src/cpu/ppc/vm/ppc.ad

Tue, 19 May 2015 11:06:34 +0200

author
simonis
date
Tue, 19 May 2015 11:06:34 +0200
changeset 7836
37a5a1341478
parent 7638
aefa2e84b424
child 7994
04ff2f6cd0eb
child 8427
c3d0bd36ab28
permissions
-rw-r--r--

8080190: PPC64: Fix wrong rotate instructions in the .ad file
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2014 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Header information of the source block.
   895   // Method declarations/definitions which are used outside
   896   // the ad-scope can conveniently be defined here.
   897   //
   898   // To keep related declarations/definitions/uses close together,
   899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   901   // Returns true if Node n is followed by a MemBar node that
   902   // will do an acquire. If so, this node must not do the acquire
   903   // operation.
   904   bool followed_by_acquire(const Node *n);
   905 %}
   907 source %{
   909 // Optimize load-acquire.
   910 //
   911 // Check if acquire is unnecessary due to following operation that does
   912 // acquire anyways.
   913 // Walk the pattern:
   914 //
   915 //      n: Load.acq
   916 //           |
   917 //      MemBarAcquire
   918 //       |         |
   919 //  Proj(ctrl)  Proj(mem)
   920 //       |         |
   921 //   MemBarRelease/Volatile
   922 //
   923 bool followed_by_acquire(const Node *load) {
   924   assert(load->is_Load(), "So far implemented only for loads.");
   926   // Find MemBarAcquire.
   927   const Node *mba = NULL;
   928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   929     const Node *out = load->fast_out(i);
   930     if (out->Opcode() == Op_MemBarAcquire) {
   931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   932       mba = out;
   933       break;
   934     }
   935   }
   936   if (!mba) return false;
   938   // Find following MemBar node.
   939   //
   940   // The following node must be reachable by control AND memory
   941   // edge to assure no other operations are in between the two nodes.
   942   //
   943   // So first get the Proj node, mem_proj, to use it to iterate forward.
   944   Node *mem_proj = NULL;
   945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   947     assert(mem_proj->is_Proj(), "only projections here");
   948     ProjNode *proj = mem_proj->as_Proj();
   949     if (proj->_con == TypeFunc::Memory &&
   950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   951       break;
   952   }
   953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   955   // Search MemBar behind Proj. If there are other memory operations
   956   // behind the Proj we lost.
   957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   958     Node *x = mem_proj->fast_out(j);
   959     // Proj might have an edge to a store or load node which precedes the membar.
   960     if (x->is_Mem()) return false;
   962     // On PPC64 release and volatile are implemented by an instruction
   963     // that also has acquire semantics. I.e. there is no need for an
   964     // acquire before these.
   965     int xop = x->Opcode();
   966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   967       // Make sure we're not missing Call/Phi/MergeMem by checking
   968       // control edges. The control edge must directly lead back
   969       // to the MemBarAcquire
   970       Node *ctrl_proj = x->in(0);
   971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   972         return true;
   973       }
   974     }
   975   }
   977   return false;
   978 }
   980 #define __ _masm.
   982 // Tertiary op of a LoadP or StoreP encoding.
   983 #define REGP_OP true
   985 // ****************************************************************************
   987 // REQUIRED FUNCTIONALITY
   989 // !!!!! Special hack to get all type of calls to specify the byte offset
   990 //       from the start of the call to the point where the return address
   991 //       will point.
   993 // PPC port: Removed use of lazy constant construct.
   995 int MachCallStaticJavaNode::ret_addr_offset() {
   996   // It's only a single branch-and-link instruction.
   997   return 4;
   998 }
  1000 int MachCallDynamicJavaNode::ret_addr_offset() {
  1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1002   // postalloc expanded calls if we use inline caches and do not update method data.
  1003   if (UseInlineCaches)
  1004     return 4;
  1006   int vtable_index = this->_vtable_index;
  1007   if (vtable_index < 0) {
  1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1010     return 12;
  1011   } else {
  1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1013     return 24;
  1017 int MachCallRuntimeNode::ret_addr_offset() {
  1018 #if defined(ABI_ELFv2)
  1019   return 28;
  1020 #else
  1021   return 40;
  1022 #endif
  1025 //=============================================================================
  1027 // condition code conversions
  1029 static int cc_to_boint(int cc) {
  1030   return Assembler::bcondCRbiIs0 | (cc & 8);
  1033 static int cc_to_inverse_boint(int cc) {
  1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1037 static int cc_to_biint(int cc, int flags_reg) {
  1038   return (flags_reg << 2) | (cc & 3);
  1041 //=============================================================================
  1043 // Compute padding required for nodes which need alignment. The padding
  1044 // is the number of bytes (not instructions) which will be inserted before
  1045 // the instruction. The padding must match the size of a NOP instruction.
  1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1048   return (3*4-current_offset)&31;
  1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1052   return (2*4-current_offset)&31;
  1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1056   return (3*4-current_offset)&31;
  1059 int string_indexOfNode::compute_padding(int current_offset) const {
  1060   return (1*4-current_offset)&31;
  1063 int string_compareNode::compute_padding(int current_offset) const {
  1064   return (4*4-current_offset)&31;
  1067 int string_equals_immNode::compute_padding(int current_offset) const {
  1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1069   return (2*4-current_offset)&31;
  1072 int string_equalsNode::compute_padding(int current_offset) const {
  1073   return (7*4-current_offset)&31;
  1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1077   return (2*4-current_offset)&31;
  1080 //=============================================================================
  1082 // Indicate if the safepoint node needs the polling page as an input.
  1083 bool SafePointNode::needs_polling_address_input() {
  1084   // The address is loaded from thread by a seperate node.
  1085   return true;
  1088 //=============================================================================
  1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1091 void emit_break(CodeBuffer &cbuf) {
  1092   MacroAssembler _masm(&cbuf);
  1093   __ illtrap();
  1096 #ifndef PRODUCT
  1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1098   st->print("BREAKPOINT");
  1100 #endif
  1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1103   emit_break(cbuf);
  1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1107   return MachNode::size(ra_);
  1110 //=============================================================================
  1112 void emit_nop(CodeBuffer &cbuf) {
  1113   MacroAssembler _masm(&cbuf);
  1114   __ nop();
  1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1118   *((int*)(cbuf.insts_end())) = value;
  1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1122 //=============================================================================
  1124 %} // interrupt source
  1126 source_hpp %{ // Header information of the source block.
  1128 //--------------------------------------------------------------
  1129 //---<  Used for optimization in Compile::Shorten_branches  >---
  1130 //--------------------------------------------------------------
  1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1134 class CallStubImpl {
  1136  public:
  1138   // Emit call stub, compiled java to interpreter.
  1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1141   // Size of call trampoline stub.
  1142   // This doesn't need to be accurate to the byte, but it
  1143   // must be larger than or equal to the real size of the stub.
  1144   static uint size_call_trampoline() {
  1145     return trampoline_stub_size;
  1148   // number of relocations needed by a call trampoline stub
  1149   static uint reloc_call_trampoline() {
  1150     return 5;
  1153 };
  1155 %} // end source_hpp
  1157 source %{
  1159 // Emit a trampoline stub for a call to a target which is too far away.
  1160 //
  1161 // code sequences:
  1162 //
  1163 // call-site:
  1164 //   branch-and-link to <destination> or <trampoline stub>
  1165 //
  1166 // Related trampoline stub for this call-site in the stub section:
  1167 //   load the call target from the constant pool
  1168 //   branch via CTR (LR/link still points to the call-site above)
  1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1171   // Start the stub.
  1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1173   if (stub == NULL) {
  1174     Compile::current()->env()->record_out_of_memory_failure();
  1175     return;
  1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1179   // and in call trampoline stubs we use R12_scratch2. This way we
  1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1181   Register reg_scratch = R12_scratch2;
  1183   // Create a trampoline stub relocation which relates this trampoline stub
  1184   // with the call instruction at insts_call_instruction_offset in the
  1185   // instructions code-section.
  1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1187   const int stub_start_offset = __ offset();
  1189   // Now, create the trampoline stub's code:
  1190   // - load the TOC
  1191   // - load the call target from the constant pool
  1192   // - call
  1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1195   __ mtctr(reg_scratch);
  1196   __ bctr();
  1198   const address stub_start_addr = __ addr_at(stub_start_offset);
  1200   // FIXME: Assert that the trampoline stub can be identified and patched.
  1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1204          "encoded offset into the constant pool must match");
  1205   // Trampoline_stub_size should be good.
  1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1209   // End the stub.
  1210   __ end_a_stub();
  1213 //=============================================================================
  1215 // Emit an inline branch-and-link call and a related trampoline stub.
  1216 //
  1217 // code sequences:
  1218 //
  1219 // call-site:
  1220 //   branch-and-link to <destination> or <trampoline stub>
  1221 //
  1222 // Related trampoline stub for this call-site in the stub section:
  1223 //   load the call target from the constant pool
  1224 //   branch via CTR (LR/link still points to the call-site above)
  1225 //
  1227 typedef struct {
  1228   int insts_call_instruction_offset;
  1229   int ret_addr_offset;
  1230 } EmitCallOffsets;
  1232 // Emit a branch-and-link instruction that branches to a trampoline.
  1233 // - Remember the offset of the branch-and-link instruction.
  1234 // - Add a relocation at the branch-and-link instruction.
  1235 // - Emit a branch-and-link.
  1236 // - Remember the return pc offset.
  1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1238   EmitCallOffsets offsets = { -1, -1 };
  1239   const int start_offset = __ offset();
  1240   offsets.insts_call_instruction_offset = __ offset();
  1242   // No entry point given, use the current pc.
  1243   if (entry_point == NULL) entry_point = __ pc();
  1245   if (!Compile::current()->in_scratch_emit_size()) {
  1246     // Put the entry point as a constant into the constant pool.
  1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1250     // Emit the trampoline stub which will be related to the branch-and-link below.
  1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1252     if (Compile::current()->env()->failing()) { return offsets; } // Code cache may be full.
  1253     __ relocate(rtype);
  1256   // Note: At this point we do not have the address of the trampoline
  1257   // stub, and the entry point might be too far away for bl, so __ pc()
  1258   // serves as dummy and the bl will be patched later.
  1259   __ bl((address) __ pc());
  1261   offsets.ret_addr_offset = __ offset() - start_offset;
  1263   return offsets;
  1266 //=============================================================================
  1268 // Factory for creating loadConL* nodes for large/small constant pool.
  1270 static inline jlong replicate_immF(float con) {
  1271   // Replicate float con 2 times and pack into vector.
  1272   int val = *((int*)&con);
  1273   jlong lval = val;
  1274   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1275   return lval;
  1278 //=============================================================================
  1280 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1281 int Compile::ConstantTable::calculate_table_base_offset() const {
  1282   return 0;  // absolute addressing, no offset
  1285 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1286 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1287   Compile *C = ra_->C;
  1289   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1290   MachNode *m1 = new (C) loadToc_hiNode();
  1291   MachNode *m2 = new (C) loadToc_loNode();
  1293   m1->add_req(NULL);
  1294   m2->add_req(NULL, m1);
  1295   m1->_opnds[0] = op_dst;
  1296   m2->_opnds[0] = op_dst;
  1297   m2->_opnds[1] = op_dst;
  1298   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1299   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1300   nodes->push(m1);
  1301   nodes->push(m2);
  1304 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1305   // Is postalloc expanded.
  1306   ShouldNotReachHere();
  1309 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1310   return 0;
  1313 #ifndef PRODUCT
  1314 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1315   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1317 #endif
  1319 //=============================================================================
  1321 #ifndef PRODUCT
  1322 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1323   Compile* C = ra_->C;
  1324   const long framesize = C->frame_slots() << LogBytesPerInt;
  1326   st->print("PROLOG\n\t");
  1327   if (C->need_stack_bang(framesize)) {
  1328     st->print("stack_overflow_check\n\t");
  1331   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1332     st->print("save return pc\n\t");
  1333     st->print("push frame %ld\n\t", -framesize);
  1336 #endif
  1338 // Macro used instead of the common __ to emulate the pipes of PPC.
  1339 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1340 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1341 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1342 // code and can update its internal data. The following mechanism is used to achieve this:
  1343 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1344 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1345 #if 0 // TODO: PPC port
  1346 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1347                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1348                 _masm.
  1349 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1350                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1351 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1352                   C->hb_scheduling()->_pdScheduling->advance_offset
  1353 #else
  1354 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1355                   Unimplemented();                                                    \
  1356                 _masm.
  1357 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1358                   Unimplemented()
  1359 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1360                   Unimplemented()
  1361 #endif
  1363 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1364   Compile* C = ra_->C;
  1365   MacroAssembler _masm(&cbuf);
  1367   const long framesize = C->frame_size_in_bytes();
  1368   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
  1370   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1372   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1373   const Register callers_sp           = R21;
  1374   const Register push_frame_temp      = R22;
  1375   const Register toc_temp             = R23;
  1376   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1378   if (method_is_frameless) {
  1379     // Add nop at beginning of all frameless methods to prevent any
  1380     // oop instructions from getting overwritten by make_not_entrant
  1381     // (patching attempt would fail).
  1382     ___(nop) nop();
  1383   } else {
  1384     // Get return pc.
  1385     ___(mflr) mflr(return_pc);
  1388   // Calls to C2R adapters often do not accept exceptional returns.
  1389   // We require that their callers must bang for them. But be
  1390   // careful, because some VM calls (such as call site linkage) can
  1391   // use several kilobytes of stack. But the stack safety zone should
  1392   // account for that. See bugs 4446381, 4468289, 4497237.
  1394   int bangsize = C->bang_size_in_bytes();
  1395   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  1396   if (C->need_stack_bang(bangsize) && UseStackBanging) {
  1397     // Unfortunately we cannot use the function provided in
  1398     // assembler.cpp as we have to emulate the pipes. So I had to
  1399     // insert the code of generate_stack_overflow_check(), see
  1400     // assembler.cpp for some illuminative comments.
  1401     const int page_size = os::vm_page_size();
  1402     int bang_end = StackShadowPages * page_size;
  1404     // This is how far the previous frame's stack banging extended.
  1405     const int bang_end_safe = bang_end;
  1407     if (bangsize > page_size) {
  1408       bang_end += bangsize;
  1411     int bang_offset = bang_end_safe;
  1413     while (bang_offset <= bang_end) {
  1414       // Need at least one stack bang at end of shadow zone.
  1416       // Again I had to copy code, this time from assembler_ppc.cpp,
  1417       // bang_stack_with_offset - see there for comments.
  1419       // Stack grows down, caller passes positive offset.
  1420       assert(bang_offset > 0, "must bang with positive offset");
  1422       long stdoffset = -bang_offset;
  1424       if (Assembler::is_simm(stdoffset, 16)) {
  1425         // Signed 16 bit offset, a simple std is ok.
  1426         if (UseLoadInstructionsForStackBangingPPC64) {
  1427           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1428         } else {
  1429           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1431       } else if (Assembler::is_simm(stdoffset, 31)) {
  1432         // Use largeoffset calculations for addis & ld/std.
  1433         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1434         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1436         Register tmp = R11;
  1437         ___(addis) addis(tmp, R1_SP, hi);
  1438         if (UseLoadInstructionsForStackBangingPPC64) {
  1439           ___(ld) ld(R0, lo, tmp);
  1440         } else {
  1441           ___(std) std(R0, lo, tmp);
  1443       } else {
  1444         ShouldNotReachHere();
  1447       bang_offset += page_size;
  1449     // R11 trashed
  1450   } // C->need_stack_bang(framesize) && UseStackBanging
  1452   unsigned int bytes = (unsigned int)framesize;
  1453   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1454   ciMethod *currMethod = C->method();
  1456   // Optimized version for most common case.
  1457   if (UsePower6SchedulerPPC64 &&
  1458       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1459       !(false /* ConstantsALot TODO: PPC port*/)) {
  1460     ___(or) mr(callers_sp, R1_SP);
  1461     ___(std) std(return_pc, _abi(lr), R1_SP);
  1462     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1463     return;
  1466   if (!method_is_frameless) {
  1467     // Get callers sp.
  1468     ___(or) mr(callers_sp, R1_SP);
  1470     // Push method's frame, modifies SP.
  1471     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1472     // The ABI is already accounted for in 'framesize' via the
  1473     // 'out_preserve' area.
  1474     Register tmp = push_frame_temp;
  1475     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1476     if (Assembler::is_simm(-offset, 16)) {
  1477       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1478     } else {
  1479       long x = -offset;
  1480       // Had to insert load_const(tmp, -offset).
  1481       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1482       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1483       ___(rldicr) sldi(tmp, tmp, 32);
  1484       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1485       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1487       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1490 #if 0 // TODO: PPC port
  1491   // For testing large constant pools, emit a lot of constants to constant pool.
  1492   // "Randomize" const_size.
  1493   if (ConstantsALot) {
  1494     const int num_consts = const_size();
  1495     for (int i = 0; i < num_consts; i++) {
  1496       __ long_constant(0xB0B5B00BBABE);
  1499 #endif
  1500   if (!method_is_frameless) {
  1501     // Save return pc.
  1502     ___(std) std(return_pc, _abi(lr), callers_sp);
  1505 #undef ___
  1506 #undef ___stop
  1507 #undef ___advance
  1509 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1510   // Variable size. determine dynamically.
  1511   return MachNode::size(ra_);
  1514 int MachPrologNode::reloc() const {
  1515   // Return number of relocatable values contained in this instruction.
  1516   return 1; // 1 reloc entry for load_const(toc).
  1519 //=============================================================================
  1521 #ifndef PRODUCT
  1522 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1523   Compile* C = ra_->C;
  1525   st->print("EPILOG\n\t");
  1526   st->print("restore return pc\n\t");
  1527   st->print("pop frame\n\t");
  1529   if (do_polling() && C->is_method_compilation()) {
  1530     st->print("touch polling page\n\t");
  1533 #endif
  1535 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1536   Compile* C = ra_->C;
  1537   MacroAssembler _masm(&cbuf);
  1539   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1540   assert(framesize >= 0, "negative frame-size?");
  1542   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1543   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1544   const Register return_pc        = R11;
  1545   const Register polling_page     = R12;
  1547   if (!method_is_frameless) {
  1548     // Restore return pc relative to callers' sp.
  1549     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1552   if (method_needs_polling) {
  1553     if (LoadPollAddressFromThread) {
  1554       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1555       Unimplemented();
  1556     } else {
  1557       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1561   if (!method_is_frameless) {
  1562     // Move return pc to LR.
  1563     __ mtlr(return_pc);
  1564     // Pop frame (fixed frame-size).
  1565     __ addi(R1_SP, R1_SP, (int)framesize);
  1568   if (method_needs_polling) {
  1569     // We need to mark the code position where the load from the safepoint
  1570     // polling page was emitted as relocInfo::poll_return_type here.
  1571     __ relocate(relocInfo::poll_return_type);
  1572     __ load_from_polling_page(polling_page);
  1576 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1577   // Variable size. Determine dynamically.
  1578   return MachNode::size(ra_);
  1581 int MachEpilogNode::reloc() const {
  1582   // Return number of relocatable values contained in this instruction.
  1583   return 1; // 1 for load_from_polling_page.
  1586 const Pipeline * MachEpilogNode::pipeline() const {
  1587   return MachNode::pipeline_class();
  1590 // This method seems to be obsolete. It is declared in machnode.hpp
  1591 // and defined in all *.ad files, but it is never called. Should we
  1592 // get rid of it?
  1593 int MachEpilogNode::safepoint_offset() const {
  1594   assert(do_polling(), "no return for this epilog node");
  1595   return 0;
  1598 #if 0 // TODO: PPC port
  1599 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1600   MacroAssembler _masm(&cbuf);
  1601   if (LoadPollAddressFromThread) {
  1602     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1603   } else {
  1604     _masm.nop();
  1608 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1609   if (LoadPollAddressFromThread) {
  1610     return 4;
  1611   } else {
  1612     return 4;
  1616 #ifndef PRODUCT
  1617 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1618   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1620 #endif
  1622 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1623   return RSCRATCH1_BITS64_REG_mask();
  1625 #endif // PPC port
  1627 // =============================================================================
  1629 // Figure out which register class each belongs in: rc_int, rc_float or
  1630 // rc_stack.
  1631 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1633 static enum RC rc_class(OptoReg::Name reg) {
  1634   // Return the register class for the given register. The given register
  1635   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1636   // enumeration in adGlobals_ppc64.hpp.
  1638   if (reg == OptoReg::Bad) return rc_bad;
  1640   // We have 64 integer register halves, starting at index 0.
  1641   if (reg < 64) return rc_int;
  1643   // We have 64 floating-point register halves, starting at index 64.
  1644   if (reg < 64+64) return rc_float;
  1646   // Between float regs & stack are the flags regs.
  1647   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1649   return rc_stack;
  1652 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1653                         bool do_print, Compile* C, outputStream *st) {
  1655   assert(opcode == Assembler::LD_OPCODE   ||
  1656          opcode == Assembler::STD_OPCODE  ||
  1657          opcode == Assembler::LWZ_OPCODE  ||
  1658          opcode == Assembler::STW_OPCODE  ||
  1659          opcode == Assembler::LFD_OPCODE  ||
  1660          opcode == Assembler::STFD_OPCODE ||
  1661          opcode == Assembler::LFS_OPCODE  ||
  1662          opcode == Assembler::STFS_OPCODE,
  1663          "opcode not supported");
  1665   if (cbuf) {
  1666     int d =
  1667       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1668         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1669       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1670     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1672 #ifndef PRODUCT
  1673   else if (do_print) {
  1674     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1675               op_str,
  1676               Matcher::regName[reg],
  1677               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1679 #endif
  1680   return 4; // size
  1683 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1684   Compile* C = ra_->C;
  1686   // Get registers to move.
  1687   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1688   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1689   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1690   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1692   enum RC src_hi_rc = rc_class(src_hi);
  1693   enum RC src_lo_rc = rc_class(src_lo);
  1694   enum RC dst_hi_rc = rc_class(dst_hi);
  1695   enum RC dst_lo_rc = rc_class(dst_lo);
  1697   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1698   if (src_hi != OptoReg::Bad)
  1699     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1700            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1701            "expected aligned-adjacent pairs");
  1702   // Generate spill code!
  1703   int size = 0;
  1705   if (src_lo == dst_lo && src_hi == dst_hi)
  1706     return size;            // Self copy, no move.
  1708   // --------------------------------------
  1709   // Memory->Memory Spill. Use R0 to hold the value.
  1710   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1711     int src_offset = ra_->reg2offset(src_lo);
  1712     int dst_offset = ra_->reg2offset(dst_lo);
  1713     if (src_hi != OptoReg::Bad) {
  1714       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1715              "expected same type of move for high parts");
  1716       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1717       if (!cbuf && !do_size) st->print("\n\t");
  1718       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1719     } else {
  1720       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1721       if (!cbuf && !do_size) st->print("\n\t");
  1722       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1724     return size;
  1727   // --------------------------------------
  1728   // Check for float->int copy; requires a trip through memory.
  1729   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1730     Unimplemented();
  1733   // --------------------------------------
  1734   // Check for integer reg-reg copy.
  1735   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1736       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1737       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1738       size = (Rsrc != Rdst) ? 4 : 0;
  1740       if (cbuf) {
  1741         MacroAssembler _masm(cbuf);
  1742         if (size) {
  1743           __ mr(Rdst, Rsrc);
  1746 #ifndef PRODUCT
  1747       else if (!do_size) {
  1748         if (size) {
  1749           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1750         } else {
  1751           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1754 #endif
  1755       return size;
  1758   // Check for integer store.
  1759   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1760     int dst_offset = ra_->reg2offset(dst_lo);
  1761     if (src_hi != OptoReg::Bad) {
  1762       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1763              "expected same type of move for high parts");
  1764       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1765     } else {
  1766       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1768     return size;
  1771   // Check for integer load.
  1772   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1773     int src_offset = ra_->reg2offset(src_lo);
  1774     if (src_hi != OptoReg::Bad) {
  1775       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1776              "expected same type of move for high parts");
  1777       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1778     } else {
  1779       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1781     return size;
  1784   // Check for float reg-reg copy.
  1785   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1786     if (cbuf) {
  1787       MacroAssembler _masm(cbuf);
  1788       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1789       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1790       __ fmr(Rdst, Rsrc);
  1792 #ifndef PRODUCT
  1793     else if (!do_size) {
  1794       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1796 #endif
  1797     return 4;
  1800   // Check for float store.
  1801   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1802     int dst_offset = ra_->reg2offset(dst_lo);
  1803     if (src_hi != OptoReg::Bad) {
  1804       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1805              "expected same type of move for high parts");
  1806       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1807     } else {
  1808       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1810     return size;
  1813   // Check for float load.
  1814   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1815     int src_offset = ra_->reg2offset(src_lo);
  1816     if (src_hi != OptoReg::Bad) {
  1817       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1818              "expected same type of move for high parts");
  1819       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1820     } else {
  1821       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1823     return size;
  1826   // --------------------------------------------------------------------
  1827   // Check for hi bits still needing moving. Only happens for misaligned
  1828   // arguments to native calls.
  1829   if (src_hi == dst_hi)
  1830     return size;               // Self copy; no move.
  1832   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1833   ShouldNotReachHere(); // Unimplemented
  1834   return 0;
  1837 #ifndef PRODUCT
  1838 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1839   if (!ra_)
  1840     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1841   else
  1842     implementation(NULL, ra_, false, st);
  1844 #endif
  1846 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1847   implementation(&cbuf, ra_, false, NULL);
  1850 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1851   return implementation(NULL, ra_, true, NULL);
  1854 #if 0 // TODO: PPC port
  1855 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1856 #ifndef PRODUCT
  1857   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1858 #endif
  1859   assert(ra_->node_regs_max_index() != 0, "");
  1861   // Get registers to move.
  1862   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1863   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1864   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1865   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1867   enum RC src_lo_rc = rc_class(src_lo);
  1868   enum RC dst_lo_rc = rc_class(dst_lo);
  1870   if (src_lo == dst_lo && src_hi == dst_hi)
  1871     return ppc64Opcode_none;            // Self copy, no move.
  1873   // --------------------------------------
  1874   // Memory->Memory Spill. Use R0 to hold the value.
  1875   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1876     return ppc64Opcode_compound;
  1879   // --------------------------------------
  1880   // Check for float->int copy; requires a trip through memory.
  1881   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1882     Unimplemented();
  1885   // --------------------------------------
  1886   // Check for integer reg-reg copy.
  1887   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1888     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1889     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1890     if (Rsrc == Rdst) {
  1891       return ppc64Opcode_none;
  1892     } else {
  1893       return ppc64Opcode_or;
  1897   // Check for integer store.
  1898   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1899     if (src_hi != OptoReg::Bad) {
  1900       return ppc64Opcode_std;
  1901     } else {
  1902       return ppc64Opcode_stw;
  1906   // Check for integer load.
  1907   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1908     if (src_hi != OptoReg::Bad) {
  1909       return ppc64Opcode_ld;
  1910     } else {
  1911       return ppc64Opcode_lwz;
  1915   // Check for float reg-reg copy.
  1916   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1917     return ppc64Opcode_fmr;
  1920   // Check for float store.
  1921   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1922     if (src_hi != OptoReg::Bad) {
  1923       return ppc64Opcode_stfd;
  1924     } else {
  1925       return ppc64Opcode_stfs;
  1929   // Check for float load.
  1930   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1931     if (src_hi != OptoReg::Bad) {
  1932       return ppc64Opcode_lfd;
  1933     } else {
  1934       return ppc64Opcode_lfs;
  1938   // --------------------------------------------------------------------
  1939   // Check for hi bits still needing moving. Only happens for misaligned
  1940   // arguments to native calls.
  1941   if (src_hi == dst_hi) {
  1942     return ppc64Opcode_none;               // Self copy; no move.
  1945   ShouldNotReachHere();
  1946   return ppc64Opcode_undefined;
  1948 #endif // PPC port
  1950 #ifndef PRODUCT
  1951 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1952   st->print("NOP \t// %d nops to pad for loops.", _count);
  1954 #endif
  1956 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1957   MacroAssembler _masm(&cbuf);
  1958   // _count contains the number of nops needed for padding.
  1959   for (int i = 0; i < _count; i++) {
  1960     __ nop();
  1964 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1965   return _count * 4;
  1968 #ifndef PRODUCT
  1969 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1970   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1971   char reg_str[128];
  1972   ra_->dump_register(this, reg_str);
  1973   st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
  1975 #endif
  1977 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1978   MacroAssembler _masm(&cbuf);
  1980   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1981   int reg    = ra_->get_encode(this);
  1983   if (Assembler::is_simm(offset, 16)) {
  1984     __ addi(as_Register(reg), R1, offset);
  1985   } else {
  1986     ShouldNotReachHere();
  1990 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1991   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1992   return 4;
  1995 #ifndef PRODUCT
  1996 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1997   st->print_cr("---- MachUEPNode ----");
  1998   st->print_cr("...");
  2000 #endif
  2002 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  2003   // This is the unverified entry point.
  2004   MacroAssembler _masm(&cbuf);
  2006   // Inline_cache contains a klass.
  2007   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  2008   Register receiver_klass = R12_scratch2;  // tmp
  2010   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  2011   assert(R11_scratch1 == R11, "need prologue scratch register");
  2013   // Check for NULL argument if we don't have implicit null checks.
  2014   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  2015     if (TrapBasedNullChecks) {
  2016       __ trap_null_check(R3_ARG1);
  2017     } else {
  2018       Label valid;
  2019       __ cmpdi(CCR0, R3_ARG1, 0);
  2020       __ bne_predict_taken(CCR0, valid);
  2021       // We have a null argument, branch to ic_miss_stub.
  2022       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2023                            relocInfo::runtime_call_type);
  2024       __ bind(valid);
  2027   // Assume argument is not NULL, load klass from receiver.
  2028   __ load_klass(receiver_klass, R3_ARG1);
  2030   if (TrapBasedICMissChecks) {
  2031     __ trap_ic_miss_check(receiver_klass, ic_klass);
  2032   } else {
  2033     Label valid;
  2034     __ cmpd(CCR0, receiver_klass, ic_klass);
  2035     __ beq_predict_taken(CCR0, valid);
  2036     // We have an unexpected klass, branch to ic_miss_stub.
  2037     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2038                          relocInfo::runtime_call_type);
  2039     __ bind(valid);
  2042   // Argument is valid and klass is as expected, continue.
  2045 #if 0 // TODO: PPC port
  2046 // Optimize UEP code on z (save a load_const() call in main path).
  2047 int MachUEPNode::ep_offset() {
  2048   return 0;
  2050 #endif
  2052 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2053   // Variable size. Determine dynamically.
  2054   return MachNode::size(ra_);
  2057 //=============================================================================
  2059 %} // interrupt source
  2061 source_hpp %{ // Header information of the source block.
  2063 class HandlerImpl {
  2065  public:
  2067   static int emit_exception_handler(CodeBuffer &cbuf);
  2068   static int emit_deopt_handler(CodeBuffer& cbuf);
  2070   static uint size_exception_handler() {
  2071     // The exception_handler is a b64_patchable.
  2072     return MacroAssembler::b64_patchable_size;
  2075   static uint size_deopt_handler() {
  2076     // The deopt_handler is a bl64_patchable.
  2077     return MacroAssembler::bl64_patchable_size;
  2080 };
  2082 %} // end source_hpp
  2084 source %{
  2086 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  2087   MacroAssembler _masm(&cbuf);
  2089   address base = __ start_a_stub(size_exception_handler());
  2090   if (base == NULL) return 0; // CodeBuffer::expand failed
  2092   int offset = __ offset();
  2093   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2094                        relocInfo::runtime_call_type);
  2095   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2096   __ end_a_stub();
  2098   return offset;
  2101 // The deopt_handler is like the exception handler, but it calls to
  2102 // the deoptimization blob instead of jumping to the exception blob.
  2103 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  2104   MacroAssembler _masm(&cbuf);
  2106   address base = __ start_a_stub(size_deopt_handler());
  2107   if (base == NULL) return 0; // CodeBuffer::expand failed
  2109   int offset = __ offset();
  2110   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2111                         relocInfo::runtime_call_type);
  2112   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2113   __ end_a_stub();
  2115   return offset;
  2118 //=============================================================================
  2120 // Use a frame slots bias for frameless methods if accessing the stack.
  2121 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2122   if (as_Register(reg_enc) == R1_SP) {
  2123     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2125   return 0;
  2128 const bool Matcher::match_rule_supported(int opcode) {
  2129   if (!has_match_rule(opcode))
  2130     return false;
  2132   switch (opcode) {
  2133   case Op_SqrtD:
  2134     return VM_Version::has_fsqrt();
  2135   case Op_CountLeadingZerosI:
  2136   case Op_CountLeadingZerosL:
  2137   case Op_CountTrailingZerosI:
  2138   case Op_CountTrailingZerosL:
  2139     if (!UseCountLeadingZerosInstructionsPPC64)
  2140       return false;
  2141     break;
  2143   case Op_PopCountI:
  2144   case Op_PopCountL:
  2145     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2147   case Op_StrComp:
  2148     return SpecialStringCompareTo;
  2149   case Op_StrEquals:
  2150     return SpecialStringEquals;
  2151   case Op_StrIndexOf:
  2152     return SpecialStringIndexOf;
  2155   return true;  // Per default match rules are supported.
  2158 int Matcher::regnum_to_fpu_offset(int regnum) {
  2159   // No user for this method?
  2160   Unimplemented();
  2161   return 999;
  2164 const bool Matcher::convL2FSupported(void) {
  2165   // fcfids can do the conversion (>= Power7).
  2166   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2167   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2170 // Vector width in bytes.
  2171 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2172   assert(MaxVectorSize == 8, "");
  2173   return 8;
  2176 // Vector ideal reg.
  2177 const int Matcher::vector_ideal_reg(int size) {
  2178   assert(MaxVectorSize == 8 && size == 8, "");
  2179   return Op_RegL;
  2182 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2183   fatal("vector shift is not supported");
  2184   return Node::NotAMachineReg;
  2187 // Limits on vector size (number of elements) loaded into vector.
  2188 const int Matcher::max_vector_size(const BasicType bt) {
  2189   assert(is_java_primitive(bt), "only primitive type vectors");
  2190   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2193 const int Matcher::min_vector_size(const BasicType bt) {
  2194   return max_vector_size(bt); // Same as max.
  2197 // PPC doesn't support misaligned vectors store/load.
  2198 const bool Matcher::misaligned_vectors_ok() {
  2199   return false;
  2202 // PPC AES support not yet implemented
  2203 const bool Matcher::pass_original_key_for_aes() {
  2204   return false;
  2207 // RETURNS: whether this branch offset is short enough that a short
  2208 // branch can be used.
  2209 //
  2210 // If the platform does not provide any short branch variants, then
  2211 // this method should return `false' for offset 0.
  2212 //
  2213 // `Compile::Fill_buffer' will decide on basis of this information
  2214 // whether to do the pass `Compile::Shorten_branches' at all.
  2215 //
  2216 // And `Compile::Shorten_branches' will decide on basis of this
  2217 // information whether to replace particular branch sites by short
  2218 // ones.
  2219 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2220   // Is the offset within the range of a ppc64 pc relative branch?
  2221   bool b;
  2223   const int safety_zone = 3 * BytesPerInstWord;
  2224   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2225                          29 - 16 + 1 + 2);
  2226   return b;
  2229 const bool Matcher::isSimpleConstant64(jlong value) {
  2230   // Probably always true, even if a temp register is required.
  2231   return true;
  2233 /* TODO: PPC port
  2234 // Make a new machine dependent decode node (with its operands).
  2235 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2236   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2237          "This method is only implemented for unscaled cOops mode so far");
  2238   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2239   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2240   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2241   return decode;
  2243 */
  2244 // Threshold size for cleararray.
  2245 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2247 // false => size gets scaled to BytesPerLong, ok.
  2248 const bool Matcher::init_array_count_is_in_bytes = false;
  2250 // Use conditional move (CMOVL) on Power7.
  2251 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2253 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2254 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2255 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2257 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2258 const bool Matcher::require_postalloc_expand = true;
  2260 // Should the Matcher clone shifts on addressing modes, expecting them to
  2261 // be subsumed into complex addressing expressions or compute them into
  2262 // registers? True for Intel but false for most RISCs.
  2263 const bool Matcher::clone_shift_expressions = false;
  2265 // Do we need to mask the count passed to shift instructions or does
  2266 // the cpu only look at the lower 5/6 bits anyway?
  2267 // PowerPC requires masked shift counts.
  2268 const bool Matcher::need_masked_shift_count = true;
  2270 // This affects two different things:
  2271 //  - how Decode nodes are matched
  2272 //  - how ImplicitNullCheck opportunities are recognized
  2273 // If true, the matcher will try to remove all Decodes and match them
  2274 // (as operands) into nodes. NullChecks are not prepared to deal with
  2275 // Decodes by final_graph_reshaping().
  2276 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2277 // for a NullCheck. The matcher matches the Decode node into a register.
  2278 // Implicit_null_check optimization moves the Decode along with the
  2279 // memory operation back up before the NullCheck.
  2280 bool Matcher::narrow_oop_use_complex_address() {
  2281   // TODO: PPC port if (MatchDecodeNodes) return true;
  2282   return false;
  2285 bool Matcher::narrow_klass_use_complex_address() {
  2286   NOT_LP64(ShouldNotCallThis());
  2287   assert(UseCompressedClassPointers, "only for compressed klass code");
  2288   // TODO: PPC port if (MatchDecodeNodes) return true;
  2289   return false;
  2292 // Is it better to copy float constants, or load them directly from memory?
  2293 // Intel can load a float constant from a direct address, requiring no
  2294 // extra registers. Most RISCs will have to materialize an address into a
  2295 // register first, so they would do better to copy the constant from stack.
  2296 const bool Matcher::rematerialize_float_constants = false;
  2298 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2299 // needed. Else we split the double into 2 integer pieces and move it
  2300 // piece-by-piece. Only happens when passing doubles into C code as the
  2301 // Java calling convention forces doubles to be aligned.
  2302 const bool Matcher::misaligned_doubles_ok = true;
  2304 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2305  Unimplemented();
  2308 // Advertise here if the CPU requires explicit rounding operations
  2309 // to implement the UseStrictFP mode.
  2310 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2312 // Do floats take an entire double register or just half?
  2313 //
  2314 // A float occupies a ppc64 double register. For the allocator, a
  2315 // ppc64 double register appears as a pair of float registers.
  2316 bool Matcher::float_in_double() { return true; }
  2318 // Do ints take an entire long register or just half?
  2319 // The relevant question is how the int is callee-saved:
  2320 // the whole long is written but de-opt'ing will have to extract
  2321 // the relevant 32 bits.
  2322 const bool Matcher::int_in_long = true;
  2324 // Constants for c2c and c calling conventions.
  2326 const MachRegisterNumbers iarg_reg[8] = {
  2327   R3_num, R4_num, R5_num, R6_num,
  2328   R7_num, R8_num, R9_num, R10_num
  2329 };
  2331 const MachRegisterNumbers farg_reg[13] = {
  2332   F1_num, F2_num, F3_num, F4_num,
  2333   F5_num, F6_num, F7_num, F8_num,
  2334   F9_num, F10_num, F11_num, F12_num,
  2335   F13_num
  2336 };
  2338 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2340 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2342 // Return whether or not this register is ever used as an argument. This
  2343 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2344 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2345 // arguments in those registers not be available to the callee.
  2346 bool Matcher::can_be_java_arg(int reg) {
  2347   // We return true for all registers contained in iarg_reg[] and
  2348   // farg_reg[] and their virtual halves.
  2349   // We must include the virtual halves in order to get STDs and LDs
  2350   // instead of STWs and LWs in the trampoline stubs.
  2352   if (   reg == R3_num  || reg == R3_H_num
  2353       || reg == R4_num  || reg == R4_H_num
  2354       || reg == R5_num  || reg == R5_H_num
  2355       || reg == R6_num  || reg == R6_H_num
  2356       || reg == R7_num  || reg == R7_H_num
  2357       || reg == R8_num  || reg == R8_H_num
  2358       || reg == R9_num  || reg == R9_H_num
  2359       || reg == R10_num || reg == R10_H_num)
  2360     return true;
  2362   if (   reg == F1_num  || reg == F1_H_num
  2363       || reg == F2_num  || reg == F2_H_num
  2364       || reg == F3_num  || reg == F3_H_num
  2365       || reg == F4_num  || reg == F4_H_num
  2366       || reg == F5_num  || reg == F5_H_num
  2367       || reg == F6_num  || reg == F6_H_num
  2368       || reg == F7_num  || reg == F7_H_num
  2369       || reg == F8_num  || reg == F8_H_num
  2370       || reg == F9_num  || reg == F9_H_num
  2371       || reg == F10_num || reg == F10_H_num
  2372       || reg == F11_num || reg == F11_H_num
  2373       || reg == F12_num || reg == F12_H_num
  2374       || reg == F13_num || reg == F13_H_num)
  2375     return true;
  2377   return false;
  2380 bool Matcher::is_spillable_arg(int reg) {
  2381   return can_be_java_arg(reg);
  2384 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2385   return false;
  2388 // Register for DIVI projection of divmodI.
  2389 RegMask Matcher::divI_proj_mask() {
  2390   ShouldNotReachHere();
  2391   return RegMask();
  2394 // Register for MODI projection of divmodI.
  2395 RegMask Matcher::modI_proj_mask() {
  2396   ShouldNotReachHere();
  2397   return RegMask();
  2400 // Register for DIVL projection of divmodL.
  2401 RegMask Matcher::divL_proj_mask() {
  2402   ShouldNotReachHere();
  2403   return RegMask();
  2406 // Register for MODL projection of divmodL.
  2407 RegMask Matcher::modL_proj_mask() {
  2408   ShouldNotReachHere();
  2409   return RegMask();
  2412 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2413   return RegMask();
  2416 %}
  2418 //----------ENCODING BLOCK-----------------------------------------------------
  2419 // This block specifies the encoding classes used by the compiler to output
  2420 // byte streams. Encoding classes are parameterized macros used by
  2421 // Machine Instruction Nodes in order to generate the bit encoding of the
  2422 // instruction. Operands specify their base encoding interface with the
  2423 // interface keyword. There are currently supported four interfaces,
  2424 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2425 // operand to generate a function which returns its register number when
  2426 // queried. CONST_INTER causes an operand to generate a function which
  2427 // returns the value of the constant when queried. MEMORY_INTER causes an
  2428 // operand to generate four functions which return the Base Register, the
  2429 // Index Register, the Scale Value, and the Offset Value of the operand when
  2430 // queried. COND_INTER causes an operand to generate six functions which
  2431 // return the encoding code (ie - encoding bits for the instruction)
  2432 // associated with each basic boolean condition for a conditional instruction.
  2433 //
  2434 // Instructions specify two basic values for encoding. Again, a function
  2435 // is available to check if the constant displacement is an oop. They use the
  2436 // ins_encode keyword to specify their encoding classes (which must be
  2437 // a sequence of enc_class names, and their parameters, specified in
  2438 // the encoding block), and they use the
  2439 // opcode keyword to specify, in order, their primary, secondary, and
  2440 // tertiary opcode. Only the opcode sections which a particular instruction
  2441 // needs for encoding need to be specified.
  2442 encode %{
  2443   enc_class enc_unimplemented %{
  2444     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2445     MacroAssembler _masm(&cbuf);
  2446     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2447   %}
  2449   enc_class enc_untested %{
  2450 #ifdef ASSERT
  2451     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2452     MacroAssembler _masm(&cbuf);
  2453     __ untested("Untested mach node encoding in AD file.");
  2454 #else
  2455     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2456 #endif
  2457   %}
  2459   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2460     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2461     MacroAssembler _masm(&cbuf);
  2462     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2463     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2464   %}
  2466   // Load acquire.
  2467   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2468     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2469     MacroAssembler _masm(&cbuf);
  2470     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2471     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2472     __ twi_0($dst$$Register);
  2473     __ isync();
  2474   %}
  2476   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2477     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2479     MacroAssembler _masm(&cbuf);
  2480     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2481     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2482   %}
  2484   // Load acquire.
  2485   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2486     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2488     MacroAssembler _masm(&cbuf);
  2489     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2490     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2491     __ twi_0($dst$$Register);
  2492     __ isync();
  2493   %}
  2495   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2496     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2498     MacroAssembler _masm(&cbuf);
  2499     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2500     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2501   %}
  2503   // Load acquire.
  2504   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2505     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2507     MacroAssembler _masm(&cbuf);
  2508     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2509     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2510     __ twi_0($dst$$Register);
  2511     __ isync();
  2512   %}
  2514   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2515     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2516     MacroAssembler _masm(&cbuf);
  2517     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2518     // Operand 'ds' requires 4-alignment.
  2519     assert((Idisp & 0x3) == 0, "unaligned offset");
  2520     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2521   %}
  2523   // Load acquire.
  2524   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2525     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2526     MacroAssembler _masm(&cbuf);
  2527     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2528     // Operand 'ds' requires 4-alignment.
  2529     assert((Idisp & 0x3) == 0, "unaligned offset");
  2530     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2531     __ twi_0($dst$$Register);
  2532     __ isync();
  2533   %}
  2535   enc_class enc_lfd(RegF dst, memory mem) %{
  2536     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2537     MacroAssembler _masm(&cbuf);
  2538     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2539     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2540   %}
  2542   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2543     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2545     MacroAssembler _masm(&cbuf);
  2546     int toc_offset = 0;
  2548     if (!ra_->C->in_scratch_emit_size()) {
  2549       address const_toc_addr;
  2550       // Create a non-oop constant, no relocation needed.
  2551       // If it is an IC, it has a virtual_call_Relocation.
  2552       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2554       // Get the constant's TOC offset.
  2555       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2557       // Keep the current instruction offset in mind.
  2558       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2561     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2562   %}
  2564   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2565     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2567     MacroAssembler _masm(&cbuf);
  2569     if (!ra_->C->in_scratch_emit_size()) {
  2570       address const_toc_addr;
  2571       // Create a non-oop constant, no relocation needed.
  2572       // If it is an IC, it has a virtual_call_Relocation.
  2573       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2575       // Get the constant's TOC offset.
  2576       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2577       // Store the toc offset of the constant.
  2578       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2580       // Also keep the current instruction offset in mind.
  2581       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2584     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2585   %}
  2587 %} // encode
  2589 source %{
  2591 typedef struct {
  2592   loadConL_hiNode *_large_hi;
  2593   loadConL_loNode *_large_lo;
  2594   loadConLNode    *_small;
  2595   MachNode        *_last;
  2596 } loadConLNodesTuple;
  2598 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2599                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2600   loadConLNodesTuple nodes;
  2602   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2603   if (large_constant_pool) {
  2604     // Create new nodes.
  2605     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2606     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2608     // inputs for new nodes
  2609     m1->add_req(NULL, toc);
  2610     m2->add_req(NULL, m1);
  2612     // operands for new nodes
  2613     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2614     m1->_opnds[1] = immSrc;                 // src
  2615     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2616     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2617     m2->_opnds[1] = immSrc;                 // src
  2618     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2620     // Initialize ins_attrib TOC fields.
  2621     m1->_const_toc_offset = -1;
  2622     m2->_const_toc_offset_hi_node = m1;
  2624     // Initialize ins_attrib instruction offset.
  2625     m1->_cbuf_insts_offset = -1;
  2627     // register allocation for new nodes
  2628     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2629     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2631     // Create result.
  2632     nodes._large_hi = m1;
  2633     nodes._large_lo = m2;
  2634     nodes._small = NULL;
  2635     nodes._last = nodes._large_lo;
  2636     assert(m2->bottom_type()->isa_long(), "must be long");
  2637   } else {
  2638     loadConLNode *m2 = new (C) loadConLNode();
  2640     // inputs for new nodes
  2641     m2->add_req(NULL, toc);
  2643     // operands for new nodes
  2644     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2645     m2->_opnds[1] = immSrc;                 // src
  2646     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2648     // Initialize ins_attrib instruction offset.
  2649     m2->_cbuf_insts_offset = -1;
  2651     // register allocation for new nodes
  2652     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2654     // Create result.
  2655     nodes._large_hi = NULL;
  2656     nodes._large_lo = NULL;
  2657     nodes._small = m2;
  2658     nodes._last = nodes._small;
  2659     assert(m2->bottom_type()->isa_long(), "must be long");
  2662   return nodes;
  2665 %} // source
  2667 encode %{
  2668   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2669   // Enc_class needed as consttanttablebase is not supported by postalloc
  2670   // expand.
  2671   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2672     // Create new nodes.
  2673     loadConLNodesTuple loadConLNodes =
  2674       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2675                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2677     // Push new nodes.
  2678     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2679     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2681     // some asserts
  2682     assert(nodes->length() >= 1, "must have created at least 1 node");
  2683     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2684   %}
  2686   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2687     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2689     MacroAssembler _masm(&cbuf);
  2690     int toc_offset = 0;
  2692     if (!ra_->C->in_scratch_emit_size()) {
  2693       intptr_t val = $src$$constant;
  2694       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2695       address const_toc_addr;
  2696       if (constant_reloc == relocInfo::oop_type) {
  2697         // Create an oop constant and a corresponding relocation.
  2698         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2699         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2700         __ relocate(a.rspec());
  2701       } else if (constant_reloc == relocInfo::metadata_type) {
  2702         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2703         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2704         __ relocate(a.rspec());
  2705       } else {
  2706         // Create a non-oop constant, no relocation needed.
  2707         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2710       // Get the constant's TOC offset.
  2711       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2714     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2715   %}
  2717   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2718     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2720     MacroAssembler _masm(&cbuf);
  2721     if (!ra_->C->in_scratch_emit_size()) {
  2722       intptr_t val = $src$$constant;
  2723       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2724       address const_toc_addr;
  2725       if (constant_reloc == relocInfo::oop_type) {
  2726         // Create an oop constant and a corresponding relocation.
  2727         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2728         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2729         __ relocate(a.rspec());
  2730       } else if (constant_reloc == relocInfo::metadata_type) {
  2731         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2732         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2733         __ relocate(a.rspec());
  2734       } else {  // non-oop pointers, e.g. card mark base, heap top
  2735         // Create a non-oop constant, no relocation needed.
  2736         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2739       // Get the constant's TOC offset.
  2740       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2741       // Store the toc offset of the constant.
  2742       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2745     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2746   %}
  2748   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2749   // Enc_class needed as consttanttablebase is not supported by postalloc
  2750   // expand.
  2751   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2752     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2753     if (large_constant_pool) {
  2754       // Create new nodes.
  2755       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2756       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2758       // inputs for new nodes
  2759       m1->add_req(NULL, n_toc);
  2760       m2->add_req(NULL, m1);
  2762       // operands for new nodes
  2763       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2764       m1->_opnds[1] = op_src;                 // src
  2765       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2766       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2767       m2->_opnds[1] = op_src;                 // src
  2768       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2770       // Initialize ins_attrib TOC fields.
  2771       m1->_const_toc_offset = -1;
  2772       m2->_const_toc_offset_hi_node = m1;
  2774       // Register allocation for new nodes.
  2775       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2776       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2778       nodes->push(m1);
  2779       nodes->push(m2);
  2780       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2781     } else {
  2782       loadConPNode *m2 = new (C) loadConPNode();
  2784       // inputs for new nodes
  2785       m2->add_req(NULL, n_toc);
  2787       // operands for new nodes
  2788       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2789       m2->_opnds[1] = op_src;                 // src
  2790       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2792       // Register allocation for new nodes.
  2793       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2795       nodes->push(m2);
  2796       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2798   %}
  2800   // Enc_class needed as consttanttablebase is not supported by postalloc
  2801   // expand.
  2802   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2803     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2805     MachNode *m2;
  2806     if (large_constant_pool) {
  2807       m2 = new (C) loadConFCompNode();
  2808     } else {
  2809       m2 = new (C) loadConFNode();
  2811     // inputs for new nodes
  2812     m2->add_req(NULL, n_toc);
  2814     // operands for new nodes
  2815     m2->_opnds[0] = op_dst;
  2816     m2->_opnds[1] = op_src;
  2817     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2819     // register allocation for new nodes
  2820     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2821     nodes->push(m2);
  2822   %}
  2824   // Enc_class needed as consttanttablebase is not supported by postalloc
  2825   // expand.
  2826   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2827     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2829     MachNode *m2;
  2830     if (large_constant_pool) {
  2831       m2 = new (C) loadConDCompNode();
  2832     } else {
  2833       m2 = new (C) loadConDNode();
  2835     // inputs for new nodes
  2836     m2->add_req(NULL, n_toc);
  2838     // operands for new nodes
  2839     m2->_opnds[0] = op_dst;
  2840     m2->_opnds[1] = op_src;
  2841     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2843     // register allocation for new nodes
  2844     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2845     nodes->push(m2);
  2846   %}
  2848   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2849     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2850     MacroAssembler _masm(&cbuf);
  2851     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2852     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2853   %}
  2855   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2856     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2857     MacroAssembler _masm(&cbuf);
  2858     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2859     // Operand 'ds' requires 4-alignment.
  2860     assert((Idisp & 0x3) == 0, "unaligned offset");
  2861     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2862   %}
  2864   enc_class enc_stfs(RegF src, memory mem) %{
  2865     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2866     MacroAssembler _masm(&cbuf);
  2867     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2868     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2869   %}
  2871   enc_class enc_stfd(RegF src, memory mem) %{
  2872     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2873     MacroAssembler _masm(&cbuf);
  2874     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2875     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2876   %}
  2878   // Use release_store for card-marking to ensure that previous
  2879   // oop-stores are visible before the card-mark change.
  2880   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2881     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2882     // FIXME: Implement this as a cmove and use a fixed condition code
  2883     // register which is written on every transition to compiled code,
  2884     // e.g. in call-stub and when returning from runtime stubs.
  2885     //
  2886     // Proposed code sequence for the cmove implementation:
  2887     //
  2888     // Label skip_release;
  2889     // __ beq(CCRfixed, skip_release);
  2890     // __ release();
  2891     // __ bind(skip_release);
  2892     // __ stb(card mark);
  2894     MacroAssembler _masm(&cbuf);
  2895     Label skip_storestore;
  2897 #if 0 // TODO: PPC port
  2898     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2899     // StoreStore barrier conditionally.
  2900     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2901     __ cmpwi(CCR0, R0, 0);
  2902     __ beq_predict_taken(CCR0, skip_storestore);
  2903 #endif
  2904     __ li(R0, 0);
  2905     __ membar(Assembler::StoreStore);
  2906 #if 0 // TODO: PPC port
  2907     __ bind(skip_storestore);
  2908 #endif
  2910     // Do the store.
  2911     if ($mem$$index == 0) {
  2912       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2913     } else {
  2914       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2915       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2917   %}
  2919   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2921     if (VM_Version::has_isel()) {
  2922       // use isel instruction with Power 7
  2923       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2924       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2925       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2926       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2928       n_compare->add_req(n_region, n_src);
  2929       n_compare->_opnds[0] = op_crx;
  2930       n_compare->_opnds[1] = op_src;
  2931       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2933       n_sub_base->add_req(n_region, n_src);
  2934       n_sub_base->_opnds[0] = op_dst;
  2935       n_sub_base->_opnds[1] = op_src;
  2936       n_sub_base->_bottom_type = _bottom_type;
  2938       n_shift->add_req(n_region, n_sub_base);
  2939       n_shift->_opnds[0] = op_dst;
  2940       n_shift->_opnds[1] = op_dst;
  2941       n_shift->_bottom_type = _bottom_type;
  2943       n_cond_set->add_req(n_region, n_compare, n_shift);
  2944       n_cond_set->_opnds[0] = op_dst;
  2945       n_cond_set->_opnds[1] = op_crx;
  2946       n_cond_set->_opnds[2] = op_dst;
  2947       n_cond_set->_bottom_type = _bottom_type;
  2949       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2950       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2951       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2952       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2954       nodes->push(n_compare);
  2955       nodes->push(n_sub_base);
  2956       nodes->push(n_shift);
  2957       nodes->push(n_cond_set);
  2959     } else {
  2960       // before Power 7
  2961       moveRegNode        *n_move     = new (C) moveRegNode();
  2962       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2963       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2964       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2966       n_move->add_req(n_region, n_src);
  2967       n_move->_opnds[0] = op_dst;
  2968       n_move->_opnds[1] = op_src;
  2969       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2971       n_compare->add_req(n_region, n_src);
  2972       n_compare->add_prec(n_move);
  2974       n_compare->_opnds[0] = op_crx;
  2975       n_compare->_opnds[1] = op_src;
  2976       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2978       n_sub_base->add_req(n_region, n_compare, n_src);
  2979       n_sub_base->_opnds[0] = op_dst;
  2980       n_sub_base->_opnds[1] = op_crx;
  2981       n_sub_base->_opnds[2] = op_src;
  2982       n_sub_base->_bottom_type = _bottom_type;
  2984       n_shift->add_req(n_region, n_sub_base);
  2985       n_shift->_opnds[0] = op_dst;
  2986       n_shift->_opnds[1] = op_dst;
  2987       n_shift->_bottom_type = _bottom_type;
  2989       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2990       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2991       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2992       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2994       nodes->push(n_move);
  2995       nodes->push(n_compare);
  2996       nodes->push(n_sub_base);
  2997       nodes->push(n_shift);
  3000     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3001   %}
  3003   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  3005     encodeP_subNode *n1 = new (C) encodeP_subNode();
  3006     n1->add_req(n_region, n_src);
  3007     n1->_opnds[0] = op_dst;
  3008     n1->_opnds[1] = op_src;
  3009     n1->_bottom_type = _bottom_type;
  3011     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  3012     n2->add_req(n_region, n1);
  3013     n2->_opnds[0] = op_dst;
  3014     n2->_opnds[1] = op_dst;
  3015     n2->_bottom_type = _bottom_type;
  3016     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3017     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3019     nodes->push(n1);
  3020     nodes->push(n2);
  3021     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3022   %}
  3024   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  3025     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  3026     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  3028     n_compare->add_req(n_region, n_src);
  3029     n_compare->_opnds[0] = op_crx;
  3030     n_compare->_opnds[1] = op_src;
  3031     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  3033     n_shift->add_req(n_region, n_src);
  3034     n_shift->_opnds[0] = op_dst;
  3035     n_shift->_opnds[1] = op_src;
  3036     n_shift->_bottom_type = _bottom_type;
  3038     if (VM_Version::has_isel()) {
  3039       // use isel instruction with Power 7
  3041       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  3042       n_add_base->add_req(n_region, n_shift);
  3043       n_add_base->_opnds[0] = op_dst;
  3044       n_add_base->_opnds[1] = op_dst;
  3045       n_add_base->_bottom_type = _bottom_type;
  3047       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3048       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3049       n_cond_set->_opnds[0] = op_dst;
  3050       n_cond_set->_opnds[1] = op_crx;
  3051       n_cond_set->_opnds[2] = op_dst;
  3052       n_cond_set->_bottom_type = _bottom_type;
  3054       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3055       ra_->set_oop(n_cond_set, true);
  3057       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3058       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3059       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3060       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3062       nodes->push(n_compare);
  3063       nodes->push(n_shift);
  3064       nodes->push(n_add_base);
  3065       nodes->push(n_cond_set);
  3067     } else {
  3068       // before Power 7
  3069       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3071       n_add_base->add_req(n_region, n_compare, n_shift);
  3072       n_add_base->_opnds[0] = op_dst;
  3073       n_add_base->_opnds[1] = op_crx;
  3074       n_add_base->_opnds[2] = op_dst;
  3075       n_add_base->_bottom_type = _bottom_type;
  3077       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3078       ra_->set_oop(n_add_base, true);
  3080       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3081       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3082       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3084       nodes->push(n_compare);
  3085       nodes->push(n_shift);
  3086       nodes->push(n_add_base);
  3088   %}
  3090   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3091     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3092     n1->add_req(n_region, n_src);
  3093     n1->_opnds[0] = op_dst;
  3094     n1->_opnds[1] = op_src;
  3095     n1->_bottom_type = _bottom_type;
  3097     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3098     n2->add_req(n_region, n1);
  3099     n2->_opnds[0] = op_dst;
  3100     n2->_opnds[1] = op_dst;
  3101     n2->_bottom_type = _bottom_type;
  3102     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3103     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3105     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3106     ra_->set_oop(n2, true);
  3108     nodes->push(n1);
  3109     nodes->push(n2);
  3110   %}
  3112   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3113     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3115     MacroAssembler _masm(&cbuf);
  3116     int cc        = $cmp$$cmpcode;
  3117     int flags_reg = $crx$$reg;
  3118     Label done;
  3119     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3120     // Branch if not (cmp crx).
  3121     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3122     __ mr($dst$$Register, $src$$Register);
  3123     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3124     __ bind(done);
  3125   %}
  3127   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3128     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3130     MacroAssembler _masm(&cbuf);
  3131     Label done;
  3132     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3133     // Branch if not (cmp crx).
  3134     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3135     __ li($dst$$Register, $src$$constant);
  3136     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3137     __ bind(done);
  3138   %}
  3140   // New atomics.
  3141   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3142     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3144     MacroAssembler _masm(&cbuf);
  3145     Register Rtmp   = R0;
  3146     Register Rres   = $res$$Register;
  3147     Register Rsrc   = $src$$Register;
  3148     Register Rptr   = $mem_ptr$$Register;
  3149     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3150     Register Rold   = RegCollision ? Rtmp : Rres;
  3152     Label Lretry;
  3153     __ bind(Lretry);
  3154     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3155     __ add(Rtmp, Rsrc, Rold);
  3156     __ stwcx_(Rtmp, Rptr);
  3157     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3158       __ bne_predict_not_taken(CCR0, Lretry);
  3159     } else {
  3160       __ bne(                  CCR0, Lretry);
  3162     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3163     __ fence();
  3164   %}
  3166   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3167     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3169     MacroAssembler _masm(&cbuf);
  3170     Register Rtmp   = R0;
  3171     Register Rres   = $res$$Register;
  3172     Register Rsrc   = $src$$Register;
  3173     Register Rptr   = $mem_ptr$$Register;
  3174     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3175     Register Rold   = RegCollision ? Rtmp : Rres;
  3177     Label Lretry;
  3178     __ bind(Lretry);
  3179     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3180     __ add(Rtmp, Rsrc, Rold);
  3181     __ stdcx_(Rtmp, Rptr);
  3182     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3183       __ bne_predict_not_taken(CCR0, Lretry);
  3184     } else {
  3185       __ bne(                  CCR0, Lretry);
  3187     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3188     __ fence();
  3189   %}
  3191   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3192     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3194     MacroAssembler _masm(&cbuf);
  3195     Register Rtmp   = R0;
  3196     Register Rres   = $res$$Register;
  3197     Register Rsrc   = $src$$Register;
  3198     Register Rptr   = $mem_ptr$$Register;
  3199     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3200     Register Rold   = RegCollision ? Rtmp : Rres;
  3202     Label Lretry;
  3203     __ bind(Lretry);
  3204     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3205     __ stwcx_(Rsrc, Rptr);
  3206     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3207       __ bne_predict_not_taken(CCR0, Lretry);
  3208     } else {
  3209       __ bne(                  CCR0, Lretry);
  3211     if (RegCollision) __ mr(Rres, Rtmp);
  3212     __ fence();
  3213   %}
  3215   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3216     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3218     MacroAssembler _masm(&cbuf);
  3219     Register Rtmp   = R0;
  3220     Register Rres   = $res$$Register;
  3221     Register Rsrc   = $src$$Register;
  3222     Register Rptr   = $mem_ptr$$Register;
  3223     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3224     Register Rold   = RegCollision ? Rtmp : Rres;
  3226     Label Lretry;
  3227     __ bind(Lretry);
  3228     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3229     __ stdcx_(Rsrc, Rptr);
  3230     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3231       __ bne_predict_not_taken(CCR0, Lretry);
  3232     } else {
  3233       __ bne(                  CCR0, Lretry);
  3235     if (RegCollision) __ mr(Rres, Rtmp);
  3236     __ fence();
  3237   %}
  3239   // This enc_class is needed so that scheduler gets proper
  3240   // input mapping for latency computation.
  3241   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3242     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3243     MacroAssembler _masm(&cbuf);
  3244     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3245   %}
  3247   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3248     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3250     MacroAssembler _masm(&cbuf);
  3252     Label done;
  3253     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3254     __ li($dst$$Register, $zero$$constant);
  3255     __ beq($crx$$CondRegister, done);
  3256     __ li($dst$$Register, $notzero$$constant);
  3257     __ bind(done);
  3258   %}
  3260   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3261     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3263     MacroAssembler _masm(&cbuf);
  3265     Label done;
  3266     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3267     __ li($dst$$Register, $zero$$constant);
  3268     __ beq($crx$$CondRegister, done);
  3269     __ li($dst$$Register, $notzero$$constant);
  3270     __ bind(done);
  3271   %}
  3273   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3274     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3276     MacroAssembler _masm(&cbuf);
  3277     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3278     Label done;
  3279     __ bso($crx$$CondRegister, done);
  3280     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3281     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3282     __ bind(done);
  3283   %}
  3285   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3286     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3288     MacroAssembler _masm(&cbuf);
  3289     Label d;   // dummy
  3290     __ bind(d);
  3291     Label* p = ($lbl$$label);
  3292     // `p' is `NULL' when this encoding class is used only to
  3293     // determine the size of the encoded instruction.
  3294     Label& l = (NULL == p)? d : *(p);
  3295     int cc = $cmp$$cmpcode;
  3296     int flags_reg = $crx$$reg;
  3297     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3298     int bhint = Assembler::bhintNoHint;
  3300     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3301       if (_prob <= PROB_NEVER) {
  3302         bhint = Assembler::bhintIsNotTaken;
  3303       } else if (_prob >= PROB_ALWAYS) {
  3304         bhint = Assembler::bhintIsTaken;
  3308     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3309           cc_to_biint(cc, flags_reg),
  3310           l);
  3311   %}
  3313   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3314     // The scheduler doesn't know about branch shortening, so we set the opcode
  3315     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3316     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3318     MacroAssembler _masm(&cbuf);
  3319     Label d;    // dummy
  3320     __ bind(d);
  3321     Label* p = ($lbl$$label);
  3322     // `p' is `NULL' when this encoding class is used only to
  3323     // determine the size of the encoded instruction.
  3324     Label& l = (NULL == p)? d : *(p);
  3325     int cc = $cmp$$cmpcode;
  3326     int flags_reg = $crx$$reg;
  3327     int bhint = Assembler::bhintNoHint;
  3329     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3330       if (_prob <= PROB_NEVER) {
  3331         bhint = Assembler::bhintIsNotTaken;
  3332       } else if (_prob >= PROB_ALWAYS) {
  3333         bhint = Assembler::bhintIsTaken;
  3337     // Tell the conditional far branch to optimize itself when being relocated.
  3338     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3339                   cc_to_biint(cc, flags_reg),
  3340                   l,
  3341                   MacroAssembler::bc_far_optimize_on_relocate);
  3342   %}
  3344   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3345   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3346     // The scheduler doesn't know about branch shortening, so we set the opcode
  3347     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3348     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3350     MacroAssembler _masm(&cbuf);
  3351     Label d;   // dummy
  3352     __ bind(d);
  3353     Label* p = ($lbl$$label);
  3354     // `p' is `NULL' when this encoding class is used only to
  3355     // determine the size of the encoded instruction.
  3356     Label& l = (NULL == p)? d : *(p);
  3357     int cc = $cmp$$cmpcode;
  3358     int flags_reg = $crx$$reg;
  3359     int bhint = Assembler::bhintNoHint;
  3361     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3362       if (_prob <= PROB_NEVER) {
  3363         bhint = Assembler::bhintIsNotTaken;
  3364       } else if (_prob >= PROB_ALWAYS) {
  3365         bhint = Assembler::bhintIsTaken;
  3369 #if 0 // TODO: PPC port
  3370     if (_size == 8) {
  3371       // Tell the conditional far branch to optimize itself when being relocated.
  3372       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3373                     cc_to_biint(cc, flags_reg),
  3374                     l,
  3375                     MacroAssembler::bc_far_optimize_on_relocate);
  3376     } else {
  3377       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3378                     cc_to_biint(cc, flags_reg),
  3379                     l);
  3381 #endif
  3382     Unimplemented();
  3383   %}
  3385   // Postalloc expand emitter for loading a replicatef float constant from
  3386   // the method's TOC.
  3387   // Enc_class needed as consttanttablebase is not supported by postalloc
  3388   // expand.
  3389   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3390     // Create new nodes.
  3392     // Make an operand with the bit pattern to load as float.
  3393     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3395     loadConLNodesTuple loadConLNodes =
  3396       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3397                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3399     // Push new nodes.
  3400     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3401     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3403     assert(nodes->length() >= 1, "must have created at least 1 node");
  3404     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3405   %}
  3407   // This enc_class is needed so that scheduler gets proper
  3408   // input mapping for latency computation.
  3409   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3410     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3411     // Fake operand dst needed for PPC scheduler.
  3412     assert($dst$$constant == 0x0, "dst must be 0x0");
  3414     MacroAssembler _masm(&cbuf);
  3415     // Mark the code position where the load from the safepoint
  3416     // polling page was emitted as relocInfo::poll_type.
  3417     __ relocate(relocInfo::poll_type);
  3418     __ load_from_polling_page($poll$$Register);
  3419   %}
  3421   // A Java static call or a runtime call.
  3422   //
  3423   // Branch-and-link relative to a trampoline.
  3424   // The trampoline loads the target address and does a long branch to there.
  3425   // In case we call java, the trampoline branches to a interpreter_stub
  3426   // which loads the inline cache and the real call target from the constant pool.
  3427   //
  3428   // This basically looks like this:
  3429   //
  3430   // >>>> consts      -+  -+
  3431   //                   |   |- offset1
  3432   // [call target1]    | <-+
  3433   // [IC cache]        |- offset2
  3434   // [call target2] <--+
  3435   //
  3436   // <<<< consts
  3437   // >>>> insts
  3438   //
  3439   // bl offset16               -+  -+             ??? // How many bits available?
  3440   //                            |   |
  3441   // <<<< insts                 |   |
  3442   // >>>> stubs                 |   |
  3443   //                            |   |- trampoline_stub_Reloc
  3444   // trampoline stub:           | <-+
  3445   //   r2 = toc                 |
  3446   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3447   //   mtctr r2                 |
  3448   //   bctr                     |- static_stub_Reloc
  3449   // comp_to_interp_stub:   <---+
  3450   //   r1 = toc
  3451   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3452   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3453   //   mtctr r1
  3454   //   bctr
  3455   //
  3456   // <<<< stubs
  3457   //
  3458   // The call instruction in the code either
  3459   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3460   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3461   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3462   //
  3463   // Further there are three relocations from the loads to the constants in
  3464   // the constant section.
  3465   //
  3466   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3467   enc_class enc_java_static_call(method meth) %{
  3468     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3470     MacroAssembler _masm(&cbuf);
  3471     address entry_point = (address)$meth$$method;
  3473     if (!_method) {
  3474       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3475       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3476     } else {
  3477       // Remember the offset not the address.
  3478       const int start_offset = __ offset();
  3479       // The trampoline stub.
  3480       if (!Compile::current()->in_scratch_emit_size()) {
  3481         // No entry point given, use the current pc.
  3482         // Make sure branch fits into
  3483         if (entry_point == 0) entry_point = __ pc();
  3485         // Put the entry point as a constant into the constant pool.
  3486         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3487         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3489         // Emit the trampoline stub which will be related to the branch-and-link below.
  3490         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3491         if (Compile::current()->env()->failing()) { return; } // Code cache may be full.
  3492         __ relocate(_optimized_virtual ?
  3493                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3496       // The real call.
  3497       // Note: At this point we do not have the address of the trampoline
  3498       // stub, and the entry point might be too far away for bl, so __ pc()
  3499       // serves as dummy and the bl will be patched later.
  3500       cbuf.set_insts_mark();
  3501       __ bl(__ pc());  // Emits a relocation.
  3503       // The stub for call to interpreter.
  3504       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3506   %}
  3508   // Emit a method handle call.
  3509   //
  3510   // Method handle calls from compiled to compiled are going thru a
  3511   // c2i -> i2c adapter, extending the frame for their arguments. The
  3512   // caller however, returns directly to the compiled callee, that has
  3513   // to cope with the extended frame. We restore the original frame by
  3514   // loading the callers sp and adding the calculated framesize.
  3515   enc_class enc_java_handle_call(method meth) %{
  3516     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3518     MacroAssembler _masm(&cbuf);
  3519     address entry_point = (address)$meth$$method;
  3521     // Remember the offset not the address.
  3522     const int start_offset = __ offset();
  3523     // The trampoline stub.
  3524     if (!ra_->C->in_scratch_emit_size()) {
  3525       // No entry point given, use the current pc.
  3526       // Make sure branch fits into
  3527       if (entry_point == 0) entry_point = __ pc();
  3529       // Put the entry point as a constant into the constant pool.
  3530       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3531       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3533       // Emit the trampoline stub which will be related to the branch-and-link below.
  3534       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3535       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3536       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3537       __ relocate(relocInfo::opt_virtual_call_type);
  3540     // The real call.
  3541     // Note: At this point we do not have the address of the trampoline
  3542     // stub, and the entry point might be too far away for bl, so __ pc()
  3543     // serves as dummy and the bl will be patched later.
  3544     cbuf.set_insts_mark();
  3545     __ bl(__ pc());  // Emits a relocation.
  3547     assert(_method, "execute next statement conditionally");
  3548     // The stub for call to interpreter.
  3549     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3551     // Restore original sp.
  3552     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3553     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3554     unsigned int bytes = (unsigned int)framesize;
  3555     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3556     if (Assembler::is_simm(-offset, 16)) {
  3557       __ addi(R1_SP, R11_scratch1, -offset);
  3558     } else {
  3559       __ load_const_optimized(R12_scratch2, -offset);
  3560       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3562 #ifdef ASSERT
  3563   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3564   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3565   __ asm_assert_eq("backlink changed", 0x8000);
  3566 #endif
  3567     // If fails should store backlink before unextending.
  3569     if (ra_->C->env()->failing()) {
  3570       return;
  3572   %}
  3574   // Second node of expanded dynamic call - the call.
  3575   enc_class enc_java_dynamic_call_sched(method meth) %{
  3576     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3578     MacroAssembler _masm(&cbuf);
  3580     if (!ra_->C->in_scratch_emit_size()) {
  3581       // Create a call trampoline stub for the given method.
  3582       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3583       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3584       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3585       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3586       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3588       // Build relocation at call site with ic position as data.
  3589       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3590              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3591              "must have one, but can't have both");
  3592       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3593              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3594              "must contain instruction offset");
  3595       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3596         ? _load_ic_hi_node->_cbuf_insts_offset
  3597         : _load_ic_node->_cbuf_insts_offset;
  3598       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3599       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3600              "should be load from TOC");
  3602       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3605     // At this point I do not have the address of the trampoline stub,
  3606     // and the entry point might be too far away for bl. Pc() serves
  3607     // as dummy and bl will be patched later.
  3608     __ bl((address) __ pc());
  3609   %}
  3611   // postalloc expand emitter for virtual calls.
  3612   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3614     // Create the nodes for loading the IC from the TOC.
  3615     loadConLNodesTuple loadConLNodes_IC =
  3616       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3617                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3619     // Create the call node.
  3620     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3621     call->_method_handle_invoke = _method_handle_invoke;
  3622     call->_vtable_index      = _vtable_index;
  3623     call->_method            = _method;
  3624     call->_bci               = _bci;
  3625     call->_optimized_virtual = _optimized_virtual;
  3626     call->_tf                = _tf;
  3627     call->_entry_point       = _entry_point;
  3628     call->_cnt               = _cnt;
  3629     call->_argsize           = _argsize;
  3630     call->_oop_map           = _oop_map;
  3631     call->_jvms              = _jvms;
  3632     call->_jvmadj            = _jvmadj;
  3633     call->_in_rms            = _in_rms;
  3634     call->_nesting           = _nesting;
  3636     // New call needs all inputs of old call.
  3637     // Req...
  3638     for (uint i = 0; i < req(); ++i) {
  3639       // The expanded node does not need toc any more.
  3640       // Add the inline cache constant here instead. This expresses the
  3641       // register of the inline cache must be live at the call.
  3642       // Else we would have to adapt JVMState by -1.
  3643       if (i == mach_constant_base_node_input()) {
  3644         call->add_req(loadConLNodes_IC._last);
  3645       } else {
  3646         call->add_req(in(i));
  3649     // ...as well as prec
  3650     for (uint i = req(); i < len(); ++i) {
  3651       call->add_prec(in(i));
  3654     // Remember nodes loading the inline cache into r19.
  3655     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3656     call->_load_ic_node    = loadConLNodes_IC._small;
  3658     // Operands for new nodes.
  3659     call->_opnds[0] = _opnds[0];
  3660     call->_opnds[1] = _opnds[1];
  3662     // Only the inline cache is associated with a register.
  3663     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3665     // Push new nodes.
  3666     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3667     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3668     nodes->push(call);
  3669   %}
  3671   // Compound version of call dynamic
  3672   // Toc is only passed so that it can be used in ins_encode statement.
  3673   // In the code we have to use $constanttablebase.
  3674   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3675     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3676     MacroAssembler _masm(&cbuf);
  3677     int start_offset = __ offset();
  3679     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3680 #if 0
  3681     int vtable_index = this->_vtable_index;
  3682     if (_vtable_index < 0) {
  3683       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3684       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3685       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3687       // Virtual call relocation will point to ic load.
  3688       address virtual_call_meta_addr = __ pc();
  3689       // Load a clear inline cache.
  3690       AddressLiteral empty_ic((address) Universe::non_oop_word());
  3691       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  3692       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3693       // to determine who we intended to call.
  3694       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3695       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3696       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3697              "Fix constant in ret_addr_offset()");
  3698     } else {
  3699       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3700       // Go thru the vtable. Get receiver klass. Receiver already
  3701       // checked for non-null. If we'll go thru a C2I adapter, the
  3702       // interpreter expects method in R19_method.
  3704       __ load_klass(R11_scratch1, R3);
  3706       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3707       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3708       __ li(R19_method, v_off);
  3709       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3710       // NOTE: for vtable dispatches, the vtable entry will never be
  3711       // null. However it may very well end up in handle_wrong_method
  3712       // if the method is abstract for the particular class.
  3713       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3714       // Call target. Either compiled code or C2I adapter.
  3715       __ mtctr(R11_scratch1);
  3716       __ bctrl();
  3717       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3718         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3720       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3721              "Fix constant in ret_addr_offset()");
  3723 #endif
  3724     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3725   %}
  3727   // a runtime call
  3728   enc_class enc_java_to_runtime_call (method meth) %{
  3729     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3731     MacroAssembler _masm(&cbuf);
  3732     const address start_pc = __ pc();
  3734 #if defined(ABI_ELFv2)
  3735     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  3736     __ call_c(entry, relocInfo::runtime_call_type);
  3737 #else
  3738     // The function we're going to call.
  3739     FunctionDescriptor fdtemp;
  3740     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3742     Register Rtoc = R12_scratch2;
  3743     // Calculate the method's TOC.
  3744     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3745     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3746     // pool entries; call_c_using_toc will optimize the call.
  3747     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3748 #endif
  3750     // Check the ret_addr_offset.
  3751     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3752            "Fix constant in ret_addr_offset()");
  3753   %}
  3755   // Move to ctr for leaf call.
  3756   // This enc_class is needed so that scheduler gets proper
  3757   // input mapping for latency computation.
  3758   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3759     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3760     MacroAssembler _masm(&cbuf);
  3761     __ mtctr($src$$Register);
  3762   %}
  3764   // Postalloc expand emitter for runtime leaf calls.
  3765   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3766     loadConLNodesTuple loadConLNodes_Entry;
  3767 #if defined(ABI_ELFv2)
  3768     jlong entry_address = (jlong) this->entry_point();
  3769     assert(entry_address, "need address here");
  3770     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3771                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3772 #else
  3773     // Get the struct that describes the function we are about to call.
  3774     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3775     assert(fd, "need fd here");
  3776     jlong entry_address = (jlong) fd->entry();
  3777     // new nodes
  3778     loadConLNodesTuple loadConLNodes_Env;
  3779     loadConLNodesTuple loadConLNodes_Toc;
  3781     // Create nodes and operands for loading the entry point.
  3782     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3783                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3786     // Create nodes and operands for loading the env pointer.
  3787     if (fd->env() != NULL) {
  3788       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3789                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3790     } else {
  3791       loadConLNodes_Env._large_hi = NULL;
  3792       loadConLNodes_Env._large_lo = NULL;
  3793       loadConLNodes_Env._small    = NULL;
  3794       loadConLNodes_Env._last = new (C) loadConL16Node();
  3795       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3796       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3797       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3800     // Create nodes and operands for loading the Toc point.
  3801     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3802                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3803 #endif // ABI_ELFv2
  3804     // mtctr node
  3805     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  3807     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3808     mtctr->add_req(0, loadConLNodes_Entry._last);
  3810     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3811     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3813     // call node
  3814     MachCallLeafNode *call = new (C) CallLeafDirectNode();
  3816     call->_opnds[0] = _opnds[0];
  3817     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  3819     // Make the new call node look like the old one.
  3820     call->_name        = _name;
  3821     call->_tf          = _tf;
  3822     call->_entry_point = _entry_point;
  3823     call->_cnt         = _cnt;
  3824     call->_argsize     = _argsize;
  3825     call->_oop_map     = _oop_map;
  3826     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3827     call->_jvms        = NULL;
  3828     call->_jvmadj      = _jvmadj;
  3829     call->_in_rms      = _in_rms;
  3830     call->_nesting     = _nesting;
  3833     // New call needs all inputs of old call.
  3834     // Req...
  3835     for (uint i = 0; i < req(); ++i) {
  3836       if (i != mach_constant_base_node_input()) {
  3837         call->add_req(in(i));
  3841     // These must be reqired edges, as the registers are live up to
  3842     // the call. Else the constants are handled as kills.
  3843     call->add_req(mtctr);
  3844 #if !defined(ABI_ELFv2)
  3845     call->add_req(loadConLNodes_Env._last);
  3846     call->add_req(loadConLNodes_Toc._last);
  3847 #endif
  3849     // ...as well as prec
  3850     for (uint i = req(); i < len(); ++i) {
  3851       call->add_prec(in(i));
  3854     // registers
  3855     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3857     // Insert the new nodes.
  3858     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3859     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3860 #if !defined(ABI_ELFv2)
  3861     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3862     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3863     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3864     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3865 #endif
  3866     nodes->push(mtctr);
  3867     nodes->push(call);
  3868   %}
  3869 %}
  3871 //----------FRAME--------------------------------------------------------------
  3872 // Definition of frame structure and management information.
  3874 frame %{
  3875   // What direction does stack grow in (assumed to be same for native & Java).
  3876   stack_direction(TOWARDS_LOW);
  3878   // These two registers define part of the calling convention between
  3879   // compiled code and the interpreter.
  3881   // Inline Cache Register or method for I2C.
  3882   inline_cache_reg(R19); // R19_method
  3884   // Method Oop Register when calling interpreter.
  3885   interpreter_method_oop_reg(R19); // R19_method
  3887   // Optional: name the operand used by cisc-spilling to access
  3888   // [stack_pointer + offset].
  3889   cisc_spilling_operand_name(indOffset);
  3891   // Number of stack slots consumed by a Monitor enter.
  3892   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3894   // Compiled code's Frame Pointer.
  3895   frame_pointer(R1); // R1_SP
  3897   // Interpreter stores its frame pointer in a register which is
  3898   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3899   // interpreted java to compiled java.
  3900   //
  3901   // R14_state holds pointer to caller's cInterpreter.
  3902   interpreter_frame_pointer(R14); // R14_state
  3904   stack_alignment(frame::alignment_in_bytes);
  3906   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3908   // Number of outgoing stack slots killed above the
  3909   // out_preserve_stack_slots for calls to C. Supports the var-args
  3910   // backing area for register parms.
  3911   //
  3912   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3914   // The after-PROLOG location of the return address. Location of
  3915   // return address specifies a type (REG or STACK) and a number
  3916   // representing the register number (i.e. - use a register name) or
  3917   // stack slot.
  3918   //
  3919   // A: Link register is stored in stack slot ...
  3920   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3921   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3922   //    at the end of the prolog.
  3923   // B: We use R20, now.
  3924   //return_addr(REG R20);
  3926   // G: After reading the comments made by all the luminaries on their
  3927   //    failure to tell the compiler where the return address really is,
  3928   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3929   //    4 what apparently works and saves us some spills.
  3930   return_addr(STACK 4);
  3932   // This is the body of the function
  3933   //
  3934   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3935   //                                  uint length,      // length of array
  3936   //                                  bool is_outgoing)
  3937   //
  3938   // The `sig' array is to be updated. sig[j] represents the location
  3939   // of the j-th argument, either a register or a stack slot.
  3941   // Comment taken from i486.ad:
  3942   // Body of function which returns an integer array locating
  3943   // arguments either in registers or in stack slots. Passed an array
  3944   // of ideal registers called "sig" and a "length" count. Stack-slot
  3945   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3946   // arguments for a CALLEE. Incoming stack arguments are
  3947   // automatically biased by the preserve_stack_slots field above.
  3948   calling_convention %{
  3949     // No difference between ingoing/outgoing. Just pass false.
  3950     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3951   %}
  3953   // Comment taken from i486.ad:
  3954   // Body of function which returns an integer array locating
  3955   // arguments either in registers or in stack slots. Passed an array
  3956   // of ideal registers called "sig" and a "length" count. Stack-slot
  3957   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3958   // arguments for a CALLEE. Incoming stack arguments are
  3959   // automatically biased by the preserve_stack_slots field above.
  3960   c_calling_convention %{
  3961     // This is obviously always outgoing.
  3962     // C argument in register AND stack slot.
  3963     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3964   %}
  3966   // Location of native (C/C++) and interpreter return values. This
  3967   // is specified to be the same as Java. In the 32-bit VM, long
  3968   // values are actually returned from native calls in O0:O1 and
  3969   // returned to the interpreter in I0:I1. The copying to and from
  3970   // the register pairs is done by the appropriate call and epilog
  3971   // opcodes. This simplifies the register allocator.
  3972   c_return_value %{
  3973     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3974             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3975             "only return normal values");
  3976     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3977     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3978     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3979     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3980   %}
  3982   // Location of compiled Java return values.  Same as C
  3983   return_value %{
  3984     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3985             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3986             "only return normal values");
  3987     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3988     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3989     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3990     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3991   %}
  3992 %}
  3995 //----------ATTRIBUTES---------------------------------------------------------
  3997 //----------Operand Attributes-------------------------------------------------
  3998 op_attrib op_cost(1);          // Required cost attribute.
  4000 //----------Instruction Attributes---------------------------------------------
  4002 // Cost attribute. required.
  4003 ins_attrib ins_cost(DEFAULT_COST);
  4005 // Is this instruction a non-matching short branch variant of some
  4006 // long branch? Not required.
  4007 ins_attrib ins_short_branch(0);
  4009 ins_attrib ins_is_TrapBasedCheckNode(true);
  4011 // Number of constants.
  4012 // This instruction uses the given number of constants
  4013 // (optional attribute).
  4014 // This is needed to determine in time whether the constant pool will
  4015 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  4016 // is determined. It's also used to compute the constant pool size
  4017 // in Output().
  4018 ins_attrib ins_num_consts(0);
  4020 // Required alignment attribute (must be a power of 2) specifies the
  4021 // alignment that some part of the instruction (not necessarily the
  4022 // start) requires. If > 1, a compute_padding() function must be
  4023 // provided for the instruction.
  4024 ins_attrib ins_alignment(1);
  4026 // Enforce/prohibit rematerializations.
  4027 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  4028 //   then rematerialization of that instruction is prohibited and the
  4029 //   instruction's value will be spilled if necessary.
  4030 //   Causes that MachNode::rematerialize() returns false.
  4031 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  4032 //   then rematerialization should be enforced and a copy of the instruction
  4033 //   should be inserted if possible; rematerialization is not guaranteed.
  4034 //   Note: this may result in rematerializations in front of every use.
  4035 //   Causes that MachNode::rematerialize() can return true.
  4036 // (optional attribute)
  4037 ins_attrib ins_cannot_rematerialize(false);
  4038 ins_attrib ins_should_rematerialize(false);
  4040 // Instruction has variable size depending on alignment.
  4041 ins_attrib ins_variable_size_depending_on_alignment(false);
  4043 // Instruction is a nop.
  4044 ins_attrib ins_is_nop(false);
  4046 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  4047 ins_attrib ins_use_mach_if_fast_lock_node(false);
  4049 // Field for the toc offset of a constant.
  4050 //
  4051 // This is needed if the toc offset is not encodable as an immediate in
  4052 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  4053 // added to the toc, and from this a load with immediate is performed.
  4054 // With postalloc expand, we get two nodes that require the same offset
  4055 // but which don't know about each other. The offset is only known
  4056 // when the constant is added to the constant pool during emitting.
  4057 // It is generated in the 'hi'-node adding the upper bits, and saved
  4058 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  4059 // the offset from there when it gets encoded.
  4060 ins_attrib ins_field_const_toc_offset(0);
  4061 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4063 // A field that can hold the instructions offset in the code buffer.
  4064 // Set in the nodes emitter.
  4065 ins_attrib ins_field_cbuf_insts_offset(-1);
  4067 // Fields for referencing a call's load-IC-node.
  4068 // If the toc offset can not be encoded as an immediate in a load, we
  4069 // use two nodes.
  4070 ins_attrib ins_field_load_ic_hi_node(0);
  4071 ins_attrib ins_field_load_ic_node(0);
  4073 //----------OPERANDS-----------------------------------------------------------
  4074 // Operand definitions must precede instruction definitions for correct
  4075 // parsing in the ADLC because operands constitute user defined types
  4076 // which are used in instruction definitions.
  4077 //
  4078 // Formats are generated automatically for constants and base registers.
  4080 //----------Simple Operands----------------------------------------------------
  4081 // Immediate Operands
  4083 // Integer Immediate: 32-bit
  4084 operand immI() %{
  4085   match(ConI);
  4086   op_cost(40);
  4087   format %{ %}
  4088   interface(CONST_INTER);
  4089 %}
  4091 operand immI8() %{
  4092   predicate(Assembler::is_simm(n->get_int(), 8));
  4093   op_cost(0);
  4094   match(ConI);
  4095   format %{ %}
  4096   interface(CONST_INTER);
  4097 %}
  4099 // Integer Immediate: 16-bit
  4100 operand immI16() %{
  4101   predicate(Assembler::is_simm(n->get_int(), 16));
  4102   op_cost(0);
  4103   match(ConI);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4109 operand immIhi16() %{
  4110   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4111   match(ConI);
  4112   op_cost(0);
  4113   format %{ %}
  4114   interface(CONST_INTER);
  4115 %}
  4117 operand immInegpow2() %{
  4118   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4119   match(ConI);
  4120   op_cost(0);
  4121   format %{ %}
  4122   interface(CONST_INTER);
  4123 %}
  4125 operand immIpow2minus1() %{
  4126   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4127   match(ConI);
  4128   op_cost(0);
  4129   format %{ %}
  4130   interface(CONST_INTER);
  4131 %}
  4133 operand immIpowerOf2() %{
  4134   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4135   match(ConI);
  4136   op_cost(0);
  4137   format %{ %}
  4138   interface(CONST_INTER);
  4139 %}
  4141 // Unsigned Integer Immediate: the values 0-31
  4142 operand uimmI5() %{
  4143   predicate(Assembler::is_uimm(n->get_int(), 5));
  4144   match(ConI);
  4145   op_cost(0);
  4146   format %{ %}
  4147   interface(CONST_INTER);
  4148 %}
  4150 // Unsigned Integer Immediate: 6-bit
  4151 operand uimmI6() %{
  4152   predicate(Assembler::is_uimm(n->get_int(), 6));
  4153   match(ConI);
  4154   op_cost(0);
  4155   format %{ %}
  4156   interface(CONST_INTER);
  4157 %}
  4159 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4160 operand uimmI6_ge32() %{
  4161   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4162   match(ConI);
  4163   op_cost(0);
  4164   format %{ %}
  4165   interface(CONST_INTER);
  4166 %}
  4168 // Unsigned Integer Immediate: 15-bit
  4169 operand uimmI15() %{
  4170   predicate(Assembler::is_uimm(n->get_int(), 15));
  4171   match(ConI);
  4172   op_cost(0);
  4173   format %{ %}
  4174   interface(CONST_INTER);
  4175 %}
  4177 // Unsigned Integer Immediate: 16-bit
  4178 operand uimmI16() %{
  4179   predicate(Assembler::is_uimm(n->get_int(), 16));
  4180   match(ConI);
  4181   op_cost(0);
  4182   format %{ %}
  4183   interface(CONST_INTER);
  4184 %}
  4186 // constant 'int 0'.
  4187 operand immI_0() %{
  4188   predicate(n->get_int() == 0);
  4189   match(ConI);
  4190   op_cost(0);
  4191   format %{ %}
  4192   interface(CONST_INTER);
  4193 %}
  4195 // constant 'int 1'.
  4196 operand immI_1() %{
  4197   predicate(n->get_int() == 1);
  4198   match(ConI);
  4199   op_cost(0);
  4200   format %{ %}
  4201   interface(CONST_INTER);
  4202 %}
  4204 // constant 'int -1'.
  4205 operand immI_minus1() %{
  4206   predicate(n->get_int() == -1);
  4207   match(ConI);
  4208   op_cost(0);
  4209   format %{ %}
  4210   interface(CONST_INTER);
  4211 %}
  4213 // int value 16.
  4214 operand immI_16() %{
  4215   predicate(n->get_int() == 16);
  4216   match(ConI);
  4217   op_cost(0);
  4218   format %{ %}
  4219   interface(CONST_INTER);
  4220 %}
  4222 // int value 24.
  4223 operand immI_24() %{
  4224   predicate(n->get_int() == 24);
  4225   match(ConI);
  4226   op_cost(0);
  4227   format %{ %}
  4228   interface(CONST_INTER);
  4229 %}
  4231 // Compressed oops constants
  4232 // Pointer Immediate
  4233 operand immN() %{
  4234   match(ConN);
  4236   op_cost(10);
  4237   format %{ %}
  4238   interface(CONST_INTER);
  4239 %}
  4241 // NULL Pointer Immediate
  4242 operand immN_0() %{
  4243   predicate(n->get_narrowcon() == 0);
  4244   match(ConN);
  4246   op_cost(0);
  4247   format %{ %}
  4248   interface(CONST_INTER);
  4249 %}
  4251 // Compressed klass constants
  4252 operand immNKlass() %{
  4253   match(ConNKlass);
  4255   op_cost(0);
  4256   format %{ %}
  4257   interface(CONST_INTER);
  4258 %}
  4260 // This operand can be used to avoid matching of an instruct
  4261 // with chain rule.
  4262 operand immNKlass_NM() %{
  4263   match(ConNKlass);
  4264   predicate(false);
  4265   op_cost(0);
  4266   format %{ %}
  4267   interface(CONST_INTER);
  4268 %}
  4270 // Pointer Immediate: 64-bit
  4271 operand immP() %{
  4272   match(ConP);
  4273   op_cost(0);
  4274   format %{ %}
  4275   interface(CONST_INTER);
  4276 %}
  4278 // Operand to avoid match of loadConP.
  4279 // This operand can be used to avoid matching of an instruct
  4280 // with chain rule.
  4281 operand immP_NM() %{
  4282   match(ConP);
  4283   predicate(false);
  4284   op_cost(0);
  4285   format %{ %}
  4286   interface(CONST_INTER);
  4287 %}
  4289 // costant 'pointer 0'.
  4290 operand immP_0() %{
  4291   predicate(n->get_ptr() == 0);
  4292   match(ConP);
  4293   op_cost(0);
  4294   format %{ %}
  4295   interface(CONST_INTER);
  4296 %}
  4298 // pointer 0x0 or 0x1
  4299 operand immP_0or1() %{
  4300   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4301   match(ConP);
  4302   op_cost(0);
  4303   format %{ %}
  4304   interface(CONST_INTER);
  4305 %}
  4307 operand immL() %{
  4308   match(ConL);
  4309   op_cost(40);
  4310   format %{ %}
  4311   interface(CONST_INTER);
  4312 %}
  4314 // Long Immediate: 16-bit
  4315 operand immL16() %{
  4316   predicate(Assembler::is_simm(n->get_long(), 16));
  4317   match(ConL);
  4318   op_cost(0);
  4319   format %{ %}
  4320   interface(CONST_INTER);
  4321 %}
  4323 // Long Immediate: 16-bit, 4-aligned
  4324 operand immL16Alg4() %{
  4325   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4326   match(ConL);
  4327   op_cost(0);
  4328   format %{ %}
  4329   interface(CONST_INTER);
  4330 %}
  4332 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4333 operand immL32hi16() %{
  4334   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4335   match(ConL);
  4336   op_cost(0);
  4337   format %{ %}
  4338   interface(CONST_INTER);
  4339 %}
  4341 // Long Immediate: 32-bit
  4342 operand immL32() %{
  4343   predicate(Assembler::is_simm(n->get_long(), 32));
  4344   match(ConL);
  4345   op_cost(0);
  4346   format %{ %}
  4347   interface(CONST_INTER);
  4348 %}
  4350 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4351 operand immLhighest16() %{
  4352   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4353   match(ConL);
  4354   op_cost(0);
  4355   format %{ %}
  4356   interface(CONST_INTER);
  4357 %}
  4359 operand immLnegpow2() %{
  4360   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4361   match(ConL);
  4362   op_cost(0);
  4363   format %{ %}
  4364   interface(CONST_INTER);
  4365 %}
  4367 operand immLpow2minus1() %{
  4368   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4369             (n->get_long() != (jlong)0xffffffffffffffffL));
  4370   match(ConL);
  4371   op_cost(0);
  4372   format %{ %}
  4373   interface(CONST_INTER);
  4374 %}
  4376 // constant 'long 0'.
  4377 operand immL_0() %{
  4378   predicate(n->get_long() == 0L);
  4379   match(ConL);
  4380   op_cost(0);
  4381   format %{ %}
  4382   interface(CONST_INTER);
  4383 %}
  4385 // constat ' long -1'.
  4386 operand immL_minus1() %{
  4387   predicate(n->get_long() == -1L);
  4388   match(ConL);
  4389   op_cost(0);
  4390   format %{ %}
  4391   interface(CONST_INTER);
  4392 %}
  4394 // Long Immediate: low 32-bit mask
  4395 operand immL_32bits() %{
  4396   predicate(n->get_long() == 0xFFFFFFFFL);
  4397   match(ConL);
  4398   op_cost(0);
  4399   format %{ %}
  4400   interface(CONST_INTER);
  4401 %}
  4403 // Unsigned Long Immediate: 16-bit
  4404 operand uimmL16() %{
  4405   predicate(Assembler::is_uimm(n->get_long(), 16));
  4406   match(ConL);
  4407   op_cost(0);
  4408   format %{ %}
  4409   interface(CONST_INTER);
  4410 %}
  4412 // Float Immediate
  4413 operand immF() %{
  4414   match(ConF);
  4415   op_cost(40);
  4416   format %{ %}
  4417   interface(CONST_INTER);
  4418 %}
  4420 // Float Immediate: +0.0f.
  4421 operand immF_0() %{
  4422   predicate(jint_cast(n->getf()) == 0);
  4423   match(ConF);
  4425   op_cost(0);
  4426   format %{ %}
  4427   interface(CONST_INTER);
  4428 %}
  4430 // Double Immediate
  4431 operand immD() %{
  4432   match(ConD);
  4433   op_cost(40);
  4434   format %{ %}
  4435   interface(CONST_INTER);
  4436 %}
  4438 // Integer Register Operands
  4439 // Integer Destination Register
  4440 // See definition of reg_class bits32_reg_rw.
  4441 operand iRegIdst() %{
  4442   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4443   match(RegI);
  4444   match(rscratch1RegI);
  4445   match(rscratch2RegI);
  4446   match(rarg1RegI);
  4447   match(rarg2RegI);
  4448   match(rarg3RegI);
  4449   match(rarg4RegI);
  4450   format %{ %}
  4451   interface(REG_INTER);
  4452 %}
  4454 // Integer Source Register
  4455 // See definition of reg_class bits32_reg_ro.
  4456 operand iRegIsrc() %{
  4457   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4458   match(RegI);
  4459   match(rscratch1RegI);
  4460   match(rscratch2RegI);
  4461   match(rarg1RegI);
  4462   match(rarg2RegI);
  4463   match(rarg3RegI);
  4464   match(rarg4RegI);
  4465   format %{ %}
  4466   interface(REG_INTER);
  4467 %}
  4469 operand rscratch1RegI() %{
  4470   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4471   match(iRegIdst);
  4472   format %{ %}
  4473   interface(REG_INTER);
  4474 %}
  4476 operand rscratch2RegI() %{
  4477   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4478   match(iRegIdst);
  4479   format %{ %}
  4480   interface(REG_INTER);
  4481 %}
  4483 operand rarg1RegI() %{
  4484   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4485   match(iRegIdst);
  4486   format %{ %}
  4487   interface(REG_INTER);
  4488 %}
  4490 operand rarg2RegI() %{
  4491   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4492   match(iRegIdst);
  4493   format %{ %}
  4494   interface(REG_INTER);
  4495 %}
  4497 operand rarg3RegI() %{
  4498   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4499   match(iRegIdst);
  4500   format %{ %}
  4501   interface(REG_INTER);
  4502 %}
  4504 operand rarg4RegI() %{
  4505   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4506   match(iRegIdst);
  4507   format %{ %}
  4508   interface(REG_INTER);
  4509 %}
  4511 operand rarg1RegL() %{
  4512   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4513   match(iRegLdst);
  4514   format %{ %}
  4515   interface(REG_INTER);
  4516 %}
  4518 operand rarg2RegL() %{
  4519   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4520   match(iRegLdst);
  4521   format %{ %}
  4522   interface(REG_INTER);
  4523 %}
  4525 operand rarg3RegL() %{
  4526   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4527   match(iRegLdst);
  4528   format %{ %}
  4529   interface(REG_INTER);
  4530 %}
  4532 operand rarg4RegL() %{
  4533   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4534   match(iRegLdst);
  4535   format %{ %}
  4536   interface(REG_INTER);
  4537 %}
  4539 // Pointer Destination Register
  4540 // See definition of reg_class bits64_reg_rw.
  4541 operand iRegPdst() %{
  4542   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4543   match(RegP);
  4544   match(rscratch1RegP);
  4545   match(rscratch2RegP);
  4546   match(rarg1RegP);
  4547   match(rarg2RegP);
  4548   match(rarg3RegP);
  4549   match(rarg4RegP);
  4550   format %{ %}
  4551   interface(REG_INTER);
  4552 %}
  4554 // Pointer Destination Register
  4555 // Operand not using r11 and r12 (killed in epilog).
  4556 operand iRegPdstNoScratch() %{
  4557   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4558   match(RegP);
  4559   match(rarg1RegP);
  4560   match(rarg2RegP);
  4561   match(rarg3RegP);
  4562   match(rarg4RegP);
  4563   format %{ %}
  4564   interface(REG_INTER);
  4565 %}
  4567 // Pointer Source Register
  4568 // See definition of reg_class bits64_reg_ro.
  4569 operand iRegPsrc() %{
  4570   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4571   match(RegP);
  4572   match(iRegPdst);
  4573   match(rscratch1RegP);
  4574   match(rscratch2RegP);
  4575   match(rarg1RegP);
  4576   match(rarg2RegP);
  4577   match(rarg3RegP);
  4578   match(rarg4RegP);
  4579   match(threadRegP);
  4580   format %{ %}
  4581   interface(REG_INTER);
  4582 %}
  4584 // Thread operand.
  4585 operand threadRegP() %{
  4586   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4587   match(iRegPdst);
  4588   format %{ "R16" %}
  4589   interface(REG_INTER);
  4590 %}
  4592 operand rscratch1RegP() %{
  4593   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4594   match(iRegPdst);
  4595   format %{ "R11" %}
  4596   interface(REG_INTER);
  4597 %}
  4599 operand rscratch2RegP() %{
  4600   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4601   match(iRegPdst);
  4602   format %{ %}
  4603   interface(REG_INTER);
  4604 %}
  4606 operand rarg1RegP() %{
  4607   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4608   match(iRegPdst);
  4609   format %{ %}
  4610   interface(REG_INTER);
  4611 %}
  4613 operand rarg2RegP() %{
  4614   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4615   match(iRegPdst);
  4616   format %{ %}
  4617   interface(REG_INTER);
  4618 %}
  4620 operand rarg3RegP() %{
  4621   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4622   match(iRegPdst);
  4623   format %{ %}
  4624   interface(REG_INTER);
  4625 %}
  4627 operand rarg4RegP() %{
  4628   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4629   match(iRegPdst);
  4630   format %{ %}
  4631   interface(REG_INTER);
  4632 %}
  4634 operand iRegNsrc() %{
  4635   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4636   match(RegN);
  4637   match(iRegNdst);
  4639   format %{ %}
  4640   interface(REG_INTER);
  4641 %}
  4643 operand iRegNdst() %{
  4644   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4645   match(RegN);
  4647   format %{ %}
  4648   interface(REG_INTER);
  4649 %}
  4651 // Long Destination Register
  4652 // See definition of reg_class bits64_reg_rw.
  4653 operand iRegLdst() %{
  4654   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4655   match(RegL);
  4656   match(rscratch1RegL);
  4657   match(rscratch2RegL);
  4658   format %{ %}
  4659   interface(REG_INTER);
  4660 %}
  4662 // Long Source Register
  4663 // See definition of reg_class bits64_reg_ro.
  4664 operand iRegLsrc() %{
  4665   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4666   match(RegL);
  4667   match(iRegLdst);
  4668   match(rscratch1RegL);
  4669   match(rscratch2RegL);
  4670   format %{ %}
  4671   interface(REG_INTER);
  4672 %}
  4674 // Special operand for ConvL2I.
  4675 operand iRegL2Isrc(iRegLsrc reg) %{
  4676   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4677   match(ConvL2I reg);
  4678   format %{ "ConvL2I($reg)" %}
  4679   interface(REG_INTER)
  4680 %}
  4682 operand rscratch1RegL() %{
  4683   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4684   match(RegL);
  4685   format %{ %}
  4686   interface(REG_INTER);
  4687 %}
  4689 operand rscratch2RegL() %{
  4690   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4691   match(RegL);
  4692   format %{ %}
  4693   interface(REG_INTER);
  4694 %}
  4696 // Condition Code Flag Registers
  4697 operand flagsReg() %{
  4698   constraint(ALLOC_IN_RC(int_flags));
  4699   match(RegFlags);
  4700   format %{ %}
  4701   interface(REG_INTER);
  4702 %}
  4704 // Condition Code Flag Register CR0
  4705 operand flagsRegCR0() %{
  4706   constraint(ALLOC_IN_RC(int_flags_CR0));
  4707   match(RegFlags);
  4708   format %{ "CR0" %}
  4709   interface(REG_INTER);
  4710 %}
  4712 operand flagsRegCR1() %{
  4713   constraint(ALLOC_IN_RC(int_flags_CR1));
  4714   match(RegFlags);
  4715   format %{ "CR1" %}
  4716   interface(REG_INTER);
  4717 %}
  4719 operand flagsRegCR6() %{
  4720   constraint(ALLOC_IN_RC(int_flags_CR6));
  4721   match(RegFlags);
  4722   format %{ "CR6" %}
  4723   interface(REG_INTER);
  4724 %}
  4726 operand regCTR() %{
  4727   constraint(ALLOC_IN_RC(ctr_reg));
  4728   // RegFlags should work. Introducing a RegSpecial type would cause a
  4729   // lot of changes.
  4730   match(RegFlags);
  4731   format %{"SR_CTR" %}
  4732   interface(REG_INTER);
  4733 %}
  4735 operand regD() %{
  4736   constraint(ALLOC_IN_RC(dbl_reg));
  4737   match(RegD);
  4738   format %{ %}
  4739   interface(REG_INTER);
  4740 %}
  4742 operand regF() %{
  4743   constraint(ALLOC_IN_RC(flt_reg));
  4744   match(RegF);
  4745   format %{ %}
  4746   interface(REG_INTER);
  4747 %}
  4749 // Special Registers
  4751 // Method Register
  4752 operand inline_cache_regP(iRegPdst reg) %{
  4753   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4754   match(reg);
  4755   format %{ %}
  4756   interface(REG_INTER);
  4757 %}
  4759 operand compiler_method_oop_regP(iRegPdst reg) %{
  4760   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4761   match(reg);
  4762   format %{ %}
  4763   interface(REG_INTER);
  4764 %}
  4766 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4767   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4768   match(reg);
  4769   format %{ %}
  4770   interface(REG_INTER);
  4771 %}
  4773 // Operands to remove register moves in unscaled mode.
  4774 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4775 operand iRegP2N(iRegPsrc reg) %{
  4776   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4777   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4778   match(EncodeP reg);
  4779   format %{ "$reg" %}
  4780   interface(REG_INTER)
  4781 %}
  4783 operand iRegN2P(iRegNsrc reg) %{
  4784   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4785   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4786   match(DecodeN reg);
  4787   match(DecodeNKlass reg);
  4788   format %{ "$reg" %}
  4789   interface(REG_INTER)
  4790 %}
  4792 //----------Complex Operands---------------------------------------------------
  4793 // Indirect Memory Reference
  4794 operand indirect(iRegPsrc reg) %{
  4795   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4796   match(reg);
  4797   op_cost(100);
  4798   format %{ "[$reg]" %}
  4799   interface(MEMORY_INTER) %{
  4800     base($reg);
  4801     index(0x0);
  4802     scale(0x0);
  4803     disp(0x0);
  4804   %}
  4805 %}
  4807 // Indirect with Offset
  4808 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4809   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4810   match(AddP reg offset);
  4811   op_cost(100);
  4812   format %{ "[$reg + $offset]" %}
  4813   interface(MEMORY_INTER) %{
  4814     base($reg);
  4815     index(0x0);
  4816     scale(0x0);
  4817     disp($offset);
  4818   %}
  4819 %}
  4821 // Indirect with 4-aligned Offset
  4822 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4823   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4824   match(AddP reg offset);
  4825   op_cost(100);
  4826   format %{ "[$reg + $offset]" %}
  4827   interface(MEMORY_INTER) %{
  4828     base($reg);
  4829     index(0x0);
  4830     scale(0x0);
  4831     disp($offset);
  4832   %}
  4833 %}
  4835 //----------Complex Operands for Compressed OOPs-------------------------------
  4836 // Compressed OOPs with narrow_oop_shift == 0.
  4838 // Indirect Memory Reference, compressed OOP
  4839 operand indirectNarrow(iRegNsrc reg) %{
  4840   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4841   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4842   match(DecodeN reg);
  4843   match(DecodeNKlass reg);
  4844   op_cost(100);
  4845   format %{ "[$reg]" %}
  4846   interface(MEMORY_INTER) %{
  4847     base($reg);
  4848     index(0x0);
  4849     scale(0x0);
  4850     disp(0x0);
  4851   %}
  4852 %}
  4854 // Indirect with Offset, compressed OOP
  4855 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4856   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4857   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4858   match(AddP (DecodeN reg) offset);
  4859   match(AddP (DecodeNKlass reg) offset);
  4860   op_cost(100);
  4861   format %{ "[$reg + $offset]" %}
  4862   interface(MEMORY_INTER) %{
  4863     base($reg);
  4864     index(0x0);
  4865     scale(0x0);
  4866     disp($offset);
  4867   %}
  4868 %}
  4870 // Indirect with 4-aligned Offset, compressed OOP
  4871 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4872   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4873   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4874   match(AddP (DecodeN reg) offset);
  4875   match(AddP (DecodeNKlass reg) offset);
  4876   op_cost(100);
  4877   format %{ "[$reg + $offset]" %}
  4878   interface(MEMORY_INTER) %{
  4879     base($reg);
  4880     index(0x0);
  4881     scale(0x0);
  4882     disp($offset);
  4883   %}
  4884 %}
  4886 //----------Special Memory Operands--------------------------------------------
  4887 // Stack Slot Operand
  4888 //
  4889 // This operand is used for loading and storing temporary values on
  4890 // the stack where a match requires a value to flow through memory.
  4891 operand stackSlotI(sRegI reg) %{
  4892   constraint(ALLOC_IN_RC(stack_slots));
  4893   op_cost(100);
  4894   //match(RegI);
  4895   format %{ "[sp+$reg]" %}
  4896   interface(MEMORY_INTER) %{
  4897     base(0x1);   // R1_SP
  4898     index(0x0);
  4899     scale(0x0);
  4900     disp($reg);  // Stack Offset
  4901   %}
  4902 %}
  4904 operand stackSlotL(sRegL reg) %{
  4905   constraint(ALLOC_IN_RC(stack_slots));
  4906   op_cost(100);
  4907   //match(RegL);
  4908   format %{ "[sp+$reg]" %}
  4909   interface(MEMORY_INTER) %{
  4910     base(0x1);   // R1_SP
  4911     index(0x0);
  4912     scale(0x0);
  4913     disp($reg);  // Stack Offset
  4914   %}
  4915 %}
  4917 operand stackSlotP(sRegP reg) %{
  4918   constraint(ALLOC_IN_RC(stack_slots));
  4919   op_cost(100);
  4920   //match(RegP);
  4921   format %{ "[sp+$reg]" %}
  4922   interface(MEMORY_INTER) %{
  4923     base(0x1);   // R1_SP
  4924     index(0x0);
  4925     scale(0x0);
  4926     disp($reg);  // Stack Offset
  4927   %}
  4928 %}
  4930 operand stackSlotF(sRegF reg) %{
  4931   constraint(ALLOC_IN_RC(stack_slots));
  4932   op_cost(100);
  4933   //match(RegF);
  4934   format %{ "[sp+$reg]" %}
  4935   interface(MEMORY_INTER) %{
  4936     base(0x1);   // R1_SP
  4937     index(0x0);
  4938     scale(0x0);
  4939     disp($reg);  // Stack Offset
  4940   %}
  4941 %}
  4943 operand stackSlotD(sRegD reg) %{
  4944   constraint(ALLOC_IN_RC(stack_slots));
  4945   op_cost(100);
  4946   //match(RegD);
  4947   format %{ "[sp+$reg]" %}
  4948   interface(MEMORY_INTER) %{
  4949     base(0x1);   // R1_SP
  4950     index(0x0);
  4951     scale(0x0);
  4952     disp($reg);  // Stack Offset
  4953   %}
  4954 %}
  4956 // Operands for expressing Control Flow
  4957 // NOTE: Label is a predefined operand which should not be redefined in
  4958 //       the AD file. It is generically handled within the ADLC.
  4960 //----------Conditional Branch Operands----------------------------------------
  4961 // Comparison Op
  4962 //
  4963 // This is the operation of the comparison, and is limited to the
  4964 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4965 // (!=).
  4966 //
  4967 // Other attributes of the comparison, such as unsignedness, are specified
  4968 // by the comparison instruction that sets a condition code flags register.
  4969 // That result is represented by a flags operand whose subtype is appropriate
  4970 // to the unsignedness (etc.) of the comparison.
  4971 //
  4972 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4973 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4974 // by matching a specific subtype of Bool operand below.
  4976 // When used for floating point comparisons: unordered same as less.
  4977 operand cmpOp() %{
  4978   match(Bool);
  4979   format %{ "" %}
  4980   interface(COND_INTER) %{
  4981                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4982                            //           BO          &  BI
  4983     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4984     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4985     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4986     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4987     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4988     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4989     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4990     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4991   %}
  4992 %}
  4994 //----------OPERAND CLASSES----------------------------------------------------
  4995 // Operand Classes are groups of operands that are used to simplify
  4996 // instruction definitions by not requiring the AD writer to specify
  4997 // seperate instructions for every form of operand when the
  4998 // instruction accepts multiple operand types with the same basic
  4999 // encoding and format. The classic case of this is memory operands.
  5000 // Indirect is not included since its use is limited to Compare & Swap.
  5002 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  5003 // Memory operand where offsets are 4-aligned. Required for ld, std.
  5004 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  5005 opclass indirectMemory(indirect, indirectNarrow);
  5007 // Special opclass for I and ConvL2I.
  5008 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  5010 // Operand classes to match encode and decode. iRegN_P2N is only used
  5011 // for storeN. I have never seen an encode node elsewhere.
  5012 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  5013 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  5015 //----------PIPELINE-----------------------------------------------------------
  5017 pipeline %{
  5019 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  5020 // J. Res. & Dev., No. 1, Jan. 2002.
  5022 //----------ATTRIBUTES---------------------------------------------------------
  5023 attributes %{
  5025   // Power4 instructions are of fixed length.
  5026   fixed_size_instructions;
  5028   // TODO: if `bundle' means number of instructions fetched
  5029   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  5030   // max instructions issued per cycle, this is 5.
  5031   max_instructions_per_bundle = 8;
  5033   // A Power4 instruction is 4 bytes long.
  5034   instruction_unit_size = 4;
  5036   // The Power4 processor fetches 64 bytes...
  5037   instruction_fetch_unit_size = 64;
  5039   // ...in one line
  5040   instruction_fetch_units = 1
  5042   // Unused, list one so that array generated by adlc is not empty.
  5043   // Aix compiler chokes if _nop_count = 0.
  5044   nops(fxNop);
  5045 %}
  5047 //----------RESOURCES----------------------------------------------------------
  5048 // Resources are the functional units available to the machine
  5049 resources(
  5050    PPC_BR,         // branch unit
  5051    PPC_CR,         // condition unit
  5052    PPC_FX1,        // integer arithmetic unit 1
  5053    PPC_FX2,        // integer arithmetic unit 2
  5054    PPC_LDST1,      // load/store unit 1
  5055    PPC_LDST2,      // load/store unit 2
  5056    PPC_FP1,        // float arithmetic unit 1
  5057    PPC_FP2,        // float arithmetic unit 2
  5058    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  5059    PPC_FX = PPC_FX1 | PPC_FX2,
  5060    PPC_FP = PPC_FP1 | PPC_FP2
  5061  );
  5063 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5064 // Pipeline Description specifies the stages in the machine's pipeline
  5065 pipe_desc(
  5066    // Power4 longest pipeline path
  5067    PPC_IF,   // instruction fetch
  5068    PPC_IC,
  5069    //PPC_BP, // branch prediction
  5070    PPC_D0,   // decode
  5071    PPC_D1,   // decode
  5072    PPC_D2,   // decode
  5073    PPC_D3,   // decode
  5074    PPC_Xfer1,
  5075    PPC_GD,   // group definition
  5076    PPC_MP,   // map
  5077    PPC_ISS,  // issue
  5078    PPC_RF,   // resource fetch
  5079    PPC_EX1,  // execute (all units)
  5080    PPC_EX2,  // execute (FP, LDST)
  5081    PPC_EX3,  // execute (FP, LDST)
  5082    PPC_EX4,  // execute (FP)
  5083    PPC_EX5,  // execute (FP)
  5084    PPC_EX6,  // execute (FP)
  5085    PPC_WB,   // write back
  5086    PPC_Xfer2,
  5087    PPC_CP
  5088  );
  5090 //----------PIPELINE CLASSES---------------------------------------------------
  5091 // Pipeline Classes describe the stages in which input and output are
  5092 // referenced by the hardware pipeline.
  5094 // Simple pipeline classes.
  5096 // Default pipeline class.
  5097 pipe_class pipe_class_default() %{
  5098   single_instruction;
  5099   fixed_latency(2);
  5100 %}
  5102 // Pipeline class for empty instructions.
  5103 pipe_class pipe_class_empty() %{
  5104   single_instruction;
  5105   fixed_latency(0);
  5106 %}
  5108 // Pipeline class for compares.
  5109 pipe_class pipe_class_compare() %{
  5110   single_instruction;
  5111   fixed_latency(16);
  5112 %}
  5114 // Pipeline class for traps.
  5115 pipe_class pipe_class_trap() %{
  5116   single_instruction;
  5117   fixed_latency(100);
  5118 %}
  5120 // Pipeline class for memory operations.
  5121 pipe_class pipe_class_memory() %{
  5122   single_instruction;
  5123   fixed_latency(16);
  5124 %}
  5126 // Pipeline class for call.
  5127 pipe_class pipe_class_call() %{
  5128   single_instruction;
  5129   fixed_latency(100);
  5130 %}
  5132 // Define the class for the Nop node.
  5133 define %{
  5134    MachNop = pipe_class_default;
  5135 %}
  5137 %}
  5139 //----------INSTRUCTIONS-------------------------------------------------------
  5141 // Naming of instructions:
  5142 //   opA_operB / opA_operB_operC:
  5143 //     Operation 'op' with one or two source operands 'oper'. Result
  5144 //     type is A, source operand types are B and C.
  5145 //     Iff A == B == C, B and C are left out.
  5146 //
  5147 // The instructions are ordered according to the following scheme:
  5148 //  - loads
  5149 //  - load constants
  5150 //  - prefetch
  5151 //  - store
  5152 //  - encode/decode
  5153 //  - membar
  5154 //  - conditional moves
  5155 //  - compare & swap
  5156 //  - arithmetic and logic operations
  5157 //    * int: Add, Sub, Mul, Div, Mod
  5158 //    * int: lShift, arShift, urShift, rot
  5159 //    * float: Add, Sub, Mul, Div
  5160 //    * and, or, xor ...
  5161 //  - register moves: float <-> int, reg <-> stack, repl
  5162 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5163 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5164 //  - compares, range & zero checks.
  5165 //  - branches
  5166 //  - complex operations, intrinsics, min, max, replicate
  5167 //  - lock
  5168 //  - Calls
  5169 //
  5170 // If there are similar instructions with different types they are sorted:
  5171 // int before float
  5172 // small before big
  5173 // signed before unsigned
  5174 // e.g., loadS before loadUS before loadI before loadF.
  5177 //----------Load/Store Instructions--------------------------------------------
  5179 //----------Load Instructions--------------------------------------------------
  5181 // Converts byte to int.
  5182 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5183 // reuses the 'amount' operand, but adlc expects that operand specification
  5184 // and operands in match rule are equivalent.
  5185 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5186   effect(DEF dst, USE src);
  5187   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5188   size(4);
  5189   ins_encode %{
  5190     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5191     __ extsb($dst$$Register, $src$$Register);
  5192   %}
  5193   ins_pipe(pipe_class_default);
  5194 %}
  5196 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5197   // match-rule, false predicate
  5198   match(Set dst (LoadB mem));
  5199   predicate(false);
  5201   format %{ "LBZ     $dst, $mem" %}
  5202   size(4);
  5203   ins_encode( enc_lbz(dst, mem) );
  5204   ins_pipe(pipe_class_memory);
  5205 %}
  5207 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5208   // match-rule, false predicate
  5209   match(Set dst (LoadB mem));
  5210   predicate(false);
  5212   format %{ "LBZ     $dst, $mem\n\t"
  5213             "TWI     $dst\n\t"
  5214             "ISYNC" %}
  5215   size(12);
  5216   ins_encode( enc_lbz_ac(dst, mem) );
  5217   ins_pipe(pipe_class_memory);
  5218 %}
  5220 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5221 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5222   match(Set dst (LoadB mem));
  5223   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5224   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5225   expand %{
  5226     iRegIdst tmp;
  5227     loadUB_indirect(tmp, mem);
  5228     convB2I_reg_2(dst, tmp);
  5229   %}
  5230 %}
  5232 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5233   match(Set dst (LoadB mem));
  5234   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5235   expand %{
  5236     iRegIdst tmp;
  5237     loadUB_indirect_ac(tmp, mem);
  5238     convB2I_reg_2(dst, tmp);
  5239   %}
  5240 %}
  5242 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5243   // match-rule, false predicate
  5244   match(Set dst (LoadB mem));
  5245   predicate(false);
  5247   format %{ "LBZ     $dst, $mem" %}
  5248   size(4);
  5249   ins_encode( enc_lbz(dst, mem) );
  5250   ins_pipe(pipe_class_memory);
  5251 %}
  5253 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5254   // match-rule, false predicate
  5255   match(Set dst (LoadB mem));
  5256   predicate(false);
  5258   format %{ "LBZ     $dst, $mem\n\t"
  5259             "TWI     $dst\n\t"
  5260             "ISYNC" %}
  5261   size(12);
  5262   ins_encode( enc_lbz_ac(dst, mem) );
  5263   ins_pipe(pipe_class_memory);
  5264 %}
  5266 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5267 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5268   match(Set dst (LoadB mem));
  5269   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5270   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5272   expand %{
  5273     iRegIdst tmp;
  5274     loadUB_indOffset16(tmp, mem);
  5275     convB2I_reg_2(dst, tmp);
  5276   %}
  5277 %}
  5279 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5280   match(Set dst (LoadB mem));
  5281   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5283   expand %{
  5284     iRegIdst tmp;
  5285     loadUB_indOffset16_ac(tmp, mem);
  5286     convB2I_reg_2(dst, tmp);
  5287   %}
  5288 %}
  5290 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5291 instruct loadUB(iRegIdst dst, memory mem) %{
  5292   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5293   match(Set dst (LoadUB mem));
  5294   ins_cost(MEMORY_REF_COST);
  5296   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5297   size(4);
  5298   ins_encode( enc_lbz(dst, mem) );
  5299   ins_pipe(pipe_class_memory);
  5300 %}
  5302 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5303 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5304   match(Set dst (LoadUB mem));
  5305   ins_cost(3*MEMORY_REF_COST);
  5307   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5308             "TWI     $dst\n\t"
  5309             "ISYNC" %}
  5310   size(12);
  5311   ins_encode( enc_lbz_ac(dst, mem) );
  5312   ins_pipe(pipe_class_memory);
  5313 %}
  5315 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5316 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5317   match(Set dst (ConvI2L (LoadUB mem)));
  5318   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5319   ins_cost(MEMORY_REF_COST);
  5321   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5322   size(4);
  5323   ins_encode( enc_lbz(dst, mem) );
  5324   ins_pipe(pipe_class_memory);
  5325 %}
  5327 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5328   match(Set dst (ConvI2L (LoadUB mem)));
  5329   ins_cost(3*MEMORY_REF_COST);
  5331   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5332             "TWI     $dst\n\t"
  5333             "ISYNC" %}
  5334   size(12);
  5335   ins_encode( enc_lbz_ac(dst, mem) );
  5336   ins_pipe(pipe_class_memory);
  5337 %}
  5339 // Load Short (16bit signed)
  5340 instruct loadS(iRegIdst dst, memory mem) %{
  5341   match(Set dst (LoadS mem));
  5342   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5343   ins_cost(MEMORY_REF_COST);
  5345   format %{ "LHA     $dst, $mem" %}
  5346   size(4);
  5347   ins_encode %{
  5348     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5349     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5350     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5351   %}
  5352   ins_pipe(pipe_class_memory);
  5353 %}
  5355 // Load Short (16bit signed) acquire.
  5356 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5357   match(Set dst (LoadS mem));
  5358   ins_cost(3*MEMORY_REF_COST);
  5360   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5361             "TWI     $dst\n\t"
  5362             "ISYNC" %}
  5363   size(12);
  5364   ins_encode %{
  5365     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5366     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5367     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5368     __ twi_0($dst$$Register);
  5369     __ isync();
  5370   %}
  5371   ins_pipe(pipe_class_memory);
  5372 %}
  5374 // Load Char (16bit unsigned)
  5375 instruct loadUS(iRegIdst dst, memory mem) %{
  5376   match(Set dst (LoadUS mem));
  5377   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5378   ins_cost(MEMORY_REF_COST);
  5380   format %{ "LHZ     $dst, $mem" %}
  5381   size(4);
  5382   ins_encode( enc_lhz(dst, mem) );
  5383   ins_pipe(pipe_class_memory);
  5384 %}
  5386 // Load Char (16bit unsigned) acquire.
  5387 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5388   match(Set dst (LoadUS mem));
  5389   ins_cost(3*MEMORY_REF_COST);
  5391   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5392             "TWI     $dst\n\t"
  5393             "ISYNC" %}
  5394   size(12);
  5395   ins_encode( enc_lhz_ac(dst, mem) );
  5396   ins_pipe(pipe_class_memory);
  5397 %}
  5399 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5400 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5401   match(Set dst (ConvI2L (LoadUS mem)));
  5402   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5403   ins_cost(MEMORY_REF_COST);
  5405   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5406   size(4);
  5407   ins_encode( enc_lhz(dst, mem) );
  5408   ins_pipe(pipe_class_memory);
  5409 %}
  5411 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5412 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5413   match(Set dst (ConvI2L (LoadUS mem)));
  5414   ins_cost(3*MEMORY_REF_COST);
  5416   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5417             "TWI     $dst\n\t"
  5418             "ISYNC" %}
  5419   size(12);
  5420   ins_encode( enc_lhz_ac(dst, mem) );
  5421   ins_pipe(pipe_class_memory);
  5422 %}
  5424 // Load Integer.
  5425 instruct loadI(iRegIdst dst, memory mem) %{
  5426   match(Set dst (LoadI mem));
  5427   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5428   ins_cost(MEMORY_REF_COST);
  5430   format %{ "LWZ     $dst, $mem" %}
  5431   size(4);
  5432   ins_encode( enc_lwz(dst, mem) );
  5433   ins_pipe(pipe_class_memory);
  5434 %}
  5436 // Load Integer acquire.
  5437 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5438   match(Set dst (LoadI mem));
  5439   ins_cost(3*MEMORY_REF_COST);
  5441   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5442             "TWI     $dst\n\t"
  5443             "ISYNC" %}
  5444   size(12);
  5445   ins_encode( enc_lwz_ac(dst, mem) );
  5446   ins_pipe(pipe_class_memory);
  5447 %}
  5449 // Match loading integer and casting it to unsigned int in
  5450 // long register.
  5451 // LoadI + ConvI2L + AndL 0xffffffff.
  5452 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5453   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5454   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5455   ins_cost(MEMORY_REF_COST);
  5457   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5458   size(4);
  5459   ins_encode( enc_lwz(dst, mem) );
  5460   ins_pipe(pipe_class_memory);
  5461 %}
  5463 // Match loading integer and casting it to long.
  5464 instruct loadI2L(iRegLdst dst, memory mem) %{
  5465   match(Set dst (ConvI2L (LoadI mem)));
  5466   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5467   ins_cost(MEMORY_REF_COST);
  5469   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5470   size(4);
  5471   ins_encode %{
  5472     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5473     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5474     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5475   %}
  5476   ins_pipe(pipe_class_memory);
  5477 %}
  5479 // Match loading integer and casting it to long - acquire.
  5480 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5481   match(Set dst (ConvI2L (LoadI mem)));
  5482   ins_cost(3*MEMORY_REF_COST);
  5484   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5485             "TWI     $dst\n\t"
  5486             "ISYNC" %}
  5487   size(12);
  5488   ins_encode %{
  5489     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5490     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5491     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5492     __ twi_0($dst$$Register);
  5493     __ isync();
  5494   %}
  5495   ins_pipe(pipe_class_memory);
  5496 %}
  5498 // Load Long - aligned
  5499 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5500   match(Set dst (LoadL mem));
  5501   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5502   ins_cost(MEMORY_REF_COST);
  5504   format %{ "LD      $dst, $mem \t// long" %}
  5505   size(4);
  5506   ins_encode( enc_ld(dst, mem) );
  5507   ins_pipe(pipe_class_memory);
  5508 %}
  5510 // Load Long - aligned acquire.
  5511 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5512   match(Set dst (LoadL mem));
  5513   ins_cost(3*MEMORY_REF_COST);
  5515   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5516             "TWI     $dst\n\t"
  5517             "ISYNC" %}
  5518   size(12);
  5519   ins_encode( enc_ld_ac(dst, mem) );
  5520   ins_pipe(pipe_class_memory);
  5521 %}
  5523 // Load Long - UNaligned
  5524 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5525   match(Set dst (LoadL_unaligned mem));
  5526   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5527   ins_cost(MEMORY_REF_COST);
  5529   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5530   size(4);
  5531   ins_encode( enc_ld(dst, mem) );
  5532   ins_pipe(pipe_class_memory);
  5533 %}
  5535 // Load nodes for superwords
  5537 // Load Aligned Packed Byte
  5538 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5539   predicate(n->as_LoadVector()->memory_size() == 8);
  5540   match(Set dst (LoadVector mem));
  5541   ins_cost(MEMORY_REF_COST);
  5543   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5544   size(4);
  5545   ins_encode( enc_ld(dst, mem) );
  5546   ins_pipe(pipe_class_memory);
  5547 %}
  5549 // Load Range, range = array length (=jint)
  5550 instruct loadRange(iRegIdst dst, memory mem) %{
  5551   match(Set dst (LoadRange mem));
  5552   ins_cost(MEMORY_REF_COST);
  5554   format %{ "LWZ     $dst, $mem \t// range" %}
  5555   size(4);
  5556   ins_encode( enc_lwz(dst, mem) );
  5557   ins_pipe(pipe_class_memory);
  5558 %}
  5560 // Load Compressed Pointer
  5561 instruct loadN(iRegNdst dst, memory mem) %{
  5562   match(Set dst (LoadN mem));
  5563   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5564   ins_cost(MEMORY_REF_COST);
  5566   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5567   size(4);
  5568   ins_encode( enc_lwz(dst, mem) );
  5569   ins_pipe(pipe_class_memory);
  5570 %}
  5572 // Load Compressed Pointer acquire.
  5573 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5574   match(Set dst (LoadN mem));
  5575   ins_cost(3*MEMORY_REF_COST);
  5577   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5578             "TWI     $dst\n\t"
  5579             "ISYNC" %}
  5580   size(12);
  5581   ins_encode( enc_lwz_ac(dst, mem) );
  5582   ins_pipe(pipe_class_memory);
  5583 %}
  5585 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5586 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5587   match(Set dst (DecodeN (LoadN mem)));
  5588   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5589   ins_cost(MEMORY_REF_COST);
  5591   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5592   size(4);
  5593   ins_encode( enc_lwz(dst, mem) );
  5594   ins_pipe(pipe_class_memory);
  5595 %}
  5597 // Load Pointer
  5598 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5599   match(Set dst (LoadP mem));
  5600   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5601   ins_cost(MEMORY_REF_COST);
  5603   format %{ "LD      $dst, $mem \t// ptr" %}
  5604   size(4);
  5605   ins_encode( enc_ld(dst, mem) );
  5606   ins_pipe(pipe_class_memory);
  5607 %}
  5609 // Load Pointer acquire.
  5610 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5611   match(Set dst (LoadP mem));
  5612   ins_cost(3*MEMORY_REF_COST);
  5614   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5615             "TWI     $dst\n\t"
  5616             "ISYNC" %}
  5617   size(12);
  5618   ins_encode( enc_ld_ac(dst, mem) );
  5619   ins_pipe(pipe_class_memory);
  5620 %}
  5622 // LoadP + CastP2L
  5623 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5624   match(Set dst (CastP2X (LoadP mem)));
  5625   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5626   ins_cost(MEMORY_REF_COST);
  5628   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5629   size(4);
  5630   ins_encode( enc_ld(dst, mem) );
  5631   ins_pipe(pipe_class_memory);
  5632 %}
  5634 // Load compressed klass pointer.
  5635 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5636   match(Set dst (LoadNKlass mem));
  5637   ins_cost(MEMORY_REF_COST);
  5639   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5640   size(4);
  5641   ins_encode( enc_lwz(dst, mem) );
  5642   ins_pipe(pipe_class_memory);
  5643 %}
  5645 // Load Klass Pointer
  5646 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5647   match(Set dst (LoadKlass mem));
  5648   ins_cost(MEMORY_REF_COST);
  5650   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5651   size(4);
  5652   ins_encode( enc_ld(dst, mem) );
  5653   ins_pipe(pipe_class_memory);
  5654 %}
  5656 // Load Float
  5657 instruct loadF(regF dst, memory mem) %{
  5658   match(Set dst (LoadF mem));
  5659   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5660   ins_cost(MEMORY_REF_COST);
  5662   format %{ "LFS     $dst, $mem" %}
  5663   size(4);
  5664   ins_encode %{
  5665     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5666     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5667     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5668   %}
  5669   ins_pipe(pipe_class_memory);
  5670 %}
  5672 // Load Float acquire.
  5673 instruct loadF_ac(regF dst, memory mem) %{
  5674   match(Set dst (LoadF mem));
  5675   ins_cost(3*MEMORY_REF_COST);
  5677   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5678             "FCMPU   cr0, $dst, $dst\n\t"
  5679             "BNE     cr0, next\n"
  5680             "next:\n\t"
  5681             "ISYNC" %}
  5682   size(16);
  5683   ins_encode %{
  5684     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5685     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5686     Label next;
  5687     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5688     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5689     __ bne(CCR0, next);
  5690     __ bind(next);
  5691     __ isync();
  5692   %}
  5693   ins_pipe(pipe_class_memory);
  5694 %}
  5696 // Load Double - aligned
  5697 instruct loadD(regD dst, memory mem) %{
  5698   match(Set dst (LoadD mem));
  5699   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5700   ins_cost(MEMORY_REF_COST);
  5702   format %{ "LFD     $dst, $mem" %}
  5703   size(4);
  5704   ins_encode( enc_lfd(dst, mem) );
  5705   ins_pipe(pipe_class_memory);
  5706 %}
  5708 // Load Double - aligned acquire.
  5709 instruct loadD_ac(regD dst, memory mem) %{
  5710   match(Set dst (LoadD mem));
  5711   ins_cost(3*MEMORY_REF_COST);
  5713   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5714             "FCMPU   cr0, $dst, $dst\n\t"
  5715             "BNE     cr0, next\n"
  5716             "next:\n\t"
  5717             "ISYNC" %}
  5718   size(16);
  5719   ins_encode %{
  5720     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5721     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5722     Label next;
  5723     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5724     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5725     __ bne(CCR0, next);
  5726     __ bind(next);
  5727     __ isync();
  5728   %}
  5729   ins_pipe(pipe_class_memory);
  5730 %}
  5732 // Load Double - UNaligned
  5733 instruct loadD_unaligned(regD dst, memory mem) %{
  5734   match(Set dst (LoadD_unaligned mem));
  5735   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5736   ins_cost(MEMORY_REF_COST);
  5738   format %{ "LFD     $dst, $mem" %}
  5739   size(4);
  5740   ins_encode( enc_lfd(dst, mem) );
  5741   ins_pipe(pipe_class_memory);
  5742 %}
  5744 //----------Constants--------------------------------------------------------
  5746 // Load MachConstantTableBase: add hi offset to global toc.
  5747 // TODO: Handle hidden register r29 in bundler!
  5748 instruct loadToc_hi(iRegLdst dst) %{
  5749   effect(DEF dst);
  5750   ins_cost(DEFAULT_COST);
  5752   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5753   size(4);
  5754   ins_encode %{
  5755     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5756     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5757   %}
  5758   ins_pipe(pipe_class_default);
  5759 %}
  5761 // Load MachConstantTableBase: add lo offset to global toc.
  5762 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5763   effect(DEF dst, USE src);
  5764   ins_cost(DEFAULT_COST);
  5766   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5767   size(4);
  5768   ins_encode %{
  5769     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5770     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5771   %}
  5772   ins_pipe(pipe_class_default);
  5773 %}
  5775 // Load 16-bit integer constant 0xssss????
  5776 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5777   match(Set dst src);
  5779   format %{ "LI      $dst, $src" %}
  5780   size(4);
  5781   ins_encode %{
  5782     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5783     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5784   %}
  5785   ins_pipe(pipe_class_default);
  5786 %}
  5788 // Load integer constant 0x????0000
  5789 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5790   match(Set dst src);
  5791   ins_cost(DEFAULT_COST);
  5793   format %{ "LIS     $dst, $src.hi" %}
  5794   size(4);
  5795   ins_encode %{
  5796     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5797     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5798     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5799   %}
  5800   ins_pipe(pipe_class_default);
  5801 %}
  5803 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5804 // and sign extended), this adds the low 16 bits.
  5805 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5806   // no match-rule, false predicate
  5807   effect(DEF dst, USE src1, USE src2);
  5808   predicate(false);
  5810   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5811   size(4);
  5812   ins_encode %{
  5813     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5814     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5815   %}
  5816   ins_pipe(pipe_class_default);
  5817 %}
  5819 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5820   match(Set dst src);
  5821   ins_cost(DEFAULT_COST*2);
  5823   expand %{
  5824     // Would like to use $src$$constant.
  5825     immI16 srcLo %{ _opnds[1]->constant() %}
  5826     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5827     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5828     iRegIdst tmpI;
  5829     loadConIhi16(tmpI, srcHi);
  5830     loadConI32_lo16(dst, tmpI, srcLo);
  5831   %}
  5832 %}
  5834 // No constant pool entries required.
  5835 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5836   match(Set dst src);
  5838   format %{ "LI      $dst, $src \t// long" %}
  5839   size(4);
  5840   ins_encode %{
  5841     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5842     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5843   %}
  5844   ins_pipe(pipe_class_default);
  5845 %}
  5847 // Load long constant 0xssssssss????0000
  5848 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5849   match(Set dst src);
  5850   ins_cost(DEFAULT_COST);
  5852   format %{ "LIS     $dst, $src.hi \t// long" %}
  5853   size(4);
  5854   ins_encode %{
  5855     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5856     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5857   %}
  5858   ins_pipe(pipe_class_default);
  5859 %}
  5861 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5862 // high 16 bits.
  5863 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5864   // no match-rule, false predicate
  5865   effect(DEF dst, USE src1, USE src2);
  5866   predicate(false);
  5868   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5869   size(4);
  5870   ins_encode %{
  5871     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5872     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5873   %}
  5874   ins_pipe(pipe_class_default);
  5875 %}
  5877 // Load 32-bit long constant
  5878 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5879   match(Set dst src);
  5880   ins_cost(DEFAULT_COST*2);
  5882   expand %{
  5883     // Would like to use $src$$constant.
  5884     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5885     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5886     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5887     iRegLdst tmpL;
  5888     loadConL32hi16(tmpL, srcHi);
  5889     loadConL32_lo16(dst, tmpL, srcLo);
  5890   %}
  5891 %}
  5893 // Load long constant 0x????000000000000.
  5894 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5895   match(Set dst src);
  5896   ins_cost(DEFAULT_COST);
  5898   expand %{
  5899     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5900     immI shift32 %{ 32 %}
  5901     iRegLdst tmpL;
  5902     loadConL32hi16(tmpL, srcHi);
  5903     lshiftL_regL_immI(dst, tmpL, shift32);
  5904   %}
  5905 %}
  5907 // Expand node for constant pool load: small offset.
  5908 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5909   effect(DEF dst, USE src, USE toc);
  5910   ins_cost(MEMORY_REF_COST);
  5912   ins_num_consts(1);
  5913   // Needed so that CallDynamicJavaDirect can compute the address of this
  5914   // instruction for relocation.
  5915   ins_field_cbuf_insts_offset(int);
  5917   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5918   size(4);
  5919   ins_encode( enc_load_long_constL(dst, src, toc) );
  5920   ins_pipe(pipe_class_memory);
  5921 %}
  5923 // Expand node for constant pool load: large offset.
  5924 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5925   effect(DEF dst, USE src, USE toc);
  5926   predicate(false);
  5928   ins_num_consts(1);
  5929   ins_field_const_toc_offset(int);
  5930   // Needed so that CallDynamicJavaDirect can compute the address of this
  5931   // instruction for relocation.
  5932   ins_field_cbuf_insts_offset(int);
  5934   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5935   size(4);
  5936   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5937   ins_pipe(pipe_class_default);
  5938 %}
  5940 // Expand node for constant pool load: large offset.
  5941 // No constant pool entries required.
  5942 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5943   effect(DEF dst, USE src, USE base);
  5944   predicate(false);
  5946   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5948   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5949   size(4);
  5950   ins_encode %{
  5951     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5952     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5953     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5954   %}
  5955   ins_pipe(pipe_class_memory);
  5956 %}
  5958 // Load long constant from constant table. Expand in case of
  5959 // offset > 16 bit is needed.
  5960 // Adlc adds toc node MachConstantTableBase.
  5961 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5962   match(Set dst src);
  5963   ins_cost(MEMORY_REF_COST);
  5965   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5966   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5967   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5968 %}
  5970 // Load NULL as compressed oop.
  5971 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5972   match(Set dst src);
  5973   ins_cost(DEFAULT_COST);
  5975   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5976   size(4);
  5977   ins_encode %{
  5978     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5979     __ li($dst$$Register, 0);
  5980   %}
  5981   ins_pipe(pipe_class_default);
  5982 %}
  5984 // Load hi part of compressed oop constant.
  5985 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5986   effect(DEF dst, USE src);
  5987   ins_cost(DEFAULT_COST);
  5989   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  5990   size(4);
  5991   ins_encode %{
  5992     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5993     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  5994   %}
  5995   ins_pipe(pipe_class_default);
  5996 %}
  5998 // Add lo part of compressed oop constant to already loaded hi part.
  5999 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  6000   effect(DEF dst, USE src1, USE src2);
  6001   ins_cost(DEFAULT_COST);
  6003   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  6004   size(4);
  6005   ins_encode %{
  6006     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6007     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6008     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  6009     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6010     __ relocate(rspec, 1);
  6011     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  6012   %}
  6013   ins_pipe(pipe_class_default);
  6014 %}
  6016 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  6017 // leaving the upper 32 bits with sign-extension bits.
  6018 // This clears these bits: dst = src & 0xFFFFFFFF.
  6019 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  6020 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  6021   effect(DEF dst, USE src);
  6022   predicate(false);
  6024   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  6025   size(4);
  6026   ins_encode %{
  6027     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6028     __ clrldi($dst$$Register, $src$$Register, 0x20);
  6029   %}
  6030   ins_pipe(pipe_class_default);
  6031 %}
  6033 // Loading ConN must be postalloc expanded so that edges between
  6034 // the nodes are safe. They may not interfere with a safepoint.
  6035 // GL TODO: This needs three instructions: better put this into the constant pool.
  6036 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  6037   match(Set dst src);
  6038   ins_cost(DEFAULT_COST*2);
  6040   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6041   postalloc_expand %{
  6042     MachNode *m1 = new (C) loadConN_hiNode();
  6043     MachNode *m2 = new (C) loadConN_loNode();
  6044     MachNode *m3 = new (C) clearMs32bNode();
  6045     m1->add_req(NULL);
  6046     m2->add_req(NULL, m1);
  6047     m3->add_req(NULL, m2);
  6048     m1->_opnds[0] = op_dst;
  6049     m1->_opnds[1] = op_src;
  6050     m2->_opnds[0] = op_dst;
  6051     m2->_opnds[1] = op_dst;
  6052     m2->_opnds[2] = op_src;
  6053     m3->_opnds[0] = op_dst;
  6054     m3->_opnds[1] = op_dst;
  6055     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6056     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6057     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6058     nodes->push(m1);
  6059     nodes->push(m2);
  6060     nodes->push(m3);
  6061   %}
  6062 %}
  6064 // We have seen a safepoint between the hi and lo parts, and this node was handled
  6065 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
  6066 // not a narrow oop.
  6067 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
  6068   match(Set dst src);
  6069   effect(DEF dst, USE src);
  6070   ins_cost(DEFAULT_COST);
  6072   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
  6073   size(4);
  6074   ins_encode %{
  6075     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6076     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6077     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6078   %}
  6079   ins_pipe(pipe_class_default);
  6080 %}
  6082 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
  6083 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6084   match(Set dst src1);
  6085   effect(TEMP src2);
  6086   ins_cost(DEFAULT_COST);
  6088   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
  6089   size(4);
  6090   ins_encode %{
  6091     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6092     __ clrldi($dst$$Register, $src2$$Register, 0x20);
  6093   %}
  6094   ins_pipe(pipe_class_default);
  6095 %}
  6097 // This needs a match rule so that build_oop_map knows this is
  6098 // not a narrow oop.
  6099 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6100   match(Set dst src1);
  6101   effect(TEMP src2);
  6102   ins_cost(DEFAULT_COST);
  6104   format %{ "ORI    $dst, $src1, $src2 \t// narrow klass lo" %}
  6105   size(4);
  6106   ins_encode %{
  6107     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  6108     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6109     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6110     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6111     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6113     __ relocate(rspec, 1);
  6114     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6115   %}
  6116   ins_pipe(pipe_class_default);
  6117 %}
  6119 // Loading ConNKlass must be postalloc expanded so that edges between
  6120 // the nodes are safe. They may not interfere with a safepoint.
  6121 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6122   match(Set dst src);
  6123   ins_cost(DEFAULT_COST*2);
  6125   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6126   postalloc_expand %{
  6127     // Load high bits into register. Sign extended.
  6128     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6129     m1->add_req(NULL);
  6130     m1->_opnds[0] = op_dst;
  6131     m1->_opnds[1] = op_src;
  6132     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6133     nodes->push(m1);
  6135     MachNode *m2 = m1;
  6136     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6137       // Value might be 1-extended. Mask out these bits.
  6138       m2 = new (C) loadConNKlass_maskNode();
  6139       m2->add_req(NULL, m1);
  6140       m2->_opnds[0] = op_dst;
  6141       m2->_opnds[1] = op_src;
  6142       m2->_opnds[2] = op_dst;
  6143       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6144       nodes->push(m2);
  6147     MachNode *m3 = new (C) loadConNKlass_loNode();
  6148     m3->add_req(NULL, m2);
  6149     m3->_opnds[0] = op_dst;
  6150     m3->_opnds[1] = op_src;
  6151     m3->_opnds[2] = op_dst;
  6152     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6153     nodes->push(m3);
  6154   %}
  6155 %}
  6157 // 0x1 is used in object initialization (initial object header).
  6158 // No constant pool entries required.
  6159 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6160   match(Set dst src);
  6162   format %{ "LI      $dst, $src \t// ptr" %}
  6163   size(4);
  6164   ins_encode %{
  6165     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6166     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6167   %}
  6168   ins_pipe(pipe_class_default);
  6169 %}
  6171 // Expand node for constant pool load: small offset.
  6172 // The match rule is needed to generate the correct bottom_type(),
  6173 // however this node should never match. The use of predicate is not
  6174 // possible since ADLC forbids predicates for chain rules. The higher
  6175 // costs do not prevent matching in this case. For that reason the
  6176 // operand immP_NM with predicate(false) is used.
  6177 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6178   match(Set dst src);
  6179   effect(TEMP toc);
  6181   ins_num_consts(1);
  6183   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6184   size(4);
  6185   ins_encode( enc_load_long_constP(dst, src, toc) );
  6186   ins_pipe(pipe_class_memory);
  6187 %}
  6189 // Expand node for constant pool load: large offset.
  6190 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6191   effect(DEF dst, USE src, USE toc);
  6192   predicate(false);
  6194   ins_num_consts(1);
  6195   ins_field_const_toc_offset(int);
  6197   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6198   size(4);
  6199   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6200   ins_pipe(pipe_class_default);
  6201 %}
  6203 // Expand node for constant pool load: large offset.
  6204 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6205   match(Set dst src);
  6206   effect(TEMP base);
  6208   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6210   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6211   size(4);
  6212   ins_encode %{
  6213     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6214     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6215     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6216   %}
  6217   ins_pipe(pipe_class_memory);
  6218 %}
  6220 // Load pointer constant from constant table. Expand in case an
  6221 // offset > 16 bit is needed.
  6222 // Adlc adds toc node MachConstantTableBase.
  6223 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6224   match(Set dst src);
  6225   ins_cost(MEMORY_REF_COST);
  6227   // This rule does not use "expand" because then
  6228   // the result type is not known to be an Oop.  An ADLC
  6229   // enhancement will be needed to make that work - not worth it!
  6231   // If this instruction rematerializes, it prolongs the live range
  6232   // of the toc node, causing illegal graphs.
  6233   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6234   ins_cannot_rematerialize(true);
  6236   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6237   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6238 %}
  6240 // Expand node for constant pool load: small offset.
  6241 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6242   effect(DEF dst, USE src, USE toc);
  6243   ins_cost(MEMORY_REF_COST);
  6245   ins_num_consts(1);
  6247   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6248   size(4);
  6249   ins_encode %{
  6250     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6251     address float_address = __ float_constant($src$$constant);
  6252     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6253   %}
  6254   ins_pipe(pipe_class_memory);
  6255 %}
  6257 // Expand node for constant pool load: large offset.
  6258 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6259   effect(DEF dst, USE src, USE toc);
  6260   ins_cost(MEMORY_REF_COST);
  6262   ins_num_consts(1);
  6264   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6265             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6266             "ADDIS   $toc, $toc, -offset_hi"%}
  6267   size(12);
  6268   ins_encode %{
  6269     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6270     FloatRegister Rdst    = $dst$$FloatRegister;
  6271     Register Rtoc         = $toc$$Register;
  6272     address float_address = __ float_constant($src$$constant);
  6273     int offset            = __ offset_to_method_toc(float_address);
  6274     int hi = (offset + (1<<15))>>16;
  6275     int lo = offset - hi * (1<<16);
  6277     __ addis(Rtoc, Rtoc, hi);
  6278     __ lfs(Rdst, lo, Rtoc);
  6279     __ addis(Rtoc, Rtoc, -hi);
  6280   %}
  6281   ins_pipe(pipe_class_memory);
  6282 %}
  6284 // Adlc adds toc node MachConstantTableBase.
  6285 instruct loadConF_Ex(regF dst, immF src) %{
  6286   match(Set dst src);
  6287   ins_cost(MEMORY_REF_COST);
  6289   // See loadConP.
  6290   ins_cannot_rematerialize(true);
  6292   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6293   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6294 %}
  6296 // Expand node for constant pool load: small offset.
  6297 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6298   effect(DEF dst, USE src, USE toc);
  6299   ins_cost(MEMORY_REF_COST);
  6301   ins_num_consts(1);
  6303   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6304   size(4);
  6305   ins_encode %{
  6306     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6307     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6308     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6309   %}
  6310   ins_pipe(pipe_class_memory);
  6311 %}
  6313 // Expand node for constant pool load: large offset.
  6314 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6315   effect(DEF dst, USE src, USE toc);
  6316   ins_cost(MEMORY_REF_COST);
  6318   ins_num_consts(1);
  6320   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6321             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6322             "ADDIS   $toc, $toc, -offset_hi" %}
  6323   size(12);
  6324   ins_encode %{
  6325     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6326     FloatRegister Rdst    = $dst$$FloatRegister;
  6327     Register      Rtoc    = $toc$$Register;
  6328     address float_address = __ double_constant($src$$constant);
  6329     int offset            = __ offset_to_method_toc(float_address);
  6330     int hi = (offset + (1<<15))>>16;
  6331     int lo = offset - hi * (1<<16);
  6333     __ addis(Rtoc, Rtoc, hi);
  6334     __ lfd(Rdst, lo, Rtoc);
  6335     __ addis(Rtoc, Rtoc, -hi);
  6336   %}
  6337   ins_pipe(pipe_class_memory);
  6338 %}
  6340 // Adlc adds toc node MachConstantTableBase.
  6341 instruct loadConD_Ex(regD dst, immD src) %{
  6342   match(Set dst src);
  6343   ins_cost(MEMORY_REF_COST);
  6345   // See loadConP.
  6346   ins_cannot_rematerialize(true);
  6348   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6349   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6350 %}
  6352 // Prefetch instructions.
  6353 // Must be safe to execute with invalid address (cannot fault).
  6355 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6356   match(PrefetchRead (AddP mem src));
  6357   ins_cost(MEMORY_REF_COST);
  6359   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6360   size(4);
  6361   ins_encode %{
  6362     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6363     __ dcbt($src$$Register, $mem$$base$$Register);
  6364   %}
  6365   ins_pipe(pipe_class_memory);
  6366 %}
  6368 instruct prefetchr_no_offset(indirectMemory mem) %{
  6369   match(PrefetchRead mem);
  6370   ins_cost(MEMORY_REF_COST);
  6372   format %{ "PREFETCH $mem" %}
  6373   size(4);
  6374   ins_encode %{
  6375     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6376     __ dcbt($mem$$base$$Register);
  6377   %}
  6378   ins_pipe(pipe_class_memory);
  6379 %}
  6381 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6382   match(PrefetchWrite (AddP mem src));
  6383   ins_cost(MEMORY_REF_COST);
  6385   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6386   size(4);
  6387   ins_encode %{
  6388     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6389     __ dcbtst($src$$Register, $mem$$base$$Register);
  6390   %}
  6391   ins_pipe(pipe_class_memory);
  6392 %}
  6394 instruct prefetchw_no_offset(indirectMemory mem) %{
  6395   match(PrefetchWrite mem);
  6396   ins_cost(MEMORY_REF_COST);
  6398   format %{ "PREFETCH $mem" %}
  6399   size(4);
  6400   ins_encode %{
  6401     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6402     __ dcbtst($mem$$base$$Register);
  6403   %}
  6404   ins_pipe(pipe_class_memory);
  6405 %}
  6407 // Special prefetch versions which use the dcbz instruction.
  6408 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6409   match(PrefetchAllocation (AddP mem src));
  6410   predicate(AllocatePrefetchStyle == 3);
  6411   ins_cost(MEMORY_REF_COST);
  6413   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6414   size(4);
  6415   ins_encode %{
  6416     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6417     __ dcbz($src$$Register, $mem$$base$$Register);
  6418   %}
  6419   ins_pipe(pipe_class_memory);
  6420 %}
  6422 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6423   match(PrefetchAllocation mem);
  6424   predicate(AllocatePrefetchStyle == 3);
  6425   ins_cost(MEMORY_REF_COST);
  6427   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6428   size(4);
  6429   ins_encode %{
  6430     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6431     __ dcbz($mem$$base$$Register);
  6432   %}
  6433   ins_pipe(pipe_class_memory);
  6434 %}
  6436 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6437   match(PrefetchAllocation (AddP mem src));
  6438   predicate(AllocatePrefetchStyle != 3);
  6439   ins_cost(MEMORY_REF_COST);
  6441   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6442   size(4);
  6443   ins_encode %{
  6444     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6445     __ dcbtst($src$$Register, $mem$$base$$Register);
  6446   %}
  6447   ins_pipe(pipe_class_memory);
  6448 %}
  6450 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6451   match(PrefetchAllocation mem);
  6452   predicate(AllocatePrefetchStyle != 3);
  6453   ins_cost(MEMORY_REF_COST);
  6455   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6456   size(4);
  6457   ins_encode %{
  6458     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6459     __ dcbtst($mem$$base$$Register);
  6460   %}
  6461   ins_pipe(pipe_class_memory);
  6462 %}
  6464 //----------Store Instructions-------------------------------------------------
  6466 // Store Byte
  6467 instruct storeB(memory mem, iRegIsrc src) %{
  6468   match(Set mem (StoreB mem src));
  6469   ins_cost(MEMORY_REF_COST);
  6471   format %{ "STB     $src, $mem \t// byte" %}
  6472   size(4);
  6473   ins_encode %{
  6474     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6475     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6476     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6477   %}
  6478   ins_pipe(pipe_class_memory);
  6479 %}
  6481 // Store Char/Short
  6482 instruct storeC(memory mem, iRegIsrc src) %{
  6483   match(Set mem (StoreC mem src));
  6484   ins_cost(MEMORY_REF_COST);
  6486   format %{ "STH     $src, $mem \t// short" %}
  6487   size(4);
  6488   ins_encode %{
  6489     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6490     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6491     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6492   %}
  6493   ins_pipe(pipe_class_memory);
  6494 %}
  6496 // Store Integer
  6497 instruct storeI(memory mem, iRegIsrc src) %{
  6498   match(Set mem (StoreI mem src));
  6499   ins_cost(MEMORY_REF_COST);
  6501   format %{ "STW     $src, $mem" %}
  6502   size(4);
  6503   ins_encode( enc_stw(src, mem) );
  6504   ins_pipe(pipe_class_memory);
  6505 %}
  6507 // ConvL2I + StoreI.
  6508 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6509   match(Set mem (StoreI mem (ConvL2I src)));
  6510   ins_cost(MEMORY_REF_COST);
  6512   format %{ "STW     l2i($src), $mem" %}
  6513   size(4);
  6514   ins_encode( enc_stw(src, mem) );
  6515   ins_pipe(pipe_class_memory);
  6516 %}
  6518 // Store Long
  6519 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6520   match(Set mem (StoreL mem src));
  6521   ins_cost(MEMORY_REF_COST);
  6523   format %{ "STD     $src, $mem \t// long" %}
  6524   size(4);
  6525   ins_encode( enc_std(src, mem) );
  6526   ins_pipe(pipe_class_memory);
  6527 %}
  6529 // Store super word nodes.
  6531 // Store Aligned Packed Byte long register to memory
  6532 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6533   predicate(n->as_StoreVector()->memory_size() == 8);
  6534   match(Set mem (StoreVector mem src));
  6535   ins_cost(MEMORY_REF_COST);
  6537   format %{ "STD     $mem, $src \t// packed8B" %}
  6538   size(4);
  6539   ins_encode( enc_std(src, mem) );
  6540   ins_pipe(pipe_class_memory);
  6541 %}
  6543 // Store Compressed Oop
  6544 instruct storeN(memory dst, iRegN_P2N src) %{
  6545   match(Set dst (StoreN dst src));
  6546   ins_cost(MEMORY_REF_COST);
  6548   format %{ "STW     $src, $dst \t// compressed oop" %}
  6549   size(4);
  6550   ins_encode( enc_stw(src, dst) );
  6551   ins_pipe(pipe_class_memory);
  6552 %}
  6554 // Store Compressed KLass
  6555 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6556   match(Set dst (StoreNKlass dst src));
  6557   ins_cost(MEMORY_REF_COST);
  6559   format %{ "STW     $src, $dst \t// compressed klass" %}
  6560   size(4);
  6561   ins_encode( enc_stw(src, dst) );
  6562   ins_pipe(pipe_class_memory);
  6563 %}
  6565 // Store Pointer
  6566 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6567   match(Set dst (StoreP dst src));
  6568   ins_cost(MEMORY_REF_COST);
  6570   format %{ "STD     $src, $dst \t// ptr" %}
  6571   size(4);
  6572   ins_encode( enc_std(src, dst) );
  6573   ins_pipe(pipe_class_memory);
  6574 %}
  6576 // Store Float
  6577 instruct storeF(memory mem, regF src) %{
  6578   match(Set mem (StoreF mem src));
  6579   ins_cost(MEMORY_REF_COST);
  6581   format %{ "STFS    $src, $mem" %}
  6582   size(4);
  6583   ins_encode( enc_stfs(src, mem) );
  6584   ins_pipe(pipe_class_memory);
  6585 %}
  6587 // Store Double
  6588 instruct storeD(memory mem, regD src) %{
  6589   match(Set mem (StoreD mem src));
  6590   ins_cost(MEMORY_REF_COST);
  6592   format %{ "STFD    $src, $mem" %}
  6593   size(4);
  6594   ins_encode( enc_stfd(src, mem) );
  6595   ins_pipe(pipe_class_memory);
  6596 %}
  6598 //----------Store Instructions With Zeros--------------------------------------
  6600 // Card-mark for CMS garbage collection.
  6601 // This cardmark does an optimization so that it must not always
  6602 // do a releasing store. For this, it gets the address of
  6603 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6604 // (Using releaseFieldAddr in the match rule is a hack.)
  6605 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6606   match(Set mem (StoreCM mem releaseFieldAddr));
  6607   predicate(false);
  6608   ins_cost(MEMORY_REF_COST);
  6610   // See loadConP.
  6611   ins_cannot_rematerialize(true);
  6613   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6614   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6615   ins_pipe(pipe_class_memory);
  6616 %}
  6618 // Card-mark for CMS garbage collection.
  6619 // This cardmark does an optimization so that it must not always
  6620 // do a releasing store. For this, it needs the constant address of
  6621 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6622 // This constant address is split off here by expand so we can use
  6623 // adlc / matcher functionality to load it from the constant section.
  6624 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6625   match(Set mem (StoreCM mem zero));
  6626   predicate(UseConcMarkSweepGC);
  6628   expand %{
  6629     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6630     iRegLdst releaseFieldAddress;
  6631     loadConL_Ex(releaseFieldAddress, baseImm);
  6632     storeCM_CMS(mem, releaseFieldAddress);
  6633   %}
  6634 %}
  6636 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6637   match(Set mem (StoreCM mem zero));
  6638   predicate(UseG1GC);
  6639   ins_cost(MEMORY_REF_COST);
  6641   ins_cannot_rematerialize(true);
  6643   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6644   size(8);
  6645   ins_encode %{
  6646     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6647     __ li(R0, 0);
  6648     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6649     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6650     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6651   %}
  6652   ins_pipe(pipe_class_memory);
  6653 %}
  6655 // Convert oop pointer into compressed form.
  6657 // Nodes for postalloc expand.
  6659 // Shift node for expand.
  6660 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6661   // The match rule is needed to make it a 'MachTypeNode'!
  6662   match(Set dst (EncodeP src));
  6663   predicate(false);
  6665   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6666   size(4);
  6667   ins_encode %{
  6668     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6669     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6670   %}
  6671   ins_pipe(pipe_class_default);
  6672 %}
  6674 // Add node for expand.
  6675 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6676   // The match rule is needed to make it a 'MachTypeNode'!
  6677   match(Set dst (EncodeP src));
  6678   predicate(false);
  6680   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6681   size(4);
  6682   ins_encode %{
  6683     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6684     __ subf($dst$$Register, R30, $src$$Register);
  6685   %}
  6686   ins_pipe(pipe_class_default);
  6687 %}
  6689 // Conditional sub base.
  6690 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6691   // The match rule is needed to make it a 'MachTypeNode'!
  6692   match(Set dst (EncodeP (Binary crx src1)));
  6693   predicate(false);
  6695   ins_variable_size_depending_on_alignment(true);
  6697   format %{ "BEQ     $crx, done\n\t"
  6698             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6699             "done:" %}
  6700   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6701   ins_encode %{
  6702     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6703     Label done;
  6704     __ beq($crx$$CondRegister, done);
  6705     __ subf($dst$$Register, R30, $src1$$Register);
  6706     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6707     __ bind(done);
  6708   %}
  6709   ins_pipe(pipe_class_default);
  6710 %}
  6712 // Power 7 can use isel instruction
  6713 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6714   // The match rule is needed to make it a 'MachTypeNode'!
  6715   match(Set dst (EncodeP (Binary crx src1)));
  6716   predicate(false);
  6718   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6719   size(4);
  6720   ins_encode %{
  6721     // This is a Power7 instruction for which no machine description exists.
  6722     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6723     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6724   %}
  6725   ins_pipe(pipe_class_default);
  6726 %}
  6728 // base != 0
  6729 // 32G aligned narrow oop base.
  6730 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6731   match(Set dst (EncodeP src));
  6732   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6734   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6735   size(4);
  6736   ins_encode %{
  6737     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6738     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6739   %}
  6740   ins_pipe(pipe_class_default);
  6741 %}
  6743 // shift != 0, base != 0
  6744 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6745   match(Set dst (EncodeP src));
  6746   effect(TEMP crx);
  6747   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6748             Universe::narrow_oop_shift() != 0 &&
  6749             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6751   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6752   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6753 %}
  6755 // shift != 0, base != 0
  6756 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6757   match(Set dst (EncodeP src));
  6758   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6759             Universe::narrow_oop_shift() != 0 &&
  6760             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6762   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6763   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6764 %}
  6766 // shift != 0, base == 0
  6767 // TODO: This is the same as encodeP_shift. Merge!
  6768 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6769   match(Set dst (EncodeP src));
  6770   predicate(Universe::narrow_oop_shift() != 0 &&
  6771             Universe::narrow_oop_base() ==0);
  6773   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6774   size(4);
  6775   ins_encode %{
  6776     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6777     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6778   %}
  6779   ins_pipe(pipe_class_default);
  6780 %}
  6782 // Compressed OOPs with narrow_oop_shift == 0.
  6783 // shift == 0, base == 0
  6784 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6785   match(Set dst (EncodeP src));
  6786   predicate(Universe::narrow_oop_shift() == 0);
  6788   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6789   // variable size, 0 or 4.
  6790   ins_encode %{
  6791     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6792     __ mr_if_needed($dst$$Register, $src$$Register);
  6793   %}
  6794   ins_pipe(pipe_class_default);
  6795 %}
  6797 // Decode nodes.
  6799 // Shift node for expand.
  6800 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6801   // The match rule is needed to make it a 'MachTypeNode'!
  6802   match(Set dst (DecodeN src));
  6803   predicate(false);
  6805   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6806   size(4);
  6807   ins_encode %{
  6808     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6809     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6810   %}
  6811   ins_pipe(pipe_class_default);
  6812 %}
  6814 // Add node for expand.
  6815 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6816   // The match rule is needed to make it a 'MachTypeNode'!
  6817   match(Set dst (DecodeN src));
  6818   predicate(false);
  6820   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6821   size(4);
  6822   ins_encode %{
  6823     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6824     __ add($dst$$Register, $src$$Register, R30);
  6825   %}
  6826   ins_pipe(pipe_class_default);
  6827 %}
  6829 // conditianal add base for expand
  6830 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6831   // The match rule is needed to make it a 'MachTypeNode'!
  6832   // NOTICE that the rule is nonsense - we just have to make sure that:
  6833   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6834   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6835   match(Set dst (DecodeN (Binary crx src1)));
  6836   predicate(false);
  6838   ins_variable_size_depending_on_alignment(true);
  6840   format %{ "BEQ     $crx, done\n\t"
  6841             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6842             "done:" %}
  6843   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6844   ins_encode %{
  6845     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6846     Label done;
  6847     __ beq($crx$$CondRegister, done);
  6848     __ add($dst$$Register, $src1$$Register, R30);
  6849     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6850     __ bind(done);
  6851   %}
  6852   ins_pipe(pipe_class_default);
  6853 %}
  6855 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6856   // The match rule is needed to make it a 'MachTypeNode'!
  6857   // NOTICE that the rule is nonsense - we just have to make sure that:
  6858   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6859   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6860   match(Set dst (DecodeN (Binary crx src1)));
  6861   predicate(false);
  6863   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6864   size(4);
  6865   ins_encode %{
  6866     // This is a Power7 instruction for which no machine description exists.
  6867     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6868     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6869   %}
  6870   ins_pipe(pipe_class_default);
  6871 %}
  6873 //  shift != 0, base != 0
  6874 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6875   match(Set dst (DecodeN src));
  6876   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6877              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6878             Universe::narrow_oop_shift() != 0 &&
  6879             Universe::narrow_oop_base() != 0);
  6880   effect(TEMP crx);
  6882   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6883   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6884 %}
  6886 // shift != 0, base == 0
  6887 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6888   match(Set dst (DecodeN src));
  6889   predicate(Universe::narrow_oop_shift() != 0 &&
  6890             Universe::narrow_oop_base() == 0);
  6892   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6893   size(4);
  6894   ins_encode %{
  6895     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6896     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6897   %}
  6898   ins_pipe(pipe_class_default);
  6899 %}
  6901 // src != 0, shift != 0, base != 0
  6902 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6903   match(Set dst (DecodeN src));
  6904   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6905              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6906             Universe::narrow_oop_shift() != 0 &&
  6907             Universe::narrow_oop_base() != 0);
  6909   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6910   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6911 %}
  6913 // Compressed OOPs with narrow_oop_shift == 0.
  6914 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6915   match(Set dst (DecodeN src));
  6916   predicate(Universe::narrow_oop_shift() == 0);
  6917   ins_cost(DEFAULT_COST);
  6919   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6920   // variable size, 0 or 4.
  6921   ins_encode %{
  6922     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6923     __ mr_if_needed($dst$$Register, $src$$Register);
  6924   %}
  6925   ins_pipe(pipe_class_default);
  6926 %}
  6928 // Convert compressed oop into int for vectors alignment masking.
  6929 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6930   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6931   predicate(Universe::narrow_oop_shift() == 0);
  6932   ins_cost(DEFAULT_COST);
  6934   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6935   // variable size, 0 or 4.
  6936   ins_encode %{
  6937     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6938     __ mr_if_needed($dst$$Register, $src$$Register);
  6939   %}
  6940   ins_pipe(pipe_class_default);
  6941 %}
  6943 // Convert klass pointer into compressed form.
  6945 // Nodes for postalloc expand.
  6947 // Shift node for expand.
  6948 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6949   // The match rule is needed to make it a 'MachTypeNode'!
  6950   match(Set dst (EncodePKlass src));
  6951   predicate(false);
  6953   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6954   size(4);
  6955   ins_encode %{
  6956     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6957     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6958   %}
  6959   ins_pipe(pipe_class_default);
  6960 %}
  6962 // Add node for expand.
  6963 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6964   // The match rule is needed to make it a 'MachTypeNode'!
  6965   match(Set dst (EncodePKlass (Binary base src)));
  6966   predicate(false);
  6968   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6969   size(4);
  6970   ins_encode %{
  6971     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6972     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6973   %}
  6974   ins_pipe(pipe_class_default);
  6975 %}
  6977 // base != 0
  6978 // 32G aligned narrow oop base.
  6979 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6980   match(Set dst (EncodePKlass src));
  6981   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6983   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6984   size(4);
  6985   ins_encode %{
  6986     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6987     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
  6988   %}
  6989   ins_pipe(pipe_class_default);
  6990 %}
  6992 // shift != 0, base != 0
  6993 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6994   match(Set dst (EncodePKlass (Binary base src)));
  6995   predicate(false);
  6997   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6998   postalloc_expand %{
  6999     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  7000     n1->add_req(n_region, n_base, n_src);
  7001     n1->_opnds[0] = op_dst;
  7002     n1->_opnds[1] = op_base;
  7003     n1->_opnds[2] = op_src;
  7004     n1->_bottom_type = _bottom_type;
  7006     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  7007     n2->add_req(n_region, n1);
  7008     n2->_opnds[0] = op_dst;
  7009     n2->_opnds[1] = op_dst;
  7010     n2->_bottom_type = _bottom_type;
  7011     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7012     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7014     nodes->push(n1);
  7015     nodes->push(n2);
  7016   %}
  7017 %}
  7019 // shift != 0, base != 0
  7020 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  7021   match(Set dst (EncodePKlass src));
  7022   //predicate(Universe::narrow_klass_shift() != 0 &&
  7023   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  7025   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  7026   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7027   expand %{
  7028     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  7029     iRegLdst base;
  7030     loadConL_Ex(base, baseImm);
  7031     encodePKlass_not_null_Ex(dst, base, src);
  7032   %}
  7033 %}
  7035 // Decode nodes.
  7037 // Shift node for expand.
  7038 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  7039   // The match rule is needed to make it a 'MachTypeNode'!
  7040   match(Set dst (DecodeNKlass src));
  7041   predicate(false);
  7043   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  7044   size(4);
  7045   ins_encode %{
  7046     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  7047     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  7048   %}
  7049   ins_pipe(pipe_class_default);
  7050 %}
  7052 // Add node for expand.
  7054 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  7055   // The match rule is needed to make it a 'MachTypeNode'!
  7056   match(Set dst (DecodeNKlass (Binary base src)));
  7057   predicate(false);
  7059   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  7060   size(4);
  7061   ins_encode %{
  7062     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7063     __ add($dst$$Register, $base$$Register, $src$$Register);
  7064   %}
  7065   ins_pipe(pipe_class_default);
  7066 %}
  7068 // src != 0, shift != 0, base != 0
  7069 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7070   match(Set dst (DecodeNKlass (Binary base src)));
  7071   //effect(kill src); // We need a register for the immediate result after shifting.
  7072   predicate(false);
  7074   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7075   postalloc_expand %{
  7076     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7077     n1->add_req(n_region, n_base, n_src);
  7078     n1->_opnds[0] = op_dst;
  7079     n1->_opnds[1] = op_base;
  7080     n1->_opnds[2] = op_src;
  7081     n1->_bottom_type = _bottom_type;
  7083     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7084     n2->add_req(n_region, n1);
  7085     n2->_opnds[0] = op_dst;
  7086     n2->_opnds[1] = op_dst;
  7087     n2->_bottom_type = _bottom_type;
  7089     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7090     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7092     nodes->push(n1);
  7093     nodes->push(n2);
  7094   %}
  7095 %}
  7097 // src != 0, shift != 0, base != 0
  7098 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7099   match(Set dst (DecodeNKlass src));
  7100   // predicate(Universe::narrow_klass_shift() != 0 &&
  7101   //           Universe::narrow_klass_base() != 0);
  7103   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7105   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7106   expand %{
  7107     // We add first, then we shift. Like this, we can get along with one register less.
  7108     // But we have to load the base pre-shifted.
  7109     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7110     iRegLdst base;
  7111     loadConL_Ex(base, baseImm);
  7112     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7113   %}
  7114 %}
  7116 //----------MemBar Instructions-----------------------------------------------
  7117 // Memory barrier flavors
  7119 instruct membar_acquire() %{
  7120   match(LoadFence);
  7121   ins_cost(4*MEMORY_REF_COST);
  7123   format %{ "MEMBAR-acquire" %}
  7124   size(4);
  7125   ins_encode %{
  7126     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7127     __ acquire();
  7128   %}
  7129   ins_pipe(pipe_class_default);
  7130 %}
  7132 instruct unnecessary_membar_acquire() %{
  7133   match(MemBarAcquire);
  7134   ins_cost(0);
  7136   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7137   size(0);
  7138   ins_encode( /*empty*/ );
  7139   ins_pipe(pipe_class_default);
  7140 %}
  7142 instruct membar_acquire_lock() %{
  7143   match(MemBarAcquireLock);
  7144   ins_cost(0);
  7146   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7147   size(0);
  7148   ins_encode( /*empty*/ );
  7149   ins_pipe(pipe_class_default);
  7150 %}
  7152 instruct membar_release() %{
  7153   match(MemBarRelease);
  7154   match(StoreFence);
  7155   ins_cost(4*MEMORY_REF_COST);
  7157   format %{ "MEMBAR-release" %}
  7158   size(4);
  7159   ins_encode %{
  7160     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7161     __ release();
  7162   %}
  7163   ins_pipe(pipe_class_default);
  7164 %}
  7166 instruct membar_storestore() %{
  7167   match(MemBarStoreStore);
  7168   ins_cost(4*MEMORY_REF_COST);
  7170   format %{ "MEMBAR-store-store" %}
  7171   size(4);
  7172   ins_encode %{
  7173     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7174     __ membar(Assembler::StoreStore);
  7175   %}
  7176   ins_pipe(pipe_class_default);
  7177 %}
  7179 instruct membar_release_lock() %{
  7180   match(MemBarReleaseLock);
  7181   ins_cost(0);
  7183   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7184   size(0);
  7185   ins_encode( /*empty*/ );
  7186   ins_pipe(pipe_class_default);
  7187 %}
  7189 instruct membar_volatile() %{
  7190   match(MemBarVolatile);
  7191   ins_cost(4*MEMORY_REF_COST);
  7193   format %{ "MEMBAR-volatile" %}
  7194   size(4);
  7195   ins_encode %{
  7196     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7197     __ fence();
  7198   %}
  7199   ins_pipe(pipe_class_default);
  7200 %}
  7202 // This optimization is wrong on PPC. The following pattern is not supported:
  7203 //  MemBarVolatile
  7204 //   ^        ^
  7205 //   |        |
  7206 //  CtrlProj MemProj
  7207 //   ^        ^
  7208 //   |        |
  7209 //   |       Load
  7210 //   |
  7211 //  MemBarVolatile
  7212 //
  7213 //  The first MemBarVolatile could get optimized out! According to
  7214 //  Vladimir, this pattern can not occur on Oracle platforms.
  7215 //  However, it does occur on PPC64 (because of membars in
  7216 //  inline_unsafe_load_store).
  7217 //
  7218 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7219 // Don't forget to look at the implementation of post_store_load_barrier again,
  7220 // we did other fixes in that method.
  7221 //instruct unnecessary_membar_volatile() %{
  7222 //  match(MemBarVolatile);
  7223 //  predicate(Matcher::post_store_load_barrier(n));
  7224 //  ins_cost(0);
  7225 //
  7226 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7227 //  size(0);
  7228 //  ins_encode( /*empty*/ );
  7229 //  ins_pipe(pipe_class_default);
  7230 //%}
  7232 instruct membar_CPUOrder() %{
  7233   match(MemBarCPUOrder);
  7234   ins_cost(0);
  7236   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7237   size(0);
  7238   ins_encode( /*empty*/ );
  7239   ins_pipe(pipe_class_default);
  7240 %}
  7242 //----------Conditional Move---------------------------------------------------
  7244 // Cmove using isel.
  7245 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7246   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7247   predicate(VM_Version::has_isel());
  7248   ins_cost(DEFAULT_COST);
  7250   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7251   size(4);
  7252   ins_encode %{
  7253     // This is a Power7 instruction for which no machine description
  7254     // exists. Anyways, the scheduler should be off on Power7.
  7255     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7256     int cc        = $cmp$$cmpcode;
  7257     __ isel($dst$$Register, $crx$$CondRegister,
  7258             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7259   %}
  7260   ins_pipe(pipe_class_default);
  7261 %}
  7263 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7264   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7265   predicate(!VM_Version::has_isel());
  7266   ins_cost(DEFAULT_COST+BRANCH_COST);
  7268   ins_variable_size_depending_on_alignment(true);
  7270   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7271   // Worst case is branch + move + stop, no stop without scheduler
  7272   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7273   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7274   ins_pipe(pipe_class_default);
  7275 %}
  7277 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7278   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7279   ins_cost(DEFAULT_COST+BRANCH_COST);
  7281   ins_variable_size_depending_on_alignment(true);
  7283   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7284   // Worst case is branch + move + stop, no stop without scheduler
  7285   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7286   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7287   ins_pipe(pipe_class_default);
  7288 %}
  7290 // Cmove using isel.
  7291 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7292   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7293   predicate(VM_Version::has_isel());
  7294   ins_cost(DEFAULT_COST);
  7296   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7297   size(4);
  7298   ins_encode %{
  7299     // This is a Power7 instruction for which no machine description
  7300     // exists. Anyways, the scheduler should be off on Power7.
  7301     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7302     int cc        = $cmp$$cmpcode;
  7303     __ isel($dst$$Register, $crx$$CondRegister,
  7304             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7305   %}
  7306   ins_pipe(pipe_class_default);
  7307 %}
  7309 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7310   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7311   predicate(!VM_Version::has_isel());
  7312   ins_cost(DEFAULT_COST+BRANCH_COST);
  7314   ins_variable_size_depending_on_alignment(true);
  7316   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7317   // Worst case is branch + move + stop, no stop without scheduler.
  7318   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7319   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7320   ins_pipe(pipe_class_default);
  7321 %}
  7323 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7324   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7325   ins_cost(DEFAULT_COST+BRANCH_COST);
  7327   ins_variable_size_depending_on_alignment(true);
  7329   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7330   // Worst case is branch + move + stop, no stop without scheduler.
  7331   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7332   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7333   ins_pipe(pipe_class_default);
  7334 %}
  7336 // Cmove using isel.
  7337 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7338   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7339   predicate(VM_Version::has_isel());
  7340   ins_cost(DEFAULT_COST);
  7342   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7343   size(4);
  7344   ins_encode %{
  7345     // This is a Power7 instruction for which no machine description
  7346     // exists. Anyways, the scheduler should be off on Power7.
  7347     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7348     int cc        = $cmp$$cmpcode;
  7349     __ isel($dst$$Register, $crx$$CondRegister,
  7350             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7351   %}
  7352   ins_pipe(pipe_class_default);
  7353 %}
  7355 // Conditional move for RegN. Only cmov(reg, reg).
  7356 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7357   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7358   predicate(!VM_Version::has_isel());
  7359   ins_cost(DEFAULT_COST+BRANCH_COST);
  7361   ins_variable_size_depending_on_alignment(true);
  7363   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7364   // Worst case is branch + move + stop, no stop without scheduler.
  7365   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7366   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7367   ins_pipe(pipe_class_default);
  7368 %}
  7370 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7371   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7372   ins_cost(DEFAULT_COST+BRANCH_COST);
  7374   ins_variable_size_depending_on_alignment(true);
  7376   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7377   // Worst case is branch + move + stop, no stop without scheduler.
  7378   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7379   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7380   ins_pipe(pipe_class_default);
  7381 %}
  7383 // Cmove using isel.
  7384 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7385   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7386   predicate(VM_Version::has_isel());
  7387   ins_cost(DEFAULT_COST);
  7389   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7390   size(4);
  7391   ins_encode %{
  7392     // This is a Power7 instruction for which no machine description
  7393     // exists. Anyways, the scheduler should be off on Power7.
  7394     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7395     int cc        = $cmp$$cmpcode;
  7396     __ isel($dst$$Register, $crx$$CondRegister,
  7397             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7398   %}
  7399   ins_pipe(pipe_class_default);
  7400 %}
  7402 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7403   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7404   predicate(!VM_Version::has_isel());
  7405   ins_cost(DEFAULT_COST+BRANCH_COST);
  7407   ins_variable_size_depending_on_alignment(true);
  7409   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7410   // Worst case is branch + move + stop, no stop without scheduler.
  7411   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7412   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7413   ins_pipe(pipe_class_default);
  7414 %}
  7416 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7417   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7418   ins_cost(DEFAULT_COST+BRANCH_COST);
  7420   ins_variable_size_depending_on_alignment(true);
  7422   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7423   // Worst case is branch + move + stop, no stop without scheduler.
  7424   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7425   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7426   ins_pipe(pipe_class_default);
  7427 %}
  7429 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7430   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7431   ins_cost(DEFAULT_COST+BRANCH_COST);
  7433   ins_variable_size_depending_on_alignment(true);
  7435   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7436   // Worst case is branch + move + stop, no stop without scheduler.
  7437   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7438   ins_encode %{
  7439     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7440     Label done;
  7441     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7442     // Branch if not (cmp crx).
  7443     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7444     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7445     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7446     __ bind(done);
  7447   %}
  7448   ins_pipe(pipe_class_default);
  7449 %}
  7451 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7452   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7453   ins_cost(DEFAULT_COST+BRANCH_COST);
  7455   ins_variable_size_depending_on_alignment(true);
  7457   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7458   // Worst case is branch + move + stop, no stop without scheduler.
  7459   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7460   ins_encode %{
  7461     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7462     Label done;
  7463     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7464     // Branch if not (cmp crx).
  7465     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7466     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7467     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7468     __ bind(done);
  7469   %}
  7470   ins_pipe(pipe_class_default);
  7471 %}
  7473 //----------Conditional_store--------------------------------------------------
  7474 // Conditional-store of the updated heap-top.
  7475 // Used during allocation of the shared heap.
  7476 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7478 // As compareAndSwapL, but return flag register instead of boolean value in
  7479 // int register.
  7480 // Used by sun/misc/AtomicLongCSImpl.java.
  7481 // Mem_ptr must be a memory operand, else this node does not get
  7482 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7483 // can be rematerialized which leads to errors.
  7484 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7485   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7486   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7487   ins_encode %{
  7488     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7489     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7490                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7491                 noreg, NULL, true);
  7492   %}
  7493   ins_pipe(pipe_class_default);
  7494 %}
  7496 // As compareAndSwapP, but return flag register instead of boolean value in
  7497 // int register.
  7498 // This instruction is matched if UseTLAB is off.
  7499 // Mem_ptr must be a memory operand, else this node does not get
  7500 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7501 // can be rematerialized which leads to errors.
  7502 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7503   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7504   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7505   ins_encode %{
  7506     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7507     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7508                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7509                 noreg, NULL, true);
  7510   %}
  7511   ins_pipe(pipe_class_default);
  7512 %}
  7514 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7515 // by storePConditional.
  7516 // Don't know whether this is ever used.
  7517 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7518   match(Set dst (LoadPLocked mem));
  7519   ins_cost(MEMORY_REF_COST);
  7521   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7522             "TWI     $dst\n\t"
  7523             "ISYNC" %}
  7524   size(12);
  7525   ins_encode( enc_ld_ac(dst, mem) );
  7526   ins_pipe(pipe_class_memory);
  7527 %}
  7529 //----------Compare-And-Swap---------------------------------------------------
  7531 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7532 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7533 // matched.
  7535 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7536   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7537   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7538   // Variable size: instruction count smaller if regs are disjoint.
  7539   ins_encode %{
  7540     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7541     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7542     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7543                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7544                 $res$$Register, true);
  7545   %}
  7546   ins_pipe(pipe_class_default);
  7547 %}
  7549 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7550   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7551   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7552   // Variable size: instruction count smaller if regs are disjoint.
  7553   ins_encode %{
  7554     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7555     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7556     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7557                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7558                 $res$$Register, true);
  7559   %}
  7560   ins_pipe(pipe_class_default);
  7561 %}
  7563 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7564   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7565   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7566   // Variable size: instruction count smaller if regs are disjoint.
  7567   ins_encode %{
  7568     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7569     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7570     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7571                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7572                 $res$$Register, NULL, true);
  7573   %}
  7574   ins_pipe(pipe_class_default);
  7575 %}
  7577 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7578   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7579   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7580   // Variable size: instruction count smaller if regs are disjoint.
  7581   ins_encode %{
  7582     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7583     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7584     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7585                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7586                 $res$$Register, NULL, true);
  7587   %}
  7588   ins_pipe(pipe_class_default);
  7589 %}
  7591 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7592   match(Set res (GetAndAddI mem_ptr src));
  7593   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7594   // Variable size: instruction count smaller if regs are disjoint.
  7595   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7596   ins_pipe(pipe_class_default);
  7597 %}
  7599 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7600   match(Set res (GetAndAddL mem_ptr src));
  7601   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7602   // Variable size: instruction count smaller if regs are disjoint.
  7603   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7604   ins_pipe(pipe_class_default);
  7605 %}
  7607 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7608   match(Set res (GetAndSetI mem_ptr src));
  7609   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7610   // Variable size: instruction count smaller if regs are disjoint.
  7611   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7612   ins_pipe(pipe_class_default);
  7613 %}
  7615 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7616   match(Set res (GetAndSetL mem_ptr src));
  7617   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7618   // Variable size: instruction count smaller if regs are disjoint.
  7619   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7620   ins_pipe(pipe_class_default);
  7621 %}
  7623 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7624   match(Set res (GetAndSetP mem_ptr src));
  7625   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7626   // Variable size: instruction count smaller if regs are disjoint.
  7627   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7628   ins_pipe(pipe_class_default);
  7629 %}
  7631 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7632   match(Set res (GetAndSetN mem_ptr src));
  7633   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7634   // Variable size: instruction count smaller if regs are disjoint.
  7635   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7636   ins_pipe(pipe_class_default);
  7637 %}
  7639 //----------Arithmetic Instructions--------------------------------------------
  7640 // Addition Instructions
  7642 // Register Addition
  7643 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7644   match(Set dst (AddI src1 src2));
  7645   format %{ "ADD     $dst, $src1, $src2" %}
  7646   size(4);
  7647   ins_encode %{
  7648     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7649     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7650   %}
  7651   ins_pipe(pipe_class_default);
  7652 %}
  7654 // Expand does not work with above instruct. (??)
  7655 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7656   // no match-rule
  7657   effect(DEF dst, USE src1, USE src2);
  7658   format %{ "ADD     $dst, $src1, $src2" %}
  7659   size(4);
  7660   ins_encode %{
  7661     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7662     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7663   %}
  7664   ins_pipe(pipe_class_default);
  7665 %}
  7667 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7668   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7669   ins_cost(DEFAULT_COST*3);
  7671   expand %{
  7672     // FIXME: we should do this in the ideal world.
  7673     iRegIdst tmp1;
  7674     iRegIdst tmp2;
  7675     addI_reg_reg(tmp1, src1, src2);
  7676     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7677     addI_reg_reg(dst, tmp1, tmp2);
  7678   %}
  7679 %}
  7681 // Immediate Addition
  7682 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7683   match(Set dst (AddI src1 src2));
  7684   format %{ "ADDI    $dst, $src1, $src2" %}
  7685   size(4);
  7686   ins_encode %{
  7687     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7688     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7689   %}
  7690   ins_pipe(pipe_class_default);
  7691 %}
  7693 // Immediate Addition with 16-bit shifted operand
  7694 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7695   match(Set dst (AddI src1 src2));
  7696   format %{ "ADDIS   $dst, $src1, $src2" %}
  7697   size(4);
  7698   ins_encode %{
  7699     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7700     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7701   %}
  7702   ins_pipe(pipe_class_default);
  7703 %}
  7705 // Long Addition
  7706 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7707   match(Set dst (AddL src1 src2));
  7708   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7709   size(4);
  7710   ins_encode %{
  7711     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7712     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7713   %}
  7714   ins_pipe(pipe_class_default);
  7715 %}
  7717 // Expand does not work with above instruct. (??)
  7718 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7719   // no match-rule
  7720   effect(DEF dst, USE src1, USE src2);
  7721   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7722   size(4);
  7723   ins_encode %{
  7724     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7725     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7726   %}
  7727   ins_pipe(pipe_class_default);
  7728 %}
  7730 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7731   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7732   ins_cost(DEFAULT_COST*3);
  7734   expand %{
  7735     // FIXME: we should do this in the ideal world.
  7736     iRegLdst tmp1;
  7737     iRegLdst tmp2;
  7738     addL_reg_reg(tmp1, src1, src2);
  7739     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7740     addL_reg_reg(dst, tmp1, tmp2);
  7741   %}
  7742 %}
  7744 // AddL + ConvL2I.
  7745 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7746   match(Set dst (ConvL2I (AddL src1 src2)));
  7748   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7749   size(4);
  7750   ins_encode %{
  7751     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7752     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7753   %}
  7754   ins_pipe(pipe_class_default);
  7755 %}
  7757 // No constant pool entries required.
  7758 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7759   match(Set dst (AddL src1 src2));
  7761   format %{ "ADDI    $dst, $src1, $src2" %}
  7762   size(4);
  7763   ins_encode %{
  7764     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7765     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7766   %}
  7767   ins_pipe(pipe_class_default);
  7768 %}
  7770 // Long Immediate Addition with 16-bit shifted operand.
  7771 // No constant pool entries required.
  7772 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7773   match(Set dst (AddL src1 src2));
  7775   format %{ "ADDIS   $dst, $src1, $src2" %}
  7776   size(4);
  7777   ins_encode %{
  7778     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7779     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7780   %}
  7781   ins_pipe(pipe_class_default);
  7782 %}
  7784 // Pointer Register Addition
  7785 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7786   match(Set dst (AddP src1 src2));
  7787   format %{ "ADD     $dst, $src1, $src2" %}
  7788   size(4);
  7789   ins_encode %{
  7790     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7791     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7792   %}
  7793   ins_pipe(pipe_class_default);
  7794 %}
  7796 // Pointer Immediate Addition
  7797 // No constant pool entries required.
  7798 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7799   match(Set dst (AddP src1 src2));
  7801   format %{ "ADDI    $dst, $src1, $src2" %}
  7802   size(4);
  7803   ins_encode %{
  7804     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7805     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7806   %}
  7807   ins_pipe(pipe_class_default);
  7808 %}
  7810 // Pointer Immediate Addition with 16-bit shifted operand.
  7811 // No constant pool entries required.
  7812 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7813   match(Set dst (AddP src1 src2));
  7815   format %{ "ADDIS   $dst, $src1, $src2" %}
  7816   size(4);
  7817   ins_encode %{
  7818     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7819     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7820   %}
  7821   ins_pipe(pipe_class_default);
  7822 %}
  7824 //---------------------
  7825 // Subtraction Instructions
  7827 // Register Subtraction
  7828 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7829   match(Set dst (SubI src1 src2));
  7830   format %{ "SUBF    $dst, $src2, $src1" %}
  7831   size(4);
  7832   ins_encode %{
  7833     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7834     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7835   %}
  7836   ins_pipe(pipe_class_default);
  7837 %}
  7839 // Immediate Subtraction
  7840 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7841 // so this rule seems to be unused.
  7842 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7843   match(Set dst (SubI src1 src2));
  7844   format %{ "SUBI    $dst, $src1, $src2" %}
  7845   size(4);
  7846   ins_encode %{
  7847     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7848     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7849   %}
  7850   ins_pipe(pipe_class_default);
  7851 %}
  7853 // SubI from constant (using subfic).
  7854 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7855   match(Set dst (SubI src1 src2));
  7856   format %{ "SUBI    $dst, $src1, $src2" %}
  7858   size(4);
  7859   ins_encode %{
  7860     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7861     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7862   %}
  7863   ins_pipe(pipe_class_default);
  7864 %}
  7866 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7867 // positive integers and 0xF...F for negative ones.
  7868 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7869   // no match-rule, false predicate
  7870   effect(DEF dst, USE src);
  7871   predicate(false);
  7873   format %{ "SRAWI   $dst, $src, #31" %}
  7874   size(4);
  7875   ins_encode %{
  7876     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7877     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7878   %}
  7879   ins_pipe(pipe_class_default);
  7880 %}
  7882 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7883   match(Set dst (AbsI src));
  7884   ins_cost(DEFAULT_COST*3);
  7886   expand %{
  7887     iRegIdst tmp1;
  7888     iRegIdst tmp2;
  7889     signmask32I_regI(tmp1, src);
  7890     xorI_reg_reg(tmp2, tmp1, src);
  7891     subI_reg_reg(dst, tmp2, tmp1);
  7892   %}
  7893 %}
  7895 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7896   match(Set dst (SubI zero src2));
  7897   format %{ "NEG     $dst, $src2" %}
  7898   size(4);
  7899   ins_encode %{
  7900     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7901     __ neg($dst$$Register, $src2$$Register);
  7902   %}
  7903   ins_pipe(pipe_class_default);
  7904 %}
  7906 // Long subtraction
  7907 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7908   match(Set dst (SubL src1 src2));
  7909   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7910   size(4);
  7911   ins_encode %{
  7912     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7913     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7914   %}
  7915   ins_pipe(pipe_class_default);
  7916 %}
  7918 // SubL + convL2I.
  7919 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7920   match(Set dst (ConvL2I (SubL src1 src2)));
  7922   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7923   size(4);
  7924   ins_encode %{
  7925     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7926     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7927   %}
  7928   ins_pipe(pipe_class_default);
  7929 %}
  7931 // Immediate Subtraction
  7932 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7933 // so this rule seems to be unused.
  7934 // No constant pool entries required.
  7935 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7936   match(Set dst (SubL src1 src2));
  7938   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7939   size(4);
  7940   ins_encode %{
  7941     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7942     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7943   %}
  7944   ins_pipe(pipe_class_default);
  7945 %}
  7947 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7948 // positive longs and 0xF...F for negative ones.
  7949 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  7950   // no match-rule, false predicate
  7951   effect(DEF dst, USE src);
  7952   predicate(false);
  7954   format %{ "SRADI   $dst, $src, #63" %}
  7955   size(4);
  7956   ins_encode %{
  7957     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7958     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7959   %}
  7960   ins_pipe(pipe_class_default);
  7961 %}
  7963 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7964 // positive longs and 0xF...F for negative ones.
  7965 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  7966   // no match-rule, false predicate
  7967   effect(DEF dst, USE src);
  7968   predicate(false);
  7970   format %{ "SRADI   $dst, $src, #63" %}
  7971   size(4);
  7972   ins_encode %{
  7973     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7974     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7975   %}
  7976   ins_pipe(pipe_class_default);
  7977 %}
  7979 // Long negation
  7980 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7981   match(Set dst (SubL zero src2));
  7982   format %{ "NEG     $dst, $src2 \t// long" %}
  7983   size(4);
  7984   ins_encode %{
  7985     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7986     __ neg($dst$$Register, $src2$$Register);
  7987   %}
  7988   ins_pipe(pipe_class_default);
  7989 %}
  7991 // NegL + ConvL2I.
  7992 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7993   match(Set dst (ConvL2I (SubL zero src2)));
  7995   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7996   size(4);
  7997   ins_encode %{
  7998     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7999     __ neg($dst$$Register, $src2$$Register);
  8000   %}
  8001   ins_pipe(pipe_class_default);
  8002 %}
  8004 // Multiplication Instructions
  8005 // Integer Multiplication
  8007 // Register Multiplication
  8008 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8009   match(Set dst (MulI src1 src2));
  8010   ins_cost(DEFAULT_COST);
  8012   format %{ "MULLW   $dst, $src1, $src2" %}
  8013   size(4);
  8014   ins_encode %{
  8015     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  8016     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  8017   %}
  8018   ins_pipe(pipe_class_default);
  8019 %}
  8021 // Immediate Multiplication
  8022 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  8023   match(Set dst (MulI src1 src2));
  8024   ins_cost(DEFAULT_COST);
  8026   format %{ "MULLI   $dst, $src1, $src2" %}
  8027   size(4);
  8028   ins_encode %{
  8029     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8030     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8031   %}
  8032   ins_pipe(pipe_class_default);
  8033 %}
  8035 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8036   match(Set dst (MulL src1 src2));
  8037   ins_cost(DEFAULT_COST);
  8039   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  8040   size(4);
  8041   ins_encode %{
  8042     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  8043     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  8044   %}
  8045   ins_pipe(pipe_class_default);
  8046 %}
  8048 // Multiply high for optimized long division by constant.
  8049 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8050   match(Set dst (MulHiL src1 src2));
  8051   ins_cost(DEFAULT_COST);
  8053   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  8054   size(4);
  8055   ins_encode %{
  8056     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  8057     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  8058   %}
  8059   ins_pipe(pipe_class_default);
  8060 %}
  8062 // Immediate Multiplication
  8063 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  8064   match(Set dst (MulL src1 src2));
  8065   ins_cost(DEFAULT_COST);
  8067   format %{ "MULLI   $dst, $src1, $src2" %}
  8068   size(4);
  8069   ins_encode %{
  8070     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8071     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8072   %}
  8073   ins_pipe(pipe_class_default);
  8074 %}
  8076 // Integer Division with Immediate -1: Negate.
  8077 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8078   match(Set dst (DivI src1 src2));
  8079   ins_cost(DEFAULT_COST);
  8081   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8082   size(4);
  8083   ins_encode %{
  8084     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8085     __ neg($dst$$Register, $src1$$Register);
  8086   %}
  8087   ins_pipe(pipe_class_default);
  8088 %}
  8090 // Integer Division with constant, but not -1.
  8091 // We should be able to improve this by checking the type of src2.
  8092 // It might well be that src2 is known to be positive.
  8093 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8094   match(Set dst (DivI src1 src2));
  8095   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8096   ins_cost(2*DEFAULT_COST);
  8098   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8099   size(4);
  8100   ins_encode %{
  8101     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8102     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8103   %}
  8104   ins_pipe(pipe_class_default);
  8105 %}
  8107 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8108   effect(USE_DEF dst, USE src1, USE crx);
  8109   predicate(false);
  8111   ins_variable_size_depending_on_alignment(true);
  8113   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8114   // Worst case is branch + move + stop, no stop without scheduler.
  8115   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8116   ins_encode %{
  8117     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8118     Label done;
  8119     __ bne($crx$$CondRegister, done);
  8120     __ neg($dst$$Register, $src1$$Register);
  8121     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8122     __ bind(done);
  8123   %}
  8124   ins_pipe(pipe_class_default);
  8125 %}
  8127 // Integer Division with Registers not containing constants.
  8128 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8129   match(Set dst (DivI src1 src2));
  8130   ins_cost(10*DEFAULT_COST);
  8132   expand %{
  8133     immI16 imm %{ (int)-1 %}
  8134     flagsReg tmp1;
  8135     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8136     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8137     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8138   %}
  8139 %}
  8141 // Long Division with Immediate -1: Negate.
  8142 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8143   match(Set dst (DivL src1 src2));
  8144   ins_cost(DEFAULT_COST);
  8146   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8147   size(4);
  8148   ins_encode %{
  8149     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8150     __ neg($dst$$Register, $src1$$Register);
  8151   %}
  8152   ins_pipe(pipe_class_default);
  8153 %}
  8155 // Long Division with constant, but not -1.
  8156 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8157   match(Set dst (DivL src1 src2));
  8158   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8159   ins_cost(2*DEFAULT_COST);
  8161   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8162   size(4);
  8163   ins_encode %{
  8164     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8165     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8166   %}
  8167   ins_pipe(pipe_class_default);
  8168 %}
  8170 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8171   effect(USE_DEF dst, USE src1, USE crx);
  8172   predicate(false);
  8174   ins_variable_size_depending_on_alignment(true);
  8176   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8177   // Worst case is branch + move + stop, no stop without scheduler.
  8178   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8179   ins_encode %{
  8180     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8181     Label done;
  8182     __ bne($crx$$CondRegister, done);
  8183     __ neg($dst$$Register, $src1$$Register);
  8184     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8185     __ bind(done);
  8186   %}
  8187   ins_pipe(pipe_class_default);
  8188 %}
  8190 // Long Division with Registers not containing constants.
  8191 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8192   match(Set dst (DivL src1 src2));
  8193   ins_cost(10*DEFAULT_COST);
  8195   expand %{
  8196     immL16 imm %{ (int)-1 %}
  8197     flagsReg tmp1;
  8198     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8199     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8200     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8201   %}
  8202 %}
  8204 // Integer Remainder with registers.
  8205 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8206   match(Set dst (ModI src1 src2));
  8207   ins_cost(10*DEFAULT_COST);
  8209   expand %{
  8210     immI16 imm %{ (int)-1 %}
  8211     flagsReg tmp1;
  8212     iRegIdst tmp2;
  8213     iRegIdst tmp3;
  8214     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8215     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8216     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8217     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8218     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8219   %}
  8220 %}
  8222 // Long Remainder with registers
  8223 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8224   match(Set dst (ModL src1 src2));
  8225   ins_cost(10*DEFAULT_COST);
  8227   expand %{
  8228     immL16 imm %{ (int)-1 %}
  8229     flagsReg tmp1;
  8230     iRegLdst tmp2;
  8231     iRegLdst tmp3;
  8232     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8233     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8234     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8235     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8236     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8237   %}
  8238 %}
  8240 // Integer Shift Instructions
  8242 // Register Shift Left
  8244 // Clear all but the lowest #mask bits.
  8245 // Used to normalize shift amounts in registers.
  8246 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8247   // no match-rule, false predicate
  8248   effect(DEF dst, USE src, USE mask);
  8249   predicate(false);
  8251   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8252   size(4);
  8253   ins_encode %{
  8254     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8255     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8256   %}
  8257   ins_pipe(pipe_class_default);
  8258 %}
  8260 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8261   // no match-rule, false predicate
  8262   effect(DEF dst, USE src1, USE src2);
  8263   predicate(false);
  8265   format %{ "SLW     $dst, $src1, $src2" %}
  8266   size(4);
  8267   ins_encode %{
  8268     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8269     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8270   %}
  8271   ins_pipe(pipe_class_default);
  8272 %}
  8274 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8275   match(Set dst (LShiftI src1 src2));
  8276   ins_cost(DEFAULT_COST*2);
  8277   expand %{
  8278     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8279     iRegIdst tmpI;
  8280     maskI_reg_imm(tmpI, src2, mask);
  8281     lShiftI_reg_reg(dst, src1, tmpI);
  8282   %}
  8283 %}
  8285 // Register Shift Left Immediate
  8286 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8287   match(Set dst (LShiftI src1 src2));
  8289   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8290   size(4);
  8291   ins_encode %{
  8292     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8293     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8294   %}
  8295   ins_pipe(pipe_class_default);
  8296 %}
  8298 // AndI with negpow2-constant + LShiftI
  8299 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8300   match(Set dst (LShiftI (AndI src1 src2) src3));
  8301   predicate(UseRotateAndMaskInstructionsPPC64);
  8303   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8304   size(4);
  8305   ins_encode %{
  8306     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8307     long src2      = $src2$$constant;
  8308     long src3      = $src3$$constant;
  8309     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8310     if (maskbits >= 32) {
  8311       __ li($dst$$Register, 0); // addi
  8312     } else {
  8313       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8315   %}
  8316   ins_pipe(pipe_class_default);
  8317 %}
  8319 // RShiftI + AndI with negpow2-constant + LShiftI
  8320 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8321   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8322   predicate(UseRotateAndMaskInstructionsPPC64);
  8324   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8325   size(4);
  8326   ins_encode %{
  8327     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8328     long src2      = $src2$$constant;
  8329     long src3      = $src3$$constant;
  8330     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8331     if (maskbits >= 32) {
  8332       __ li($dst$$Register, 0); // addi
  8333     } else {
  8334       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8336   %}
  8337   ins_pipe(pipe_class_default);
  8338 %}
  8340 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8341   // no match-rule, false predicate
  8342   effect(DEF dst, USE src1, USE src2);
  8343   predicate(false);
  8345   format %{ "SLD     $dst, $src1, $src2" %}
  8346   size(4);
  8347   ins_encode %{
  8348     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8349     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8350   %}
  8351   ins_pipe(pipe_class_default);
  8352 %}
  8354 // Register Shift Left
  8355 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8356   match(Set dst (LShiftL src1 src2));
  8357   ins_cost(DEFAULT_COST*2);
  8358   expand %{
  8359     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8360     iRegIdst tmpI;
  8361     maskI_reg_imm(tmpI, src2, mask);
  8362     lShiftL_regL_regI(dst, src1, tmpI);
  8363   %}
  8364 %}
  8366 // Register Shift Left Immediate
  8367 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8368   match(Set dst (LShiftL src1 src2));
  8369   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8370   size(4);
  8371   ins_encode %{
  8372     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8373     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8374   %}
  8375   ins_pipe(pipe_class_default);
  8376 %}
  8378 // If we shift more than 32 bits, we need not convert I2L.
  8379 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8380   match(Set dst (LShiftL (ConvI2L src1) src2));
  8381   ins_cost(DEFAULT_COST);
  8383   size(4);
  8384   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8385   ins_encode %{
  8386     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8387     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8388   %}
  8389   ins_pipe(pipe_class_default);
  8390 %}
  8392 // Shift a postivie int to the left.
  8393 // Clrlsldi clears the upper 32 bits and shifts.
  8394 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8395   match(Set dst (LShiftL (ConvI2L src1) src2));
  8396   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8398   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8399   size(4);
  8400   ins_encode %{
  8401     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8402     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8403   %}
  8404   ins_pipe(pipe_class_default);
  8405 %}
  8407 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8408   // no match-rule, false predicate
  8409   effect(DEF dst, USE src1, USE src2);
  8410   predicate(false);
  8412   format %{ "SRAW    $dst, $src1, $src2" %}
  8413   size(4);
  8414   ins_encode %{
  8415     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8416     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8417   %}
  8418   ins_pipe(pipe_class_default);
  8419 %}
  8421 // Register Arithmetic Shift Right
  8422 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8423   match(Set dst (RShiftI src1 src2));
  8424   ins_cost(DEFAULT_COST*2);
  8425   expand %{
  8426     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8427     iRegIdst tmpI;
  8428     maskI_reg_imm(tmpI, src2, mask);
  8429     arShiftI_reg_reg(dst, src1, tmpI);
  8430   %}
  8431 %}
  8433 // Register Arithmetic Shift Right Immediate
  8434 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8435   match(Set dst (RShiftI src1 src2));
  8437   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8438   size(4);
  8439   ins_encode %{
  8440     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8441     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8442   %}
  8443   ins_pipe(pipe_class_default);
  8444 %}
  8446 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8447   // no match-rule, false predicate
  8448   effect(DEF dst, USE src1, USE src2);
  8449   predicate(false);
  8451   format %{ "SRAD    $dst, $src1, $src2" %}
  8452   size(4);
  8453   ins_encode %{
  8454     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8455     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8456   %}
  8457   ins_pipe(pipe_class_default);
  8458 %}
  8460 // Register Shift Right Arithmetic Long
  8461 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8462   match(Set dst (RShiftL src1 src2));
  8463   ins_cost(DEFAULT_COST*2);
  8465   expand %{
  8466     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8467     iRegIdst tmpI;
  8468     maskI_reg_imm(tmpI, src2, mask);
  8469     arShiftL_regL_regI(dst, src1, tmpI);
  8470   %}
  8471 %}
  8473 // Register Shift Right Immediate
  8474 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8475   match(Set dst (RShiftL src1 src2));
  8477   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8478   size(4);
  8479   ins_encode %{
  8480     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8481     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8482   %}
  8483   ins_pipe(pipe_class_default);
  8484 %}
  8486 // RShiftL + ConvL2I
  8487 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8488   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8490   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8491   size(4);
  8492   ins_encode %{
  8493     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8494     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8495   %}
  8496   ins_pipe(pipe_class_default);
  8497 %}
  8499 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8500   // no match-rule, false predicate
  8501   effect(DEF dst, USE src1, USE src2);
  8502   predicate(false);
  8504   format %{ "SRW     $dst, $src1, $src2" %}
  8505   size(4);
  8506   ins_encode %{
  8507     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8508     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8509   %}
  8510   ins_pipe(pipe_class_default);
  8511 %}
  8513 // Register Shift Right
  8514 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8515   match(Set dst (URShiftI src1 src2));
  8516   ins_cost(DEFAULT_COST*2);
  8518   expand %{
  8519     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8520     iRegIdst tmpI;
  8521     maskI_reg_imm(tmpI, src2, mask);
  8522     urShiftI_reg_reg(dst, src1, tmpI);
  8523   %}
  8524 %}
  8526 // Register Shift Right Immediate
  8527 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8528   match(Set dst (URShiftI src1 src2));
  8530   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8531   size(4);
  8532   ins_encode %{
  8533     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8534     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8535   %}
  8536   ins_pipe(pipe_class_default);
  8537 %}
  8539 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8540   // no match-rule, false predicate
  8541   effect(DEF dst, USE src1, USE src2);
  8542   predicate(false);
  8544   format %{ "SRD     $dst, $src1, $src2" %}
  8545   size(4);
  8546   ins_encode %{
  8547     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8548     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8549   %}
  8550   ins_pipe(pipe_class_default);
  8551 %}
  8553 // Register Shift Right
  8554 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8555   match(Set dst (URShiftL src1 src2));
  8556   ins_cost(DEFAULT_COST*2);
  8558   expand %{
  8559     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8560     iRegIdst tmpI;
  8561     maskI_reg_imm(tmpI, src2, mask);
  8562     urShiftL_regL_regI(dst, src1, tmpI);
  8563   %}
  8564 %}
  8566 // Register Shift Right Immediate
  8567 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8568   match(Set dst (URShiftL src1 src2));
  8570   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8571   size(4);
  8572   ins_encode %{
  8573     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8574     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8575   %}
  8576   ins_pipe(pipe_class_default);
  8577 %}
  8579 // URShiftL + ConvL2I.
  8580 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8581   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8583   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8584   size(4);
  8585   ins_encode %{
  8586     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8587     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8588   %}
  8589   ins_pipe(pipe_class_default);
  8590 %}
  8592 // Register Shift Right Immediate with a CastP2X
  8593 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8594   match(Set dst (URShiftL (CastP2X src1) src2));
  8596   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8597   size(4);
  8598   ins_encode %{
  8599     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8600     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8601   %}
  8602   ins_pipe(pipe_class_default);
  8603 %}
  8605 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8606   match(Set dst (ConvL2I (ConvI2L src)));
  8608   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8609   size(4);
  8610   ins_encode %{
  8611     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8612     __ extsw($dst$$Register, $src$$Register);
  8613   %}
  8614   ins_pipe(pipe_class_default);
  8615 %}
  8617 //----------Rotate Instructions------------------------------------------------
  8619 // Rotate Left by 8-bit immediate
  8620 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8621   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8622   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8624   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8625   size(4);
  8626   ins_encode %{
  8627     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8628     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8629   %}
  8630   ins_pipe(pipe_class_default);
  8631 %}
  8633 // Rotate Right by 8-bit immediate
  8634 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8635   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8636   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8638   format %{ "ROTRWI  $dst, $rshift" %}
  8639   size(4);
  8640   ins_encode %{
  8641     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8642     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8643   %}
  8644   ins_pipe(pipe_class_default);
  8645 %}
  8647 //----------Floating Point Arithmetic Instructions-----------------------------
  8649 // Add float single precision
  8650 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8651   match(Set dst (AddF src1 src2));
  8653   format %{ "FADDS   $dst, $src1, $src2" %}
  8654   size(4);
  8655   ins_encode %{
  8656     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8657     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8658   %}
  8659   ins_pipe(pipe_class_default);
  8660 %}
  8662 // Add float double precision
  8663 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8664   match(Set dst (AddD src1 src2));
  8666   format %{ "FADD    $dst, $src1, $src2" %}
  8667   size(4);
  8668   ins_encode %{
  8669     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8670     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8671   %}
  8672   ins_pipe(pipe_class_default);
  8673 %}
  8675 // Sub float single precision
  8676 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8677   match(Set dst (SubF src1 src2));
  8679   format %{ "FSUBS   $dst, $src1, $src2" %}
  8680   size(4);
  8681   ins_encode %{
  8682     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8683     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8684   %}
  8685   ins_pipe(pipe_class_default);
  8686 %}
  8688 // Sub float double precision
  8689 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8690   match(Set dst (SubD src1 src2));
  8691   format %{ "FSUB    $dst, $src1, $src2" %}
  8692   size(4);
  8693   ins_encode %{
  8694     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8695     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8696   %}
  8697   ins_pipe(pipe_class_default);
  8698 %}
  8700 // Mul float single precision
  8701 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8702   match(Set dst (MulF src1 src2));
  8703   format %{ "FMULS   $dst, $src1, $src2" %}
  8704   size(4);
  8705   ins_encode %{
  8706     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8707     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8708   %}
  8709   ins_pipe(pipe_class_default);
  8710 %}
  8712 // Mul float double precision
  8713 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8714   match(Set dst (MulD src1 src2));
  8715   format %{ "FMUL    $dst, $src1, $src2" %}
  8716   size(4);
  8717   ins_encode %{
  8718     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8719     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8720   %}
  8721   ins_pipe(pipe_class_default);
  8722 %}
  8724 // Div float single precision
  8725 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8726   match(Set dst (DivF src1 src2));
  8727   format %{ "FDIVS   $dst, $src1, $src2" %}
  8728   size(4);
  8729   ins_encode %{
  8730     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8731     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8732   %}
  8733   ins_pipe(pipe_class_default);
  8734 %}
  8736 // Div float double precision
  8737 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8738   match(Set dst (DivD src1 src2));
  8739   format %{ "FDIV    $dst, $src1, $src2" %}
  8740   size(4);
  8741   ins_encode %{
  8742     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8743     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8744   %}
  8745   ins_pipe(pipe_class_default);
  8746 %}
  8748 // Absolute float single precision
  8749 instruct absF_reg(regF dst, regF src) %{
  8750   match(Set dst (AbsF src));
  8751   format %{ "FABS    $dst, $src \t// float" %}
  8752   size(4);
  8753   ins_encode %{
  8754     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8755     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8756   %}
  8757   ins_pipe(pipe_class_default);
  8758 %}
  8760 // Absolute float double precision
  8761 instruct absD_reg(regD dst, regD src) %{
  8762   match(Set dst (AbsD src));
  8763   format %{ "FABS    $dst, $src \t// double" %}
  8764   size(4);
  8765   ins_encode %{
  8766     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8767     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8768   %}
  8769   ins_pipe(pipe_class_default);
  8770 %}
  8772 instruct negF_reg(regF dst, regF src) %{
  8773   match(Set dst (NegF src));
  8774   format %{ "FNEG    $dst, $src \t// float" %}
  8775   size(4);
  8776   ins_encode %{
  8777     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8778     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8779   %}
  8780   ins_pipe(pipe_class_default);
  8781 %}
  8783 instruct negD_reg(regD dst, regD src) %{
  8784   match(Set dst (NegD src));
  8785   format %{ "FNEG    $dst, $src \t// double" %}
  8786   size(4);
  8787   ins_encode %{
  8788     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8789     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8790   %}
  8791   ins_pipe(pipe_class_default);
  8792 %}
  8794 // AbsF + NegF.
  8795 instruct negF_absF_reg(regF dst, regF src) %{
  8796   match(Set dst (NegF (AbsF src)));
  8797   format %{ "FNABS   $dst, $src \t// float" %}
  8798   size(4);
  8799   ins_encode %{
  8800     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8801     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8802   %}
  8803   ins_pipe(pipe_class_default);
  8804 %}
  8806 // AbsD + NegD.
  8807 instruct negD_absD_reg(regD dst, regD src) %{
  8808   match(Set dst (NegD (AbsD src)));
  8809   format %{ "FNABS   $dst, $src \t// double" %}
  8810   size(4);
  8811   ins_encode %{
  8812     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8813     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8814   %}
  8815   ins_pipe(pipe_class_default);
  8816 %}
  8818 // VM_Version::has_fsqrt() decides if this node will be used.
  8819 // Sqrt float double precision
  8820 instruct sqrtD_reg(regD dst, regD src) %{
  8821   match(Set dst (SqrtD src));
  8822   format %{ "FSQRT   $dst, $src" %}
  8823   size(4);
  8824   ins_encode %{
  8825     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8826     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8827   %}
  8828   ins_pipe(pipe_class_default);
  8829 %}
  8831 // Single-precision sqrt.
  8832 instruct sqrtF_reg(regF dst, regF src) %{
  8833   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8834   predicate(VM_Version::has_fsqrts());
  8835   ins_cost(DEFAULT_COST);
  8837   format %{ "FSQRTS  $dst, $src" %}
  8838   size(4);
  8839   ins_encode %{
  8840     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8841     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8842   %}
  8843   ins_pipe(pipe_class_default);
  8844 %}
  8846 instruct roundDouble_nop(regD dst) %{
  8847   match(Set dst (RoundDouble dst));
  8848   ins_cost(0);
  8850   format %{ " -- \t// RoundDouble not needed - empty" %}
  8851   size(0);
  8852   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8853   ins_encode( /*empty*/ );
  8854   ins_pipe(pipe_class_default);
  8855 %}
  8857 instruct roundFloat_nop(regF dst) %{
  8858   match(Set dst (RoundFloat dst));
  8859   ins_cost(0);
  8861   format %{ " -- \t// RoundFloat not needed - empty" %}
  8862   size(0);
  8863   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8864   ins_encode( /*empty*/ );
  8865   ins_pipe(pipe_class_default);
  8866 %}
  8868 //----------Logical Instructions-----------------------------------------------
  8870 // And Instructions
  8872 // Register And
  8873 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8874   match(Set dst (AndI src1 src2));
  8875   format %{ "AND     $dst, $src1, $src2" %}
  8876   size(4);
  8877   ins_encode %{
  8878     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8879     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8880   %}
  8881   ins_pipe(pipe_class_default);
  8882 %}
  8884 // Immediate And
  8885 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8886   match(Set dst (AndI src1 src2));
  8887   effect(KILL cr0);
  8889   format %{ "ANDI    $dst, $src1, $src2" %}
  8890   size(4);
  8891   ins_encode %{
  8892     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8893     // FIXME: avoid andi_ ?
  8894     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8895   %}
  8896   ins_pipe(pipe_class_default);
  8897 %}
  8899 // Immediate And where the immediate is a negative power of 2.
  8900 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8901   match(Set dst (AndI src1 src2));
  8902   format %{ "ANDWI   $dst, $src1, $src2" %}
  8903   size(4);
  8904   ins_encode %{
  8905     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8906     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8907   %}
  8908   ins_pipe(pipe_class_default);
  8909 %}
  8911 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8912   match(Set dst (AndI src1 src2));
  8913   format %{ "ANDWI   $dst, $src1, $src2" %}
  8914   size(4);
  8915   ins_encode %{
  8916     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8917     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8918   %}
  8919   ins_pipe(pipe_class_default);
  8920 %}
  8922 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8923   match(Set dst (AndI src1 src2));
  8924   predicate(UseRotateAndMaskInstructionsPPC64);
  8925   format %{ "ANDWI   $dst, $src1, $src2" %}
  8926   size(4);
  8927   ins_encode %{
  8928     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8929     __ rlwinm($dst$$Register, $src1$$Register, 0,
  8930               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8931   %}
  8932   ins_pipe(pipe_class_default);
  8933 %}
  8935 // Register And Long
  8936 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8937   match(Set dst (AndL src1 src2));
  8938   ins_cost(DEFAULT_COST);
  8940   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8941   size(4);
  8942   ins_encode %{
  8943     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8944     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8945   %}
  8946   ins_pipe(pipe_class_default);
  8947 %}
  8949 // Immediate And long
  8950 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8951   match(Set dst (AndL src1 src2));
  8952   effect(KILL cr0);
  8953   ins_cost(DEFAULT_COST);
  8955   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8956   size(4);
  8957   ins_encode %{
  8958     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8959     // FIXME: avoid andi_ ?
  8960     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8961   %}
  8962   ins_pipe(pipe_class_default);
  8963 %}
  8965 // Immediate And Long where the immediate is a negative power of 2.
  8966 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8967   match(Set dst (AndL src1 src2));
  8968   format %{ "ANDDI   $dst, $src1, $src2" %}
  8969   size(4);
  8970   ins_encode %{
  8971     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8972     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8973   %}
  8974   ins_pipe(pipe_class_default);
  8975 %}
  8977 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8978   match(Set dst (AndL src1 src2));
  8979   format %{ "ANDDI   $dst, $src1, $src2" %}
  8980   size(4);
  8981   ins_encode %{
  8982     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8983     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8984   %}
  8985   ins_pipe(pipe_class_default);
  8986 %}
  8988 // AndL + ConvL2I.
  8989 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8990   match(Set dst (ConvL2I (AndL src1 src2)));
  8991   ins_cost(DEFAULT_COST);
  8993   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8994   size(4);
  8995   ins_encode %{
  8996     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8997     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8998   %}
  8999   ins_pipe(pipe_class_default);
  9000 %}
  9002 // Or Instructions
  9004 // Register Or
  9005 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9006   match(Set dst (OrI src1 src2));
  9007   format %{ "OR      $dst, $src1, $src2" %}
  9008   size(4);
  9009   ins_encode %{
  9010     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9011     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9012   %}
  9013   ins_pipe(pipe_class_default);
  9014 %}
  9016 // Expand does not work with above instruct. (??)
  9017 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9018   // no match-rule
  9019   effect(DEF dst, USE src1, USE src2);
  9020   format %{ "OR      $dst, $src1, $src2" %}
  9021   size(4);
  9022   ins_encode %{
  9023     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9024     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9025   %}
  9026   ins_pipe(pipe_class_default);
  9027 %}
  9029 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9030   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  9031   ins_cost(DEFAULT_COST*3);
  9033   expand %{
  9034     // FIXME: we should do this in the ideal world.
  9035     iRegIdst tmp1;
  9036     iRegIdst tmp2;
  9037     orI_reg_reg(tmp1, src1, src2);
  9038     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  9039     orI_reg_reg(dst, tmp1, tmp2);
  9040   %}
  9041 %}
  9043 // Immediate Or
  9044 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9045   match(Set dst (OrI src1 src2));
  9046   format %{ "ORI     $dst, $src1, $src2" %}
  9047   size(4);
  9048   ins_encode %{
  9049     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9050     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  9051   %}
  9052   ins_pipe(pipe_class_default);
  9053 %}
  9055 // Register Or Long
  9056 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9057   match(Set dst (OrL src1 src2));
  9058   ins_cost(DEFAULT_COST);
  9060   size(4);
  9061   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  9062   ins_encode %{
  9063     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9064     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9065   %}
  9066   ins_pipe(pipe_class_default);
  9067 %}
  9069 // OrL + ConvL2I.
  9070 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9071   match(Set dst (ConvL2I (OrL src1 src2)));
  9072   ins_cost(DEFAULT_COST);
  9074   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  9075   size(4);
  9076   ins_encode %{
  9077     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9078     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9079   %}
  9080   ins_pipe(pipe_class_default);
  9081 %}
  9083 // Immediate Or long
  9084 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9085   match(Set dst (OrL src1 con));
  9086   ins_cost(DEFAULT_COST);
  9088   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9089   size(4);
  9090   ins_encode %{
  9091     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9092     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9093   %}
  9094   ins_pipe(pipe_class_default);
  9095 %}
  9097 // Xor Instructions
  9099 // Register Xor
  9100 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9101   match(Set dst (XorI src1 src2));
  9102   format %{ "XOR     $dst, $src1, $src2" %}
  9103   size(4);
  9104   ins_encode %{
  9105     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9106     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9107   %}
  9108   ins_pipe(pipe_class_default);
  9109 %}
  9111 // Expand does not work with above instruct. (??)
  9112 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9113   // no match-rule
  9114   effect(DEF dst, USE src1, USE src2);
  9115   format %{ "XOR     $dst, $src1, $src2" %}
  9116   size(4);
  9117   ins_encode %{
  9118     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9119     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9120   %}
  9121   ins_pipe(pipe_class_default);
  9122 %}
  9124 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9125   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9126   ins_cost(DEFAULT_COST*3);
  9128   expand %{
  9129     // FIXME: we should do this in the ideal world.
  9130     iRegIdst tmp1;
  9131     iRegIdst tmp2;
  9132     xorI_reg_reg(tmp1, src1, src2);
  9133     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9134     xorI_reg_reg(dst, tmp1, tmp2);
  9135   %}
  9136 %}
  9138 // Immediate Xor
  9139 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9140   match(Set dst (XorI src1 src2));
  9141   format %{ "XORI    $dst, $src1, $src2" %}
  9142   size(4);
  9143   ins_encode %{
  9144     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9145     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9146   %}
  9147   ins_pipe(pipe_class_default);
  9148 %}
  9150 // Register Xor Long
  9151 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9152   match(Set dst (XorL src1 src2));
  9153   ins_cost(DEFAULT_COST);
  9155   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9156   size(4);
  9157   ins_encode %{
  9158     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9159     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9160   %}
  9161   ins_pipe(pipe_class_default);
  9162 %}
  9164 // XorL + ConvL2I.
  9165 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9166   match(Set dst (ConvL2I (XorL src1 src2)));
  9167   ins_cost(DEFAULT_COST);
  9169   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9170   size(4);
  9171   ins_encode %{
  9172     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9173     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9174   %}
  9175   ins_pipe(pipe_class_default);
  9176 %}
  9178 // Immediate Xor Long
  9179 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9180   match(Set dst (XorL src1 src2));
  9181   ins_cost(DEFAULT_COST);
  9183   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9184   size(4);
  9185   ins_encode %{
  9186     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9187     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9188   %}
  9189   ins_pipe(pipe_class_default);
  9190 %}
  9192 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9193   match(Set dst (XorI src1 src2));
  9194   ins_cost(DEFAULT_COST);
  9196   format %{ "NOT     $dst, $src1 ($src2)" %}
  9197   size(4);
  9198   ins_encode %{
  9199     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9200     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9201   %}
  9202   ins_pipe(pipe_class_default);
  9203 %}
  9205 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9206   match(Set dst (XorL src1 src2));
  9207   ins_cost(DEFAULT_COST);
  9209   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9210   size(4);
  9211   ins_encode %{
  9212     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9213     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9214   %}
  9215   ins_pipe(pipe_class_default);
  9216 %}
  9218 // And-complement
  9219 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9220   match(Set dst (AndI (XorI src1 src2) src3));
  9221   ins_cost(DEFAULT_COST);
  9223   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9224   size(4);
  9225   ins_encode( enc_andc(dst, src3, src1) );
  9226   ins_pipe(pipe_class_default);
  9227 %}
  9229 // And-complement
  9230 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9231   // no match-rule, false predicate
  9232   effect(DEF dst, USE src1, USE src2);
  9233   predicate(false);
  9235   format %{ "ANDC    $dst, $src1, $src2" %}
  9236   size(4);
  9237   ins_encode %{
  9238     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9239     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9240   %}
  9241   ins_pipe(pipe_class_default);
  9242 %}
  9244 //----------Moves between int/long and float/double----------------------------
  9245 //
  9246 // The following rules move values from int/long registers/stack-locations
  9247 // to float/double registers/stack-locations and vice versa, without doing any
  9248 // conversions. These rules are used to implement the bit-conversion methods
  9249 // of java.lang.Float etc., e.g.
  9250 //   int   floatToIntBits(float value)
  9251 //   float intBitsToFloat(int bits)
  9252 //
  9253 // Notes on the implementation on ppc64:
  9254 // We only provide rules which move between a register and a stack-location,
  9255 // because we always have to go through memory when moving between a float
  9256 // register and an integer register.
  9258 //---------- Chain stack slots between similar types --------
  9260 // These are needed so that the rules below can match.
  9262 // Load integer from stack slot
  9263 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9264   match(Set dst src);
  9265   ins_cost(MEMORY_REF_COST);
  9267   format %{ "LWZ     $dst, $src" %}
  9268   size(4);
  9269   ins_encode( enc_lwz(dst, src) );
  9270   ins_pipe(pipe_class_memory);
  9271 %}
  9273 // Store integer to stack slot
  9274 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9275   match(Set dst src);
  9276   ins_cost(MEMORY_REF_COST);
  9278   format %{ "STW     $src, $dst \t// stk" %}
  9279   size(4);
  9280   ins_encode( enc_stw(src, dst) ); // rs=rt
  9281   ins_pipe(pipe_class_memory);
  9282 %}
  9284 // Load long from stack slot
  9285 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9286   match(Set dst src);
  9287   ins_cost(MEMORY_REF_COST);
  9289   format %{ "LD      $dst, $src \t// long" %}
  9290   size(4);
  9291   ins_encode( enc_ld(dst, src) );
  9292   ins_pipe(pipe_class_memory);
  9293 %}
  9295 // Store long to stack slot
  9296 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9297   match(Set dst src);
  9298   ins_cost(MEMORY_REF_COST);
  9300   format %{ "STD     $src, $dst \t// long" %}
  9301   size(4);
  9302   ins_encode( enc_std(src, dst) ); // rs=rt
  9303   ins_pipe(pipe_class_memory);
  9304 %}
  9306 //----------Moves between int and float
  9308 // Move float value from float stack-location to integer register.
  9309 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9310   match(Set dst (MoveF2I src));
  9311   ins_cost(MEMORY_REF_COST);
  9313   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9314   size(4);
  9315   ins_encode( enc_lwz(dst, src) );
  9316   ins_pipe(pipe_class_memory);
  9317 %}
  9319 // Move float value from float register to integer stack-location.
  9320 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9321   match(Set dst (MoveF2I src));
  9322   ins_cost(MEMORY_REF_COST);
  9324   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9325   size(4);
  9326   ins_encode( enc_stfs(src, dst) );
  9327   ins_pipe(pipe_class_memory);
  9328 %}
  9330 // Move integer value from integer stack-location to float register.
  9331 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9332   match(Set dst (MoveI2F src));
  9333   ins_cost(MEMORY_REF_COST);
  9335   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9336   size(4);
  9337   ins_encode %{
  9338     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9339     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9340     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9341   %}
  9342   ins_pipe(pipe_class_memory);
  9343 %}
  9345 // Move integer value from integer register to float stack-location.
  9346 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9347   match(Set dst (MoveI2F src));
  9348   ins_cost(MEMORY_REF_COST);
  9350   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9351   size(4);
  9352   ins_encode( enc_stw(src, dst) );
  9353   ins_pipe(pipe_class_memory);
  9354 %}
  9356 //----------Moves between long and float
  9358 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9359   // no match-rule, false predicate
  9360   effect(DEF dst, USE src);
  9361   predicate(false);
  9363   format %{ "storeD  $src, $dst \t// STACK" %}
  9364   size(4);
  9365   ins_encode( enc_stfd(src, dst) );
  9366   ins_pipe(pipe_class_default);
  9367 %}
  9369 //----------Moves between long and double
  9371 // Move double value from double stack-location to long register.
  9372 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9373   match(Set dst (MoveD2L src));
  9374   ins_cost(MEMORY_REF_COST);
  9375   size(4);
  9376   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9377   ins_encode( enc_ld(dst, src) );
  9378   ins_pipe(pipe_class_memory);
  9379 %}
  9381 // Move double value from double register to long stack-location.
  9382 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9383   match(Set dst (MoveD2L src));
  9384   effect(DEF dst, USE src);
  9385   ins_cost(MEMORY_REF_COST);
  9387   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9388   size(4);
  9389   ins_encode( enc_stfd(src, dst) );
  9390   ins_pipe(pipe_class_memory);
  9391 %}
  9393 // Move long value from long stack-location to double register.
  9394 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9395   match(Set dst (MoveL2D src));
  9396   ins_cost(MEMORY_REF_COST);
  9398   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9399   size(4);
  9400   ins_encode( enc_lfd(dst, src) );
  9401   ins_pipe(pipe_class_memory);
  9402 %}
  9404 // Move long value from long register to double stack-location.
  9405 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9406   match(Set dst (MoveL2D src));
  9407   ins_cost(MEMORY_REF_COST);
  9409   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9410   size(4);
  9411   ins_encode( enc_std(src, dst) );
  9412   ins_pipe(pipe_class_memory);
  9413 %}
  9415 //----------Register Move Instructions-----------------------------------------
  9417 // Replicate for Superword
  9419 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9420   predicate(false);
  9421   effect(DEF dst, USE src);
  9423   format %{ "MR      $dst, $src \t// replicate " %}
  9424   // variable size, 0 or 4.
  9425   ins_encode %{
  9426     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9427     __ mr_if_needed($dst$$Register, $src$$Register);
  9428   %}
  9429   ins_pipe(pipe_class_default);
  9430 %}
  9432 //----------Cast instructions (Java-level type cast)---------------------------
  9434 // Cast Long to Pointer for unsafe natives.
  9435 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9436   match(Set dst (CastX2P src));
  9438   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9439   // variable size, 0 or 4.
  9440   ins_encode %{
  9441     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9442     __ mr_if_needed($dst$$Register, $src$$Register);
  9443   %}
  9444  ins_pipe(pipe_class_default);
  9445 %}
  9447 // Cast Pointer to Long for unsafe natives.
  9448 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9449   match(Set dst (CastP2X src));
  9451   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9452   // variable size, 0 or 4.
  9453   ins_encode %{
  9454     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9455     __ mr_if_needed($dst$$Register, $src$$Register);
  9456   %}
  9457   ins_pipe(pipe_class_default);
  9458 %}
  9460 instruct castPP(iRegPdst dst) %{
  9461   match(Set dst (CastPP dst));
  9462   format %{ " -- \t// castPP of $dst" %}
  9463   size(0);
  9464   ins_encode( /*empty*/ );
  9465   ins_pipe(pipe_class_default);
  9466 %}
  9468 instruct castII(iRegIdst dst) %{
  9469   match(Set dst (CastII dst));
  9470   format %{ " -- \t// castII of $dst" %}
  9471   size(0);
  9472   ins_encode( /*empty*/ );
  9473   ins_pipe(pipe_class_default);
  9474 %}
  9476 instruct checkCastPP(iRegPdst dst) %{
  9477   match(Set dst (CheckCastPP dst));
  9478   format %{ " -- \t// checkcastPP of $dst" %}
  9479   size(0);
  9480   ins_encode( /*empty*/ );
  9481   ins_pipe(pipe_class_default);
  9482 %}
  9484 //----------Convert instructions-----------------------------------------------
  9486 // Convert to boolean.
  9488 // int_to_bool(src) : { 1   if src != 0
  9489 //                    { 0   else
  9490 //
  9491 // strategy:
  9492 // 1) Count leading zeros of 32 bit-value src,
  9493 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9494 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9495 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9497 // convI2Bool
  9498 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9499   match(Set dst (Conv2B src));
  9500   predicate(UseCountLeadingZerosInstructionsPPC64);
  9501   ins_cost(DEFAULT_COST);
  9503   expand %{
  9504     immI shiftAmount %{ 0x5 %}
  9505     uimmI16 mask %{ 0x1 %}
  9506     iRegIdst tmp1;
  9507     iRegIdst tmp2;
  9508     countLeadingZerosI(tmp1, src);
  9509     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9510     xorI_reg_uimm16(dst, tmp2, mask);
  9511   %}
  9512 %}
  9514 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9515   match(Set dst (Conv2B src));
  9516   effect(TEMP crx);
  9517   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9518   ins_cost(DEFAULT_COST);
  9520   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9521             "LI      $dst, #0\n\t"
  9522             "BEQ     $crx, done\n\t"
  9523             "LI      $dst, #1\n"
  9524             "done:" %}
  9525   size(16);
  9526   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9527   ins_pipe(pipe_class_compare);
  9528 %}
  9530 // ConvI2B + XorI
  9531 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9532   match(Set dst (XorI (Conv2B src) mask));
  9533   predicate(UseCountLeadingZerosInstructionsPPC64);
  9534   ins_cost(DEFAULT_COST);
  9536   expand %{
  9537     immI shiftAmount %{ 0x5 %}
  9538     iRegIdst tmp1;
  9539     countLeadingZerosI(tmp1, src);
  9540     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9541   %}
  9542 %}
  9544 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9545   match(Set dst (XorI (Conv2B src) mask));
  9546   effect(TEMP crx);
  9547   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9548   ins_cost(DEFAULT_COST);
  9550   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9551             "LI      $dst, #1\n\t"
  9552             "BEQ     $crx, done\n\t"
  9553             "LI      $dst, #0\n"
  9554             "done:" %}
  9555   size(16);
  9556   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9557   ins_pipe(pipe_class_compare);
  9558 %}
  9560 // AndI 0b0..010..0 + ConvI2B
  9561 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9562   match(Set dst (Conv2B (AndI src mask)));
  9563   predicate(UseRotateAndMaskInstructionsPPC64);
  9564   ins_cost(DEFAULT_COST);
  9566   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9567   size(4);
  9568   ins_encode %{
  9569     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9570     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9571   %}
  9572   ins_pipe(pipe_class_default);
  9573 %}
  9575 // Convert pointer to boolean.
  9576 //
  9577 // ptr_to_bool(src) : { 1   if src != 0
  9578 //                    { 0   else
  9579 //
  9580 // strategy:
  9581 // 1) Count leading zeros of 64 bit-value src,
  9582 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9583 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9584 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9586 // ConvP2B
  9587 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9588   match(Set dst (Conv2B src));
  9589   predicate(UseCountLeadingZerosInstructionsPPC64);
  9590   ins_cost(DEFAULT_COST);
  9592   expand %{
  9593     immI shiftAmount %{ 0x6 %}
  9594     uimmI16 mask %{ 0x1 %}
  9595     iRegIdst tmp1;
  9596     iRegIdst tmp2;
  9597     countLeadingZerosP(tmp1, src);
  9598     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9599     xorI_reg_uimm16(dst, tmp2, mask);
  9600   %}
  9601 %}
  9603 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9604   match(Set dst (Conv2B src));
  9605   effect(TEMP crx);
  9606   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9607   ins_cost(DEFAULT_COST);
  9609   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9610             "LI      $dst, #0\n\t"
  9611             "BEQ     $crx, done\n\t"
  9612             "LI      $dst, #1\n"
  9613             "done:" %}
  9614   size(16);
  9615   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9616   ins_pipe(pipe_class_compare);
  9617 %}
  9619 // ConvP2B + XorI
  9620 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9621   match(Set dst (XorI (Conv2B src) mask));
  9622   predicate(UseCountLeadingZerosInstructionsPPC64);
  9623   ins_cost(DEFAULT_COST);
  9625   expand %{
  9626     immI shiftAmount %{ 0x6 %}
  9627     iRegIdst tmp1;
  9628     countLeadingZerosP(tmp1, src);
  9629     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9630   %}
  9631 %}
  9633 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9634   match(Set dst (XorI (Conv2B src) mask));
  9635   effect(TEMP crx);
  9636   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9637   ins_cost(DEFAULT_COST);
  9639   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9640             "LI      $dst, #1\n\t"
  9641             "BEQ     $crx, done\n\t"
  9642             "LI      $dst, #0\n"
  9643             "done:" %}
  9644   size(16);
  9645   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9646   ins_pipe(pipe_class_compare);
  9647 %}
  9649 // if src1 < src2, return -1 else return 0
  9650 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9651   match(Set dst (CmpLTMask src1 src2));
  9652   ins_cost(DEFAULT_COST*4);
  9654   expand %{
  9655     iRegLdst src1s;
  9656     iRegLdst src2s;
  9657     iRegLdst diff;
  9658     convI2L_reg(src1s, src1); // Ensure proper sign extension.
  9659     convI2L_reg(src2s, src2); // Ensure proper sign extension.
  9660     subL_reg_reg(diff, src1s, src2s);
  9661     // Need to consider >=33 bit result, therefore we need signmaskL.
  9662     signmask64I_regL(dst, diff);
  9663   %}
  9664 %}
  9666 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9667   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9668   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9669   size(4);
  9670   ins_encode %{
  9671     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9672     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9673   %}
  9674   ins_pipe(pipe_class_default);
  9675 %}
  9677 //----------Arithmetic Conversion Instructions---------------------------------
  9679 // Convert to Byte  -- nop
  9680 // Convert to Short -- nop
  9682 // Convert to Int
  9684 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9685   match(Set dst (RShiftI (LShiftI src amount) amount));
  9686   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9687   size(4);
  9688   ins_encode %{
  9689     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9690     __ extsb($dst$$Register, $src$$Register);
  9691   %}
  9692   ins_pipe(pipe_class_default);
  9693 %}
  9695 // LShiftI 16 + RShiftI 16 converts short to int.
  9696 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9697   match(Set dst (RShiftI (LShiftI src amount) amount));
  9698   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9699   size(4);
  9700   ins_encode %{
  9701     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9702     __ extsh($dst$$Register, $src$$Register);
  9703   %}
  9704   ins_pipe(pipe_class_default);
  9705 %}
  9707 // ConvL2I + ConvI2L: Sign extend int in long register.
  9708 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9709   match(Set dst (ConvI2L (ConvL2I src)));
  9711   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9712   size(4);
  9713   ins_encode %{
  9714     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9715     __ extsw($dst$$Register, $src$$Register);
  9716   %}
  9717   ins_pipe(pipe_class_default);
  9718 %}
  9720 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9721   match(Set dst (ConvL2I src));
  9722   format %{ "MR      $dst, $src \t// long->int" %}
  9723   // variable size, 0 or 4
  9724   ins_encode %{
  9725     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9726     __ mr_if_needed($dst$$Register, $src$$Register);
  9727   %}
  9728   ins_pipe(pipe_class_default);
  9729 %}
  9731 instruct convD2IRaw_regD(regD dst, regD src) %{
  9732   // no match-rule, false predicate
  9733   effect(DEF dst, USE src);
  9734   predicate(false);
  9736   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9737   size(4);
  9738   ins_encode %{
  9739     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9740     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9741   %}
  9742   ins_pipe(pipe_class_default);
  9743 %}
  9745 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9746   // no match-rule, false predicate
  9747   effect(DEF dst, USE crx, USE src);
  9748   predicate(false);
  9750   ins_variable_size_depending_on_alignment(true);
  9752   format %{ "cmovI   $crx, $dst, $src" %}
  9753   // Worst case is branch + move + stop, no stop without scheduler.
  9754   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9755   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9756   ins_pipe(pipe_class_default);
  9757 %}
  9759 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9760   // no match-rule, false predicate
  9761   effect(DEF dst, USE crx, USE mem);
  9762   predicate(false);
  9764   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9765   postalloc_expand %{
  9766     //
  9767     // replaces
  9768     //
  9769     //   region  dst  crx  mem
  9770     //    \       |    |   /
  9771     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9772     //
  9773     // with
  9774     //
  9775     //   region  dst
  9776     //    \       /
  9777     //     dst=loadConI16(0)
  9778     //      |
  9779     //      ^  region  dst  crx  mem
  9780     //      |   \       |    |    /
  9781     //      dst=cmovI_bso_stackSlotL
  9782     //
  9784     // Create new nodes.
  9785     MachNode *m1 = new (C) loadConI16Node();
  9786     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9788     // inputs for new nodes
  9789     m1->add_req(n_region);
  9790     m2->add_req(n_region, n_crx, n_mem);
  9792     // precedences for new nodes
  9793     m2->add_prec(m1);
  9795     // operands for new nodes
  9796     m1->_opnds[0] = op_dst;
  9797     m1->_opnds[1] = new (C) immI16Oper(0);
  9799     m2->_opnds[0] = op_dst;
  9800     m2->_opnds[1] = op_crx;
  9801     m2->_opnds[2] = op_mem;
  9803     // registers for new nodes
  9804     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9805     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9807     // Insert new nodes.
  9808     nodes->push(m1);
  9809     nodes->push(m2);
  9810   %}
  9811 %}
  9813 // Double to Int conversion, NaN is mapped to 0.
  9814 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9815   match(Set dst (ConvD2I src));
  9816   ins_cost(DEFAULT_COST);
  9818   expand %{
  9819     regD tmpD;
  9820     stackSlotL tmpS;
  9821     flagsReg crx;
  9822     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9823     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9824     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9825     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9826   %}
  9827 %}
  9829 instruct convF2IRaw_regF(regF dst, regF src) %{
  9830   // no match-rule, false predicate
  9831   effect(DEF dst, USE src);
  9832   predicate(false);
  9834   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9835   size(4);
  9836   ins_encode %{
  9837     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9838     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9839   %}
  9840   ins_pipe(pipe_class_default);
  9841 %}
  9843 // Float to Int conversion, NaN is mapped to 0.
  9844 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9845   match(Set dst (ConvF2I src));
  9846   ins_cost(DEFAULT_COST);
  9848   expand %{
  9849     regF tmpF;
  9850     stackSlotL tmpS;
  9851     flagsReg crx;
  9852     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9853     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9854     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9855     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9856   %}
  9857 %}
  9859 // Convert to Long
  9861 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9862   match(Set dst (ConvI2L src));
  9863   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9864   size(4);
  9865   ins_encode %{
  9866     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9867     __ extsw($dst$$Register, $src$$Register);
  9868   %}
  9869   ins_pipe(pipe_class_default);
  9870 %}
  9872 // Zero-extend: convert unsigned int to long (convUI2L).
  9873 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9874   match(Set dst (AndL (ConvI2L src) mask));
  9875   ins_cost(DEFAULT_COST);
  9877   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9878   size(4);
  9879   ins_encode %{
  9880     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9881     __ clrldi($dst$$Register, $src$$Register, 32);
  9882   %}
  9883   ins_pipe(pipe_class_default);
  9884 %}
  9886 // Zero-extend: convert unsigned int to long in long register.
  9887 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9888   match(Set dst (AndL src mask));
  9889   ins_cost(DEFAULT_COST);
  9891   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9892   size(4);
  9893   ins_encode %{
  9894     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9895     __ clrldi($dst$$Register, $src$$Register, 32);
  9896   %}
  9897   ins_pipe(pipe_class_default);
  9898 %}
  9900 instruct convF2LRaw_regF(regF dst, regF src) %{
  9901   // no match-rule, false predicate
  9902   effect(DEF dst, USE src);
  9903   predicate(false);
  9905   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9906   size(4);
  9907   ins_encode %{
  9908     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9909     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9910   %}
  9911   ins_pipe(pipe_class_default);
  9912 %}
  9914 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9915   // no match-rule, false predicate
  9916   effect(DEF dst, USE crx, USE src);
  9917   predicate(false);
  9919   ins_variable_size_depending_on_alignment(true);
  9921   format %{ "cmovL   $crx, $dst, $src" %}
  9922   // Worst case is branch + move + stop, no stop without scheduler.
  9923   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9924   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9925   ins_pipe(pipe_class_default);
  9926 %}
  9928 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9929   // no match-rule, false predicate
  9930   effect(DEF dst, USE crx, USE mem);
  9931   predicate(false);
  9933   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9934   postalloc_expand %{
  9935     //
  9936     // replaces
  9937     //
  9938     //   region  dst  crx  mem
  9939     //    \       |    |   /
  9940     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9941     //
  9942     // with
  9943     //
  9944     //   region  dst
  9945     //    \       /
  9946     //     dst=loadConL16(0)
  9947     //      |
  9948     //      ^  region  dst  crx  mem
  9949     //      |   \       |    |    /
  9950     //      dst=cmovL_bso_stackSlotL
  9951     //
  9953     // Create new nodes.
  9954     MachNode *m1 = new (C) loadConL16Node();
  9955     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9957     // inputs for new nodes
  9958     m1->add_req(n_region);
  9959     m2->add_req(n_region, n_crx, n_mem);
  9960     m2->add_prec(m1);
  9962     // operands for new nodes
  9963     m1->_opnds[0] = op_dst;
  9964     m1->_opnds[1] = new (C) immL16Oper(0);
  9965     m2->_opnds[0] = op_dst;
  9966     m2->_opnds[1] = op_crx;
  9967     m2->_opnds[2] = op_mem;
  9969     // registers for new nodes
  9970     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9971     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9973     // Insert new nodes.
  9974     nodes->push(m1);
  9975     nodes->push(m2);
  9976   %}
  9977 %}
  9979 // Float to Long conversion, NaN is mapped to 0.
  9980 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9981   match(Set dst (ConvF2L src));
  9982   ins_cost(DEFAULT_COST);
  9984   expand %{
  9985     regF tmpF;
  9986     stackSlotL tmpS;
  9987     flagsReg crx;
  9988     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9989     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9990     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9991     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9992   %}
  9993 %}
  9995 instruct convD2LRaw_regD(regD dst, regD src) %{
  9996   // no match-rule, false predicate
  9997   effect(DEF dst, USE src);
  9998   predicate(false);
 10000   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
 10001   size(4);
 10002   ins_encode %{
 10003     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
 10004     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
 10005   %}
 10006   ins_pipe(pipe_class_default);
 10007 %}
 10009 // Double to Long conversion, NaN is mapped to 0.
 10010 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
 10011   match(Set dst (ConvD2L src));
 10012   ins_cost(DEFAULT_COST);
 10014   expand %{
 10015     regD tmpD;
 10016     stackSlotL tmpS;
 10017     flagsReg crx;
 10018     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 10019     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 10020     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 10021     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 10022   %}
 10023 %}
 10025 // Convert to Float
 10027 // Placed here as needed in expand.
 10028 instruct convL2DRaw_regD(regD dst, regD src) %{
 10029   // no match-rule, false predicate
 10030   effect(DEF dst, USE src);
 10031   predicate(false);
 10033   format %{ "FCFID $dst, $src \t// convL2D" %}
 10034   size(4);
 10035   ins_encode %{
 10036     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10037     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 10038   %}
 10039   ins_pipe(pipe_class_default);
 10040 %}
 10042 // Placed here as needed in expand.
 10043 instruct convD2F_reg(regF dst, regD src) %{
 10044   match(Set dst (ConvD2F src));
 10045   format %{ "FRSP    $dst, $src \t// convD2F" %}
 10046   size(4);
 10047   ins_encode %{
 10048     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 10049     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 10050   %}
 10051   ins_pipe(pipe_class_default);
 10052 %}
 10054 // Integer to Float conversion.
 10055 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 10056   match(Set dst (ConvI2F src));
 10057   predicate(!VM_Version::has_fcfids());
 10058   ins_cost(DEFAULT_COST);
 10060   expand %{
 10061     iRegLdst tmpL;
 10062     stackSlotL tmpS;
 10063     regD tmpD;
 10064     regD tmpD2;
 10065     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10066     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10067     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10068     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 10069     convD2F_reg(dst, tmpD2);             // Convert double to float.
 10070   %}
 10071 %}
 10073 instruct convL2FRaw_regF(regF dst, regD src) %{
 10074   // no match-rule, false predicate
 10075   effect(DEF dst, USE src);
 10076   predicate(false);
 10078   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10079   size(4);
 10080   ins_encode %{
 10081     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10082     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10083   %}
 10084   ins_pipe(pipe_class_default);
 10085 %}
 10087 // Integer to Float conversion. Special version for Power7.
 10088 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10089   match(Set dst (ConvI2F src));
 10090   predicate(VM_Version::has_fcfids());
 10091   ins_cost(DEFAULT_COST);
 10093   expand %{
 10094     iRegLdst tmpL;
 10095     stackSlotL tmpS;
 10096     regD tmpD;
 10097     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10098     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10099     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10100     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10101   %}
 10102 %}
 10104 // L2F to avoid runtime call.
 10105 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10106   match(Set dst (ConvL2F src));
 10107   predicate(VM_Version::has_fcfids());
 10108   ins_cost(DEFAULT_COST);
 10110   expand %{
 10111     stackSlotL tmpS;
 10112     regD tmpD;
 10113     regL_to_stkL(tmpS, src);             // Store long to stack.
 10114     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10115     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10116   %}
 10117 %}
 10119 // Moved up as used in expand.
 10120 //instruct convD2F_reg(regF dst, regD src) %{%}
 10122 // Convert to Double
 10124 // Integer to Double conversion.
 10125 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10126   match(Set dst (ConvI2D src));
 10127   ins_cost(DEFAULT_COST);
 10129   expand %{
 10130     iRegLdst tmpL;
 10131     stackSlotL tmpS;
 10132     regD tmpD;
 10133     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10134     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10135     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10136     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10137   %}
 10138 %}
 10140 // Long to Double conversion
 10141 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10142   match(Set dst (ConvL2D src));
 10143   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10145   expand %{
 10146     regD tmpD;
 10147     moveL2D_stack_reg(tmpD, src);
 10148     convL2DRaw_regD(dst, tmpD);
 10149   %}
 10150 %}
 10152 instruct convF2D_reg(regD dst, regF src) %{
 10153   match(Set dst (ConvF2D src));
 10154   format %{ "FMR     $dst, $src \t// float->double" %}
 10155   // variable size, 0 or 4
 10156   ins_encode %{
 10157     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10158     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10159   %}
 10160   ins_pipe(pipe_class_default);
 10161 %}
 10163 //----------Control Flow Instructions------------------------------------------
 10164 // Compare Instructions
 10166 // Compare Integers
 10167 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10168   match(Set crx (CmpI src1 src2));
 10169   size(4);
 10170   format %{ "CMPW    $crx, $src1, $src2" %}
 10171   ins_encode %{
 10172     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10173     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10174   %}
 10175   ins_pipe(pipe_class_compare);
 10176 %}
 10178 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10179   match(Set crx (CmpI src1 src2));
 10180   format %{ "CMPWI   $crx, $src1, $src2" %}
 10181   size(4);
 10182   ins_encode %{
 10183     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10184     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10185   %}
 10186   ins_pipe(pipe_class_compare);
 10187 %}
 10189 // (src1 & src2) == 0?
 10190 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10191   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10192   // r0 is killed
 10193   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10194   size(4);
 10195   ins_encode %{
 10196     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10197     // FIXME: avoid andi_ ?
 10198     __ andi_(R0, $src1$$Register, $src2$$constant);
 10199   %}
 10200   ins_pipe(pipe_class_compare);
 10201 %}
 10203 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10204   match(Set crx (CmpL src1 src2));
 10205   format %{ "CMPD    $crx, $src1, $src2" %}
 10206   size(4);
 10207   ins_encode %{
 10208     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10209     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10210   %}
 10211   ins_pipe(pipe_class_compare);
 10212 %}
 10214 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10215   match(Set crx (CmpL src1 src2));
 10216   format %{ "CMPDI   $crx, $src1, $src2" %}
 10217   size(4);
 10218   ins_encode %{
 10219     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10220     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10221   %}
 10222   ins_pipe(pipe_class_compare);
 10223 %}
 10225 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10226   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10227   // r0 is killed
 10228   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10229   size(4);
 10230   ins_encode %{
 10231     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10232     __ and_(R0, $src1$$Register, $src2$$Register);
 10233   %}
 10234   ins_pipe(pipe_class_compare);
 10235 %}
 10237 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10238   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10239   // r0 is killed
 10240   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10241   size(4);
 10242   ins_encode %{
 10243     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10244     // FIXME: avoid andi_ ?
 10245     __ andi_(R0, $src1$$Register, $src2$$constant);
 10246   %}
 10247   ins_pipe(pipe_class_compare);
 10248 %}
 10250 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10251   // no match-rule, false predicate
 10252   effect(DEF dst, USE crx);
 10253   predicate(false);
 10255   ins_variable_size_depending_on_alignment(true);
 10257   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10258   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10259   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10260   ins_encode %{
 10261     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10262     Label done;
 10263     // li(Rdst, 0);              // equal -> 0
 10264     __ beq($crx$$CondRegister, done);
 10265     __ li($dst$$Register, 1);    // greater -> +1
 10266     __ bgt($crx$$CondRegister, done);
 10267     __ li($dst$$Register, -1);   // unordered or less -> -1
 10268     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10269     __ bind(done);
 10270   %}
 10271   ins_pipe(pipe_class_compare);
 10272 %}
 10274 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10275   // no match-rule, false predicate
 10276   effect(DEF dst, USE crx);
 10277   predicate(false);
 10279   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10280   postalloc_expand %{
 10281     //
 10282     // replaces
 10283     //
 10284     //   region  crx
 10285     //    \       |
 10286     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10287     //
 10288     // with
 10289     //
 10290     //   region
 10291     //    \
 10292     //     dst=loadConI16(0)
 10293     //      |
 10294     //      ^  region  crx
 10295     //      |   \       |
 10296     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10297     //
 10299     // Create new nodes.
 10300     MachNode *m1 = new (C) loadConI16Node();
 10301     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10303     // inputs for new nodes
 10304     m1->add_req(n_region);
 10305     m2->add_req(n_region, n_crx);
 10306     m2->add_prec(m1);
 10308     // operands for new nodes
 10309     m1->_opnds[0] = op_dst;
 10310     m1->_opnds[1] = new (C) immI16Oper(0);
 10311     m2->_opnds[0] = op_dst;
 10312     m2->_opnds[1] = op_crx;
 10314     // registers for new nodes
 10315     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10316     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10318     // Insert new nodes.
 10319     nodes->push(m1);
 10320     nodes->push(m2);
 10321   %}
 10322 %}
 10324 // Manifest a CmpL3 result in an integer register. Very painful.
 10325 // This is the test to avoid.
 10326 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10327 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10328   match(Set dst (CmpL3 src1 src2));
 10329   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10331   expand %{
 10332     flagsReg tmp1;
 10333     cmpL_reg_reg(tmp1, src1, src2);
 10334     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10335   %}
 10336 %}
 10338 // Implicit range checks.
 10339 // A range check in the ideal world has one of the following shapes:
 10340 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10341 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10342 //
 10343 // Match range check 'If le (CmpU length index)'.
 10344 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10345   match(If cmp (CmpU src_length index));
 10346   effect(USE labl);
 10347   predicate(TrapBasedRangeChecks &&
 10348             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10349             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10350             (Matcher::branches_to_uncommon_trap(_leaf)));
 10352   ins_is_TrapBasedCheckNode(true);
 10354   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10355   size(4);
 10356   ins_encode %{
 10357     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10358     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10359       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10360     } else {
 10361       // Both successors are uncommon traps, probability is 0.
 10362       // Node got flipped during fixup flow.
 10363       assert($cmp$$cmpcode == 0x9, "must be greater");
 10364       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10366   %}
 10367   ins_pipe(pipe_class_trap);
 10368 %}
 10370 // Match range check 'If lt (CmpU index length)'.
 10371 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10372   match(If cmp (CmpU src_index src_length));
 10373   effect(USE labl);
 10374   predicate(TrapBasedRangeChecks &&
 10375             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10376             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10377             (Matcher::branches_to_uncommon_trap(_leaf)));
 10379   ins_is_TrapBasedCheckNode(true);
 10381   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10382   size(4);
 10383   ins_encode %{
 10384     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10385     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10386       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10387     } else {
 10388       // Both successors are uncommon traps, probability is 0.
 10389       // Node got flipped during fixup flow.
 10390       assert($cmp$$cmpcode == 0x8, "must be less");
 10391       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10393   %}
 10394   ins_pipe(pipe_class_trap);
 10395 %}
 10397 // Match range check 'If lt (CmpU index length)'.
 10398 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10399   match(If cmp (CmpU src_index length));
 10400   effect(USE labl);
 10401   predicate(TrapBasedRangeChecks &&
 10402             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10403             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10404             (Matcher::branches_to_uncommon_trap(_leaf)));
 10406   ins_is_TrapBasedCheckNode(true);
 10408   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10409   size(4);
 10410   ins_encode %{
 10411     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10412     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10413       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10414     } else {
 10415       // Both successors are uncommon traps, probability is 0.
 10416       // Node got flipped during fixup flow.
 10417       assert($cmp$$cmpcode == 0x8, "must be less");
 10418       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10420   %}
 10421   ins_pipe(pipe_class_trap);
 10422 %}
 10424 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10425   match(Set crx (CmpU src1 src2));
 10426   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10427   size(4);
 10428   ins_encode %{
 10429     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10430     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10431   %}
 10432   ins_pipe(pipe_class_compare);
 10433 %}
 10435 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10436   match(Set crx (CmpU src1 src2));
 10437   size(4);
 10438   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10439   ins_encode %{
 10440     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10441     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10442   %}
 10443   ins_pipe(pipe_class_compare);
 10444 %}
 10446 // Implicit zero checks (more implicit null checks).
 10447 // No constant pool entries required.
 10448 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10449   match(If cmp (CmpN value zero));
 10450   effect(USE labl);
 10451   predicate(TrapBasedNullChecks &&
 10452             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10453             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10454             Matcher::branches_to_uncommon_trap(_leaf));
 10455   ins_cost(1);
 10457   ins_is_TrapBasedCheckNode(true);
 10459   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10460   size(4);
 10461   ins_encode %{
 10462     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10463     if ($cmp$$cmpcode == 0xA) {
 10464       __ trap_null_check($value$$Register);
 10465     } else {
 10466       // Both successors are uncommon traps, probability is 0.
 10467       // Node got flipped during fixup flow.
 10468       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10469       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10471   %}
 10472   ins_pipe(pipe_class_trap);
 10473 %}
 10475 // Compare narrow oops.
 10476 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10477   match(Set crx (CmpN src1 src2));
 10479   size(4);
 10480   ins_cost(DEFAULT_COST);
 10481   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10482   ins_encode %{
 10483     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10484     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10485   %}
 10486   ins_pipe(pipe_class_compare);
 10487 %}
 10489 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10490   match(Set crx (CmpN src1 src2));
 10491   // Make this more expensive than zeroCheckN_iReg_imm0.
 10492   ins_cost(DEFAULT_COST);
 10494   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10495   size(4);
 10496   ins_encode %{
 10497     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10498     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10499   %}
 10500   ins_pipe(pipe_class_compare);
 10501 %}
 10503 // Implicit zero checks (more implicit null checks).
 10504 // No constant pool entries required.
 10505 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10506   match(If cmp (CmpP value zero));
 10507   effect(USE labl);
 10508   predicate(TrapBasedNullChecks &&
 10509             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10510             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10511             Matcher::branches_to_uncommon_trap(_leaf));
 10513   ins_is_TrapBasedCheckNode(true);
 10515   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10516   size(4);
 10517   ins_encode %{
 10518     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10519     if ($cmp$$cmpcode == 0xA) {
 10520       __ trap_null_check($value$$Register);
 10521     } else {
 10522       // Both successors are uncommon traps, probability is 0.
 10523       // Node got flipped during fixup flow.
 10524       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10525       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10527   %}
 10528   ins_pipe(pipe_class_trap);
 10529 %}
 10531 // Compare Pointers
 10532 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10533   match(Set crx (CmpP src1 src2));
 10534   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10535   size(4);
 10536   ins_encode %{
 10537     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10538     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10539   %}
 10540   ins_pipe(pipe_class_compare);
 10541 %}
 10543 // Used in postalloc expand.
 10544 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10545   // This match rule prevents reordering of node before a safepoint.
 10546   // This only makes sense if this instructions is used exclusively
 10547   // for the expansion of EncodeP!
 10548   match(Set crx (CmpP src1 src2));
 10549   predicate(false);
 10551   format %{ "CMPDI   $crx, $src1, $src2" %}
 10552   size(4);
 10553   ins_encode %{
 10554     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10555     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10556   %}
 10557   ins_pipe(pipe_class_compare);
 10558 %}
 10560 //----------Float Compares----------------------------------------------------
 10562 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10563   // no match-rule, false predicate
 10564   effect(DEF crx, USE src1, USE src2);
 10565   predicate(false);
 10567   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10568   size(4);
 10569   ins_encode %{
 10570     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10571     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10572   %}
 10573   ins_pipe(pipe_class_default);
 10574 %}
 10576 instruct cmov_bns_less(flagsReg crx) %{
 10577   // no match-rule, false predicate
 10578   effect(DEF crx);
 10579   predicate(false);
 10581   ins_variable_size_depending_on_alignment(true);
 10583   format %{ "cmov    $crx" %}
 10584   // Worst case is branch + move + stop, no stop without scheduler.
 10585   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10586   ins_encode %{
 10587     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10588     Label done;
 10589     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10590     __ li(R0, 0);
 10591     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10592     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10593     __ bind(done);
 10594   %}
 10595   ins_pipe(pipe_class_default);
 10596 %}
 10598 // Compare floating, generate condition code.
 10599 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10600   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10601   //
 10602   // The following code sequence occurs a lot in mpegaudio:
 10603   //
 10604   // block BXX:
 10605   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10606   //    cmpFUrd CCR6, F11, F9
 10607   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10608   //    cmov CCR6
 10609   // 8: instruct branchConSched:
 10610   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10611   match(Set crx (CmpF src1 src2));
 10612   ins_cost(DEFAULT_COST+BRANCH_COST);
 10614   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10615   postalloc_expand %{
 10616     //
 10617     // replaces
 10618     //
 10619     //   region  src1  src2
 10620     //    \       |     |
 10621     //     crx=cmpF_reg_reg
 10622     //
 10623     // with
 10624     //
 10625     //   region  src1  src2
 10626     //    \       |     |
 10627     //     crx=cmpFUnordered_reg_reg
 10628     //      |
 10629     //      ^  region
 10630     //      |   \
 10631     //      crx=cmov_bns_less
 10632     //
 10634     // Create new nodes.
 10635     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10636     MachNode *m2 = new (C) cmov_bns_lessNode();
 10638     // inputs for new nodes
 10639     m1->add_req(n_region, n_src1, n_src2);
 10640     m2->add_req(n_region);
 10641     m2->add_prec(m1);
 10643     // operands for new nodes
 10644     m1->_opnds[0] = op_crx;
 10645     m1->_opnds[1] = op_src1;
 10646     m1->_opnds[2] = op_src2;
 10647     m2->_opnds[0] = op_crx;
 10649     // registers for new nodes
 10650     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10651     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10653     // Insert new nodes.
 10654     nodes->push(m1);
 10655     nodes->push(m2);
 10656   %}
 10657 %}
 10659 // Compare float, generate -1,0,1
 10660 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10661   match(Set dst (CmpF3 src1 src2));
 10662   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10664   expand %{
 10665     flagsReg tmp1;
 10666     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10667     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10668   %}
 10669 %}
 10671 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10672   // no match-rule, false predicate
 10673   effect(DEF crx, USE src1, USE src2);
 10674   predicate(false);
 10676   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10677   size(4);
 10678   ins_encode %{
 10679     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10680     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10681   %}
 10682   ins_pipe(pipe_class_default);
 10683 %}
 10685 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10686   match(Set crx (CmpD src1 src2));
 10687   ins_cost(DEFAULT_COST+BRANCH_COST);
 10689   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10690   postalloc_expand %{
 10691     //
 10692     // replaces
 10693     //
 10694     //   region  src1  src2
 10695     //    \       |     |
 10696     //     crx=cmpD_reg_reg
 10697     //
 10698     // with
 10699     //
 10700     //   region  src1  src2
 10701     //    \       |     |
 10702     //     crx=cmpDUnordered_reg_reg
 10703     //      |
 10704     //      ^  region
 10705     //      |   \
 10706     //      crx=cmov_bns_less
 10707     //
 10709     // create new nodes
 10710     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10711     MachNode *m2 = new (C) cmov_bns_lessNode();
 10713     // inputs for new nodes
 10714     m1->add_req(n_region, n_src1, n_src2);
 10715     m2->add_req(n_region);
 10716     m2->add_prec(m1);
 10718     // operands for new nodes
 10719     m1->_opnds[0] = op_crx;
 10720     m1->_opnds[1] = op_src1;
 10721     m1->_opnds[2] = op_src2;
 10722     m2->_opnds[0] = op_crx;
 10724     // registers for new nodes
 10725     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10726     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10728     // Insert new nodes.
 10729     nodes->push(m1);
 10730     nodes->push(m2);
 10731   %}
 10732 %}
 10734 // Compare double, generate -1,0,1
 10735 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10736   match(Set dst (CmpD3 src1 src2));
 10737   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10739   expand %{
 10740     flagsReg tmp1;
 10741     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10742     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10743   %}
 10744 %}
 10746 //----------Branches---------------------------------------------------------
 10747 // Jump
 10749 // Direct Branch.
 10750 instruct branch(label labl) %{
 10751   match(Goto);
 10752   effect(USE labl);
 10753   ins_cost(BRANCH_COST);
 10755   format %{ "B       $labl" %}
 10756   size(4);
 10757   ins_encode %{
 10758     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10759      Label d;    // dummy
 10760      __ bind(d);
 10761      Label* p = $labl$$label;
 10762      // `p' is `NULL' when this encoding class is used only to
 10763      // determine the size of the encoded instruction.
 10764      Label& l = (NULL == p)? d : *(p);
 10765      __ b(l);
 10766   %}
 10767   ins_pipe(pipe_class_default);
 10768 %}
 10770 // Conditional Near Branch
 10771 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10772   // Same match rule as `branchConFar'.
 10773   match(If cmp crx);
 10774   effect(USE lbl);
 10775   ins_cost(BRANCH_COST);
 10777   // If set to 1 this indicates that the current instruction is a
 10778   // short variant of a long branch. This avoids using this
 10779   // instruction in first-pass matching. It will then only be used in
 10780   // the `Shorten_branches' pass.
 10781   ins_short_branch(1);
 10783   format %{ "B$cmp     $crx, $lbl" %}
 10784   size(4);
 10785   ins_encode( enc_bc(crx, cmp, lbl) );
 10786   ins_pipe(pipe_class_default);
 10787 %}
 10789 // This is for cases when the ppc64 `bc' instruction does not
 10790 // reach far enough. So we emit a far branch here, which is more
 10791 // expensive.
 10792 //
 10793 // Conditional Far Branch
 10794 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10795   // Same match rule as `branchCon'.
 10796   match(If cmp crx);
 10797   effect(USE crx, USE lbl);
 10798   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10799   // Higher cost than `branchCon'.
 10800   ins_cost(5*BRANCH_COST);
 10802   // This is not a short variant of a branch, but the long variant.
 10803   ins_short_branch(0);
 10805   format %{ "B_FAR$cmp $crx, $lbl" %}
 10806   size(8);
 10807   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10808   ins_pipe(pipe_class_default);
 10809 %}
 10811 // Conditional Branch used with Power6 scheduler (can be far or short).
 10812 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10813   // Same match rule as `branchCon'.
 10814   match(If cmp crx);
 10815   effect(USE crx, USE lbl);
 10816   predicate(false /* TODO: PPC port HB_Schedule*/);
 10817   // Higher cost than `branchCon'.
 10818   ins_cost(5*BRANCH_COST);
 10820   // Actually size doesn't depend on alignment but on shortening.
 10821   ins_variable_size_depending_on_alignment(true);
 10822   // long variant.
 10823   ins_short_branch(0);
 10825   format %{ "B_FAR$cmp $crx, $lbl" %}
 10826   size(8); // worst case
 10827   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10828   ins_pipe(pipe_class_default);
 10829 %}
 10831 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10832   match(CountedLoopEnd cmp crx);
 10833   effect(USE labl);
 10834   ins_cost(BRANCH_COST);
 10836   // short variant.
 10837   ins_short_branch(1);
 10839   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10840   size(4);
 10841   ins_encode( enc_bc(crx, cmp, labl) );
 10842   ins_pipe(pipe_class_default);
 10843 %}
 10845 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10846   match(CountedLoopEnd cmp crx);
 10847   effect(USE labl);
 10848   predicate(!false /* TODO: PPC port HB_Schedule */);
 10849   ins_cost(BRANCH_COST);
 10851   // Long variant.
 10852   ins_short_branch(0);
 10854   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10855   size(8);
 10856   ins_encode( enc_bc_far(crx, cmp, labl) );
 10857   ins_pipe(pipe_class_default);
 10858 %}
 10860 // Conditional Branch used with Power6 scheduler (can be far or short).
 10861 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10862   match(CountedLoopEnd cmp crx);
 10863   effect(USE labl);
 10864   predicate(false /* TODO: PPC port HB_Schedule */);
 10865   // Higher cost than `branchCon'.
 10866   ins_cost(5*BRANCH_COST);
 10868   // Actually size doesn't depend on alignment but on shortening.
 10869   ins_variable_size_depending_on_alignment(true);
 10870   // Long variant.
 10871   ins_short_branch(0);
 10873   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10874   size(8); // worst case
 10875   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10876   ins_pipe(pipe_class_default);
 10877 %}
 10879 // ============================================================================
 10880 // Java runtime operations, intrinsics and other complex operations.
 10882 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10883 // array for an instance of the superklass. Set a hidden internal cache on a
 10884 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10885 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10886 //
 10887 // GL TODO: Improve this.
 10888 // - result should not be a TEMP
 10889 // - Add match rule as on sparc avoiding additional Cmp.
 10890 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10891                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10892   match(Set result (PartialSubtypeCheck subklass superklass));
 10893   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10894   ins_cost(DEFAULT_COST*10);
 10896   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10897   ins_encode %{
 10898     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10899     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 10900                                      $tmp_klass$$Register, NULL, $result$$Register);
 10901   %}
 10902   ins_pipe(pipe_class_default);
 10903 %}
 10905 // inlined locking and unlocking
 10907 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10908   match(Set crx (FastLock oop box));
 10909   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10910   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10912   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10913   ins_encode %{
 10914     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10915     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10916                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10917     // If locking was successfull, crx should indicate 'EQ'.
 10918     // The compiler generates a branch to the runtime call to
 10919     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10920   %}
 10921   ins_pipe(pipe_class_compare);
 10922 %}
 10924 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10925   match(Set crx (FastUnlock oop box));
 10926   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10928   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10929   ins_encode %{
 10930     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10931     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10932                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10933     // If unlocking was successfull, crx should indicate 'EQ'.
 10934     // The compiler generates a branch to the runtime call to
 10935     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10936   %}
 10937   ins_pipe(pipe_class_compare);
 10938 %}
 10940 // Align address.
 10941 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10942   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10944   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10945   size(4);
 10946   ins_encode %{
 10947     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10948     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10949   %}
 10950   ins_pipe(pipe_class_default);
 10951 %}
 10953 // Array size computation.
 10954 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10955   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10957   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10958   size(4);
 10959   ins_encode %{
 10960     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10961     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10962   %}
 10963   ins_pipe(pipe_class_default);
 10964 %}
 10966 // Clear-array with dynamic array-size.
 10967 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10968   match(Set dummy (ClearArray cnt base));
 10969   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10970   ins_cost(MEMORY_REF_COST);
 10972   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10974   format %{ "ClearArray $cnt, $base" %}
 10975   ins_encode %{
 10976     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10977     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10978   %}
 10979   ins_pipe(pipe_class_default);
 10980 %}
 10982 // String_IndexOf for needle of length 1.
 10983 //
 10984 // Match needle into immediate operands: no loadConP node needed. Saves one
 10985 // register and two instructions over string_indexOf_imm1Node.
 10986 //
 10987 // Assumes register result differs from all input registers.
 10988 //
 10989 // Preserves registers haystack, haycnt
 10990 // Kills     registers tmp1, tmp2
 10991 // Defines   registers result
 10992 //
 10993 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10994 //
 10995 // Unfortunately this does not match too often. In many situations the AddP is used
 10996 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10997 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10998                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 10999                                   iRegIdst tmp1, iRegIdst tmp2,
 11000                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11001   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 11002   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 11004   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 11006   ins_cost(150);
 11007   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 11008             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 11010   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 11011   ins_encode %{
 11012     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11013     immPOper *needleOper = (immPOper *)$needleImm;
 11014     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 11015     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 11017     __ string_indexof_1($result$$Register,
 11018                         $haystack$$Register, $haycnt$$Register,
 11019                         R0, needle_values->char_at(0),
 11020                         $tmp1$$Register, $tmp2$$Register);
 11021   %}
 11022   ins_pipe(pipe_class_compare);
 11023 %}
 11025 // String_IndexOf for needle of length 1.
 11026 //
 11027 // Special case requires less registers and emits less instructions.
 11028 //
 11029 // Assumes register result differs from all input registers.
 11030 //
 11031 // Preserves registers haystack, haycnt
 11032 // Kills     registers tmp1, tmp2, needle
 11033 // Defines   registers result
 11034 //
 11035 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11036 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 11037                              rscratch2RegP needle, immI_1 needlecntImm,
 11038                              iRegIdst tmp1, iRegIdst tmp2,
 11039                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11040   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11041   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 11042          TEMP tmp1, TEMP tmp2);
 11043   // Required for EA: check if it is still a type_array.
 11044   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11045             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11046   ins_cost(180);
 11048   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11050   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11051             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 11052   ins_encode %{
 11053     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11054     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11055     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11056     guarantee(needle_values, "sanity");
 11057     if (needle_values != NULL) {
 11058       __ string_indexof_1($result$$Register,
 11059                           $haystack$$Register, $haycnt$$Register,
 11060                           R0, needle_values->char_at(0),
 11061                           $tmp1$$Register, $tmp2$$Register);
 11062     } else {
 11063       __ string_indexof_1($result$$Register,
 11064                           $haystack$$Register, $haycnt$$Register,
 11065                           $needle$$Register, 0,
 11066                           $tmp1$$Register, $tmp2$$Register);
 11068   %}
 11069   ins_pipe(pipe_class_compare);
 11070 %}
 11072 // String_IndexOf.
 11073 //
 11074 // Length of needle as immediate. This saves instruction loading constant needle
 11075 // length.
 11076 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11077 // completely or do it in vector instruction. This should save registers for
 11078 // needlecnt and needle.
 11079 //
 11080 // Assumes register result differs from all input registers.
 11081 // Overwrites haycnt, needlecnt.
 11082 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11083 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11084                             iRegPsrc needle, uimmI15 needlecntImm,
 11085                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11086                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11087   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11088   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11089          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11090   // Required for EA: check if it is still a type_array.
 11091   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11092             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11093   ins_cost(250);
 11095   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11097   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11098             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11099   ins_encode %{
 11100     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11101     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11102     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11104     __ string_indexof($result$$Register,
 11105                       $haystack$$Register, $haycnt$$Register,
 11106                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11107                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11108   %}
 11109   ins_pipe(pipe_class_compare);
 11110 %}
 11112 // StrIndexOf node.
 11113 //
 11114 // Assumes register result differs from all input registers.
 11115 // Overwrites haycnt, needlecnt.
 11116 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11117 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11118                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11119                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11120   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11121   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11122          TEMP result,
 11123          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11124   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11125   ins_cost(300);
 11127   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11129   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11130              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11131   ins_encode %{
 11132     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11133     __ string_indexof($result$$Register,
 11134                       $haystack$$Register, $haycnt$$Register,
 11135                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11136                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11137   %}
 11138   ins_pipe(pipe_class_compare);
 11139 %}
 11141 // String equals with immediate.
 11142 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11143                            iRegPdst tmp1, iRegPdst tmp2,
 11144                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11145   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11146   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11147          KILL cr0, KILL cr6, KILL ctr);
 11148   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11149   ins_cost(250);
 11151   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11153   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11154             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11155   ins_encode %{
 11156     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11157     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11158                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11159   %}
 11160   ins_pipe(pipe_class_compare);
 11161 %}
 11163 // String equals.
 11164 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11165 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11166                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11167                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11168   match(Set result (StrEquals (Binary str1 str2) cnt));
 11169   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11170          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11171   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11172   ins_cost(300);
 11174   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11176   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11177             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11178   ins_encode %{
 11179     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11180     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11181                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11182   %}
 11183   ins_pipe(pipe_class_compare);
 11184 %}
 11186 // String compare.
 11187 // Char[] pointers are passed in.
 11188 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11189 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11190                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11191   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11192   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11193   ins_cost(300);
 11195   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11197   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11198             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11199   ins_encode %{
 11200     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11201     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11202                       $result$$Register, $tmp$$Register);
 11203   %}
 11204   ins_pipe(pipe_class_compare);
 11205 %}
 11207 //---------- Min/Max Instructions ---------------------------------------------
 11209 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11210   match(Set dst (MinI src1 src2));
 11211   ins_cost(DEFAULT_COST*6);
 11213   expand %{
 11214     iRegLdst src1s;
 11215     iRegLdst src2s;
 11216     iRegLdst diff;
 11217     iRegLdst sm;
 11218     iRegLdst doz; // difference or zero
 11219     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11220     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11221     subL_reg_reg(diff, src2s, src1s);
 11222     // Need to consider >=33 bit result, therefore we need signmaskL.
 11223     signmask64L_regL(sm, diff);
 11224     andL_reg_reg(doz, diff, sm); // <=0
 11225     addI_regL_regL(dst, doz, src1s);
 11226   %}
 11227 %}
 11229 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11230   match(Set dst (MaxI src1 src2));
 11231   ins_cost(DEFAULT_COST*6);
 11233   expand %{
 11234     iRegLdst src1s;
 11235     iRegLdst src2s;
 11236     iRegLdst diff;
 11237     iRegLdst sm;
 11238     iRegLdst doz; // difference or zero
 11239     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11240     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11241     subL_reg_reg(diff, src2s, src1s);
 11242     // Need to consider >=33 bit result, therefore we need signmaskL.
 11243     signmask64L_regL(sm, diff);
 11244     andcL_reg_reg(doz, diff, sm); // >=0
 11245     addI_regL_regL(dst, doz, src1s);
 11246   %}
 11247 %}
 11249 //---------- Population Count Instructions ------------------------------------
 11251 // Popcnt for Power7.
 11252 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11253   match(Set dst (PopCountI src));
 11254   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11255   ins_cost(DEFAULT_COST);
 11257   format %{ "POPCNTW $dst, $src" %}
 11258   size(4);
 11259   ins_encode %{
 11260     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11261     __ popcntw($dst$$Register, $src$$Register);
 11262   %}
 11263   ins_pipe(pipe_class_default);
 11264 %}
 11266 // Popcnt for Power7.
 11267 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11268   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11269   match(Set dst (PopCountL src));
 11270   ins_cost(DEFAULT_COST);
 11272   format %{ "POPCNTD $dst, $src" %}
 11273   size(4);
 11274   ins_encode %{
 11275     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11276     __ popcntd($dst$$Register, $src$$Register);
 11277   %}
 11278   ins_pipe(pipe_class_default);
 11279 %}
 11281 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11282   match(Set dst (CountLeadingZerosI src));
 11283   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11284   ins_cost(DEFAULT_COST);
 11286   format %{ "CNTLZW  $dst, $src" %}
 11287   size(4);
 11288   ins_encode %{
 11289     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11290     __ cntlzw($dst$$Register, $src$$Register);
 11291   %}
 11292   ins_pipe(pipe_class_default);
 11293 %}
 11295 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11296   match(Set dst (CountLeadingZerosL src));
 11297   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11298   ins_cost(DEFAULT_COST);
 11300   format %{ "CNTLZD  $dst, $src" %}
 11301   size(4);
 11302   ins_encode %{
 11303     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11304     __ cntlzd($dst$$Register, $src$$Register);
 11305   %}
 11306   ins_pipe(pipe_class_default);
 11307 %}
 11309 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11310   // no match-rule, false predicate
 11311   effect(DEF dst, USE src);
 11312   predicate(false);
 11314   format %{ "CNTLZD  $dst, $src" %}
 11315   size(4);
 11316   ins_encode %{
 11317     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11318     __ cntlzd($dst$$Register, $src$$Register);
 11319   %}
 11320   ins_pipe(pipe_class_default);
 11321 %}
 11323 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11324   match(Set dst (CountTrailingZerosI src));
 11325   predicate(UseCountLeadingZerosInstructionsPPC64);
 11326   ins_cost(DEFAULT_COST);
 11328   expand %{
 11329     immI16 imm1 %{ (int)-1 %}
 11330     immI16 imm2 %{ (int)32 %}
 11331     immI_minus1 m1 %{ -1 %}
 11332     iRegIdst tmpI1;
 11333     iRegIdst tmpI2;
 11334     iRegIdst tmpI3;
 11335     addI_reg_imm16(tmpI1, src, imm1);
 11336     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11337     countLeadingZerosI(tmpI3, tmpI2);
 11338     subI_imm16_reg(dst, imm2, tmpI3);
 11339   %}
 11340 %}
 11342 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11343   match(Set dst (CountTrailingZerosL src));
 11344   predicate(UseCountLeadingZerosInstructionsPPC64);
 11345   ins_cost(DEFAULT_COST);
 11347   expand %{
 11348     immL16 imm1 %{ (long)-1 %}
 11349     immI16 imm2 %{ (int)64 %}
 11350     iRegLdst tmpL1;
 11351     iRegLdst tmpL2;
 11352     iRegIdst tmpL3;
 11353     addL_reg_imm16(tmpL1, src, imm1);
 11354     andcL_reg_reg(tmpL2, tmpL1, src);
 11355     countLeadingZerosL(tmpL3, tmpL2);
 11356     subI_imm16_reg(dst, imm2, tmpL3);
 11357  %}
 11358 %}
 11360 // Expand nodes for byte_reverse_int.
 11361 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11362   effect(DEF dst, USE src, USE pos, USE shift);
 11363   predicate(false);
 11365   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11366   size(4);
 11367   ins_encode %{
 11368     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11369     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11370   %}
 11371   ins_pipe(pipe_class_default);
 11372 %}
 11374 // As insrwi_a, but with USE_DEF.
 11375 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11376   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11377   predicate(false);
 11379   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11380   size(4);
 11381   ins_encode %{
 11382     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11383     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11384   %}
 11385   ins_pipe(pipe_class_default);
 11386 %}
 11388 // Just slightly faster than java implementation.
 11389 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11390   match(Set dst (ReverseBytesI src));
 11391   predicate(UseCountLeadingZerosInstructionsPPC64);
 11392   ins_cost(DEFAULT_COST);
 11394   expand %{
 11395     immI16 imm24 %{ (int) 24 %}
 11396     immI16 imm16 %{ (int) 16 %}
 11397     immI16  imm8 %{ (int)  8 %}
 11398     immI16  imm4 %{ (int)  4 %}
 11399     immI16  imm0 %{ (int)  0 %}
 11400     iRegLdst tmpI1;
 11401     iRegLdst tmpI2;
 11402     iRegLdst tmpI3;
 11404     urShiftI_reg_imm(tmpI1, src, imm24);
 11405     insrwi_a(dst, tmpI1, imm24, imm8);
 11406     urShiftI_reg_imm(tmpI2, src, imm16);
 11407     insrwi(dst, tmpI2, imm8, imm16);
 11408     urShiftI_reg_imm(tmpI3, src, imm8);
 11409     insrwi(dst, tmpI3, imm8, imm8);
 11410     insrwi(dst, src, imm0, imm8);
 11411   %}
 11412 %}
 11414 //---------- Replicate Vector Instructions ------------------------------------
 11416 // Insrdi does replicate if src == dst.
 11417 instruct repl32(iRegLdst dst) %{
 11418   predicate(false);
 11419   effect(USE_DEF dst);
 11421   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11422   size(4);
 11423   ins_encode %{
 11424     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11425     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11426   %}
 11427   ins_pipe(pipe_class_default);
 11428 %}
 11430 // Insrdi does replicate if src == dst.
 11431 instruct repl48(iRegLdst dst) %{
 11432   predicate(false);
 11433   effect(USE_DEF dst);
 11435   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11436   size(4);
 11437   ins_encode %{
 11438     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11439     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11440   %}
 11441   ins_pipe(pipe_class_default);
 11442 %}
 11444 // Insrdi does replicate if src == dst.
 11445 instruct repl56(iRegLdst dst) %{
 11446   predicate(false);
 11447   effect(USE_DEF dst);
 11449   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11450   size(4);
 11451   ins_encode %{
 11452     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11453     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11454   %}
 11455   ins_pipe(pipe_class_default);
 11456 %}
 11458 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11459   match(Set dst (ReplicateB src));
 11460   predicate(n->as_Vector()->length() == 8);
 11461   expand %{
 11462     moveReg(dst, src);
 11463     repl56(dst);
 11464     repl48(dst);
 11465     repl32(dst);
 11466   %}
 11467 %}
 11469 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11470   match(Set dst (ReplicateB zero));
 11471   predicate(n->as_Vector()->length() == 8);
 11472   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11473   size(4);
 11474   ins_encode %{
 11475     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11476     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11477   %}
 11478   ins_pipe(pipe_class_default);
 11479 %}
 11481 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11482   match(Set dst (ReplicateB src));
 11483   predicate(n->as_Vector()->length() == 8);
 11484   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11485   size(4);
 11486   ins_encode %{
 11487     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11488     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11489   %}
 11490   ins_pipe(pipe_class_default);
 11491 %}
 11493 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11494   match(Set dst (ReplicateS src));
 11495   predicate(n->as_Vector()->length() == 4);
 11496   expand %{
 11497     moveReg(dst, src);
 11498     repl48(dst);
 11499     repl32(dst);
 11500   %}
 11501 %}
 11503 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11504   match(Set dst (ReplicateS zero));
 11505   predicate(n->as_Vector()->length() == 4);
 11506   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11507   size(4);
 11508   ins_encode %{
 11509     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11510     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11511   %}
 11512   ins_pipe(pipe_class_default);
 11513 %}
 11515 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11516   match(Set dst (ReplicateS src));
 11517   predicate(n->as_Vector()->length() == 4);
 11518   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11519   size(4);
 11520   ins_encode %{
 11521     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11522     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11523   %}
 11524   ins_pipe(pipe_class_default);
 11525 %}
 11527 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11528   match(Set dst (ReplicateI src));
 11529   predicate(n->as_Vector()->length() == 2);
 11530   ins_cost(2 * DEFAULT_COST);
 11531   expand %{
 11532     moveReg(dst, src);
 11533     repl32(dst);
 11534   %}
 11535 %}
 11537 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11538   match(Set dst (ReplicateI zero));
 11539   predicate(n->as_Vector()->length() == 2);
 11540   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11541   size(4);
 11542   ins_encode %{
 11543     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11544     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11545   %}
 11546   ins_pipe(pipe_class_default);
 11547 %}
 11549 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11550   match(Set dst (ReplicateI src));
 11551   predicate(n->as_Vector()->length() == 2);
 11552   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11553   size(4);
 11554   ins_encode %{
 11555     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11556     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11557   %}
 11558   ins_pipe(pipe_class_default);
 11559 %}
 11561 // Move float to int register via stack, replicate.
 11562 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11563   match(Set dst (ReplicateF src));
 11564   predicate(n->as_Vector()->length() == 2);
 11565   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11566   expand %{
 11567     stackSlotL tmpS;
 11568     iRegIdst tmpI;
 11569     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11570     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11571     moveReg(dst, tmpI);             // Move int to long reg.
 11572     repl32(dst);                    // Replicate bitpattern.
 11573   %}
 11574 %}
 11576 // Replicate scalar constant to packed float values in Double register
 11577 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11578   match(Set dst (ReplicateF src));
 11579   predicate(n->as_Vector()->length() == 2);
 11580   ins_cost(5 * DEFAULT_COST);
 11582   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11583   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11584 %}
 11586 // Replicate scalar zero constant to packed float values in Double register
 11587 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11588   match(Set dst (ReplicateF zero));
 11589   predicate(n->as_Vector()->length() == 2);
 11591   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11592   ins_encode %{
 11593     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11594     __ li($dst$$Register, 0x0);
 11595   %}
 11596   ins_pipe(pipe_class_default);
 11597 %}
 11599 // ============================================================================
 11600 // Safepoint Instruction
 11602 instruct safePoint_poll(iRegPdst poll) %{
 11603   match(SafePoint poll);
 11604   predicate(LoadPollAddressFromThread);
 11606   // It caused problems to add the effect that r0 is killed, but this
 11607   // effect no longer needs to be mentioned, since r0 is not contained
 11608   // in a reg_class.
 11610   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11611   size(4);
 11612   ins_encode( enc_poll(0x0, poll) );
 11613   ins_pipe(pipe_class_default);
 11614 %}
 11616 // Safepoint without per-thread support. Load address of page to poll
 11617 // as constant.
 11618 // Rscratch2RegP is R12.
 11619 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11620 // a seperate node so that the oop map is at the right location.
 11621 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11622   match(SafePoint poll);
 11623   predicate(!LoadPollAddressFromThread);
 11625   // It caused problems to add the effect that r0 is killed, but this
 11626   // effect no longer needs to be mentioned, since r0 is not contained
 11627   // in a reg_class.
 11629   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11630   ins_encode( enc_poll(0x0, poll) );
 11631   ins_pipe(pipe_class_default);
 11632 %}
 11634 // ============================================================================
 11635 // Call Instructions
 11637 // Call Java Static Instruction
 11639 // Schedulable version of call static node.
 11640 instruct CallStaticJavaDirect(method meth) %{
 11641   match(CallStaticJava);
 11642   effect(USE meth);
 11643   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11644   ins_cost(CALL_COST);
 11646   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11648   format %{ "CALL,static $meth \t// ==> " %}
 11649   size(4);
 11650   ins_encode( enc_java_static_call(meth) );
 11651   ins_pipe(pipe_class_call);
 11652 %}
 11654 // Schedulable version of call static node.
 11655 instruct CallStaticJavaDirectHandle(method meth) %{
 11656   match(CallStaticJava);
 11657   effect(USE meth);
 11658   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11659   ins_cost(CALL_COST);
 11661   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11663   format %{ "CALL,static $meth \t// ==> " %}
 11664   ins_encode( enc_java_handle_call(meth) );
 11665   ins_pipe(pipe_class_call);
 11666 %}
 11668 // Call Java Dynamic Instruction
 11670 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11671 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11672 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11673 // The call destination must still be placed in the constant pool.
 11674 instruct CallDynamicJavaDirectSched(method meth) %{
 11675   match(CallDynamicJava); // To get all the data fields we need ...
 11676   effect(USE meth);
 11677   predicate(false);       // ... but never match.
 11679   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11680   ins_field_load_ic_node(loadConLNode*);
 11681   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11683   format %{ "BL        \t// dynamic $meth ==> " %}
 11684   size(4);
 11685   ins_encode( enc_java_dynamic_call_sched(meth) );
 11686   ins_pipe(pipe_class_call);
 11687 %}
 11689 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11690 // We use postalloc expanded calls if we use inline caches
 11691 // and do not update method data.
 11692 //
 11693 // This instruction has two constants: inline cache (IC) and call destination.
 11694 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11695 // one constant.
 11696 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11697   match(CallDynamicJava);
 11698   effect(USE meth);
 11699   predicate(UseInlineCaches);
 11700   ins_cost(CALL_COST);
 11702   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11704   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11705   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11706 %}
 11708 // Compound version of call dynamic java
 11709 // We use postalloc expanded calls if we use inline caches
 11710 // and do not update method data.
 11711 instruct CallDynamicJavaDirect(method meth) %{
 11712   match(CallDynamicJava);
 11713   effect(USE meth);
 11714   predicate(!UseInlineCaches);
 11715   ins_cost(CALL_COST);
 11717   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11718   ins_num_consts(4);
 11720   format %{ "CALL,dynamic $meth \t// ==> " %}
 11721   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11722   ins_pipe(pipe_class_call);
 11723 %}
 11725 // Call Runtime Instruction
 11727 instruct CallRuntimeDirect(method meth) %{
 11728   match(CallRuntime);
 11729   effect(USE meth);
 11730   ins_cost(CALL_COST);
 11732   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11733   // env for callee, C-toc.
 11734   ins_num_consts(3);
 11736   format %{ "CALL,runtime" %}
 11737   ins_encode( enc_java_to_runtime_call(meth) );
 11738   ins_pipe(pipe_class_call);
 11739 %}
 11741 // Call Leaf
 11743 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11744 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11745   effect(DEF dst, USE src);
 11747   ins_num_consts(1);
 11749   format %{ "MTCTR   $src" %}
 11750   size(4);
 11751   ins_encode( enc_leaf_call_mtctr(src) );
 11752   ins_pipe(pipe_class_default);
 11753 %}
 11755 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11756 instruct CallLeafDirect(method meth) %{
 11757   match(CallLeaf);   // To get the data all the data fields we need ...
 11758   effect(USE meth);
 11759   predicate(false);  // but never match.
 11761   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11762   size(4);
 11763   ins_encode %{
 11764     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11765     __ bctrl();
 11766   %}
 11767   ins_pipe(pipe_class_call);
 11768 %}
 11770 // postalloc expand of CallLeafDirect.
 11771 // Load adress to call from TOC, then bl to it.
 11772 instruct CallLeafDirect_Ex(method meth) %{
 11773   match(CallLeaf);
 11774   effect(USE meth);
 11775   ins_cost(CALL_COST);
 11777   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11778   // env for callee, C-toc.
 11779   ins_num_consts(3);
 11781   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11782   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11783 %}
 11785 // Call runtime without safepoint - same as CallLeaf.
 11786 // postalloc expand of CallLeafNoFPDirect.
 11787 // Load adress to call from TOC, then bl to it.
 11788 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11789   match(CallLeafNoFP);
 11790   effect(USE meth);
 11791   ins_cost(CALL_COST);
 11793   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11794   // env for callee, C-toc.
 11795   ins_num_consts(3);
 11797   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11798   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11799 %}
 11801 // Tail Call; Jump from runtime stub to Java code.
 11802 // Also known as an 'interprocedural jump'.
 11803 // Target of jump will eventually return to caller.
 11804 // TailJump below removes the return address.
 11805 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11806   match(TailCall jump_target method_oop);
 11807   ins_cost(CALL_COST);
 11809   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11810             "BCTR         \t// tail call" %}
 11811   size(8);
 11812   ins_encode %{
 11813     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11814     __ mtctr($jump_target$$Register);
 11815     __ bctr();
 11816   %}
 11817   ins_pipe(pipe_class_call);
 11818 %}
 11820 // Return Instruction
 11821 instruct Ret() %{
 11822   match(Return);
 11823   format %{ "BLR      \t// branch to link register" %}
 11824   size(4);
 11825   ins_encode %{
 11826     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11827     // LR is restored in MachEpilogNode. Just do the RET here.
 11828     __ blr();
 11829   %}
 11830   ins_pipe(pipe_class_default);
 11831 %}
 11833 // Tail Jump; remove the return address; jump to target.
 11834 // TailCall above leaves the return address around.
 11835 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11836 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11837 // "restore" before this instruction (in Epilogue), we need to materialize it
 11838 // in %i0.
 11839 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11840   match(TailJump jump_target ex_oop);
 11841   ins_cost(CALL_COST);
 11843   format %{ "LD      R4_ARG2 = LR\n\t"
 11844             "MTCTR   $jump_target\n\t"
 11845             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11846   size(12);
 11847   ins_encode %{
 11848     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11849     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11850     __ mtctr($jump_target$$Register);
 11851     __ bctr();
 11852   %}
 11853   ins_pipe(pipe_class_call);
 11854 %}
 11856 // Create exception oop: created by stack-crawling runtime code.
 11857 // Created exception is now available to this handler, and is setup
 11858 // just prior to jumping to this handler. No code emitted.
 11859 instruct CreateException(rarg1RegP ex_oop) %{
 11860   match(Set ex_oop (CreateEx));
 11861   ins_cost(0);
 11863   format %{ " -- \t// exception oop; no code emitted" %}
 11864   size(0);
 11865   ins_encode( /*empty*/ );
 11866   ins_pipe(pipe_class_default);
 11867 %}
 11869 // Rethrow exception: The exception oop will come in the first
 11870 // argument position. Then JUMP (not call) to the rethrow stub code.
 11871 instruct RethrowException() %{
 11872   match(Rethrow);
 11873   ins_cost(CALL_COST);
 11875   format %{ "Jmp     rethrow_stub" %}
 11876   ins_encode %{
 11877     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11878     cbuf.set_insts_mark();
 11879     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11880   %}
 11881   ins_pipe(pipe_class_call);
 11882 %}
 11884 // Die now.
 11885 instruct ShouldNotReachHere() %{
 11886   match(Halt);
 11887   ins_cost(CALL_COST);
 11889   format %{ "ShouldNotReachHere" %}
 11890   size(4);
 11891   ins_encode %{
 11892     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11893     __ trap_should_not_reach_here();
 11894   %}
 11895   ins_pipe(pipe_class_default);
 11896 %}
 11898 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11899 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11900 // Get a DEF on threadRegP, no costs, no encoding, use
 11901 // 'ins_should_rematerialize(true)' to avoid spilling.
 11902 instruct tlsLoadP(threadRegP dst) %{
 11903   match(Set dst (ThreadLocal));
 11904   ins_cost(0);
 11906   ins_should_rematerialize(true);
 11908   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11909   size(0);
 11910   ins_encode( /*empty*/ );
 11911   ins_pipe(pipe_class_empty);
 11912 %}
 11914 //---Some PPC specific nodes---------------------------------------------------
 11916 // Stop a group.
 11917 instruct endGroup() %{
 11918   ins_cost(0);
 11920   ins_is_nop(true);
 11922   format %{ "End Bundle (ori r1, r1, 0)" %}
 11923   size(4);
 11924   ins_encode %{
 11925     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11926     __ endgroup();
 11927   %}
 11928   ins_pipe(pipe_class_default);
 11929 %}
 11931 // Nop instructions
 11933 instruct fxNop() %{
 11934   ins_cost(0);
 11936   ins_is_nop(true);
 11938   format %{ "fxNop" %}
 11939   size(4);
 11940   ins_encode %{
 11941     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11942     __ nop();
 11943   %}
 11944   ins_pipe(pipe_class_default);
 11945 %}
 11947 instruct fpNop0() %{
 11948   ins_cost(0);
 11950   ins_is_nop(true);
 11952   format %{ "fpNop0" %}
 11953   size(4);
 11954   ins_encode %{
 11955     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11956     __ fpnop0();
 11957   %}
 11958   ins_pipe(pipe_class_default);
 11959 %}
 11961 instruct fpNop1() %{
 11962   ins_cost(0);
 11964   ins_is_nop(true);
 11966   format %{ "fpNop1" %}
 11967   size(4);
 11968   ins_encode %{
 11969     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11970     __ fpnop1();
 11971   %}
 11972   ins_pipe(pipe_class_default);
 11973 %}
 11975 instruct brNop0() %{
 11976   ins_cost(0);
 11977   size(4);
 11978   format %{ "brNop0" %}
 11979   ins_encode %{
 11980     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11981     __ brnop0();
 11982   %}
 11983   ins_is_nop(true);
 11984   ins_pipe(pipe_class_default);
 11985 %}
 11987 instruct brNop1() %{
 11988   ins_cost(0);
 11990   ins_is_nop(true);
 11992   format %{ "brNop1" %}
 11993   size(4);
 11994   ins_encode %{
 11995     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11996     __ brnop1();
 11997   %}
 11998   ins_pipe(pipe_class_default);
 11999 %}
 12001 instruct brNop2() %{
 12002   ins_cost(0);
 12004   ins_is_nop(true);
 12006   format %{ "brNop2" %}
 12007   size(4);
 12008   ins_encode %{
 12009     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 12010     __ brnop2();
 12011   %}
 12012   ins_pipe(pipe_class_default);
 12013 %}
 12015 //----------PEEPHOLE RULES-----------------------------------------------------
 12016 // These must follow all instruction definitions as they use the names
 12017 // defined in the instructions definitions.
 12018 //
 12019 // peepmatch ( root_instr_name [preceeding_instruction]* );
 12020 //
 12021 // peepconstraint %{
 12022 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12023 //  [, ...] );
 12024 // // instruction numbers are zero-based using left to right order in peepmatch
 12025 //
 12026 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 12027 // // provide an instruction_number.operand_name for each operand that appears
 12028 // // in the replacement instruction's match rule
 12029 //
 12030 // ---------VM FLAGS---------------------------------------------------------
 12031 //
 12032 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12033 //
 12034 // Each peephole rule is given an identifying number starting with zero and
 12035 // increasing by one in the order seen by the parser. An individual peephole
 12036 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12037 // on the command-line.
 12038 //
 12039 // ---------CURRENT LIMITATIONS----------------------------------------------
 12040 //
 12041 // Only match adjacent instructions in same basic block
 12042 // Only equality constraints
 12043 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12044 // Only one replacement instruction
 12045 //
 12046 // ---------EXAMPLE----------------------------------------------------------
 12047 //
 12048 // // pertinent parts of existing instructions in architecture description
 12049 // instruct movI(eRegI dst, eRegI src) %{
 12050 //   match(Set dst (CopyI src));
 12051 // %}
 12052 //
 12053 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 12054 //   match(Set dst (AddI dst src));
 12055 //   effect(KILL cr);
 12056 // %}
 12057 //
 12058 // // Change (inc mov) to lea
 12059 // peephole %{
 12060 //   // increment preceeded by register-register move
 12061 //   peepmatch ( incI_eReg movI );
 12062 //   // require that the destination register of the increment
 12063 //   // match the destination register of the move
 12064 //   peepconstraint ( 0.dst == 1.dst );
 12065 //   // construct a replacement instruction that sets
 12066 //   // the destination to ( move's source register + one )
 12067 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12068 // %}
 12069 //
 12070 // Implementation no longer uses movX instructions since
 12071 // machine-independent system no longer uses CopyX nodes.
 12072 //
 12073 // peephole %{
 12074 //   peepmatch ( incI_eReg movI );
 12075 //   peepconstraint ( 0.dst == 1.dst );
 12076 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12077 // %}
 12078 //
 12079 // peephole %{
 12080 //   peepmatch ( decI_eReg movI );
 12081 //   peepconstraint ( 0.dst == 1.dst );
 12082 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12083 // %}
 12084 //
 12085 // peephole %{
 12086 //   peepmatch ( addI_eReg_imm movI );
 12087 //   peepconstraint ( 0.dst == 1.dst );
 12088 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12089 // %}
 12090 //
 12091 // peephole %{
 12092 //   peepmatch ( addP_eReg_imm movP );
 12093 //   peepconstraint ( 0.dst == 1.dst );
 12094 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12095 // %}
 12097 // // Change load of spilled value to only a spill
 12098 // instruct storeI(memory mem, eRegI src) %{
 12099 //   match(Set mem (StoreI mem src));
 12100 // %}
 12101 //
 12102 // instruct loadI(eRegI dst, memory mem) %{
 12103 //   match(Set dst (LoadI mem));
 12104 // %}
 12105 //
 12106 peephole %{
 12107   peepmatch ( loadI storeI );
 12108   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12109   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12110 %}
 12112 peephole %{
 12113   peepmatch ( loadL storeL );
 12114   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12115   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12116 %}
 12118 peephole %{
 12119   peepmatch ( loadP storeP );
 12120   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12121   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12122 %}
 12124 //----------SMARTSPILL RULES---------------------------------------------------
 12125 // These must follow all instruction definitions as they use the names
 12126 // defined in the instructions definitions.

mercurial