src/share/vm/opto/chaitin.cpp

Fri, 16 Aug 2013 10:23:55 +0200

author
adlertz
date
Fri, 16 Aug 2013 10:23:55 +0200
changeset 5539
adb9a7d94cb5
parent 5509
d1034bd8cefc
child 5543
4b2838704fd5
permissions
-rw-r--r--

8023003: Cleanup the public interface to PhaseCFG
Summary: public methods that don't need to be public should be private.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 #ifndef PRODUCT
    44 void LRG::dump() const {
    45   ttyLocker ttyl;
    46   tty->print("%d ",num_regs());
    47   _mask.dump();
    48   if( _msize_valid ) {
    49     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    50     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    51   } else {
    52     tty->print(", #?(%d) ",_mask.Size());
    53   }
    55   tty->print("EffDeg: ");
    56   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    57   else tty->print("? ");
    59   if( is_multidef() ) {
    60     tty->print("MultiDef ");
    61     if (_defs != NULL) {
    62       tty->print("(");
    63       for (int i = 0; i < _defs->length(); i++) {
    64         tty->print("N%d ", _defs->at(i)->_idx);
    65       }
    66       tty->print(") ");
    67     }
    68   }
    69   else if( _def == 0 ) tty->print("Dead ");
    70   else tty->print("Def: N%d ",_def->_idx);
    72   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    73   // Flags
    74   if( _is_oop ) tty->print("Oop ");
    75   if( _is_float ) tty->print("Float ");
    76   if( _is_vector ) tty->print("Vector ");
    77   if( _was_spilled1 ) tty->print("Spilled ");
    78   if( _was_spilled2 ) tty->print("Spilled2 ");
    79   if( _direct_conflict ) tty->print("Direct_conflict ");
    80   if( _fat_proj ) tty->print("Fat ");
    81   if( _was_lo ) tty->print("Lo ");
    82   if( _has_copy ) tty->print("Copy ");
    83   if( _at_risk ) tty->print("Risk ");
    85   if( _must_spill ) tty->print("Must_spill ");
    86   if( _is_bound ) tty->print("Bound ");
    87   if( _msize_valid ) {
    88     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    89   }
    91   tty->cr();
    92 }
    93 #endif
    95 // Compute score from cost and area.  Low score is best to spill.
    96 static double raw_score( double cost, double area ) {
    97   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
    98 }
   100 double LRG::score() const {
   101   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   102   // Bigger area lowers score, encourages spilling this live range.
   103   // Bigger cost raise score, prevents spilling this live range.
   104   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   105   // to turn a divide by a constant into a multiply by the reciprical).
   106   double score = raw_score( _cost, _area);
   108   // Account for area.  Basically, LRGs covering large areas are better
   109   // to spill because more other LRGs get freed up.
   110   if( _area == 0.0 )            // No area?  Then no progress to spill
   111     return 1e35;
   113   if( _was_spilled2 )           // If spilled once before, we are unlikely
   114     return score + 1e30;        // to make progress again.
   116   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   117     return score + 1e17;        // Probably no progress to spill
   119   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   120     return score + 1e10;        // Likely no progress to spill
   122   return score;
   123 }
   125 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   126   memset( _lidxs, 0, sizeof(uint)*max );
   127 }
   129 void LRG_List::extend( uint nidx, uint lidx ) {
   130   _nesting.check();
   131   if( nidx >= _max ) {
   132     uint size = 16;
   133     while( size <= nidx ) size <<=1;
   134     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   135     _max = size;
   136   }
   137   while( _cnt <= nidx )
   138     _lidxs[_cnt++] = 0;
   139   _lidxs[nidx] = lidx;
   140 }
   142 #define NUMBUCKS 3
   144 // Straight out of Tarjan's union-find algorithm
   145 uint LiveRangeMap::find_compress(uint lrg) {
   146   uint cur = lrg;
   147   uint next = _uf_map[cur];
   148   while (next != cur) { // Scan chain of equivalences
   149     assert( next < cur, "always union smaller");
   150     cur = next; // until find a fixed-point
   151     next = _uf_map[cur];
   152   }
   154   // Core of union-find algorithm: update chain of
   155   // equivalences to be equal to the root.
   156   while (lrg != next) {
   157     uint tmp = _uf_map[lrg];
   158     _uf_map.map(lrg, next);
   159     lrg = tmp;
   160   }
   161   return lrg;
   162 }
   164 // Reset the Union-Find map to identity
   165 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
   166   _max_lrg_id= max_lrg_id;
   167   // Force the Union-Find mapping to be at least this large
   168   _uf_map.extend(_max_lrg_id, 0);
   169   // Initialize it to be the ID mapping.
   170   for (uint i = 0; i < _max_lrg_id; ++i) {
   171     _uf_map.map(i, i);
   172   }
   173 }
   175 // Make all Nodes map directly to their final live range; no need for
   176 // the Union-Find mapping after this call.
   177 void LiveRangeMap::compress_uf_map_for_nodes() {
   178   // For all Nodes, compress mapping
   179   uint unique = _names.Size();
   180   for (uint i = 0; i < unique; ++i) {
   181     uint lrg = _names[i];
   182     uint compressed_lrg = find(lrg);
   183     if (lrg != compressed_lrg) {
   184       _names.map(i, compressed_lrg);
   185     }
   186   }
   187 }
   189 // Like Find above, but no path compress, so bad asymptotic behavior
   190 uint LiveRangeMap::find_const(uint lrg) const {
   191   if (!lrg) {
   192     return lrg; // Ignore the zero LRG
   193   }
   195   // Off the end?  This happens during debugging dumps when you got
   196   // brand new live ranges but have not told the allocator yet.
   197   if (lrg >= _max_lrg_id) {
   198     return lrg;
   199   }
   201   uint next = _uf_map[lrg];
   202   while (next != lrg) { // Scan chain of equivalences
   203     assert(next < lrg, "always union smaller");
   204     lrg = next; // until find a fixed-point
   205     next = _uf_map[lrg];
   206   }
   207   return next;
   208 }
   210 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   211   : PhaseRegAlloc(unique, cfg, matcher,
   212 #ifndef PRODUCT
   213        print_chaitin_statistics
   214 #else
   215        NULL
   216 #endif
   217        )
   218   , _lrg_map(unique)
   219   , _live(0)
   220   , _spilled_once(Thread::current()->resource_area())
   221   , _spilled_twice(Thread::current()->resource_area())
   222   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
   223   , _oldphi(unique)
   224 #ifndef PRODUCT
   225   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   226 #endif
   227 {
   228   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   230   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
   232   // Build a list of basic blocks, sorted by frequency
   233   _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   234   // Experiment with sorting strategies to speed compilation
   235   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   236   Block **buckets[NUMBUCKS];             // Array of buckets
   237   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   238   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   239   for (uint i = 0; i < NUMBUCKS; i++) {
   240     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   241     buckcnt[i] = 0;
   242     // Bump by three orders of magnitude each time
   243     cutoff *= 0.001;
   244     buckval[i] = cutoff;
   245     for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
   246       buckets[i][j] = NULL;
   247     }
   248   }
   249   // Sort blocks into buckets
   250   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   251     for (uint j = 0; j < NUMBUCKS; j++) {
   252       if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
   253         // Assign block to end of list for appropriate bucket
   254         buckets[j][buckcnt[j]++] = _cfg.get_block(i);
   255         break; // kick out of inner loop
   256       }
   257     }
   258   }
   259   // Dump buckets into final block array
   260   uint blkcnt = 0;
   261   for (uint i = 0; i < NUMBUCKS; i++) {
   262     for (uint j = 0; j < buckcnt[i]; j++) {
   263       _blks[blkcnt++] = buckets[i][j];
   264     }
   265   }
   267   assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
   268 }
   270 // union 2 sets together.
   271 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
   272   uint src = _lrg_map.find(src_n);
   273   uint dst = _lrg_map.find(dst_n);
   274   assert(src, "");
   275   assert(dst, "");
   276   assert(src < _lrg_map.max_lrg_id(), "oob");
   277   assert(dst < _lrg_map.max_lrg_id(), "oob");
   278   assert(src < dst, "always union smaller");
   279   _lrg_map.uf_map(dst, src);
   280 }
   282 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
   283   // Make the Node->LRG mapping
   284   _lrg_map.extend(x->_idx,lrg);
   285   // Make the Union-Find mapping an identity function
   286   _lrg_map.uf_extend(lrg, lrg);
   287 }
   290 bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id) {
   291   Block* bcon = _cfg.get_block_for_node(con);
   292   uint cindex = bcon->find_node(con);
   293   Node *con_next = bcon->_nodes[cindex+1];
   294   if (con_next->in(0) != con || !con_next->is_MachProj()) {
   295     return false;               // No MachProj's follow
   296   }
   298   // Copy kills after the cloned constant
   299   Node *kills = con_next->clone();
   300   kills->set_req(0, copy);
   301   b->_nodes.insert(idx, kills);
   302   _cfg.map_node_to_block(kills, b);
   303   new_lrg(kills, max_lrg_id);
   304   return true;
   305 }
   307 // Renumber the live ranges to compact them.  Makes the IFG smaller.
   308 void PhaseChaitin::compact() {
   309   // Current the _uf_map contains a series of short chains which are headed
   310   // by a self-cycle.  All the chains run from big numbers to little numbers.
   311   // The Find() call chases the chains & shortens them for the next Find call.
   312   // We are going to change this structure slightly.  Numbers above a moving
   313   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
   314   // compacted live range with no further chaining.  There are no chains or
   315   // cycles below 'i', so the Find call no longer works.
   316   uint j=1;
   317   uint i;
   318   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
   319     uint lr = _lrg_map.uf_live_range_id(i);
   320     // Ignore unallocated live ranges
   321     if (!lr) {
   322       continue;
   323     }
   324     assert(lr <= i, "");
   325     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
   326   }
   327   // Now change the Node->LR mapping to reflect the compacted names
   328   uint unique = _lrg_map.size();
   329   for (i = 0; i < unique; i++) {
   330     uint lrg_id = _lrg_map.live_range_id(i);
   331     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
   332   }
   334   // Reset the Union-Find mapping
   335   _lrg_map.reset_uf_map(j);
   336 }
   338 void PhaseChaitin::Register_Allocate() {
   340   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   341   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   342   // registers) is the outgoing argument area; above that is the spill/temp
   343   // area.  These are all "frame_slots".  Arg_slots start at the zero
   344   // stack_slots and count up to the known arg_size.  Frame_slots start at
   345   // the stack_slot #arg_size and go up.  After allocation I map stack
   346   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   347   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   349   _trip_cnt = 0;
   350   _alternate = 0;
   351   _matcher._allocation_started = true;
   353   ResourceArea split_arena;     // Arena for Split local resources
   354   ResourceArea live_arena;      // Arena for liveness & IFG info
   355   ResourceMark rm(&live_arena);
   357   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   358   // liveness is JUST for coalescing, then I can get some mileage by renaming
   359   // all copy-related live ranges low and then using the max copy-related
   360   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   361   // build a subset of LIVE and IFG just for copies.
   362   PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
   364   // Need IFG for coalescing and coloring
   365   PhaseIFG ifg(&live_arena);
   366   _ifg = &ifg;
   368   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   369   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   370   // - effectively ending SSA form.  This requires either coalescing live
   371   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   372   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   373   // We will attempt to coalesce such "virtual copies" before we manifest
   374   // them for real.
   375   de_ssa();
   377 #ifdef ASSERT
   378   // Veify the graph before RA.
   379   verify(&live_arena);
   380 #endif
   382   {
   383     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   384     _live = NULL;                 // Mark live as being not available
   385     rm.reset_to_mark();           // Reclaim working storage
   386     IndexSet::reset_memory(C, &live_arena);
   387     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
   388     gather_lrg_masks( false );    // Collect LRG masks
   389     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
   390     _live = &live;                // Mark LIVE as being available
   391   }
   393   // Base pointers are currently "used" by instructions which define new
   394   // derived pointers.  This makes base pointers live up to the where the
   395   // derived pointer is made, but not beyond.  Really, they need to be live
   396   // across any GC point where the derived value is live.  So this code looks
   397   // at all the GC points, and "stretches" the live range of any base pointer
   398   // to the GC point.
   399   if (stretch_base_pointer_live_ranges(&live_arena)) {
   400     NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
   401     // Since some live range stretched, I need to recompute live
   402     _live = NULL;
   403     rm.reset_to_mark();         // Reclaim working storage
   404     IndexSet::reset_memory(C, &live_arena);
   405     ifg.init(_lrg_map.max_lrg_id());
   406     gather_lrg_masks(false);
   407     live.compute(_lrg_map.max_lrg_id());
   408     _live = &live;
   409   }
   410   // Create the interference graph using virtual copies
   411   build_ifg_virtual();  // Include stack slots this time
   413   // Aggressive (but pessimistic) copy coalescing.
   414   // This pass works on virtual copies.  Any virtual copies which are not
   415   // coalesced get manifested as actual copies
   416   {
   417     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   418     // faster.  Union requires a 'for all' operation which is slow on the
   419     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   420     // meaning I can visit all the Nodes neighbors less than a Node in time
   421     // O(# of neighbors), but I have to visit all the Nodes greater than a
   422     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   423     _ifg->SquareUp();
   425     PhaseAggressiveCoalesce coalesce(*this);
   426     coalesce.coalesce_driver();
   427     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   428     // not match the Phi itself, insert a copy.
   429     coalesce.insert_copies(_matcher);
   430     if (C->failing()) {
   431       return;
   432     }
   433   }
   435   // After aggressive coalesce, attempt a first cut at coloring.
   436   // To color, we need the IFG and for that we need LIVE.
   437   {
   438     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   439     _live = NULL;
   440     rm.reset_to_mark();           // Reclaim working storage
   441     IndexSet::reset_memory(C, &live_arena);
   442     ifg.init(_lrg_map.max_lrg_id());
   443     gather_lrg_masks( true );
   444     live.compute(_lrg_map.max_lrg_id());
   445     _live = &live;
   446   }
   448   // Build physical interference graph
   449   uint must_spill = 0;
   450   must_spill = build_ifg_physical(&live_arena);
   451   // If we have a guaranteed spill, might as well spill now
   452   if (must_spill) {
   453     if(!_lrg_map.max_lrg_id()) {
   454       return;
   455     }
   456     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   457     C->check_node_count(10*must_spill, "out of nodes before split");
   458     if (C->failing()) {
   459       return;
   460     }
   462     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   463     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   464     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   465     // or we failed to split
   466     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   467     if (C->failing()) {
   468       return;
   469     }
   471     NOT_PRODUCT(C->verify_graph_edges();)
   473     compact();                  // Compact LRGs; return new lower max lrg
   475     {
   476       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   477       _live = NULL;
   478       rm.reset_to_mark();         // Reclaim working storage
   479       IndexSet::reset_memory(C, &live_arena);
   480       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
   481       gather_lrg_masks( true );   // Collect intersect mask
   482       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
   483       _live = &live;
   484     }
   485     build_ifg_physical(&live_arena);
   486     _ifg->SquareUp();
   487     _ifg->Compute_Effective_Degree();
   488     // Only do conservative coalescing if requested
   489     if (OptoCoalesce) {
   490       // Conservative (and pessimistic) copy coalescing of those spills
   491       PhaseConservativeCoalesce coalesce(*this);
   492       // If max live ranges greater than cutoff, don't color the stack.
   493       // This cutoff can be larger than below since it is only done once.
   494       coalesce.coalesce_driver();
   495     }
   496     _lrg_map.compress_uf_map_for_nodes();
   498 #ifdef ASSERT
   499     verify(&live_arena, true);
   500 #endif
   501   } else {
   502     ifg.SquareUp();
   503     ifg.Compute_Effective_Degree();
   504 #ifdef ASSERT
   505     set_was_low();
   506 #endif
   507   }
   509   // Prepare for Simplify & Select
   510   cache_lrg_info();           // Count degree of LRGs
   512   // Simplify the InterFerence Graph by removing LRGs of low degree.
   513   // LRGs of low degree are trivially colorable.
   514   Simplify();
   516   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   517   // Return whether or not something spills.
   518   uint spills = Select( );
   520   // If we spill, split and recycle the entire thing
   521   while( spills ) {
   522     if( _trip_cnt++ > 24 ) {
   523       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   524       if( _trip_cnt > 27 ) {
   525         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   526         return;
   527       }
   528     }
   530     if (!_lrg_map.max_lrg_id()) {
   531       return;
   532     }
   533     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   534     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   535     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   536     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
   537     if (C->failing()) {
   538       return;
   539     }
   541     compact(); // Compact LRGs; return new lower max lrg
   543     // Nuke the live-ness and interference graph and LiveRanGe info
   544     {
   545       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   546       _live = NULL;
   547       rm.reset_to_mark();         // Reclaim working storage
   548       IndexSet::reset_memory(C, &live_arena);
   549       ifg.init(_lrg_map.max_lrg_id());
   551       // Create LiveRanGe array.
   552       // Intersect register masks for all USEs and DEFs
   553       gather_lrg_masks(true);
   554       live.compute(_lrg_map.max_lrg_id());
   555       _live = &live;
   556     }
   557     must_spill = build_ifg_physical(&live_arena);
   558     _ifg->SquareUp();
   559     _ifg->Compute_Effective_Degree();
   561     // Only do conservative coalescing if requested
   562     if (OptoCoalesce) {
   563       // Conservative (and pessimistic) copy coalescing
   564       PhaseConservativeCoalesce coalesce(*this);
   565       // Check for few live ranges determines how aggressive coalesce is.
   566       coalesce.coalesce_driver();
   567     }
   568     _lrg_map.compress_uf_map_for_nodes();
   569 #ifdef ASSERT
   570     verify(&live_arena, true);
   571 #endif
   572     cache_lrg_info();           // Count degree of LRGs
   574     // Simplify the InterFerence Graph by removing LRGs of low degree.
   575     // LRGs of low degree are trivially colorable.
   576     Simplify();
   578     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   579     // Return whether or not something spills.
   580     spills = Select();
   581   }
   583   // Count number of Simplify-Select trips per coloring success.
   584   _allocator_attempts += _trip_cnt + 1;
   585   _allocator_successes += 1;
   587   // Peephole remove copies
   588   post_allocate_copy_removal();
   590 #ifdef ASSERT
   591   // Veify the graph after RA.
   592   verify(&live_arena);
   593 #endif
   595   // max_reg is past the largest *register* used.
   596   // Convert that to a frame_slot number.
   597   if (_max_reg <= _matcher._new_SP) {
   598     _framesize = C->out_preserve_stack_slots();
   599   }
   600   else {
   601     _framesize = _max_reg -_matcher._new_SP;
   602   }
   603   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   605   // This frame must preserve the required fp alignment
   606   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   607   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   608 #ifndef PRODUCT
   609   _total_framesize += _framesize;
   610   if ((int)_framesize > _max_framesize) {
   611     _max_framesize = _framesize;
   612   }
   613 #endif
   615   // Convert CISC spills
   616   fixup_spills();
   618   // Log regalloc results
   619   CompileLog* log = Compile::current()->log();
   620   if (log != NULL) {
   621     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   622   }
   624   if (C->failing()) {
   625     return;
   626   }
   628   NOT_PRODUCT(C->verify_graph_edges();)
   630   // Move important info out of the live_arena to longer lasting storage.
   631   alloc_node_regs(_lrg_map.size());
   632   for (uint i=0; i < _lrg_map.size(); i++) {
   633     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
   634       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
   635       if (!lrg.alive()) {
   636         set_bad(i);
   637       } else if (lrg.num_regs() == 1) {
   638         set1(i, lrg.reg());
   639       } else {                  // Must be a register-set
   640         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
   641           // Live ranges record the highest register in their mask.
   642           // We want the low register for the AD file writer's convenience.
   643           OptoReg::Name hi = lrg.reg(); // Get hi register
   644           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
   645           // We have to use pair [lo,lo+1] even for wide vectors because
   646           // the rest of code generation works only with pairs. It is safe
   647           // since for registers encoding only 'lo' is used.
   648           // Second reg from pair is used in ScheduleAndBundle on SPARC where
   649           // vector max size is 8 which corresponds to registers pair.
   650           // It is also used in BuildOopMaps but oop operations are not
   651           // vectorized.
   652           set2(i, lo);
   653         } else {                // Misaligned; extract 2 bits
   654           OptoReg::Name hi = lrg.reg(); // Get hi register
   655           lrg.Remove(hi);       // Yank from mask
   656           int lo = lrg.mask().find_first_elem(); // Find lo
   657           set_pair(i, hi, lo);
   658         }
   659       }
   660       if( lrg._is_oop ) _node_oops.set(i);
   661     } else {
   662       set_bad(i);
   663     }
   664   }
   666   // Done!
   667   _live = NULL;
   668   _ifg = NULL;
   669   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   670 }
   672 void PhaseChaitin::de_ssa() {
   673   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   674   // number.  A few get the ZERO live range number.  These do not
   675   // get allocated, but instead rely on correct scheduling to ensure that
   676   // only one instance is simultaneously live at a time.
   677   uint lr_counter = 1;
   678   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
   679     Block* block = _cfg.get_block(i);
   680     uint cnt = block->_nodes.size();
   682     // Handle all the normal Nodes in the block
   683     for( uint j = 0; j < cnt; j++ ) {
   684       Node *n = block->_nodes[j];
   685       // Pre-color to the zero live range, or pick virtual register
   686       const RegMask &rm = n->out_RegMask();
   687       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
   688     }
   689   }
   690   // Reset the Union-Find mapping to be identity
   691   _lrg_map.reset_uf_map(lr_counter);
   692 }
   695 // Gather LiveRanGe information, including register masks.  Modification of
   696 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   697 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   699   // Nail down the frame pointer live range
   700   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
   701   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   703   // For all blocks
   704   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   705     Block* block = _cfg.get_block(i);
   707     // For all instructions
   708     for (uint j = 1; j < block->_nodes.size(); j++) {
   709       Node* n = block->_nodes[j];
   710       uint input_edge_start =1; // Skip control most nodes
   711       if (n->is_Mach()) {
   712         input_edge_start = n->as_Mach()->oper_input_base();
   713       }
   714       uint idx = n->is_Copy();
   716       // Get virtual register number, same as LiveRanGe index
   717       uint vreg = _lrg_map.live_range_id(n);
   718       LRG& lrg = lrgs(vreg);
   719       if (vreg) {              // No vreg means un-allocable (e.g. memory)
   721         // Collect has-copy bit
   722         if (idx) {
   723           lrg._has_copy = 1;
   724           uint clidx = _lrg_map.live_range_id(n->in(idx));
   725           LRG& copy_src = lrgs(clidx);
   726           copy_src._has_copy = 1;
   727         }
   729         // Check for float-vs-int live range (used in register-pressure
   730         // calculations)
   731         const Type *n_type = n->bottom_type();
   732         if (n_type->is_floatingpoint()) {
   733           lrg._is_float = 1;
   734         }
   736         // Check for twice prior spilling.  Once prior spilling might have
   737         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   738         // further spilling is unlikely to make progress.
   739         if (_spilled_once.test(n->_idx)) {
   740           lrg._was_spilled1 = 1;
   741           if (_spilled_twice.test(n->_idx)) {
   742             lrg._was_spilled2 = 1;
   743           }
   744         }
   746 #ifndef PRODUCT
   747         if (trace_spilling() && lrg._def != NULL) {
   748           // collect defs for MultiDef printing
   749           if (lrg._defs == NULL) {
   750             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   751             lrg._defs->append(lrg._def);
   752           }
   753           lrg._defs->append(n);
   754         }
   755 #endif
   757         // Check for a single def LRG; these can spill nicely
   758         // via rematerialization.  Flag as NULL for no def found
   759         // yet, or 'n' for single def or -1 for many defs.
   760         lrg._def = lrg._def ? NodeSentinel : n;
   762         // Limit result register mask to acceptable registers
   763         const RegMask &rm = n->out_RegMask();
   764         lrg.AND( rm );
   766         int ireg = n->ideal_reg();
   767         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   768                 "oops must be in Op_RegP's" );
   770         // Check for vector live range (only if vector register is used).
   771         // On SPARC vector uses RegD which could be misaligned so it is not
   772         // processes as vector in RA.
   773         if (RegMask::is_vector(ireg))
   774           lrg._is_vector = 1;
   775         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
   776                "vector must be in vector registers");
   778         // Check for bound register masks
   779         const RegMask &lrgmask = lrg.mask();
   780         if (lrgmask.is_bound(ireg)) {
   781           lrg._is_bound = 1;
   782         }
   784         // Check for maximum frequency value
   785         if (lrg._maxfreq < block->_freq) {
   786           lrg._maxfreq = block->_freq;
   787         }
   789         // Check for oop-iness, or long/double
   790         // Check for multi-kill projection
   791         switch (ireg) {
   792         case MachProjNode::fat_proj:
   793           // Fat projections have size equal to number of registers killed
   794           lrg.set_num_regs(rm.Size());
   795           lrg.set_reg_pressure(lrg.num_regs());
   796           lrg._fat_proj = 1;
   797           lrg._is_bound = 1;
   798           break;
   799         case Op_RegP:
   800 #ifdef _LP64
   801           lrg.set_num_regs(2);  // Size is 2 stack words
   802 #else
   803           lrg.set_num_regs(1);  // Size is 1 stack word
   804 #endif
   805           // Register pressure is tracked relative to the maximum values
   806           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   807           // and relative to other types which compete for the same regs.
   808           //
   809           // The following table contains suggested values based on the
   810           // architectures as defined in each .ad file.
   811           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   812           // compile-speed or performance.
   813           // Note1:
   814           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   815           // since .ad registers are defined as high and low halves.
   816           // These reg_pressure values remain compatible with the code
   817           // in is_high_pressure() which relates get_invalid_mask_size(),
   818           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   819           // Note2:
   820           // SPARC -d32 has 24 registers available for integral values,
   821           // but only 10 of these are safe for 64-bit longs.
   822           // Using set_reg_pressure(2) for both int and long means
   823           // the allocator will believe it can fit 26 longs into
   824           // registers.  Using 2 for longs and 1 for ints means the
   825           // allocator will attempt to put 52 integers into registers.
   826           // The settings below limit this problem to methods with
   827           // many long values which are being run on 32-bit SPARC.
   828           //
   829           // ------------------- reg_pressure --------------------
   830           // Each entry is reg_pressure_per_value,number_of_regs
   831           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   832           // IA32     2     1     1          1    1          6           6
   833           // IA64     1     1     1          1    1         50          41
   834           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   835           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   836           // AMD64    1     1     1          1    1         14          15
   837           // -----------------------------------------------------
   838 #if defined(SPARC)
   839           lrg.set_reg_pressure(2);  // use for v9 as well
   840 #else
   841           lrg.set_reg_pressure(1);  // normally one value per register
   842 #endif
   843           if( n_type->isa_oop_ptr() ) {
   844             lrg._is_oop = 1;
   845           }
   846           break;
   847         case Op_RegL:           // Check for long or double
   848         case Op_RegD:
   849           lrg.set_num_regs(2);
   850           // Define platform specific register pressure
   851 #if defined(SPARC) || defined(ARM)
   852           lrg.set_reg_pressure(2);
   853 #elif defined(IA32)
   854           if( ireg == Op_RegL ) {
   855             lrg.set_reg_pressure(2);
   856           } else {
   857             lrg.set_reg_pressure(1);
   858           }
   859 #else
   860           lrg.set_reg_pressure(1);  // normally one value per register
   861 #endif
   862           // If this def of a double forces a mis-aligned double,
   863           // flag as '_fat_proj' - really flag as allowing misalignment
   864           // AND changes how we count interferences.  A mis-aligned
   865           // double can interfere with TWO aligned pairs, or effectively
   866           // FOUR registers!
   867           if (rm.is_misaligned_pair()) {
   868             lrg._fat_proj = 1;
   869             lrg._is_bound = 1;
   870           }
   871           break;
   872         case Op_RegF:
   873         case Op_RegI:
   874         case Op_RegN:
   875         case Op_RegFlags:
   876         case 0:                 // not an ideal register
   877           lrg.set_num_regs(1);
   878 #ifdef SPARC
   879           lrg.set_reg_pressure(2);
   880 #else
   881           lrg.set_reg_pressure(1);
   882 #endif
   883           break;
   884         case Op_VecS:
   885           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   886           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   887           lrg.set_num_regs(RegMask::SlotsPerVecS);
   888           lrg.set_reg_pressure(1);
   889           break;
   890         case Op_VecD:
   891           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   892           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   893           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   894           lrg.set_num_regs(RegMask::SlotsPerVecD);
   895           lrg.set_reg_pressure(1);
   896           break;
   897         case Op_VecX:
   898           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   899           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   900           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   901           lrg.set_num_regs(RegMask::SlotsPerVecX);
   902           lrg.set_reg_pressure(1);
   903           break;
   904         case Op_VecY:
   905           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   906           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   907           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   908           lrg.set_num_regs(RegMask::SlotsPerVecY);
   909           lrg.set_reg_pressure(1);
   910           break;
   911         default:
   912           ShouldNotReachHere();
   913         }
   914       }
   916       // Now do the same for inputs
   917       uint cnt = n->req();
   918       // Setup for CISC SPILLING
   919       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   920       if( UseCISCSpill && after_aggressive ) {
   921         inp = n->cisc_operand();
   922         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   923           // Convert operand number to edge index number
   924           inp = n->as_Mach()->operand_index(inp);
   925       }
   926       // Prepare register mask for each input
   927       for( uint k = input_edge_start; k < cnt; k++ ) {
   928         uint vreg = _lrg_map.live_range_id(n->in(k));
   929         if (!vreg) {
   930           continue;
   931         }
   933         // If this instruction is CISC Spillable, add the flags
   934         // bit to its appropriate input
   935         if( UseCISCSpill && after_aggressive && inp == k ) {
   936 #ifndef PRODUCT
   937           if( TraceCISCSpill ) {
   938             tty->print("  use_cisc_RegMask: ");
   939             n->dump();
   940           }
   941 #endif
   942           n->as_Mach()->use_cisc_RegMask();
   943         }
   945         LRG &lrg = lrgs(vreg);
   946         // // Testing for floating point code shape
   947         // Node *test = n->in(k);
   948         // if( test->is_Mach() ) {
   949         //   MachNode *m = test->as_Mach();
   950         //   int  op = m->ideal_Opcode();
   951         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   952         //     int zzz = 1;
   953         //   }
   954         // }
   956         // Limit result register mask to acceptable registers.
   957         // Do not limit registers from uncommon uses before
   958         // AggressiveCoalesce.  This effectively pre-virtual-splits
   959         // around uncommon uses of common defs.
   960         const RegMask &rm = n->in_RegMask(k);
   961         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
   962           // Since we are BEFORE aggressive coalesce, leave the register
   963           // mask untrimmed by the call.  This encourages more coalescing.
   964           // Later, AFTER aggressive, this live range will have to spill
   965           // but the spiller handles slow-path calls very nicely.
   966         } else {
   967           lrg.AND( rm );
   968         }
   970         // Check for bound register masks
   971         const RegMask &lrgmask = lrg.mask();
   972         int kreg = n->in(k)->ideal_reg();
   973         bool is_vect = RegMask::is_vector(kreg);
   974         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   975                is_vect || kreg == Op_RegD,
   976                "vector must be in vector registers");
   977         if (lrgmask.is_bound(kreg))
   978           lrg._is_bound = 1;
   980         // If this use of a double forces a mis-aligned double,
   981         // flag as '_fat_proj' - really flag as allowing misalignment
   982         // AND changes how we count interferences.  A mis-aligned
   983         // double can interfere with TWO aligned pairs, or effectively
   984         // FOUR registers!
   985 #ifdef ASSERT
   986         if (is_vect) {
   987           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   988           assert(!lrg._fat_proj, "sanity");
   989           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   990         }
   991 #endif
   992         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   993           lrg._fat_proj = 1;
   994           lrg._is_bound = 1;
   995         }
   996         // if the LRG is an unaligned pair, we will have to spill
   997         // so clear the LRG's register mask if it is not already spilled
   998         if (!is_vect && !n->is_SpillCopy() &&
   999             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
  1000             lrgmask.is_misaligned_pair()) {
  1001           lrg.Clear();
  1004         // Check for maximum frequency value
  1005         if (lrg._maxfreq < block->_freq) {
  1006           lrg._maxfreq = block->_freq;
  1009       } // End for all allocated inputs
  1010     } // end for all instructions
  1011   } // end for all blocks
  1013   // Final per-liverange setup
  1014   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
  1015     LRG &lrg = lrgs(i2);
  1016     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
  1017     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
  1018       lrg.clear_to_sets();
  1020     lrg.compute_set_mask_size();
  1021     if (lrg.not_free()) {      // Handle case where we lose from the start
  1022       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
  1023       lrg._direct_conflict = 1;
  1025     lrg.set_degree(0);          // no neighbors in IFG yet
  1029 // Set the was-lo-degree bit.  Conservative coalescing should not change the
  1030 // colorability of the graph.  If any live range was of low-degree before
  1031 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
  1032 // The bit is checked in Simplify.
  1033 void PhaseChaitin::set_was_low() {
  1034 #ifdef ASSERT
  1035   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1036     int size = lrgs(i).num_regs();
  1037     uint old_was_lo = lrgs(i)._was_lo;
  1038     lrgs(i)._was_lo = 0;
  1039     if( lrgs(i).lo_degree() ) {
  1040       lrgs(i)._was_lo = 1;      // Trivially of low degree
  1041     } else {                    // Else check the Brigg's assertion
  1042       // Brigg's observation is that the lo-degree neighbors of a
  1043       // hi-degree live range will not interfere with the color choices
  1044       // of said hi-degree live range.  The Simplify reverse-stack-coloring
  1045       // order takes care of the details.  Hence you do not have to count
  1046       // low-degree neighbors when determining if this guy colors.
  1047       int briggs_degree = 0;
  1048       IndexSet *s = _ifg->neighbors(i);
  1049       IndexSetIterator elements(s);
  1050       uint lidx;
  1051       while((lidx = elements.next()) != 0) {
  1052         if( !lrgs(lidx).lo_degree() )
  1053           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
  1055       if( briggs_degree < lrgs(i).degrees_of_freedom() )
  1056         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
  1058     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  1060 #endif
  1063 #define REGISTER_CONSTRAINED 16
  1065 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
  1066 void PhaseChaitin::cache_lrg_info( ) {
  1068   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1069     LRG &lrg = lrgs(i);
  1071     // Check for being of low degree: means we can be trivially colored.
  1072     // Low degree, dead or must-spill guys just get to simplify right away
  1073     if( lrg.lo_degree() ||
  1074        !lrg.alive() ||
  1075         lrg._must_spill ) {
  1076       // Split low degree list into those guys that must get a
  1077       // register and those that can go to register or stack.
  1078       // The idea is LRGs that can go register or stack color first when
  1079       // they have a good chance of getting a register.  The register-only
  1080       // lo-degree live ranges always get a register.
  1081       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
  1082       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
  1083         lrg._next = _lo_stk_degree;
  1084         _lo_stk_degree = i;
  1085       } else {
  1086         lrg._next = _lo_degree;
  1087         _lo_degree = i;
  1089     } else {                    // Else high degree
  1090       lrgs(_hi_degree)._prev = i;
  1091       lrg._next = _hi_degree;
  1092       lrg._prev = 0;
  1093       _hi_degree = i;
  1098 // Simplify the IFG by removing LRGs of low degree that have NO copies
  1099 void PhaseChaitin::Pre_Simplify( ) {
  1101   // Warm up the lo-degree no-copy list
  1102   int lo_no_copy = 0;
  1103   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1104     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
  1105         !lrgs(i).alive() ||
  1106         lrgs(i)._must_spill) {
  1107       lrgs(i)._next = lo_no_copy;
  1108       lo_no_copy = i;
  1112   while( lo_no_copy ) {
  1113     uint lo = lo_no_copy;
  1114     lo_no_copy = lrgs(lo)._next;
  1115     int size = lrgs(lo).num_regs();
  1117     // Put the simplified guy on the simplified list.
  1118     lrgs(lo)._next = _simplified;
  1119     _simplified = lo;
  1121     // Yank this guy from the IFG.
  1122     IndexSet *adj = _ifg->remove_node( lo );
  1124     // If any neighbors' degrees fall below their number of
  1125     // allowed registers, then put that neighbor on the low degree
  1126     // list.  Note that 'degree' can only fall and 'numregs' is
  1127     // unchanged by this action.  Thus the two are equal at most once,
  1128     // so LRGs hit the lo-degree worklists at most once.
  1129     IndexSetIterator elements(adj);
  1130     uint neighbor;
  1131     while ((neighbor = elements.next()) != 0) {
  1132       LRG *n = &lrgs(neighbor);
  1133       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1135       // Check for just becoming of-low-degree
  1136       if( n->just_lo_degree() && !n->_has_copy ) {
  1137         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1138         // Put on lo-degree list
  1139         n->_next = lo_no_copy;
  1140         lo_no_copy = neighbor;
  1143   } // End of while lo-degree no_copy worklist not empty
  1145   // No more lo-degree no-copy live ranges to simplify
  1148 // Simplify the IFG by removing LRGs of low degree.
  1149 void PhaseChaitin::Simplify( ) {
  1151   while( 1 ) {                  // Repeat till simplified it all
  1152     // May want to explore simplifying lo_degree before _lo_stk_degree.
  1153     // This might result in more spills coloring into registers during
  1154     // Select().
  1155     while( _lo_degree || _lo_stk_degree ) {
  1156       // If possible, pull from lo_stk first
  1157       uint lo;
  1158       if( _lo_degree ) {
  1159         lo = _lo_degree;
  1160         _lo_degree = lrgs(lo)._next;
  1161       } else {
  1162         lo = _lo_stk_degree;
  1163         _lo_stk_degree = lrgs(lo)._next;
  1166       // Put the simplified guy on the simplified list.
  1167       lrgs(lo)._next = _simplified;
  1168       _simplified = lo;
  1169       // If this guy is "at risk" then mark his current neighbors
  1170       if( lrgs(lo)._at_risk ) {
  1171         IndexSetIterator elements(_ifg->neighbors(lo));
  1172         uint datum;
  1173         while ((datum = elements.next()) != 0) {
  1174           lrgs(datum)._risk_bias = lo;
  1178       // Yank this guy from the IFG.
  1179       IndexSet *adj = _ifg->remove_node( lo );
  1181       // If any neighbors' degrees fall below their number of
  1182       // allowed registers, then put that neighbor on the low degree
  1183       // list.  Note that 'degree' can only fall and 'numregs' is
  1184       // unchanged by this action.  Thus the two are equal at most once,
  1185       // so LRGs hit the lo-degree worklist at most once.
  1186       IndexSetIterator elements(adj);
  1187       uint neighbor;
  1188       while ((neighbor = elements.next()) != 0) {
  1189         LRG *n = &lrgs(neighbor);
  1190 #ifdef ASSERT
  1191         if( VerifyOpto || VerifyRegisterAllocator ) {
  1192           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1194 #endif
  1196         // Check for just becoming of-low-degree just counting registers.
  1197         // _must_spill live ranges are already on the low degree list.
  1198         if( n->just_lo_degree() && !n->_must_spill ) {
  1199           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1200           // Pull from hi-degree list
  1201           uint prev = n->_prev;
  1202           uint next = n->_next;
  1203           if( prev ) lrgs(prev)._next = next;
  1204           else _hi_degree = next;
  1205           lrgs(next)._prev = prev;
  1206           n->_next = _lo_degree;
  1207           _lo_degree = neighbor;
  1210     } // End of while lo-degree/lo_stk_degree worklist not empty
  1212     // Check for got everything: is hi-degree list empty?
  1213     if( !_hi_degree ) break;
  1215     // Time to pick a potential spill guy
  1216     uint lo_score = _hi_degree;
  1217     double score = lrgs(lo_score).score();
  1218     double area = lrgs(lo_score)._area;
  1219     double cost = lrgs(lo_score)._cost;
  1220     bool bound = lrgs(lo_score)._is_bound;
  1222     // Find cheapest guy
  1223     debug_only( int lo_no_simplify=0; );
  1224     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1225       assert( !(*_ifg->_yanked)[i], "" );
  1226       // It's just vaguely possible to move hi-degree to lo-degree without
  1227       // going through a just-lo-degree stage: If you remove a double from
  1228       // a float live range it's degree will drop by 2 and you can skip the
  1229       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1230       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1231       if( lrgs(i).lo_degree() ) {
  1232         lo_score = i;
  1233         break;
  1235       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1236       double iscore = lrgs(i).score();
  1237       double iarea = lrgs(i)._area;
  1238       double icost = lrgs(i)._cost;
  1239       bool ibound = lrgs(i)._is_bound;
  1241       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1242       // wins.  Ties happen because all live ranges in question have spilled
  1243       // a few times before and the spill-score adds a huge number which
  1244       // washes out the low order bits.  We are choosing the lesser of 2
  1245       // evils; in this case pick largest area to spill.
  1246       // Ties also happen when live ranges are defined and used only inside
  1247       // one block. In which case their area is 0 and score set to max.
  1248       // In such case choose bound live range over unbound to free registers
  1249       // or with smaller cost to spill.
  1250       if( iscore < score ||
  1251           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1252           (iscore == score && iarea == area &&
  1253            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1254         lo_score = i;
  1255         score = iscore;
  1256         area = iarea;
  1257         cost = icost;
  1258         bound = ibound;
  1261     LRG *lo_lrg = &lrgs(lo_score);
  1262     // The live range we choose for spilling is either hi-degree, or very
  1263     // rarely it can be low-degree.  If we choose a hi-degree live range
  1264     // there better not be any lo-degree choices.
  1265     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1267     // Pull from hi-degree list
  1268     uint prev = lo_lrg->_prev;
  1269     uint next = lo_lrg->_next;
  1270     if( prev ) lrgs(prev)._next = next;
  1271     else _hi_degree = next;
  1272     lrgs(next)._prev = prev;
  1273     // Jam him on the lo-degree list, despite his high degree.
  1274     // Maybe he'll get a color, and maybe he'll spill.
  1275     // Only Select() will know.
  1276     lrgs(lo_score)._at_risk = true;
  1277     _lo_degree = lo_score;
  1278     lo_lrg->_next = 0;
  1280   } // End of while not simplified everything
  1284 // Is 'reg' register legal for 'lrg'?
  1285 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  1286   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
  1287       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
  1288     // RA uses OptoReg which represent the highest element of a registers set.
  1289     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
  1290     // in which XMMd is used by RA to represent such vectors. A double value
  1291     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
  1292     // The register mask uses largest bits set of overlapping register sets.
  1293     // On x86 with AVX it uses 8 bits for each XMM registers set.
  1294     //
  1295     // The 'lrg' already has cleared-to-set register mask (done in Select()
  1296     // before calling choose_color()). Passing mask.Member(reg) check above
  1297     // indicates that the size (num_regs) of 'reg' set is less or equal to
  1298     // 'lrg' set size.
  1299     // For set size 1 any register which is member of 'lrg' mask is legal.
  1300     if (lrg.num_regs()==1)
  1301       return true;
  1302     // For larger sets only an aligned register with the same set size is legal.
  1303     int mask = lrg.num_regs()-1;
  1304     if ((reg&mask) == mask)
  1305       return true;
  1307   return false;
  1310 // Choose a color using the biasing heuristic
  1311 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1313   // Check for "at_risk" LRG's
  1314   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
  1315   if( risk_lrg != 0 ) {
  1316     // Walk the colored neighbors of the "at_risk" candidate
  1317     // Choose a color which is both legal and already taken by a neighbor
  1318     // of the "at_risk" candidate in order to improve the chances of the
  1319     // "at_risk" candidate of coloring
  1320     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1321     uint datum;
  1322     while ((datum = elements.next()) != 0) {
  1323       OptoReg::Name reg = lrgs(datum).reg();
  1324       // If this LRG's register is legal for us, choose it
  1325       if (is_legal_reg(lrg, reg, chunk))
  1326         return reg;
  1330   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
  1331   if( copy_lrg != 0 ) {
  1332     // If he has a color,
  1333     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1334       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1335       //  And it is legal for you,
  1336       if (is_legal_reg(lrg, reg, chunk))
  1337         return reg;
  1338     } else if( chunk == 0 ) {
  1339       // Choose a color which is legal for him
  1340       RegMask tempmask = lrg.mask();
  1341       tempmask.AND(lrgs(copy_lrg).mask());
  1342       tempmask.clear_to_sets(lrg.num_regs());
  1343       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1344       if (OptoReg::is_valid(reg))
  1345         return reg;
  1349   // If no bias info exists, just go with the register selection ordering
  1350   if (lrg._is_vector || lrg.num_regs() == 2) {
  1351     // Find an aligned set
  1352     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1355   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1356   // copy removal to remove many more copies, by preventing a just-assigned
  1357   // register from being repeatedly assigned.
  1358   OptoReg::Name reg = lrg.mask().find_first_elem();
  1359   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1360     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1361     // SECOND element in the mask.
  1362     lrg.Remove(reg);
  1363     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1364     lrg.Insert(reg);
  1365     if( OptoReg::is_reg(reg2))
  1366       reg = reg2;
  1368   return OptoReg::add( reg, chunk );
  1371 // Choose a color in the current chunk
  1372 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1373   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1374   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1376   if( lrg.num_regs() == 1 ||    // Common Case
  1377       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1378     // Use a heuristic to "bias" the color choice
  1379     return bias_color(lrg, chunk);
  1381   assert(!lrg._is_vector, "should be not vector here" );
  1382   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1384   // Fat-proj case or misaligned double argument.
  1385   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1386          lrg.num_regs() == 2,"fat projs exactly color" );
  1387   assert( !chunk, "always color in 1st chunk" );
  1388   // Return the highest element in the set.
  1389   return lrg.mask().find_last_elem();
  1392 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1393 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1394 // everything going back is guaranteed a color.  Select that color.  If some
  1395 // hi-degree LRG cannot get a color then we record that we must spill.
  1396 uint PhaseChaitin::Select( ) {
  1397   uint spill_reg = LRG::SPILL_REG;
  1398   _max_reg = OptoReg::Name(0);  // Past max register used
  1399   while( _simplified ) {
  1400     // Pull next LRG from the simplified list - in reverse order of removal
  1401     uint lidx = _simplified;
  1402     LRG *lrg = &lrgs(lidx);
  1403     _simplified = lrg->_next;
  1406 #ifndef PRODUCT
  1407     if (trace_spilling()) {
  1408       ttyLocker ttyl;
  1409       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1410                     lrg->degrees_of_freedom());
  1411       lrg->dump();
  1413 #endif
  1415     // Re-insert into the IFG
  1416     _ifg->re_insert(lidx);
  1417     if( !lrg->alive() ) continue;
  1418     // capture allstackedness flag before mask is hacked
  1419     const int is_allstack = lrg->mask().is_AllStack();
  1421     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1422     // to avoid the GOTO, although the refactored code will not
  1423     // be much clearer.  We arrive here IFF we have a stack-based
  1424     // live range that cannot color in the current chunk, and it
  1425     // has to move into the next free stack chunk.
  1426     int chunk = 0;              // Current chunk is first chunk
  1427     retry_next_chunk:
  1429     // Remove neighbor colors
  1430     IndexSet *s = _ifg->neighbors(lidx);
  1432     debug_only(RegMask orig_mask = lrg->mask();)
  1433     IndexSetIterator elements(s);
  1434     uint neighbor;
  1435     while ((neighbor = elements.next()) != 0) {
  1436       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1437       // of its color will be a no-op, since the spill_reg chunk is in outer
  1438       // space.  Also, if neighbor is in a different chunk, this exclusion
  1439       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1440       // its chunk, a new chunk of color may be tried, in which case
  1441       // examination of neighbors is started again, at retry_next_chunk.)
  1442       LRG &nlrg = lrgs(neighbor);
  1443       OptoReg::Name nreg = nlrg.reg();
  1444       // Only subtract masks in the same chunk
  1445       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1446 #ifndef PRODUCT
  1447         uint size = lrg->mask().Size();
  1448         RegMask rm = lrg->mask();
  1449 #endif
  1450         lrg->SUBTRACT(nlrg.mask());
  1451 #ifndef PRODUCT
  1452         if (trace_spilling() && lrg->mask().Size() != size) {
  1453           ttyLocker ttyl;
  1454           tty->print("L%d ", lidx);
  1455           rm.dump();
  1456           tty->print(" intersected L%d ", neighbor);
  1457           nlrg.mask().dump();
  1458           tty->print(" removed ");
  1459           rm.SUBTRACT(lrg->mask());
  1460           rm.dump();
  1461           tty->print(" leaving ");
  1462           lrg->mask().dump();
  1463           tty->cr();
  1465 #endif
  1468     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1469     // Aligned pairs need aligned masks
  1470     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1471     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1472       lrg->clear_to_sets();
  1475     // Check if a color is available and if so pick the color
  1476     OptoReg::Name reg = choose_color( *lrg, chunk );
  1477 #ifdef SPARC
  1478     debug_only(lrg->compute_set_mask_size());
  1479     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1480 #endif
  1482     //---------------
  1483     // If we fail to color and the AllStack flag is set, trigger
  1484     // a chunk-rollover event
  1485     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1486       // Bump register mask up to next stack chunk
  1487       chunk += RegMask::CHUNK_SIZE;
  1488       lrg->Set_All();
  1490       goto retry_next_chunk;
  1493     //---------------
  1494     // Did we get a color?
  1495     else if( OptoReg::is_valid(reg)) {
  1496 #ifndef PRODUCT
  1497       RegMask avail_rm = lrg->mask();
  1498 #endif
  1500       // Record selected register
  1501       lrg->set_reg(reg);
  1503       if( reg >= _max_reg )     // Compute max register limit
  1504         _max_reg = OptoReg::add(reg,1);
  1505       // Fold reg back into normal space
  1506       reg = OptoReg::add(reg,-chunk);
  1508       // If the live range is not bound, then we actually had some choices
  1509       // to make.  In this case, the mask has more bits in it than the colors
  1510       // chosen.  Restrict the mask to just what was picked.
  1511       int n_regs = lrg->num_regs();
  1512       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1513       if (n_regs == 1 || !lrg->_fat_proj) {
  1514         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1515         lrg->Clear();           // Clear the mask
  1516         lrg->Insert(reg);       // Set regmask to match selected reg
  1517         // For vectors and pairs, also insert the low bit of the pair
  1518         for (int i = 1; i < n_regs; i++)
  1519           lrg->Insert(OptoReg::add(reg,-i));
  1520         lrg->set_mask_size(n_regs);
  1521       } else {                  // Else fatproj
  1522         // mask must be equal to fatproj bits, by definition
  1524 #ifndef PRODUCT
  1525       if (trace_spilling()) {
  1526         ttyLocker ttyl;
  1527         tty->print("L%d selected ", lidx);
  1528         lrg->mask().dump();
  1529         tty->print(" from ");
  1530         avail_rm.dump();
  1531         tty->cr();
  1533 #endif
  1534       // Note that reg is the highest-numbered register in the newly-bound mask.
  1535     } // end color available case
  1537     //---------------
  1538     // Live range is live and no colors available
  1539     else {
  1540       assert( lrg->alive(), "" );
  1541       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1542               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1543       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1545       // Assign the special spillreg register
  1546       lrg->set_reg(OptoReg::Name(spill_reg++));
  1547       // Do not empty the regmask; leave mask_size lying around
  1548       // for use during Spilling
  1549 #ifndef PRODUCT
  1550       if( trace_spilling() ) {
  1551         ttyLocker ttyl;
  1552         tty->print("L%d spilling with neighbors: ", lidx);
  1553         s->dump();
  1554         debug_only(tty->print(" original mask: "));
  1555         debug_only(orig_mask.dump());
  1556         dump_lrg(lidx);
  1558 #endif
  1559     } // end spill case
  1563   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1566 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1567 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1568   if( _spilled_once.test(src->_idx) ) {
  1569     _spilled_once.set(dst->_idx);
  1570     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
  1571     if( _spilled_twice.test(src->_idx) ) {
  1572       _spilled_twice.set(dst->_idx);
  1573       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
  1578 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1579 void PhaseChaitin::set_was_spilled( Node *n ) {
  1580   if( _spilled_once.test_set(n->_idx) )
  1581     _spilled_twice.set(n->_idx);
  1584 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1585 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1586 void PhaseChaitin::fixup_spills() {
  1587   // This function does only cisc spill work.
  1588   if( !UseCISCSpill ) return;
  1590   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1592   // Grab the Frame Pointer
  1593   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
  1595   // For all blocks
  1596   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1597     Block* block = _cfg.get_block(i);
  1599     // For all instructions in block
  1600     uint last_inst = block->end_idx();
  1601     for (uint j = 1; j <= last_inst; j++) {
  1602       Node* n = block->_nodes[j];
  1604       // Dead instruction???
  1605       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1606               C->top() == n ||  // Or the random TOP node
  1607               n->is_Proj(),     // Or a fat-proj kill node
  1608               "No dead instructions after post-alloc" );
  1610       int inp = n->cisc_operand();
  1611       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1612         // Convert operand number to edge index number
  1613         MachNode *mach = n->as_Mach();
  1614         inp = mach->operand_index(inp);
  1615         Node *src = n->in(inp);   // Value to load or store
  1616         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
  1617         OptoReg::Name src_reg = lrg_cisc.reg();
  1618         // Doubles record the HIGH register of an adjacent pair.
  1619         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1620         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1621           // This is a CISC Spill, get stack offset and construct new node
  1622 #ifndef PRODUCT
  1623           if( TraceCISCSpill ) {
  1624             tty->print("    reg-instr:  ");
  1625             n->dump();
  1627 #endif
  1628           int stk_offset = reg2offset(src_reg);
  1629           // Bailout if we might exceed node limit when spilling this instruction
  1630           C->check_node_count(0, "out of nodes fixing spills");
  1631           if (C->failing())  return;
  1632           // Transform node
  1633           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1634           cisc->set_req(inp,fp);          // Base register is frame pointer
  1635           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1636             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1637             cisc->ins_req(1,src);         // Requires a memory edge
  1639           block->_nodes.map(j,cisc);          // Insert into basic block
  1640           n->subsume_by(cisc, C); // Correct graph
  1641           //
  1642           ++_used_cisc_instructions;
  1643 #ifndef PRODUCT
  1644           if( TraceCISCSpill ) {
  1645             tty->print("    cisc-instr: ");
  1646             cisc->dump();
  1648 #endif
  1649         } else {
  1650 #ifndef PRODUCT
  1651           if( TraceCISCSpill ) {
  1652             tty->print("    using reg-instr: ");
  1653             n->dump();
  1655 #endif
  1656           ++_unused_cisc_instructions;    // input can be on stack
  1660     } // End of for all instructions
  1662   } // End of for all blocks
  1665 // Helper to stretch above; recursively discover the base Node for a
  1666 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1667 // to be recursive for derived Phis.
  1668 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1669   // See if already computed; if so return it
  1670   if( derived_base_map[derived->_idx] )
  1671     return derived_base_map[derived->_idx];
  1673   // See if this happens to be a base.
  1674   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1675   // pointers derived from NULL!  These are always along paths that
  1676   // can't happen at run-time but the optimizer cannot deduce it so
  1677   // we have to handle it gracefully.
  1678   assert(!derived->bottom_type()->isa_narrowoop() ||
  1679           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1680   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1681   // If its an OOP with a non-zero offset, then it is derived.
  1682   if( tj == NULL || tj->_offset == 0 ) {
  1683     derived_base_map[derived->_idx] = derived;
  1684     return derived;
  1686   // Derived is NULL+offset?  Base is NULL!
  1687   if( derived->is_Con() ) {
  1688     Node *base = _matcher.mach_null();
  1689     assert(base != NULL, "sanity");
  1690     if (base->in(0) == NULL) {
  1691       // Initialize it once and make it shared:
  1692       // set control to _root and place it into Start block
  1693       // (where top() node is placed).
  1694       base->init_req(0, _cfg.get_root_node());
  1695       Block *startb = _cfg.get_block_for_node(C->top());
  1696       startb->_nodes.insert(startb->find_node(C->top()), base );
  1697       _cfg.map_node_to_block(base, startb);
  1698       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
  1700     if (_lrg_map.live_range_id(base) == 0) {
  1701       new_lrg(base, maxlrg++);
  1703     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
  1704     derived_base_map[derived->_idx] = base;
  1705     return base;
  1708   // Check for AddP-related opcodes
  1709   if (!derived->is_Phi()) {
  1710     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
  1711     Node *base = derived->in(AddPNode::Base);
  1712     derived_base_map[derived->_idx] = base;
  1713     return base;
  1716   // Recursively find bases for Phis.
  1717   // First check to see if we can avoid a base Phi here.
  1718   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1719   uint i;
  1720   for( i = 2; i < derived->req(); i++ )
  1721     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1722       break;
  1723   // Went to the end without finding any different bases?
  1724   if( i == derived->req() ) {   // No need for a base Phi here
  1725     derived_base_map[derived->_idx] = base;
  1726     return base;
  1729   // Now we see we need a base-Phi here to merge the bases
  1730   const Type *t = base->bottom_type();
  1731   base = new (C) PhiNode( derived->in(0), t );
  1732   for( i = 1; i < derived->req(); i++ ) {
  1733     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1734     t = t->meet(base->in(i)->bottom_type());
  1736   base->as_Phi()->set_type(t);
  1738   // Search the current block for an existing base-Phi
  1739   Block *b = _cfg.get_block_for_node(derived);
  1740   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1741     Node *phi = b->_nodes[i];
  1742     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1743       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1744       _cfg.map_node_to_block(base, b);
  1745       new_lrg(base,maxlrg++);
  1746       break;
  1748     // See if Phi matches.
  1749     uint j;
  1750     for( j = 1; j < base->req(); j++ )
  1751       if( phi->in(j) != base->in(j) &&
  1752           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1753         break;
  1754     if( j == base->req() ) {    // All inputs match?
  1755       base = phi;               // Then use existing 'phi' and drop 'base'
  1756       break;
  1761   // Cache info for later passes
  1762   derived_base_map[derived->_idx] = base;
  1763   return base;
  1766 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1767 // base pointer that is live across the Safepoint for oopmap building.  The
  1768 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1769 // required edge set.
  1770 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
  1771   int must_recompute_live = false;
  1772   uint maxlrg = _lrg_map.max_lrg_id();
  1773   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1774   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1776   // For all blocks in RPO do...
  1777   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1778     Block* block = _cfg.get_block(i);
  1779     // Note use of deep-copy constructor.  I cannot hammer the original
  1780     // liveout bits, because they are needed by the following coalesce pass.
  1781     IndexSet liveout(_live->live(block));
  1783     for (uint j = block->end_idx() + 1; j > 1; j--) {
  1784       Node* n = block->_nodes[j - 1];
  1786       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1787       // like to see in the same register.  Compare uses the loop-phi and so
  1788       // extends its live range BUT cannot be part of the cycle.  If this
  1789       // extended live range overlaps with the update of the loop-phi value
  1790       // we need both alive at the same time -- which requires at least 1
  1791       // copy.  But because Intel has only 2-address registers we end up with
  1792       // at least 2 copies, one before the loop-phi update instruction and
  1793       // one after.  Instead we split the input to the compare just after the
  1794       // phi.
  1795       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1796         Node *phi = n->in(1);
  1797         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1798           Block *phi_block = _cfg.get_block_for_node(phi);
  1799           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
  1800             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1801             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1802             insert_proj( phi_block, 1, spill, maxlrg++ );
  1803             n->set_req(1,spill);
  1804             must_recompute_live = true;
  1809       // Get value being defined
  1810       uint lidx = _lrg_map.live_range_id(n);
  1811       // Ignore the occasional brand-new live range
  1812       if (lidx && lidx < _lrg_map.max_lrg_id()) {
  1813         // Remove from live-out set
  1814         liveout.remove(lidx);
  1816         // Copies do not define a new value and so do not interfere.
  1817         // Remove the copies source from the liveout set before interfering.
  1818         uint idx = n->is_Copy();
  1819         if (idx) {
  1820           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
  1824       // Found a safepoint?
  1825       JVMState *jvms = n->jvms();
  1826       if( jvms ) {
  1827         // Now scan for a live derived pointer
  1828         IndexSetIterator elements(&liveout);
  1829         uint neighbor;
  1830         while ((neighbor = elements.next()) != 0) {
  1831           // Find reaching DEF for base and derived values
  1832           // This works because we are still in SSA during this call.
  1833           Node *derived = lrgs(neighbor)._def;
  1834           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1835           assert(!derived->bottom_type()->isa_narrowoop() ||
  1836                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1837           // If its an OOP with a non-zero offset, then it is derived.
  1838           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1839             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
  1840             assert(base->_idx < _lrg_map.size(), "");
  1841             // Add reaching DEFs of derived pointer and base pointer as a
  1842             // pair of inputs
  1843             n->add_req(derived);
  1844             n->add_req(base);
  1846             // See if the base pointer is already live to this point.
  1847             // Since I'm working on the SSA form, live-ness amounts to
  1848             // reaching def's.  So if I find the base's live range then
  1849             // I know the base's def reaches here.
  1850             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
  1851                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
  1852                  (_lrg_map.live_range_id(base) > 0) && // not a constant
  1853                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
  1854               // Base pointer is not currently live.  Since I stretched
  1855               // the base pointer to here and it crosses basic-block
  1856               // boundaries, the global live info is now incorrect.
  1857               // Recompute live.
  1858               must_recompute_live = true;
  1859             } // End of if base pointer is not live to debug info
  1861         } // End of scan all live data for derived ptrs crossing GC point
  1862       } // End of if found a GC point
  1864       // Make all inputs live
  1865       if (!n->is_Phi()) {      // Phi function uses come from prior block
  1866         for (uint k = 1; k < n->req(); k++) {
  1867           uint lidx = _lrg_map.live_range_id(n->in(k));
  1868           if (lidx < _lrg_map.max_lrg_id()) {
  1869             liveout.insert(lidx);
  1874     } // End of forall instructions in block
  1875     liveout.clear();  // Free the memory used by liveout.
  1877   } // End of forall blocks
  1878   _lrg_map.set_max_lrg_id(maxlrg);
  1880   // If I created a new live range I need to recompute live
  1881   if (maxlrg != _ifg->_maxlrg) {
  1882     must_recompute_live = true;
  1885   return must_recompute_live != 0;
  1888 // Extend the node to LRG mapping
  1890 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
  1891   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
  1894 #ifndef PRODUCT
  1895 void PhaseChaitin::dump(const Node *n) const {
  1896   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
  1897   tty->print("L%d",r);
  1898   if (r && n->Opcode() != Op_Phi) {
  1899     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1900       tty->print("[");
  1901       OptoReg::Name second = get_reg_second(n);
  1902       if( OptoReg::is_valid(second) ) {
  1903         if( OptoReg::is_reg(second) )
  1904           tty->print("%s:",Matcher::regName[second]);
  1905         else
  1906           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1908       OptoReg::Name first = get_reg_first(n);
  1909       if( OptoReg::is_reg(first) )
  1910         tty->print("%s]",Matcher::regName[first]);
  1911       else
  1912          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1913     } else
  1914     n->out_RegMask().dump();
  1916   tty->print("/N%d\t",n->_idx);
  1917   tty->print("%s === ", n->Name());
  1918   uint k;
  1919   for (k = 0; k < n->req(); k++) {
  1920     Node *m = n->in(k);
  1921     if (!m) {
  1922       tty->print("_ ");
  1924     else {
  1925       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1926       tty->print("L%d",r);
  1927       // Data MultiNode's can have projections with no real registers.
  1928       // Don't die while dumping them.
  1929       int op = n->Opcode();
  1930       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1931         if( _node_regs ) {
  1932           tty->print("[");
  1933           OptoReg::Name second = get_reg_second(n->in(k));
  1934           if( OptoReg::is_valid(second) ) {
  1935             if( OptoReg::is_reg(second) )
  1936               tty->print("%s:",Matcher::regName[second]);
  1937             else
  1938               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1939                          reg2offset_unchecked(second));
  1941           OptoReg::Name first = get_reg_first(n->in(k));
  1942           if( OptoReg::is_reg(first) )
  1943             tty->print("%s]",Matcher::regName[first]);
  1944           else
  1945             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1946                        reg2offset_unchecked(first));
  1947         } else
  1948           n->in_RegMask(k).dump();
  1950       tty->print("/N%d ",m->_idx);
  1953   if( k < n->len() && n->in(k) ) tty->print("| ");
  1954   for( ; k < n->len(); k++ ) {
  1955     Node *m = n->in(k);
  1956     if(!m) {
  1957       break;
  1959     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1960     tty->print("L%d",r);
  1961     tty->print("/N%d ",m->_idx);
  1963   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1964   else n->dump_spec(tty);
  1965   if( _spilled_once.test(n->_idx ) ) {
  1966     tty->print(" Spill_1");
  1967     if( _spilled_twice.test(n->_idx ) )
  1968       tty->print(" Spill_2");
  1970   tty->print("\n");
  1973 void PhaseChaitin::dump(const Block *b) const {
  1974   b->dump_head(&_cfg);
  1976   // For all instructions
  1977   for( uint j = 0; j < b->_nodes.size(); j++ )
  1978     dump(b->_nodes[j]);
  1979   // Print live-out info at end of block
  1980   if( _live ) {
  1981     tty->print("Liveout: ");
  1982     IndexSet *live = _live->live(b);
  1983     IndexSetIterator elements(live);
  1984     tty->print("{");
  1985     uint i;
  1986     while ((i = elements.next()) != 0) {
  1987       tty->print("L%d ", _lrg_map.find_const(i));
  1989     tty->print_cr("}");
  1991   tty->print("\n");
  1994 void PhaseChaitin::dump() const {
  1995   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1996               _matcher._new_SP, _framesize );
  1998   // For all blocks
  1999   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2000     dump(_cfg.get_block(i));
  2002   // End of per-block dump
  2003   tty->print("\n");
  2005   if (!_ifg) {
  2006     tty->print("(No IFG.)\n");
  2007     return;
  2010   // Dump LRG array
  2011   tty->print("--- Live RanGe Array ---\n");
  2012   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
  2013     tty->print("L%d: ",i2);
  2014     if (i2 < _ifg->_maxlrg) {
  2015       lrgs(i2).dump();
  2017     else {
  2018       tty->print_cr("new LRG");
  2021   tty->print_cr("");
  2023   // Dump lo-degree list
  2024   tty->print("Lo degree: ");
  2025   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  2026     tty->print("L%d ",i3);
  2027   tty->print_cr("");
  2029   // Dump lo-stk-degree list
  2030   tty->print("Lo stk degree: ");
  2031   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  2032     tty->print("L%d ",i4);
  2033   tty->print_cr("");
  2035   // Dump lo-degree list
  2036   tty->print("Hi degree: ");
  2037   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  2038     tty->print("L%d ",i5);
  2039   tty->print_cr("");
  2042 void PhaseChaitin::dump_degree_lists() const {
  2043   // Dump lo-degree list
  2044   tty->print("Lo degree: ");
  2045   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  2046     tty->print("L%d ",i);
  2047   tty->print_cr("");
  2049   // Dump lo-stk-degree list
  2050   tty->print("Lo stk degree: ");
  2051   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  2052     tty->print("L%d ",i2);
  2053   tty->print_cr("");
  2055   // Dump lo-degree list
  2056   tty->print("Hi degree: ");
  2057   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  2058     tty->print("L%d ",i3);
  2059   tty->print_cr("");
  2062 void PhaseChaitin::dump_simplified() const {
  2063   tty->print("Simplified: ");
  2064   for( uint i = _simplified; i; i = lrgs(i)._next )
  2065     tty->print("L%d ",i);
  2066   tty->print_cr("");
  2069 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  2070   if ((int)reg < 0)
  2071     sprintf(buf, "<OptoReg::%d>", (int)reg);
  2072   else if (OptoReg::is_reg(reg))
  2073     strcpy(buf, Matcher::regName[reg]);
  2074   else
  2075     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  2076             pc->reg2offset(reg));
  2077   return buf+strlen(buf);
  2080 // Dump a register name into a buffer.  Be intelligent if we get called
  2081 // before allocation is complete.
  2082 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  2083   if( !this ) {                 // Not got anything?
  2084     sprintf(buf,"N%d",n->_idx); // Then use Node index
  2085   } else if( _node_regs ) {
  2086     // Post allocation, use direct mappings, no LRG info available
  2087     print_reg( get_reg_first(n), this, buf );
  2088   } else {
  2089     uint lidx = _lrg_map.find_const(n); // Grab LRG number
  2090     if( !_ifg ) {
  2091       sprintf(buf,"L%d",lidx);  // No register binding yet
  2092     } else if( !lidx ) {        // Special, not allocated value
  2093       strcpy(buf,"Special");
  2094     } else {
  2095       if (lrgs(lidx)._is_vector) {
  2096         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  2097           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  2098         else
  2099           sprintf(buf,"L%d",lidx); // No register binding yet
  2100       } else if( (lrgs(lidx).num_regs() == 1)
  2101                  ? lrgs(lidx).mask().is_bound1()
  2102                  : lrgs(lidx).mask().is_bound_pair() ) {
  2103         // Hah!  We have a bound machine register
  2104         print_reg( lrgs(lidx).reg(), this, buf );
  2105       } else {
  2106         sprintf(buf,"L%d",lidx); // No register binding yet
  2110   return buf+strlen(buf);
  2113 void PhaseChaitin::dump_for_spill_split_recycle() const {
  2114   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  2115     // Display which live ranges need to be split and the allocator's state
  2116     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  2117     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
  2118       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  2119         tty->print("L%d: ", bidx);
  2120         lrgs(bidx).dump();
  2123     tty->cr();
  2124     dump();
  2128 void PhaseChaitin::dump_frame() const {
  2129   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  2130   const TypeTuple *domain = C->tf()->domain();
  2131   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  2133   // Incoming arguments in registers dump
  2134   for( int k = 0; k < argcnt; k++ ) {
  2135     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  2136     if( OptoReg::is_reg(parmreg))  {
  2137       const char *reg_name = OptoReg::regname(parmreg);
  2138       tty->print("#r%3.3d %s", parmreg, reg_name);
  2139       parmreg = _matcher._parm_regs[k].second();
  2140       if( OptoReg::is_reg(parmreg))  {
  2141         tty->print(":%s", OptoReg::regname(parmreg));
  2143       tty->print("   : parm %d: ", k);
  2144       domain->field_at(k + TypeFunc::Parms)->dump();
  2145       tty->print_cr("");
  2149   // Check for un-owned padding above incoming args
  2150   OptoReg::Name reg = _matcher._new_SP;
  2151   if( reg > _matcher._in_arg_limit ) {
  2152     reg = OptoReg::add(reg, -1);
  2153     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  2156   // Incoming argument area dump
  2157   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  2158   while( reg > begin_in_arg ) {
  2159     reg = OptoReg::add(reg, -1);
  2160     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2161     int j;
  2162     for( j = 0; j < argcnt; j++) {
  2163       if( _matcher._parm_regs[j].first() == reg ||
  2164           _matcher._parm_regs[j].second() == reg ) {
  2165         tty->print("parm %d: ",j);
  2166         domain->field_at(j + TypeFunc::Parms)->dump();
  2167         tty->print_cr("");
  2168         break;
  2171     if( j >= argcnt )
  2172       tty->print_cr("HOLE, owned by SELF");
  2175   // Old outgoing preserve area
  2176   while( reg > _matcher._old_SP ) {
  2177     reg = OptoReg::add(reg, -1);
  2178     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2181   // Old SP
  2182   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2183     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2185   // Preserve area dump
  2186   int fixed_slots = C->fixed_slots();
  2187   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2188   OptoReg::Name return_addr = _matcher.return_addr();
  2190   reg = OptoReg::add(reg, -1);
  2191   while (OptoReg::is_stack(reg)) {
  2192     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2193     if (return_addr == reg) {
  2194       tty->print_cr("return address");
  2195     } else if (reg >= begin_in_preserve) {
  2196       // Preserved slots are present on x86
  2197       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2198         tty->print_cr("saved fp register");
  2199       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2200                VerifyStackAtCalls)
  2201         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2202       else
  2203         tty->print_cr("in_preserve");
  2204     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2205       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2206     } else {
  2207       tty->print_cr("pad2, stack alignment");
  2209     reg = OptoReg::add(reg, -1);
  2212   // Spill area dump
  2213   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2214   while( reg > _matcher._out_arg_limit ) {
  2215     reg = OptoReg::add(reg, -1);
  2216     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2219   // Outgoing argument area dump
  2220   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2221     reg = OptoReg::add(reg, -1);
  2222     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2225   // Outgoing new preserve area
  2226   while( reg > _matcher._new_SP ) {
  2227     reg = OptoReg::add(reg, -1);
  2228     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2230   tty->print_cr("#");
  2233 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2234   tty->print_cr("---dump of B%d---",pre_order);
  2235   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2236     Block* block = _cfg.get_block(i);
  2237     if (block->_pre_order == pre_order) {
  2238       dump(block);
  2243 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2244   tty->print_cr("---dump of L%d---",lidx);
  2246   if (_ifg) {
  2247     if (lidx >= _lrg_map.max_lrg_id()) {
  2248       tty->print("Attempt to print live range index beyond max live range.\n");
  2249       return;
  2251     tty->print("L%d: ",lidx);
  2252     if (lidx < _ifg->_maxlrg) {
  2253       lrgs(lidx).dump();
  2254     } else {
  2255       tty->print_cr("new LRG");
  2258   if( _ifg && lidx < _ifg->_maxlrg) {
  2259     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2260     _ifg->neighbors(lidx)->dump();
  2261     tty->cr();
  2263   // For all blocks
  2264   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2265     Block* block = _cfg.get_block(i);
  2266     int dump_once = 0;
  2268     // For all instructions
  2269     for( uint j = 0; j < block->_nodes.size(); j++ ) {
  2270       Node *n = block->_nodes[j];
  2271       if (_lrg_map.find_const(n) == lidx) {
  2272         if (!dump_once++) {
  2273           tty->cr();
  2274           block->dump_head(&_cfg);
  2276         dump(n);
  2277         continue;
  2279       if (!defs_only) {
  2280         uint cnt = n->req();
  2281         for( uint k = 1; k < cnt; k++ ) {
  2282           Node *m = n->in(k);
  2283           if (!m)  {
  2284             continue;  // be robust in the dumper
  2286           if (_lrg_map.find_const(m) == lidx) {
  2287             if (!dump_once++) {
  2288               tty->cr();
  2289               block->dump_head(&_cfg);
  2291             dump(n);
  2296   } // End of per-block dump
  2297   tty->cr();
  2299 #endif // not PRODUCT
  2301 int PhaseChaitin::_final_loads  = 0;
  2302 int PhaseChaitin::_final_stores = 0;
  2303 int PhaseChaitin::_final_memoves= 0;
  2304 int PhaseChaitin::_final_copies = 0;
  2305 double PhaseChaitin::_final_load_cost  = 0;
  2306 double PhaseChaitin::_final_store_cost = 0;
  2307 double PhaseChaitin::_final_memove_cost= 0;
  2308 double PhaseChaitin::_final_copy_cost  = 0;
  2309 int PhaseChaitin::_conserv_coalesce = 0;
  2310 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2311 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2312 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2313 int PhaseChaitin::_post_alloc = 0;
  2314 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2315 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2316 int PhaseChaitin::_used_cisc_instructions   = 0;
  2317 int PhaseChaitin::_unused_cisc_instructions = 0;
  2318 int PhaseChaitin::_allocator_attempts       = 0;
  2319 int PhaseChaitin::_allocator_successes      = 0;
  2321 #ifndef PRODUCT
  2322 uint PhaseChaitin::_high_pressure           = 0;
  2323 uint PhaseChaitin::_low_pressure            = 0;
  2325 void PhaseChaitin::print_chaitin_statistics() {
  2326   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2327   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2328   tty->print_cr("Adjusted spill cost = %7.0f.",
  2329                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2330                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2331   tty->print("Conservatively coalesced %d copies, %d pairs",
  2332                 _conserv_coalesce, _conserv_coalesce_pair);
  2333   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2334     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2335   tty->print_cr(", %d post alloc.", _post_alloc);
  2336   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2337     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2338                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2339   if( _used_cisc_instructions || _unused_cisc_instructions )
  2340     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2341                    _used_cisc_instructions, _unused_cisc_instructions);
  2342   if( _allocator_successes != 0 )
  2343     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2344   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2346 #endif // not PRODUCT

mercurial