocation::static_stub() {
   914   // search for the static stub who points back to this static call
   915   address static_call_addr = addr();
   916   RelocIterator iter(code());
   917   while (iter.next()) {
   918     if (iter.type() == relocInfo::static_stub_type) {
   919       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   920         return iter.addr();
   921       }
   922     }
   923   }
   924   return NULL;
   925 }
   928 void static_stub_Relocation::clear_inline_cache() {
   929   // Call stub is only used when calling the interpreted code.
   930   // It does not really need to be cleared, except that we want to clean out the methodoop.
   931   CompiledStaticCall::set_stub_to_clean(this);
   932 }
   935 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   936   address target = _target;
   937   if (target == NULL) {
   938     // An absolute embedded reference to an external location,
   939     // which means there is nothing to fix here.
   940     return;
   941   }
   942   // Probably this reference is absolute, not relative, so the
   943   // following is probably a no-op.
   944   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
   945   set_value(target);
   946 }
   949 address external_word_Relocation::target() {
   950   address target = _target;
   951   if (target == NULL) {
   952     target = pd_get_address_from_code();
   953   }
   954   return target;
   955 }
   958 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   959   address target = _target;
   960   if (target == NULL) {
   961     if (addr_in_const()) {
   962       target = new_addr_for(*(address*)addr(), src, dest);
   963     } else {
   964       target = new_addr_for(pd_get_address_from_code(), src, dest);
   965     }
   966   }
   967   set_value(target);
   968 }
   971 address internal_word_Relocation::target() {
   972   address target = _target;
   973   if (target == NULL) {
   974     target = pd_get_address_from_code();
   975   }
   976   return target;
   977 }
   980 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
   981   bool active    = false;
   982   bool enabled   = (kind == initialization);
   983   bool removable = (kind != safepoint);
   984   bool settable  = (target == NULL);
   986   int bits = kind;
   987   if (enabled)    bits |= enabled_state;
   988   if (internal)   bits |= internal_attr;
   989   if (removable)  bits |= removable_attr;
   990   if (settable)   bits |= settable_attr;
   992   _bits = bits | high_bit;
   993   _target = target;
   995   assert(this->kind()      == kind,      "kind encoded");
   996   assert(this->enabled()   == enabled,   "enabled encoded");
   997   assert(this->active()    == active,    "active encoded");
   998   assert(this->internal()  == internal,  "internal encoded");
   999   assert(this->removable() == removable, "removable encoded");
  1000   assert(this->settable()  == settable,  "settable encoded");
  1004 address breakpoint_Relocation::target() const {
  1005   return _target;
  1009 void breakpoint_Relocation::set_target(address x) {
  1010   assert(settable(), "must be settable");
  1011   jint target_bits =
  1012     (jint)(internal() ? scaled_offset           (x, addr())
  1013                       : runtime_address_to_index(x));
  1014   short* p = &live_bits() + 1;
  1015   p = add_jint(p, target_bits);
  1016   assert(p == instrs(), "new target must fit");
  1017   _target = x;
  1021 void breakpoint_Relocation::set_enabled(bool b) {
  1022   if (enabled() == b) return;
  1024   if (b) {
  1025     set_bits(bits() | enabled_state);
  1026   } else {
  1027     set_active(false);          // remove the actual breakpoint insn, if any
  1028     set_bits(bits() & ~enabled_state);
  1033 void breakpoint_Relocation::set_active(bool b) {
  1034   assert(!b || enabled(), "cannot activate a disabled breakpoint");
  1036   if (active() == b) return;
  1038   // %%% should probably seize a lock here (might not be the right lock)
  1039   //MutexLockerEx ml_patch(Patching_lock, true);
  1040   //if (active() == b)  return;         // recheck state after locking
  1042   if (b) {
  1043     set_bits(bits() | active_state);
  1044     if (instrlen() == 0)
  1045       fatal("breakpoints in original code must be undoable");
  1046     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
  1047   } else {
  1048     set_bits(bits() & ~active_state);
  1049     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
  1054 //---------------------------------------------------------------------------------
  1055 // Non-product code
  1057 #ifndef PRODUCT
  1059 static const char* reloc_type_string(relocInfo::relocType t) {
  1060   switch (t) {
  1061   #define EACH_CASE(name) \
  1062   case relocInfo::name##_type: \
  1063     return #name;
  1065   APPLY_TO_RELOCATIONS(EACH_CASE);
  1066   #undef EACH_CASE
  1068   case relocInfo::none:
  1069     return "none";
  1070   case relocInfo::data_prefix_tag:
  1071     return "prefix";
  1072   default:
  1073     return "UNKNOWN RELOC TYPE";
  1078 void RelocIterator::print_current() {
  1079   if (!has_current()) {
  1080     tty->print_cr("(no relocs)");
  1081     return;
  1083   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
  1084              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
  1085   if (current()->format() != 0)
  1086     tty->print(" format=%d", current()->format());
  1087   if (datalen() == 1) {
  1088     tty->print(" data=%d", data()[0]);
  1089   } else if (datalen() > 0) {
  1090     tty->print(" data={");
  1091     for (int i = 0; i < datalen(); i++) {
  1092       tty->print("%04x", data()[i] & 0xFFFF);
  1094     tty->print("}");
  1096   tty->print("]");
  1097   switch (type()) {
  1098   case relocInfo::oop_type:
  1100       oop_Relocation* r = oop_reloc();
  1101       oop* oop_addr  = NULL;
  1102       oop  raw_oop   = NULL;
  1103       oop  oop_value = NULL;
  1104       if (code() != NULL || r->oop_is_immediate()) {
  1105         oop_addr  = r->oop_addr();
  1106         raw_oop   = *oop_addr;
  1107         oop_value = r->oop_value();
  1109       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
  1110                  oop_addr, (address)raw_oop, r->offset());
  1111       // Do not print the oop by default--we want this routine to
  1112       // work even during GC or other inconvenient times.
  1113       if (WizardMode && oop_value != NULL) {
  1114         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
  1115         oop_value->print_value_on(tty);
  1117       break;
  1119   case relocInfo::external_word_type:
  1120   case relocInfo::internal_word_type:
  1121   case relocInfo::section_word_type:
  1123       DataRelocation* r = (DataRelocation*) reloc();
  1124       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
  1125       break;
  1127   case relocInfo::static_call_type:
  1128   case relocInfo::runtime_call_type:
  1130       CallRelocation* r = (CallRelocation*) reloc();
  1131       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
  1132       break;
  1134   case relocInfo::virtual_call_type:
  1136       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
  1137       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
  1138                  r->destination(), r->first_oop(), r->oop_limit());
  1139       break;
  1141   case relocInfo::static_stub_type:
  1143       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
  1144       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
  1145       break;
  1148   tty->cr();
  1152 void RelocIterator::print() {
  1153   RelocIterator save_this = (*this);
  1154   relocInfo* scan = _current;
  1155   if (!has_current())  scan += 1;  // nothing to scan here!
  1157   bool skip_next = has_current();
  1158   bool got_next;
  1159   while (true) {
  1160     got_next = (skip_next || next());
  1161     skip_next = false;
  1163     tty->print("         @" INTPTR_FORMAT ": ", scan);
  1164     relocInfo* newscan = _current+1;
  1165     if (!has_current())  newscan -= 1;  // nothing to scan here!
  1166     while (scan < newscan) {
  1167       tty->print("%04x", *(short*)scan & 0xFFFF);
  1168       scan++;
  1170     tty->cr();
  1172     if (!got_next)  break;
  1173     print_current();
  1176   (*this) = save_this;
  1179 // For the debugger:
  1180 extern "C"
  1181 void print_blob_locs(nmethod* nm) {
  1182   nm->print();
  1183   RelocIterator iter(nm);
  1184   iter.print();
  1186 extern "C"
  1187 void print_buf_locs(CodeBuffer* cb) {
  1188   FlagSetting fs(PrintRelocations, true);
  1189   cb->print();
  1191 #endif // !PRODUCT

mercurial