src/cpu/ppc/vm/ppc.ad

Thu, 19 Mar 2015 19:53:34 +0100

author
zmajo
date
Thu, 19 Mar 2015 19:53:34 +0100
changeset 7638
aefa2e84b424
parent 7424
c5e86c5cd22e
child 7836
37a5a1341478
permissions
-rw-r--r--

8074869: C2 code generator can replace -0.0f with +0.0f on Linux
Summary: Instead of 'fpclass', use cast float->int and double->long to check if value is +0.0f and +0.0d, respectively.
Reviewed-by: kvn, simonis, dlong

     1 //
     2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2014 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Header information of the source block.
   895   // Method declarations/definitions which are used outside
   896   // the ad-scope can conveniently be defined here.
   897   //
   898   // To keep related declarations/definitions/uses close together,
   899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   901   // Returns true if Node n is followed by a MemBar node that
   902   // will do an acquire. If so, this node must not do the acquire
   903   // operation.
   904   bool followed_by_acquire(const Node *n);
   905 %}
   907 source %{
   909 // Optimize load-acquire.
   910 //
   911 // Check if acquire is unnecessary due to following operation that does
   912 // acquire anyways.
   913 // Walk the pattern:
   914 //
   915 //      n: Load.acq
   916 //           |
   917 //      MemBarAcquire
   918 //       |         |
   919 //  Proj(ctrl)  Proj(mem)
   920 //       |         |
   921 //   MemBarRelease/Volatile
   922 //
   923 bool followed_by_acquire(const Node *load) {
   924   assert(load->is_Load(), "So far implemented only for loads.");
   926   // Find MemBarAcquire.
   927   const Node *mba = NULL;
   928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   929     const Node *out = load->fast_out(i);
   930     if (out->Opcode() == Op_MemBarAcquire) {
   931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   932       mba = out;
   933       break;
   934     }
   935   }
   936   if (!mba) return false;
   938   // Find following MemBar node.
   939   //
   940   // The following node must be reachable by control AND memory
   941   // edge to assure no other operations are in between the two nodes.
   942   //
   943   // So first get the Proj node, mem_proj, to use it to iterate forward.
   944   Node *mem_proj = NULL;
   945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   947     assert(mem_proj->is_Proj(), "only projections here");
   948     ProjNode *proj = mem_proj->as_Proj();
   949     if (proj->_con == TypeFunc::Memory &&
   950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   951       break;
   952   }
   953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   955   // Search MemBar behind Proj. If there are other memory operations
   956   // behind the Proj we lost.
   957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   958     Node *x = mem_proj->fast_out(j);
   959     // Proj might have an edge to a store or load node which precedes the membar.
   960     if (x->is_Mem()) return false;
   962     // On PPC64 release and volatile are implemented by an instruction
   963     // that also has acquire semantics. I.e. there is no need for an
   964     // acquire before these.
   965     int xop = x->Opcode();
   966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   967       // Make sure we're not missing Call/Phi/MergeMem by checking
   968       // control edges. The control edge must directly lead back
   969       // to the MemBarAcquire
   970       Node *ctrl_proj = x->in(0);
   971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   972         return true;
   973       }
   974     }
   975   }
   977   return false;
   978 }
   980 #define __ _masm.
   982 // Tertiary op of a LoadP or StoreP encoding.
   983 #define REGP_OP true
   985 // ****************************************************************************
   987 // REQUIRED FUNCTIONALITY
   989 // !!!!! Special hack to get all type of calls to specify the byte offset
   990 //       from the start of the call to the point where the return address
   991 //       will point.
   993 // PPC port: Removed use of lazy constant construct.
   995 int MachCallStaticJavaNode::ret_addr_offset() {
   996   // It's only a single branch-and-link instruction.
   997   return 4;
   998 }
  1000 int MachCallDynamicJavaNode::ret_addr_offset() {
  1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1002   // postalloc expanded calls if we use inline caches and do not update method data.
  1003   if (UseInlineCaches)
  1004     return 4;
  1006   int vtable_index = this->_vtable_index;
  1007   if (vtable_index < 0) {
  1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1010     return 12;
  1011   } else {
  1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1013     return 24;
  1017 int MachCallRuntimeNode::ret_addr_offset() {
  1018 #if defined(ABI_ELFv2)
  1019   return 28;
  1020 #else
  1021   return 40;
  1022 #endif
  1025 //=============================================================================
  1027 // condition code conversions
  1029 static int cc_to_boint(int cc) {
  1030   return Assembler::bcondCRbiIs0 | (cc & 8);
  1033 static int cc_to_inverse_boint(int cc) {
  1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1037 static int cc_to_biint(int cc, int flags_reg) {
  1038   return (flags_reg << 2) | (cc & 3);
  1041 //=============================================================================
  1043 // Compute padding required for nodes which need alignment. The padding
  1044 // is the number of bytes (not instructions) which will be inserted before
  1045 // the instruction. The padding must match the size of a NOP instruction.
  1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1048   return (3*4-current_offset)&31;
  1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1052   return (2*4-current_offset)&31;
  1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1056   return (3*4-current_offset)&31;
  1059 int string_indexOfNode::compute_padding(int current_offset) const {
  1060   return (1*4-current_offset)&31;
  1063 int string_compareNode::compute_padding(int current_offset) const {
  1064   return (4*4-current_offset)&31;
  1067 int string_equals_immNode::compute_padding(int current_offset) const {
  1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1069   return (2*4-current_offset)&31;
  1072 int string_equalsNode::compute_padding(int current_offset) const {
  1073   return (7*4-current_offset)&31;
  1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1077   return (2*4-current_offset)&31;
  1080 //=============================================================================
  1082 // Indicate if the safepoint node needs the polling page as an input.
  1083 bool SafePointNode::needs_polling_address_input() {
  1084   // The address is loaded from thread by a seperate node.
  1085   return true;
  1088 //=============================================================================
  1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1091 void emit_break(CodeBuffer &cbuf) {
  1092   MacroAssembler _masm(&cbuf);
  1093   __ illtrap();
  1096 #ifndef PRODUCT
  1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1098   st->print("BREAKPOINT");
  1100 #endif
  1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1103   emit_break(cbuf);
  1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1107   return MachNode::size(ra_);
  1110 //=============================================================================
  1112 void emit_nop(CodeBuffer &cbuf) {
  1113   MacroAssembler _masm(&cbuf);
  1114   __ nop();
  1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1118   *((int*)(cbuf.insts_end())) = value;
  1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1122 //=============================================================================
  1124 %} // interrupt source
  1126 source_hpp %{ // Header information of the source block.
  1128 //--------------------------------------------------------------
  1129 //---<  Used for optimization in Compile::Shorten_branches  >---
  1130 //--------------------------------------------------------------
  1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1134 class CallStubImpl {
  1136  public:
  1138   // Emit call stub, compiled java to interpreter.
  1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1141   // Size of call trampoline stub.
  1142   // This doesn't need to be accurate to the byte, but it
  1143   // must be larger than or equal to the real size of the stub.
  1144   static uint size_call_trampoline() {
  1145     return trampoline_stub_size;
  1148   // number of relocations needed by a call trampoline stub
  1149   static uint reloc_call_trampoline() {
  1150     return 5;
  1153 };
  1155 %} // end source_hpp
  1157 source %{
  1159 // Emit a trampoline stub for a call to a target which is too far away.
  1160 //
  1161 // code sequences:
  1162 //
  1163 // call-site:
  1164 //   branch-and-link to <destination> or <trampoline stub>
  1165 //
  1166 // Related trampoline stub for this call-site in the stub section:
  1167 //   load the call target from the constant pool
  1168 //   branch via CTR (LR/link still points to the call-site above)
  1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1171   // Start the stub.
  1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1173   if (stub == NULL) {
  1174     Compile::current()->env()->record_out_of_memory_failure();
  1175     return;
  1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1179   // and in call trampoline stubs we use R12_scratch2. This way we
  1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1181   Register reg_scratch = R12_scratch2;
  1183   // Create a trampoline stub relocation which relates this trampoline stub
  1184   // with the call instruction at insts_call_instruction_offset in the
  1185   // instructions code-section.
  1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1187   const int stub_start_offset = __ offset();
  1189   // Now, create the trampoline stub's code:
  1190   // - load the TOC
  1191   // - load the call target from the constant pool
  1192   // - call
  1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1195   __ mtctr(reg_scratch);
  1196   __ bctr();
  1198   const address stub_start_addr = __ addr_at(stub_start_offset);
  1200   // FIXME: Assert that the trampoline stub can be identified and patched.
  1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1204          "encoded offset into the constant pool must match");
  1205   // Trampoline_stub_size should be good.
  1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1209   // End the stub.
  1210   __ end_a_stub();
  1213 //=============================================================================
  1215 // Emit an inline branch-and-link call and a related trampoline stub.
  1216 //
  1217 // code sequences:
  1218 //
  1219 // call-site:
  1220 //   branch-and-link to <destination> or <trampoline stub>
  1221 //
  1222 // Related trampoline stub for this call-site in the stub section:
  1223 //   load the call target from the constant pool
  1224 //   branch via CTR (LR/link still points to the call-site above)
  1225 //
  1227 typedef struct {
  1228   int insts_call_instruction_offset;
  1229   int ret_addr_offset;
  1230 } EmitCallOffsets;
  1232 // Emit a branch-and-link instruction that branches to a trampoline.
  1233 // - Remember the offset of the branch-and-link instruction.
  1234 // - Add a relocation at the branch-and-link instruction.
  1235 // - Emit a branch-and-link.
  1236 // - Remember the return pc offset.
  1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1238   EmitCallOffsets offsets = { -1, -1 };
  1239   const int start_offset = __ offset();
  1240   offsets.insts_call_instruction_offset = __ offset();
  1242   // No entry point given, use the current pc.
  1243   if (entry_point == NULL) entry_point = __ pc();
  1245   if (!Compile::current()->in_scratch_emit_size()) {
  1246     // Put the entry point as a constant into the constant pool.
  1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1250     // Emit the trampoline stub which will be related to the branch-and-link below.
  1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1252     if (Compile::current()->env()->failing()) { return offsets; } // Code cache may be full.
  1253     __ relocate(rtype);
  1256   // Note: At this point we do not have the address of the trampoline
  1257   // stub, and the entry point might be too far away for bl, so __ pc()
  1258   // serves as dummy and the bl will be patched later.
  1259   __ bl((address) __ pc());
  1261   offsets.ret_addr_offset = __ offset() - start_offset;
  1263   return offsets;
  1266 //=============================================================================
  1268 // Factory for creating loadConL* nodes for large/small constant pool.
  1270 static inline jlong replicate_immF(float con) {
  1271   // Replicate float con 2 times and pack into vector.
  1272   int val = *((int*)&con);
  1273   jlong lval = val;
  1274   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1275   return lval;
  1278 //=============================================================================
  1280 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1281 int Compile::ConstantTable::calculate_table_base_offset() const {
  1282   return 0;  // absolute addressing, no offset
  1285 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1286 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1287   Compile *C = ra_->C;
  1289   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1290   MachNode *m1 = new (C) loadToc_hiNode();
  1291   MachNode *m2 = new (C) loadToc_loNode();
  1293   m1->add_req(NULL);
  1294   m2->add_req(NULL, m1);
  1295   m1->_opnds[0] = op_dst;
  1296   m2->_opnds[0] = op_dst;
  1297   m2->_opnds[1] = op_dst;
  1298   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1299   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1300   nodes->push(m1);
  1301   nodes->push(m2);
  1304 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1305   // Is postalloc expanded.
  1306   ShouldNotReachHere();
  1309 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1310   return 0;
  1313 #ifndef PRODUCT
  1314 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1315   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1317 #endif
  1319 //=============================================================================
  1321 #ifndef PRODUCT
  1322 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1323   Compile* C = ra_->C;
  1324   const long framesize = C->frame_slots() << LogBytesPerInt;
  1326   st->print("PROLOG\n\t");
  1327   if (C->need_stack_bang(framesize)) {
  1328     st->print("stack_overflow_check\n\t");
  1331   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1332     st->print("save return pc\n\t");
  1333     st->print("push frame %ld\n\t", -framesize);
  1336 #endif
  1338 // Macro used instead of the common __ to emulate the pipes of PPC.
  1339 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1340 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1341 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1342 // code and can update its internal data. The following mechanism is used to achieve this:
  1343 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1344 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1345 #if 0 // TODO: PPC port
  1346 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1347                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1348                 _masm.
  1349 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1350                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1351 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1352                   C->hb_scheduling()->_pdScheduling->advance_offset
  1353 #else
  1354 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1355                   Unimplemented();                                                    \
  1356                 _masm.
  1357 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1358                   Unimplemented()
  1359 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1360                   Unimplemented()
  1361 #endif
  1363 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1364   Compile* C = ra_->C;
  1365   MacroAssembler _masm(&cbuf);
  1367   const long framesize = C->frame_size_in_bytes();
  1368   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
  1370   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1372   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1373   const Register callers_sp           = R21;
  1374   const Register push_frame_temp      = R22;
  1375   const Register toc_temp             = R23;
  1376   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1378   if (method_is_frameless) {
  1379     // Add nop at beginning of all frameless methods to prevent any
  1380     // oop instructions from getting overwritten by make_not_entrant
  1381     // (patching attempt would fail).
  1382     ___(nop) nop();
  1383   } else {
  1384     // Get return pc.
  1385     ___(mflr) mflr(return_pc);
  1388   // Calls to C2R adapters often do not accept exceptional returns.
  1389   // We require that their callers must bang for them. But be
  1390   // careful, because some VM calls (such as call site linkage) can
  1391   // use several kilobytes of stack. But the stack safety zone should
  1392   // account for that. See bugs 4446381, 4468289, 4497237.
  1394   int bangsize = C->bang_size_in_bytes();
  1395   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  1396   if (C->need_stack_bang(bangsize) && UseStackBanging) {
  1397     // Unfortunately we cannot use the function provided in
  1398     // assembler.cpp as we have to emulate the pipes. So I had to
  1399     // insert the code of generate_stack_overflow_check(), see
  1400     // assembler.cpp for some illuminative comments.
  1401     const int page_size = os::vm_page_size();
  1402     int bang_end = StackShadowPages * page_size;
  1404     // This is how far the previous frame's stack banging extended.
  1405     const int bang_end_safe = bang_end;
  1407     if (bangsize > page_size) {
  1408       bang_end += bangsize;
  1411     int bang_offset = bang_end_safe;
  1413     while (bang_offset <= bang_end) {
  1414       // Need at least one stack bang at end of shadow zone.
  1416       // Again I had to copy code, this time from assembler_ppc.cpp,
  1417       // bang_stack_with_offset - see there for comments.
  1419       // Stack grows down, caller passes positive offset.
  1420       assert(bang_offset > 0, "must bang with positive offset");
  1422       long stdoffset = -bang_offset;
  1424       if (Assembler::is_simm(stdoffset, 16)) {
  1425         // Signed 16 bit offset, a simple std is ok.
  1426         if (UseLoadInstructionsForStackBangingPPC64) {
  1427           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1428         } else {
  1429           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1431       } else if (Assembler::is_simm(stdoffset, 31)) {
  1432         // Use largeoffset calculations for addis & ld/std.
  1433         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1434         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1436         Register tmp = R11;
  1437         ___(addis) addis(tmp, R1_SP, hi);
  1438         if (UseLoadInstructionsForStackBangingPPC64) {
  1439           ___(ld) ld(R0, lo, tmp);
  1440         } else {
  1441           ___(std) std(R0, lo, tmp);
  1443       } else {
  1444         ShouldNotReachHere();
  1447       bang_offset += page_size;
  1449     // R11 trashed
  1450   } // C->need_stack_bang(framesize) && UseStackBanging
  1452   unsigned int bytes = (unsigned int)framesize;
  1453   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1454   ciMethod *currMethod = C->method();
  1456   // Optimized version for most common case.
  1457   if (UsePower6SchedulerPPC64 &&
  1458       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1459       !(false /* ConstantsALot TODO: PPC port*/)) {
  1460     ___(or) mr(callers_sp, R1_SP);
  1461     ___(std) std(return_pc, _abi(lr), R1_SP);
  1462     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1463     return;
  1466   if (!method_is_frameless) {
  1467     // Get callers sp.
  1468     ___(or) mr(callers_sp, R1_SP);
  1470     // Push method's frame, modifies SP.
  1471     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1472     // The ABI is already accounted for in 'framesize' via the
  1473     // 'out_preserve' area.
  1474     Register tmp = push_frame_temp;
  1475     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1476     if (Assembler::is_simm(-offset, 16)) {
  1477       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1478     } else {
  1479       long x = -offset;
  1480       // Had to insert load_const(tmp, -offset).
  1481       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1482       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1483       ___(rldicr) sldi(tmp, tmp, 32);
  1484       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1485       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1487       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1490 #if 0 // TODO: PPC port
  1491   // For testing large constant pools, emit a lot of constants to constant pool.
  1492   // "Randomize" const_size.
  1493   if (ConstantsALot) {
  1494     const int num_consts = const_size();
  1495     for (int i = 0; i < num_consts; i++) {
  1496       __ long_constant(0xB0B5B00BBABE);
  1499 #endif
  1500   if (!method_is_frameless) {
  1501     // Save return pc.
  1502     ___(std) std(return_pc, _abi(lr), callers_sp);
  1505 #undef ___
  1506 #undef ___stop
  1507 #undef ___advance
  1509 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1510   // Variable size. determine dynamically.
  1511   return MachNode::size(ra_);
  1514 int MachPrologNode::reloc() const {
  1515   // Return number of relocatable values contained in this instruction.
  1516   return 1; // 1 reloc entry for load_const(toc).
  1519 //=============================================================================
  1521 #ifndef PRODUCT
  1522 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1523   Compile* C = ra_->C;
  1525   st->print("EPILOG\n\t");
  1526   st->print("restore return pc\n\t");
  1527   st->print("pop frame\n\t");
  1529   if (do_polling() && C->is_method_compilation()) {
  1530     st->print("touch polling page\n\t");
  1533 #endif
  1535 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1536   Compile* C = ra_->C;
  1537   MacroAssembler _masm(&cbuf);
  1539   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1540   assert(framesize >= 0, "negative frame-size?");
  1542   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1543   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1544   const Register return_pc        = R11;
  1545   const Register polling_page     = R12;
  1547   if (!method_is_frameless) {
  1548     // Restore return pc relative to callers' sp.
  1549     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1552   if (method_needs_polling) {
  1553     if (LoadPollAddressFromThread) {
  1554       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1555       Unimplemented();
  1556     } else {
  1557       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1561   if (!method_is_frameless) {
  1562     // Move return pc to LR.
  1563     __ mtlr(return_pc);
  1564     // Pop frame (fixed frame-size).
  1565     __ addi(R1_SP, R1_SP, (int)framesize);
  1568   if (method_needs_polling) {
  1569     // We need to mark the code position where the load from the safepoint
  1570     // polling page was emitted as relocInfo::poll_return_type here.
  1571     __ relocate(relocInfo::poll_return_type);
  1572     __ load_from_polling_page(polling_page);
  1576 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1577   // Variable size. Determine dynamically.
  1578   return MachNode::size(ra_);
  1581 int MachEpilogNode::reloc() const {
  1582   // Return number of relocatable values contained in this instruction.
  1583   return 1; // 1 for load_from_polling_page.
  1586 const Pipeline * MachEpilogNode::pipeline() const {
  1587   return MachNode::pipeline_class();
  1590 // This method seems to be obsolete. It is declared in machnode.hpp
  1591 // and defined in all *.ad files, but it is never called. Should we
  1592 // get rid of it?
  1593 int MachEpilogNode::safepoint_offset() const {
  1594   assert(do_polling(), "no return for this epilog node");
  1595   return 0;
  1598 #if 0 // TODO: PPC port
  1599 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1600   MacroAssembler _masm(&cbuf);
  1601   if (LoadPollAddressFromThread) {
  1602     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1603   } else {
  1604     _masm.nop();
  1608 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1609   if (LoadPollAddressFromThread) {
  1610     return 4;
  1611   } else {
  1612     return 4;
  1616 #ifndef PRODUCT
  1617 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1618   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1620 #endif
  1622 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1623   return RSCRATCH1_BITS64_REG_mask();
  1625 #endif // PPC port
  1627 // =============================================================================
  1629 // Figure out which register class each belongs in: rc_int, rc_float or
  1630 // rc_stack.
  1631 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1633 static enum RC rc_class(OptoReg::Name reg) {
  1634   // Return the register class for the given register. The given register
  1635   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1636   // enumeration in adGlobals_ppc64.hpp.
  1638   if (reg == OptoReg::Bad) return rc_bad;
  1640   // We have 64 integer register halves, starting at index 0.
  1641   if (reg < 64) return rc_int;
  1643   // We have 64 floating-point register halves, starting at index 64.
  1644   if (reg < 64+64) return rc_float;
  1646   // Between float regs & stack are the flags regs.
  1647   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1649   return rc_stack;
  1652 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1653                         bool do_print, Compile* C, outputStream *st) {
  1655   assert(opcode == Assembler::LD_OPCODE   ||
  1656          opcode == Assembler::STD_OPCODE  ||
  1657          opcode == Assembler::LWZ_OPCODE  ||
  1658          opcode == Assembler::STW_OPCODE  ||
  1659          opcode == Assembler::LFD_OPCODE  ||
  1660          opcode == Assembler::STFD_OPCODE ||
  1661          opcode == Assembler::LFS_OPCODE  ||
  1662          opcode == Assembler::STFS_OPCODE,
  1663          "opcode not supported");
  1665   if (cbuf) {
  1666     int d =
  1667       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1668         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1669       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1670     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1672 #ifndef PRODUCT
  1673   else if (do_print) {
  1674     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1675               op_str,
  1676               Matcher::regName[reg],
  1677               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1679 #endif
  1680   return 4; // size
  1683 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1684   Compile* C = ra_->C;
  1686   // Get registers to move.
  1687   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1688   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1689   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1690   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1692   enum RC src_hi_rc = rc_class(src_hi);
  1693   enum RC src_lo_rc = rc_class(src_lo);
  1694   enum RC dst_hi_rc = rc_class(dst_hi);
  1695   enum RC dst_lo_rc = rc_class(dst_lo);
  1697   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1698   if (src_hi != OptoReg::Bad)
  1699     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1700            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1701            "expected aligned-adjacent pairs");
  1702   // Generate spill code!
  1703   int size = 0;
  1705   if (src_lo == dst_lo && src_hi == dst_hi)
  1706     return size;            // Self copy, no move.
  1708   // --------------------------------------
  1709   // Memory->Memory Spill. Use R0 to hold the value.
  1710   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1711     int src_offset = ra_->reg2offset(src_lo);
  1712     int dst_offset = ra_->reg2offset(dst_lo);
  1713     if (src_hi != OptoReg::Bad) {
  1714       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1715              "expected same type of move for high parts");
  1716       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1717       if (!cbuf && !do_size) st->print("\n\t");
  1718       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1719     } else {
  1720       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1721       if (!cbuf && !do_size) st->print("\n\t");
  1722       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1724     return size;
  1727   // --------------------------------------
  1728   // Check for float->int copy; requires a trip through memory.
  1729   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1730     Unimplemented();
  1733   // --------------------------------------
  1734   // Check for integer reg-reg copy.
  1735   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1736       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1737       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1738       size = (Rsrc != Rdst) ? 4 : 0;
  1740       if (cbuf) {
  1741         MacroAssembler _masm(cbuf);
  1742         if (size) {
  1743           __ mr(Rdst, Rsrc);
  1746 #ifndef PRODUCT
  1747       else if (!do_size) {
  1748         if (size) {
  1749           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1750         } else {
  1751           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1754 #endif
  1755       return size;
  1758   // Check for integer store.
  1759   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1760     int dst_offset = ra_->reg2offset(dst_lo);
  1761     if (src_hi != OptoReg::Bad) {
  1762       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1763              "expected same type of move for high parts");
  1764       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1765     } else {
  1766       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1768     return size;
  1771   // Check for integer load.
  1772   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1773     int src_offset = ra_->reg2offset(src_lo);
  1774     if (src_hi != OptoReg::Bad) {
  1775       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1776              "expected same type of move for high parts");
  1777       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1778     } else {
  1779       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1781     return size;
  1784   // Check for float reg-reg copy.
  1785   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1786     if (cbuf) {
  1787       MacroAssembler _masm(cbuf);
  1788       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1789       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1790       __ fmr(Rdst, Rsrc);
  1792 #ifndef PRODUCT
  1793     else if (!do_size) {
  1794       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1796 #endif
  1797     return 4;
  1800   // Check for float store.
  1801   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1802     int dst_offset = ra_->reg2offset(dst_lo);
  1803     if (src_hi != OptoReg::Bad) {
  1804       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1805              "expected same type of move for high parts");
  1806       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1807     } else {
  1808       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1810     return size;
  1813   // Check for float load.
  1814   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1815     int src_offset = ra_->reg2offset(src_lo);
  1816     if (src_hi != OptoReg::Bad) {
  1817       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1818              "expected same type of move for high parts");
  1819       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1820     } else {
  1821       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1823     return size;
  1826   // --------------------------------------------------------------------
  1827   // Check for hi bits still needing moving. Only happens for misaligned
  1828   // arguments to native calls.
  1829   if (src_hi == dst_hi)
  1830     return size;               // Self copy; no move.
  1832   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1833   ShouldNotReachHere(); // Unimplemented
  1834   return 0;
  1837 #ifndef PRODUCT
  1838 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1839   if (!ra_)
  1840     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1841   else
  1842     implementation(NULL, ra_, false, st);
  1844 #endif
  1846 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1847   implementation(&cbuf, ra_, false, NULL);
  1850 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1851   return implementation(NULL, ra_, true, NULL);
  1854 #if 0 // TODO: PPC port
  1855 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1856 #ifndef PRODUCT
  1857   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1858 #endif
  1859   assert(ra_->node_regs_max_index() != 0, "");
  1861   // Get registers to move.
  1862   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1863   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1864   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1865   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1867   enum RC src_lo_rc = rc_class(src_lo);
  1868   enum RC dst_lo_rc = rc_class(dst_lo);
  1870   if (src_lo == dst_lo && src_hi == dst_hi)
  1871     return ppc64Opcode_none;            // Self copy, no move.
  1873   // --------------------------------------
  1874   // Memory->Memory Spill. Use R0 to hold the value.
  1875   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1876     return ppc64Opcode_compound;
  1879   // --------------------------------------
  1880   // Check for float->int copy; requires a trip through memory.
  1881   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1882     Unimplemented();
  1885   // --------------------------------------
  1886   // Check for integer reg-reg copy.
  1887   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1888     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1889     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1890     if (Rsrc == Rdst) {
  1891       return ppc64Opcode_none;
  1892     } else {
  1893       return ppc64Opcode_or;
  1897   // Check for integer store.
  1898   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1899     if (src_hi != OptoReg::Bad) {
  1900       return ppc64Opcode_std;
  1901     } else {
  1902       return ppc64Opcode_stw;
  1906   // Check for integer load.
  1907   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1908     if (src_hi != OptoReg::Bad) {
  1909       return ppc64Opcode_ld;
  1910     } else {
  1911       return ppc64Opcode_lwz;
  1915   // Check for float reg-reg copy.
  1916   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1917     return ppc64Opcode_fmr;
  1920   // Check for float store.
  1921   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1922     if (src_hi != OptoReg::Bad) {
  1923       return ppc64Opcode_stfd;
  1924     } else {
  1925       return ppc64Opcode_stfs;
  1929   // Check for float load.
  1930   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1931     if (src_hi != OptoReg::Bad) {
  1932       return ppc64Opcode_lfd;
  1933     } else {
  1934       return ppc64Opcode_lfs;
  1938   // --------------------------------------------------------------------
  1939   // Check for hi bits still needing moving. Only happens for misaligned
  1940   // arguments to native calls.
  1941   if (src_hi == dst_hi) {
  1942     return ppc64Opcode_none;               // Self copy; no move.
  1945   ShouldNotReachHere();
  1946   return ppc64Opcode_undefined;
  1948 #endif // PPC port
  1950 #ifndef PRODUCT
  1951 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1952   st->print("NOP \t// %d nops to pad for loops.", _count);
  1954 #endif
  1956 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1957   MacroAssembler _masm(&cbuf);
  1958   // _count contains the number of nops needed for padding.
  1959   for (int i = 0; i < _count; i++) {
  1960     __ nop();
  1964 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1965   return _count * 4;
  1968 #ifndef PRODUCT
  1969 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1970   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1971   char reg_str[128];
  1972   ra_->dump_register(this, reg_str);
  1973   st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
  1975 #endif
  1977 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1978   MacroAssembler _masm(&cbuf);
  1980   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1981   int reg    = ra_->get_encode(this);
  1983   if (Assembler::is_simm(offset, 16)) {
  1984     __ addi(as_Register(reg), R1, offset);
  1985   } else {
  1986     ShouldNotReachHere();
  1990 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1991   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1992   return 4;
  1995 #ifndef PRODUCT
  1996 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1997   st->print_cr("---- MachUEPNode ----");
  1998   st->print_cr("...");
  2000 #endif
  2002 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  2003   // This is the unverified entry point.
  2004   MacroAssembler _masm(&cbuf);
  2006   // Inline_cache contains a klass.
  2007   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  2008   Register receiver_klass = R12_scratch2;  // tmp
  2010   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  2011   assert(R11_scratch1 == R11, "need prologue scratch register");
  2013   // Check for NULL argument if we don't have implicit null checks.
  2014   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  2015     if (TrapBasedNullChecks) {
  2016       __ trap_null_check(R3_ARG1);
  2017     } else {
  2018       Label valid;
  2019       __ cmpdi(CCR0, R3_ARG1, 0);
  2020       __ bne_predict_taken(CCR0, valid);
  2021       // We have a null argument, branch to ic_miss_stub.
  2022       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2023                            relocInfo::runtime_call_type);
  2024       __ bind(valid);
  2027   // Assume argument is not NULL, load klass from receiver.
  2028   __ load_klass(receiver_klass, R3_ARG1);
  2030   if (TrapBasedICMissChecks) {
  2031     __ trap_ic_miss_check(receiver_klass, ic_klass);
  2032   } else {
  2033     Label valid;
  2034     __ cmpd(CCR0, receiver_klass, ic_klass);
  2035     __ beq_predict_taken(CCR0, valid);
  2036     // We have an unexpected klass, branch to ic_miss_stub.
  2037     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2038                          relocInfo::runtime_call_type);
  2039     __ bind(valid);
  2042   // Argument is valid and klass is as expected, continue.
  2045 #if 0 // TODO: PPC port
  2046 // Optimize UEP code on z (save a load_const() call in main path).
  2047 int MachUEPNode::ep_offset() {
  2048   return 0;
  2050 #endif
  2052 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2053   // Variable size. Determine dynamically.
  2054   return MachNode::size(ra_);
  2057 //=============================================================================
  2059 %} // interrupt source
  2061 source_hpp %{ // Header information of the source block.
  2063 class HandlerImpl {
  2065  public:
  2067   static int emit_exception_handler(CodeBuffer &cbuf);
  2068   static int emit_deopt_handler(CodeBuffer& cbuf);
  2070   static uint size_exception_handler() {
  2071     // The exception_handler is a b64_patchable.
  2072     return MacroAssembler::b64_patchable_size;
  2075   static uint size_deopt_handler() {
  2076     // The deopt_handler is a bl64_patchable.
  2077     return MacroAssembler::bl64_patchable_size;
  2080 };
  2082 %} // end source_hpp
  2084 source %{
  2086 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  2087   MacroAssembler _masm(&cbuf);
  2089   address base = __ start_a_stub(size_exception_handler());
  2090   if (base == NULL) return 0; // CodeBuffer::expand failed
  2092   int offset = __ offset();
  2093   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2094                        relocInfo::runtime_call_type);
  2095   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2096   __ end_a_stub();
  2098   return offset;
  2101 // The deopt_handler is like the exception handler, but it calls to
  2102 // the deoptimization blob instead of jumping to the exception blob.
  2103 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  2104   MacroAssembler _masm(&cbuf);
  2106   address base = __ start_a_stub(size_deopt_handler());
  2107   if (base == NULL) return 0; // CodeBuffer::expand failed
  2109   int offset = __ offset();
  2110   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2111                         relocInfo::runtime_call_type);
  2112   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2113   __ end_a_stub();
  2115   return offset;
  2118 //=============================================================================
  2120 // Use a frame slots bias for frameless methods if accessing the stack.
  2121 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2122   if (as_Register(reg_enc) == R1_SP) {
  2123     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2125   return 0;
  2128 const bool Matcher::match_rule_supported(int opcode) {
  2129   if (!has_match_rule(opcode))
  2130     return false;
  2132   switch (opcode) {
  2133   case Op_SqrtD:
  2134     return VM_Version::has_fsqrt();
  2135   case Op_CountLeadingZerosI:
  2136   case Op_CountLeadingZerosL:
  2137   case Op_CountTrailingZerosI:
  2138   case Op_CountTrailingZerosL:
  2139     if (!UseCountLeadingZerosInstructionsPPC64)
  2140       return false;
  2141     break;
  2143   case Op_PopCountI:
  2144   case Op_PopCountL:
  2145     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2147   case Op_StrComp:
  2148     return SpecialStringCompareTo;
  2149   case Op_StrEquals:
  2150     return SpecialStringEquals;
  2151   case Op_StrIndexOf:
  2152     return SpecialStringIndexOf;
  2155   return true;  // Per default match rules are supported.
  2158 int Matcher::regnum_to_fpu_offset(int regnum) {
  2159   // No user for this method?
  2160   Unimplemented();
  2161   return 999;
  2164 const bool Matcher::convL2FSupported(void) {
  2165   // fcfids can do the conversion (>= Power7).
  2166   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2167   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2170 // Vector width in bytes.
  2171 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2172   assert(MaxVectorSize == 8, "");
  2173   return 8;
  2176 // Vector ideal reg.
  2177 const int Matcher::vector_ideal_reg(int size) {
  2178   assert(MaxVectorSize == 8 && size == 8, "");
  2179   return Op_RegL;
  2182 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2183   fatal("vector shift is not supported");
  2184   return Node::NotAMachineReg;
  2187 // Limits on vector size (number of elements) loaded into vector.
  2188 const int Matcher::max_vector_size(const BasicType bt) {
  2189   assert(is_java_primitive(bt), "only primitive type vectors");
  2190   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2193 const int Matcher::min_vector_size(const BasicType bt) {
  2194   return max_vector_size(bt); // Same as max.
  2197 // PPC doesn't support misaligned vectors store/load.
  2198 const bool Matcher::misaligned_vectors_ok() {
  2199   return false;
  2202 // PPC AES support not yet implemented
  2203 const bool Matcher::pass_original_key_for_aes() {
  2204   return false;
  2207 // RETURNS: whether this branch offset is short enough that a short
  2208 // branch can be used.
  2209 //
  2210 // If the platform does not provide any short branch variants, then
  2211 // this method should return `false' for offset 0.
  2212 //
  2213 // `Compile::Fill_buffer' will decide on basis of this information
  2214 // whether to do the pass `Compile::Shorten_branches' at all.
  2215 //
  2216 // And `Compile::Shorten_branches' will decide on basis of this
  2217 // information whether to replace particular branch sites by short
  2218 // ones.
  2219 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2220   // Is the offset within the range of a ppc64 pc relative branch?
  2221   bool b;
  2223   const int safety_zone = 3 * BytesPerInstWord;
  2224   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2225                          29 - 16 + 1 + 2);
  2226   return b;
  2229 const bool Matcher::isSimpleConstant64(jlong value) {
  2230   // Probably always true, even if a temp register is required.
  2231   return true;
  2233 /* TODO: PPC port
  2234 // Make a new machine dependent decode node (with its operands).
  2235 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2236   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2237          "This method is only implemented for unscaled cOops mode so far");
  2238   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2239   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2240   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2241   return decode;
  2243 */
  2244 // Threshold size for cleararray.
  2245 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2247 // false => size gets scaled to BytesPerLong, ok.
  2248 const bool Matcher::init_array_count_is_in_bytes = false;
  2250 // Use conditional move (CMOVL) on Power7.
  2251 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2253 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2254 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2255 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2257 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2258 const bool Matcher::require_postalloc_expand = true;
  2260 // Should the Matcher clone shifts on addressing modes, expecting them to
  2261 // be subsumed into complex addressing expressions or compute them into
  2262 // registers? True for Intel but false for most RISCs.
  2263 const bool Matcher::clone_shift_expressions = false;
  2265 // Do we need to mask the count passed to shift instructions or does
  2266 // the cpu only look at the lower 5/6 bits anyway?
  2267 // Off, as masks are generated in expand rules where required.
  2268 // Constant shift counts are handled in Ideal phase.
  2269 const bool Matcher::need_masked_shift_count = false;
  2271 // This affects two different things:
  2272 //  - how Decode nodes are matched
  2273 //  - how ImplicitNullCheck opportunities are recognized
  2274 // If true, the matcher will try to remove all Decodes and match them
  2275 // (as operands) into nodes. NullChecks are not prepared to deal with
  2276 // Decodes by final_graph_reshaping().
  2277 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2278 // for a NullCheck. The matcher matches the Decode node into a register.
  2279 // Implicit_null_check optimization moves the Decode along with the
  2280 // memory operation back up before the NullCheck.
  2281 bool Matcher::narrow_oop_use_complex_address() {
  2282   // TODO: PPC port if (MatchDecodeNodes) return true;
  2283   return false;
  2286 bool Matcher::narrow_klass_use_complex_address() {
  2287   NOT_LP64(ShouldNotCallThis());
  2288   assert(UseCompressedClassPointers, "only for compressed klass code");
  2289   // TODO: PPC port if (MatchDecodeNodes) return true;
  2290   return false;
  2293 // Is it better to copy float constants, or load them directly from memory?
  2294 // Intel can load a float constant from a direct address, requiring no
  2295 // extra registers. Most RISCs will have to materialize an address into a
  2296 // register first, so they would do better to copy the constant from stack.
  2297 const bool Matcher::rematerialize_float_constants = false;
  2299 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2300 // needed. Else we split the double into 2 integer pieces and move it
  2301 // piece-by-piece. Only happens when passing doubles into C code as the
  2302 // Java calling convention forces doubles to be aligned.
  2303 const bool Matcher::misaligned_doubles_ok = true;
  2305 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2306  Unimplemented();
  2309 // Advertise here if the CPU requires explicit rounding operations
  2310 // to implement the UseStrictFP mode.
  2311 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2313 // Do floats take an entire double register or just half?
  2314 //
  2315 // A float occupies a ppc64 double register. For the allocator, a
  2316 // ppc64 double register appears as a pair of float registers.
  2317 bool Matcher::float_in_double() { return true; }
  2319 // Do ints take an entire long register or just half?
  2320 // The relevant question is how the int is callee-saved:
  2321 // the whole long is written but de-opt'ing will have to extract
  2322 // the relevant 32 bits.
  2323 const bool Matcher::int_in_long = true;
  2325 // Constants for c2c and c calling conventions.
  2327 const MachRegisterNumbers iarg_reg[8] = {
  2328   R3_num, R4_num, R5_num, R6_num,
  2329   R7_num, R8_num, R9_num, R10_num
  2330 };
  2332 const MachRegisterNumbers farg_reg[13] = {
  2333   F1_num, F2_num, F3_num, F4_num,
  2334   F5_num, F6_num, F7_num, F8_num,
  2335   F9_num, F10_num, F11_num, F12_num,
  2336   F13_num
  2337 };
  2339 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2341 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2343 // Return whether or not this register is ever used as an argument. This
  2344 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2345 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2346 // arguments in those registers not be available to the callee.
  2347 bool Matcher::can_be_java_arg(int reg) {
  2348   // We return true for all registers contained in iarg_reg[] and
  2349   // farg_reg[] and their virtual halves.
  2350   // We must include the virtual halves in order to get STDs and LDs
  2351   // instead of STWs and LWs in the trampoline stubs.
  2353   if (   reg == R3_num  || reg == R3_H_num
  2354       || reg == R4_num  || reg == R4_H_num
  2355       || reg == R5_num  || reg == R5_H_num
  2356       || reg == R6_num  || reg == R6_H_num
  2357       || reg == R7_num  || reg == R7_H_num
  2358       || reg == R8_num  || reg == R8_H_num
  2359       || reg == R9_num  || reg == R9_H_num
  2360       || reg == R10_num || reg == R10_H_num)
  2361     return true;
  2363   if (   reg == F1_num  || reg == F1_H_num
  2364       || reg == F2_num  || reg == F2_H_num
  2365       || reg == F3_num  || reg == F3_H_num
  2366       || reg == F4_num  || reg == F4_H_num
  2367       || reg == F5_num  || reg == F5_H_num
  2368       || reg == F6_num  || reg == F6_H_num
  2369       || reg == F7_num  || reg == F7_H_num
  2370       || reg == F8_num  || reg == F8_H_num
  2371       || reg == F9_num  || reg == F9_H_num
  2372       || reg == F10_num || reg == F10_H_num
  2373       || reg == F11_num || reg == F11_H_num
  2374       || reg == F12_num || reg == F12_H_num
  2375       || reg == F13_num || reg == F13_H_num)
  2376     return true;
  2378   return false;
  2381 bool Matcher::is_spillable_arg(int reg) {
  2382   return can_be_java_arg(reg);
  2385 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2386   return false;
  2389 // Register for DIVI projection of divmodI.
  2390 RegMask Matcher::divI_proj_mask() {
  2391   ShouldNotReachHere();
  2392   return RegMask();
  2395 // Register for MODI projection of divmodI.
  2396 RegMask Matcher::modI_proj_mask() {
  2397   ShouldNotReachHere();
  2398   return RegMask();
  2401 // Register for DIVL projection of divmodL.
  2402 RegMask Matcher::divL_proj_mask() {
  2403   ShouldNotReachHere();
  2404   return RegMask();
  2407 // Register for MODL projection of divmodL.
  2408 RegMask Matcher::modL_proj_mask() {
  2409   ShouldNotReachHere();
  2410   return RegMask();
  2413 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2414   return RegMask();
  2417 %}
  2419 //----------ENCODING BLOCK-----------------------------------------------------
  2420 // This block specifies the encoding classes used by the compiler to output
  2421 // byte streams. Encoding classes are parameterized macros used by
  2422 // Machine Instruction Nodes in order to generate the bit encoding of the
  2423 // instruction. Operands specify their base encoding interface with the
  2424 // interface keyword. There are currently supported four interfaces,
  2425 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2426 // operand to generate a function which returns its register number when
  2427 // queried. CONST_INTER causes an operand to generate a function which
  2428 // returns the value of the constant when queried. MEMORY_INTER causes an
  2429 // operand to generate four functions which return the Base Register, the
  2430 // Index Register, the Scale Value, and the Offset Value of the operand when
  2431 // queried. COND_INTER causes an operand to generate six functions which
  2432 // return the encoding code (ie - encoding bits for the instruction)
  2433 // associated with each basic boolean condition for a conditional instruction.
  2434 //
  2435 // Instructions specify two basic values for encoding. Again, a function
  2436 // is available to check if the constant displacement is an oop. They use the
  2437 // ins_encode keyword to specify their encoding classes (which must be
  2438 // a sequence of enc_class names, and their parameters, specified in
  2439 // the encoding block), and they use the
  2440 // opcode keyword to specify, in order, their primary, secondary, and
  2441 // tertiary opcode. Only the opcode sections which a particular instruction
  2442 // needs for encoding need to be specified.
  2443 encode %{
  2444   enc_class enc_unimplemented %{
  2445     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2446     MacroAssembler _masm(&cbuf);
  2447     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2448   %}
  2450   enc_class enc_untested %{
  2451 #ifdef ASSERT
  2452     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2453     MacroAssembler _masm(&cbuf);
  2454     __ untested("Untested mach node encoding in AD file.");
  2455 #else
  2456     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2457 #endif
  2458   %}
  2460   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2461     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2462     MacroAssembler _masm(&cbuf);
  2463     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2464     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2465   %}
  2467   // Load acquire.
  2468   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2469     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2470     MacroAssembler _masm(&cbuf);
  2471     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2472     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2473     __ twi_0($dst$$Register);
  2474     __ isync();
  2475   %}
  2477   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2478     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2480     MacroAssembler _masm(&cbuf);
  2481     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2482     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2483   %}
  2485   // Load acquire.
  2486   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2487     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2489     MacroAssembler _masm(&cbuf);
  2490     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2491     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2492     __ twi_0($dst$$Register);
  2493     __ isync();
  2494   %}
  2496   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2497     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2499     MacroAssembler _masm(&cbuf);
  2500     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2501     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2502   %}
  2504   // Load acquire.
  2505   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2506     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2508     MacroAssembler _masm(&cbuf);
  2509     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2510     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2511     __ twi_0($dst$$Register);
  2512     __ isync();
  2513   %}
  2515   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2516     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2517     MacroAssembler _masm(&cbuf);
  2518     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2519     // Operand 'ds' requires 4-alignment.
  2520     assert((Idisp & 0x3) == 0, "unaligned offset");
  2521     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2522   %}
  2524   // Load acquire.
  2525   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2526     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2527     MacroAssembler _masm(&cbuf);
  2528     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2529     // Operand 'ds' requires 4-alignment.
  2530     assert((Idisp & 0x3) == 0, "unaligned offset");
  2531     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2532     __ twi_0($dst$$Register);
  2533     __ isync();
  2534   %}
  2536   enc_class enc_lfd(RegF dst, memory mem) %{
  2537     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2538     MacroAssembler _masm(&cbuf);
  2539     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2540     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2541   %}
  2543   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2544     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2546     MacroAssembler _masm(&cbuf);
  2547     int toc_offset = 0;
  2549     if (!ra_->C->in_scratch_emit_size()) {
  2550       address const_toc_addr;
  2551       // Create a non-oop constant, no relocation needed.
  2552       // If it is an IC, it has a virtual_call_Relocation.
  2553       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2555       // Get the constant's TOC offset.
  2556       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2558       // Keep the current instruction offset in mind.
  2559       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2562     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2563   %}
  2565   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2566     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2568     MacroAssembler _masm(&cbuf);
  2570     if (!ra_->C->in_scratch_emit_size()) {
  2571       address const_toc_addr;
  2572       // Create a non-oop constant, no relocation needed.
  2573       // If it is an IC, it has a virtual_call_Relocation.
  2574       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2576       // Get the constant's TOC offset.
  2577       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2578       // Store the toc offset of the constant.
  2579       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2581       // Also keep the current instruction offset in mind.
  2582       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2585     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2586   %}
  2588 %} // encode
  2590 source %{
  2592 typedef struct {
  2593   loadConL_hiNode *_large_hi;
  2594   loadConL_loNode *_large_lo;
  2595   loadConLNode    *_small;
  2596   MachNode        *_last;
  2597 } loadConLNodesTuple;
  2599 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2600                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2601   loadConLNodesTuple nodes;
  2603   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2604   if (large_constant_pool) {
  2605     // Create new nodes.
  2606     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2607     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2609     // inputs for new nodes
  2610     m1->add_req(NULL, toc);
  2611     m2->add_req(NULL, m1);
  2613     // operands for new nodes
  2614     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2615     m1->_opnds[1] = immSrc;                 // src
  2616     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2617     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2618     m2->_opnds[1] = immSrc;                 // src
  2619     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2621     // Initialize ins_attrib TOC fields.
  2622     m1->_const_toc_offset = -1;
  2623     m2->_const_toc_offset_hi_node = m1;
  2625     // Initialize ins_attrib instruction offset.
  2626     m1->_cbuf_insts_offset = -1;
  2628     // register allocation for new nodes
  2629     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2630     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2632     // Create result.
  2633     nodes._large_hi = m1;
  2634     nodes._large_lo = m2;
  2635     nodes._small = NULL;
  2636     nodes._last = nodes._large_lo;
  2637     assert(m2->bottom_type()->isa_long(), "must be long");
  2638   } else {
  2639     loadConLNode *m2 = new (C) loadConLNode();
  2641     // inputs for new nodes
  2642     m2->add_req(NULL, toc);
  2644     // operands for new nodes
  2645     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2646     m2->_opnds[1] = immSrc;                 // src
  2647     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2649     // Initialize ins_attrib instruction offset.
  2650     m2->_cbuf_insts_offset = -1;
  2652     // register allocation for new nodes
  2653     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2655     // Create result.
  2656     nodes._large_hi = NULL;
  2657     nodes._large_lo = NULL;
  2658     nodes._small = m2;
  2659     nodes._last = nodes._small;
  2660     assert(m2->bottom_type()->isa_long(), "must be long");
  2663   return nodes;
  2666 %} // source
  2668 encode %{
  2669   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2670   // Enc_class needed as consttanttablebase is not supported by postalloc
  2671   // expand.
  2672   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2673     // Create new nodes.
  2674     loadConLNodesTuple loadConLNodes =
  2675       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2676                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2678     // Push new nodes.
  2679     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2680     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2682     // some asserts
  2683     assert(nodes->length() >= 1, "must have created at least 1 node");
  2684     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2685   %}
  2687   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2688     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2690     MacroAssembler _masm(&cbuf);
  2691     int toc_offset = 0;
  2693     if (!ra_->C->in_scratch_emit_size()) {
  2694       intptr_t val = $src$$constant;
  2695       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2696       address const_toc_addr;
  2697       if (constant_reloc == relocInfo::oop_type) {
  2698         // Create an oop constant and a corresponding relocation.
  2699         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2700         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2701         __ relocate(a.rspec());
  2702       } else if (constant_reloc == relocInfo::metadata_type) {
  2703         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2704         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2705         __ relocate(a.rspec());
  2706       } else {
  2707         // Create a non-oop constant, no relocation needed.
  2708         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2711       // Get the constant's TOC offset.
  2712       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2715     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2716   %}
  2718   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2719     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2721     MacroAssembler _masm(&cbuf);
  2722     if (!ra_->C->in_scratch_emit_size()) {
  2723       intptr_t val = $src$$constant;
  2724       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2725       address const_toc_addr;
  2726       if (constant_reloc == relocInfo::oop_type) {
  2727         // Create an oop constant and a corresponding relocation.
  2728         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2729         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2730         __ relocate(a.rspec());
  2731       } else if (constant_reloc == relocInfo::metadata_type) {
  2732         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2733         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2734         __ relocate(a.rspec());
  2735       } else {  // non-oop pointers, e.g. card mark base, heap top
  2736         // Create a non-oop constant, no relocation needed.
  2737         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2740       // Get the constant's TOC offset.
  2741       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2742       // Store the toc offset of the constant.
  2743       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2746     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2747   %}
  2749   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2750   // Enc_class needed as consttanttablebase is not supported by postalloc
  2751   // expand.
  2752   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2753     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2754     if (large_constant_pool) {
  2755       // Create new nodes.
  2756       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2757       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2759       // inputs for new nodes
  2760       m1->add_req(NULL, n_toc);
  2761       m2->add_req(NULL, m1);
  2763       // operands for new nodes
  2764       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2765       m1->_opnds[1] = op_src;                 // src
  2766       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2767       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2768       m2->_opnds[1] = op_src;                 // src
  2769       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2771       // Initialize ins_attrib TOC fields.
  2772       m1->_const_toc_offset = -1;
  2773       m2->_const_toc_offset_hi_node = m1;
  2775       // Register allocation for new nodes.
  2776       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2777       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2779       nodes->push(m1);
  2780       nodes->push(m2);
  2781       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2782     } else {
  2783       loadConPNode *m2 = new (C) loadConPNode();
  2785       // inputs for new nodes
  2786       m2->add_req(NULL, n_toc);
  2788       // operands for new nodes
  2789       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2790       m2->_opnds[1] = op_src;                 // src
  2791       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2793       // Register allocation for new nodes.
  2794       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2796       nodes->push(m2);
  2797       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2799   %}
  2801   // Enc_class needed as consttanttablebase is not supported by postalloc
  2802   // expand.
  2803   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2804     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2806     MachNode *m2;
  2807     if (large_constant_pool) {
  2808       m2 = new (C) loadConFCompNode();
  2809     } else {
  2810       m2 = new (C) loadConFNode();
  2812     // inputs for new nodes
  2813     m2->add_req(NULL, n_toc);
  2815     // operands for new nodes
  2816     m2->_opnds[0] = op_dst;
  2817     m2->_opnds[1] = op_src;
  2818     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2820     // register allocation for new nodes
  2821     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2822     nodes->push(m2);
  2823   %}
  2825   // Enc_class needed as consttanttablebase is not supported by postalloc
  2826   // expand.
  2827   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2828     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2830     MachNode *m2;
  2831     if (large_constant_pool) {
  2832       m2 = new (C) loadConDCompNode();
  2833     } else {
  2834       m2 = new (C) loadConDNode();
  2836     // inputs for new nodes
  2837     m2->add_req(NULL, n_toc);
  2839     // operands for new nodes
  2840     m2->_opnds[0] = op_dst;
  2841     m2->_opnds[1] = op_src;
  2842     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2844     // register allocation for new nodes
  2845     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2846     nodes->push(m2);
  2847   %}
  2849   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2850     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2851     MacroAssembler _masm(&cbuf);
  2852     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2853     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2854   %}
  2856   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2857     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2858     MacroAssembler _masm(&cbuf);
  2859     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2860     // Operand 'ds' requires 4-alignment.
  2861     assert((Idisp & 0x3) == 0, "unaligned offset");
  2862     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2863   %}
  2865   enc_class enc_stfs(RegF src, memory mem) %{
  2866     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2867     MacroAssembler _masm(&cbuf);
  2868     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2869     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2870   %}
  2872   enc_class enc_stfd(RegF src, memory mem) %{
  2873     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2874     MacroAssembler _masm(&cbuf);
  2875     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2876     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2877   %}
  2879   // Use release_store for card-marking to ensure that previous
  2880   // oop-stores are visible before the card-mark change.
  2881   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2882     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2883     // FIXME: Implement this as a cmove and use a fixed condition code
  2884     // register which is written on every transition to compiled code,
  2885     // e.g. in call-stub and when returning from runtime stubs.
  2886     //
  2887     // Proposed code sequence for the cmove implementation:
  2888     //
  2889     // Label skip_release;
  2890     // __ beq(CCRfixed, skip_release);
  2891     // __ release();
  2892     // __ bind(skip_release);
  2893     // __ stb(card mark);
  2895     MacroAssembler _masm(&cbuf);
  2896     Label skip_storestore;
  2898 #if 0 // TODO: PPC port
  2899     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2900     // StoreStore barrier conditionally.
  2901     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2902     __ cmpwi(CCR0, R0, 0);
  2903     __ beq_predict_taken(CCR0, skip_storestore);
  2904 #endif
  2905     __ li(R0, 0);
  2906     __ membar(Assembler::StoreStore);
  2907 #if 0 // TODO: PPC port
  2908     __ bind(skip_storestore);
  2909 #endif
  2911     // Do the store.
  2912     if ($mem$$index == 0) {
  2913       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2914     } else {
  2915       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2916       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2918   %}
  2920   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2922     if (VM_Version::has_isel()) {
  2923       // use isel instruction with Power 7
  2924       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2925       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2926       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2927       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2929       n_compare->add_req(n_region, n_src);
  2930       n_compare->_opnds[0] = op_crx;
  2931       n_compare->_opnds[1] = op_src;
  2932       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2934       n_sub_base->add_req(n_region, n_src);
  2935       n_sub_base->_opnds[0] = op_dst;
  2936       n_sub_base->_opnds[1] = op_src;
  2937       n_sub_base->_bottom_type = _bottom_type;
  2939       n_shift->add_req(n_region, n_sub_base);
  2940       n_shift->_opnds[0] = op_dst;
  2941       n_shift->_opnds[1] = op_dst;
  2942       n_shift->_bottom_type = _bottom_type;
  2944       n_cond_set->add_req(n_region, n_compare, n_shift);
  2945       n_cond_set->_opnds[0] = op_dst;
  2946       n_cond_set->_opnds[1] = op_crx;
  2947       n_cond_set->_opnds[2] = op_dst;
  2948       n_cond_set->_bottom_type = _bottom_type;
  2950       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2951       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2952       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2953       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2955       nodes->push(n_compare);
  2956       nodes->push(n_sub_base);
  2957       nodes->push(n_shift);
  2958       nodes->push(n_cond_set);
  2960     } else {
  2961       // before Power 7
  2962       moveRegNode        *n_move     = new (C) moveRegNode();
  2963       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2964       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2965       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2967       n_move->add_req(n_region, n_src);
  2968       n_move->_opnds[0] = op_dst;
  2969       n_move->_opnds[1] = op_src;
  2970       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2972       n_compare->add_req(n_region, n_src);
  2973       n_compare->add_prec(n_move);
  2975       n_compare->_opnds[0] = op_crx;
  2976       n_compare->_opnds[1] = op_src;
  2977       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2979       n_sub_base->add_req(n_region, n_compare, n_src);
  2980       n_sub_base->_opnds[0] = op_dst;
  2981       n_sub_base->_opnds[1] = op_crx;
  2982       n_sub_base->_opnds[2] = op_src;
  2983       n_sub_base->_bottom_type = _bottom_type;
  2985       n_shift->add_req(n_region, n_sub_base);
  2986       n_shift->_opnds[0] = op_dst;
  2987       n_shift->_opnds[1] = op_dst;
  2988       n_shift->_bottom_type = _bottom_type;
  2990       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2991       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2992       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2993       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2995       nodes->push(n_move);
  2996       nodes->push(n_compare);
  2997       nodes->push(n_sub_base);
  2998       nodes->push(n_shift);
  3001     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3002   %}
  3004   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  3006     encodeP_subNode *n1 = new (C) encodeP_subNode();
  3007     n1->add_req(n_region, n_src);
  3008     n1->_opnds[0] = op_dst;
  3009     n1->_opnds[1] = op_src;
  3010     n1->_bottom_type = _bottom_type;
  3012     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  3013     n2->add_req(n_region, n1);
  3014     n2->_opnds[0] = op_dst;
  3015     n2->_opnds[1] = op_dst;
  3016     n2->_bottom_type = _bottom_type;
  3017     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3018     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3020     nodes->push(n1);
  3021     nodes->push(n2);
  3022     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3023   %}
  3025   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  3026     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  3027     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  3029     n_compare->add_req(n_region, n_src);
  3030     n_compare->_opnds[0] = op_crx;
  3031     n_compare->_opnds[1] = op_src;
  3032     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  3034     n_shift->add_req(n_region, n_src);
  3035     n_shift->_opnds[0] = op_dst;
  3036     n_shift->_opnds[1] = op_src;
  3037     n_shift->_bottom_type = _bottom_type;
  3039     if (VM_Version::has_isel()) {
  3040       // use isel instruction with Power 7
  3042       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  3043       n_add_base->add_req(n_region, n_shift);
  3044       n_add_base->_opnds[0] = op_dst;
  3045       n_add_base->_opnds[1] = op_dst;
  3046       n_add_base->_bottom_type = _bottom_type;
  3048       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3049       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3050       n_cond_set->_opnds[0] = op_dst;
  3051       n_cond_set->_opnds[1] = op_crx;
  3052       n_cond_set->_opnds[2] = op_dst;
  3053       n_cond_set->_bottom_type = _bottom_type;
  3055       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3056       ra_->set_oop(n_cond_set, true);
  3058       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3059       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3060       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3061       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3063       nodes->push(n_compare);
  3064       nodes->push(n_shift);
  3065       nodes->push(n_add_base);
  3066       nodes->push(n_cond_set);
  3068     } else {
  3069       // before Power 7
  3070       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3072       n_add_base->add_req(n_region, n_compare, n_shift);
  3073       n_add_base->_opnds[0] = op_dst;
  3074       n_add_base->_opnds[1] = op_crx;
  3075       n_add_base->_opnds[2] = op_dst;
  3076       n_add_base->_bottom_type = _bottom_type;
  3078       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3079       ra_->set_oop(n_add_base, true);
  3081       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3082       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3083       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3085       nodes->push(n_compare);
  3086       nodes->push(n_shift);
  3087       nodes->push(n_add_base);
  3089   %}
  3091   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3092     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3093     n1->add_req(n_region, n_src);
  3094     n1->_opnds[0] = op_dst;
  3095     n1->_opnds[1] = op_src;
  3096     n1->_bottom_type = _bottom_type;
  3098     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3099     n2->add_req(n_region, n1);
  3100     n2->_opnds[0] = op_dst;
  3101     n2->_opnds[1] = op_dst;
  3102     n2->_bottom_type = _bottom_type;
  3103     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3104     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3106     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3107     ra_->set_oop(n2, true);
  3109     nodes->push(n1);
  3110     nodes->push(n2);
  3111   %}
  3113   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3114     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3116     MacroAssembler _masm(&cbuf);
  3117     int cc        = $cmp$$cmpcode;
  3118     int flags_reg = $crx$$reg;
  3119     Label done;
  3120     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3121     // Branch if not (cmp crx).
  3122     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3123     __ mr($dst$$Register, $src$$Register);
  3124     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3125     __ bind(done);
  3126   %}
  3128   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3129     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3131     MacroAssembler _masm(&cbuf);
  3132     Label done;
  3133     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3134     // Branch if not (cmp crx).
  3135     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3136     __ li($dst$$Register, $src$$constant);
  3137     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3138     __ bind(done);
  3139   %}
  3141   // New atomics.
  3142   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3143     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3145     MacroAssembler _masm(&cbuf);
  3146     Register Rtmp   = R0;
  3147     Register Rres   = $res$$Register;
  3148     Register Rsrc   = $src$$Register;
  3149     Register Rptr   = $mem_ptr$$Register;
  3150     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3151     Register Rold   = RegCollision ? Rtmp : Rres;
  3153     Label Lretry;
  3154     __ bind(Lretry);
  3155     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3156     __ add(Rtmp, Rsrc, Rold);
  3157     __ stwcx_(Rtmp, Rptr);
  3158     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3159       __ bne_predict_not_taken(CCR0, Lretry);
  3160     } else {
  3161       __ bne(                  CCR0, Lretry);
  3163     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3164     __ fence();
  3165   %}
  3167   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3168     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3170     MacroAssembler _masm(&cbuf);
  3171     Register Rtmp   = R0;
  3172     Register Rres   = $res$$Register;
  3173     Register Rsrc   = $src$$Register;
  3174     Register Rptr   = $mem_ptr$$Register;
  3175     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3176     Register Rold   = RegCollision ? Rtmp : Rres;
  3178     Label Lretry;
  3179     __ bind(Lretry);
  3180     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3181     __ add(Rtmp, Rsrc, Rold);
  3182     __ stdcx_(Rtmp, Rptr);
  3183     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3184       __ bne_predict_not_taken(CCR0, Lretry);
  3185     } else {
  3186       __ bne(                  CCR0, Lretry);
  3188     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3189     __ fence();
  3190   %}
  3192   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3193     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3195     MacroAssembler _masm(&cbuf);
  3196     Register Rtmp   = R0;
  3197     Register Rres   = $res$$Register;
  3198     Register Rsrc   = $src$$Register;
  3199     Register Rptr   = $mem_ptr$$Register;
  3200     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3201     Register Rold   = RegCollision ? Rtmp : Rres;
  3203     Label Lretry;
  3204     __ bind(Lretry);
  3205     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3206     __ stwcx_(Rsrc, Rptr);
  3207     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3208       __ bne_predict_not_taken(CCR0, Lretry);
  3209     } else {
  3210       __ bne(                  CCR0, Lretry);
  3212     if (RegCollision) __ mr(Rres, Rtmp);
  3213     __ fence();
  3214   %}
  3216   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3217     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3219     MacroAssembler _masm(&cbuf);
  3220     Register Rtmp   = R0;
  3221     Register Rres   = $res$$Register;
  3222     Register Rsrc   = $src$$Register;
  3223     Register Rptr   = $mem_ptr$$Register;
  3224     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3225     Register Rold   = RegCollision ? Rtmp : Rres;
  3227     Label Lretry;
  3228     __ bind(Lretry);
  3229     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3230     __ stdcx_(Rsrc, Rptr);
  3231     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3232       __ bne_predict_not_taken(CCR0, Lretry);
  3233     } else {
  3234       __ bne(                  CCR0, Lretry);
  3236     if (RegCollision) __ mr(Rres, Rtmp);
  3237     __ fence();
  3238   %}
  3240   // This enc_class is needed so that scheduler gets proper
  3241   // input mapping for latency computation.
  3242   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3243     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3244     MacroAssembler _masm(&cbuf);
  3245     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3246   %}
  3248   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3249     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3251     MacroAssembler _masm(&cbuf);
  3253     Label done;
  3254     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3255     __ li($dst$$Register, $zero$$constant);
  3256     __ beq($crx$$CondRegister, done);
  3257     __ li($dst$$Register, $notzero$$constant);
  3258     __ bind(done);
  3259   %}
  3261   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3262     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3264     MacroAssembler _masm(&cbuf);
  3266     Label done;
  3267     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3268     __ li($dst$$Register, $zero$$constant);
  3269     __ beq($crx$$CondRegister, done);
  3270     __ li($dst$$Register, $notzero$$constant);
  3271     __ bind(done);
  3272   %}
  3274   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3275     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3277     MacroAssembler _masm(&cbuf);
  3278     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3279     Label done;
  3280     __ bso($crx$$CondRegister, done);
  3281     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3282     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3283     __ bind(done);
  3284   %}
  3286   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3287     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3289     MacroAssembler _masm(&cbuf);
  3290     Label d;   // dummy
  3291     __ bind(d);
  3292     Label* p = ($lbl$$label);
  3293     // `p' is `NULL' when this encoding class is used only to
  3294     // determine the size of the encoded instruction.
  3295     Label& l = (NULL == p)? d : *(p);
  3296     int cc = $cmp$$cmpcode;
  3297     int flags_reg = $crx$$reg;
  3298     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3299     int bhint = Assembler::bhintNoHint;
  3301     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3302       if (_prob <= PROB_NEVER) {
  3303         bhint = Assembler::bhintIsNotTaken;
  3304       } else if (_prob >= PROB_ALWAYS) {
  3305         bhint = Assembler::bhintIsTaken;
  3309     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3310           cc_to_biint(cc, flags_reg),
  3311           l);
  3312   %}
  3314   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3315     // The scheduler doesn't know about branch shortening, so we set the opcode
  3316     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3317     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3319     MacroAssembler _masm(&cbuf);
  3320     Label d;    // dummy
  3321     __ bind(d);
  3322     Label* p = ($lbl$$label);
  3323     // `p' is `NULL' when this encoding class is used only to
  3324     // determine the size of the encoded instruction.
  3325     Label& l = (NULL == p)? d : *(p);
  3326     int cc = $cmp$$cmpcode;
  3327     int flags_reg = $crx$$reg;
  3328     int bhint = Assembler::bhintNoHint;
  3330     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3331       if (_prob <= PROB_NEVER) {
  3332         bhint = Assembler::bhintIsNotTaken;
  3333       } else if (_prob >= PROB_ALWAYS) {
  3334         bhint = Assembler::bhintIsTaken;
  3338     // Tell the conditional far branch to optimize itself when being relocated.
  3339     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3340                   cc_to_biint(cc, flags_reg),
  3341                   l,
  3342                   MacroAssembler::bc_far_optimize_on_relocate);
  3343   %}
  3345   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3346   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3347     // The scheduler doesn't know about branch shortening, so we set the opcode
  3348     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3349     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3351     MacroAssembler _masm(&cbuf);
  3352     Label d;   // dummy
  3353     __ bind(d);
  3354     Label* p = ($lbl$$label);
  3355     // `p' is `NULL' when this encoding class is used only to
  3356     // determine the size of the encoded instruction.
  3357     Label& l = (NULL == p)? d : *(p);
  3358     int cc = $cmp$$cmpcode;
  3359     int flags_reg = $crx$$reg;
  3360     int bhint = Assembler::bhintNoHint;
  3362     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3363       if (_prob <= PROB_NEVER) {
  3364         bhint = Assembler::bhintIsNotTaken;
  3365       } else if (_prob >= PROB_ALWAYS) {
  3366         bhint = Assembler::bhintIsTaken;
  3370 #if 0 // TODO: PPC port
  3371     if (_size == 8) {
  3372       // Tell the conditional far branch to optimize itself when being relocated.
  3373       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3374                     cc_to_biint(cc, flags_reg),
  3375                     l,
  3376                     MacroAssembler::bc_far_optimize_on_relocate);
  3377     } else {
  3378       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3379                     cc_to_biint(cc, flags_reg),
  3380                     l);
  3382 #endif
  3383     Unimplemented();
  3384   %}
  3386   // Postalloc expand emitter for loading a replicatef float constant from
  3387   // the method's TOC.
  3388   // Enc_class needed as consttanttablebase is not supported by postalloc
  3389   // expand.
  3390   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3391     // Create new nodes.
  3393     // Make an operand with the bit pattern to load as float.
  3394     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3396     loadConLNodesTuple loadConLNodes =
  3397       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3398                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3400     // Push new nodes.
  3401     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3402     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3404     assert(nodes->length() >= 1, "must have created at least 1 node");
  3405     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3406   %}
  3408   // This enc_class is needed so that scheduler gets proper
  3409   // input mapping for latency computation.
  3410   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3411     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3412     // Fake operand dst needed for PPC scheduler.
  3413     assert($dst$$constant == 0x0, "dst must be 0x0");
  3415     MacroAssembler _masm(&cbuf);
  3416     // Mark the code position where the load from the safepoint
  3417     // polling page was emitted as relocInfo::poll_type.
  3418     __ relocate(relocInfo::poll_type);
  3419     __ load_from_polling_page($poll$$Register);
  3420   %}
  3422   // A Java static call or a runtime call.
  3423   //
  3424   // Branch-and-link relative to a trampoline.
  3425   // The trampoline loads the target address and does a long branch to there.
  3426   // In case we call java, the trampoline branches to a interpreter_stub
  3427   // which loads the inline cache and the real call target from the constant pool.
  3428   //
  3429   // This basically looks like this:
  3430   //
  3431   // >>>> consts      -+  -+
  3432   //                   |   |- offset1
  3433   // [call target1]    | <-+
  3434   // [IC cache]        |- offset2
  3435   // [call target2] <--+
  3436   //
  3437   // <<<< consts
  3438   // >>>> insts
  3439   //
  3440   // bl offset16               -+  -+             ??? // How many bits available?
  3441   //                            |   |
  3442   // <<<< insts                 |   |
  3443   // >>>> stubs                 |   |
  3444   //                            |   |- trampoline_stub_Reloc
  3445   // trampoline stub:           | <-+
  3446   //   r2 = toc                 |
  3447   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3448   //   mtctr r2                 |
  3449   //   bctr                     |- static_stub_Reloc
  3450   // comp_to_interp_stub:   <---+
  3451   //   r1 = toc
  3452   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3453   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3454   //   mtctr r1
  3455   //   bctr
  3456   //
  3457   // <<<< stubs
  3458   //
  3459   // The call instruction in the code either
  3460   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3461   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3462   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3463   //
  3464   // Further there are three relocations from the loads to the constants in
  3465   // the constant section.
  3466   //
  3467   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3468   enc_class enc_java_static_call(method meth) %{
  3469     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3471     MacroAssembler _masm(&cbuf);
  3472     address entry_point = (address)$meth$$method;
  3474     if (!_method) {
  3475       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3476       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3477     } else {
  3478       // Remember the offset not the address.
  3479       const int start_offset = __ offset();
  3480       // The trampoline stub.
  3481       if (!Compile::current()->in_scratch_emit_size()) {
  3482         // No entry point given, use the current pc.
  3483         // Make sure branch fits into
  3484         if (entry_point == 0) entry_point = __ pc();
  3486         // Put the entry point as a constant into the constant pool.
  3487         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3488         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3490         // Emit the trampoline stub which will be related to the branch-and-link below.
  3491         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3492         if (Compile::current()->env()->failing()) { return; } // Code cache may be full.
  3493         __ relocate(_optimized_virtual ?
  3494                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3497       // The real call.
  3498       // Note: At this point we do not have the address of the trampoline
  3499       // stub, and the entry point might be too far away for bl, so __ pc()
  3500       // serves as dummy and the bl will be patched later.
  3501       cbuf.set_insts_mark();
  3502       __ bl(__ pc());  // Emits a relocation.
  3504       // The stub for call to interpreter.
  3505       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3507   %}
  3509   // Emit a method handle call.
  3510   //
  3511   // Method handle calls from compiled to compiled are going thru a
  3512   // c2i -> i2c adapter, extending the frame for their arguments. The
  3513   // caller however, returns directly to the compiled callee, that has
  3514   // to cope with the extended frame. We restore the original frame by
  3515   // loading the callers sp and adding the calculated framesize.
  3516   enc_class enc_java_handle_call(method meth) %{
  3517     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3519     MacroAssembler _masm(&cbuf);
  3520     address entry_point = (address)$meth$$method;
  3522     // Remember the offset not the address.
  3523     const int start_offset = __ offset();
  3524     // The trampoline stub.
  3525     if (!ra_->C->in_scratch_emit_size()) {
  3526       // No entry point given, use the current pc.
  3527       // Make sure branch fits into
  3528       if (entry_point == 0) entry_point = __ pc();
  3530       // Put the entry point as a constant into the constant pool.
  3531       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3532       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3534       // Emit the trampoline stub which will be related to the branch-and-link below.
  3535       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3536       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3537       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3538       __ relocate(relocInfo::opt_virtual_call_type);
  3541     // The real call.
  3542     // Note: At this point we do not have the address of the trampoline
  3543     // stub, and the entry point might be too far away for bl, so __ pc()
  3544     // serves as dummy and the bl will be patched later.
  3545     cbuf.set_insts_mark();
  3546     __ bl(__ pc());  // Emits a relocation.
  3548     assert(_method, "execute next statement conditionally");
  3549     // The stub for call to interpreter.
  3550     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3552     // Restore original sp.
  3553     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3554     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3555     unsigned int bytes = (unsigned int)framesize;
  3556     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3557     if (Assembler::is_simm(-offset, 16)) {
  3558       __ addi(R1_SP, R11_scratch1, -offset);
  3559     } else {
  3560       __ load_const_optimized(R12_scratch2, -offset);
  3561       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3563 #ifdef ASSERT
  3564   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3565   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3566   __ asm_assert_eq("backlink changed", 0x8000);
  3567 #endif
  3568     // If fails should store backlink before unextending.
  3570     if (ra_->C->env()->failing()) {
  3571       return;
  3573   %}
  3575   // Second node of expanded dynamic call - the call.
  3576   enc_class enc_java_dynamic_call_sched(method meth) %{
  3577     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3579     MacroAssembler _masm(&cbuf);
  3581     if (!ra_->C->in_scratch_emit_size()) {
  3582       // Create a call trampoline stub for the given method.
  3583       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3584       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3585       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3586       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3587       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3589       // Build relocation at call site with ic position as data.
  3590       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3591              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3592              "must have one, but can't have both");
  3593       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3594              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3595              "must contain instruction offset");
  3596       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3597         ? _load_ic_hi_node->_cbuf_insts_offset
  3598         : _load_ic_node->_cbuf_insts_offset;
  3599       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3600       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3601              "should be load from TOC");
  3603       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3606     // At this point I do not have the address of the trampoline stub,
  3607     // and the entry point might be too far away for bl. Pc() serves
  3608     // as dummy and bl will be patched later.
  3609     __ bl((address) __ pc());
  3610   %}
  3612   // postalloc expand emitter for virtual calls.
  3613   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3615     // Create the nodes for loading the IC from the TOC.
  3616     loadConLNodesTuple loadConLNodes_IC =
  3617       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3618                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3620     // Create the call node.
  3621     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3622     call->_method_handle_invoke = _method_handle_invoke;
  3623     call->_vtable_index      = _vtable_index;
  3624     call->_method            = _method;
  3625     call->_bci               = _bci;
  3626     call->_optimized_virtual = _optimized_virtual;
  3627     call->_tf                = _tf;
  3628     call->_entry_point       = _entry_point;
  3629     call->_cnt               = _cnt;
  3630     call->_argsize           = _argsize;
  3631     call->_oop_map           = _oop_map;
  3632     call->_jvms              = _jvms;
  3633     call->_jvmadj            = _jvmadj;
  3634     call->_in_rms            = _in_rms;
  3635     call->_nesting           = _nesting;
  3637     // New call needs all inputs of old call.
  3638     // Req...
  3639     for (uint i = 0; i < req(); ++i) {
  3640       // The expanded node does not need toc any more.
  3641       // Add the inline cache constant here instead. This expresses the
  3642       // register of the inline cache must be live at the call.
  3643       // Else we would have to adapt JVMState by -1.
  3644       if (i == mach_constant_base_node_input()) {
  3645         call->add_req(loadConLNodes_IC._last);
  3646       } else {
  3647         call->add_req(in(i));
  3650     // ...as well as prec
  3651     for (uint i = req(); i < len(); ++i) {
  3652       call->add_prec(in(i));
  3655     // Remember nodes loading the inline cache into r19.
  3656     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3657     call->_load_ic_node    = loadConLNodes_IC._small;
  3659     // Operands for new nodes.
  3660     call->_opnds[0] = _opnds[0];
  3661     call->_opnds[1] = _opnds[1];
  3663     // Only the inline cache is associated with a register.
  3664     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3666     // Push new nodes.
  3667     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3668     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3669     nodes->push(call);
  3670   %}
  3672   // Compound version of call dynamic
  3673   // Toc is only passed so that it can be used in ins_encode statement.
  3674   // In the code we have to use $constanttablebase.
  3675   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3676     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3677     MacroAssembler _masm(&cbuf);
  3678     int start_offset = __ offset();
  3680     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3681 #if 0
  3682     int vtable_index = this->_vtable_index;
  3683     if (_vtable_index < 0) {
  3684       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3685       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3686       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3688       // Virtual call relocation will point to ic load.
  3689       address virtual_call_meta_addr = __ pc();
  3690       // Load a clear inline cache.
  3691       AddressLiteral empty_ic((address) Universe::non_oop_word());
  3692       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  3693       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3694       // to determine who we intended to call.
  3695       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3696       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3697       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3698              "Fix constant in ret_addr_offset()");
  3699     } else {
  3700       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3701       // Go thru the vtable. Get receiver klass. Receiver already
  3702       // checked for non-null. If we'll go thru a C2I adapter, the
  3703       // interpreter expects method in R19_method.
  3705       __ load_klass(R11_scratch1, R3);
  3707       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3708       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3709       __ li(R19_method, v_off);
  3710       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3711       // NOTE: for vtable dispatches, the vtable entry will never be
  3712       // null. However it may very well end up in handle_wrong_method
  3713       // if the method is abstract for the particular class.
  3714       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3715       // Call target. Either compiled code or C2I adapter.
  3716       __ mtctr(R11_scratch1);
  3717       __ bctrl();
  3718       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3719         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3721       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3722              "Fix constant in ret_addr_offset()");
  3724 #endif
  3725     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3726   %}
  3728   // a runtime call
  3729   enc_class enc_java_to_runtime_call (method meth) %{
  3730     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3732     MacroAssembler _masm(&cbuf);
  3733     const address start_pc = __ pc();
  3735 #if defined(ABI_ELFv2)
  3736     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  3737     __ call_c(entry, relocInfo::runtime_call_type);
  3738 #else
  3739     // The function we're going to call.
  3740     FunctionDescriptor fdtemp;
  3741     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3743     Register Rtoc = R12_scratch2;
  3744     // Calculate the method's TOC.
  3745     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3746     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3747     // pool entries; call_c_using_toc will optimize the call.
  3748     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3749 #endif
  3751     // Check the ret_addr_offset.
  3752     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3753            "Fix constant in ret_addr_offset()");
  3754   %}
  3756   // Move to ctr for leaf call.
  3757   // This enc_class is needed so that scheduler gets proper
  3758   // input mapping for latency computation.
  3759   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3760     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3761     MacroAssembler _masm(&cbuf);
  3762     __ mtctr($src$$Register);
  3763   %}
  3765   // Postalloc expand emitter for runtime leaf calls.
  3766   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3767     loadConLNodesTuple loadConLNodes_Entry;
  3768 #if defined(ABI_ELFv2)
  3769     jlong entry_address = (jlong) this->entry_point();
  3770     assert(entry_address, "need address here");
  3771     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3772                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3773 #else
  3774     // Get the struct that describes the function we are about to call.
  3775     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3776     assert(fd, "need fd here");
  3777     jlong entry_address = (jlong) fd->entry();
  3778     // new nodes
  3779     loadConLNodesTuple loadConLNodes_Env;
  3780     loadConLNodesTuple loadConLNodes_Toc;
  3782     // Create nodes and operands for loading the entry point.
  3783     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3784                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3787     // Create nodes and operands for loading the env pointer.
  3788     if (fd->env() != NULL) {
  3789       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3790                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3791     } else {
  3792       loadConLNodes_Env._large_hi = NULL;
  3793       loadConLNodes_Env._large_lo = NULL;
  3794       loadConLNodes_Env._small    = NULL;
  3795       loadConLNodes_Env._last = new (C) loadConL16Node();
  3796       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3797       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3798       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3801     // Create nodes and operands for loading the Toc point.
  3802     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3803                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3804 #endif // ABI_ELFv2
  3805     // mtctr node
  3806     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  3808     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3809     mtctr->add_req(0, loadConLNodes_Entry._last);
  3811     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3812     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3814     // call node
  3815     MachCallLeafNode *call = new (C) CallLeafDirectNode();
  3817     call->_opnds[0] = _opnds[0];
  3818     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  3820     // Make the new call node look like the old one.
  3821     call->_name        = _name;
  3822     call->_tf          = _tf;
  3823     call->_entry_point = _entry_point;
  3824     call->_cnt         = _cnt;
  3825     call->_argsize     = _argsize;
  3826     call->_oop_map     = _oop_map;
  3827     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3828     call->_jvms        = NULL;
  3829     call->_jvmadj      = _jvmadj;
  3830     call->_in_rms      = _in_rms;
  3831     call->_nesting     = _nesting;
  3834     // New call needs all inputs of old call.
  3835     // Req...
  3836     for (uint i = 0; i < req(); ++i) {
  3837       if (i != mach_constant_base_node_input()) {
  3838         call->add_req(in(i));
  3842     // These must be reqired edges, as the registers are live up to
  3843     // the call. Else the constants are handled as kills.
  3844     call->add_req(mtctr);
  3845 #if !defined(ABI_ELFv2)
  3846     call->add_req(loadConLNodes_Env._last);
  3847     call->add_req(loadConLNodes_Toc._last);
  3848 #endif
  3850     // ...as well as prec
  3851     for (uint i = req(); i < len(); ++i) {
  3852       call->add_prec(in(i));
  3855     // registers
  3856     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3858     // Insert the new nodes.
  3859     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3860     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3861 #if !defined(ABI_ELFv2)
  3862     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3863     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3864     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3865     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3866 #endif
  3867     nodes->push(mtctr);
  3868     nodes->push(call);
  3869   %}
  3870 %}
  3872 //----------FRAME--------------------------------------------------------------
  3873 // Definition of frame structure and management information.
  3875 frame %{
  3876   // What direction does stack grow in (assumed to be same for native & Java).
  3877   stack_direction(TOWARDS_LOW);
  3879   // These two registers define part of the calling convention between
  3880   // compiled code and the interpreter.
  3882   // Inline Cache Register or method for I2C.
  3883   inline_cache_reg(R19); // R19_method
  3885   // Method Oop Register when calling interpreter.
  3886   interpreter_method_oop_reg(R19); // R19_method
  3888   // Optional: name the operand used by cisc-spilling to access
  3889   // [stack_pointer + offset].
  3890   cisc_spilling_operand_name(indOffset);
  3892   // Number of stack slots consumed by a Monitor enter.
  3893   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3895   // Compiled code's Frame Pointer.
  3896   frame_pointer(R1); // R1_SP
  3898   // Interpreter stores its frame pointer in a register which is
  3899   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3900   // interpreted java to compiled java.
  3901   //
  3902   // R14_state holds pointer to caller's cInterpreter.
  3903   interpreter_frame_pointer(R14); // R14_state
  3905   stack_alignment(frame::alignment_in_bytes);
  3907   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3909   // Number of outgoing stack slots killed above the
  3910   // out_preserve_stack_slots for calls to C. Supports the var-args
  3911   // backing area for register parms.
  3912   //
  3913   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3915   // The after-PROLOG location of the return address. Location of
  3916   // return address specifies a type (REG or STACK) and a number
  3917   // representing the register number (i.e. - use a register name) or
  3918   // stack slot.
  3919   //
  3920   // A: Link register is stored in stack slot ...
  3921   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3922   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3923   //    at the end of the prolog.
  3924   // B: We use R20, now.
  3925   //return_addr(REG R20);
  3927   // G: After reading the comments made by all the luminaries on their
  3928   //    failure to tell the compiler where the return address really is,
  3929   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3930   //    4 what apparently works and saves us some spills.
  3931   return_addr(STACK 4);
  3933   // This is the body of the function
  3934   //
  3935   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3936   //                                  uint length,      // length of array
  3937   //                                  bool is_outgoing)
  3938   //
  3939   // The `sig' array is to be updated. sig[j] represents the location
  3940   // of the j-th argument, either a register or a stack slot.
  3942   // Comment taken from i486.ad:
  3943   // Body of function which returns an integer array locating
  3944   // arguments either in registers or in stack slots. Passed an array
  3945   // of ideal registers called "sig" and a "length" count. Stack-slot
  3946   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3947   // arguments for a CALLEE. Incoming stack arguments are
  3948   // automatically biased by the preserve_stack_slots field above.
  3949   calling_convention %{
  3950     // No difference between ingoing/outgoing. Just pass false.
  3951     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3952   %}
  3954   // Comment taken from i486.ad:
  3955   // Body of function which returns an integer array locating
  3956   // arguments either in registers or in stack slots. Passed an array
  3957   // of ideal registers called "sig" and a "length" count. Stack-slot
  3958   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3959   // arguments for a CALLEE. Incoming stack arguments are
  3960   // automatically biased by the preserve_stack_slots field above.
  3961   c_calling_convention %{
  3962     // This is obviously always outgoing.
  3963     // C argument in register AND stack slot.
  3964     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3965   %}
  3967   // Location of native (C/C++) and interpreter return values. This
  3968   // is specified to be the same as Java. In the 32-bit VM, long
  3969   // values are actually returned from native calls in O0:O1 and
  3970   // returned to the interpreter in I0:I1. The copying to and from
  3971   // the register pairs is done by the appropriate call and epilog
  3972   // opcodes. This simplifies the register allocator.
  3973   c_return_value %{
  3974     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3975             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3976             "only return normal values");
  3977     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3978     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3979     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3980     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3981   %}
  3983   // Location of compiled Java return values.  Same as C
  3984   return_value %{
  3985     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3986             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3987             "only return normal values");
  3988     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3989     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3990     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3991     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3992   %}
  3993 %}
  3996 //----------ATTRIBUTES---------------------------------------------------------
  3998 //----------Operand Attributes-------------------------------------------------
  3999 op_attrib op_cost(1);          // Required cost attribute.
  4001 //----------Instruction Attributes---------------------------------------------
  4003 // Cost attribute. required.
  4004 ins_attrib ins_cost(DEFAULT_COST);
  4006 // Is this instruction a non-matching short branch variant of some
  4007 // long branch? Not required.
  4008 ins_attrib ins_short_branch(0);
  4010 ins_attrib ins_is_TrapBasedCheckNode(true);
  4012 // Number of constants.
  4013 // This instruction uses the given number of constants
  4014 // (optional attribute).
  4015 // This is needed to determine in time whether the constant pool will
  4016 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  4017 // is determined. It's also used to compute the constant pool size
  4018 // in Output().
  4019 ins_attrib ins_num_consts(0);
  4021 // Required alignment attribute (must be a power of 2) specifies the
  4022 // alignment that some part of the instruction (not necessarily the
  4023 // start) requires. If > 1, a compute_padding() function must be
  4024 // provided for the instruction.
  4025 ins_attrib ins_alignment(1);
  4027 // Enforce/prohibit rematerializations.
  4028 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  4029 //   then rematerialization of that instruction is prohibited and the
  4030 //   instruction's value will be spilled if necessary.
  4031 //   Causes that MachNode::rematerialize() returns false.
  4032 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  4033 //   then rematerialization should be enforced and a copy of the instruction
  4034 //   should be inserted if possible; rematerialization is not guaranteed.
  4035 //   Note: this may result in rematerializations in front of every use.
  4036 //   Causes that MachNode::rematerialize() can return true.
  4037 // (optional attribute)
  4038 ins_attrib ins_cannot_rematerialize(false);
  4039 ins_attrib ins_should_rematerialize(false);
  4041 // Instruction has variable size depending on alignment.
  4042 ins_attrib ins_variable_size_depending_on_alignment(false);
  4044 // Instruction is a nop.
  4045 ins_attrib ins_is_nop(false);
  4047 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  4048 ins_attrib ins_use_mach_if_fast_lock_node(false);
  4050 // Field for the toc offset of a constant.
  4051 //
  4052 // This is needed if the toc offset is not encodable as an immediate in
  4053 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  4054 // added to the toc, and from this a load with immediate is performed.
  4055 // With postalloc expand, we get two nodes that require the same offset
  4056 // but which don't know about each other. The offset is only known
  4057 // when the constant is added to the constant pool during emitting.
  4058 // It is generated in the 'hi'-node adding the upper bits, and saved
  4059 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  4060 // the offset from there when it gets encoded.
  4061 ins_attrib ins_field_const_toc_offset(0);
  4062 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4064 // A field that can hold the instructions offset in the code buffer.
  4065 // Set in the nodes emitter.
  4066 ins_attrib ins_field_cbuf_insts_offset(-1);
  4068 // Fields for referencing a call's load-IC-node.
  4069 // If the toc offset can not be encoded as an immediate in a load, we
  4070 // use two nodes.
  4071 ins_attrib ins_field_load_ic_hi_node(0);
  4072 ins_attrib ins_field_load_ic_node(0);
  4074 //----------OPERANDS-----------------------------------------------------------
  4075 // Operand definitions must precede instruction definitions for correct
  4076 // parsing in the ADLC because operands constitute user defined types
  4077 // which are used in instruction definitions.
  4078 //
  4079 // Formats are generated automatically for constants and base registers.
  4081 //----------Simple Operands----------------------------------------------------
  4082 // Immediate Operands
  4084 // Integer Immediate: 32-bit
  4085 operand immI() %{
  4086   match(ConI);
  4087   op_cost(40);
  4088   format %{ %}
  4089   interface(CONST_INTER);
  4090 %}
  4092 operand immI8() %{
  4093   predicate(Assembler::is_simm(n->get_int(), 8));
  4094   op_cost(0);
  4095   match(ConI);
  4096   format %{ %}
  4097   interface(CONST_INTER);
  4098 %}
  4100 // Integer Immediate: 16-bit
  4101 operand immI16() %{
  4102   predicate(Assembler::is_simm(n->get_int(), 16));
  4103   op_cost(0);
  4104   match(ConI);
  4105   format %{ %}
  4106   interface(CONST_INTER);
  4107 %}
  4109 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4110 operand immIhi16() %{
  4111   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4112   match(ConI);
  4113   op_cost(0);
  4114   format %{ %}
  4115   interface(CONST_INTER);
  4116 %}
  4118 operand immInegpow2() %{
  4119   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4120   match(ConI);
  4121   op_cost(0);
  4122   format %{ %}
  4123   interface(CONST_INTER);
  4124 %}
  4126 operand immIpow2minus1() %{
  4127   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4128   match(ConI);
  4129   op_cost(0);
  4130   format %{ %}
  4131   interface(CONST_INTER);
  4132 %}
  4134 operand immIpowerOf2() %{
  4135   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4136   match(ConI);
  4137   op_cost(0);
  4138   format %{ %}
  4139   interface(CONST_INTER);
  4140 %}
  4142 // Unsigned Integer Immediate: the values 0-31
  4143 operand uimmI5() %{
  4144   predicate(Assembler::is_uimm(n->get_int(), 5));
  4145   match(ConI);
  4146   op_cost(0);
  4147   format %{ %}
  4148   interface(CONST_INTER);
  4149 %}
  4151 // Unsigned Integer Immediate: 6-bit
  4152 operand uimmI6() %{
  4153   predicate(Assembler::is_uimm(n->get_int(), 6));
  4154   match(ConI);
  4155   op_cost(0);
  4156   format %{ %}
  4157   interface(CONST_INTER);
  4158 %}
  4160 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4161 operand uimmI6_ge32() %{
  4162   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4163   match(ConI);
  4164   op_cost(0);
  4165   format %{ %}
  4166   interface(CONST_INTER);
  4167 %}
  4169 // Unsigned Integer Immediate: 15-bit
  4170 operand uimmI15() %{
  4171   predicate(Assembler::is_uimm(n->get_int(), 15));
  4172   match(ConI);
  4173   op_cost(0);
  4174   format %{ %}
  4175   interface(CONST_INTER);
  4176 %}
  4178 // Unsigned Integer Immediate: 16-bit
  4179 operand uimmI16() %{
  4180   predicate(Assembler::is_uimm(n->get_int(), 16));
  4181   match(ConI);
  4182   op_cost(0);
  4183   format %{ %}
  4184   interface(CONST_INTER);
  4185 %}
  4187 // constant 'int 0'.
  4188 operand immI_0() %{
  4189   predicate(n->get_int() == 0);
  4190   match(ConI);
  4191   op_cost(0);
  4192   format %{ %}
  4193   interface(CONST_INTER);
  4194 %}
  4196 // constant 'int 1'.
  4197 operand immI_1() %{
  4198   predicate(n->get_int() == 1);
  4199   match(ConI);
  4200   op_cost(0);
  4201   format %{ %}
  4202   interface(CONST_INTER);
  4203 %}
  4205 // constant 'int -1'.
  4206 operand immI_minus1() %{
  4207   predicate(n->get_int() == -1);
  4208   match(ConI);
  4209   op_cost(0);
  4210   format %{ %}
  4211   interface(CONST_INTER);
  4212 %}
  4214 // int value 16.
  4215 operand immI_16() %{
  4216   predicate(n->get_int() == 16);
  4217   match(ConI);
  4218   op_cost(0);
  4219   format %{ %}
  4220   interface(CONST_INTER);
  4221 %}
  4223 // int value 24.
  4224 operand immI_24() %{
  4225   predicate(n->get_int() == 24);
  4226   match(ConI);
  4227   op_cost(0);
  4228   format %{ %}
  4229   interface(CONST_INTER);
  4230 %}
  4232 // Compressed oops constants
  4233 // Pointer Immediate
  4234 operand immN() %{
  4235   match(ConN);
  4237   op_cost(10);
  4238   format %{ %}
  4239   interface(CONST_INTER);
  4240 %}
  4242 // NULL Pointer Immediate
  4243 operand immN_0() %{
  4244   predicate(n->get_narrowcon() == 0);
  4245   match(ConN);
  4247   op_cost(0);
  4248   format %{ %}
  4249   interface(CONST_INTER);
  4250 %}
  4252 // Compressed klass constants
  4253 operand immNKlass() %{
  4254   match(ConNKlass);
  4256   op_cost(0);
  4257   format %{ %}
  4258   interface(CONST_INTER);
  4259 %}
  4261 // This operand can be used to avoid matching of an instruct
  4262 // with chain rule.
  4263 operand immNKlass_NM() %{
  4264   match(ConNKlass);
  4265   predicate(false);
  4266   op_cost(0);
  4267   format %{ %}
  4268   interface(CONST_INTER);
  4269 %}
  4271 // Pointer Immediate: 64-bit
  4272 operand immP() %{
  4273   match(ConP);
  4274   op_cost(0);
  4275   format %{ %}
  4276   interface(CONST_INTER);
  4277 %}
  4279 // Operand to avoid match of loadConP.
  4280 // This operand can be used to avoid matching of an instruct
  4281 // with chain rule.
  4282 operand immP_NM() %{
  4283   match(ConP);
  4284   predicate(false);
  4285   op_cost(0);
  4286   format %{ %}
  4287   interface(CONST_INTER);
  4288 %}
  4290 // costant 'pointer 0'.
  4291 operand immP_0() %{
  4292   predicate(n->get_ptr() == 0);
  4293   match(ConP);
  4294   op_cost(0);
  4295   format %{ %}
  4296   interface(CONST_INTER);
  4297 %}
  4299 // pointer 0x0 or 0x1
  4300 operand immP_0or1() %{
  4301   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4302   match(ConP);
  4303   op_cost(0);
  4304   format %{ %}
  4305   interface(CONST_INTER);
  4306 %}
  4308 operand immL() %{
  4309   match(ConL);
  4310   op_cost(40);
  4311   format %{ %}
  4312   interface(CONST_INTER);
  4313 %}
  4315 // Long Immediate: 16-bit
  4316 operand immL16() %{
  4317   predicate(Assembler::is_simm(n->get_long(), 16));
  4318   match(ConL);
  4319   op_cost(0);
  4320   format %{ %}
  4321   interface(CONST_INTER);
  4322 %}
  4324 // Long Immediate: 16-bit, 4-aligned
  4325 operand immL16Alg4() %{
  4326   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4327   match(ConL);
  4328   op_cost(0);
  4329   format %{ %}
  4330   interface(CONST_INTER);
  4331 %}
  4333 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4334 operand immL32hi16() %{
  4335   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4336   match(ConL);
  4337   op_cost(0);
  4338   format %{ %}
  4339   interface(CONST_INTER);
  4340 %}
  4342 // Long Immediate: 32-bit
  4343 operand immL32() %{
  4344   predicate(Assembler::is_simm(n->get_long(), 32));
  4345   match(ConL);
  4346   op_cost(0);
  4347   format %{ %}
  4348   interface(CONST_INTER);
  4349 %}
  4351 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4352 operand immLhighest16() %{
  4353   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4354   match(ConL);
  4355   op_cost(0);
  4356   format %{ %}
  4357   interface(CONST_INTER);
  4358 %}
  4360 operand immLnegpow2() %{
  4361   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4362   match(ConL);
  4363   op_cost(0);
  4364   format %{ %}
  4365   interface(CONST_INTER);
  4366 %}
  4368 operand immLpow2minus1() %{
  4369   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4370             (n->get_long() != (jlong)0xffffffffffffffffL));
  4371   match(ConL);
  4372   op_cost(0);
  4373   format %{ %}
  4374   interface(CONST_INTER);
  4375 %}
  4377 // constant 'long 0'.
  4378 operand immL_0() %{
  4379   predicate(n->get_long() == 0L);
  4380   match(ConL);
  4381   op_cost(0);
  4382   format %{ %}
  4383   interface(CONST_INTER);
  4384 %}
  4386 // constat ' long -1'.
  4387 operand immL_minus1() %{
  4388   predicate(n->get_long() == -1L);
  4389   match(ConL);
  4390   op_cost(0);
  4391   format %{ %}
  4392   interface(CONST_INTER);
  4393 %}
  4395 // Long Immediate: low 32-bit mask
  4396 operand immL_32bits() %{
  4397   predicate(n->get_long() == 0xFFFFFFFFL);
  4398   match(ConL);
  4399   op_cost(0);
  4400   format %{ %}
  4401   interface(CONST_INTER);
  4402 %}
  4404 // Unsigned Long Immediate: 16-bit
  4405 operand uimmL16() %{
  4406   predicate(Assembler::is_uimm(n->get_long(), 16));
  4407   match(ConL);
  4408   op_cost(0);
  4409   format %{ %}
  4410   interface(CONST_INTER);
  4411 %}
  4413 // Float Immediate
  4414 operand immF() %{
  4415   match(ConF);
  4416   op_cost(40);
  4417   format %{ %}
  4418   interface(CONST_INTER);
  4419 %}
  4421 // Float Immediate: +0.0f.
  4422 operand immF_0() %{
  4423   predicate(jint_cast(n->getf()) == 0);
  4424   match(ConF);
  4426   op_cost(0);
  4427   format %{ %}
  4428   interface(CONST_INTER);
  4429 %}
  4431 // Double Immediate
  4432 operand immD() %{
  4433   match(ConD);
  4434   op_cost(40);
  4435   format %{ %}
  4436   interface(CONST_INTER);
  4437 %}
  4439 // Integer Register Operands
  4440 // Integer Destination Register
  4441 // See definition of reg_class bits32_reg_rw.
  4442 operand iRegIdst() %{
  4443   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4444   match(RegI);
  4445   match(rscratch1RegI);
  4446   match(rscratch2RegI);
  4447   match(rarg1RegI);
  4448   match(rarg2RegI);
  4449   match(rarg3RegI);
  4450   match(rarg4RegI);
  4451   format %{ %}
  4452   interface(REG_INTER);
  4453 %}
  4455 // Integer Source Register
  4456 // See definition of reg_class bits32_reg_ro.
  4457 operand iRegIsrc() %{
  4458   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4459   match(RegI);
  4460   match(rscratch1RegI);
  4461   match(rscratch2RegI);
  4462   match(rarg1RegI);
  4463   match(rarg2RegI);
  4464   match(rarg3RegI);
  4465   match(rarg4RegI);
  4466   format %{ %}
  4467   interface(REG_INTER);
  4468 %}
  4470 operand rscratch1RegI() %{
  4471   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4472   match(iRegIdst);
  4473   format %{ %}
  4474   interface(REG_INTER);
  4475 %}
  4477 operand rscratch2RegI() %{
  4478   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4479   match(iRegIdst);
  4480   format %{ %}
  4481   interface(REG_INTER);
  4482 %}
  4484 operand rarg1RegI() %{
  4485   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4486   match(iRegIdst);
  4487   format %{ %}
  4488   interface(REG_INTER);
  4489 %}
  4491 operand rarg2RegI() %{
  4492   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4493   match(iRegIdst);
  4494   format %{ %}
  4495   interface(REG_INTER);
  4496 %}
  4498 operand rarg3RegI() %{
  4499   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4500   match(iRegIdst);
  4501   format %{ %}
  4502   interface(REG_INTER);
  4503 %}
  4505 operand rarg4RegI() %{
  4506   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4507   match(iRegIdst);
  4508   format %{ %}
  4509   interface(REG_INTER);
  4510 %}
  4512 operand rarg1RegL() %{
  4513   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4514   match(iRegLdst);
  4515   format %{ %}
  4516   interface(REG_INTER);
  4517 %}
  4519 operand rarg2RegL() %{
  4520   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4521   match(iRegLdst);
  4522   format %{ %}
  4523   interface(REG_INTER);
  4524 %}
  4526 operand rarg3RegL() %{
  4527   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4528   match(iRegLdst);
  4529   format %{ %}
  4530   interface(REG_INTER);
  4531 %}
  4533 operand rarg4RegL() %{
  4534   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4535   match(iRegLdst);
  4536   format %{ %}
  4537   interface(REG_INTER);
  4538 %}
  4540 // Pointer Destination Register
  4541 // See definition of reg_class bits64_reg_rw.
  4542 operand iRegPdst() %{
  4543   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4544   match(RegP);
  4545   match(rscratch1RegP);
  4546   match(rscratch2RegP);
  4547   match(rarg1RegP);
  4548   match(rarg2RegP);
  4549   match(rarg3RegP);
  4550   match(rarg4RegP);
  4551   format %{ %}
  4552   interface(REG_INTER);
  4553 %}
  4555 // Pointer Destination Register
  4556 // Operand not using r11 and r12 (killed in epilog).
  4557 operand iRegPdstNoScratch() %{
  4558   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4559   match(RegP);
  4560   match(rarg1RegP);
  4561   match(rarg2RegP);
  4562   match(rarg3RegP);
  4563   match(rarg4RegP);
  4564   format %{ %}
  4565   interface(REG_INTER);
  4566 %}
  4568 // Pointer Source Register
  4569 // See definition of reg_class bits64_reg_ro.
  4570 operand iRegPsrc() %{
  4571   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4572   match(RegP);
  4573   match(iRegPdst);
  4574   match(rscratch1RegP);
  4575   match(rscratch2RegP);
  4576   match(rarg1RegP);
  4577   match(rarg2RegP);
  4578   match(rarg3RegP);
  4579   match(rarg4RegP);
  4580   match(threadRegP);
  4581   format %{ %}
  4582   interface(REG_INTER);
  4583 %}
  4585 // Thread operand.
  4586 operand threadRegP() %{
  4587   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4588   match(iRegPdst);
  4589   format %{ "R16" %}
  4590   interface(REG_INTER);
  4591 %}
  4593 operand rscratch1RegP() %{
  4594   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4595   match(iRegPdst);
  4596   format %{ "R11" %}
  4597   interface(REG_INTER);
  4598 %}
  4600 operand rscratch2RegP() %{
  4601   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4602   match(iRegPdst);
  4603   format %{ %}
  4604   interface(REG_INTER);
  4605 %}
  4607 operand rarg1RegP() %{
  4608   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4609   match(iRegPdst);
  4610   format %{ %}
  4611   interface(REG_INTER);
  4612 %}
  4614 operand rarg2RegP() %{
  4615   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4616   match(iRegPdst);
  4617   format %{ %}
  4618   interface(REG_INTER);
  4619 %}
  4621 operand rarg3RegP() %{
  4622   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4623   match(iRegPdst);
  4624   format %{ %}
  4625   interface(REG_INTER);
  4626 %}
  4628 operand rarg4RegP() %{
  4629   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4630   match(iRegPdst);
  4631   format %{ %}
  4632   interface(REG_INTER);
  4633 %}
  4635 operand iRegNsrc() %{
  4636   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4637   match(RegN);
  4638   match(iRegNdst);
  4640   format %{ %}
  4641   interface(REG_INTER);
  4642 %}
  4644 operand iRegNdst() %{
  4645   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4646   match(RegN);
  4648   format %{ %}
  4649   interface(REG_INTER);
  4650 %}
  4652 // Long Destination Register
  4653 // See definition of reg_class bits64_reg_rw.
  4654 operand iRegLdst() %{
  4655   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4656   match(RegL);
  4657   match(rscratch1RegL);
  4658   match(rscratch2RegL);
  4659   format %{ %}
  4660   interface(REG_INTER);
  4661 %}
  4663 // Long Source Register
  4664 // See definition of reg_class bits64_reg_ro.
  4665 operand iRegLsrc() %{
  4666   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4667   match(RegL);
  4668   match(iRegLdst);
  4669   match(rscratch1RegL);
  4670   match(rscratch2RegL);
  4671   format %{ %}
  4672   interface(REG_INTER);
  4673 %}
  4675 // Special operand for ConvL2I.
  4676 operand iRegL2Isrc(iRegLsrc reg) %{
  4677   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4678   match(ConvL2I reg);
  4679   format %{ "ConvL2I($reg)" %}
  4680   interface(REG_INTER)
  4681 %}
  4683 operand rscratch1RegL() %{
  4684   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4685   match(RegL);
  4686   format %{ %}
  4687   interface(REG_INTER);
  4688 %}
  4690 operand rscratch2RegL() %{
  4691   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4692   match(RegL);
  4693   format %{ %}
  4694   interface(REG_INTER);
  4695 %}
  4697 // Condition Code Flag Registers
  4698 operand flagsReg() %{
  4699   constraint(ALLOC_IN_RC(int_flags));
  4700   match(RegFlags);
  4701   format %{ %}
  4702   interface(REG_INTER);
  4703 %}
  4705 // Condition Code Flag Register CR0
  4706 operand flagsRegCR0() %{
  4707   constraint(ALLOC_IN_RC(int_flags_CR0));
  4708   match(RegFlags);
  4709   format %{ "CR0" %}
  4710   interface(REG_INTER);
  4711 %}
  4713 operand flagsRegCR1() %{
  4714   constraint(ALLOC_IN_RC(int_flags_CR1));
  4715   match(RegFlags);
  4716   format %{ "CR1" %}
  4717   interface(REG_INTER);
  4718 %}
  4720 operand flagsRegCR6() %{
  4721   constraint(ALLOC_IN_RC(int_flags_CR6));
  4722   match(RegFlags);
  4723   format %{ "CR6" %}
  4724   interface(REG_INTER);
  4725 %}
  4727 operand regCTR() %{
  4728   constraint(ALLOC_IN_RC(ctr_reg));
  4729   // RegFlags should work. Introducing a RegSpecial type would cause a
  4730   // lot of changes.
  4731   match(RegFlags);
  4732   format %{"SR_CTR" %}
  4733   interface(REG_INTER);
  4734 %}
  4736 operand regD() %{
  4737   constraint(ALLOC_IN_RC(dbl_reg));
  4738   match(RegD);
  4739   format %{ %}
  4740   interface(REG_INTER);
  4741 %}
  4743 operand regF() %{
  4744   constraint(ALLOC_IN_RC(flt_reg));
  4745   match(RegF);
  4746   format %{ %}
  4747   interface(REG_INTER);
  4748 %}
  4750 // Special Registers
  4752 // Method Register
  4753 operand inline_cache_regP(iRegPdst reg) %{
  4754   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4755   match(reg);
  4756   format %{ %}
  4757   interface(REG_INTER);
  4758 %}
  4760 operand compiler_method_oop_regP(iRegPdst reg) %{
  4761   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4762   match(reg);
  4763   format %{ %}
  4764   interface(REG_INTER);
  4765 %}
  4767 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4768   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4769   match(reg);
  4770   format %{ %}
  4771   interface(REG_INTER);
  4772 %}
  4774 // Operands to remove register moves in unscaled mode.
  4775 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4776 operand iRegP2N(iRegPsrc reg) %{
  4777   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4778   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4779   match(EncodeP reg);
  4780   format %{ "$reg" %}
  4781   interface(REG_INTER)
  4782 %}
  4784 operand iRegN2P(iRegNsrc reg) %{
  4785   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4786   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4787   match(DecodeN reg);
  4788   match(DecodeNKlass reg);
  4789   format %{ "$reg" %}
  4790   interface(REG_INTER)
  4791 %}
  4793 //----------Complex Operands---------------------------------------------------
  4794 // Indirect Memory Reference
  4795 operand indirect(iRegPsrc reg) %{
  4796   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4797   match(reg);
  4798   op_cost(100);
  4799   format %{ "[$reg]" %}
  4800   interface(MEMORY_INTER) %{
  4801     base($reg);
  4802     index(0x0);
  4803     scale(0x0);
  4804     disp(0x0);
  4805   %}
  4806 %}
  4808 // Indirect with Offset
  4809 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4810   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4811   match(AddP reg offset);
  4812   op_cost(100);
  4813   format %{ "[$reg + $offset]" %}
  4814   interface(MEMORY_INTER) %{
  4815     base($reg);
  4816     index(0x0);
  4817     scale(0x0);
  4818     disp($offset);
  4819   %}
  4820 %}
  4822 // Indirect with 4-aligned Offset
  4823 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4824   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4825   match(AddP reg offset);
  4826   op_cost(100);
  4827   format %{ "[$reg + $offset]" %}
  4828   interface(MEMORY_INTER) %{
  4829     base($reg);
  4830     index(0x0);
  4831     scale(0x0);
  4832     disp($offset);
  4833   %}
  4834 %}
  4836 //----------Complex Operands for Compressed OOPs-------------------------------
  4837 // Compressed OOPs with narrow_oop_shift == 0.
  4839 // Indirect Memory Reference, compressed OOP
  4840 operand indirectNarrow(iRegNsrc reg) %{
  4841   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4842   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4843   match(DecodeN reg);
  4844   match(DecodeNKlass reg);
  4845   op_cost(100);
  4846   format %{ "[$reg]" %}
  4847   interface(MEMORY_INTER) %{
  4848     base($reg);
  4849     index(0x0);
  4850     scale(0x0);
  4851     disp(0x0);
  4852   %}
  4853 %}
  4855 // Indirect with Offset, compressed OOP
  4856 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4857   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4858   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4859   match(AddP (DecodeN reg) offset);
  4860   match(AddP (DecodeNKlass reg) offset);
  4861   op_cost(100);
  4862   format %{ "[$reg + $offset]" %}
  4863   interface(MEMORY_INTER) %{
  4864     base($reg);
  4865     index(0x0);
  4866     scale(0x0);
  4867     disp($offset);
  4868   %}
  4869 %}
  4871 // Indirect with 4-aligned Offset, compressed OOP
  4872 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4873   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4874   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4875   match(AddP (DecodeN reg) offset);
  4876   match(AddP (DecodeNKlass reg) offset);
  4877   op_cost(100);
  4878   format %{ "[$reg + $offset]" %}
  4879   interface(MEMORY_INTER) %{
  4880     base($reg);
  4881     index(0x0);
  4882     scale(0x0);
  4883     disp($offset);
  4884   %}
  4885 %}
  4887 //----------Special Memory Operands--------------------------------------------
  4888 // Stack Slot Operand
  4889 //
  4890 // This operand is used for loading and storing temporary values on
  4891 // the stack where a match requires a value to flow through memory.
  4892 operand stackSlotI(sRegI reg) %{
  4893   constraint(ALLOC_IN_RC(stack_slots));
  4894   op_cost(100);
  4895   //match(RegI);
  4896   format %{ "[sp+$reg]" %}
  4897   interface(MEMORY_INTER) %{
  4898     base(0x1);   // R1_SP
  4899     index(0x0);
  4900     scale(0x0);
  4901     disp($reg);  // Stack Offset
  4902   %}
  4903 %}
  4905 operand stackSlotL(sRegL reg) %{
  4906   constraint(ALLOC_IN_RC(stack_slots));
  4907   op_cost(100);
  4908   //match(RegL);
  4909   format %{ "[sp+$reg]" %}
  4910   interface(MEMORY_INTER) %{
  4911     base(0x1);   // R1_SP
  4912     index(0x0);
  4913     scale(0x0);
  4914     disp($reg);  // Stack Offset
  4915   %}
  4916 %}
  4918 operand stackSlotP(sRegP reg) %{
  4919   constraint(ALLOC_IN_RC(stack_slots));
  4920   op_cost(100);
  4921   //match(RegP);
  4922   format %{ "[sp+$reg]" %}
  4923   interface(MEMORY_INTER) %{
  4924     base(0x1);   // R1_SP
  4925     index(0x0);
  4926     scale(0x0);
  4927     disp($reg);  // Stack Offset
  4928   %}
  4929 %}
  4931 operand stackSlotF(sRegF reg) %{
  4932   constraint(ALLOC_IN_RC(stack_slots));
  4933   op_cost(100);
  4934   //match(RegF);
  4935   format %{ "[sp+$reg]" %}
  4936   interface(MEMORY_INTER) %{
  4937     base(0x1);   // R1_SP
  4938     index(0x0);
  4939     scale(0x0);
  4940     disp($reg);  // Stack Offset
  4941   %}
  4942 %}
  4944 operand stackSlotD(sRegD reg) %{
  4945   constraint(ALLOC_IN_RC(stack_slots));
  4946   op_cost(100);
  4947   //match(RegD);
  4948   format %{ "[sp+$reg]" %}
  4949   interface(MEMORY_INTER) %{
  4950     base(0x1);   // R1_SP
  4951     index(0x0);
  4952     scale(0x0);
  4953     disp($reg);  // Stack Offset
  4954   %}
  4955 %}
  4957 // Operands for expressing Control Flow
  4958 // NOTE: Label is a predefined operand which should not be redefined in
  4959 //       the AD file. It is generically handled within the ADLC.
  4961 //----------Conditional Branch Operands----------------------------------------
  4962 // Comparison Op
  4963 //
  4964 // This is the operation of the comparison, and is limited to the
  4965 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4966 // (!=).
  4967 //
  4968 // Other attributes of the comparison, such as unsignedness, are specified
  4969 // by the comparison instruction that sets a condition code flags register.
  4970 // That result is represented by a flags operand whose subtype is appropriate
  4971 // to the unsignedness (etc.) of the comparison.
  4972 //
  4973 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4974 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4975 // by matching a specific subtype of Bool operand below.
  4977 // When used for floating point comparisons: unordered same as less.
  4978 operand cmpOp() %{
  4979   match(Bool);
  4980   format %{ "" %}
  4981   interface(COND_INTER) %{
  4982                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4983                            //           BO          &  BI
  4984     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4985     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4986     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4987     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4988     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4989     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4990     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4991     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4992   %}
  4993 %}
  4995 //----------OPERAND CLASSES----------------------------------------------------
  4996 // Operand Classes are groups of operands that are used to simplify
  4997 // instruction definitions by not requiring the AD writer to specify
  4998 // seperate instructions for every form of operand when the
  4999 // instruction accepts multiple operand types with the same basic
  5000 // encoding and format. The classic case of this is memory operands.
  5001 // Indirect is not included since its use is limited to Compare & Swap.
  5003 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  5004 // Memory operand where offsets are 4-aligned. Required for ld, std.
  5005 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  5006 opclass indirectMemory(indirect, indirectNarrow);
  5008 // Special opclass for I and ConvL2I.
  5009 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  5011 // Operand classes to match encode and decode. iRegN_P2N is only used
  5012 // for storeN. I have never seen an encode node elsewhere.
  5013 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  5014 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  5016 //----------PIPELINE-----------------------------------------------------------
  5018 pipeline %{
  5020 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  5021 // J. Res. & Dev., No. 1, Jan. 2002.
  5023 //----------ATTRIBUTES---------------------------------------------------------
  5024 attributes %{
  5026   // Power4 instructions are of fixed length.
  5027   fixed_size_instructions;
  5029   // TODO: if `bundle' means number of instructions fetched
  5030   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  5031   // max instructions issued per cycle, this is 5.
  5032   max_instructions_per_bundle = 8;
  5034   // A Power4 instruction is 4 bytes long.
  5035   instruction_unit_size = 4;
  5037   // The Power4 processor fetches 64 bytes...
  5038   instruction_fetch_unit_size = 64;
  5040   // ...in one line
  5041   instruction_fetch_units = 1
  5043   // Unused, list one so that array generated by adlc is not empty.
  5044   // Aix compiler chokes if _nop_count = 0.
  5045   nops(fxNop);
  5046 %}
  5048 //----------RESOURCES----------------------------------------------------------
  5049 // Resources are the functional units available to the machine
  5050 resources(
  5051    PPC_BR,         // branch unit
  5052    PPC_CR,         // condition unit
  5053    PPC_FX1,        // integer arithmetic unit 1
  5054    PPC_FX2,        // integer arithmetic unit 2
  5055    PPC_LDST1,      // load/store unit 1
  5056    PPC_LDST2,      // load/store unit 2
  5057    PPC_FP1,        // float arithmetic unit 1
  5058    PPC_FP2,        // float arithmetic unit 2
  5059    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  5060    PPC_FX = PPC_FX1 | PPC_FX2,
  5061    PPC_FP = PPC_FP1 | PPC_FP2
  5062  );
  5064 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5065 // Pipeline Description specifies the stages in the machine's pipeline
  5066 pipe_desc(
  5067    // Power4 longest pipeline path
  5068    PPC_IF,   // instruction fetch
  5069    PPC_IC,
  5070    //PPC_BP, // branch prediction
  5071    PPC_D0,   // decode
  5072    PPC_D1,   // decode
  5073    PPC_D2,   // decode
  5074    PPC_D3,   // decode
  5075    PPC_Xfer1,
  5076    PPC_GD,   // group definition
  5077    PPC_MP,   // map
  5078    PPC_ISS,  // issue
  5079    PPC_RF,   // resource fetch
  5080    PPC_EX1,  // execute (all units)
  5081    PPC_EX2,  // execute (FP, LDST)
  5082    PPC_EX3,  // execute (FP, LDST)
  5083    PPC_EX4,  // execute (FP)
  5084    PPC_EX5,  // execute (FP)
  5085    PPC_EX6,  // execute (FP)
  5086    PPC_WB,   // write back
  5087    PPC_Xfer2,
  5088    PPC_CP
  5089  );
  5091 //----------PIPELINE CLASSES---------------------------------------------------
  5092 // Pipeline Classes describe the stages in which input and output are
  5093 // referenced by the hardware pipeline.
  5095 // Simple pipeline classes.
  5097 // Default pipeline class.
  5098 pipe_class pipe_class_default() %{
  5099   single_instruction;
  5100   fixed_latency(2);
  5101 %}
  5103 // Pipeline class for empty instructions.
  5104 pipe_class pipe_class_empty() %{
  5105   single_instruction;
  5106   fixed_latency(0);
  5107 %}
  5109 // Pipeline class for compares.
  5110 pipe_class pipe_class_compare() %{
  5111   single_instruction;
  5112   fixed_latency(16);
  5113 %}
  5115 // Pipeline class for traps.
  5116 pipe_class pipe_class_trap() %{
  5117   single_instruction;
  5118   fixed_latency(100);
  5119 %}
  5121 // Pipeline class for memory operations.
  5122 pipe_class pipe_class_memory() %{
  5123   single_instruction;
  5124   fixed_latency(16);
  5125 %}
  5127 // Pipeline class for call.
  5128 pipe_class pipe_class_call() %{
  5129   single_instruction;
  5130   fixed_latency(100);
  5131 %}
  5133 // Define the class for the Nop node.
  5134 define %{
  5135    MachNop = pipe_class_default;
  5136 %}
  5138 %}
  5140 //----------INSTRUCTIONS-------------------------------------------------------
  5142 // Naming of instructions:
  5143 //   opA_operB / opA_operB_operC:
  5144 //     Operation 'op' with one or two source operands 'oper'. Result
  5145 //     type is A, source operand types are B and C.
  5146 //     Iff A == B == C, B and C are left out.
  5147 //
  5148 // The instructions are ordered according to the following scheme:
  5149 //  - loads
  5150 //  - load constants
  5151 //  - prefetch
  5152 //  - store
  5153 //  - encode/decode
  5154 //  - membar
  5155 //  - conditional moves
  5156 //  - compare & swap
  5157 //  - arithmetic and logic operations
  5158 //    * int: Add, Sub, Mul, Div, Mod
  5159 //    * int: lShift, arShift, urShift, rot
  5160 //    * float: Add, Sub, Mul, Div
  5161 //    * and, or, xor ...
  5162 //  - register moves: float <-> int, reg <-> stack, repl
  5163 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5164 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5165 //  - compares, range & zero checks.
  5166 //  - branches
  5167 //  - complex operations, intrinsics, min, max, replicate
  5168 //  - lock
  5169 //  - Calls
  5170 //
  5171 // If there are similar instructions with different types they are sorted:
  5172 // int before float
  5173 // small before big
  5174 // signed before unsigned
  5175 // e.g., loadS before loadUS before loadI before loadF.
  5178 //----------Load/Store Instructions--------------------------------------------
  5180 //----------Load Instructions--------------------------------------------------
  5182 // Converts byte to int.
  5183 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5184 // reuses the 'amount' operand, but adlc expects that operand specification
  5185 // and operands in match rule are equivalent.
  5186 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5187   effect(DEF dst, USE src);
  5188   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5189   size(4);
  5190   ins_encode %{
  5191     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5192     __ extsb($dst$$Register, $src$$Register);
  5193   %}
  5194   ins_pipe(pipe_class_default);
  5195 %}
  5197 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5198   // match-rule, false predicate
  5199   match(Set dst (LoadB mem));
  5200   predicate(false);
  5202   format %{ "LBZ     $dst, $mem" %}
  5203   size(4);
  5204   ins_encode( enc_lbz(dst, mem) );
  5205   ins_pipe(pipe_class_memory);
  5206 %}
  5208 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5209   // match-rule, false predicate
  5210   match(Set dst (LoadB mem));
  5211   predicate(false);
  5213   format %{ "LBZ     $dst, $mem\n\t"
  5214             "TWI     $dst\n\t"
  5215             "ISYNC" %}
  5216   size(12);
  5217   ins_encode( enc_lbz_ac(dst, mem) );
  5218   ins_pipe(pipe_class_memory);
  5219 %}
  5221 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5222 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5223   match(Set dst (LoadB mem));
  5224   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5225   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5226   expand %{
  5227     iRegIdst tmp;
  5228     loadUB_indirect(tmp, mem);
  5229     convB2I_reg_2(dst, tmp);
  5230   %}
  5231 %}
  5233 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5234   match(Set dst (LoadB mem));
  5235   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5236   expand %{
  5237     iRegIdst tmp;
  5238     loadUB_indirect_ac(tmp, mem);
  5239     convB2I_reg_2(dst, tmp);
  5240   %}
  5241 %}
  5243 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5244   // match-rule, false predicate
  5245   match(Set dst (LoadB mem));
  5246   predicate(false);
  5248   format %{ "LBZ     $dst, $mem" %}
  5249   size(4);
  5250   ins_encode( enc_lbz(dst, mem) );
  5251   ins_pipe(pipe_class_memory);
  5252 %}
  5254 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5255   // match-rule, false predicate
  5256   match(Set dst (LoadB mem));
  5257   predicate(false);
  5259   format %{ "LBZ     $dst, $mem\n\t"
  5260             "TWI     $dst\n\t"
  5261             "ISYNC" %}
  5262   size(12);
  5263   ins_encode( enc_lbz_ac(dst, mem) );
  5264   ins_pipe(pipe_class_memory);
  5265 %}
  5267 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5268 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5269   match(Set dst (LoadB mem));
  5270   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5271   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5273   expand %{
  5274     iRegIdst tmp;
  5275     loadUB_indOffset16(tmp, mem);
  5276     convB2I_reg_2(dst, tmp);
  5277   %}
  5278 %}
  5280 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5281   match(Set dst (LoadB mem));
  5282   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5284   expand %{
  5285     iRegIdst tmp;
  5286     loadUB_indOffset16_ac(tmp, mem);
  5287     convB2I_reg_2(dst, tmp);
  5288   %}
  5289 %}
  5291 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5292 instruct loadUB(iRegIdst dst, memory mem) %{
  5293   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5294   match(Set dst (LoadUB mem));
  5295   ins_cost(MEMORY_REF_COST);
  5297   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5298   size(4);
  5299   ins_encode( enc_lbz(dst, mem) );
  5300   ins_pipe(pipe_class_memory);
  5301 %}
  5303 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5304 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5305   match(Set dst (LoadUB mem));
  5306   ins_cost(3*MEMORY_REF_COST);
  5308   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5309             "TWI     $dst\n\t"
  5310             "ISYNC" %}
  5311   size(12);
  5312   ins_encode( enc_lbz_ac(dst, mem) );
  5313   ins_pipe(pipe_class_memory);
  5314 %}
  5316 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5317 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5318   match(Set dst (ConvI2L (LoadUB mem)));
  5319   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5320   ins_cost(MEMORY_REF_COST);
  5322   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5323   size(4);
  5324   ins_encode( enc_lbz(dst, mem) );
  5325   ins_pipe(pipe_class_memory);
  5326 %}
  5328 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5329   match(Set dst (ConvI2L (LoadUB mem)));
  5330   ins_cost(3*MEMORY_REF_COST);
  5332   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5333             "TWI     $dst\n\t"
  5334             "ISYNC" %}
  5335   size(12);
  5336   ins_encode( enc_lbz_ac(dst, mem) );
  5337   ins_pipe(pipe_class_memory);
  5338 %}
  5340 // Load Short (16bit signed)
  5341 instruct loadS(iRegIdst dst, memory mem) %{
  5342   match(Set dst (LoadS mem));
  5343   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5344   ins_cost(MEMORY_REF_COST);
  5346   format %{ "LHA     $dst, $mem" %}
  5347   size(4);
  5348   ins_encode %{
  5349     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5350     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5351     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5352   %}
  5353   ins_pipe(pipe_class_memory);
  5354 %}
  5356 // Load Short (16bit signed) acquire.
  5357 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5358   match(Set dst (LoadS mem));
  5359   ins_cost(3*MEMORY_REF_COST);
  5361   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5362             "TWI     $dst\n\t"
  5363             "ISYNC" %}
  5364   size(12);
  5365   ins_encode %{
  5366     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5367     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5368     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5369     __ twi_0($dst$$Register);
  5370     __ isync();
  5371   %}
  5372   ins_pipe(pipe_class_memory);
  5373 %}
  5375 // Load Char (16bit unsigned)
  5376 instruct loadUS(iRegIdst dst, memory mem) %{
  5377   match(Set dst (LoadUS mem));
  5378   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5379   ins_cost(MEMORY_REF_COST);
  5381   format %{ "LHZ     $dst, $mem" %}
  5382   size(4);
  5383   ins_encode( enc_lhz(dst, mem) );
  5384   ins_pipe(pipe_class_memory);
  5385 %}
  5387 // Load Char (16bit unsigned) acquire.
  5388 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5389   match(Set dst (LoadUS mem));
  5390   ins_cost(3*MEMORY_REF_COST);
  5392   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5393             "TWI     $dst\n\t"
  5394             "ISYNC" %}
  5395   size(12);
  5396   ins_encode( enc_lhz_ac(dst, mem) );
  5397   ins_pipe(pipe_class_memory);
  5398 %}
  5400 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5401 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5402   match(Set dst (ConvI2L (LoadUS mem)));
  5403   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5404   ins_cost(MEMORY_REF_COST);
  5406   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5407   size(4);
  5408   ins_encode( enc_lhz(dst, mem) );
  5409   ins_pipe(pipe_class_memory);
  5410 %}
  5412 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5413 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5414   match(Set dst (ConvI2L (LoadUS mem)));
  5415   ins_cost(3*MEMORY_REF_COST);
  5417   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5418             "TWI     $dst\n\t"
  5419             "ISYNC" %}
  5420   size(12);
  5421   ins_encode( enc_lhz_ac(dst, mem) );
  5422   ins_pipe(pipe_class_memory);
  5423 %}
  5425 // Load Integer.
  5426 instruct loadI(iRegIdst dst, memory mem) %{
  5427   match(Set dst (LoadI mem));
  5428   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5429   ins_cost(MEMORY_REF_COST);
  5431   format %{ "LWZ     $dst, $mem" %}
  5432   size(4);
  5433   ins_encode( enc_lwz(dst, mem) );
  5434   ins_pipe(pipe_class_memory);
  5435 %}
  5437 // Load Integer acquire.
  5438 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5439   match(Set dst (LoadI mem));
  5440   ins_cost(3*MEMORY_REF_COST);
  5442   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5443             "TWI     $dst\n\t"
  5444             "ISYNC" %}
  5445   size(12);
  5446   ins_encode( enc_lwz_ac(dst, mem) );
  5447   ins_pipe(pipe_class_memory);
  5448 %}
  5450 // Match loading integer and casting it to unsigned int in
  5451 // long register.
  5452 // LoadI + ConvI2L + AndL 0xffffffff.
  5453 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5454   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5455   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5456   ins_cost(MEMORY_REF_COST);
  5458   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5459   size(4);
  5460   ins_encode( enc_lwz(dst, mem) );
  5461   ins_pipe(pipe_class_memory);
  5462 %}
  5464 // Match loading integer and casting it to long.
  5465 instruct loadI2L(iRegLdst dst, memory mem) %{
  5466   match(Set dst (ConvI2L (LoadI mem)));
  5467   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5468   ins_cost(MEMORY_REF_COST);
  5470   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5471   size(4);
  5472   ins_encode %{
  5473     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5474     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5475     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5476   %}
  5477   ins_pipe(pipe_class_memory);
  5478 %}
  5480 // Match loading integer and casting it to long - acquire.
  5481 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5482   match(Set dst (ConvI2L (LoadI mem)));
  5483   ins_cost(3*MEMORY_REF_COST);
  5485   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5486             "TWI     $dst\n\t"
  5487             "ISYNC" %}
  5488   size(12);
  5489   ins_encode %{
  5490     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5491     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5492     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5493     __ twi_0($dst$$Register);
  5494     __ isync();
  5495   %}
  5496   ins_pipe(pipe_class_memory);
  5497 %}
  5499 // Load Long - aligned
  5500 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5501   match(Set dst (LoadL mem));
  5502   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5503   ins_cost(MEMORY_REF_COST);
  5505   format %{ "LD      $dst, $mem \t// long" %}
  5506   size(4);
  5507   ins_encode( enc_ld(dst, mem) );
  5508   ins_pipe(pipe_class_memory);
  5509 %}
  5511 // Load Long - aligned acquire.
  5512 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5513   match(Set dst (LoadL mem));
  5514   ins_cost(3*MEMORY_REF_COST);
  5516   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5517             "TWI     $dst\n\t"
  5518             "ISYNC" %}
  5519   size(12);
  5520   ins_encode( enc_ld_ac(dst, mem) );
  5521   ins_pipe(pipe_class_memory);
  5522 %}
  5524 // Load Long - UNaligned
  5525 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5526   match(Set dst (LoadL_unaligned mem));
  5527   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5528   ins_cost(MEMORY_REF_COST);
  5530   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5531   size(4);
  5532   ins_encode( enc_ld(dst, mem) );
  5533   ins_pipe(pipe_class_memory);
  5534 %}
  5536 // Load nodes for superwords
  5538 // Load Aligned Packed Byte
  5539 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5540   predicate(n->as_LoadVector()->memory_size() == 8);
  5541   match(Set dst (LoadVector mem));
  5542   ins_cost(MEMORY_REF_COST);
  5544   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5545   size(4);
  5546   ins_encode( enc_ld(dst, mem) );
  5547   ins_pipe(pipe_class_memory);
  5548 %}
  5550 // Load Range, range = array length (=jint)
  5551 instruct loadRange(iRegIdst dst, memory mem) %{
  5552   match(Set dst (LoadRange mem));
  5553   ins_cost(MEMORY_REF_COST);
  5555   format %{ "LWZ     $dst, $mem \t// range" %}
  5556   size(4);
  5557   ins_encode( enc_lwz(dst, mem) );
  5558   ins_pipe(pipe_class_memory);
  5559 %}
  5561 // Load Compressed Pointer
  5562 instruct loadN(iRegNdst dst, memory mem) %{
  5563   match(Set dst (LoadN mem));
  5564   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5565   ins_cost(MEMORY_REF_COST);
  5567   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5568   size(4);
  5569   ins_encode( enc_lwz(dst, mem) );
  5570   ins_pipe(pipe_class_memory);
  5571 %}
  5573 // Load Compressed Pointer acquire.
  5574 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5575   match(Set dst (LoadN mem));
  5576   ins_cost(3*MEMORY_REF_COST);
  5578   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5579             "TWI     $dst\n\t"
  5580             "ISYNC" %}
  5581   size(12);
  5582   ins_encode( enc_lwz_ac(dst, mem) );
  5583   ins_pipe(pipe_class_memory);
  5584 %}
  5586 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5587 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5588   match(Set dst (DecodeN (LoadN mem)));
  5589   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5590   ins_cost(MEMORY_REF_COST);
  5592   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5593   size(4);
  5594   ins_encode( enc_lwz(dst, mem) );
  5595   ins_pipe(pipe_class_memory);
  5596 %}
  5598 // Load Pointer
  5599 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5600   match(Set dst (LoadP mem));
  5601   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5602   ins_cost(MEMORY_REF_COST);
  5604   format %{ "LD      $dst, $mem \t// ptr" %}
  5605   size(4);
  5606   ins_encode( enc_ld(dst, mem) );
  5607   ins_pipe(pipe_class_memory);
  5608 %}
  5610 // Load Pointer acquire.
  5611 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5612   match(Set dst (LoadP mem));
  5613   ins_cost(3*MEMORY_REF_COST);
  5615   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5616             "TWI     $dst\n\t"
  5617             "ISYNC" %}
  5618   size(12);
  5619   ins_encode( enc_ld_ac(dst, mem) );
  5620   ins_pipe(pipe_class_memory);
  5621 %}
  5623 // LoadP + CastP2L
  5624 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5625   match(Set dst (CastP2X (LoadP mem)));
  5626   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5627   ins_cost(MEMORY_REF_COST);
  5629   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5630   size(4);
  5631   ins_encode( enc_ld(dst, mem) );
  5632   ins_pipe(pipe_class_memory);
  5633 %}
  5635 // Load compressed klass pointer.
  5636 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5637   match(Set dst (LoadNKlass mem));
  5638   ins_cost(MEMORY_REF_COST);
  5640   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5641   size(4);
  5642   ins_encode( enc_lwz(dst, mem) );
  5643   ins_pipe(pipe_class_memory);
  5644 %}
  5646 // Load Klass Pointer
  5647 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5648   match(Set dst (LoadKlass mem));
  5649   ins_cost(MEMORY_REF_COST);
  5651   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5652   size(4);
  5653   ins_encode( enc_ld(dst, mem) );
  5654   ins_pipe(pipe_class_memory);
  5655 %}
  5657 // Load Float
  5658 instruct loadF(regF dst, memory mem) %{
  5659   match(Set dst (LoadF mem));
  5660   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5661   ins_cost(MEMORY_REF_COST);
  5663   format %{ "LFS     $dst, $mem" %}
  5664   size(4);
  5665   ins_encode %{
  5666     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5667     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5668     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5669   %}
  5670   ins_pipe(pipe_class_memory);
  5671 %}
  5673 // Load Float acquire.
  5674 instruct loadF_ac(regF dst, memory mem) %{
  5675   match(Set dst (LoadF mem));
  5676   ins_cost(3*MEMORY_REF_COST);
  5678   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5679             "FCMPU   cr0, $dst, $dst\n\t"
  5680             "BNE     cr0, next\n"
  5681             "next:\n\t"
  5682             "ISYNC" %}
  5683   size(16);
  5684   ins_encode %{
  5685     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5686     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5687     Label next;
  5688     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5689     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5690     __ bne(CCR0, next);
  5691     __ bind(next);
  5692     __ isync();
  5693   %}
  5694   ins_pipe(pipe_class_memory);
  5695 %}
  5697 // Load Double - aligned
  5698 instruct loadD(regD dst, memory mem) %{
  5699   match(Set dst (LoadD mem));
  5700   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5701   ins_cost(MEMORY_REF_COST);
  5703   format %{ "LFD     $dst, $mem" %}
  5704   size(4);
  5705   ins_encode( enc_lfd(dst, mem) );
  5706   ins_pipe(pipe_class_memory);
  5707 %}
  5709 // Load Double - aligned acquire.
  5710 instruct loadD_ac(regD dst, memory mem) %{
  5711   match(Set dst (LoadD mem));
  5712   ins_cost(3*MEMORY_REF_COST);
  5714   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5715             "FCMPU   cr0, $dst, $dst\n\t"
  5716             "BNE     cr0, next\n"
  5717             "next:\n\t"
  5718             "ISYNC" %}
  5719   size(16);
  5720   ins_encode %{
  5721     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5722     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5723     Label next;
  5724     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5725     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5726     __ bne(CCR0, next);
  5727     __ bind(next);
  5728     __ isync();
  5729   %}
  5730   ins_pipe(pipe_class_memory);
  5731 %}
  5733 // Load Double - UNaligned
  5734 instruct loadD_unaligned(regD dst, memory mem) %{
  5735   match(Set dst (LoadD_unaligned mem));
  5736   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5737   ins_cost(MEMORY_REF_COST);
  5739   format %{ "LFD     $dst, $mem" %}
  5740   size(4);
  5741   ins_encode( enc_lfd(dst, mem) );
  5742   ins_pipe(pipe_class_memory);
  5743 %}
  5745 //----------Constants--------------------------------------------------------
  5747 // Load MachConstantTableBase: add hi offset to global toc.
  5748 // TODO: Handle hidden register r29 in bundler!
  5749 instruct loadToc_hi(iRegLdst dst) %{
  5750   effect(DEF dst);
  5751   ins_cost(DEFAULT_COST);
  5753   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5754   size(4);
  5755   ins_encode %{
  5756     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5757     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5758   %}
  5759   ins_pipe(pipe_class_default);
  5760 %}
  5762 // Load MachConstantTableBase: add lo offset to global toc.
  5763 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5764   effect(DEF dst, USE src);
  5765   ins_cost(DEFAULT_COST);
  5767   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5768   size(4);
  5769   ins_encode %{
  5770     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5771     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5772   %}
  5773   ins_pipe(pipe_class_default);
  5774 %}
  5776 // Load 16-bit integer constant 0xssss????
  5777 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5778   match(Set dst src);
  5780   format %{ "LI      $dst, $src" %}
  5781   size(4);
  5782   ins_encode %{
  5783     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5784     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5785   %}
  5786   ins_pipe(pipe_class_default);
  5787 %}
  5789 // Load integer constant 0x????0000
  5790 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5791   match(Set dst src);
  5792   ins_cost(DEFAULT_COST);
  5794   format %{ "LIS     $dst, $src.hi" %}
  5795   size(4);
  5796   ins_encode %{
  5797     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5798     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5799     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5800   %}
  5801   ins_pipe(pipe_class_default);
  5802 %}
  5804 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5805 // and sign extended), this adds the low 16 bits.
  5806 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5807   // no match-rule, false predicate
  5808   effect(DEF dst, USE src1, USE src2);
  5809   predicate(false);
  5811   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5812   size(4);
  5813   ins_encode %{
  5814     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5815     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5816   %}
  5817   ins_pipe(pipe_class_default);
  5818 %}
  5820 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5821   match(Set dst src);
  5822   ins_cost(DEFAULT_COST*2);
  5824   expand %{
  5825     // Would like to use $src$$constant.
  5826     immI16 srcLo %{ _opnds[1]->constant() %}
  5827     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5828     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5829     iRegIdst tmpI;
  5830     loadConIhi16(tmpI, srcHi);
  5831     loadConI32_lo16(dst, tmpI, srcLo);
  5832   %}
  5833 %}
  5835 // No constant pool entries required.
  5836 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5837   match(Set dst src);
  5839   format %{ "LI      $dst, $src \t// long" %}
  5840   size(4);
  5841   ins_encode %{
  5842     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5843     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5844   %}
  5845   ins_pipe(pipe_class_default);
  5846 %}
  5848 // Load long constant 0xssssssss????0000
  5849 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5850   match(Set dst src);
  5851   ins_cost(DEFAULT_COST);
  5853   format %{ "LIS     $dst, $src.hi \t// long" %}
  5854   size(4);
  5855   ins_encode %{
  5856     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5857     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5858   %}
  5859   ins_pipe(pipe_class_default);
  5860 %}
  5862 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5863 // high 16 bits.
  5864 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5865   // no match-rule, false predicate
  5866   effect(DEF dst, USE src1, USE src2);
  5867   predicate(false);
  5869   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5870   size(4);
  5871   ins_encode %{
  5872     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5873     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5874   %}
  5875   ins_pipe(pipe_class_default);
  5876 %}
  5878 // Load 32-bit long constant
  5879 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5880   match(Set dst src);
  5881   ins_cost(DEFAULT_COST*2);
  5883   expand %{
  5884     // Would like to use $src$$constant.
  5885     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5886     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5887     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5888     iRegLdst tmpL;
  5889     loadConL32hi16(tmpL, srcHi);
  5890     loadConL32_lo16(dst, tmpL, srcLo);
  5891   %}
  5892 %}
  5894 // Load long constant 0x????000000000000.
  5895 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5896   match(Set dst src);
  5897   ins_cost(DEFAULT_COST);
  5899   expand %{
  5900     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5901     immI shift32 %{ 32 %}
  5902     iRegLdst tmpL;
  5903     loadConL32hi16(tmpL, srcHi);
  5904     lshiftL_regL_immI(dst, tmpL, shift32);
  5905   %}
  5906 %}
  5908 // Expand node for constant pool load: small offset.
  5909 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5910   effect(DEF dst, USE src, USE toc);
  5911   ins_cost(MEMORY_REF_COST);
  5913   ins_num_consts(1);
  5914   // Needed so that CallDynamicJavaDirect can compute the address of this
  5915   // instruction for relocation.
  5916   ins_field_cbuf_insts_offset(int);
  5918   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5919   size(4);
  5920   ins_encode( enc_load_long_constL(dst, src, toc) );
  5921   ins_pipe(pipe_class_memory);
  5922 %}
  5924 // Expand node for constant pool load: large offset.
  5925 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5926   effect(DEF dst, USE src, USE toc);
  5927   predicate(false);
  5929   ins_num_consts(1);
  5930   ins_field_const_toc_offset(int);
  5931   // Needed so that CallDynamicJavaDirect can compute the address of this
  5932   // instruction for relocation.
  5933   ins_field_cbuf_insts_offset(int);
  5935   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5936   size(4);
  5937   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5938   ins_pipe(pipe_class_default);
  5939 %}
  5941 // Expand node for constant pool load: large offset.
  5942 // No constant pool entries required.
  5943 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5944   effect(DEF dst, USE src, USE base);
  5945   predicate(false);
  5947   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5949   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5950   size(4);
  5951   ins_encode %{
  5952     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5953     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5954     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5955   %}
  5956   ins_pipe(pipe_class_memory);
  5957 %}
  5959 // Load long constant from constant table. Expand in case of
  5960 // offset > 16 bit is needed.
  5961 // Adlc adds toc node MachConstantTableBase.
  5962 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5963   match(Set dst src);
  5964   ins_cost(MEMORY_REF_COST);
  5966   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5967   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5968   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5969 %}
  5971 // Load NULL as compressed oop.
  5972 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5973   match(Set dst src);
  5974   ins_cost(DEFAULT_COST);
  5976   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5977   size(4);
  5978   ins_encode %{
  5979     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5980     __ li($dst$$Register, 0);
  5981   %}
  5982   ins_pipe(pipe_class_default);
  5983 %}
  5985 // Load hi part of compressed oop constant.
  5986 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5987   effect(DEF dst, USE src);
  5988   ins_cost(DEFAULT_COST);
  5990   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  5991   size(4);
  5992   ins_encode %{
  5993     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5994     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  5995   %}
  5996   ins_pipe(pipe_class_default);
  5997 %}
  5999 // Add lo part of compressed oop constant to already loaded hi part.
  6000 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  6001   effect(DEF dst, USE src1, USE src2);
  6002   ins_cost(DEFAULT_COST);
  6004   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  6005   size(4);
  6006   ins_encode %{
  6007     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6008     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6009     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  6010     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6011     __ relocate(rspec, 1);
  6012     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  6013   %}
  6014   ins_pipe(pipe_class_default);
  6015 %}
  6017 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  6018 // leaving the upper 32 bits with sign-extension bits.
  6019 // This clears these bits: dst = src & 0xFFFFFFFF.
  6020 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  6021 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  6022   effect(DEF dst, USE src);
  6023   predicate(false);
  6025   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  6026   size(4);
  6027   ins_encode %{
  6028     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6029     __ clrldi($dst$$Register, $src$$Register, 0x20);
  6030   %}
  6031   ins_pipe(pipe_class_default);
  6032 %}
  6034 // Loading ConN must be postalloc expanded so that edges between
  6035 // the nodes are safe. They may not interfere with a safepoint.
  6036 // GL TODO: This needs three instructions: better put this into the constant pool.
  6037 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  6038   match(Set dst src);
  6039   ins_cost(DEFAULT_COST*2);
  6041   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6042   postalloc_expand %{
  6043     MachNode *m1 = new (C) loadConN_hiNode();
  6044     MachNode *m2 = new (C) loadConN_loNode();
  6045     MachNode *m3 = new (C) clearMs32bNode();
  6046     m1->add_req(NULL);
  6047     m2->add_req(NULL, m1);
  6048     m3->add_req(NULL, m2);
  6049     m1->_opnds[0] = op_dst;
  6050     m1->_opnds[1] = op_src;
  6051     m2->_opnds[0] = op_dst;
  6052     m2->_opnds[1] = op_dst;
  6053     m2->_opnds[2] = op_src;
  6054     m3->_opnds[0] = op_dst;
  6055     m3->_opnds[1] = op_dst;
  6056     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6057     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6058     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6059     nodes->push(m1);
  6060     nodes->push(m2);
  6061     nodes->push(m3);
  6062   %}
  6063 %}
  6065 // We have seen a safepoint between the hi and lo parts, and this node was handled
  6066 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
  6067 // not a narrow oop.
  6068 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
  6069   match(Set dst src);
  6070   effect(DEF dst, USE src);
  6071   ins_cost(DEFAULT_COST);
  6073   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
  6074   size(4);
  6075   ins_encode %{
  6076     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6077     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6078     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6079   %}
  6080   ins_pipe(pipe_class_default);
  6081 %}
  6083 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
  6084 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6085   match(Set dst src1);
  6086   effect(TEMP src2);
  6087   ins_cost(DEFAULT_COST);
  6089   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
  6090   size(4);
  6091   ins_encode %{
  6092     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6093     __ clrldi($dst$$Register, $src2$$Register, 0x20);
  6094   %}
  6095   ins_pipe(pipe_class_default);
  6096 %}
  6098 // This needs a match rule so that build_oop_map knows this is
  6099 // not a narrow oop.
  6100 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6101   match(Set dst src1);
  6102   effect(TEMP src2);
  6103   ins_cost(DEFAULT_COST);
  6105   format %{ "ORI    $dst, $src1, $src2 \t// narrow klass lo" %}
  6106   size(4);
  6107   ins_encode %{
  6108     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  6109     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6110     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6111     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6112     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6114     __ relocate(rspec, 1);
  6115     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6116   %}
  6117   ins_pipe(pipe_class_default);
  6118 %}
  6120 // Loading ConNKlass must be postalloc expanded so that edges between
  6121 // the nodes are safe. They may not interfere with a safepoint.
  6122 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6123   match(Set dst src);
  6124   ins_cost(DEFAULT_COST*2);
  6126   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6127   postalloc_expand %{
  6128     // Load high bits into register. Sign extended.
  6129     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6130     m1->add_req(NULL);
  6131     m1->_opnds[0] = op_dst;
  6132     m1->_opnds[1] = op_src;
  6133     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6134     nodes->push(m1);
  6136     MachNode *m2 = m1;
  6137     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6138       // Value might be 1-extended. Mask out these bits.
  6139       m2 = new (C) loadConNKlass_maskNode();
  6140       m2->add_req(NULL, m1);
  6141       m2->_opnds[0] = op_dst;
  6142       m2->_opnds[1] = op_src;
  6143       m2->_opnds[2] = op_dst;
  6144       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6145       nodes->push(m2);
  6148     MachNode *m3 = new (C) loadConNKlass_loNode();
  6149     m3->add_req(NULL, m2);
  6150     m3->_opnds[0] = op_dst;
  6151     m3->_opnds[1] = op_src;
  6152     m3->_opnds[2] = op_dst;
  6153     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6154     nodes->push(m3);
  6155   %}
  6156 %}
  6158 // 0x1 is used in object initialization (initial object header).
  6159 // No constant pool entries required.
  6160 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6161   match(Set dst src);
  6163   format %{ "LI      $dst, $src \t// ptr" %}
  6164   size(4);
  6165   ins_encode %{
  6166     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6167     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6168   %}
  6169   ins_pipe(pipe_class_default);
  6170 %}
  6172 // Expand node for constant pool load: small offset.
  6173 // The match rule is needed to generate the correct bottom_type(),
  6174 // however this node should never match. The use of predicate is not
  6175 // possible since ADLC forbids predicates for chain rules. The higher
  6176 // costs do not prevent matching in this case. For that reason the
  6177 // operand immP_NM with predicate(false) is used.
  6178 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6179   match(Set dst src);
  6180   effect(TEMP toc);
  6182   ins_num_consts(1);
  6184   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6185   size(4);
  6186   ins_encode( enc_load_long_constP(dst, src, toc) );
  6187   ins_pipe(pipe_class_memory);
  6188 %}
  6190 // Expand node for constant pool load: large offset.
  6191 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6192   effect(DEF dst, USE src, USE toc);
  6193   predicate(false);
  6195   ins_num_consts(1);
  6196   ins_field_const_toc_offset(int);
  6198   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6199   size(4);
  6200   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6201   ins_pipe(pipe_class_default);
  6202 %}
  6204 // Expand node for constant pool load: large offset.
  6205 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6206   match(Set dst src);
  6207   effect(TEMP base);
  6209   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6211   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6212   size(4);
  6213   ins_encode %{
  6214     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6215     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6216     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6217   %}
  6218   ins_pipe(pipe_class_memory);
  6219 %}
  6221 // Load pointer constant from constant table. Expand in case an
  6222 // offset > 16 bit is needed.
  6223 // Adlc adds toc node MachConstantTableBase.
  6224 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6225   match(Set dst src);
  6226   ins_cost(MEMORY_REF_COST);
  6228   // This rule does not use "expand" because then
  6229   // the result type is not known to be an Oop.  An ADLC
  6230   // enhancement will be needed to make that work - not worth it!
  6232   // If this instruction rematerializes, it prolongs the live range
  6233   // of the toc node, causing illegal graphs.
  6234   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6235   ins_cannot_rematerialize(true);
  6237   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6238   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6239 %}
  6241 // Expand node for constant pool load: small offset.
  6242 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6243   effect(DEF dst, USE src, USE toc);
  6244   ins_cost(MEMORY_REF_COST);
  6246   ins_num_consts(1);
  6248   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6249   size(4);
  6250   ins_encode %{
  6251     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6252     address float_address = __ float_constant($src$$constant);
  6253     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6254   %}
  6255   ins_pipe(pipe_class_memory);
  6256 %}
  6258 // Expand node for constant pool load: large offset.
  6259 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6260   effect(DEF dst, USE src, USE toc);
  6261   ins_cost(MEMORY_REF_COST);
  6263   ins_num_consts(1);
  6265   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6266             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6267             "ADDIS   $toc, $toc, -offset_hi"%}
  6268   size(12);
  6269   ins_encode %{
  6270     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6271     FloatRegister Rdst    = $dst$$FloatRegister;
  6272     Register Rtoc         = $toc$$Register;
  6273     address float_address = __ float_constant($src$$constant);
  6274     int offset            = __ offset_to_method_toc(float_address);
  6275     int hi = (offset + (1<<15))>>16;
  6276     int lo = offset - hi * (1<<16);
  6278     __ addis(Rtoc, Rtoc, hi);
  6279     __ lfs(Rdst, lo, Rtoc);
  6280     __ addis(Rtoc, Rtoc, -hi);
  6281   %}
  6282   ins_pipe(pipe_class_memory);
  6283 %}
  6285 // Adlc adds toc node MachConstantTableBase.
  6286 instruct loadConF_Ex(regF dst, immF src) %{
  6287   match(Set dst src);
  6288   ins_cost(MEMORY_REF_COST);
  6290   // See loadConP.
  6291   ins_cannot_rematerialize(true);
  6293   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6294   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6295 %}
  6297 // Expand node for constant pool load: small offset.
  6298 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6299   effect(DEF dst, USE src, USE toc);
  6300   ins_cost(MEMORY_REF_COST);
  6302   ins_num_consts(1);
  6304   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6305   size(4);
  6306   ins_encode %{
  6307     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6308     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6309     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6310   %}
  6311   ins_pipe(pipe_class_memory);
  6312 %}
  6314 // Expand node for constant pool load: large offset.
  6315 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6316   effect(DEF dst, USE src, USE toc);
  6317   ins_cost(MEMORY_REF_COST);
  6319   ins_num_consts(1);
  6321   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6322             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6323             "ADDIS   $toc, $toc, -offset_hi" %}
  6324   size(12);
  6325   ins_encode %{
  6326     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6327     FloatRegister Rdst    = $dst$$FloatRegister;
  6328     Register      Rtoc    = $toc$$Register;
  6329     address float_address = __ double_constant($src$$constant);
  6330     int offset            = __ offset_to_method_toc(float_address);
  6331     int hi = (offset + (1<<15))>>16;
  6332     int lo = offset - hi * (1<<16);
  6334     __ addis(Rtoc, Rtoc, hi);
  6335     __ lfd(Rdst, lo, Rtoc);
  6336     __ addis(Rtoc, Rtoc, -hi);
  6337   %}
  6338   ins_pipe(pipe_class_memory);
  6339 %}
  6341 // Adlc adds toc node MachConstantTableBase.
  6342 instruct loadConD_Ex(regD dst, immD src) %{
  6343   match(Set dst src);
  6344   ins_cost(MEMORY_REF_COST);
  6346   // See loadConP.
  6347   ins_cannot_rematerialize(true);
  6349   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6350   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6351 %}
  6353 // Prefetch instructions.
  6354 // Must be safe to execute with invalid address (cannot fault).
  6356 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6357   match(PrefetchRead (AddP mem src));
  6358   ins_cost(MEMORY_REF_COST);
  6360   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6361   size(4);
  6362   ins_encode %{
  6363     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6364     __ dcbt($src$$Register, $mem$$base$$Register);
  6365   %}
  6366   ins_pipe(pipe_class_memory);
  6367 %}
  6369 instruct prefetchr_no_offset(indirectMemory mem) %{
  6370   match(PrefetchRead mem);
  6371   ins_cost(MEMORY_REF_COST);
  6373   format %{ "PREFETCH $mem" %}
  6374   size(4);
  6375   ins_encode %{
  6376     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6377     __ dcbt($mem$$base$$Register);
  6378   %}
  6379   ins_pipe(pipe_class_memory);
  6380 %}
  6382 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6383   match(PrefetchWrite (AddP mem src));
  6384   ins_cost(MEMORY_REF_COST);
  6386   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6387   size(4);
  6388   ins_encode %{
  6389     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6390     __ dcbtst($src$$Register, $mem$$base$$Register);
  6391   %}
  6392   ins_pipe(pipe_class_memory);
  6393 %}
  6395 instruct prefetchw_no_offset(indirectMemory mem) %{
  6396   match(PrefetchWrite mem);
  6397   ins_cost(MEMORY_REF_COST);
  6399   format %{ "PREFETCH $mem" %}
  6400   size(4);
  6401   ins_encode %{
  6402     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6403     __ dcbtst($mem$$base$$Register);
  6404   %}
  6405   ins_pipe(pipe_class_memory);
  6406 %}
  6408 // Special prefetch versions which use the dcbz instruction.
  6409 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6410   match(PrefetchAllocation (AddP mem src));
  6411   predicate(AllocatePrefetchStyle == 3);
  6412   ins_cost(MEMORY_REF_COST);
  6414   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6415   size(4);
  6416   ins_encode %{
  6417     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6418     __ dcbz($src$$Register, $mem$$base$$Register);
  6419   %}
  6420   ins_pipe(pipe_class_memory);
  6421 %}
  6423 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6424   match(PrefetchAllocation mem);
  6425   predicate(AllocatePrefetchStyle == 3);
  6426   ins_cost(MEMORY_REF_COST);
  6428   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6429   size(4);
  6430   ins_encode %{
  6431     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6432     __ dcbz($mem$$base$$Register);
  6433   %}
  6434   ins_pipe(pipe_class_memory);
  6435 %}
  6437 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6438   match(PrefetchAllocation (AddP mem src));
  6439   predicate(AllocatePrefetchStyle != 3);
  6440   ins_cost(MEMORY_REF_COST);
  6442   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6443   size(4);
  6444   ins_encode %{
  6445     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6446     __ dcbtst($src$$Register, $mem$$base$$Register);
  6447   %}
  6448   ins_pipe(pipe_class_memory);
  6449 %}
  6451 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6452   match(PrefetchAllocation mem);
  6453   predicate(AllocatePrefetchStyle != 3);
  6454   ins_cost(MEMORY_REF_COST);
  6456   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6457   size(4);
  6458   ins_encode %{
  6459     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6460     __ dcbtst($mem$$base$$Register);
  6461   %}
  6462   ins_pipe(pipe_class_memory);
  6463 %}
  6465 //----------Store Instructions-------------------------------------------------
  6467 // Store Byte
  6468 instruct storeB(memory mem, iRegIsrc src) %{
  6469   match(Set mem (StoreB mem src));
  6470   ins_cost(MEMORY_REF_COST);
  6472   format %{ "STB     $src, $mem \t// byte" %}
  6473   size(4);
  6474   ins_encode %{
  6475     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6476     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6477     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6478   %}
  6479   ins_pipe(pipe_class_memory);
  6480 %}
  6482 // Store Char/Short
  6483 instruct storeC(memory mem, iRegIsrc src) %{
  6484   match(Set mem (StoreC mem src));
  6485   ins_cost(MEMORY_REF_COST);
  6487   format %{ "STH     $src, $mem \t// short" %}
  6488   size(4);
  6489   ins_encode %{
  6490     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6491     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6492     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6493   %}
  6494   ins_pipe(pipe_class_memory);
  6495 %}
  6497 // Store Integer
  6498 instruct storeI(memory mem, iRegIsrc src) %{
  6499   match(Set mem (StoreI mem src));
  6500   ins_cost(MEMORY_REF_COST);
  6502   format %{ "STW     $src, $mem" %}
  6503   size(4);
  6504   ins_encode( enc_stw(src, mem) );
  6505   ins_pipe(pipe_class_memory);
  6506 %}
  6508 // ConvL2I + StoreI.
  6509 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6510   match(Set mem (StoreI mem (ConvL2I src)));
  6511   ins_cost(MEMORY_REF_COST);
  6513   format %{ "STW     l2i($src), $mem" %}
  6514   size(4);
  6515   ins_encode( enc_stw(src, mem) );
  6516   ins_pipe(pipe_class_memory);
  6517 %}
  6519 // Store Long
  6520 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6521   match(Set mem (StoreL mem src));
  6522   ins_cost(MEMORY_REF_COST);
  6524   format %{ "STD     $src, $mem \t// long" %}
  6525   size(4);
  6526   ins_encode( enc_std(src, mem) );
  6527   ins_pipe(pipe_class_memory);
  6528 %}
  6530 // Store super word nodes.
  6532 // Store Aligned Packed Byte long register to memory
  6533 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6534   predicate(n->as_StoreVector()->memory_size() == 8);
  6535   match(Set mem (StoreVector mem src));
  6536   ins_cost(MEMORY_REF_COST);
  6538   format %{ "STD     $mem, $src \t// packed8B" %}
  6539   size(4);
  6540   ins_encode( enc_std(src, mem) );
  6541   ins_pipe(pipe_class_memory);
  6542 %}
  6544 // Store Compressed Oop
  6545 instruct storeN(memory dst, iRegN_P2N src) %{
  6546   match(Set dst (StoreN dst src));
  6547   ins_cost(MEMORY_REF_COST);
  6549   format %{ "STW     $src, $dst \t// compressed oop" %}
  6550   size(4);
  6551   ins_encode( enc_stw(src, dst) );
  6552   ins_pipe(pipe_class_memory);
  6553 %}
  6555 // Store Compressed KLass
  6556 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6557   match(Set dst (StoreNKlass dst src));
  6558   ins_cost(MEMORY_REF_COST);
  6560   format %{ "STW     $src, $dst \t// compressed klass" %}
  6561   size(4);
  6562   ins_encode( enc_stw(src, dst) );
  6563   ins_pipe(pipe_class_memory);
  6564 %}
  6566 // Store Pointer
  6567 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6568   match(Set dst (StoreP dst src));
  6569   ins_cost(MEMORY_REF_COST);
  6571   format %{ "STD     $src, $dst \t// ptr" %}
  6572   size(4);
  6573   ins_encode( enc_std(src, dst) );
  6574   ins_pipe(pipe_class_memory);
  6575 %}
  6577 // Store Float
  6578 instruct storeF(memory mem, regF src) %{
  6579   match(Set mem (StoreF mem src));
  6580   ins_cost(MEMORY_REF_COST);
  6582   format %{ "STFS    $src, $mem" %}
  6583   size(4);
  6584   ins_encode( enc_stfs(src, mem) );
  6585   ins_pipe(pipe_class_memory);
  6586 %}
  6588 // Store Double
  6589 instruct storeD(memory mem, regD src) %{
  6590   match(Set mem (StoreD mem src));
  6591   ins_cost(MEMORY_REF_COST);
  6593   format %{ "STFD    $src, $mem" %}
  6594   size(4);
  6595   ins_encode( enc_stfd(src, mem) );
  6596   ins_pipe(pipe_class_memory);
  6597 %}
  6599 //----------Store Instructions With Zeros--------------------------------------
  6601 // Card-mark for CMS garbage collection.
  6602 // This cardmark does an optimization so that it must not always
  6603 // do a releasing store. For this, it gets the address of
  6604 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6605 // (Using releaseFieldAddr in the match rule is a hack.)
  6606 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6607   match(Set mem (StoreCM mem releaseFieldAddr));
  6608   predicate(false);
  6609   ins_cost(MEMORY_REF_COST);
  6611   // See loadConP.
  6612   ins_cannot_rematerialize(true);
  6614   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6615   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6616   ins_pipe(pipe_class_memory);
  6617 %}
  6619 // Card-mark for CMS garbage collection.
  6620 // This cardmark does an optimization so that it must not always
  6621 // do a releasing store. For this, it needs the constant address of
  6622 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6623 // This constant address is split off here by expand so we can use
  6624 // adlc / matcher functionality to load it from the constant section.
  6625 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6626   match(Set mem (StoreCM mem zero));
  6627   predicate(UseConcMarkSweepGC);
  6629   expand %{
  6630     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6631     iRegLdst releaseFieldAddress;
  6632     loadConL_Ex(releaseFieldAddress, baseImm);
  6633     storeCM_CMS(mem, releaseFieldAddress);
  6634   %}
  6635 %}
  6637 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6638   match(Set mem (StoreCM mem zero));
  6639   predicate(UseG1GC);
  6640   ins_cost(MEMORY_REF_COST);
  6642   ins_cannot_rematerialize(true);
  6644   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6645   size(8);
  6646   ins_encode %{
  6647     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6648     __ li(R0, 0);
  6649     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6650     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6651     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6652   %}
  6653   ins_pipe(pipe_class_memory);
  6654 %}
  6656 // Convert oop pointer into compressed form.
  6658 // Nodes for postalloc expand.
  6660 // Shift node for expand.
  6661 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6662   // The match rule is needed to make it a 'MachTypeNode'!
  6663   match(Set dst (EncodeP src));
  6664   predicate(false);
  6666   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6667   size(4);
  6668   ins_encode %{
  6669     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6670     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6671   %}
  6672   ins_pipe(pipe_class_default);
  6673 %}
  6675 // Add node for expand.
  6676 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6677   // The match rule is needed to make it a 'MachTypeNode'!
  6678   match(Set dst (EncodeP src));
  6679   predicate(false);
  6681   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6682   size(4);
  6683   ins_encode %{
  6684     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6685     __ subf($dst$$Register, R30, $src$$Register);
  6686   %}
  6687   ins_pipe(pipe_class_default);
  6688 %}
  6690 // Conditional sub base.
  6691 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6692   // The match rule is needed to make it a 'MachTypeNode'!
  6693   match(Set dst (EncodeP (Binary crx src1)));
  6694   predicate(false);
  6696   ins_variable_size_depending_on_alignment(true);
  6698   format %{ "BEQ     $crx, done\n\t"
  6699             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6700             "done:" %}
  6701   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6702   ins_encode %{
  6703     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6704     Label done;
  6705     __ beq($crx$$CondRegister, done);
  6706     __ subf($dst$$Register, R30, $src1$$Register);
  6707     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6708     __ bind(done);
  6709   %}
  6710   ins_pipe(pipe_class_default);
  6711 %}
  6713 // Power 7 can use isel instruction
  6714 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6715   // The match rule is needed to make it a 'MachTypeNode'!
  6716   match(Set dst (EncodeP (Binary crx src1)));
  6717   predicate(false);
  6719   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6720   size(4);
  6721   ins_encode %{
  6722     // This is a Power7 instruction for which no machine description exists.
  6723     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6724     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6725   %}
  6726   ins_pipe(pipe_class_default);
  6727 %}
  6729 // base != 0
  6730 // 32G aligned narrow oop base.
  6731 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6732   match(Set dst (EncodeP src));
  6733   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6735   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6736   size(4);
  6737   ins_encode %{
  6738     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6739     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6740   %}
  6741   ins_pipe(pipe_class_default);
  6742 %}
  6744 // shift != 0, base != 0
  6745 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6746   match(Set dst (EncodeP src));
  6747   effect(TEMP crx);
  6748   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6749             Universe::narrow_oop_shift() != 0 &&
  6750             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6752   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6753   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6754 %}
  6756 // shift != 0, base != 0
  6757 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6758   match(Set dst (EncodeP src));
  6759   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6760             Universe::narrow_oop_shift() != 0 &&
  6761             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6763   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6764   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6765 %}
  6767 // shift != 0, base == 0
  6768 // TODO: This is the same as encodeP_shift. Merge!
  6769 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6770   match(Set dst (EncodeP src));
  6771   predicate(Universe::narrow_oop_shift() != 0 &&
  6772             Universe::narrow_oop_base() ==0);
  6774   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6775   size(4);
  6776   ins_encode %{
  6777     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6778     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6779   %}
  6780   ins_pipe(pipe_class_default);
  6781 %}
  6783 // Compressed OOPs with narrow_oop_shift == 0.
  6784 // shift == 0, base == 0
  6785 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6786   match(Set dst (EncodeP src));
  6787   predicate(Universe::narrow_oop_shift() == 0);
  6789   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6790   // variable size, 0 or 4.
  6791   ins_encode %{
  6792     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6793     __ mr_if_needed($dst$$Register, $src$$Register);
  6794   %}
  6795   ins_pipe(pipe_class_default);
  6796 %}
  6798 // Decode nodes.
  6800 // Shift node for expand.
  6801 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6802   // The match rule is needed to make it a 'MachTypeNode'!
  6803   match(Set dst (DecodeN src));
  6804   predicate(false);
  6806   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6807   size(4);
  6808   ins_encode %{
  6809     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6810     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6811   %}
  6812   ins_pipe(pipe_class_default);
  6813 %}
  6815 // Add node for expand.
  6816 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6817   // The match rule is needed to make it a 'MachTypeNode'!
  6818   match(Set dst (DecodeN src));
  6819   predicate(false);
  6821   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6822   size(4);
  6823   ins_encode %{
  6824     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6825     __ add($dst$$Register, $src$$Register, R30);
  6826   %}
  6827   ins_pipe(pipe_class_default);
  6828 %}
  6830 // conditianal add base for expand
  6831 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6832   // The match rule is needed to make it a 'MachTypeNode'!
  6833   // NOTICE that the rule is nonsense - we just have to make sure that:
  6834   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6835   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6836   match(Set dst (DecodeN (Binary crx src1)));
  6837   predicate(false);
  6839   ins_variable_size_depending_on_alignment(true);
  6841   format %{ "BEQ     $crx, done\n\t"
  6842             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6843             "done:" %}
  6844   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6845   ins_encode %{
  6846     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6847     Label done;
  6848     __ beq($crx$$CondRegister, done);
  6849     __ add($dst$$Register, $src1$$Register, R30);
  6850     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6851     __ bind(done);
  6852   %}
  6853   ins_pipe(pipe_class_default);
  6854 %}
  6856 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6857   // The match rule is needed to make it a 'MachTypeNode'!
  6858   // NOTICE that the rule is nonsense - we just have to make sure that:
  6859   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6860   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6861   match(Set dst (DecodeN (Binary crx src1)));
  6862   predicate(false);
  6864   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6865   size(4);
  6866   ins_encode %{
  6867     // This is a Power7 instruction for which no machine description exists.
  6868     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6869     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6870   %}
  6871   ins_pipe(pipe_class_default);
  6872 %}
  6874 //  shift != 0, base != 0
  6875 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6876   match(Set dst (DecodeN src));
  6877   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6878              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6879             Universe::narrow_oop_shift() != 0 &&
  6880             Universe::narrow_oop_base() != 0);
  6881   effect(TEMP crx);
  6883   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6884   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6885 %}
  6887 // shift != 0, base == 0
  6888 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6889   match(Set dst (DecodeN src));
  6890   predicate(Universe::narrow_oop_shift() != 0 &&
  6891             Universe::narrow_oop_base() == 0);
  6893   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6894   size(4);
  6895   ins_encode %{
  6896     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6897     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6898   %}
  6899   ins_pipe(pipe_class_default);
  6900 %}
  6902 // src != 0, shift != 0, base != 0
  6903 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6904   match(Set dst (DecodeN src));
  6905   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6906              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6907             Universe::narrow_oop_shift() != 0 &&
  6908             Universe::narrow_oop_base() != 0);
  6910   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6911   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6912 %}
  6914 // Compressed OOPs with narrow_oop_shift == 0.
  6915 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6916   match(Set dst (DecodeN src));
  6917   predicate(Universe::narrow_oop_shift() == 0);
  6918   ins_cost(DEFAULT_COST);
  6920   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6921   // variable size, 0 or 4.
  6922   ins_encode %{
  6923     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6924     __ mr_if_needed($dst$$Register, $src$$Register);
  6925   %}
  6926   ins_pipe(pipe_class_default);
  6927 %}
  6929 // Convert compressed oop into int for vectors alignment masking.
  6930 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6931   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6932   predicate(Universe::narrow_oop_shift() == 0);
  6933   ins_cost(DEFAULT_COST);
  6935   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6936   // variable size, 0 or 4.
  6937   ins_encode %{
  6938     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6939     __ mr_if_needed($dst$$Register, $src$$Register);
  6940   %}
  6941   ins_pipe(pipe_class_default);
  6942 %}
  6944 // Convert klass pointer into compressed form.
  6946 // Nodes for postalloc expand.
  6948 // Shift node for expand.
  6949 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6950   // The match rule is needed to make it a 'MachTypeNode'!
  6951   match(Set dst (EncodePKlass src));
  6952   predicate(false);
  6954   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6955   size(4);
  6956   ins_encode %{
  6957     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6958     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6959   %}
  6960   ins_pipe(pipe_class_default);
  6961 %}
  6963 // Add node for expand.
  6964 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6965   // The match rule is needed to make it a 'MachTypeNode'!
  6966   match(Set dst (EncodePKlass (Binary base src)));
  6967   predicate(false);
  6969   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6970   size(4);
  6971   ins_encode %{
  6972     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6973     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6974   %}
  6975   ins_pipe(pipe_class_default);
  6976 %}
  6978 // base != 0
  6979 // 32G aligned narrow oop base.
  6980 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6981   match(Set dst (EncodePKlass src));
  6982   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6984   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6985   size(4);
  6986   ins_encode %{
  6987     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6988     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
  6989   %}
  6990   ins_pipe(pipe_class_default);
  6991 %}
  6993 // shift != 0, base != 0
  6994 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6995   match(Set dst (EncodePKlass (Binary base src)));
  6996   predicate(false);
  6998   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6999   postalloc_expand %{
  7000     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  7001     n1->add_req(n_region, n_base, n_src);
  7002     n1->_opnds[0] = op_dst;
  7003     n1->_opnds[1] = op_base;
  7004     n1->_opnds[2] = op_src;
  7005     n1->_bottom_type = _bottom_type;
  7007     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  7008     n2->add_req(n_region, n1);
  7009     n2->_opnds[0] = op_dst;
  7010     n2->_opnds[1] = op_dst;
  7011     n2->_bottom_type = _bottom_type;
  7012     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7013     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7015     nodes->push(n1);
  7016     nodes->push(n2);
  7017   %}
  7018 %}
  7020 // shift != 0, base != 0
  7021 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  7022   match(Set dst (EncodePKlass src));
  7023   //predicate(Universe::narrow_klass_shift() != 0 &&
  7024   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  7026   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  7027   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7028   expand %{
  7029     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  7030     iRegLdst base;
  7031     loadConL_Ex(base, baseImm);
  7032     encodePKlass_not_null_Ex(dst, base, src);
  7033   %}
  7034 %}
  7036 // Decode nodes.
  7038 // Shift node for expand.
  7039 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  7040   // The match rule is needed to make it a 'MachTypeNode'!
  7041   match(Set dst (DecodeNKlass src));
  7042   predicate(false);
  7044   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  7045   size(4);
  7046   ins_encode %{
  7047     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  7048     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  7049   %}
  7050   ins_pipe(pipe_class_default);
  7051 %}
  7053 // Add node for expand.
  7055 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  7056   // The match rule is needed to make it a 'MachTypeNode'!
  7057   match(Set dst (DecodeNKlass (Binary base src)));
  7058   predicate(false);
  7060   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  7061   size(4);
  7062   ins_encode %{
  7063     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7064     __ add($dst$$Register, $base$$Register, $src$$Register);
  7065   %}
  7066   ins_pipe(pipe_class_default);
  7067 %}
  7069 // src != 0, shift != 0, base != 0
  7070 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7071   match(Set dst (DecodeNKlass (Binary base src)));
  7072   //effect(kill src); // We need a register for the immediate result after shifting.
  7073   predicate(false);
  7075   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7076   postalloc_expand %{
  7077     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7078     n1->add_req(n_region, n_base, n_src);
  7079     n1->_opnds[0] = op_dst;
  7080     n1->_opnds[1] = op_base;
  7081     n1->_opnds[2] = op_src;
  7082     n1->_bottom_type = _bottom_type;
  7084     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7085     n2->add_req(n_region, n1);
  7086     n2->_opnds[0] = op_dst;
  7087     n2->_opnds[1] = op_dst;
  7088     n2->_bottom_type = _bottom_type;
  7090     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7091     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7093     nodes->push(n1);
  7094     nodes->push(n2);
  7095   %}
  7096 %}
  7098 // src != 0, shift != 0, base != 0
  7099 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7100   match(Set dst (DecodeNKlass src));
  7101   // predicate(Universe::narrow_klass_shift() != 0 &&
  7102   //           Universe::narrow_klass_base() != 0);
  7104   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7106   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7107   expand %{
  7108     // We add first, then we shift. Like this, we can get along with one register less.
  7109     // But we have to load the base pre-shifted.
  7110     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7111     iRegLdst base;
  7112     loadConL_Ex(base, baseImm);
  7113     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7114   %}
  7115 %}
  7117 //----------MemBar Instructions-----------------------------------------------
  7118 // Memory barrier flavors
  7120 instruct membar_acquire() %{
  7121   match(LoadFence);
  7122   ins_cost(4*MEMORY_REF_COST);
  7124   format %{ "MEMBAR-acquire" %}
  7125   size(4);
  7126   ins_encode %{
  7127     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7128     __ acquire();
  7129   %}
  7130   ins_pipe(pipe_class_default);
  7131 %}
  7133 instruct unnecessary_membar_acquire() %{
  7134   match(MemBarAcquire);
  7135   ins_cost(0);
  7137   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7138   size(0);
  7139   ins_encode( /*empty*/ );
  7140   ins_pipe(pipe_class_default);
  7141 %}
  7143 instruct membar_acquire_lock() %{
  7144   match(MemBarAcquireLock);
  7145   ins_cost(0);
  7147   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7148   size(0);
  7149   ins_encode( /*empty*/ );
  7150   ins_pipe(pipe_class_default);
  7151 %}
  7153 instruct membar_release() %{
  7154   match(MemBarRelease);
  7155   match(StoreFence);
  7156   ins_cost(4*MEMORY_REF_COST);
  7158   format %{ "MEMBAR-release" %}
  7159   size(4);
  7160   ins_encode %{
  7161     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7162     __ release();
  7163   %}
  7164   ins_pipe(pipe_class_default);
  7165 %}
  7167 instruct membar_storestore() %{
  7168   match(MemBarStoreStore);
  7169   ins_cost(4*MEMORY_REF_COST);
  7171   format %{ "MEMBAR-store-store" %}
  7172   size(4);
  7173   ins_encode %{
  7174     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7175     __ membar(Assembler::StoreStore);
  7176   %}
  7177   ins_pipe(pipe_class_default);
  7178 %}
  7180 instruct membar_release_lock() %{
  7181   match(MemBarReleaseLock);
  7182   ins_cost(0);
  7184   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7185   size(0);
  7186   ins_encode( /*empty*/ );
  7187   ins_pipe(pipe_class_default);
  7188 %}
  7190 instruct membar_volatile() %{
  7191   match(MemBarVolatile);
  7192   ins_cost(4*MEMORY_REF_COST);
  7194   format %{ "MEMBAR-volatile" %}
  7195   size(4);
  7196   ins_encode %{
  7197     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7198     __ fence();
  7199   %}
  7200   ins_pipe(pipe_class_default);
  7201 %}
  7203 // This optimization is wrong on PPC. The following pattern is not supported:
  7204 //  MemBarVolatile
  7205 //   ^        ^
  7206 //   |        |
  7207 //  CtrlProj MemProj
  7208 //   ^        ^
  7209 //   |        |
  7210 //   |       Load
  7211 //   |
  7212 //  MemBarVolatile
  7213 //
  7214 //  The first MemBarVolatile could get optimized out! According to
  7215 //  Vladimir, this pattern can not occur on Oracle platforms.
  7216 //  However, it does occur on PPC64 (because of membars in
  7217 //  inline_unsafe_load_store).
  7218 //
  7219 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7220 // Don't forget to look at the implementation of post_store_load_barrier again,
  7221 // we did other fixes in that method.
  7222 //instruct unnecessary_membar_volatile() %{
  7223 //  match(MemBarVolatile);
  7224 //  predicate(Matcher::post_store_load_barrier(n));
  7225 //  ins_cost(0);
  7226 //
  7227 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7228 //  size(0);
  7229 //  ins_encode( /*empty*/ );
  7230 //  ins_pipe(pipe_class_default);
  7231 //%}
  7233 instruct membar_CPUOrder() %{
  7234   match(MemBarCPUOrder);
  7235   ins_cost(0);
  7237   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7238   size(0);
  7239   ins_encode( /*empty*/ );
  7240   ins_pipe(pipe_class_default);
  7241 %}
  7243 //----------Conditional Move---------------------------------------------------
  7245 // Cmove using isel.
  7246 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7247   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7248   predicate(VM_Version::has_isel());
  7249   ins_cost(DEFAULT_COST);
  7251   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7252   size(4);
  7253   ins_encode %{
  7254     // This is a Power7 instruction for which no machine description
  7255     // exists. Anyways, the scheduler should be off on Power7.
  7256     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7257     int cc        = $cmp$$cmpcode;
  7258     __ isel($dst$$Register, $crx$$CondRegister,
  7259             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7260   %}
  7261   ins_pipe(pipe_class_default);
  7262 %}
  7264 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7265   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7266   predicate(!VM_Version::has_isel());
  7267   ins_cost(DEFAULT_COST+BRANCH_COST);
  7269   ins_variable_size_depending_on_alignment(true);
  7271   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7272   // Worst case is branch + move + stop, no stop without scheduler
  7273   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7274   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7275   ins_pipe(pipe_class_default);
  7276 %}
  7278 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7279   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7280   ins_cost(DEFAULT_COST+BRANCH_COST);
  7282   ins_variable_size_depending_on_alignment(true);
  7284   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7285   // Worst case is branch + move + stop, no stop without scheduler
  7286   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7287   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7288   ins_pipe(pipe_class_default);
  7289 %}
  7291 // Cmove using isel.
  7292 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7293   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7294   predicate(VM_Version::has_isel());
  7295   ins_cost(DEFAULT_COST);
  7297   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7298   size(4);
  7299   ins_encode %{
  7300     // This is a Power7 instruction for which no machine description
  7301     // exists. Anyways, the scheduler should be off on Power7.
  7302     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7303     int cc        = $cmp$$cmpcode;
  7304     __ isel($dst$$Register, $crx$$CondRegister,
  7305             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7306   %}
  7307   ins_pipe(pipe_class_default);
  7308 %}
  7310 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7311   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7312   predicate(!VM_Version::has_isel());
  7313   ins_cost(DEFAULT_COST+BRANCH_COST);
  7315   ins_variable_size_depending_on_alignment(true);
  7317   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7318   // Worst case is branch + move + stop, no stop without scheduler.
  7319   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7320   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7321   ins_pipe(pipe_class_default);
  7322 %}
  7324 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7325   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7326   ins_cost(DEFAULT_COST+BRANCH_COST);
  7328   ins_variable_size_depending_on_alignment(true);
  7330   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7331   // Worst case is branch + move + stop, no stop without scheduler.
  7332   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7333   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7334   ins_pipe(pipe_class_default);
  7335 %}
  7337 // Cmove using isel.
  7338 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7339   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7340   predicate(VM_Version::has_isel());
  7341   ins_cost(DEFAULT_COST);
  7343   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7344   size(4);
  7345   ins_encode %{
  7346     // This is a Power7 instruction for which no machine description
  7347     // exists. Anyways, the scheduler should be off on Power7.
  7348     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7349     int cc        = $cmp$$cmpcode;
  7350     __ isel($dst$$Register, $crx$$CondRegister,
  7351             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7352   %}
  7353   ins_pipe(pipe_class_default);
  7354 %}
  7356 // Conditional move for RegN. Only cmov(reg, reg).
  7357 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7358   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7359   predicate(!VM_Version::has_isel());
  7360   ins_cost(DEFAULT_COST+BRANCH_COST);
  7362   ins_variable_size_depending_on_alignment(true);
  7364   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7365   // Worst case is branch + move + stop, no stop without scheduler.
  7366   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7367   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7368   ins_pipe(pipe_class_default);
  7369 %}
  7371 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7372   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7373   ins_cost(DEFAULT_COST+BRANCH_COST);
  7375   ins_variable_size_depending_on_alignment(true);
  7377   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7378   // Worst case is branch + move + stop, no stop without scheduler.
  7379   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7380   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7381   ins_pipe(pipe_class_default);
  7382 %}
  7384 // Cmove using isel.
  7385 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7386   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7387   predicate(VM_Version::has_isel());
  7388   ins_cost(DEFAULT_COST);
  7390   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7391   size(4);
  7392   ins_encode %{
  7393     // This is a Power7 instruction for which no machine description
  7394     // exists. Anyways, the scheduler should be off on Power7.
  7395     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7396     int cc        = $cmp$$cmpcode;
  7397     __ isel($dst$$Register, $crx$$CondRegister,
  7398             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7399   %}
  7400   ins_pipe(pipe_class_default);
  7401 %}
  7403 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7404   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7405   predicate(!VM_Version::has_isel());
  7406   ins_cost(DEFAULT_COST+BRANCH_COST);
  7408   ins_variable_size_depending_on_alignment(true);
  7410   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7411   // Worst case is branch + move + stop, no stop without scheduler.
  7412   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7413   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7414   ins_pipe(pipe_class_default);
  7415 %}
  7417 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7418   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7419   ins_cost(DEFAULT_COST+BRANCH_COST);
  7421   ins_variable_size_depending_on_alignment(true);
  7423   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7424   // Worst case is branch + move + stop, no stop without scheduler.
  7425   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7426   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7427   ins_pipe(pipe_class_default);
  7428 %}
  7430 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7431   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7432   ins_cost(DEFAULT_COST+BRANCH_COST);
  7434   ins_variable_size_depending_on_alignment(true);
  7436   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7437   // Worst case is branch + move + stop, no stop without scheduler.
  7438   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7439   ins_encode %{
  7440     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7441     Label done;
  7442     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7443     // Branch if not (cmp crx).
  7444     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7445     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7446     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7447     __ bind(done);
  7448   %}
  7449   ins_pipe(pipe_class_default);
  7450 %}
  7452 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7453   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7454   ins_cost(DEFAULT_COST+BRANCH_COST);
  7456   ins_variable_size_depending_on_alignment(true);
  7458   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7459   // Worst case is branch + move + stop, no stop without scheduler.
  7460   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7461   ins_encode %{
  7462     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7463     Label done;
  7464     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7465     // Branch if not (cmp crx).
  7466     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7467     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7468     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7469     __ bind(done);
  7470   %}
  7471   ins_pipe(pipe_class_default);
  7472 %}
  7474 //----------Conditional_store--------------------------------------------------
  7475 // Conditional-store of the updated heap-top.
  7476 // Used during allocation of the shared heap.
  7477 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7479 // As compareAndSwapL, but return flag register instead of boolean value in
  7480 // int register.
  7481 // Used by sun/misc/AtomicLongCSImpl.java.
  7482 // Mem_ptr must be a memory operand, else this node does not get
  7483 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7484 // can be rematerialized which leads to errors.
  7485 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7486   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7487   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7488   ins_encode %{
  7489     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7490     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7491                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7492                 noreg, NULL, true);
  7493   %}
  7494   ins_pipe(pipe_class_default);
  7495 %}
  7497 // As compareAndSwapP, but return flag register instead of boolean value in
  7498 // int register.
  7499 // This instruction is matched if UseTLAB is off.
  7500 // Mem_ptr must be a memory operand, else this node does not get
  7501 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7502 // can be rematerialized which leads to errors.
  7503 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7504   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7505   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7506   ins_encode %{
  7507     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7508     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7509                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7510                 noreg, NULL, true);
  7511   %}
  7512   ins_pipe(pipe_class_default);
  7513 %}
  7515 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7516 // by storePConditional.
  7517 // Don't know whether this is ever used.
  7518 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7519   match(Set dst (LoadPLocked mem));
  7520   ins_cost(MEMORY_REF_COST);
  7522   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7523             "TWI     $dst\n\t"
  7524             "ISYNC" %}
  7525   size(12);
  7526   ins_encode( enc_ld_ac(dst, mem) );
  7527   ins_pipe(pipe_class_memory);
  7528 %}
  7530 //----------Compare-And-Swap---------------------------------------------------
  7532 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7533 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7534 // matched.
  7536 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7537   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7538   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7539   // Variable size: instruction count smaller if regs are disjoint.
  7540   ins_encode %{
  7541     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7542     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7543     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7544                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7545                 $res$$Register, true);
  7546   %}
  7547   ins_pipe(pipe_class_default);
  7548 %}
  7550 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7551   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7552   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7553   // Variable size: instruction count smaller if regs are disjoint.
  7554   ins_encode %{
  7555     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7556     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7557     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7558                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7559                 $res$$Register, true);
  7560   %}
  7561   ins_pipe(pipe_class_default);
  7562 %}
  7564 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7565   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7566   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7567   // Variable size: instruction count smaller if regs are disjoint.
  7568   ins_encode %{
  7569     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7570     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7571     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7572                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7573                 $res$$Register, NULL, true);
  7574   %}
  7575   ins_pipe(pipe_class_default);
  7576 %}
  7578 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7579   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7580   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7581   // Variable size: instruction count smaller if regs are disjoint.
  7582   ins_encode %{
  7583     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7584     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7585     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7586                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7587                 $res$$Register, NULL, true);
  7588   %}
  7589   ins_pipe(pipe_class_default);
  7590 %}
  7592 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7593   match(Set res (GetAndAddI mem_ptr src));
  7594   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7595   // Variable size: instruction count smaller if regs are disjoint.
  7596   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7597   ins_pipe(pipe_class_default);
  7598 %}
  7600 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7601   match(Set res (GetAndAddL mem_ptr src));
  7602   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7603   // Variable size: instruction count smaller if regs are disjoint.
  7604   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7605   ins_pipe(pipe_class_default);
  7606 %}
  7608 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7609   match(Set res (GetAndSetI mem_ptr src));
  7610   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7611   // Variable size: instruction count smaller if regs are disjoint.
  7612   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7613   ins_pipe(pipe_class_default);
  7614 %}
  7616 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7617   match(Set res (GetAndSetL mem_ptr src));
  7618   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7619   // Variable size: instruction count smaller if regs are disjoint.
  7620   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7621   ins_pipe(pipe_class_default);
  7622 %}
  7624 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7625   match(Set res (GetAndSetP mem_ptr src));
  7626   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7627   // Variable size: instruction count smaller if regs are disjoint.
  7628   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7629   ins_pipe(pipe_class_default);
  7630 %}
  7632 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7633   match(Set res (GetAndSetN mem_ptr src));
  7634   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7635   // Variable size: instruction count smaller if regs are disjoint.
  7636   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7637   ins_pipe(pipe_class_default);
  7638 %}
  7640 //----------Arithmetic Instructions--------------------------------------------
  7641 // Addition Instructions
  7643 // Register Addition
  7644 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7645   match(Set dst (AddI src1 src2));
  7646   format %{ "ADD     $dst, $src1, $src2" %}
  7647   size(4);
  7648   ins_encode %{
  7649     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7650     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7651   %}
  7652   ins_pipe(pipe_class_default);
  7653 %}
  7655 // Expand does not work with above instruct. (??)
  7656 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7657   // no match-rule
  7658   effect(DEF dst, USE src1, USE src2);
  7659   format %{ "ADD     $dst, $src1, $src2" %}
  7660   size(4);
  7661   ins_encode %{
  7662     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7663     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7664   %}
  7665   ins_pipe(pipe_class_default);
  7666 %}
  7668 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7669   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7670   ins_cost(DEFAULT_COST*3);
  7672   expand %{
  7673     // FIXME: we should do this in the ideal world.
  7674     iRegIdst tmp1;
  7675     iRegIdst tmp2;
  7676     addI_reg_reg(tmp1, src1, src2);
  7677     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7678     addI_reg_reg(dst, tmp1, tmp2);
  7679   %}
  7680 %}
  7682 // Immediate Addition
  7683 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7684   match(Set dst (AddI src1 src2));
  7685   format %{ "ADDI    $dst, $src1, $src2" %}
  7686   size(4);
  7687   ins_encode %{
  7688     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7689     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7690   %}
  7691   ins_pipe(pipe_class_default);
  7692 %}
  7694 // Immediate Addition with 16-bit shifted operand
  7695 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7696   match(Set dst (AddI src1 src2));
  7697   format %{ "ADDIS   $dst, $src1, $src2" %}
  7698   size(4);
  7699   ins_encode %{
  7700     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7701     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7702   %}
  7703   ins_pipe(pipe_class_default);
  7704 %}
  7706 // Long Addition
  7707 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7708   match(Set dst (AddL src1 src2));
  7709   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7710   size(4);
  7711   ins_encode %{
  7712     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7713     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7714   %}
  7715   ins_pipe(pipe_class_default);
  7716 %}
  7718 // Expand does not work with above instruct. (??)
  7719 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7720   // no match-rule
  7721   effect(DEF dst, USE src1, USE src2);
  7722   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7723   size(4);
  7724   ins_encode %{
  7725     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7726     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7727   %}
  7728   ins_pipe(pipe_class_default);
  7729 %}
  7731 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7732   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7733   ins_cost(DEFAULT_COST*3);
  7735   expand %{
  7736     // FIXME: we should do this in the ideal world.
  7737     iRegLdst tmp1;
  7738     iRegLdst tmp2;
  7739     addL_reg_reg(tmp1, src1, src2);
  7740     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7741     addL_reg_reg(dst, tmp1, tmp2);
  7742   %}
  7743 %}
  7745 // AddL + ConvL2I.
  7746 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7747   match(Set dst (ConvL2I (AddL src1 src2)));
  7749   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7750   size(4);
  7751   ins_encode %{
  7752     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7753     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7754   %}
  7755   ins_pipe(pipe_class_default);
  7756 %}
  7758 // No constant pool entries required.
  7759 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7760   match(Set dst (AddL src1 src2));
  7762   format %{ "ADDI    $dst, $src1, $src2" %}
  7763   size(4);
  7764   ins_encode %{
  7765     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7766     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7767   %}
  7768   ins_pipe(pipe_class_default);
  7769 %}
  7771 // Long Immediate Addition with 16-bit shifted operand.
  7772 // No constant pool entries required.
  7773 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7774   match(Set dst (AddL src1 src2));
  7776   format %{ "ADDIS   $dst, $src1, $src2" %}
  7777   size(4);
  7778   ins_encode %{
  7779     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7780     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7781   %}
  7782   ins_pipe(pipe_class_default);
  7783 %}
  7785 // Pointer Register Addition
  7786 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7787   match(Set dst (AddP src1 src2));
  7788   format %{ "ADD     $dst, $src1, $src2" %}
  7789   size(4);
  7790   ins_encode %{
  7791     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7792     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7793   %}
  7794   ins_pipe(pipe_class_default);
  7795 %}
  7797 // Pointer Immediate Addition
  7798 // No constant pool entries required.
  7799 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7800   match(Set dst (AddP src1 src2));
  7802   format %{ "ADDI    $dst, $src1, $src2" %}
  7803   size(4);
  7804   ins_encode %{
  7805     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7806     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7807   %}
  7808   ins_pipe(pipe_class_default);
  7809 %}
  7811 // Pointer Immediate Addition with 16-bit shifted operand.
  7812 // No constant pool entries required.
  7813 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7814   match(Set dst (AddP src1 src2));
  7816   format %{ "ADDIS   $dst, $src1, $src2" %}
  7817   size(4);
  7818   ins_encode %{
  7819     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7820     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7821   %}
  7822   ins_pipe(pipe_class_default);
  7823 %}
  7825 //---------------------
  7826 // Subtraction Instructions
  7828 // Register Subtraction
  7829 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7830   match(Set dst (SubI src1 src2));
  7831   format %{ "SUBF    $dst, $src2, $src1" %}
  7832   size(4);
  7833   ins_encode %{
  7834     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7835     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7836   %}
  7837   ins_pipe(pipe_class_default);
  7838 %}
  7840 // Immediate Subtraction
  7841 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7842 // so this rule seems to be unused.
  7843 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7844   match(Set dst (SubI src1 src2));
  7845   format %{ "SUBI    $dst, $src1, $src2" %}
  7846   size(4);
  7847   ins_encode %{
  7848     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7849     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7850   %}
  7851   ins_pipe(pipe_class_default);
  7852 %}
  7854 // SubI from constant (using subfic).
  7855 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7856   match(Set dst (SubI src1 src2));
  7857   format %{ "SUBI    $dst, $src1, $src2" %}
  7859   size(4);
  7860   ins_encode %{
  7861     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7862     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7863   %}
  7864   ins_pipe(pipe_class_default);
  7865 %}
  7867 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7868 // positive integers and 0xF...F for negative ones.
  7869 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7870   // no match-rule, false predicate
  7871   effect(DEF dst, USE src);
  7872   predicate(false);
  7874   format %{ "SRAWI   $dst, $src, #31" %}
  7875   size(4);
  7876   ins_encode %{
  7877     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7878     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7879   %}
  7880   ins_pipe(pipe_class_default);
  7881 %}
  7883 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7884   match(Set dst (AbsI src));
  7885   ins_cost(DEFAULT_COST*3);
  7887   expand %{
  7888     iRegIdst tmp1;
  7889     iRegIdst tmp2;
  7890     signmask32I_regI(tmp1, src);
  7891     xorI_reg_reg(tmp2, tmp1, src);
  7892     subI_reg_reg(dst, tmp2, tmp1);
  7893   %}
  7894 %}
  7896 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7897   match(Set dst (SubI zero src2));
  7898   format %{ "NEG     $dst, $src2" %}
  7899   size(4);
  7900   ins_encode %{
  7901     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7902     __ neg($dst$$Register, $src2$$Register);
  7903   %}
  7904   ins_pipe(pipe_class_default);
  7905 %}
  7907 // Long subtraction
  7908 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7909   match(Set dst (SubL src1 src2));
  7910   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7911   size(4);
  7912   ins_encode %{
  7913     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7914     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7915   %}
  7916   ins_pipe(pipe_class_default);
  7917 %}
  7919 // SubL + convL2I.
  7920 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7921   match(Set dst (ConvL2I (SubL src1 src2)));
  7923   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7924   size(4);
  7925   ins_encode %{
  7926     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7927     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7928   %}
  7929   ins_pipe(pipe_class_default);
  7930 %}
  7932 // Immediate Subtraction
  7933 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7934 // so this rule seems to be unused.
  7935 // No constant pool entries required.
  7936 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7937   match(Set dst (SubL src1 src2));
  7939   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7940   size(4);
  7941   ins_encode %{
  7942     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7943     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7944   %}
  7945   ins_pipe(pipe_class_default);
  7946 %}
  7948 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7949 // positive longs and 0xF...F for negative ones.
  7950 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  7951   // no match-rule, false predicate
  7952   effect(DEF dst, USE src);
  7953   predicate(false);
  7955   format %{ "SRADI   $dst, $src, #63" %}
  7956   size(4);
  7957   ins_encode %{
  7958     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7959     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7960   %}
  7961   ins_pipe(pipe_class_default);
  7962 %}
  7964 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7965 // positive longs and 0xF...F for negative ones.
  7966 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  7967   // no match-rule, false predicate
  7968   effect(DEF dst, USE src);
  7969   predicate(false);
  7971   format %{ "SRADI   $dst, $src, #63" %}
  7972   size(4);
  7973   ins_encode %{
  7974     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7975     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7976   %}
  7977   ins_pipe(pipe_class_default);
  7978 %}
  7980 // Long negation
  7981 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7982   match(Set dst (SubL zero src2));
  7983   format %{ "NEG     $dst, $src2 \t// long" %}
  7984   size(4);
  7985   ins_encode %{
  7986     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7987     __ neg($dst$$Register, $src2$$Register);
  7988   %}
  7989   ins_pipe(pipe_class_default);
  7990 %}
  7992 // NegL + ConvL2I.
  7993 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7994   match(Set dst (ConvL2I (SubL zero src2)));
  7996   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7997   size(4);
  7998   ins_encode %{
  7999     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8000     __ neg($dst$$Register, $src2$$Register);
  8001   %}
  8002   ins_pipe(pipe_class_default);
  8003 %}
  8005 // Multiplication Instructions
  8006 // Integer Multiplication
  8008 // Register Multiplication
  8009 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8010   match(Set dst (MulI src1 src2));
  8011   ins_cost(DEFAULT_COST);
  8013   format %{ "MULLW   $dst, $src1, $src2" %}
  8014   size(4);
  8015   ins_encode %{
  8016     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  8017     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  8018   %}
  8019   ins_pipe(pipe_class_default);
  8020 %}
  8022 // Immediate Multiplication
  8023 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  8024   match(Set dst (MulI src1 src2));
  8025   ins_cost(DEFAULT_COST);
  8027   format %{ "MULLI   $dst, $src1, $src2" %}
  8028   size(4);
  8029   ins_encode %{
  8030     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8031     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8032   %}
  8033   ins_pipe(pipe_class_default);
  8034 %}
  8036 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8037   match(Set dst (MulL src1 src2));
  8038   ins_cost(DEFAULT_COST);
  8040   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  8041   size(4);
  8042   ins_encode %{
  8043     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  8044     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  8045   %}
  8046   ins_pipe(pipe_class_default);
  8047 %}
  8049 // Multiply high for optimized long division by constant.
  8050 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8051   match(Set dst (MulHiL src1 src2));
  8052   ins_cost(DEFAULT_COST);
  8054   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  8055   size(4);
  8056   ins_encode %{
  8057     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  8058     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  8059   %}
  8060   ins_pipe(pipe_class_default);
  8061 %}
  8063 // Immediate Multiplication
  8064 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  8065   match(Set dst (MulL src1 src2));
  8066   ins_cost(DEFAULT_COST);
  8068   format %{ "MULLI   $dst, $src1, $src2" %}
  8069   size(4);
  8070   ins_encode %{
  8071     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8072     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8073   %}
  8074   ins_pipe(pipe_class_default);
  8075 %}
  8077 // Integer Division with Immediate -1: Negate.
  8078 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8079   match(Set dst (DivI src1 src2));
  8080   ins_cost(DEFAULT_COST);
  8082   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8083   size(4);
  8084   ins_encode %{
  8085     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8086     __ neg($dst$$Register, $src1$$Register);
  8087   %}
  8088   ins_pipe(pipe_class_default);
  8089 %}
  8091 // Integer Division with constant, but not -1.
  8092 // We should be able to improve this by checking the type of src2.
  8093 // It might well be that src2 is known to be positive.
  8094 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8095   match(Set dst (DivI src1 src2));
  8096   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8097   ins_cost(2*DEFAULT_COST);
  8099   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8100   size(4);
  8101   ins_encode %{
  8102     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8103     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8104   %}
  8105   ins_pipe(pipe_class_default);
  8106 %}
  8108 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8109   effect(USE_DEF dst, USE src1, USE crx);
  8110   predicate(false);
  8112   ins_variable_size_depending_on_alignment(true);
  8114   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8115   // Worst case is branch + move + stop, no stop without scheduler.
  8116   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8117   ins_encode %{
  8118     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8119     Label done;
  8120     __ bne($crx$$CondRegister, done);
  8121     __ neg($dst$$Register, $src1$$Register);
  8122     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8123     __ bind(done);
  8124   %}
  8125   ins_pipe(pipe_class_default);
  8126 %}
  8128 // Integer Division with Registers not containing constants.
  8129 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8130   match(Set dst (DivI src1 src2));
  8131   ins_cost(10*DEFAULT_COST);
  8133   expand %{
  8134     immI16 imm %{ (int)-1 %}
  8135     flagsReg tmp1;
  8136     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8137     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8138     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8139   %}
  8140 %}
  8142 // Long Division with Immediate -1: Negate.
  8143 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8144   match(Set dst (DivL src1 src2));
  8145   ins_cost(DEFAULT_COST);
  8147   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8148   size(4);
  8149   ins_encode %{
  8150     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8151     __ neg($dst$$Register, $src1$$Register);
  8152   %}
  8153   ins_pipe(pipe_class_default);
  8154 %}
  8156 // Long Division with constant, but not -1.
  8157 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8158   match(Set dst (DivL src1 src2));
  8159   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8160   ins_cost(2*DEFAULT_COST);
  8162   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8163   size(4);
  8164   ins_encode %{
  8165     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8166     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8167   %}
  8168   ins_pipe(pipe_class_default);
  8169 %}
  8171 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8172   effect(USE_DEF dst, USE src1, USE crx);
  8173   predicate(false);
  8175   ins_variable_size_depending_on_alignment(true);
  8177   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8178   // Worst case is branch + move + stop, no stop without scheduler.
  8179   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8180   ins_encode %{
  8181     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8182     Label done;
  8183     __ bne($crx$$CondRegister, done);
  8184     __ neg($dst$$Register, $src1$$Register);
  8185     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8186     __ bind(done);
  8187   %}
  8188   ins_pipe(pipe_class_default);
  8189 %}
  8191 // Long Division with Registers not containing constants.
  8192 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8193   match(Set dst (DivL src1 src2));
  8194   ins_cost(10*DEFAULT_COST);
  8196   expand %{
  8197     immL16 imm %{ (int)-1 %}
  8198     flagsReg tmp1;
  8199     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8200     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8201     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8202   %}
  8203 %}
  8205 // Integer Remainder with registers.
  8206 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8207   match(Set dst (ModI src1 src2));
  8208   ins_cost(10*DEFAULT_COST);
  8210   expand %{
  8211     immI16 imm %{ (int)-1 %}
  8212     flagsReg tmp1;
  8213     iRegIdst tmp2;
  8214     iRegIdst tmp3;
  8215     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8216     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8217     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8218     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8219     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8220   %}
  8221 %}
  8223 // Long Remainder with registers
  8224 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8225   match(Set dst (ModL src1 src2));
  8226   ins_cost(10*DEFAULT_COST);
  8228   expand %{
  8229     immL16 imm %{ (int)-1 %}
  8230     flagsReg tmp1;
  8231     iRegLdst tmp2;
  8232     iRegLdst tmp3;
  8233     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8234     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8235     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8236     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8237     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8238   %}
  8239 %}
  8241 // Integer Shift Instructions
  8243 // Register Shift Left
  8245 // Clear all but the lowest #mask bits.
  8246 // Used to normalize shift amounts in registers.
  8247 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8248   // no match-rule, false predicate
  8249   effect(DEF dst, USE src, USE mask);
  8250   predicate(false);
  8252   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8253   size(4);
  8254   ins_encode %{
  8255     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8256     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8257   %}
  8258   ins_pipe(pipe_class_default);
  8259 %}
  8261 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8262   // no match-rule, false predicate
  8263   effect(DEF dst, USE src1, USE src2);
  8264   predicate(false);
  8266   format %{ "SLW     $dst, $src1, $src2" %}
  8267   size(4);
  8268   ins_encode %{
  8269     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8270     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8271   %}
  8272   ins_pipe(pipe_class_default);
  8273 %}
  8275 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8276   match(Set dst (LShiftI src1 src2));
  8277   ins_cost(DEFAULT_COST*2);
  8278   expand %{
  8279     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8280     iRegIdst tmpI;
  8281     maskI_reg_imm(tmpI, src2, mask);
  8282     lShiftI_reg_reg(dst, src1, tmpI);
  8283   %}
  8284 %}
  8286 // Register Shift Left Immediate
  8287 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8288   match(Set dst (LShiftI src1 src2));
  8290   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8291   size(4);
  8292   ins_encode %{
  8293     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8294     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8295   %}
  8296   ins_pipe(pipe_class_default);
  8297 %}
  8299 // AndI with negpow2-constant + LShiftI
  8300 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8301   match(Set dst (LShiftI (AndI src1 src2) src3));
  8302   predicate(UseRotateAndMaskInstructionsPPC64);
  8304   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8305   size(4);
  8306   ins_encode %{
  8307     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8308     long src2      = $src2$$constant;
  8309     long src3      = $src3$$constant;
  8310     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8311     if (maskbits >= 32) {
  8312       __ li($dst$$Register, 0); // addi
  8313     } else {
  8314       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8316   %}
  8317   ins_pipe(pipe_class_default);
  8318 %}
  8320 // RShiftI + AndI with negpow2-constant + LShiftI
  8321 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8322   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8323   predicate(UseRotateAndMaskInstructionsPPC64);
  8325   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8326   size(4);
  8327   ins_encode %{
  8328     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8329     long src2      = $src2$$constant;
  8330     long src3      = $src3$$constant;
  8331     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8332     if (maskbits >= 32) {
  8333       __ li($dst$$Register, 0); // addi
  8334     } else {
  8335       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8337   %}
  8338   ins_pipe(pipe_class_default);
  8339 %}
  8341 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8342   // no match-rule, false predicate
  8343   effect(DEF dst, USE src1, USE src2);
  8344   predicate(false);
  8346   format %{ "SLD     $dst, $src1, $src2" %}
  8347   size(4);
  8348   ins_encode %{
  8349     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8350     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8351   %}
  8352   ins_pipe(pipe_class_default);
  8353 %}
  8355 // Register Shift Left
  8356 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8357   match(Set dst (LShiftL src1 src2));
  8358   ins_cost(DEFAULT_COST*2);
  8359   expand %{
  8360     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8361     iRegIdst tmpI;
  8362     maskI_reg_imm(tmpI, src2, mask);
  8363     lShiftL_regL_regI(dst, src1, tmpI);
  8364   %}
  8365 %}
  8367 // Register Shift Left Immediate
  8368 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8369   match(Set dst (LShiftL src1 src2));
  8370   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8371   size(4);
  8372   ins_encode %{
  8373     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8374     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8375   %}
  8376   ins_pipe(pipe_class_default);
  8377 %}
  8379 // If we shift more than 32 bits, we need not convert I2L.
  8380 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8381   match(Set dst (LShiftL (ConvI2L src1) src2));
  8382   ins_cost(DEFAULT_COST);
  8384   size(4);
  8385   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8386   ins_encode %{
  8387     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8388     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8389   %}
  8390   ins_pipe(pipe_class_default);
  8391 %}
  8393 // Shift a postivie int to the left.
  8394 // Clrlsldi clears the upper 32 bits and shifts.
  8395 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8396   match(Set dst (LShiftL (ConvI2L src1) src2));
  8397   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8399   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8400   size(4);
  8401   ins_encode %{
  8402     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8403     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8404   %}
  8405   ins_pipe(pipe_class_default);
  8406 %}
  8408 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8409   // no match-rule, false predicate
  8410   effect(DEF dst, USE src1, USE src2);
  8411   predicate(false);
  8413   format %{ "SRAW    $dst, $src1, $src2" %}
  8414   size(4);
  8415   ins_encode %{
  8416     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8417     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8418   %}
  8419   ins_pipe(pipe_class_default);
  8420 %}
  8422 // Register Arithmetic Shift Right
  8423 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8424   match(Set dst (RShiftI src1 src2));
  8425   ins_cost(DEFAULT_COST*2);
  8426   expand %{
  8427     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8428     iRegIdst tmpI;
  8429     maskI_reg_imm(tmpI, src2, mask);
  8430     arShiftI_reg_reg(dst, src1, tmpI);
  8431   %}
  8432 %}
  8434 // Register Arithmetic Shift Right Immediate
  8435 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8436   match(Set dst (RShiftI src1 src2));
  8438   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8439   size(4);
  8440   ins_encode %{
  8441     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8442     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8443   %}
  8444   ins_pipe(pipe_class_default);
  8445 %}
  8447 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8448   // no match-rule, false predicate
  8449   effect(DEF dst, USE src1, USE src2);
  8450   predicate(false);
  8452   format %{ "SRAD    $dst, $src1, $src2" %}
  8453   size(4);
  8454   ins_encode %{
  8455     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8456     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8457   %}
  8458   ins_pipe(pipe_class_default);
  8459 %}
  8461 // Register Shift Right Arithmetic Long
  8462 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8463   match(Set dst (RShiftL src1 src2));
  8464   ins_cost(DEFAULT_COST*2);
  8466   expand %{
  8467     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8468     iRegIdst tmpI;
  8469     maskI_reg_imm(tmpI, src2, mask);
  8470     arShiftL_regL_regI(dst, src1, tmpI);
  8471   %}
  8472 %}
  8474 // Register Shift Right Immediate
  8475 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8476   match(Set dst (RShiftL src1 src2));
  8478   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8479   size(4);
  8480   ins_encode %{
  8481     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8482     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8483   %}
  8484   ins_pipe(pipe_class_default);
  8485 %}
  8487 // RShiftL + ConvL2I
  8488 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8489   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8491   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8492   size(4);
  8493   ins_encode %{
  8494     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8495     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8496   %}
  8497   ins_pipe(pipe_class_default);
  8498 %}
  8500 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8501   // no match-rule, false predicate
  8502   effect(DEF dst, USE src1, USE src2);
  8503   predicate(false);
  8505   format %{ "SRW     $dst, $src1, $src2" %}
  8506   size(4);
  8507   ins_encode %{
  8508     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8509     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8510   %}
  8511   ins_pipe(pipe_class_default);
  8512 %}
  8514 // Register Shift Right
  8515 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8516   match(Set dst (URShiftI src1 src2));
  8517   ins_cost(DEFAULT_COST*2);
  8519   expand %{
  8520     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8521     iRegIdst tmpI;
  8522     maskI_reg_imm(tmpI, src2, mask);
  8523     urShiftI_reg_reg(dst, src1, tmpI);
  8524   %}
  8525 %}
  8527 // Register Shift Right Immediate
  8528 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8529   match(Set dst (URShiftI src1 src2));
  8531   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8532   size(4);
  8533   ins_encode %{
  8534     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8535     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8536   %}
  8537   ins_pipe(pipe_class_default);
  8538 %}
  8540 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8541   // no match-rule, false predicate
  8542   effect(DEF dst, USE src1, USE src2);
  8543   predicate(false);
  8545   format %{ "SRD     $dst, $src1, $src2" %}
  8546   size(4);
  8547   ins_encode %{
  8548     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8549     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8550   %}
  8551   ins_pipe(pipe_class_default);
  8552 %}
  8554 // Register Shift Right
  8555 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8556   match(Set dst (URShiftL src1 src2));
  8557   ins_cost(DEFAULT_COST*2);
  8559   expand %{
  8560     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8561     iRegIdst tmpI;
  8562     maskI_reg_imm(tmpI, src2, mask);
  8563     urShiftL_regL_regI(dst, src1, tmpI);
  8564   %}
  8565 %}
  8567 // Register Shift Right Immediate
  8568 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8569   match(Set dst (URShiftL src1 src2));
  8571   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8572   size(4);
  8573   ins_encode %{
  8574     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8575     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8576   %}
  8577   ins_pipe(pipe_class_default);
  8578 %}
  8580 // URShiftL + ConvL2I.
  8581 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8582   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8584   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8585   size(4);
  8586   ins_encode %{
  8587     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8588     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8589   %}
  8590   ins_pipe(pipe_class_default);
  8591 %}
  8593 // Register Shift Right Immediate with a CastP2X
  8594 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8595   match(Set dst (URShiftL (CastP2X src1) src2));
  8597   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8598   size(4);
  8599   ins_encode %{
  8600     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8601     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8602   %}
  8603   ins_pipe(pipe_class_default);
  8604 %}
  8606 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8607   match(Set dst (ConvL2I (ConvI2L src)));
  8609   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8610   size(4);
  8611   ins_encode %{
  8612     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8613     __ extsw($dst$$Register, $src$$Register);
  8614   %}
  8615   ins_pipe(pipe_class_default);
  8616 %}
  8618 //----------Rotate Instructions------------------------------------------------
  8620 // Rotate Left by 8-bit immediate
  8621 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8622   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8623   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8625   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8626   size(4);
  8627   ins_encode %{
  8628     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8629     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8630   %}
  8631   ins_pipe(pipe_class_default);
  8632 %}
  8634 // Rotate Right by 8-bit immediate
  8635 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8636   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8637   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8639   format %{ "ROTRWI  $dst, $rshift" %}
  8640   size(4);
  8641   ins_encode %{
  8642     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8643     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8644   %}
  8645   ins_pipe(pipe_class_default);
  8646 %}
  8648 //----------Floating Point Arithmetic Instructions-----------------------------
  8650 // Add float single precision
  8651 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8652   match(Set dst (AddF src1 src2));
  8654   format %{ "FADDS   $dst, $src1, $src2" %}
  8655   size(4);
  8656   ins_encode %{
  8657     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8658     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8659   %}
  8660   ins_pipe(pipe_class_default);
  8661 %}
  8663 // Add float double precision
  8664 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8665   match(Set dst (AddD src1 src2));
  8667   format %{ "FADD    $dst, $src1, $src2" %}
  8668   size(4);
  8669   ins_encode %{
  8670     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8671     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8672   %}
  8673   ins_pipe(pipe_class_default);
  8674 %}
  8676 // Sub float single precision
  8677 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8678   match(Set dst (SubF src1 src2));
  8680   format %{ "FSUBS   $dst, $src1, $src2" %}
  8681   size(4);
  8682   ins_encode %{
  8683     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8684     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8685   %}
  8686   ins_pipe(pipe_class_default);
  8687 %}
  8689 // Sub float double precision
  8690 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8691   match(Set dst (SubD src1 src2));
  8692   format %{ "FSUB    $dst, $src1, $src2" %}
  8693   size(4);
  8694   ins_encode %{
  8695     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8696     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8697   %}
  8698   ins_pipe(pipe_class_default);
  8699 %}
  8701 // Mul float single precision
  8702 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8703   match(Set dst (MulF src1 src2));
  8704   format %{ "FMULS   $dst, $src1, $src2" %}
  8705   size(4);
  8706   ins_encode %{
  8707     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8708     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8709   %}
  8710   ins_pipe(pipe_class_default);
  8711 %}
  8713 // Mul float double precision
  8714 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8715   match(Set dst (MulD src1 src2));
  8716   format %{ "FMUL    $dst, $src1, $src2" %}
  8717   size(4);
  8718   ins_encode %{
  8719     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8720     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8721   %}
  8722   ins_pipe(pipe_class_default);
  8723 %}
  8725 // Div float single precision
  8726 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8727   match(Set dst (DivF src1 src2));
  8728   format %{ "FDIVS   $dst, $src1, $src2" %}
  8729   size(4);
  8730   ins_encode %{
  8731     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8732     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8733   %}
  8734   ins_pipe(pipe_class_default);
  8735 %}
  8737 // Div float double precision
  8738 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8739   match(Set dst (DivD src1 src2));
  8740   format %{ "FDIV    $dst, $src1, $src2" %}
  8741   size(4);
  8742   ins_encode %{
  8743     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8744     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8745   %}
  8746   ins_pipe(pipe_class_default);
  8747 %}
  8749 // Absolute float single precision
  8750 instruct absF_reg(regF dst, regF src) %{
  8751   match(Set dst (AbsF src));
  8752   format %{ "FABS    $dst, $src \t// float" %}
  8753   size(4);
  8754   ins_encode %{
  8755     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8756     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8757   %}
  8758   ins_pipe(pipe_class_default);
  8759 %}
  8761 // Absolute float double precision
  8762 instruct absD_reg(regD dst, regD src) %{
  8763   match(Set dst (AbsD src));
  8764   format %{ "FABS    $dst, $src \t// double" %}
  8765   size(4);
  8766   ins_encode %{
  8767     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8768     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8769   %}
  8770   ins_pipe(pipe_class_default);
  8771 %}
  8773 instruct negF_reg(regF dst, regF src) %{
  8774   match(Set dst (NegF src));
  8775   format %{ "FNEG    $dst, $src \t// float" %}
  8776   size(4);
  8777   ins_encode %{
  8778     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8779     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8780   %}
  8781   ins_pipe(pipe_class_default);
  8782 %}
  8784 instruct negD_reg(regD dst, regD src) %{
  8785   match(Set dst (NegD src));
  8786   format %{ "FNEG    $dst, $src \t// double" %}
  8787   size(4);
  8788   ins_encode %{
  8789     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8790     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8791   %}
  8792   ins_pipe(pipe_class_default);
  8793 %}
  8795 // AbsF + NegF.
  8796 instruct negF_absF_reg(regF dst, regF src) %{
  8797   match(Set dst (NegF (AbsF src)));
  8798   format %{ "FNABS   $dst, $src \t// float" %}
  8799   size(4);
  8800   ins_encode %{
  8801     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8802     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8803   %}
  8804   ins_pipe(pipe_class_default);
  8805 %}
  8807 // AbsD + NegD.
  8808 instruct negD_absD_reg(regD dst, regD src) %{
  8809   match(Set dst (NegD (AbsD src)));
  8810   format %{ "FNABS   $dst, $src \t// double" %}
  8811   size(4);
  8812   ins_encode %{
  8813     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8814     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8815   %}
  8816   ins_pipe(pipe_class_default);
  8817 %}
  8819 // VM_Version::has_fsqrt() decides if this node will be used.
  8820 // Sqrt float double precision
  8821 instruct sqrtD_reg(regD dst, regD src) %{
  8822   match(Set dst (SqrtD src));
  8823   format %{ "FSQRT   $dst, $src" %}
  8824   size(4);
  8825   ins_encode %{
  8826     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8827     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8828   %}
  8829   ins_pipe(pipe_class_default);
  8830 %}
  8832 // Single-precision sqrt.
  8833 instruct sqrtF_reg(regF dst, regF src) %{
  8834   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8835   predicate(VM_Version::has_fsqrts());
  8836   ins_cost(DEFAULT_COST);
  8838   format %{ "FSQRTS  $dst, $src" %}
  8839   size(4);
  8840   ins_encode %{
  8841     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8842     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8843   %}
  8844   ins_pipe(pipe_class_default);
  8845 %}
  8847 instruct roundDouble_nop(regD dst) %{
  8848   match(Set dst (RoundDouble dst));
  8849   ins_cost(0);
  8851   format %{ " -- \t// RoundDouble not needed - empty" %}
  8852   size(0);
  8853   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8854   ins_encode( /*empty*/ );
  8855   ins_pipe(pipe_class_default);
  8856 %}
  8858 instruct roundFloat_nop(regF dst) %{
  8859   match(Set dst (RoundFloat dst));
  8860   ins_cost(0);
  8862   format %{ " -- \t// RoundFloat not needed - empty" %}
  8863   size(0);
  8864   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8865   ins_encode( /*empty*/ );
  8866   ins_pipe(pipe_class_default);
  8867 %}
  8869 //----------Logical Instructions-----------------------------------------------
  8871 // And Instructions
  8873 // Register And
  8874 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8875   match(Set dst (AndI src1 src2));
  8876   format %{ "AND     $dst, $src1, $src2" %}
  8877   size(4);
  8878   ins_encode %{
  8879     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8880     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8881   %}
  8882   ins_pipe(pipe_class_default);
  8883 %}
  8885 // Immediate And
  8886 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8887   match(Set dst (AndI src1 src2));
  8888   effect(KILL cr0);
  8890   format %{ "ANDI    $dst, $src1, $src2" %}
  8891   size(4);
  8892   ins_encode %{
  8893     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8894     // FIXME: avoid andi_ ?
  8895     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8896   %}
  8897   ins_pipe(pipe_class_default);
  8898 %}
  8900 // Immediate And where the immediate is a negative power of 2.
  8901 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8902   match(Set dst (AndI src1 src2));
  8903   format %{ "ANDWI   $dst, $src1, $src2" %}
  8904   size(4);
  8905   ins_encode %{
  8906     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8907     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8908   %}
  8909   ins_pipe(pipe_class_default);
  8910 %}
  8912 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8913   match(Set dst (AndI src1 src2));
  8914   format %{ "ANDWI   $dst, $src1, $src2" %}
  8915   size(4);
  8916   ins_encode %{
  8917     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8918     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8919   %}
  8920   ins_pipe(pipe_class_default);
  8921 %}
  8923 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8924   match(Set dst (AndI src1 src2));
  8925   predicate(UseRotateAndMaskInstructionsPPC64);
  8926   format %{ "ANDWI   $dst, $src1, $src2" %}
  8927   size(4);
  8928   ins_encode %{
  8929     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8930     __ rlwinm($dst$$Register, $src1$$Register, 0,
  8931               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8932   %}
  8933   ins_pipe(pipe_class_default);
  8934 %}
  8936 // Register And Long
  8937 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8938   match(Set dst (AndL src1 src2));
  8939   ins_cost(DEFAULT_COST);
  8941   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8942   size(4);
  8943   ins_encode %{
  8944     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8945     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8946   %}
  8947   ins_pipe(pipe_class_default);
  8948 %}
  8950 // Immediate And long
  8951 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8952   match(Set dst (AndL src1 src2));
  8953   effect(KILL cr0);
  8954   ins_cost(DEFAULT_COST);
  8956   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8957   size(4);
  8958   ins_encode %{
  8959     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8960     // FIXME: avoid andi_ ?
  8961     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8962   %}
  8963   ins_pipe(pipe_class_default);
  8964 %}
  8966 // Immediate And Long where the immediate is a negative power of 2.
  8967 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8968   match(Set dst (AndL src1 src2));
  8969   format %{ "ANDDI   $dst, $src1, $src2" %}
  8970   size(4);
  8971   ins_encode %{
  8972     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8973     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8974   %}
  8975   ins_pipe(pipe_class_default);
  8976 %}
  8978 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8979   match(Set dst (AndL src1 src2));
  8980   format %{ "ANDDI   $dst, $src1, $src2" %}
  8981   size(4);
  8982   ins_encode %{
  8983     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8984     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8985   %}
  8986   ins_pipe(pipe_class_default);
  8987 %}
  8989 // AndL + ConvL2I.
  8990 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8991   match(Set dst (ConvL2I (AndL src1 src2)));
  8992   ins_cost(DEFAULT_COST);
  8994   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8995   size(4);
  8996   ins_encode %{
  8997     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8998     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8999   %}
  9000   ins_pipe(pipe_class_default);
  9001 %}
  9003 // Or Instructions
  9005 // Register Or
  9006 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9007   match(Set dst (OrI src1 src2));
  9008   format %{ "OR      $dst, $src1, $src2" %}
  9009   size(4);
  9010   ins_encode %{
  9011     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9012     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9013   %}
  9014   ins_pipe(pipe_class_default);
  9015 %}
  9017 // Expand does not work with above instruct. (??)
  9018 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9019   // no match-rule
  9020   effect(DEF dst, USE src1, USE src2);
  9021   format %{ "OR      $dst, $src1, $src2" %}
  9022   size(4);
  9023   ins_encode %{
  9024     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9025     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9026   %}
  9027   ins_pipe(pipe_class_default);
  9028 %}
  9030 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9031   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  9032   ins_cost(DEFAULT_COST*3);
  9034   expand %{
  9035     // FIXME: we should do this in the ideal world.
  9036     iRegIdst tmp1;
  9037     iRegIdst tmp2;
  9038     orI_reg_reg(tmp1, src1, src2);
  9039     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  9040     orI_reg_reg(dst, tmp1, tmp2);
  9041   %}
  9042 %}
  9044 // Immediate Or
  9045 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9046   match(Set dst (OrI src1 src2));
  9047   format %{ "ORI     $dst, $src1, $src2" %}
  9048   size(4);
  9049   ins_encode %{
  9050     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9051     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  9052   %}
  9053   ins_pipe(pipe_class_default);
  9054 %}
  9056 // Register Or Long
  9057 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9058   match(Set dst (OrL src1 src2));
  9059   ins_cost(DEFAULT_COST);
  9061   size(4);
  9062   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  9063   ins_encode %{
  9064     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9065     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9066   %}
  9067   ins_pipe(pipe_class_default);
  9068 %}
  9070 // OrL + ConvL2I.
  9071 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9072   match(Set dst (ConvL2I (OrL src1 src2)));
  9073   ins_cost(DEFAULT_COST);
  9075   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  9076   size(4);
  9077   ins_encode %{
  9078     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9079     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9080   %}
  9081   ins_pipe(pipe_class_default);
  9082 %}
  9084 // Immediate Or long
  9085 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9086   match(Set dst (OrL src1 con));
  9087   ins_cost(DEFAULT_COST);
  9089   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9090   size(4);
  9091   ins_encode %{
  9092     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9093     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9094   %}
  9095   ins_pipe(pipe_class_default);
  9096 %}
  9098 // Xor Instructions
  9100 // Register Xor
  9101 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9102   match(Set dst (XorI src1 src2));
  9103   format %{ "XOR     $dst, $src1, $src2" %}
  9104   size(4);
  9105   ins_encode %{
  9106     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9107     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9108   %}
  9109   ins_pipe(pipe_class_default);
  9110 %}
  9112 // Expand does not work with above instruct. (??)
  9113 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9114   // no match-rule
  9115   effect(DEF dst, USE src1, USE src2);
  9116   format %{ "XOR     $dst, $src1, $src2" %}
  9117   size(4);
  9118   ins_encode %{
  9119     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9120     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9121   %}
  9122   ins_pipe(pipe_class_default);
  9123 %}
  9125 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9126   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9127   ins_cost(DEFAULT_COST*3);
  9129   expand %{
  9130     // FIXME: we should do this in the ideal world.
  9131     iRegIdst tmp1;
  9132     iRegIdst tmp2;
  9133     xorI_reg_reg(tmp1, src1, src2);
  9134     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9135     xorI_reg_reg(dst, tmp1, tmp2);
  9136   %}
  9137 %}
  9139 // Immediate Xor
  9140 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9141   match(Set dst (XorI src1 src2));
  9142   format %{ "XORI    $dst, $src1, $src2" %}
  9143   size(4);
  9144   ins_encode %{
  9145     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9146     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9147   %}
  9148   ins_pipe(pipe_class_default);
  9149 %}
  9151 // Register Xor Long
  9152 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9153   match(Set dst (XorL src1 src2));
  9154   ins_cost(DEFAULT_COST);
  9156   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9157   size(4);
  9158   ins_encode %{
  9159     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9160     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9161   %}
  9162   ins_pipe(pipe_class_default);
  9163 %}
  9165 // XorL + ConvL2I.
  9166 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9167   match(Set dst (ConvL2I (XorL src1 src2)));
  9168   ins_cost(DEFAULT_COST);
  9170   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9171   size(4);
  9172   ins_encode %{
  9173     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9174     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9175   %}
  9176   ins_pipe(pipe_class_default);
  9177 %}
  9179 // Immediate Xor Long
  9180 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9181   match(Set dst (XorL src1 src2));
  9182   ins_cost(DEFAULT_COST);
  9184   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9185   size(4);
  9186   ins_encode %{
  9187     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9188     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9189   %}
  9190   ins_pipe(pipe_class_default);
  9191 %}
  9193 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9194   match(Set dst (XorI src1 src2));
  9195   ins_cost(DEFAULT_COST);
  9197   format %{ "NOT     $dst, $src1 ($src2)" %}
  9198   size(4);
  9199   ins_encode %{
  9200     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9201     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9202   %}
  9203   ins_pipe(pipe_class_default);
  9204 %}
  9206 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9207   match(Set dst (XorL src1 src2));
  9208   ins_cost(DEFAULT_COST);
  9210   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9211   size(4);
  9212   ins_encode %{
  9213     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9214     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9215   %}
  9216   ins_pipe(pipe_class_default);
  9217 %}
  9219 // And-complement
  9220 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9221   match(Set dst (AndI (XorI src1 src2) src3));
  9222   ins_cost(DEFAULT_COST);
  9224   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9225   size(4);
  9226   ins_encode( enc_andc(dst, src3, src1) );
  9227   ins_pipe(pipe_class_default);
  9228 %}
  9230 // And-complement
  9231 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9232   // no match-rule, false predicate
  9233   effect(DEF dst, USE src1, USE src2);
  9234   predicate(false);
  9236   format %{ "ANDC    $dst, $src1, $src2" %}
  9237   size(4);
  9238   ins_encode %{
  9239     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9240     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9241   %}
  9242   ins_pipe(pipe_class_default);
  9243 %}
  9245 //----------Moves between int/long and float/double----------------------------
  9246 //
  9247 // The following rules move values from int/long registers/stack-locations
  9248 // to float/double registers/stack-locations and vice versa, without doing any
  9249 // conversions. These rules are used to implement the bit-conversion methods
  9250 // of java.lang.Float etc., e.g.
  9251 //   int   floatToIntBits(float value)
  9252 //   float intBitsToFloat(int bits)
  9253 //
  9254 // Notes on the implementation on ppc64:
  9255 // We only provide rules which move between a register and a stack-location,
  9256 // because we always have to go through memory when moving between a float
  9257 // register and an integer register.
  9259 //---------- Chain stack slots between similar types --------
  9261 // These are needed so that the rules below can match.
  9263 // Load integer from stack slot
  9264 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9265   match(Set dst src);
  9266   ins_cost(MEMORY_REF_COST);
  9268   format %{ "LWZ     $dst, $src" %}
  9269   size(4);
  9270   ins_encode( enc_lwz(dst, src) );
  9271   ins_pipe(pipe_class_memory);
  9272 %}
  9274 // Store integer to stack slot
  9275 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9276   match(Set dst src);
  9277   ins_cost(MEMORY_REF_COST);
  9279   format %{ "STW     $src, $dst \t// stk" %}
  9280   size(4);
  9281   ins_encode( enc_stw(src, dst) ); // rs=rt
  9282   ins_pipe(pipe_class_memory);
  9283 %}
  9285 // Load long from stack slot
  9286 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9287   match(Set dst src);
  9288   ins_cost(MEMORY_REF_COST);
  9290   format %{ "LD      $dst, $src \t// long" %}
  9291   size(4);
  9292   ins_encode( enc_ld(dst, src) );
  9293   ins_pipe(pipe_class_memory);
  9294 %}
  9296 // Store long to stack slot
  9297 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9298   match(Set dst src);
  9299   ins_cost(MEMORY_REF_COST);
  9301   format %{ "STD     $src, $dst \t// long" %}
  9302   size(4);
  9303   ins_encode( enc_std(src, dst) ); // rs=rt
  9304   ins_pipe(pipe_class_memory);
  9305 %}
  9307 //----------Moves between int and float
  9309 // Move float value from float stack-location to integer register.
  9310 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9311   match(Set dst (MoveF2I src));
  9312   ins_cost(MEMORY_REF_COST);
  9314   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9315   size(4);
  9316   ins_encode( enc_lwz(dst, src) );
  9317   ins_pipe(pipe_class_memory);
  9318 %}
  9320 // Move float value from float register to integer stack-location.
  9321 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9322   match(Set dst (MoveF2I src));
  9323   ins_cost(MEMORY_REF_COST);
  9325   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9326   size(4);
  9327   ins_encode( enc_stfs(src, dst) );
  9328   ins_pipe(pipe_class_memory);
  9329 %}
  9331 // Move integer value from integer stack-location to float register.
  9332 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9333   match(Set dst (MoveI2F src));
  9334   ins_cost(MEMORY_REF_COST);
  9336   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9337   size(4);
  9338   ins_encode %{
  9339     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9340     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9341     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9342   %}
  9343   ins_pipe(pipe_class_memory);
  9344 %}
  9346 // Move integer value from integer register to float stack-location.
  9347 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9348   match(Set dst (MoveI2F src));
  9349   ins_cost(MEMORY_REF_COST);
  9351   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9352   size(4);
  9353   ins_encode( enc_stw(src, dst) );
  9354   ins_pipe(pipe_class_memory);
  9355 %}
  9357 //----------Moves between long and float
  9359 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9360   // no match-rule, false predicate
  9361   effect(DEF dst, USE src);
  9362   predicate(false);
  9364   format %{ "storeD  $src, $dst \t// STACK" %}
  9365   size(4);
  9366   ins_encode( enc_stfd(src, dst) );
  9367   ins_pipe(pipe_class_default);
  9368 %}
  9370 //----------Moves between long and double
  9372 // Move double value from double stack-location to long register.
  9373 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9374   match(Set dst (MoveD2L src));
  9375   ins_cost(MEMORY_REF_COST);
  9376   size(4);
  9377   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9378   ins_encode( enc_ld(dst, src) );
  9379   ins_pipe(pipe_class_memory);
  9380 %}
  9382 // Move double value from double register to long stack-location.
  9383 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9384   match(Set dst (MoveD2L src));
  9385   effect(DEF dst, USE src);
  9386   ins_cost(MEMORY_REF_COST);
  9388   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9389   size(4);
  9390   ins_encode( enc_stfd(src, dst) );
  9391   ins_pipe(pipe_class_memory);
  9392 %}
  9394 // Move long value from long stack-location to double register.
  9395 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9396   match(Set dst (MoveL2D src));
  9397   ins_cost(MEMORY_REF_COST);
  9399   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9400   size(4);
  9401   ins_encode( enc_lfd(dst, src) );
  9402   ins_pipe(pipe_class_memory);
  9403 %}
  9405 // Move long value from long register to double stack-location.
  9406 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9407   match(Set dst (MoveL2D src));
  9408   ins_cost(MEMORY_REF_COST);
  9410   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9411   size(4);
  9412   ins_encode( enc_std(src, dst) );
  9413   ins_pipe(pipe_class_memory);
  9414 %}
  9416 //----------Register Move Instructions-----------------------------------------
  9418 // Replicate for Superword
  9420 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9421   predicate(false);
  9422   effect(DEF dst, USE src);
  9424   format %{ "MR      $dst, $src \t// replicate " %}
  9425   // variable size, 0 or 4.
  9426   ins_encode %{
  9427     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9428     __ mr_if_needed($dst$$Register, $src$$Register);
  9429   %}
  9430   ins_pipe(pipe_class_default);
  9431 %}
  9433 //----------Cast instructions (Java-level type cast)---------------------------
  9435 // Cast Long to Pointer for unsafe natives.
  9436 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9437   match(Set dst (CastX2P src));
  9439   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9440   // variable size, 0 or 4.
  9441   ins_encode %{
  9442     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9443     __ mr_if_needed($dst$$Register, $src$$Register);
  9444   %}
  9445  ins_pipe(pipe_class_default);
  9446 %}
  9448 // Cast Pointer to Long for unsafe natives.
  9449 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9450   match(Set dst (CastP2X src));
  9452   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9453   // variable size, 0 or 4.
  9454   ins_encode %{
  9455     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9456     __ mr_if_needed($dst$$Register, $src$$Register);
  9457   %}
  9458   ins_pipe(pipe_class_default);
  9459 %}
  9461 instruct castPP(iRegPdst dst) %{
  9462   match(Set dst (CastPP dst));
  9463   format %{ " -- \t// castPP of $dst" %}
  9464   size(0);
  9465   ins_encode( /*empty*/ );
  9466   ins_pipe(pipe_class_default);
  9467 %}
  9469 instruct castII(iRegIdst dst) %{
  9470   match(Set dst (CastII dst));
  9471   format %{ " -- \t// castII of $dst" %}
  9472   size(0);
  9473   ins_encode( /*empty*/ );
  9474   ins_pipe(pipe_class_default);
  9475 %}
  9477 instruct checkCastPP(iRegPdst dst) %{
  9478   match(Set dst (CheckCastPP dst));
  9479   format %{ " -- \t// checkcastPP of $dst" %}
  9480   size(0);
  9481   ins_encode( /*empty*/ );
  9482   ins_pipe(pipe_class_default);
  9483 %}
  9485 //----------Convert instructions-----------------------------------------------
  9487 // Convert to boolean.
  9489 // int_to_bool(src) : { 1   if src != 0
  9490 //                    { 0   else
  9491 //
  9492 // strategy:
  9493 // 1) Count leading zeros of 32 bit-value src,
  9494 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9495 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9496 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9498 // convI2Bool
  9499 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9500   match(Set dst (Conv2B src));
  9501   predicate(UseCountLeadingZerosInstructionsPPC64);
  9502   ins_cost(DEFAULT_COST);
  9504   expand %{
  9505     immI shiftAmount %{ 0x5 %}
  9506     uimmI16 mask %{ 0x1 %}
  9507     iRegIdst tmp1;
  9508     iRegIdst tmp2;
  9509     countLeadingZerosI(tmp1, src);
  9510     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9511     xorI_reg_uimm16(dst, tmp2, mask);
  9512   %}
  9513 %}
  9515 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9516   match(Set dst (Conv2B src));
  9517   effect(TEMP crx);
  9518   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9519   ins_cost(DEFAULT_COST);
  9521   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9522             "LI      $dst, #0\n\t"
  9523             "BEQ     $crx, done\n\t"
  9524             "LI      $dst, #1\n"
  9525             "done:" %}
  9526   size(16);
  9527   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9528   ins_pipe(pipe_class_compare);
  9529 %}
  9531 // ConvI2B + XorI
  9532 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9533   match(Set dst (XorI (Conv2B src) mask));
  9534   predicate(UseCountLeadingZerosInstructionsPPC64);
  9535   ins_cost(DEFAULT_COST);
  9537   expand %{
  9538     immI shiftAmount %{ 0x5 %}
  9539     iRegIdst tmp1;
  9540     countLeadingZerosI(tmp1, src);
  9541     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9542   %}
  9543 %}
  9545 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9546   match(Set dst (XorI (Conv2B src) mask));
  9547   effect(TEMP crx);
  9548   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9549   ins_cost(DEFAULT_COST);
  9551   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9552             "LI      $dst, #1\n\t"
  9553             "BEQ     $crx, done\n\t"
  9554             "LI      $dst, #0\n"
  9555             "done:" %}
  9556   size(16);
  9557   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9558   ins_pipe(pipe_class_compare);
  9559 %}
  9561 // AndI 0b0..010..0 + ConvI2B
  9562 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9563   match(Set dst (Conv2B (AndI src mask)));
  9564   predicate(UseRotateAndMaskInstructionsPPC64);
  9565   ins_cost(DEFAULT_COST);
  9567   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9568   size(4);
  9569   ins_encode %{
  9570     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9571     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9572   %}
  9573   ins_pipe(pipe_class_default);
  9574 %}
  9576 // Convert pointer to boolean.
  9577 //
  9578 // ptr_to_bool(src) : { 1   if src != 0
  9579 //                    { 0   else
  9580 //
  9581 // strategy:
  9582 // 1) Count leading zeros of 64 bit-value src,
  9583 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9584 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9585 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9587 // ConvP2B
  9588 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9589   match(Set dst (Conv2B src));
  9590   predicate(UseCountLeadingZerosInstructionsPPC64);
  9591   ins_cost(DEFAULT_COST);
  9593   expand %{
  9594     immI shiftAmount %{ 0x6 %}
  9595     uimmI16 mask %{ 0x1 %}
  9596     iRegIdst tmp1;
  9597     iRegIdst tmp2;
  9598     countLeadingZerosP(tmp1, src);
  9599     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9600     xorI_reg_uimm16(dst, tmp2, mask);
  9601   %}
  9602 %}
  9604 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9605   match(Set dst (Conv2B src));
  9606   effect(TEMP crx);
  9607   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9608   ins_cost(DEFAULT_COST);
  9610   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9611             "LI      $dst, #0\n\t"
  9612             "BEQ     $crx, done\n\t"
  9613             "LI      $dst, #1\n"
  9614             "done:" %}
  9615   size(16);
  9616   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9617   ins_pipe(pipe_class_compare);
  9618 %}
  9620 // ConvP2B + XorI
  9621 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9622   match(Set dst (XorI (Conv2B src) mask));
  9623   predicate(UseCountLeadingZerosInstructionsPPC64);
  9624   ins_cost(DEFAULT_COST);
  9626   expand %{
  9627     immI shiftAmount %{ 0x6 %}
  9628     iRegIdst tmp1;
  9629     countLeadingZerosP(tmp1, src);
  9630     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9631   %}
  9632 %}
  9634 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9635   match(Set dst (XorI (Conv2B src) mask));
  9636   effect(TEMP crx);
  9637   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9638   ins_cost(DEFAULT_COST);
  9640   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9641             "LI      $dst, #1\n\t"
  9642             "BEQ     $crx, done\n\t"
  9643             "LI      $dst, #0\n"
  9644             "done:" %}
  9645   size(16);
  9646   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9647   ins_pipe(pipe_class_compare);
  9648 %}
  9650 // if src1 < src2, return -1 else return 0
  9651 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9652   match(Set dst (CmpLTMask src1 src2));
  9653   ins_cost(DEFAULT_COST*4);
  9655   expand %{
  9656     iRegLdst src1s;
  9657     iRegLdst src2s;
  9658     iRegLdst diff;
  9659     convI2L_reg(src1s, src1); // Ensure proper sign extension.
  9660     convI2L_reg(src2s, src2); // Ensure proper sign extension.
  9661     subL_reg_reg(diff, src1s, src2s);
  9662     // Need to consider >=33 bit result, therefore we need signmaskL.
  9663     signmask64I_regL(dst, diff);
  9664   %}
  9665 %}
  9667 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9668   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9669   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9670   size(4);
  9671   ins_encode %{
  9672     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9673     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9674   %}
  9675   ins_pipe(pipe_class_default);
  9676 %}
  9678 //----------Arithmetic Conversion Instructions---------------------------------
  9680 // Convert to Byte  -- nop
  9681 // Convert to Short -- nop
  9683 // Convert to Int
  9685 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9686   match(Set dst (RShiftI (LShiftI src amount) amount));
  9687   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9688   size(4);
  9689   ins_encode %{
  9690     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9691     __ extsb($dst$$Register, $src$$Register);
  9692   %}
  9693   ins_pipe(pipe_class_default);
  9694 %}
  9696 // LShiftI 16 + RShiftI 16 converts short to int.
  9697 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9698   match(Set dst (RShiftI (LShiftI src amount) amount));
  9699   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9700   size(4);
  9701   ins_encode %{
  9702     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9703     __ extsh($dst$$Register, $src$$Register);
  9704   %}
  9705   ins_pipe(pipe_class_default);
  9706 %}
  9708 // ConvL2I + ConvI2L: Sign extend int in long register.
  9709 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9710   match(Set dst (ConvI2L (ConvL2I src)));
  9712   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9713   size(4);
  9714   ins_encode %{
  9715     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9716     __ extsw($dst$$Register, $src$$Register);
  9717   %}
  9718   ins_pipe(pipe_class_default);
  9719 %}
  9721 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9722   match(Set dst (ConvL2I src));
  9723   format %{ "MR      $dst, $src \t// long->int" %}
  9724   // variable size, 0 or 4
  9725   ins_encode %{
  9726     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9727     __ mr_if_needed($dst$$Register, $src$$Register);
  9728   %}
  9729   ins_pipe(pipe_class_default);
  9730 %}
  9732 instruct convD2IRaw_regD(regD dst, regD src) %{
  9733   // no match-rule, false predicate
  9734   effect(DEF dst, USE src);
  9735   predicate(false);
  9737   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9738   size(4);
  9739   ins_encode %{
  9740     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9741     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9742   %}
  9743   ins_pipe(pipe_class_default);
  9744 %}
  9746 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9747   // no match-rule, false predicate
  9748   effect(DEF dst, USE crx, USE src);
  9749   predicate(false);
  9751   ins_variable_size_depending_on_alignment(true);
  9753   format %{ "cmovI   $crx, $dst, $src" %}
  9754   // Worst case is branch + move + stop, no stop without scheduler.
  9755   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9756   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9757   ins_pipe(pipe_class_default);
  9758 %}
  9760 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9761   // no match-rule, false predicate
  9762   effect(DEF dst, USE crx, USE mem);
  9763   predicate(false);
  9765   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9766   postalloc_expand %{
  9767     //
  9768     // replaces
  9769     //
  9770     //   region  dst  crx  mem
  9771     //    \       |    |   /
  9772     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9773     //
  9774     // with
  9775     //
  9776     //   region  dst
  9777     //    \       /
  9778     //     dst=loadConI16(0)
  9779     //      |
  9780     //      ^  region  dst  crx  mem
  9781     //      |   \       |    |    /
  9782     //      dst=cmovI_bso_stackSlotL
  9783     //
  9785     // Create new nodes.
  9786     MachNode *m1 = new (C) loadConI16Node();
  9787     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9789     // inputs for new nodes
  9790     m1->add_req(n_region);
  9791     m2->add_req(n_region, n_crx, n_mem);
  9793     // precedences for new nodes
  9794     m2->add_prec(m1);
  9796     // operands for new nodes
  9797     m1->_opnds[0] = op_dst;
  9798     m1->_opnds[1] = new (C) immI16Oper(0);
  9800     m2->_opnds[0] = op_dst;
  9801     m2->_opnds[1] = op_crx;
  9802     m2->_opnds[2] = op_mem;
  9804     // registers for new nodes
  9805     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9806     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9808     // Insert new nodes.
  9809     nodes->push(m1);
  9810     nodes->push(m2);
  9811   %}
  9812 %}
  9814 // Double to Int conversion, NaN is mapped to 0.
  9815 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9816   match(Set dst (ConvD2I src));
  9817   ins_cost(DEFAULT_COST);
  9819   expand %{
  9820     regD tmpD;
  9821     stackSlotL tmpS;
  9822     flagsReg crx;
  9823     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9824     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9825     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9826     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9827   %}
  9828 %}
  9830 instruct convF2IRaw_regF(regF dst, regF src) %{
  9831   // no match-rule, false predicate
  9832   effect(DEF dst, USE src);
  9833   predicate(false);
  9835   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9836   size(4);
  9837   ins_encode %{
  9838     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9839     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9840   %}
  9841   ins_pipe(pipe_class_default);
  9842 %}
  9844 // Float to Int conversion, NaN is mapped to 0.
  9845 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9846   match(Set dst (ConvF2I src));
  9847   ins_cost(DEFAULT_COST);
  9849   expand %{
  9850     regF tmpF;
  9851     stackSlotL tmpS;
  9852     flagsReg crx;
  9853     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9854     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9855     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9856     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9857   %}
  9858 %}
  9860 // Convert to Long
  9862 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9863   match(Set dst (ConvI2L src));
  9864   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9865   size(4);
  9866   ins_encode %{
  9867     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9868     __ extsw($dst$$Register, $src$$Register);
  9869   %}
  9870   ins_pipe(pipe_class_default);
  9871 %}
  9873 // Zero-extend: convert unsigned int to long (convUI2L).
  9874 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9875   match(Set dst (AndL (ConvI2L src) mask));
  9876   ins_cost(DEFAULT_COST);
  9878   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9879   size(4);
  9880   ins_encode %{
  9881     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9882     __ clrldi($dst$$Register, $src$$Register, 32);
  9883   %}
  9884   ins_pipe(pipe_class_default);
  9885 %}
  9887 // Zero-extend: convert unsigned int to long in long register.
  9888 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9889   match(Set dst (AndL src mask));
  9890   ins_cost(DEFAULT_COST);
  9892   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9893   size(4);
  9894   ins_encode %{
  9895     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9896     __ clrldi($dst$$Register, $src$$Register, 32);
  9897   %}
  9898   ins_pipe(pipe_class_default);
  9899 %}
  9901 instruct convF2LRaw_regF(regF dst, regF src) %{
  9902   // no match-rule, false predicate
  9903   effect(DEF dst, USE src);
  9904   predicate(false);
  9906   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9907   size(4);
  9908   ins_encode %{
  9909     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9910     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9911   %}
  9912   ins_pipe(pipe_class_default);
  9913 %}
  9915 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9916   // no match-rule, false predicate
  9917   effect(DEF dst, USE crx, USE src);
  9918   predicate(false);
  9920   ins_variable_size_depending_on_alignment(true);
  9922   format %{ "cmovL   $crx, $dst, $src" %}
  9923   // Worst case is branch + move + stop, no stop without scheduler.
  9924   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9925   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9926   ins_pipe(pipe_class_default);
  9927 %}
  9929 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9930   // no match-rule, false predicate
  9931   effect(DEF dst, USE crx, USE mem);
  9932   predicate(false);
  9934   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9935   postalloc_expand %{
  9936     //
  9937     // replaces
  9938     //
  9939     //   region  dst  crx  mem
  9940     //    \       |    |   /
  9941     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9942     //
  9943     // with
  9944     //
  9945     //   region  dst
  9946     //    \       /
  9947     //     dst=loadConL16(0)
  9948     //      |
  9949     //      ^  region  dst  crx  mem
  9950     //      |   \       |    |    /
  9951     //      dst=cmovL_bso_stackSlotL
  9952     //
  9954     // Create new nodes.
  9955     MachNode *m1 = new (C) loadConL16Node();
  9956     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9958     // inputs for new nodes
  9959     m1->add_req(n_region);
  9960     m2->add_req(n_region, n_crx, n_mem);
  9961     m2->add_prec(m1);
  9963     // operands for new nodes
  9964     m1->_opnds[0] = op_dst;
  9965     m1->_opnds[1] = new (C) immL16Oper(0);
  9966     m2->_opnds[0] = op_dst;
  9967     m2->_opnds[1] = op_crx;
  9968     m2->_opnds[2] = op_mem;
  9970     // registers for new nodes
  9971     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9972     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9974     // Insert new nodes.
  9975     nodes->push(m1);
  9976     nodes->push(m2);
  9977   %}
  9978 %}
  9980 // Float to Long conversion, NaN is mapped to 0.
  9981 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9982   match(Set dst (ConvF2L src));
  9983   ins_cost(DEFAULT_COST);
  9985   expand %{
  9986     regF tmpF;
  9987     stackSlotL tmpS;
  9988     flagsReg crx;
  9989     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9990     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9991     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9992     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9993   %}
  9994 %}
  9996 instruct convD2LRaw_regD(regD dst, regD src) %{
  9997   // no match-rule, false predicate
  9998   effect(DEF dst, USE src);
  9999   predicate(false);
 10001   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
 10002   size(4);
 10003   ins_encode %{
 10004     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
 10005     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
 10006   %}
 10007   ins_pipe(pipe_class_default);
 10008 %}
 10010 // Double to Long conversion, NaN is mapped to 0.
 10011 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
 10012   match(Set dst (ConvD2L src));
 10013   ins_cost(DEFAULT_COST);
 10015   expand %{
 10016     regD tmpD;
 10017     stackSlotL tmpS;
 10018     flagsReg crx;
 10019     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 10020     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 10021     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 10022     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 10023   %}
 10024 %}
 10026 // Convert to Float
 10028 // Placed here as needed in expand.
 10029 instruct convL2DRaw_regD(regD dst, regD src) %{
 10030   // no match-rule, false predicate
 10031   effect(DEF dst, USE src);
 10032   predicate(false);
 10034   format %{ "FCFID $dst, $src \t// convL2D" %}
 10035   size(4);
 10036   ins_encode %{
 10037     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10038     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 10039   %}
 10040   ins_pipe(pipe_class_default);
 10041 %}
 10043 // Placed here as needed in expand.
 10044 instruct convD2F_reg(regF dst, regD src) %{
 10045   match(Set dst (ConvD2F src));
 10046   format %{ "FRSP    $dst, $src \t// convD2F" %}
 10047   size(4);
 10048   ins_encode %{
 10049     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 10050     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 10051   %}
 10052   ins_pipe(pipe_class_default);
 10053 %}
 10055 // Integer to Float conversion.
 10056 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 10057   match(Set dst (ConvI2F src));
 10058   predicate(!VM_Version::has_fcfids());
 10059   ins_cost(DEFAULT_COST);
 10061   expand %{
 10062     iRegLdst tmpL;
 10063     stackSlotL tmpS;
 10064     regD tmpD;
 10065     regD tmpD2;
 10066     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10067     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10068     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10069     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 10070     convD2F_reg(dst, tmpD2);             // Convert double to float.
 10071   %}
 10072 %}
 10074 instruct convL2FRaw_regF(regF dst, regD src) %{
 10075   // no match-rule, false predicate
 10076   effect(DEF dst, USE src);
 10077   predicate(false);
 10079   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10080   size(4);
 10081   ins_encode %{
 10082     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10083     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10084   %}
 10085   ins_pipe(pipe_class_default);
 10086 %}
 10088 // Integer to Float conversion. Special version for Power7.
 10089 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10090   match(Set dst (ConvI2F src));
 10091   predicate(VM_Version::has_fcfids());
 10092   ins_cost(DEFAULT_COST);
 10094   expand %{
 10095     iRegLdst tmpL;
 10096     stackSlotL tmpS;
 10097     regD tmpD;
 10098     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10099     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10100     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10101     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10102   %}
 10103 %}
 10105 // L2F to avoid runtime call.
 10106 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10107   match(Set dst (ConvL2F src));
 10108   predicate(VM_Version::has_fcfids());
 10109   ins_cost(DEFAULT_COST);
 10111   expand %{
 10112     stackSlotL tmpS;
 10113     regD tmpD;
 10114     regL_to_stkL(tmpS, src);             // Store long to stack.
 10115     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10116     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10117   %}
 10118 %}
 10120 // Moved up as used in expand.
 10121 //instruct convD2F_reg(regF dst, regD src) %{%}
 10123 // Convert to Double
 10125 // Integer to Double conversion.
 10126 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10127   match(Set dst (ConvI2D src));
 10128   ins_cost(DEFAULT_COST);
 10130   expand %{
 10131     iRegLdst tmpL;
 10132     stackSlotL tmpS;
 10133     regD tmpD;
 10134     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10135     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10136     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10137     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10138   %}
 10139 %}
 10141 // Long to Double conversion
 10142 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10143   match(Set dst (ConvL2D src));
 10144   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10146   expand %{
 10147     regD tmpD;
 10148     moveL2D_stack_reg(tmpD, src);
 10149     convL2DRaw_regD(dst, tmpD);
 10150   %}
 10151 %}
 10153 instruct convF2D_reg(regD dst, regF src) %{
 10154   match(Set dst (ConvF2D src));
 10155   format %{ "FMR     $dst, $src \t// float->double" %}
 10156   // variable size, 0 or 4
 10157   ins_encode %{
 10158     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10159     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10160   %}
 10161   ins_pipe(pipe_class_default);
 10162 %}
 10164 //----------Control Flow Instructions------------------------------------------
 10165 // Compare Instructions
 10167 // Compare Integers
 10168 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10169   match(Set crx (CmpI src1 src2));
 10170   size(4);
 10171   format %{ "CMPW    $crx, $src1, $src2" %}
 10172   ins_encode %{
 10173     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10174     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10175   %}
 10176   ins_pipe(pipe_class_compare);
 10177 %}
 10179 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10180   match(Set crx (CmpI src1 src2));
 10181   format %{ "CMPWI   $crx, $src1, $src2" %}
 10182   size(4);
 10183   ins_encode %{
 10184     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10185     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10186   %}
 10187   ins_pipe(pipe_class_compare);
 10188 %}
 10190 // (src1 & src2) == 0?
 10191 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10192   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10193   // r0 is killed
 10194   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10195   size(4);
 10196   ins_encode %{
 10197     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10198     // FIXME: avoid andi_ ?
 10199     __ andi_(R0, $src1$$Register, $src2$$constant);
 10200   %}
 10201   ins_pipe(pipe_class_compare);
 10202 %}
 10204 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10205   match(Set crx (CmpL src1 src2));
 10206   format %{ "CMPD    $crx, $src1, $src2" %}
 10207   size(4);
 10208   ins_encode %{
 10209     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10210     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10211   %}
 10212   ins_pipe(pipe_class_compare);
 10213 %}
 10215 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10216   match(Set crx (CmpL src1 src2));
 10217   format %{ "CMPDI   $crx, $src1, $src2" %}
 10218   size(4);
 10219   ins_encode %{
 10220     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10221     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10222   %}
 10223   ins_pipe(pipe_class_compare);
 10224 %}
 10226 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10227   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10228   // r0 is killed
 10229   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10230   size(4);
 10231   ins_encode %{
 10232     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10233     __ and_(R0, $src1$$Register, $src2$$Register);
 10234   %}
 10235   ins_pipe(pipe_class_compare);
 10236 %}
 10238 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10239   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10240   // r0 is killed
 10241   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10242   size(4);
 10243   ins_encode %{
 10244     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10245     // FIXME: avoid andi_ ?
 10246     __ andi_(R0, $src1$$Register, $src2$$constant);
 10247   %}
 10248   ins_pipe(pipe_class_compare);
 10249 %}
 10251 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10252   // no match-rule, false predicate
 10253   effect(DEF dst, USE crx);
 10254   predicate(false);
 10256   ins_variable_size_depending_on_alignment(true);
 10258   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10259   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10260   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10261   ins_encode %{
 10262     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10263     Label done;
 10264     // li(Rdst, 0);              // equal -> 0
 10265     __ beq($crx$$CondRegister, done);
 10266     __ li($dst$$Register, 1);    // greater -> +1
 10267     __ bgt($crx$$CondRegister, done);
 10268     __ li($dst$$Register, -1);   // unordered or less -> -1
 10269     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10270     __ bind(done);
 10271   %}
 10272   ins_pipe(pipe_class_compare);
 10273 %}
 10275 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10276   // no match-rule, false predicate
 10277   effect(DEF dst, USE crx);
 10278   predicate(false);
 10280   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10281   postalloc_expand %{
 10282     //
 10283     // replaces
 10284     //
 10285     //   region  crx
 10286     //    \       |
 10287     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10288     //
 10289     // with
 10290     //
 10291     //   region
 10292     //    \
 10293     //     dst=loadConI16(0)
 10294     //      |
 10295     //      ^  region  crx
 10296     //      |   \       |
 10297     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10298     //
 10300     // Create new nodes.
 10301     MachNode *m1 = new (C) loadConI16Node();
 10302     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10304     // inputs for new nodes
 10305     m1->add_req(n_region);
 10306     m2->add_req(n_region, n_crx);
 10307     m2->add_prec(m1);
 10309     // operands for new nodes
 10310     m1->_opnds[0] = op_dst;
 10311     m1->_opnds[1] = new (C) immI16Oper(0);
 10312     m2->_opnds[0] = op_dst;
 10313     m2->_opnds[1] = op_crx;
 10315     // registers for new nodes
 10316     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10317     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10319     // Insert new nodes.
 10320     nodes->push(m1);
 10321     nodes->push(m2);
 10322   %}
 10323 %}
 10325 // Manifest a CmpL3 result in an integer register. Very painful.
 10326 // This is the test to avoid.
 10327 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10328 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10329   match(Set dst (CmpL3 src1 src2));
 10330   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10332   expand %{
 10333     flagsReg tmp1;
 10334     cmpL_reg_reg(tmp1, src1, src2);
 10335     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10336   %}
 10337 %}
 10339 // Implicit range checks.
 10340 // A range check in the ideal world has one of the following shapes:
 10341 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10342 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10343 //
 10344 // Match range check 'If le (CmpU length index)'.
 10345 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10346   match(If cmp (CmpU src_length index));
 10347   effect(USE labl);
 10348   predicate(TrapBasedRangeChecks &&
 10349             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10350             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10351             (Matcher::branches_to_uncommon_trap(_leaf)));
 10353   ins_is_TrapBasedCheckNode(true);
 10355   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10356   size(4);
 10357   ins_encode %{
 10358     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10359     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10360       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10361     } else {
 10362       // Both successors are uncommon traps, probability is 0.
 10363       // Node got flipped during fixup flow.
 10364       assert($cmp$$cmpcode == 0x9, "must be greater");
 10365       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10367   %}
 10368   ins_pipe(pipe_class_trap);
 10369 %}
 10371 // Match range check 'If lt (CmpU index length)'.
 10372 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10373   match(If cmp (CmpU src_index src_length));
 10374   effect(USE labl);
 10375   predicate(TrapBasedRangeChecks &&
 10376             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10377             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10378             (Matcher::branches_to_uncommon_trap(_leaf)));
 10380   ins_is_TrapBasedCheckNode(true);
 10382   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10383   size(4);
 10384   ins_encode %{
 10385     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10386     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10387       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10388     } else {
 10389       // Both successors are uncommon traps, probability is 0.
 10390       // Node got flipped during fixup flow.
 10391       assert($cmp$$cmpcode == 0x8, "must be less");
 10392       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10394   %}
 10395   ins_pipe(pipe_class_trap);
 10396 %}
 10398 // Match range check 'If lt (CmpU index length)'.
 10399 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10400   match(If cmp (CmpU src_index length));
 10401   effect(USE labl);
 10402   predicate(TrapBasedRangeChecks &&
 10403             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10404             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10405             (Matcher::branches_to_uncommon_trap(_leaf)));
 10407   ins_is_TrapBasedCheckNode(true);
 10409   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10410   size(4);
 10411   ins_encode %{
 10412     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10413     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10414       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10415     } else {
 10416       // Both successors are uncommon traps, probability is 0.
 10417       // Node got flipped during fixup flow.
 10418       assert($cmp$$cmpcode == 0x8, "must be less");
 10419       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10421   %}
 10422   ins_pipe(pipe_class_trap);
 10423 %}
 10425 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10426   match(Set crx (CmpU src1 src2));
 10427   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10428   size(4);
 10429   ins_encode %{
 10430     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10431     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10432   %}
 10433   ins_pipe(pipe_class_compare);
 10434 %}
 10436 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10437   match(Set crx (CmpU src1 src2));
 10438   size(4);
 10439   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10440   ins_encode %{
 10441     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10442     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10443   %}
 10444   ins_pipe(pipe_class_compare);
 10445 %}
 10447 // Implicit zero checks (more implicit null checks).
 10448 // No constant pool entries required.
 10449 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10450   match(If cmp (CmpN value zero));
 10451   effect(USE labl);
 10452   predicate(TrapBasedNullChecks &&
 10453             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10454             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10455             Matcher::branches_to_uncommon_trap(_leaf));
 10456   ins_cost(1);
 10458   ins_is_TrapBasedCheckNode(true);
 10460   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10461   size(4);
 10462   ins_encode %{
 10463     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10464     if ($cmp$$cmpcode == 0xA) {
 10465       __ trap_null_check($value$$Register);
 10466     } else {
 10467       // Both successors are uncommon traps, probability is 0.
 10468       // Node got flipped during fixup flow.
 10469       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10470       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10472   %}
 10473   ins_pipe(pipe_class_trap);
 10474 %}
 10476 // Compare narrow oops.
 10477 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10478   match(Set crx (CmpN src1 src2));
 10480   size(4);
 10481   ins_cost(DEFAULT_COST);
 10482   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10483   ins_encode %{
 10484     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10485     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10486   %}
 10487   ins_pipe(pipe_class_compare);
 10488 %}
 10490 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10491   match(Set crx (CmpN src1 src2));
 10492   // Make this more expensive than zeroCheckN_iReg_imm0.
 10493   ins_cost(DEFAULT_COST);
 10495   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10496   size(4);
 10497   ins_encode %{
 10498     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10499     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10500   %}
 10501   ins_pipe(pipe_class_compare);
 10502 %}
 10504 // Implicit zero checks (more implicit null checks).
 10505 // No constant pool entries required.
 10506 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10507   match(If cmp (CmpP value zero));
 10508   effect(USE labl);
 10509   predicate(TrapBasedNullChecks &&
 10510             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10511             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10512             Matcher::branches_to_uncommon_trap(_leaf));
 10514   ins_is_TrapBasedCheckNode(true);
 10516   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10517   size(4);
 10518   ins_encode %{
 10519     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10520     if ($cmp$$cmpcode == 0xA) {
 10521       __ trap_null_check($value$$Register);
 10522     } else {
 10523       // Both successors are uncommon traps, probability is 0.
 10524       // Node got flipped during fixup flow.
 10525       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10526       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10528   %}
 10529   ins_pipe(pipe_class_trap);
 10530 %}
 10532 // Compare Pointers
 10533 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10534   match(Set crx (CmpP src1 src2));
 10535   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10536   size(4);
 10537   ins_encode %{
 10538     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10539     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10540   %}
 10541   ins_pipe(pipe_class_compare);
 10542 %}
 10544 // Used in postalloc expand.
 10545 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10546   // This match rule prevents reordering of node before a safepoint.
 10547   // This only makes sense if this instructions is used exclusively
 10548   // for the expansion of EncodeP!
 10549   match(Set crx (CmpP src1 src2));
 10550   predicate(false);
 10552   format %{ "CMPDI   $crx, $src1, $src2" %}
 10553   size(4);
 10554   ins_encode %{
 10555     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10556     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10557   %}
 10558   ins_pipe(pipe_class_compare);
 10559 %}
 10561 //----------Float Compares----------------------------------------------------
 10563 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10564   // no match-rule, false predicate
 10565   effect(DEF crx, USE src1, USE src2);
 10566   predicate(false);
 10568   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10569   size(4);
 10570   ins_encode %{
 10571     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10572     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10573   %}
 10574   ins_pipe(pipe_class_default);
 10575 %}
 10577 instruct cmov_bns_less(flagsReg crx) %{
 10578   // no match-rule, false predicate
 10579   effect(DEF crx);
 10580   predicate(false);
 10582   ins_variable_size_depending_on_alignment(true);
 10584   format %{ "cmov    $crx" %}
 10585   // Worst case is branch + move + stop, no stop without scheduler.
 10586   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10587   ins_encode %{
 10588     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10589     Label done;
 10590     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10591     __ li(R0, 0);
 10592     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10593     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10594     __ bind(done);
 10595   %}
 10596   ins_pipe(pipe_class_default);
 10597 %}
 10599 // Compare floating, generate condition code.
 10600 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10601   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10602   //
 10603   // The following code sequence occurs a lot in mpegaudio:
 10604   //
 10605   // block BXX:
 10606   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10607   //    cmpFUrd CCR6, F11, F9
 10608   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10609   //    cmov CCR6
 10610   // 8: instruct branchConSched:
 10611   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10612   match(Set crx (CmpF src1 src2));
 10613   ins_cost(DEFAULT_COST+BRANCH_COST);
 10615   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10616   postalloc_expand %{
 10617     //
 10618     // replaces
 10619     //
 10620     //   region  src1  src2
 10621     //    \       |     |
 10622     //     crx=cmpF_reg_reg
 10623     //
 10624     // with
 10625     //
 10626     //   region  src1  src2
 10627     //    \       |     |
 10628     //     crx=cmpFUnordered_reg_reg
 10629     //      |
 10630     //      ^  region
 10631     //      |   \
 10632     //      crx=cmov_bns_less
 10633     //
 10635     // Create new nodes.
 10636     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10637     MachNode *m2 = new (C) cmov_bns_lessNode();
 10639     // inputs for new nodes
 10640     m1->add_req(n_region, n_src1, n_src2);
 10641     m2->add_req(n_region);
 10642     m2->add_prec(m1);
 10644     // operands for new nodes
 10645     m1->_opnds[0] = op_crx;
 10646     m1->_opnds[1] = op_src1;
 10647     m1->_opnds[2] = op_src2;
 10648     m2->_opnds[0] = op_crx;
 10650     // registers for new nodes
 10651     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10652     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10654     // Insert new nodes.
 10655     nodes->push(m1);
 10656     nodes->push(m2);
 10657   %}
 10658 %}
 10660 // Compare float, generate -1,0,1
 10661 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10662   match(Set dst (CmpF3 src1 src2));
 10663   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10665   expand %{
 10666     flagsReg tmp1;
 10667     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10668     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10669   %}
 10670 %}
 10672 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10673   // no match-rule, false predicate
 10674   effect(DEF crx, USE src1, USE src2);
 10675   predicate(false);
 10677   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10678   size(4);
 10679   ins_encode %{
 10680     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10681     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10682   %}
 10683   ins_pipe(pipe_class_default);
 10684 %}
 10686 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10687   match(Set crx (CmpD src1 src2));
 10688   ins_cost(DEFAULT_COST+BRANCH_COST);
 10690   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10691   postalloc_expand %{
 10692     //
 10693     // replaces
 10694     //
 10695     //   region  src1  src2
 10696     //    \       |     |
 10697     //     crx=cmpD_reg_reg
 10698     //
 10699     // with
 10700     //
 10701     //   region  src1  src2
 10702     //    \       |     |
 10703     //     crx=cmpDUnordered_reg_reg
 10704     //      |
 10705     //      ^  region
 10706     //      |   \
 10707     //      crx=cmov_bns_less
 10708     //
 10710     // create new nodes
 10711     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10712     MachNode *m2 = new (C) cmov_bns_lessNode();
 10714     // inputs for new nodes
 10715     m1->add_req(n_region, n_src1, n_src2);
 10716     m2->add_req(n_region);
 10717     m2->add_prec(m1);
 10719     // operands for new nodes
 10720     m1->_opnds[0] = op_crx;
 10721     m1->_opnds[1] = op_src1;
 10722     m1->_opnds[2] = op_src2;
 10723     m2->_opnds[0] = op_crx;
 10725     // registers for new nodes
 10726     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10727     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10729     // Insert new nodes.
 10730     nodes->push(m1);
 10731     nodes->push(m2);
 10732   %}
 10733 %}
 10735 // Compare double, generate -1,0,1
 10736 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10737   match(Set dst (CmpD3 src1 src2));
 10738   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10740   expand %{
 10741     flagsReg tmp1;
 10742     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10743     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10744   %}
 10745 %}
 10747 //----------Branches---------------------------------------------------------
 10748 // Jump
 10750 // Direct Branch.
 10751 instruct branch(label labl) %{
 10752   match(Goto);
 10753   effect(USE labl);
 10754   ins_cost(BRANCH_COST);
 10756   format %{ "B       $labl" %}
 10757   size(4);
 10758   ins_encode %{
 10759     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10760      Label d;    // dummy
 10761      __ bind(d);
 10762      Label* p = $labl$$label;
 10763      // `p' is `NULL' when this encoding class is used only to
 10764      // determine the size of the encoded instruction.
 10765      Label& l = (NULL == p)? d : *(p);
 10766      __ b(l);
 10767   %}
 10768   ins_pipe(pipe_class_default);
 10769 %}
 10771 // Conditional Near Branch
 10772 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10773   // Same match rule as `branchConFar'.
 10774   match(If cmp crx);
 10775   effect(USE lbl);
 10776   ins_cost(BRANCH_COST);
 10778   // If set to 1 this indicates that the current instruction is a
 10779   // short variant of a long branch. This avoids using this
 10780   // instruction in first-pass matching. It will then only be used in
 10781   // the `Shorten_branches' pass.
 10782   ins_short_branch(1);
 10784   format %{ "B$cmp     $crx, $lbl" %}
 10785   size(4);
 10786   ins_encode( enc_bc(crx, cmp, lbl) );
 10787   ins_pipe(pipe_class_default);
 10788 %}
 10790 // This is for cases when the ppc64 `bc' instruction does not
 10791 // reach far enough. So we emit a far branch here, which is more
 10792 // expensive.
 10793 //
 10794 // Conditional Far Branch
 10795 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10796   // Same match rule as `branchCon'.
 10797   match(If cmp crx);
 10798   effect(USE crx, USE lbl);
 10799   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10800   // Higher cost than `branchCon'.
 10801   ins_cost(5*BRANCH_COST);
 10803   // This is not a short variant of a branch, but the long variant.
 10804   ins_short_branch(0);
 10806   format %{ "B_FAR$cmp $crx, $lbl" %}
 10807   size(8);
 10808   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10809   ins_pipe(pipe_class_default);
 10810 %}
 10812 // Conditional Branch used with Power6 scheduler (can be far or short).
 10813 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10814   // Same match rule as `branchCon'.
 10815   match(If cmp crx);
 10816   effect(USE crx, USE lbl);
 10817   predicate(false /* TODO: PPC port HB_Schedule*/);
 10818   // Higher cost than `branchCon'.
 10819   ins_cost(5*BRANCH_COST);
 10821   // Actually size doesn't depend on alignment but on shortening.
 10822   ins_variable_size_depending_on_alignment(true);
 10823   // long variant.
 10824   ins_short_branch(0);
 10826   format %{ "B_FAR$cmp $crx, $lbl" %}
 10827   size(8); // worst case
 10828   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10829   ins_pipe(pipe_class_default);
 10830 %}
 10832 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10833   match(CountedLoopEnd cmp crx);
 10834   effect(USE labl);
 10835   ins_cost(BRANCH_COST);
 10837   // short variant.
 10838   ins_short_branch(1);
 10840   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10841   size(4);
 10842   ins_encode( enc_bc(crx, cmp, labl) );
 10843   ins_pipe(pipe_class_default);
 10844 %}
 10846 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10847   match(CountedLoopEnd cmp crx);
 10848   effect(USE labl);
 10849   predicate(!false /* TODO: PPC port HB_Schedule */);
 10850   ins_cost(BRANCH_COST);
 10852   // Long variant.
 10853   ins_short_branch(0);
 10855   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10856   size(8);
 10857   ins_encode( enc_bc_far(crx, cmp, labl) );
 10858   ins_pipe(pipe_class_default);
 10859 %}
 10861 // Conditional Branch used with Power6 scheduler (can be far or short).
 10862 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10863   match(CountedLoopEnd cmp crx);
 10864   effect(USE labl);
 10865   predicate(false /* TODO: PPC port HB_Schedule */);
 10866   // Higher cost than `branchCon'.
 10867   ins_cost(5*BRANCH_COST);
 10869   // Actually size doesn't depend on alignment but on shortening.
 10870   ins_variable_size_depending_on_alignment(true);
 10871   // Long variant.
 10872   ins_short_branch(0);
 10874   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10875   size(8); // worst case
 10876   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10877   ins_pipe(pipe_class_default);
 10878 %}
 10880 // ============================================================================
 10881 // Java runtime operations, intrinsics and other complex operations.
 10883 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10884 // array for an instance of the superklass. Set a hidden internal cache on a
 10885 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10886 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10887 //
 10888 // GL TODO: Improve this.
 10889 // - result should not be a TEMP
 10890 // - Add match rule as on sparc avoiding additional Cmp.
 10891 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10892                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10893   match(Set result (PartialSubtypeCheck subklass superklass));
 10894   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10895   ins_cost(DEFAULT_COST*10);
 10897   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10898   ins_encode %{
 10899     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10900     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 10901                                      $tmp_klass$$Register, NULL, $result$$Register);
 10902   %}
 10903   ins_pipe(pipe_class_default);
 10904 %}
 10906 // inlined locking and unlocking
 10908 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10909   match(Set crx (FastLock oop box));
 10910   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10911   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10913   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10914   ins_encode %{
 10915     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10916     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10917                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10918     // If locking was successfull, crx should indicate 'EQ'.
 10919     // The compiler generates a branch to the runtime call to
 10920     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10921   %}
 10922   ins_pipe(pipe_class_compare);
 10923 %}
 10925 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10926   match(Set crx (FastUnlock oop box));
 10927   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10929   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10930   ins_encode %{
 10931     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10932     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10933                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10934     // If unlocking was successfull, crx should indicate 'EQ'.
 10935     // The compiler generates a branch to the runtime call to
 10936     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10937   %}
 10938   ins_pipe(pipe_class_compare);
 10939 %}
 10941 // Align address.
 10942 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10943   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10945   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10946   size(4);
 10947   ins_encode %{
 10948     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10949     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10950   %}
 10951   ins_pipe(pipe_class_default);
 10952 %}
 10954 // Array size computation.
 10955 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10956   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10958   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10959   size(4);
 10960   ins_encode %{
 10961     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10962     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10963   %}
 10964   ins_pipe(pipe_class_default);
 10965 %}
 10967 // Clear-array with dynamic array-size.
 10968 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10969   match(Set dummy (ClearArray cnt base));
 10970   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10971   ins_cost(MEMORY_REF_COST);
 10973   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10975   format %{ "ClearArray $cnt, $base" %}
 10976   ins_encode %{
 10977     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10978     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10979   %}
 10980   ins_pipe(pipe_class_default);
 10981 %}
 10983 // String_IndexOf for needle of length 1.
 10984 //
 10985 // Match needle into immediate operands: no loadConP node needed. Saves one
 10986 // register and two instructions over string_indexOf_imm1Node.
 10987 //
 10988 // Assumes register result differs from all input registers.
 10989 //
 10990 // Preserves registers haystack, haycnt
 10991 // Kills     registers tmp1, tmp2
 10992 // Defines   registers result
 10993 //
 10994 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10995 //
 10996 // Unfortunately this does not match too often. In many situations the AddP is used
 10997 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10998 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10999                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 11000                                   iRegIdst tmp1, iRegIdst tmp2,
 11001                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11002   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 11003   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 11005   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 11007   ins_cost(150);
 11008   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 11009             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 11011   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 11012   ins_encode %{
 11013     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11014     immPOper *needleOper = (immPOper *)$needleImm;
 11015     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 11016     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 11018     __ string_indexof_1($result$$Register,
 11019                         $haystack$$Register, $haycnt$$Register,
 11020                         R0, needle_values->char_at(0),
 11021                         $tmp1$$Register, $tmp2$$Register);
 11022   %}
 11023   ins_pipe(pipe_class_compare);
 11024 %}
 11026 // String_IndexOf for needle of length 1.
 11027 //
 11028 // Special case requires less registers and emits less instructions.
 11029 //
 11030 // Assumes register result differs from all input registers.
 11031 //
 11032 // Preserves registers haystack, haycnt
 11033 // Kills     registers tmp1, tmp2, needle
 11034 // Defines   registers result
 11035 //
 11036 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11037 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 11038                              rscratch2RegP needle, immI_1 needlecntImm,
 11039                              iRegIdst tmp1, iRegIdst tmp2,
 11040                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11041   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11042   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 11043          TEMP tmp1, TEMP tmp2);
 11044   // Required for EA: check if it is still a type_array.
 11045   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11046             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11047   ins_cost(180);
 11049   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11051   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11052             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 11053   ins_encode %{
 11054     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11055     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11056     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11057     guarantee(needle_values, "sanity");
 11058     if (needle_values != NULL) {
 11059       __ string_indexof_1($result$$Register,
 11060                           $haystack$$Register, $haycnt$$Register,
 11061                           R0, needle_values->char_at(0),
 11062                           $tmp1$$Register, $tmp2$$Register);
 11063     } else {
 11064       __ string_indexof_1($result$$Register,
 11065                           $haystack$$Register, $haycnt$$Register,
 11066                           $needle$$Register, 0,
 11067                           $tmp1$$Register, $tmp2$$Register);
 11069   %}
 11070   ins_pipe(pipe_class_compare);
 11071 %}
 11073 // String_IndexOf.
 11074 //
 11075 // Length of needle as immediate. This saves instruction loading constant needle
 11076 // length.
 11077 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11078 // completely or do it in vector instruction. This should save registers for
 11079 // needlecnt and needle.
 11080 //
 11081 // Assumes register result differs from all input registers.
 11082 // Overwrites haycnt, needlecnt.
 11083 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11084 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11085                             iRegPsrc needle, uimmI15 needlecntImm,
 11086                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11087                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11088   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11089   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11090          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11091   // Required for EA: check if it is still a type_array.
 11092   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11093             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11094   ins_cost(250);
 11096   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11098   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11099             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11100   ins_encode %{
 11101     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11102     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11103     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11105     __ string_indexof($result$$Register,
 11106                       $haystack$$Register, $haycnt$$Register,
 11107                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11108                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11109   %}
 11110   ins_pipe(pipe_class_compare);
 11111 %}
 11113 // StrIndexOf node.
 11114 //
 11115 // Assumes register result differs from all input registers.
 11116 // Overwrites haycnt, needlecnt.
 11117 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11118 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11119                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11120                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11121   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11122   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11123          TEMP result,
 11124          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11125   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11126   ins_cost(300);
 11128   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11130   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11131              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11132   ins_encode %{
 11133     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11134     __ string_indexof($result$$Register,
 11135                       $haystack$$Register, $haycnt$$Register,
 11136                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11137                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11138   %}
 11139   ins_pipe(pipe_class_compare);
 11140 %}
 11142 // String equals with immediate.
 11143 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11144                            iRegPdst tmp1, iRegPdst tmp2,
 11145                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11146   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11147   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11148          KILL cr0, KILL cr6, KILL ctr);
 11149   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11150   ins_cost(250);
 11152   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11154   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11155             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11156   ins_encode %{
 11157     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11158     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11159                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11160   %}
 11161   ins_pipe(pipe_class_compare);
 11162 %}
 11164 // String equals.
 11165 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11166 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11167                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11168                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11169   match(Set result (StrEquals (Binary str1 str2) cnt));
 11170   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11171          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11172   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11173   ins_cost(300);
 11175   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11177   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11178             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11179   ins_encode %{
 11180     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11181     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11182                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11183   %}
 11184   ins_pipe(pipe_class_compare);
 11185 %}
 11187 // String compare.
 11188 // Char[] pointers are passed in.
 11189 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11190 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11191                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11192   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11193   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11194   ins_cost(300);
 11196   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11198   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11199             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11200   ins_encode %{
 11201     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11202     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11203                       $result$$Register, $tmp$$Register);
 11204   %}
 11205   ins_pipe(pipe_class_compare);
 11206 %}
 11208 //---------- Min/Max Instructions ---------------------------------------------
 11210 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11211   match(Set dst (MinI src1 src2));
 11212   ins_cost(DEFAULT_COST*6);
 11214   expand %{
 11215     iRegLdst src1s;
 11216     iRegLdst src2s;
 11217     iRegLdst diff;
 11218     iRegLdst sm;
 11219     iRegLdst doz; // difference or zero
 11220     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11221     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11222     subL_reg_reg(diff, src2s, src1s);
 11223     // Need to consider >=33 bit result, therefore we need signmaskL.
 11224     signmask64L_regL(sm, diff);
 11225     andL_reg_reg(doz, diff, sm); // <=0
 11226     addI_regL_regL(dst, doz, src1s);
 11227   %}
 11228 %}
 11230 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11231   match(Set dst (MaxI src1 src2));
 11232   ins_cost(DEFAULT_COST*6);
 11234   expand %{
 11235     iRegLdst src1s;
 11236     iRegLdst src2s;
 11237     iRegLdst diff;
 11238     iRegLdst sm;
 11239     iRegLdst doz; // difference or zero
 11240     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11241     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11242     subL_reg_reg(diff, src2s, src1s);
 11243     // Need to consider >=33 bit result, therefore we need signmaskL.
 11244     signmask64L_regL(sm, diff);
 11245     andcL_reg_reg(doz, diff, sm); // >=0
 11246     addI_regL_regL(dst, doz, src1s);
 11247   %}
 11248 %}
 11250 //---------- Population Count Instructions ------------------------------------
 11252 // Popcnt for Power7.
 11253 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11254   match(Set dst (PopCountI src));
 11255   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11256   ins_cost(DEFAULT_COST);
 11258   format %{ "POPCNTW $dst, $src" %}
 11259   size(4);
 11260   ins_encode %{
 11261     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11262     __ popcntw($dst$$Register, $src$$Register);
 11263   %}
 11264   ins_pipe(pipe_class_default);
 11265 %}
 11267 // Popcnt for Power7.
 11268 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11269   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11270   match(Set dst (PopCountL src));
 11271   ins_cost(DEFAULT_COST);
 11273   format %{ "POPCNTD $dst, $src" %}
 11274   size(4);
 11275   ins_encode %{
 11276     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11277     __ popcntd($dst$$Register, $src$$Register);
 11278   %}
 11279   ins_pipe(pipe_class_default);
 11280 %}
 11282 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11283   match(Set dst (CountLeadingZerosI src));
 11284   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11285   ins_cost(DEFAULT_COST);
 11287   format %{ "CNTLZW  $dst, $src" %}
 11288   size(4);
 11289   ins_encode %{
 11290     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11291     __ cntlzw($dst$$Register, $src$$Register);
 11292   %}
 11293   ins_pipe(pipe_class_default);
 11294 %}
 11296 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11297   match(Set dst (CountLeadingZerosL src));
 11298   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11299   ins_cost(DEFAULT_COST);
 11301   format %{ "CNTLZD  $dst, $src" %}
 11302   size(4);
 11303   ins_encode %{
 11304     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11305     __ cntlzd($dst$$Register, $src$$Register);
 11306   %}
 11307   ins_pipe(pipe_class_default);
 11308 %}
 11310 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11311   // no match-rule, false predicate
 11312   effect(DEF dst, USE src);
 11313   predicate(false);
 11315   format %{ "CNTLZD  $dst, $src" %}
 11316   size(4);
 11317   ins_encode %{
 11318     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11319     __ cntlzd($dst$$Register, $src$$Register);
 11320   %}
 11321   ins_pipe(pipe_class_default);
 11322 %}
 11324 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11325   match(Set dst (CountTrailingZerosI src));
 11326   predicate(UseCountLeadingZerosInstructionsPPC64);
 11327   ins_cost(DEFAULT_COST);
 11329   expand %{
 11330     immI16 imm1 %{ (int)-1 %}
 11331     immI16 imm2 %{ (int)32 %}
 11332     immI_minus1 m1 %{ -1 %}
 11333     iRegIdst tmpI1;
 11334     iRegIdst tmpI2;
 11335     iRegIdst tmpI3;
 11336     addI_reg_imm16(tmpI1, src, imm1);
 11337     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11338     countLeadingZerosI(tmpI3, tmpI2);
 11339     subI_imm16_reg(dst, imm2, tmpI3);
 11340   %}
 11341 %}
 11343 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11344   match(Set dst (CountTrailingZerosL src));
 11345   predicate(UseCountLeadingZerosInstructionsPPC64);
 11346   ins_cost(DEFAULT_COST);
 11348   expand %{
 11349     immL16 imm1 %{ (long)-1 %}
 11350     immI16 imm2 %{ (int)64 %}
 11351     iRegLdst tmpL1;
 11352     iRegLdst tmpL2;
 11353     iRegIdst tmpL3;
 11354     addL_reg_imm16(tmpL1, src, imm1);
 11355     andcL_reg_reg(tmpL2, tmpL1, src);
 11356     countLeadingZerosL(tmpL3, tmpL2);
 11357     subI_imm16_reg(dst, imm2, tmpL3);
 11358  %}
 11359 %}
 11361 // Expand nodes for byte_reverse_int.
 11362 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11363   effect(DEF dst, USE src, USE pos, USE shift);
 11364   predicate(false);
 11366   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11367   size(4);
 11368   ins_encode %{
 11369     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11370     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11371   %}
 11372   ins_pipe(pipe_class_default);
 11373 %}
 11375 // As insrwi_a, but with USE_DEF.
 11376 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11377   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11378   predicate(false);
 11380   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11381   size(4);
 11382   ins_encode %{
 11383     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11384     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11385   %}
 11386   ins_pipe(pipe_class_default);
 11387 %}
 11389 // Just slightly faster than java implementation.
 11390 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11391   match(Set dst (ReverseBytesI src));
 11392   predicate(UseCountLeadingZerosInstructionsPPC64);
 11393   ins_cost(DEFAULT_COST);
 11395   expand %{
 11396     immI16 imm24 %{ (int) 24 %}
 11397     immI16 imm16 %{ (int) 16 %}
 11398     immI16  imm8 %{ (int)  8 %}
 11399     immI16  imm4 %{ (int)  4 %}
 11400     immI16  imm0 %{ (int)  0 %}
 11401     iRegLdst tmpI1;
 11402     iRegLdst tmpI2;
 11403     iRegLdst tmpI3;
 11405     urShiftI_reg_imm(tmpI1, src, imm24);
 11406     insrwi_a(dst, tmpI1, imm24, imm8);
 11407     urShiftI_reg_imm(tmpI2, src, imm16);
 11408     insrwi(dst, tmpI2, imm8, imm16);
 11409     urShiftI_reg_imm(tmpI3, src, imm8);
 11410     insrwi(dst, tmpI3, imm8, imm8);
 11411     insrwi(dst, src, imm0, imm8);
 11412   %}
 11413 %}
 11415 //---------- Replicate Vector Instructions ------------------------------------
 11417 // Insrdi does replicate if src == dst.
 11418 instruct repl32(iRegLdst dst) %{
 11419   predicate(false);
 11420   effect(USE_DEF dst);
 11422   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11423   size(4);
 11424   ins_encode %{
 11425     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11426     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11427   %}
 11428   ins_pipe(pipe_class_default);
 11429 %}
 11431 // Insrdi does replicate if src == dst.
 11432 instruct repl48(iRegLdst dst) %{
 11433   predicate(false);
 11434   effect(USE_DEF dst);
 11436   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11437   size(4);
 11438   ins_encode %{
 11439     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11440     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11441   %}
 11442   ins_pipe(pipe_class_default);
 11443 %}
 11445 // Insrdi does replicate if src == dst.
 11446 instruct repl56(iRegLdst dst) %{
 11447   predicate(false);
 11448   effect(USE_DEF dst);
 11450   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11451   size(4);
 11452   ins_encode %{
 11453     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11454     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11455   %}
 11456   ins_pipe(pipe_class_default);
 11457 %}
 11459 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11460   match(Set dst (ReplicateB src));
 11461   predicate(n->as_Vector()->length() == 8);
 11462   expand %{
 11463     moveReg(dst, src);
 11464     repl56(dst);
 11465     repl48(dst);
 11466     repl32(dst);
 11467   %}
 11468 %}
 11470 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11471   match(Set dst (ReplicateB zero));
 11472   predicate(n->as_Vector()->length() == 8);
 11473   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11474   size(4);
 11475   ins_encode %{
 11476     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11477     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11478   %}
 11479   ins_pipe(pipe_class_default);
 11480 %}
 11482 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11483   match(Set dst (ReplicateB src));
 11484   predicate(n->as_Vector()->length() == 8);
 11485   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11486   size(4);
 11487   ins_encode %{
 11488     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11489     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11490   %}
 11491   ins_pipe(pipe_class_default);
 11492 %}
 11494 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11495   match(Set dst (ReplicateS src));
 11496   predicate(n->as_Vector()->length() == 4);
 11497   expand %{
 11498     moveReg(dst, src);
 11499     repl48(dst);
 11500     repl32(dst);
 11501   %}
 11502 %}
 11504 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11505   match(Set dst (ReplicateS zero));
 11506   predicate(n->as_Vector()->length() == 4);
 11507   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11508   size(4);
 11509   ins_encode %{
 11510     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11511     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11512   %}
 11513   ins_pipe(pipe_class_default);
 11514 %}
 11516 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11517   match(Set dst (ReplicateS src));
 11518   predicate(n->as_Vector()->length() == 4);
 11519   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11520   size(4);
 11521   ins_encode %{
 11522     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11523     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11524   %}
 11525   ins_pipe(pipe_class_default);
 11526 %}
 11528 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11529   match(Set dst (ReplicateI src));
 11530   predicate(n->as_Vector()->length() == 2);
 11531   ins_cost(2 * DEFAULT_COST);
 11532   expand %{
 11533     moveReg(dst, src);
 11534     repl32(dst);
 11535   %}
 11536 %}
 11538 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11539   match(Set dst (ReplicateI zero));
 11540   predicate(n->as_Vector()->length() == 2);
 11541   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11542   size(4);
 11543   ins_encode %{
 11544     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11545     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11546   %}
 11547   ins_pipe(pipe_class_default);
 11548 %}
 11550 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11551   match(Set dst (ReplicateI src));
 11552   predicate(n->as_Vector()->length() == 2);
 11553   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11554   size(4);
 11555   ins_encode %{
 11556     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11557     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11558   %}
 11559   ins_pipe(pipe_class_default);
 11560 %}
 11562 // Move float to int register via stack, replicate.
 11563 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11564   match(Set dst (ReplicateF src));
 11565   predicate(n->as_Vector()->length() == 2);
 11566   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11567   expand %{
 11568     stackSlotL tmpS;
 11569     iRegIdst tmpI;
 11570     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11571     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11572     moveReg(dst, tmpI);             // Move int to long reg.
 11573     repl32(dst);                    // Replicate bitpattern.
 11574   %}
 11575 %}
 11577 // Replicate scalar constant to packed float values in Double register
 11578 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11579   match(Set dst (ReplicateF src));
 11580   predicate(n->as_Vector()->length() == 2);
 11581   ins_cost(5 * DEFAULT_COST);
 11583   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11584   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11585 %}
 11587 // Replicate scalar zero constant to packed float values in Double register
 11588 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11589   match(Set dst (ReplicateF zero));
 11590   predicate(n->as_Vector()->length() == 2);
 11592   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11593   ins_encode %{
 11594     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11595     __ li($dst$$Register, 0x0);
 11596   %}
 11597   ins_pipe(pipe_class_default);
 11598 %}
 11600 // ============================================================================
 11601 // Safepoint Instruction
 11603 instruct safePoint_poll(iRegPdst poll) %{
 11604   match(SafePoint poll);
 11605   predicate(LoadPollAddressFromThread);
 11607   // It caused problems to add the effect that r0 is killed, but this
 11608   // effect no longer needs to be mentioned, since r0 is not contained
 11609   // in a reg_class.
 11611   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11612   size(4);
 11613   ins_encode( enc_poll(0x0, poll) );
 11614   ins_pipe(pipe_class_default);
 11615 %}
 11617 // Safepoint without per-thread support. Load address of page to poll
 11618 // as constant.
 11619 // Rscratch2RegP is R12.
 11620 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11621 // a seperate node so that the oop map is at the right location.
 11622 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11623   match(SafePoint poll);
 11624   predicate(!LoadPollAddressFromThread);
 11626   // It caused problems to add the effect that r0 is killed, but this
 11627   // effect no longer needs to be mentioned, since r0 is not contained
 11628   // in a reg_class.
 11630   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11631   ins_encode( enc_poll(0x0, poll) );
 11632   ins_pipe(pipe_class_default);
 11633 %}
 11635 // ============================================================================
 11636 // Call Instructions
 11638 // Call Java Static Instruction
 11640 // Schedulable version of call static node.
 11641 instruct CallStaticJavaDirect(method meth) %{
 11642   match(CallStaticJava);
 11643   effect(USE meth);
 11644   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11645   ins_cost(CALL_COST);
 11647   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11649   format %{ "CALL,static $meth \t// ==> " %}
 11650   size(4);
 11651   ins_encode( enc_java_static_call(meth) );
 11652   ins_pipe(pipe_class_call);
 11653 %}
 11655 // Schedulable version of call static node.
 11656 instruct CallStaticJavaDirectHandle(method meth) %{
 11657   match(CallStaticJava);
 11658   effect(USE meth);
 11659   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11660   ins_cost(CALL_COST);
 11662   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11664   format %{ "CALL,static $meth \t// ==> " %}
 11665   ins_encode( enc_java_handle_call(meth) );
 11666   ins_pipe(pipe_class_call);
 11667 %}
 11669 // Call Java Dynamic Instruction
 11671 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11672 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11673 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11674 // The call destination must still be placed in the constant pool.
 11675 instruct CallDynamicJavaDirectSched(method meth) %{
 11676   match(CallDynamicJava); // To get all the data fields we need ...
 11677   effect(USE meth);
 11678   predicate(false);       // ... but never match.
 11680   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11681   ins_field_load_ic_node(loadConLNode*);
 11682   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11684   format %{ "BL        \t// dynamic $meth ==> " %}
 11685   size(4);
 11686   ins_encode( enc_java_dynamic_call_sched(meth) );
 11687   ins_pipe(pipe_class_call);
 11688 %}
 11690 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11691 // We use postalloc expanded calls if we use inline caches
 11692 // and do not update method data.
 11693 //
 11694 // This instruction has two constants: inline cache (IC) and call destination.
 11695 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11696 // one constant.
 11697 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11698   match(CallDynamicJava);
 11699   effect(USE meth);
 11700   predicate(UseInlineCaches);
 11701   ins_cost(CALL_COST);
 11703   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11705   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11706   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11707 %}
 11709 // Compound version of call dynamic java
 11710 // We use postalloc expanded calls if we use inline caches
 11711 // and do not update method data.
 11712 instruct CallDynamicJavaDirect(method meth) %{
 11713   match(CallDynamicJava);
 11714   effect(USE meth);
 11715   predicate(!UseInlineCaches);
 11716   ins_cost(CALL_COST);
 11718   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11719   ins_num_consts(4);
 11721   format %{ "CALL,dynamic $meth \t// ==> " %}
 11722   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11723   ins_pipe(pipe_class_call);
 11724 %}
 11726 // Call Runtime Instruction
 11728 instruct CallRuntimeDirect(method meth) %{
 11729   match(CallRuntime);
 11730   effect(USE meth);
 11731   ins_cost(CALL_COST);
 11733   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11734   // env for callee, C-toc.
 11735   ins_num_consts(3);
 11737   format %{ "CALL,runtime" %}
 11738   ins_encode( enc_java_to_runtime_call(meth) );
 11739   ins_pipe(pipe_class_call);
 11740 %}
 11742 // Call Leaf
 11744 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11745 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11746   effect(DEF dst, USE src);
 11748   ins_num_consts(1);
 11750   format %{ "MTCTR   $src" %}
 11751   size(4);
 11752   ins_encode( enc_leaf_call_mtctr(src) );
 11753   ins_pipe(pipe_class_default);
 11754 %}
 11756 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11757 instruct CallLeafDirect(method meth) %{
 11758   match(CallLeaf);   // To get the data all the data fields we need ...
 11759   effect(USE meth);
 11760   predicate(false);  // but never match.
 11762   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11763   size(4);
 11764   ins_encode %{
 11765     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11766     __ bctrl();
 11767   %}
 11768   ins_pipe(pipe_class_call);
 11769 %}
 11771 // postalloc expand of CallLeafDirect.
 11772 // Load adress to call from TOC, then bl to it.
 11773 instruct CallLeafDirect_Ex(method meth) %{
 11774   match(CallLeaf);
 11775   effect(USE meth);
 11776   ins_cost(CALL_COST);
 11778   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11779   // env for callee, C-toc.
 11780   ins_num_consts(3);
 11782   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11783   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11784 %}
 11786 // Call runtime without safepoint - same as CallLeaf.
 11787 // postalloc expand of CallLeafNoFPDirect.
 11788 // Load adress to call from TOC, then bl to it.
 11789 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11790   match(CallLeafNoFP);
 11791   effect(USE meth);
 11792   ins_cost(CALL_COST);
 11794   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11795   // env for callee, C-toc.
 11796   ins_num_consts(3);
 11798   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11799   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11800 %}
 11802 // Tail Call; Jump from runtime stub to Java code.
 11803 // Also known as an 'interprocedural jump'.
 11804 // Target of jump will eventually return to caller.
 11805 // TailJump below removes the return address.
 11806 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11807   match(TailCall jump_target method_oop);
 11808   ins_cost(CALL_COST);
 11810   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11811             "BCTR         \t// tail call" %}
 11812   size(8);
 11813   ins_encode %{
 11814     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11815     __ mtctr($jump_target$$Register);
 11816     __ bctr();
 11817   %}
 11818   ins_pipe(pipe_class_call);
 11819 %}
 11821 // Return Instruction
 11822 instruct Ret() %{
 11823   match(Return);
 11824   format %{ "BLR      \t// branch to link register" %}
 11825   size(4);
 11826   ins_encode %{
 11827     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11828     // LR is restored in MachEpilogNode. Just do the RET here.
 11829     __ blr();
 11830   %}
 11831   ins_pipe(pipe_class_default);
 11832 %}
 11834 // Tail Jump; remove the return address; jump to target.
 11835 // TailCall above leaves the return address around.
 11836 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11837 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11838 // "restore" before this instruction (in Epilogue), we need to materialize it
 11839 // in %i0.
 11840 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11841   match(TailJump jump_target ex_oop);
 11842   ins_cost(CALL_COST);
 11844   format %{ "LD      R4_ARG2 = LR\n\t"
 11845             "MTCTR   $jump_target\n\t"
 11846             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11847   size(12);
 11848   ins_encode %{
 11849     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11850     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11851     __ mtctr($jump_target$$Register);
 11852     __ bctr();
 11853   %}
 11854   ins_pipe(pipe_class_call);
 11855 %}
 11857 // Create exception oop: created by stack-crawling runtime code.
 11858 // Created exception is now available to this handler, and is setup
 11859 // just prior to jumping to this handler. No code emitted.
 11860 instruct CreateException(rarg1RegP ex_oop) %{
 11861   match(Set ex_oop (CreateEx));
 11862   ins_cost(0);
 11864   format %{ " -- \t// exception oop; no code emitted" %}
 11865   size(0);
 11866   ins_encode( /*empty*/ );
 11867   ins_pipe(pipe_class_default);
 11868 %}
 11870 // Rethrow exception: The exception oop will come in the first
 11871 // argument position. Then JUMP (not call) to the rethrow stub code.
 11872 instruct RethrowException() %{
 11873   match(Rethrow);
 11874   ins_cost(CALL_COST);
 11876   format %{ "Jmp     rethrow_stub" %}
 11877   ins_encode %{
 11878     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11879     cbuf.set_insts_mark();
 11880     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11881   %}
 11882   ins_pipe(pipe_class_call);
 11883 %}
 11885 // Die now.
 11886 instruct ShouldNotReachHere() %{
 11887   match(Halt);
 11888   ins_cost(CALL_COST);
 11890   format %{ "ShouldNotReachHere" %}
 11891   size(4);
 11892   ins_encode %{
 11893     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11894     __ trap_should_not_reach_here();
 11895   %}
 11896   ins_pipe(pipe_class_default);
 11897 %}
 11899 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11900 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11901 // Get a DEF on threadRegP, no costs, no encoding, use
 11902 // 'ins_should_rematerialize(true)' to avoid spilling.
 11903 instruct tlsLoadP(threadRegP dst) %{
 11904   match(Set dst (ThreadLocal));
 11905   ins_cost(0);
 11907   ins_should_rematerialize(true);
 11909   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11910   size(0);
 11911   ins_encode( /*empty*/ );
 11912   ins_pipe(pipe_class_empty);
 11913 %}
 11915 //---Some PPC specific nodes---------------------------------------------------
 11917 // Stop a group.
 11918 instruct endGroup() %{
 11919   ins_cost(0);
 11921   ins_is_nop(true);
 11923   format %{ "End Bundle (ori r1, r1, 0)" %}
 11924   size(4);
 11925   ins_encode %{
 11926     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11927     __ endgroup();
 11928   %}
 11929   ins_pipe(pipe_class_default);
 11930 %}
 11932 // Nop instructions
 11934 instruct fxNop() %{
 11935   ins_cost(0);
 11937   ins_is_nop(true);
 11939   format %{ "fxNop" %}
 11940   size(4);
 11941   ins_encode %{
 11942     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11943     __ nop();
 11944   %}
 11945   ins_pipe(pipe_class_default);
 11946 %}
 11948 instruct fpNop0() %{
 11949   ins_cost(0);
 11951   ins_is_nop(true);
 11953   format %{ "fpNop0" %}
 11954   size(4);
 11955   ins_encode %{
 11956     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11957     __ fpnop0();
 11958   %}
 11959   ins_pipe(pipe_class_default);
 11960 %}
 11962 instruct fpNop1() %{
 11963   ins_cost(0);
 11965   ins_is_nop(true);
 11967   format %{ "fpNop1" %}
 11968   size(4);
 11969   ins_encode %{
 11970     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11971     __ fpnop1();
 11972   %}
 11973   ins_pipe(pipe_class_default);
 11974 %}
 11976 instruct brNop0() %{
 11977   ins_cost(0);
 11978   size(4);
 11979   format %{ "brNop0" %}
 11980   ins_encode %{
 11981     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11982     __ brnop0();
 11983   %}
 11984   ins_is_nop(true);
 11985   ins_pipe(pipe_class_default);
 11986 %}
 11988 instruct brNop1() %{
 11989   ins_cost(0);
 11991   ins_is_nop(true);
 11993   format %{ "brNop1" %}
 11994   size(4);
 11995   ins_encode %{
 11996     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11997     __ brnop1();
 11998   %}
 11999   ins_pipe(pipe_class_default);
 12000 %}
 12002 instruct brNop2() %{
 12003   ins_cost(0);
 12005   ins_is_nop(true);
 12007   format %{ "brNop2" %}
 12008   size(4);
 12009   ins_encode %{
 12010     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 12011     __ brnop2();
 12012   %}
 12013   ins_pipe(pipe_class_default);
 12014 %}
 12016 //----------PEEPHOLE RULES-----------------------------------------------------
 12017 // These must follow all instruction definitions as they use the names
 12018 // defined in the instructions definitions.
 12019 //
 12020 // peepmatch ( root_instr_name [preceeding_instruction]* );
 12021 //
 12022 // peepconstraint %{
 12023 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12024 //  [, ...] );
 12025 // // instruction numbers are zero-based using left to right order in peepmatch
 12026 //
 12027 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 12028 // // provide an instruction_number.operand_name for each operand that appears
 12029 // // in the replacement instruction's match rule
 12030 //
 12031 // ---------VM FLAGS---------------------------------------------------------
 12032 //
 12033 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12034 //
 12035 // Each peephole rule is given an identifying number starting with zero and
 12036 // increasing by one in the order seen by the parser. An individual peephole
 12037 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12038 // on the command-line.
 12039 //
 12040 // ---------CURRENT LIMITATIONS----------------------------------------------
 12041 //
 12042 // Only match adjacent instructions in same basic block
 12043 // Only equality constraints
 12044 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12045 // Only one replacement instruction
 12046 //
 12047 // ---------EXAMPLE----------------------------------------------------------
 12048 //
 12049 // // pertinent parts of existing instructions in architecture description
 12050 // instruct movI(eRegI dst, eRegI src) %{
 12051 //   match(Set dst (CopyI src));
 12052 // %}
 12053 //
 12054 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 12055 //   match(Set dst (AddI dst src));
 12056 //   effect(KILL cr);
 12057 // %}
 12058 //
 12059 // // Change (inc mov) to lea
 12060 // peephole %{
 12061 //   // increment preceeded by register-register move
 12062 //   peepmatch ( incI_eReg movI );
 12063 //   // require that the destination register of the increment
 12064 //   // match the destination register of the move
 12065 //   peepconstraint ( 0.dst == 1.dst );
 12066 //   // construct a replacement instruction that sets
 12067 //   // the destination to ( move's source register + one )
 12068 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12069 // %}
 12070 //
 12071 // Implementation no longer uses movX instructions since
 12072 // machine-independent system no longer uses CopyX nodes.
 12073 //
 12074 // peephole %{
 12075 //   peepmatch ( incI_eReg movI );
 12076 //   peepconstraint ( 0.dst == 1.dst );
 12077 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12078 // %}
 12079 //
 12080 // peephole %{
 12081 //   peepmatch ( decI_eReg movI );
 12082 //   peepconstraint ( 0.dst == 1.dst );
 12083 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12084 // %}
 12085 //
 12086 // peephole %{
 12087 //   peepmatch ( addI_eReg_imm movI );
 12088 //   peepconstraint ( 0.dst == 1.dst );
 12089 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12090 // %}
 12091 //
 12092 // peephole %{
 12093 //   peepmatch ( addP_eReg_imm movP );
 12094 //   peepconstraint ( 0.dst == 1.dst );
 12095 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12096 // %}
 12098 // // Change load of spilled value to only a spill
 12099 // instruct storeI(memory mem, eRegI src) %{
 12100 //   match(Set mem (StoreI mem src));
 12101 // %}
 12102 //
 12103 // instruct loadI(eRegI dst, memory mem) %{
 12104 //   match(Set dst (LoadI mem));
 12105 // %}
 12106 //
 12107 peephole %{
 12108   peepmatch ( loadI storeI );
 12109   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12110   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12111 %}
 12113 peephole %{
 12114   peepmatch ( loadL storeL );
 12115   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12116   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12117 %}
 12119 peephole %{
 12120   peepmatch ( loadP storeP );
 12121   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12122   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12123 %}
 12125 //----------SMARTSPILL RULES---------------------------------------------------
 12126 // These must follow all instruction definitions as they use the names
 12127 // defined in the instructions definitions.

mercurial