src/share/vm/adlc/output_c.cpp

Fri, 20 Dec 2013 13:51:14 +0100

author
goetz
date
Fri, 20 Dec 2013 13:51:14 +0100
changeset 6499
ad3b94907eed
parent 6494
492e67693373
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8030863: PPC64: (part 220): ConstantTableBase for calls between args and jvms
Summary: Add ConstantTableBase node edge after parameters and before jvms. Adapt jvms offsets.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
    70     }
    72     // Finish defining enumeration
    73     fprintf(fp,"};\n");
    75     fprintf(fp,"\n");
    76     fprintf(fp,"// An array of character pointers to machine register names.\n");
    77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    78     reg_def = NULL;
    79     next = NULL;
    80     registers->reset_RegDefs();
    81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    82       next = registers->iter_RegDefs();
    83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    85     }
    86     // Finish defining array
    87     fprintf(fp,"\t};\n");
    88     fprintf(fp,"\n");
    90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    92   }
    93 }
    95 // Define an array containing the machine register encoding values
    96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    97   if (registers) {
    98     fprintf(fp,"\n");
    99     fprintf(fp,"// An array of the machine register encode values\n");
   100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   102     // Output the register encoding for each register in the allocation classes
   103     RegDef *reg_def = NULL;
   104     RegDef *next    = NULL;
   105     registers->reset_RegDefs();
   106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
   107       next = registers->iter_RegDefs();
   108       const char* register_encode = reg_def->register_encode();
   109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   110       int encval;
   111       if (!ADLParser::is_int_token(register_encode, encval)) {
   112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
   113       } else {
   114         // Output known constants in hex char format (backward compatibility).
   115         assert(encval < 256, "Exceeded supported width for register encoding");
   116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
   117       }
   118     }
   119     // Finish defining enumeration
   120     fprintf(fp,"};\n");
   122   } // Done defining array
   123 }
   125 // Output an enumeration of register class names
   126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   127   if (registers) {
   128     // Output an enumeration of register class names
   129     fprintf(fp,"\n");
   130     fprintf(fp,"// Enumeration of register class names\n");
   131     fprintf(fp, "enum machRegisterClass {\n");
   132     registers->_rclasses.reset();
   133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
   134       const char * class_name_to_upper = toUpper(class_name);
   135       fprintf(fp,"  %s,\n", class_name_to_upper);
   136       delete[] class_name_to_upper;
   137     }
   138     // Finish defining enumeration
   139     fprintf(fp, "  _last_Mach_Reg_Class\n");
   140     fprintf(fp, "};\n");
   141   }
   142 }
   144 // Declare an enumeration of user-defined register classes
   145 // and a list of register masks, one for each class.
   146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   147   const char  *rc_name;
   149   if (_register) {
   150     // Build enumeration of user-defined register classes.
   151     defineRegClassEnum(fp_hpp, _register);
   153     // Generate a list of register masks, one for each class.
   154     fprintf(fp_hpp,"\n");
   155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   156     _register->_rclasses.reset();
   157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   158       const char *prefix = "";
   159       RegClass *reg_class = _register->getRegClass(rc_name);
   160       assert(reg_class, "Using an undefined register class");
   162       const char* rc_name_to_upper = toUpper(rc_name);
   164       if (reg_class->_user_defined == NULL) {
   165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
   166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   167       } else {
   168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
   169       }
   171       if (reg_class->_stack_or_reg) {
   172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
   173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
   174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   175       }
   176       delete[] rc_name_to_upper;
   178     }
   179   }
   180 }
   182 // Generate an enumeration of user-defined register classes
   183 // and a list of register masks, one for each class.
   184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   185   const char  *rc_name;
   187   if (_register) {
   188     // Generate a list of register masks, one for each class.
   189     fprintf(fp_cpp,"\n");
   190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   191     _register->_rclasses.reset();
   192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   193       const char *prefix = "";
   194       RegClass *reg_class = _register->getRegClass(rc_name);
   195       assert(reg_class, "Using an undefined register class");
   197       if (reg_class->_user_defined != NULL) {
   198         continue;
   199       }
   201       int len = RegisterForm::RegMask_Size();
   202       const char* rc_name_to_upper = toUpper(rc_name);
   203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
   205       {
   206         int i;
   207         for(i = 0; i < len - 1; i++) {
   208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
   209         }
   210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
   211       }
   213       if (reg_class->_stack_or_reg) {
   214         int i;
   215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
   216         for(i = 0; i < len - 1; i++) {
   217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
   218         }
   219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
   220       }
   221       delete[] rc_name_to_upper;
   222     }
   223   }
   224 }
   226 // Compute an index for an array in the pipeline_reads_NNN arrays
   227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   228 {
   229   int templen = 1;
   230   int paramcount = 0;
   231   const char *paramname;
   233   if (pipeclass->_parameters.count() == 0)
   234     return -1;
   236   pipeclass->_parameters.reset();
   237   paramname = pipeclass->_parameters.iter();
   238   const PipeClassOperandForm *pipeopnd =
   239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   241     pipeclass->_parameters.reset();
   243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   244     const PipeClassOperandForm *tmppipeopnd =
   245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   247     if (tmppipeopnd)
   248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   249     else
   250       templen += 19;
   252     paramcount++;
   253   }
   255   // See if the count is zero
   256   if (paramcount == 0) {
   257     return -1;
   258   }
   260   char *operand_stages = new char [templen];
   261   operand_stages[0] = 0;
   262   int i = 0;
   263   templen = 0;
   265   pipeclass->_parameters.reset();
   266   paramname = pipeclass->_parameters.iter();
   267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   269     pipeclass->_parameters.reset();
   271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   272     const PipeClassOperandForm *tmppipeopnd =
   273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   276       (++i < paramcount ? ',' : ' ') );
   277   }
   279   // See if the same string is in the table
   280   int ndx = pipeline_reads.index(operand_stages);
   282   // No, add it to the table
   283   if (ndx < 0) {
   284     pipeline_reads.addName(operand_stages);
   285     ndx = pipeline_reads.index(operand_stages);
   287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   288       ndx+1, paramcount, operand_stages);
   289   }
   290   else
   291     delete [] operand_stages;
   293   return (ndx);
   294 }
   296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   297 static int pipeline_res_stages_initializer(
   298   FILE *fp_cpp,
   299   PipelineForm *pipeline,
   300   NameList &pipeline_res_stages,
   301   PipeClassForm *pipeclass)
   302 {
   303   const PipeClassResourceForm *piperesource;
   304   int * res_stages = new int [pipeline->_rescount];
   305   int i;
   307   for (i = 0; i < pipeline->_rescount; i++)
   308      res_stages[i] = 0;
   310   for (pipeclass->_resUsage.reset();
   311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   313     for (i = 0; i < pipeline->_rescount; i++)
   314       if ((1 << i) & used_mask) {
   315         int stage = pipeline->_stages.index(piperesource->_stage);
   316         if (res_stages[i] < stage+1)
   317           res_stages[i] = stage+1;
   318       }
   319   }
   321   // Compute the length needed for the resource list
   322   int commentlen = 0;
   323   int max_stage = 0;
   324   for (i = 0; i < pipeline->_rescount; i++) {
   325     if (res_stages[i] == 0) {
   326       if (max_stage < 9)
   327         max_stage = 9;
   328     }
   329     else {
   330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   331       if (max_stage < stagelen)
   332         max_stage = stagelen;
   333     }
   335     commentlen += (int)strlen(pipeline->_reslist.name(i));
   336   }
   338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   340   // Allocate space for the resource list
   341   char * resource_stages = new char [templen];
   343   templen = 0;
   344   for (i = 0; i < pipeline->_rescount; i++) {
   345     const char * const resname =
   346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   349       resname, max_stage - (int)strlen(resname) + 1,
   350       (i < pipeline->_rescount-1) ? "," : "",
   351       pipeline->_reslist.name(i));
   352   }
   354   // See if the same string is in the table
   355   int ndx = pipeline_res_stages.index(resource_stages);
   357   // No, add it to the table
   358   if (ndx < 0) {
   359     pipeline_res_stages.addName(resource_stages);
   360     ndx = pipeline_res_stages.index(resource_stages);
   362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   363       ndx+1, pipeline->_rescount, resource_stages);
   364   }
   365   else
   366     delete [] resource_stages;
   368   delete [] res_stages;
   370   return (ndx);
   371 }
   373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   374 static int pipeline_res_cycles_initializer(
   375   FILE *fp_cpp,
   376   PipelineForm *pipeline,
   377   NameList &pipeline_res_cycles,
   378   PipeClassForm *pipeclass)
   379 {
   380   const PipeClassResourceForm *piperesource;
   381   int * res_cycles = new int [pipeline->_rescount];
   382   int i;
   384   for (i = 0; i < pipeline->_rescount; i++)
   385      res_cycles[i] = 0;
   387   for (pipeclass->_resUsage.reset();
   388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   390     for (i = 0; i < pipeline->_rescount; i++)
   391       if ((1 << i) & used_mask) {
   392         int cycles = piperesource->_cycles;
   393         if (res_cycles[i] < cycles)
   394           res_cycles[i] = cycles;
   395       }
   396   }
   398   // Pre-compute the string length
   399   int templen;
   400   int cyclelen = 0, commentlen = 0;
   401   int max_cycles = 0;
   402   char temp[32];
   404   for (i = 0; i < pipeline->_rescount; i++) {
   405     if (max_cycles < res_cycles[i])
   406       max_cycles = res_cycles[i];
   407     templen = sprintf(temp, "%d", res_cycles[i]);
   408     if (cyclelen < templen)
   409       cyclelen = templen;
   410     commentlen += (int)strlen(pipeline->_reslist.name(i));
   411   }
   413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   415   // Allocate space for the resource list
   416   char * resource_cycles = new char [templen];
   418   templen = 0;
   420   for (i = 0; i < pipeline->_rescount; i++) {
   421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   423   }
   425   // See if the same string is in the table
   426   int ndx = pipeline_res_cycles.index(resource_cycles);
   428   // No, add it to the table
   429   if (ndx < 0) {
   430     pipeline_res_cycles.addName(resource_cycles);
   431     ndx = pipeline_res_cycles.index(resource_cycles);
   433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   434       ndx+1, pipeline->_rescount, resource_cycles);
   435   }
   436   else
   437     delete [] resource_cycles;
   439   delete [] res_cycles;
   441   return (ndx);
   442 }
   444 //typedef unsigned long long uint64_t;
   446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   447 static int pipeline_res_mask_initializer(
   448   FILE *fp_cpp,
   449   PipelineForm *pipeline,
   450   NameList &pipeline_res_mask,
   451   NameList &pipeline_res_args,
   452   PipeClassForm *pipeclass)
   453 {
   454   const PipeClassResourceForm *piperesource;
   455   const uint rescount      = pipeline->_rescount;
   456   const uint maxcycleused  = pipeline->_maxcycleused;
   457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   459   int i, j;
   460   int element_count = 0;
   461   uint *res_mask = new uint [cyclemasksize];
   462   uint resources_used             = 0;
   463   uint resources_used_exclusively = 0;
   465   for (pipeclass->_resUsage.reset();
   466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   467     element_count++;
   468   }
   470   // Pre-compute the string length
   471   int templen;
   472   int commentlen = 0;
   473   int max_cycles = 0;
   475   int cyclelen = ((maxcycleused + 3) >> 2);
   476   int masklen = (rescount + 3) >> 2;
   478   int cycledigit = 0;
   479   for (i = maxcycleused; i > 0; i /= 10)
   480     cycledigit++;
   482   int maskdigit = 0;
   483   for (i = rescount; i > 0; i /= 10)
   484     maskdigit++;
   486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
   489   templen = 1 +
   490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   493   // Allocate space for the resource list
   494   char * resource_mask = new char [templen];
   495   char * last_comma = NULL;
   497   templen = 0;
   499   for (pipeclass->_resUsage.reset();
   500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   503     if (!used_mask) {
   504       fprintf(stderr, "*** used_mask is 0 ***\n");
   505     }
   507     resources_used |= used_mask;
   509     uint lb, ub;
   511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   514     if (lb == ub) {
   515       resources_used_exclusively |= used_mask;
   516     }
   518     int formatlen =
   519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   520         pipeline_use_element,
   521         masklen, used_mask,
   522         cycledigit, lb, cycledigit, ub,
   523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   524         pipeline_use_cycle_mask);
   526     templen += formatlen;
   528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   530     int cycles = piperesource->_cycles;
   531     uint stage          = pipeline->_stages.index(piperesource->_stage);
   532     if ((uint)NameList::Not_in_list == stage) {
   533       fprintf(stderr,
   534               "pipeline_res_mask_initializer: "
   535               "semantic error: "
   536               "pipeline stage undeclared: %s\n",
   537               piperesource->_stage);
   538       exit(1);
   539     }
   540     uint upper_limit    = stage + cycles - 1;
   541     uint lower_limit    = stage - 1;
   542     uint upper_idx      = upper_limit >> 5;
   543     uint lower_idx      = lower_limit >> 5;
   544     uint upper_position = upper_limit & 0x1f;
   545     uint lower_position = lower_limit & 0x1f;
   547     uint mask = (((uint)1) << upper_position) - 1;
   549     while (upper_idx > lower_idx) {
   550       res_mask[upper_idx--] |= mask;
   551       mask = (uint)-1;
   552     }
   554     mask -= (((uint)1) << lower_position) - 1;
   555     res_mask[upper_idx] |= mask;
   557     for (j = cyclemasksize-1; j >= 0; j--) {
   558       formatlen =
   559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   560       templen += formatlen;
   561     }
   563     resource_mask[templen++] = ')';
   564     resource_mask[templen++] = ')';
   565     last_comma = &resource_mask[templen];
   566     resource_mask[templen++] = ',';
   567     resource_mask[templen++] = '\n';
   568   }
   570   resource_mask[templen] = 0;
   571   if (last_comma) {
   572     last_comma[0] = ' ';
   573   }
   575   // See if the same string is in the table
   576   int ndx = pipeline_res_mask.index(resource_mask);
   578   // No, add it to the table
   579   if (ndx < 0) {
   580     pipeline_res_mask.addName(resource_mask);
   581     ndx = pipeline_res_mask.index(resource_mask);
   583     if (strlen(resource_mask) > 0)
   584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   585         ndx+1, element_count, resource_mask);
   587     char* args = new char [9 + 2*masklen + maskdigit];
   589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   590       masklen, resources_used,
   591       masklen, resources_used_exclusively,
   592       maskdigit, element_count);
   594     pipeline_res_args.addName(args);
   595   }
   596   else {
   597     delete [] resource_mask;
   598   }
   600   delete [] res_mask;
   601 //delete [] res_masks;
   603   return (ndx);
   604 }
   606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   607   const char *classname;
   608   const char *resourcename;
   609   int resourcenamelen = 0;
   610   NameList pipeline_reads;
   611   NameList pipeline_res_stages;
   612   NameList pipeline_res_cycles;
   613   NameList pipeline_res_masks;
   614   NameList pipeline_res_args;
   615   const int default_latency = 1;
   616   const int non_operand_latency = 0;
   617   const int node_latency = 0;
   619   if (!_pipeline) {
   620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   623     fprintf(fp_cpp, "}\n");
   624     return;
   625   }
   627   fprintf(fp_cpp, "\n");
   628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   632   fprintf(fp_cpp, "    \"undefined\"");
   634   for (int s = 0; s < _pipeline->_stagecnt; s++)
   635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   637   fprintf(fp_cpp, "\n  };\n\n");
   638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   639     _pipeline->_stagecnt);
   640   fprintf(fp_cpp, "}\n");
   641   fprintf(fp_cpp, "#endif\n\n");
   643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   645 #if 0
   646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   649   fprintf(fp_cpp, "  }\n");
   650   fprintf(fp_cpp, "#endif\n\n");
   651 #endif
   652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   654 #if 0
   655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   658   fprintf(fp_cpp, "  }\n");
   659   fprintf(fp_cpp, "#endif\n\n");
   660 #endif
   661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   664   fprintf(fp_cpp, "      continue;\n\n");
   665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   668   fprintf(fp_cpp, "        continue;\n\n");
   669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   673   fprintf(fp_cpp, "          y <<= 1;\n");
   674   fprintf(fp_cpp, "      }\n");
   675   fprintf(fp_cpp, "    }\n");
   676   fprintf(fp_cpp, "  }\n\n");
   677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   678   fprintf(fp_cpp, "  return (start);\n");
   679   fprintf(fp_cpp, "}\n\n");
   680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   688     _pipeline->_maxcycleused+1);
   689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   697   fprintf(fp_cpp, "            y <<= 1;\n");
   698   fprintf(fp_cpp, "        }\n");
   699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   700   fprintf(fp_cpp, "      }\n");
   701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   702   fprintf(fp_cpp, "    }\n");
   703   fprintf(fp_cpp, "    else {\n");
   704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   710   fprintf(fp_cpp, "            y <<= 1;\n");
   711   fprintf(fp_cpp, "        }\n");
   712   fprintf(fp_cpp, "      }\n");
   713   fprintf(fp_cpp, "    }\n");
   714   fprintf(fp_cpp, "  }\n\n");
   715   fprintf(fp_cpp, "  return (delay);\n");
   716   fprintf(fp_cpp, "}\n\n");
   717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   728   fprintf(fp_cpp, "          break;\n");
   729   fprintf(fp_cpp, "        }\n");
   730   fprintf(fp_cpp, "      }\n");
   731   fprintf(fp_cpp, "    }\n");
   732   fprintf(fp_cpp, "    else {\n");
   733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   738   fprintf(fp_cpp, "      }\n");
   739   fprintf(fp_cpp, "    }\n");
   740   fprintf(fp_cpp, "  }\n");
   741   fprintf(fp_cpp, "}\n\n");
   743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   745   fprintf(fp_cpp, "\n");
   746 #if 0
   747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   750   fprintf(fp_cpp, "  }\n");
   751   fprintf(fp_cpp, "#endif\n\n");
   752 #endif
   753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
   754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
   755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   760 #if 0
   761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   764   fprintf(fp_cpp, "  }\n");
   765   fprintf(fp_cpp, "#endif\n\n");
   766 #endif
   767   fprintf(fp_cpp, "\n");
   768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   769   fprintf(fp_cpp, "    return (default_latency);\n");
   770   fprintf(fp_cpp, "\n");
   771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   773 #if 0
   774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   777   fprintf(fp_cpp, "  }\n");
   778   fprintf(fp_cpp, "#endif\n\n");
   779 #endif
   780   fprintf(fp_cpp, "  return (delta);\n");
   781   fprintf(fp_cpp, "}\n\n");
   783   if (!_pipeline)
   784     /* Do Nothing */;
   786   else if (_pipeline->_maxcycleused <=
   787 #ifdef SPARC
   788     64
   789 #else
   790     32
   791 #endif
   792       ) {
   793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   795     fprintf(fp_cpp, "}\n\n");
   796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   798     fprintf(fp_cpp, "}\n\n");
   799   }
   800   else {
   801     uint l;
   802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   805     for (l = 1; l <= masklen; l++)
   806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   807     fprintf(fp_cpp, ");\n");
   808     fprintf(fp_cpp, "}\n\n");
   809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   811     for (l = 1; l <= masklen; l++)
   812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   813     fprintf(fp_cpp, ");\n");
   814     fprintf(fp_cpp, "}\n\n");
   815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   816     for (l = 1; l <= masklen; l++)
   817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   818     fprintf(fp_cpp, "\n}\n\n");
   819   }
   821   /* Get the length of all the resource names */
   822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   823        (resourcename = _pipeline->_reslist.iter()) != NULL;
   824        resourcenamelen += (int)strlen(resourcename));
   826   // Create the pipeline class description
   828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   835     for (int i2 = masklen-1; i2 >= 0; i2--)
   836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   838   }
   839   fprintf(fp_cpp, "};\n\n");
   841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   842     _pipeline->_rescount);
   844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   845     fprintf(fp_cpp, "\n");
   846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   848     int maxWriteStage = -1;
   849     int maxMoreInstrs = 0;
   850     int paramcount = 0;
   851     int i = 0;
   852     const char *paramname;
   853     int resource_count = (_pipeline->_rescount + 3) >> 2;
   855     // Scan the operands, looking for last output stage and number of inputs
   856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   857       const PipeClassOperandForm *pipeopnd =
   858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   859       if (pipeopnd) {
   860         if (pipeopnd->_iswrite) {
   861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   862            int moreinsts = pipeopnd->_more_instrs;
   863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   864             maxWriteStage = stagenum;
   865             maxMoreInstrs = moreinsts;
   866           }
   867         }
   868       }
   870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   871         paramcount++;
   872     }
   874     // Create the list of stages for the operands that are read
   875     // Note that we will build a NameList to reduce the number of copies
   877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   888 #if 0
   889     // Process the Resources
   890     const PipeClassResourceForm *piperesource;
   892     unsigned resources_used = 0;
   893     unsigned exclusive_resources_used = 0;
   894     unsigned resource_groups = 0;
   895     for (pipeclass->_resUsage.reset();
   896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   898       if (used_mask)
   899         resource_groups++;
   900       resources_used |= used_mask;
   901       if ((used_mask & (used_mask-1)) == 0)
   902         exclusive_resources_used |= used_mask;
   903     }
   905     if (resource_groups > 0) {
   906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   907         pipeclass->_num, resource_groups);
   908       for (pipeclass->_resUsage.reset(), i = 1;
   909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   910            i++ ) {
   911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   912         if (used_mask) {
   913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   914         }
   915       }
   916       fprintf(fp_cpp, "};\n\n");
   917     }
   918 #endif
   920     // Create the pipeline class description
   921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   922       pipeclass->_num);
   923     if (maxWriteStage < 0)
   924       fprintf(fp_cpp, "(uint)stage_undefined");
   925     else if (maxMoreInstrs == 0)
   926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   927     else
   928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   930       paramcount,
   931       pipeclass->hasFixedLatency() ? "true" : "false",
   932       pipeclass->fixedLatency(),
   933       pipeclass->InstructionCount(),
   934       pipeclass->hasBranchDelay() ? "true" : "false",
   935       pipeclass->hasMultipleBundles() ? "true" : "false",
   936       pipeclass->forceSerialization() ? "true" : "false",
   937       pipeclass->mayHaveNoCode() ? "true" : "false" );
   938     if (paramcount > 0) {
   939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   940         pipeline_reads_index+1);
   941     }
   942     else
   943       fprintf(fp_cpp, " NULL,");
   944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   945       pipeline_res_stages_index+1);
   946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   947       pipeline_res_cycles_index+1);
   948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   949       pipeline_res_args.name(pipeline_res_mask_index));
   950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   952         pipeline_res_mask_index+1);
   953     else
   954       fprintf(fp_cpp, "NULL");
   955     fprintf(fp_cpp, "));\n");
   956   }
   958   // Generate the Node::latency method if _pipeline defined
   959   fprintf(fp_cpp, "\n");
   960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   962   if (_pipeline) {
   963 #if 0
   964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   967     fprintf(fp_cpp, " }\n");
   968     fprintf(fp_cpp, "#endif\n");
   969 #endif
   970     fprintf(fp_cpp, "  uint j;\n");
   971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   973     fprintf(fp_cpp, "  // verify input is not null\n");
   974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   976       non_operand_latency);
   977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   985       node_latency);
   986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   989       non_operand_latency);
   990     fprintf(fp_cpp, "  // determine which operand this is in\n");
   991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   992     fprintf(fp_cpp, "  int delta = %d;\n\n",
   993       non_operand_latency);
   994     fprintf(fp_cpp, "  uint k;\n");
   995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   997     fprintf(fp_cpp, "    if (i < j)\n");
   998     fprintf(fp_cpp, "      break;\n");
   999     fprintf(fp_cpp, "  }\n");
  1000     fprintf(fp_cpp, "  if (k < n)\n");
  1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
  1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
  1004   else {
  1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
  1006     fprintf(fp_cpp, "  return %d;\n",
  1007       non_operand_latency);
  1009   fprintf(fp_cpp, "}\n\n");
  1011   // Output the list of nop nodes
  1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
  1013   const char *nop;
  1014   int nopcnt = 0;
  1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
  1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
  1018   int i = 0;
  1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
  1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
  1022   fprintf(fp_cpp, "};\n\n");
  1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
  1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
  1026   fprintf(fp_cpp, "    \"\",\n");
  1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
  1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1033   fprintf(fp_cpp, "  };\n\n");
  1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1036   for (i = 0; i < _pipeline->_rescount; i++)
  1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1038   fprintf(fp_cpp, "};\n\n");
  1040   // See if the same string is in the table
  1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1042   fprintf(fp_cpp, "  if (_flags) {\n");
  1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
  1044   fprintf(fp_cpp, "    needs_comma = true;\n");
  1045   fprintf(fp_cpp, "  };\n");
  1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1048   fprintf(fp_cpp, "    needs_comma = true;\n");
  1049   fprintf(fp_cpp, "  };\n");
  1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1051   fprintf(fp_cpp, "  if (r) {\n");
  1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
  1056   fprintf(fp_cpp, "    needs_comma = true;\n");
  1057   fprintf(fp_cpp, "  };\n");
  1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
  1059   fprintf(fp_cpp, "}\n");
  1060   fprintf(fp_cpp, "#endif\n");
  1063 // ---------------------------------------------------------------------------
  1064 //------------------------------Utilities to build Instruction Classes--------
  1065 // ---------------------------------------------------------------------------
  1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1069           node, regMask);
  1072 static void print_block_index(FILE *fp, int inst_position) {
  1073   assert( inst_position >= 0, "Instruction number less than zero");
  1074   fprintf(fp, "block_index");
  1075   if( inst_position != 0 ) {
  1076     fprintf(fp, " - %d", inst_position);
  1080 // Scan the peepmatch and output a test for each instruction
  1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1082   int         parent        = -1;
  1083   int         inst_position = 0;
  1084   const char* inst_name     = NULL;
  1085   int         input         = 0;
  1086   fprintf(fp, "  // Check instruction sub-tree\n");
  1087   pmatch->reset();
  1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1089        inst_name != NULL;
  1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1091     // If this is not a placeholder
  1092     if( ! pmatch->is_placeholder() ) {
  1093       // Define temporaries 'inst#', based on parent and parent's input index
  1094       if( parent != -1 ) {                // root was initialized
  1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1096         fprintf(fp, "  if( ");
  1097         print_block_index(fp, inst_position);
  1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
  1099         print_block_index(fp, inst_position);
  1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1104       // When not the root
  1105       // Test we have the correct instruction by comparing the rule.
  1106       if( parent != -1 ) {
  1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1108                 inst_position, inst_position, inst_name);
  1110     } else {
  1111       // Check that user did not try to constrain a placeholder
  1112       assert( ! pconstraint->constrains_instruction(inst_position),
  1113               "fatal(): Can not constrain a placeholder instruction");
  1118 // Build mapping for register indices, num_edges to input
  1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1120   int         parent        = -1;
  1121   int         inst_position = 0;
  1122   const char* inst_name     = NULL;
  1123   int         input         = 0;
  1124   fprintf(fp, "      // Build map to register info\n");
  1125   pmatch->reset();
  1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1127        inst_name != NULL;
  1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1129     // If this is not a placeholder
  1130     if( ! pmatch->is_placeholder() ) {
  1131       // Define temporaries 'inst#', based on self's inst_position
  1132       InstructForm *inst = globals[inst_name]->is_instruction();
  1133       if( inst != NULL ) {
  1134         char inst_prefix[]  = "instXXXX_";
  1135         sprintf(inst_prefix, "inst%d_",   inst_position);
  1136         char receiver[]     = "instXXXX->";
  1137         sprintf(receiver,    "inst%d->", inst_position);
  1138         inst->index_temps( fp, globals, inst_prefix, receiver );
  1144 // Generate tests for the constraints
  1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1146   fprintf(fp, "\n");
  1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1149   // Build mapping from num_edges to local variables
  1150   build_instruction_index_mapping( fp, globals, pmatch );
  1152   // Build constraint tests
  1153   if( pconstraint != NULL ) {
  1154     fprintf(fp, "      matches = matches &&");
  1155     bool   first_constraint = true;
  1156     while( pconstraint != NULL ) {
  1157       // indentation and connecting '&&'
  1158       const char *indentation = "      ";
  1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1161       // Only have '==' relation implemented
  1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1163         assert( false, "Unimplemented()" );
  1166       // LEFT
  1167       int left_index       = pconstraint->_left_inst;
  1168       const char *left_op  = pconstraint->_left_op;
  1169       // Access info on the instructions whose operands are compared
  1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1171       assert( inst_left, "Parser should guaranty this is an instruction");
  1172       int left_op_base  = inst_left->oper_input_base(globals);
  1173       // Access info on the operands being compared
  1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1175       if( left_op_index == -1 ) {
  1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1177         if( left_op_index == -1 ) {
  1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1182       ComponentList components_left = inst_left->_components;
  1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1188       // RIGHT
  1189       int right_op_index = -1;
  1190       int right_index      = pconstraint->_right_inst;
  1191       const char *right_op = pconstraint->_right_op;
  1192       if( right_index != -1 ) { // Match operand
  1193         // Access info on the instructions whose operands are compared
  1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1195         assert( inst_right, "Parser should guaranty this is an instruction");
  1196         int right_op_base = inst_right->oper_input_base(globals);
  1197         // Access info on the operands being compared
  1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1199         if( right_op_index == -1 ) {
  1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1201           if( right_op_index == -1 ) {
  1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1206         ComponentList components_right = inst_right->_components;
  1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1212       } else {                  // Else match register
  1213         // assert( false, "should be a register" );
  1216       //
  1217       // Check for equivalence
  1218       //
  1219       // fprintf(fp, "phase->eqv( ");
  1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1221       //         left_index,  left_op_base,  left_op_index,  left_op,
  1222       //         right_index, right_op_base, right_op_index, right_op );
  1223       // fprintf(fp, ")");
  1224       //
  1225       switch( left_interface_type ) {
  1226       case Form::register_interface: {
  1227         // Check that they are allocated to the same register
  1228         // Need parameter for index position if not result operand
  1229         char left_reg_index[] = ",instXXXX_idxXXXX";
  1230         if( left_op_index != 0 ) {
  1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1232           // Must have index into operands
  1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
  1234         } else {
  1235           strcpy(left_reg_index, "");
  1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1239         fprintf(fp, " == ");
  1241         if( right_index != -1 ) {
  1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1243           if( right_op_index != 0 ) {
  1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1245             // Must have index into operands
  1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
  1247           } else {
  1248             strcpy(right_reg_index, "");
  1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1252         } else {
  1253           fprintf(fp, "%s_enc", right_op );
  1255         fprintf(fp,")");
  1256         break;
  1258       case Form::constant_interface: {
  1259         // Compare the '->constant()' values
  1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1261                 left_index,  left_op_index,  left_index, left_op );
  1262         fprintf(fp, " == ");
  1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1264                 right_index, right_op, right_index, right_op_index );
  1265         break;
  1267       case Form::memory_interface: {
  1268         // Compare 'base', 'index', 'scale', and 'disp'
  1269         // base
  1270         fprintf(fp, "( \n");
  1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1273         fprintf(fp, " == ");
  1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1276         // index
  1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1279         fprintf(fp, " == ");
  1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1282         // scale
  1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1284                 left_index,  left_op_index,  left_index, left_op );
  1285         fprintf(fp, " == ");
  1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1287                 right_index, right_op, right_index, right_op_index );
  1288         // disp
  1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1291         fprintf(fp, " == ");
  1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1294         fprintf(fp, ") \n");
  1295         break;
  1297       case Form::conditional_interface: {
  1298         // Compare the condition code being tested
  1299         assert( false, "Unimplemented()" );
  1300         break;
  1302       default: {
  1303         assert( false, "ShouldNotReachHere()" );
  1304         break;
  1308       // Advance to next constraint
  1309       pconstraint = pconstraint->next();
  1310       first_constraint = false;
  1313     fprintf(fp, ";\n");
  1317 // // EXPERIMENTAL -- TEMPORARY code
  1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1319 //   int op_index = instr->operand_position(op_name, Component::USE);
  1320 //   if( op_index == -1 ) {
  1321 //     op_index = instr->operand_position(op_name, Component::DEF);
  1322 //     if( op_index == -1 ) {
  1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1324 //     }
  1325 //   }
  1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1327 //
  1328 //   ComponentList components_right = instr->_components;
  1329 //   char *right_comp_type = components_right.at(op_index)->_type;
  1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1332 //
  1333 //   return;
  1334 // }
  1336 // Construct the new sub-tree
  1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1338   fprintf(fp, "      // IF instructions and constraints matched\n");
  1339   fprintf(fp, "      if( matches ) {\n");
  1340   fprintf(fp, "        // generate the new sub-tree\n");
  1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1342   if( preplace != NULL ) {
  1343     // Get the root of the new sub-tree
  1344     const char *root_inst = NULL;
  1345     preplace->next_instruction(root_inst);
  1346     InstructForm *root_form = globals[root_inst]->is_instruction();
  1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1350     int         inst_num;
  1351     const char *op_name;
  1352     int         opnds_index = 0;            // define result operand
  1353     // Then install the use-operands for the new sub-tree
  1354     // preplace->reset();             // reset breaks iteration
  1355     for( preplace->next_operand( inst_num, op_name );
  1356          op_name != NULL;
  1357          preplace->next_operand( inst_num, op_name ) ) {
  1358       InstructForm *inst_form;
  1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1360       assert( inst_form, "Parser should guaranty this is an instruction");
  1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1362       if( inst_op_num == NameList::Not_in_list )
  1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1365       // find the name of the OperandForm from the local name
  1366       const Form *form   = inst_form->_localNames[op_name];
  1367       OperandForm  *op_form = form->is_operand();
  1368       if( opnds_index == 0 ) {
  1369         // Initial setup of new instruction
  1370         fprintf(fp, "        // ----- Initial setup -----\n");
  1371         //
  1372         // Add control edge for this node
  1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1374         // Add unmatched edges from root of match tree
  1375         int op_base = root_form->oper_input_base(globals);
  1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1378                                           inst_num, unmatched_edge);
  1380         // If new instruction captures bottom type
  1381         if( root_form->captures_bottom_type(globals) ) {
  1382           // Get bottom type from instruction whose result we are replacing
  1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1385         // Define result register and result operand
  1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1391       } else {
  1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1393           // Do not have ideal edges for constants after matching
  1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1395                   inst_op_num, inst_num, inst_op_num,
  1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1398                   inst_num, inst_op_num );
  1399         } else {
  1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1403                 opnds_index, inst_num, inst_op_num );
  1405       ++opnds_index;
  1407   }else {
  1408     // Replacing subtree with empty-tree
  1409     assert( false, "ShouldNotReachHere();");
  1412   // Return the new sub-tree
  1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1414   fprintf(fp, "        return root;  // return new root;\n");
  1415   fprintf(fp, "      }\n");
  1419 // Define the Peephole method for an instruction node
  1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1421   // Generate Peephole function header
  1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1423   fprintf(fp, "  bool  matches = true;\n");
  1425   // Identify the maximum instruction position,
  1426   // generate temporaries that hold current instruction
  1427   //
  1428   //   MachNode  *inst0 = NULL;
  1429   //   ...
  1430   //   MachNode  *instMAX = NULL;
  1431   //
  1432   int max_position = 0;
  1433   Peephole *peep;
  1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1435     PeepMatch *pmatch = peep->match();
  1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1439   for( int i = 0; i <= max_position; ++i ) {
  1440     if( i == 0 ) {
  1441       fprintf(fp, "  MachNode *inst0 = this;\n");
  1442     } else {
  1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1447   // For each peephole rule in architecture description
  1448   //   Construct a test for the desired instruction sub-tree
  1449   //   then check the constraints
  1450   //   If these match, Generate the new subtree
  1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1452     int         peephole_number = peep->peephole_number();
  1453     PeepMatch      *pmatch      = peep->match();
  1454     PeepConstraint *pconstraint = peep->constraints();
  1455     PeepReplace    *preplace    = peep->replacement();
  1457     // Root of this peephole is the current MachNode
  1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1459             "root of PeepMatch does not match instruction");
  1461     // Make each peephole rule individually selectable
  1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1463     fprintf(fp, "    matches = true;\n");
  1464     // Scan the peepmatch and output a test for each instruction
  1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1467     // Check constraints and build replacement inside scope
  1468     fprintf(fp, "    // If instruction subtree matches\n");
  1469     fprintf(fp, "    if( matches ) {\n");
  1471     // Generate tests for the constraints
  1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1474     // Construct the new sub-tree
  1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1477     // End of scope for this peephole's constraints
  1478     fprintf(fp, "    }\n");
  1479     // Closing brace '}' to make each peephole rule individually selectable
  1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1481     fprintf(fp, "\n");
  1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1485   fprintf(fp, "}\n");
  1486   fprintf(fp, "\n");
  1489 // Define the Expand method for an instruction node
  1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1491   unsigned      cnt  = 0;          // Count nodes we have expand into
  1492   unsigned      i;
  1494   // Generate Expand function header
  1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  1496   fprintf(fp, "  Compile* C = Compile::current();\n");
  1497   // Generate expand code
  1498   if( node->expands() ) {
  1499     const char   *opid;
  1500     int           new_pos, exp_pos;
  1501     const char   *new_id   = NULL;
  1502     const Form   *frm      = NULL;
  1503     InstructForm *new_inst = NULL;
  1504     OperandForm  *new_oper = NULL;
  1505     unsigned      numo     = node->num_opnds() +
  1506                                 node->_exprule->_newopers.count();
  1508     // If necessary, generate any operands created in expand rule
  1509     if (node->_exprule->_newopers.count()) {
  1510       for(node->_exprule->_newopers.reset();
  1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1512         frm = node->_localNames[new_id];
  1513         assert(frm, "Invalid entry in new operands list of expand rule");
  1514         new_oper = frm->is_operand();
  1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1516         if (tmp == NULL) {
  1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1518                   cnt, new_oper->_ident);
  1520         else {
  1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1522                   cnt, new_oper->_ident, tmp);
  1526     cnt = 0;
  1527     // Generate the temps to use for DAG building
  1528     for(i = 0; i < numo; i++) {
  1529       if (i < node->num_opnds()) {
  1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1532       else {
  1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1536     // Build mapping from num_edges to local variables
  1537     fprintf(fp,"  unsigned num0 = 0;\n");
  1538     for( i = 1; i < node->num_opnds(); i++ ) {
  1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1542     // Build a mapping from operand index to input edges
  1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1545     // The order in which the memory input is added to a node is very
  1546     // strange.  Store nodes get a memory input before Expand is
  1547     // called and other nodes get it afterwards or before depending on
  1548     // match order so oper_input_base is wrong during expansion.  This
  1549     // code adjusts it so that expansion will work correctly.
  1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
  1551     if (has_memory_edge) {
  1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
  1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1554       fprintf(fp,"  }\n");
  1557     for( i = 0; i < node->num_opnds(); i++ ) {
  1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1559               i+1,i,i);
  1562     // Declare variable to hold root of expansion
  1563     fprintf(fp,"  MachNode *result = NULL;\n");
  1565     // Iterate over the instructions 'node' expands into
  1566     ExpandRule  *expand       = node->_exprule;
  1567     NameAndList *expand_instr = NULL;
  1568     for(expand->reset_instructions();
  1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1570       new_id = expand_instr->name();
  1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1574       if (!expand_instruction) {
  1575         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
  1576                              node->_ident, new_id);
  1577         continue;
  1580       if (expand_instruction->has_temps()) {
  1581         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1582                              node->_ident, new_id);
  1585       // Build the node for the instruction
  1586       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1587       // Add control edge for this node
  1588       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1589       // Build the operand for the value this node defines.
  1590       Form *form = (Form*)_globalNames[new_id];
  1591       assert( form, "'new_id' must be a defined form name");
  1592       // Grab the InstructForm for the new instruction
  1593       new_inst = form->is_instruction();
  1594       assert( new_inst, "'new_id' must be an instruction name");
  1595       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1596         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1597         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1600       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1601         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1604       // Fill in the bottom_type where requested
  1605       if (node->captures_bottom_type(_globalNames) &&
  1606           new_inst->captures_bottom_type(_globalNames)) {
  1607         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
  1610       const char *resultOper = new_inst->reduce_result();
  1611       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1612               cnt, machOperEnum(resultOper));
  1614       // get the formal operand NameList
  1615       NameList *formal_lst = &new_inst->_parameters;
  1616       formal_lst->reset();
  1618       // Handle any memory operand
  1619       int memory_operand = new_inst->memory_operand(_globalNames);
  1620       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1621         int node_mem_op = node->memory_operand(_globalNames);
  1622         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1623                 "expand rule member needs memory but top-level inst doesn't have any" );
  1624         if (has_memory_edge) {
  1625           // Copy memory edge
  1626           fprintf(fp,"  if (mem != (Node*)1) {\n");
  1627           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1628           fprintf(fp,"  }\n");
  1632       // Iterate over the new instruction's operands
  1633       int prev_pos = -1;
  1634       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1635         // Use 'parameter' at current position in list of new instruction's formals
  1636         // instead of 'opid' when looking up info internal to new_inst
  1637         const char *parameter = formal_lst->iter();
  1638         if (!parameter) {
  1639           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
  1640                                " no equivalent in new instruction %s.",
  1641                                opid, node->_ident, new_inst->_ident);
  1642           assert(0, "Wrong expand");
  1645         // Check for an operand which is created in the expand rule
  1646         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1647           new_pos = new_inst->operand_position(parameter,Component::USE);
  1648           exp_pos += node->num_opnds();
  1649           // If there is no use of the created operand, just skip it
  1650           if (new_pos != NameList::Not_in_list) {
  1651             //Copy the operand from the original made above
  1652             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1653                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1654             // Check for who defines this operand & add edge if needed
  1655             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1656             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1659         else {
  1660           // Use operand name to get an index into instruction component list
  1661           // ins = (InstructForm *) _globalNames[new_id];
  1662           exp_pos = node->operand_position_format(opid);
  1663           assert(exp_pos != -1, "Bad expand rule");
  1664           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1665             // For the add_req calls below to work correctly they need
  1666             // to added in the same order that a match would add them.
  1667             // This means that they would need to be in the order of
  1668             // the components list instead of the formal parameters.
  1669             // This is a sort of hidden invariant that previously
  1670             // wasn't checked and could lead to incorrectly
  1671             // constructed nodes.
  1672             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1673                        node->_ident, new_inst->_ident);
  1675           prev_pos = exp_pos;
  1677           new_pos = new_inst->operand_position(parameter,Component::USE);
  1678           if (new_pos != -1) {
  1679             // Copy the operand from the ExpandNode to the new node
  1680             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1681                     cnt, new_pos, exp_pos, opid);
  1682             // For each operand add appropriate input edges by looking at tmp's
  1683             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1684             // Grab corresponding edges from ExpandNode and insert them here
  1685             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1686             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1687             fprintf(fp,"    }\n");
  1688             fprintf(fp,"  }\n");
  1689             // This value is generated by one of the new instructions
  1690             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1694         // Update the DAG tmp's for values defined by this instruction
  1695         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1696         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1697         // If this operand is a definition in either an effects rule
  1698         // or a match rule
  1699         if((eform) && (is_def(eform->_use_def))) {
  1700           // Update the temp associated with this operand
  1701           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1703         else if( new_def_pos != -1 ) {
  1704           // Instruction defines a value but user did not declare it
  1705           // in the 'effect' clause
  1706           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1708       } // done iterating over a new instruction's operands
  1710       // Invoke Expand() for the newly created instruction.
  1711       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
  1712       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1713     } // done iterating over new instructions
  1714     fprintf(fp,"\n");
  1715   } // done generating expand rule
  1717   // Generate projections for instruction's additional DEFs and KILLs
  1718   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1719     // Get string representing the MachNode that projections point at
  1720     const char *machNode = "this";
  1721     // Generate the projections
  1722     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1724     // Examine each component to see if it is a DEF or KILL
  1725     node->_components.reset();
  1726     // Skip the first component, if already handled as (SET dst (...))
  1727     Component *comp = NULL;
  1728     // For kills, the choice of projection numbers is arbitrary
  1729     int proj_no = 1;
  1730     bool declared_def  = false;
  1731     bool declared_kill = false;
  1733     while( (comp = node->_components.iter()) != NULL ) {
  1734       // Lookup register class associated with operand type
  1735       Form        *form = (Form*)_globalNames[comp->_type];
  1736       assert( form, "component type must be a defined form");
  1737       OperandForm *op   = form->is_operand();
  1739       if (comp->is(Component::TEMP)) {
  1740         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1741         if (!declared_def) {
  1742           // Define the variable "def" to hold new MachProjNodes
  1743           fprintf(fp, "  MachTempNode *def;\n");
  1744           declared_def = true;
  1746         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1747           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1748                   machOperEnum(op->_ident));
  1749           fprintf(fp,"  add_req(def);\n");
  1750           // The operand for TEMP is already constructed during
  1751           // this mach node construction, see buildMachNode().
  1752           //
  1753           // int idx  = node->operand_position_format(comp->_name);
  1754           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1755           //         idx, machOperEnum(op->_ident));
  1756         } else {
  1757           assert(false, "can't have temps which aren't registers");
  1759       } else if (comp->isa(Component::KILL)) {
  1760         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1762         if (!declared_kill) {
  1763           // Define the variable "kill" to hold new MachProjNodes
  1764           fprintf(fp, "  MachProjNode *kill;\n");
  1765           declared_kill = true;
  1768         assert( op, "Support additional KILLS for base operands");
  1769         const char *regmask    = reg_mask(*op);
  1770         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1772         if (!op->is_bound_register()) {
  1773           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1774                      node->_ident, comp->_type, comp->_name);
  1777         fprintf(fp,"  kill = ");
  1778         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1779                 machNode, proj_no++, regmask, ideal_type);
  1780         fprintf(fp,"  proj_list.push(kill);\n");
  1785   if( !node->expands() && node->_matrule != NULL ) {
  1786     // Remove duplicated operands and inputs which use the same name.
  1787     // Seach through match operands for the same name usage.
  1788     uint cur_num_opnds = node->num_opnds();
  1789     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1790       Component *comp = NULL;
  1791       // Build mapping from num_edges to local variables
  1792       fprintf(fp,"  unsigned num0 = 0;\n");
  1793       for( i = 1; i < cur_num_opnds; i++ ) {
  1794         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
  1795         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
  1797       // Build a mapping from operand index to input edges
  1798       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1799       for( i = 0; i < cur_num_opnds; i++ ) {
  1800         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1801                 i+1,i,i);
  1804       uint new_num_opnds = 1;
  1805       node->_components.reset();
  1806       // Skip first unique operands.
  1807       for( i = 1; i < cur_num_opnds; i++ ) {
  1808         comp = node->_components.iter();
  1809         if (i != node->unique_opnds_idx(i)) {
  1810           break;
  1812         new_num_opnds++;
  1814       // Replace not unique operands with next unique operands.
  1815       for( ; i < cur_num_opnds; i++ ) {
  1816         comp = node->_components.iter();
  1817         uint j = node->unique_opnds_idx(i);
  1818         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1819         if( j != node->unique_opnds_idx(j) ) {
  1820           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1821                   new_num_opnds, i, comp->_name);
  1822           // delete not unique edges here
  1823           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1824           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1825           fprintf(fp,"  }\n");
  1826           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1827           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1828           new_num_opnds++;
  1831       // delete the rest of edges
  1832       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1833       fprintf(fp,"    del_req(i);\n");
  1834       fprintf(fp,"  }\n");
  1835       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1836       assert(new_num_opnds == node->num_unique_opnds(), "what?");
  1840   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  1841   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  1842   // There are nodes that don't use $constantablebase, but still require that it
  1843   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
  1844   if (node->is_mach_constant() || node->needs_constant_base()) {
  1845     if (node->is_ideal_call() != Form::invalid_type &&
  1846         node->is_ideal_call() != Form::JAVA_LEAF) {
  1847       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
  1848       _needs_clone_jvms = true;
  1849     } else {
  1850       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
  1854   fprintf(fp, "\n");
  1855   if (node->expands()) {
  1856     fprintf(fp, "  return result;\n");
  1857   } else {
  1858     fprintf(fp, "  return this;\n");
  1860   fprintf(fp, "}\n");
  1861   fprintf(fp, "\n");
  1865 //------------------------------Emit Routines----------------------------------
  1866 // Special classes and routines for defining node emit routines which output
  1867 // target specific instruction object encodings.
  1868 // Define the ___Node::emit() routine
  1869 //
  1870 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1871 // (2)   // ...  encoding defined by user
  1872 // (3)
  1873 // (4) }
  1874 //
  1876 class DefineEmitState {
  1877 private:
  1878   enum reloc_format { RELOC_NONE        = -1,
  1879                       RELOC_IMMEDIATE   =  0,
  1880                       RELOC_DISP        =  1,
  1881                       RELOC_CALL_DISP   =  2 };
  1882   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1883                        LITERAL_SEEN      = 1,
  1884                        LITERAL_ACCESSED  = 2,
  1885                        LITERAL_OUTPUT    = 3 };
  1886   // Temporaries that describe current operand
  1887   bool          _cleared;
  1888   OpClassForm  *_opclass;
  1889   OperandForm  *_operand;
  1890   int           _operand_idx;
  1891   const char   *_local_name;
  1892   const char   *_operand_name;
  1893   bool          _doing_disp;
  1894   bool          _doing_constant;
  1895   Form::DataType _constant_type;
  1896   DefineEmitState::literal_status _constant_status;
  1897   DefineEmitState::literal_status _reg_status;
  1898   bool          _doing_emit8;
  1899   bool          _doing_emit_d32;
  1900   bool          _doing_emit_d16;
  1901   bool          _doing_emit_hi;
  1902   bool          _doing_emit_lo;
  1903   bool          _may_reloc;
  1904   reloc_format  _reloc_form;
  1905   const char *  _reloc_type;
  1906   bool          _processing_noninput;
  1908   NameList      _strings_to_emit;
  1910   // Stable state, set by constructor
  1911   ArchDesc     &_AD;
  1912   FILE         *_fp;
  1913   EncClass     &_encoding;
  1914   InsEncode    &_ins_encode;
  1915   InstructForm &_inst;
  1917 public:
  1918   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1919                   InsEncode &ins_encode, InstructForm &inst)
  1920     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1921       clear();
  1924   void clear() {
  1925     _cleared       = true;
  1926     _opclass       = NULL;
  1927     _operand       = NULL;
  1928     _operand_idx   = 0;
  1929     _local_name    = "";
  1930     _operand_name  = "";
  1931     _doing_disp    = false;
  1932     _doing_constant= false;
  1933     _constant_type = Form::none;
  1934     _constant_status = LITERAL_NOT_SEEN;
  1935     _reg_status      = LITERAL_NOT_SEEN;
  1936     _doing_emit8   = false;
  1937     _doing_emit_d32= false;
  1938     _doing_emit_d16= false;
  1939     _doing_emit_hi = false;
  1940     _doing_emit_lo = false;
  1941     _may_reloc     = false;
  1942     _reloc_form    = RELOC_NONE;
  1943     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1944     _strings_to_emit.clear();
  1947   // Track necessary state when identifying a replacement variable
  1948   // @arg rep_var: The formal parameter of the encoding.
  1949   void update_state(const char *rep_var) {
  1950     // A replacement variable or one of its subfields
  1951     // Obtain replacement variable from list
  1952     if ( (*rep_var) != '$' ) {
  1953       // A replacement variable, '$' prefix
  1954       // check_rep_var( rep_var );
  1955       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1956         // No state needed.
  1957         assert( _opclass == NULL,
  1958                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1960       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
  1961                (strcmp(rep_var, "constantoffset")    == 0) ||
  1962                (strcmp(rep_var, "constantaddress")   == 0)) {
  1963         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
  1964           _AD.syntax_err(_encoding._linenum,
  1965                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
  1966                          rep_var, _encoding._name);
  1969       else {
  1970         // Lookup its position in (formal) parameter list of encoding
  1971         int   param_no  = _encoding.rep_var_index(rep_var);
  1972         if ( param_no == -1 ) {
  1973           _AD.syntax_err( _encoding._linenum,
  1974                           "Replacement variable %s not found in enc_class %s.\n",
  1975                           rep_var, _encoding._name);
  1978         // Lookup the corresponding ins_encode parameter
  1979         // This is the argument (actual parameter) to the encoding.
  1980         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1981         if (inst_rep_var == NULL) {
  1982           _AD.syntax_err( _ins_encode._linenum,
  1983                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1984                           rep_var, _encoding._name, _inst._ident);
  1987         // Check if instruction's actual parameter is a local name in the instruction
  1988         const Form  *local     = _inst._localNames[inst_rep_var];
  1989         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1990         // Note: assert removed to allow constant and symbolic parameters
  1991         // assert( opc, "replacement variable was not found in local names");
  1992         // Lookup the index position iff the replacement variable is a localName
  1993         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1995         if ( idx != -1 ) {
  1996           // This is a local in the instruction
  1997           // Update local state info.
  1998           _opclass        = opc;
  1999           _operand_idx    = idx;
  2000           _local_name     = rep_var;
  2001           _operand_name   = inst_rep_var;
  2003           // !!!!!
  2004           // Do not support consecutive operands.
  2005           assert( _operand == NULL, "Unimplemented()");
  2006           _operand = opc->is_operand();
  2008         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2009           // Instruction provided a constant expression
  2010           // Check later that encoding specifies $$$constant to resolve as constant
  2011           _constant_status   = LITERAL_SEEN;
  2013         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2014           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  2015           // Check later that encoding specifies $$$constant to resolve as constant
  2016           _constant_status   = LITERAL_SEEN;
  2018         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2019           // Instruction provided a literal register name for this parameter
  2020           // Check that encoding specifies $$$reg to resolve.as register.
  2021           _reg_status        = LITERAL_SEEN;
  2023         else {
  2024           // Check for unimplemented functionality before hard failure
  2025           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2026           assert( false, "ShouldNotReachHere()");
  2028       } // done checking which operand this is.
  2029     } else {
  2030       //
  2031       // A subfield variable, '$$' prefix
  2032       // Check for fields that may require relocation information.
  2033       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  2034       //
  2035       if ( strcmp(rep_var,"$disp") == 0 ) {
  2036         _doing_disp = true;
  2037         assert( _opclass, "Must use operand or operand class before '$disp'");
  2038         if( _operand == NULL ) {
  2039           // Only have an operand class, generate run-time check for relocation
  2040           _may_reloc    = true;
  2041           _reloc_form   = RELOC_DISP;
  2042           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2043         } else {
  2044           // Do precise check on operand: is it a ConP or not
  2045           //
  2046           // Check interface for value of displacement
  2047           assert( ( _operand->_interface != NULL ),
  2048                   "$disp can only follow memory interface operand");
  2049           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2050           assert( mem_interface != NULL,
  2051                   "$disp can only follow memory interface operand");
  2052           const char *disp = mem_interface->_disp;
  2054           if( disp != NULL && (*disp == '$') ) {
  2055             // MemInterface::disp contains a replacement variable,
  2056             // Check if this matches a ConP
  2057             //
  2058             // Lookup replacement variable, in operand's component list
  2059             const char *rep_var_name = disp + 1; // Skip '$'
  2060             const Component *comp = _operand->_components.search(rep_var_name);
  2061             assert( comp != NULL,"Replacement variable not found in components");
  2062             const char      *type = comp->_type;
  2063             // Lookup operand form for replacement variable's type
  2064             const Form *form = _AD.globalNames()[type];
  2065             assert( form != NULL, "Replacement variable's type not found");
  2066             OperandForm *op = form->is_operand();
  2067             assert( op, "Attempting to emit a non-register or non-constant");
  2068             // Check if this is a constant
  2069             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2070               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2071               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2072               // assert( idx != -1, "Constant component not found in operand");
  2073               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2074               if ( dtype == Form::idealP ) {
  2075                 _may_reloc    = true;
  2076                 // No longer true that idealP is always an oop
  2077                 _reloc_form   = RELOC_DISP;
  2078                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2082             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2083               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2084               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2085               _may_reloc   = false;
  2086             } else {
  2087               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2090         } // finished with precise check of operand for relocation.
  2091       } // finished with subfield variable
  2092       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2093         _doing_constant = true;
  2094         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2095           // Check operand for type of constant
  2096           assert( _operand, "Must use operand before '$$constant'");
  2097           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2098           _constant_type = dtype;
  2099           if ( dtype == Form::idealP ) {
  2100             _may_reloc    = true;
  2101             // No longer true that idealP is always an oop
  2102             // // _must_reloc   = true;
  2103             _reloc_form   = RELOC_IMMEDIATE;
  2104             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2105           } else {
  2106             // No relocation information needed
  2108         } else {
  2109           // User-provided literals may not require relocation information !!!!!
  2110           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2113       else if ( strcmp(rep_var,"$label") == 0 ) {
  2114         // Calls containing labels require relocation
  2115         if ( _inst.is_ideal_call() )  {
  2116           _may_reloc    = true;
  2117           // !!!!! !!!!!
  2118           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2122       // literal register parameter must be accessed as a 'reg' field.
  2123       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2124         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2125         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2126           _reg_status  = LITERAL_ACCESSED;
  2127         } else {
  2128           _AD.syntax_err(_encoding._linenum,
  2129                          "Invalid access to literal register parameter '%s' in %s.\n",
  2130                          rep_var, _encoding._name);
  2131           assert( false, "invalid access to literal register parameter");
  2134       // literal constant parameters must be accessed as a 'constant' field
  2135       if (_constant_status != LITERAL_NOT_SEEN) {
  2136         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2137         if (strcmp(rep_var,"$constant") == 0) {
  2138           _constant_status = LITERAL_ACCESSED;
  2139         } else {
  2140           _AD.syntax_err(_encoding._linenum,
  2141                          "Invalid access to literal constant parameter '%s' in %s.\n",
  2142                          rep_var, _encoding._name);
  2145     } // end replacement and/or subfield
  2149   void add_rep_var(const char *rep_var) {
  2150     // Handle subfield and replacement variables.
  2151     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2152       // Check for emit prefix, '$$emit32'
  2153       assert( _cleared, "Can not nest $$$emit32");
  2154       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2155         _doing_emit_d32 = true;
  2157       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2158         _doing_emit_d16 = true;
  2160       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2161         _doing_emit_hi  = true;
  2163       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2164         _doing_emit_lo  = true;
  2166       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2167         _doing_emit8    = true;
  2169       else {
  2170         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2171         assert( false, "fatal();");
  2174     else {
  2175       // Update state for replacement variables
  2176       update_state( rep_var );
  2177       _strings_to_emit.addName(rep_var);
  2179     _cleared  = false;
  2182   void emit_replacement() {
  2183     // A replacement variable or one of its subfields
  2184     // Obtain replacement variable from list
  2185     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2186     const char *rep_var;
  2187     _strings_to_emit.reset();
  2188     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2190       if ( (*rep_var) == '$' ) {
  2191         // A subfield variable, '$$' prefix
  2192         emit_field( rep_var );
  2193       } else {
  2194         if (_strings_to_emit.peek() != NULL &&
  2195             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
  2196           fprintf(_fp, "Address::make_raw(");
  2198           emit_rep_var( rep_var );
  2199           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
  2201           _reg_status = LITERAL_ACCESSED;
  2202           emit_rep_var( rep_var );
  2203           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
  2205           _reg_status = LITERAL_ACCESSED;
  2206           emit_rep_var( rep_var );
  2207           fprintf(_fp,"->scale(), ");
  2209           _reg_status = LITERAL_ACCESSED;
  2210           emit_rep_var( rep_var );
  2211           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2212           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2213             fprintf(_fp,"->disp(ra_,this,0), ");
  2214           } else {
  2215             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
  2218           _reg_status = LITERAL_ACCESSED;
  2219           emit_rep_var( rep_var );
  2220           fprintf(_fp,"->disp_reloc())");
  2222           // skip trailing $Address
  2223           _strings_to_emit.iter();
  2224         } else {
  2225           // A replacement variable, '$' prefix
  2226           const char* next = _strings_to_emit.peek();
  2227           const char* next2 = _strings_to_emit.peek(2);
  2228           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
  2229               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
  2230             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
  2231             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
  2232             fprintf(_fp, "as_Register(");
  2233             // emit the operand reference
  2234             emit_rep_var( rep_var );
  2235             rep_var = _strings_to_emit.iter();
  2236             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
  2237             // handle base or index
  2238             emit_field(rep_var);
  2239             rep_var = _strings_to_emit.iter();
  2240             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
  2241             // close up the parens
  2242             fprintf(_fp, ")");
  2243           } else {
  2244             emit_rep_var( rep_var );
  2247       } // end replacement and/or subfield
  2251   void emit_reloc_type(const char* type) {
  2252     fprintf(_fp, "%s", type)
  2257   void emit() {
  2258     //
  2259     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2260     //
  2261     // Emit the function name when generating an emit function
  2262     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2263       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2264       // In general, relocatable isn't known at compiler compile time.
  2265       // Check results of prior scan
  2266       if ( ! _may_reloc ) {
  2267         // Definitely don't need relocation information
  2268         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2269         emit_replacement(); fprintf(_fp, ")");
  2271       else {
  2272         // Emit RUNTIME CHECK to see if value needs relocation info
  2273         // If emitting a relocatable address, use 'emit_d32_reloc'
  2274         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2275         assert( (_doing_disp || _doing_constant)
  2276                 && !(_doing_disp && _doing_constant),
  2277                 "Must be emitting either a displacement or a constant");
  2278         fprintf(_fp,"\n");
  2279         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
  2280                 _operand_idx, disp_constant);
  2281         fprintf(_fp,"  ");
  2282         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
  2283         emit_replacement();             fprintf(_fp,", ");
  2284         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
  2285                 _operand_idx, disp_constant);
  2286         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2287         fprintf(_fp,"\n");
  2288         fprintf(_fp,"} else {\n");
  2289         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2290         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2293     else if ( _doing_emit_d16 ) {
  2294       // Relocation of 16-bit values is not supported
  2295       fprintf(_fp,"emit_d16(cbuf, ");
  2296       emit_replacement(); fprintf(_fp, ")");
  2297       // No relocation done for 16-bit values
  2299     else if ( _doing_emit8 ) {
  2300       // Relocation of 8-bit values is not supported
  2301       fprintf(_fp,"emit_d8(cbuf, ");
  2302       emit_replacement(); fprintf(_fp, ")");
  2303       // No relocation done for 8-bit values
  2305     else {
  2306       // Not an emit# command, just output the replacement string.
  2307       emit_replacement();
  2310     // Get ready for next state collection.
  2311     clear();
  2314 private:
  2316   // recognizes names which represent MacroAssembler register types
  2317   // and return the conversion function to build them from OptoReg
  2318   const char* reg_conversion(const char* rep_var) {
  2319     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2320     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2321 #if defined(IA32) || defined(AMD64)
  2322     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2323 #endif
  2324     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
  2325     return NULL;
  2328   void emit_field(const char *rep_var) {
  2329     const char* reg_convert = reg_conversion(rep_var);
  2331     // A subfield variable, '$$subfield'
  2332     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2333       // $reg form or the $Register MacroAssembler type conversions
  2334       assert( _operand_idx != -1,
  2335               "Must use this subfield after operand");
  2336       if( _reg_status == LITERAL_NOT_SEEN ) {
  2337         if (_processing_noninput) {
  2338           const Form  *local     = _inst._localNames[_operand_name];
  2339           OperandForm *oper      = local->is_operand();
  2340           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2341           if (reg_convert != NULL) {
  2342             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2343           } else {
  2344             fprintf(_fp, "%s_enc", first->_regname);
  2346         } else {
  2347           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2348           // Add parameter for index position, if not result operand
  2349           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2350           fprintf(_fp,")");
  2351           fprintf(_fp, "/* %s */", _operand_name);
  2353       } else {
  2354         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2355         // Register literal has already been sent to output file, nothing more needed
  2358     else if ( strcmp(rep_var,"$base") == 0 ) {
  2359       assert( _operand_idx != -1,
  2360               "Must use this subfield after operand");
  2361       assert( ! _may_reloc, "UnImplemented()");
  2362       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2364     else if ( strcmp(rep_var,"$index") == 0 ) {
  2365       assert( _operand_idx != -1,
  2366               "Must use this subfield after operand");
  2367       assert( ! _may_reloc, "UnImplemented()");
  2368       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2370     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2371       assert( ! _may_reloc, "UnImplemented()");
  2372       fprintf(_fp,"->scale()");
  2374     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2375       assert( ! _may_reloc, "UnImplemented()");
  2376       fprintf(_fp,"->ccode()");
  2378     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2379       if( _constant_status == LITERAL_NOT_SEEN ) {
  2380         if ( _constant_type == Form::idealD ) {
  2381           fprintf(_fp,"->constantD()");
  2382         } else if ( _constant_type == Form::idealF ) {
  2383           fprintf(_fp,"->constantF()");
  2384         } else if ( _constant_type == Form::idealL ) {
  2385           fprintf(_fp,"->constantL()");
  2386         } else {
  2387           fprintf(_fp,"->constant()");
  2389       } else {
  2390         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2391         // Constant literal has already been sent to output file, nothing more needed
  2394     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2395       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2396       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2397         fprintf(_fp,"->disp(ra_,this,0)");
  2398       } else {
  2399         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2402     else if ( strcmp(rep_var,"$label") == 0 ) {
  2403       fprintf(_fp,"->label()");
  2405     else if ( strcmp(rep_var,"$method") == 0 ) {
  2406       fprintf(_fp,"->method()");
  2408     else {
  2409       printf("emit_field: %s\n",rep_var);
  2410       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
  2411                            rep_var, _inst._ident);
  2412       assert( false, "UnImplemented()");
  2417   void emit_rep_var(const char *rep_var) {
  2418     _processing_noninput = false;
  2419     // A replacement variable, originally '$'
  2420     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2421       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2422         // Missing opcode
  2423         _AD.syntax_err( _inst._linenum,
  2424                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2425                         rep_var, _inst._ident, _encoding._name);
  2428     else if (strcmp(rep_var, "constanttablebase") == 0) {
  2429       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
  2431     else if (strcmp(rep_var, "constantoffset") == 0) {
  2432       fprintf(_fp, "constant_offset()");
  2434     else if (strcmp(rep_var, "constantaddress") == 0) {
  2435       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
  2437     else {
  2438       // Lookup its position in parameter list
  2439       int   param_no  = _encoding.rep_var_index(rep_var);
  2440       if ( param_no == -1 ) {
  2441         _AD.syntax_err( _encoding._linenum,
  2442                         "Replacement variable %s not found in enc_class %s.\n",
  2443                         rep_var, _encoding._name);
  2445       // Lookup the corresponding ins_encode parameter
  2446       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2448       // Check if instruction's actual parameter is a local name in the instruction
  2449       const Form  *local     = _inst._localNames[inst_rep_var];
  2450       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2451       // Note: assert removed to allow constant and symbolic parameters
  2452       // assert( opc, "replacement variable was not found in local names");
  2453       // Lookup the index position iff the replacement variable is a localName
  2454       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2455       if( idx != -1 ) {
  2456         if (_inst.is_noninput_operand(idx)) {
  2457           // This operand isn't a normal input so printing it is done
  2458           // specially.
  2459           _processing_noninput = true;
  2460         } else {
  2461           // Output the emit code for this operand
  2462           fprintf(_fp,"opnd_array(%d)",idx);
  2464         assert( _operand == opc->is_operand(),
  2465                 "Previous emit $operand does not match current");
  2467       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2468         // else check if it is a constant expression
  2469         // Removed following assert to allow primitive C types as arguments to encodings
  2470         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2471         fprintf(_fp,"(%s)", inst_rep_var);
  2472         _constant_status = LITERAL_OUTPUT;
  2474       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2475         // else check if "primary", "secondary", "tertiary"
  2476         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2477         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2478           // Missing opcode
  2479           _AD.syntax_err( _inst._linenum,
  2480                           "Missing $%s opcode definition in %s\n",
  2481                           rep_var, _inst._ident);
  2484         _constant_status = LITERAL_OUTPUT;
  2486       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2487         // Instruction provided a literal register name for this parameter
  2488         // Check that encoding specifies $$$reg to resolve.as register.
  2489         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2490         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2491         _reg_status = LITERAL_OUTPUT;
  2493       else {
  2494         // Check for unimplemented functionality before hard failure
  2495         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2496         assert( false, "ShouldNotReachHere()");
  2498       // all done
  2502 };  // end class DefineEmitState
  2505 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2507   //(1)
  2508   // Output instruction's emit prototype
  2509   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2510           inst._ident);
  2512   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2514   //(2)
  2515   // Print the size
  2516   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2518   // (3) and (4)
  2519   fprintf(fp,"}\n\n");
  2522 // Emit late expand function.
  2523 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
  2524   InsEncode *ins_encode = inst._insencode;
  2526   // Output instruction's postalloc_expand prototype.
  2527   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
  2528           inst._ident);
  2530   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
  2532   // Output each operand's offset into the array of registers.
  2533   inst.index_temps(fp, _globalNames);
  2535   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
  2536   // for each parameter <par_name> specified in the encoding.
  2537   ins_encode->reset();
  2538   const char *ec_name = ins_encode->encode_class_iter();
  2539   assert(ec_name != NULL, "late expand must specify an encoding");
  2541   EncClass *encoding = _encode->encClass(ec_name);
  2542   if (encoding == NULL) {
  2543     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2544     abort();
  2546   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2547     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2548                          inst._ident, ins_encode->current_encoding_num_args(),
  2549                          ec_name, encoding->num_args());
  2552   fprintf(fp, "  // Access to ins and operands for late expand.\n");
  2553   const int buflen = 2000;
  2554   char idxbuf[buflen]; char *ib = idxbuf; sprintf(ib, "");
  2555   char nbuf  [buflen]; char *nb = nbuf;   sprintf(nb, "");
  2556   char opbuf [buflen]; char *ob = opbuf;  sprintf(ob, "");
  2558   encoding->_parameter_type.reset();
  2559   encoding->_parameter_name.reset();
  2560   const char *type = encoding->_parameter_type.iter();
  2561   const char *name = encoding->_parameter_name.iter();
  2562   int param_no = 0;
  2563   for (; (type != NULL) && (name != NULL);
  2564        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
  2565     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
  2566     int idx = inst.operand_position_format(arg_name);
  2567     if (strcmp(arg_name, "constanttablebase") == 0) {
  2568       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
  2569                     name, type, arg_name);
  2570       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2571       // There is no operand for the constanttablebase.
  2572     } else if (inst.is_noninput_operand(idx)) {
  2573       globalAD->syntax_err(inst._linenum,
  2574                            "In %s: you can not pass the non-input %s to a late expand encoding.\n",
  2575                            inst._ident, arg_name);
  2576     } else {
  2577       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
  2578                     name, idx, type, arg_name);
  2579       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2580       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
  2582     param_no++;
  2584   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
  2586   fprintf(fp, "%s", idxbuf);
  2587   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
  2588   fprintf(fp, "%s%s", nbuf, opbuf);
  2589   fprintf(fp, "  Compile *C = ra_->C;\n");
  2591   // Output this instruction's encodings.
  2592   fprintf(fp, "  {");
  2593   const char *ec_code    = NULL;
  2594   const char *ec_rep_var = NULL;
  2595   assert(encoding == _encode->encClass(ec_name), "");
  2597   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
  2598   encoding->_code.reset();
  2599   encoding->_rep_vars.reset();
  2600   // Process list of user-defined strings,
  2601   // and occurrences of replacement variables.
  2602   // Replacement Vars are pushed into a list and then output.
  2603   while ((ec_code = encoding->_code.iter()) != NULL) {
  2604     if (! encoding->_code.is_signal(ec_code)) {
  2605       // Emit pending code.
  2606       pending.emit();
  2607       pending.clear();
  2608       // Emit this code section.
  2609       fprintf(fp, "%s", ec_code);
  2610     } else {
  2611       // A replacement variable or one of its subfields.
  2612       // Obtain replacement variable from list.
  2613       ec_rep_var = encoding->_rep_vars.iter();
  2614       pending.add_rep_var(ec_rep_var);
  2617   // Emit pending code.
  2618   pending.emit();
  2619   pending.clear();
  2620   fprintf(fp, "  }\n");
  2622   fprintf(fp, "}\n\n");
  2624   ec_name = ins_encode->encode_class_iter();
  2625   assert(ec_name == NULL, "Late expand may only have one encoding.");
  2628 // defineEmit -----------------------------------------------------------------
  2629 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  2630   InsEncode* encode = inst._insencode;
  2632   // (1)
  2633   // Output instruction's emit prototype
  2634   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
  2636   // If user did not define an encode section,
  2637   // provide stub that does not generate any machine code.
  2638   if( (_encode == NULL) || (encode == NULL) ) {
  2639     fprintf(fp, "  // User did not define an encode section.\n");
  2640     fprintf(fp, "}\n");
  2641     return;
  2644   // Save current instruction's starting address (helps with relocation).
  2645   fprintf(fp, "  cbuf.set_insts_mark();\n");
  2647   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  2648   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
  2649     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  2652   // Output each operand's offset into the array of registers.
  2653   inst.index_temps(fp, _globalNames);
  2655   // Output this instruction's encodings
  2656   const char *ec_name;
  2657   bool        user_defined = false;
  2658   encode->reset();
  2659   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2660     fprintf(fp, "  {\n");
  2661     // Output user-defined encoding
  2662     user_defined           = true;
  2664     const char *ec_code    = NULL;
  2665     const char *ec_rep_var = NULL;
  2666     EncClass   *encoding   = _encode->encClass(ec_name);
  2667     if (encoding == NULL) {
  2668       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2669       abort();
  2672     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2673       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2674                            inst._ident, encode->current_encoding_num_args(),
  2675                            ec_name, encoding->num_args());
  2678     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2679     encoding->_code.reset();
  2680     encoding->_rep_vars.reset();
  2681     // Process list of user-defined strings,
  2682     // and occurrences of replacement variables.
  2683     // Replacement Vars are pushed into a list and then output
  2684     while ((ec_code = encoding->_code.iter()) != NULL) {
  2685       if (!encoding->_code.is_signal(ec_code)) {
  2686         // Emit pending code
  2687         pending.emit();
  2688         pending.clear();
  2689         // Emit this code section
  2690         fprintf(fp, "%s", ec_code);
  2691       } else {
  2692         // A replacement variable or one of its subfields
  2693         // Obtain replacement variable from list
  2694         ec_rep_var  = encoding->_rep_vars.iter();
  2695         pending.add_rep_var(ec_rep_var);
  2698     // Emit pending code
  2699     pending.emit();
  2700     pending.clear();
  2701     fprintf(fp, "  }\n");
  2702   } // end while instruction's encodings
  2704   // Check if user stated which encoding to user
  2705   if ( user_defined == false ) {
  2706     fprintf(fp, "  // User did not define which encode class to use.\n");
  2709   // (3) and (4)
  2710   fprintf(fp, "}\n\n");
  2713 // defineEvalConstant ---------------------------------------------------------
  2714 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  2715   InsEncode* encode = inst._constant;
  2717   // (1)
  2718   // Output instruction's emit prototype
  2719   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
  2721   // For ideal jump nodes, add a jump-table entry.
  2722   if (inst.is_ideal_jump()) {
  2723     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  2726   // If user did not define an encode section,
  2727   // provide stub that does not generate any machine code.
  2728   if ((_encode == NULL) || (encode == NULL)) {
  2729     fprintf(fp, "  // User did not define an encode section.\n");
  2730     fprintf(fp, "}\n");
  2731     return;
  2734   // Output this instruction's encodings
  2735   const char *ec_name;
  2736   bool        user_defined = false;
  2737   encode->reset();
  2738   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2739     fprintf(fp, "  {\n");
  2740     // Output user-defined encoding
  2741     user_defined           = true;
  2743     const char *ec_code    = NULL;
  2744     const char *ec_rep_var = NULL;
  2745     EncClass   *encoding   = _encode->encClass(ec_name);
  2746     if (encoding == NULL) {
  2747       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2748       abort();
  2751     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2752       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2753                            inst._ident, encode->current_encoding_num_args(),
  2754                            ec_name, encoding->num_args());
  2757     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2758     encoding->_code.reset();
  2759     encoding->_rep_vars.reset();
  2760     // Process list of user-defined strings,
  2761     // and occurrences of replacement variables.
  2762     // Replacement Vars are pushed into a list and then output
  2763     while ((ec_code = encoding->_code.iter()) != NULL) {
  2764       if (!encoding->_code.is_signal(ec_code)) {
  2765         // Emit pending code
  2766         pending.emit();
  2767         pending.clear();
  2768         // Emit this code section
  2769         fprintf(fp, "%s", ec_code);
  2770       } else {
  2771         // A replacement variable or one of its subfields
  2772         // Obtain replacement variable from list
  2773         ec_rep_var  = encoding->_rep_vars.iter();
  2774         pending.add_rep_var(ec_rep_var);
  2777     // Emit pending code
  2778     pending.emit();
  2779     pending.clear();
  2780     fprintf(fp, "  }\n");
  2781   } // end while instruction's encodings
  2783   // Check if user stated which encoding to user
  2784   if (user_defined == false) {
  2785     fprintf(fp, "  // User did not define which encode class to use.\n");
  2788   // (3) and (4)
  2789   fprintf(fp, "}\n");
  2792 // ---------------------------------------------------------------------------
  2793 //--------Utilities to build MachOper and MachNode derived Classes------------
  2794 // ---------------------------------------------------------------------------
  2796 //------------------------------Utilities to build Operand Classes------------
  2797 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2798   uint num_edges = oper.num_edges(globals);
  2799   if( num_edges != 0 ) {
  2800     // Method header
  2801     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2802             oper._ident);
  2804     // Assert that the index is in range.
  2805     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2806             num_edges);
  2808     // Figure out if all RegMasks are the same.
  2809     const char* first_reg_class = oper.in_reg_class(0, globals);
  2810     bool all_same = true;
  2811     assert(first_reg_class != NULL, "did not find register mask");
  2813     for (uint index = 1; all_same && index < num_edges; index++) {
  2814       const char* some_reg_class = oper.in_reg_class(index, globals);
  2815       assert(some_reg_class != NULL, "did not find register mask");
  2816       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2817         all_same = false;
  2821     if (all_same) {
  2822       // Return the sole RegMask.
  2823       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2824         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2825       } else {
  2826         const char* first_reg_class_to_upper = toUpper(first_reg_class);
  2827         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
  2828         delete[] first_reg_class_to_upper;
  2830     } else {
  2831       // Build a switch statement to return the desired mask.
  2832       fprintf(fp,"  switch (index) {\n");
  2834       for (uint index = 0; index < num_edges; index++) {
  2835         const char *reg_class = oper.in_reg_class(index, globals);
  2836         assert(reg_class != NULL, "did not find register mask");
  2837         if( !strcmp(reg_class, "stack_slots") ) {
  2838           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2839         } else {
  2840           const char* reg_class_to_upper = toUpper(reg_class);
  2841           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
  2842           delete[] reg_class_to_upper;
  2845       fprintf(fp,"  }\n");
  2846       fprintf(fp,"  ShouldNotReachHere();\n");
  2847       fprintf(fp,"  return NULL;\n");
  2850     // Method close
  2851     fprintf(fp, "}\n\n");
  2855 // generate code to create a clone for a class derived from MachOper
  2856 //
  2857 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2858 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2859 // (2)  }
  2860 //
  2861 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2862   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
  2863   // Check for constants that need to be copied over
  2864   const int  num_consts    = oper.num_consts(globalNames);
  2865   const bool is_ideal_bool = oper.is_ideal_bool();
  2866   if( (num_consts > 0) ) {
  2867     fprintf(fp,"  return new (C) %sOper(", oper._ident);
  2868     // generate parameters for constants
  2869     int i = 0;
  2870     fprintf(fp,"_c%d", i);
  2871     for( i = 1; i < num_consts; ++i) {
  2872       fprintf(fp,", _c%d", i);
  2874     // finish line (1)
  2875     fprintf(fp,");\n");
  2877   else {
  2878     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2879     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
  2881   // finish method
  2882   fprintf(fp,"}\n");
  2885 // Helper functions for bug 4796752, abstracted with minimal modification
  2886 // from define_oper_interface()
  2887 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2888   OperandForm *op = NULL;
  2889   // Check for replacement variable
  2890   if( *encoding == '$' ) {
  2891     // Replacement variable
  2892     const char *rep_var = encoding + 1;
  2893     // Lookup replacement variable, rep_var, in operand's component list
  2894     const Component *comp = oper._components.search(rep_var);
  2895     assert( comp != NULL, "Replacement variable not found in components");
  2896     // Lookup operand form for replacement variable's type
  2897     const char      *type = comp->_type;
  2898     Form            *form = (Form*)globals[type];
  2899     assert( form != NULL, "Replacement variable's type not found");
  2900     op = form->is_operand();
  2901     assert( op, "Attempting to emit a non-register or non-constant");
  2904   return op;
  2907 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2908   int idx = -1;
  2909   // Check for replacement variable
  2910   if( *encoding == '$' ) {
  2911     // Replacement variable
  2912     const char *rep_var = encoding + 1;
  2913     // Lookup replacement variable, rep_var, in operand's component list
  2914     const Component *comp = oper._components.search(rep_var);
  2915     assert( comp != NULL, "Replacement variable not found in components");
  2916     // Lookup operand form for replacement variable's type
  2917     const char      *type = comp->_type;
  2918     Form            *form = (Form*)globals[type];
  2919     assert( form != NULL, "Replacement variable's type not found");
  2920     OperandForm *op = form->is_operand();
  2921     assert( op, "Attempting to emit a non-register or non-constant");
  2922     // Check that this is a constant and find constant's index:
  2923     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2924       idx  = oper.constant_position(globals, comp);
  2928   return idx;
  2931 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2932   bool is_regI = false;
  2934   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2935   if( op != NULL ) {
  2936     // Check that this is a register
  2937     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2938       // Register
  2939       const char* ideal  = op->ideal_type(globals);
  2940       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2944   return is_regI;
  2947 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2948   bool is_conP = false;
  2950   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2951   if( op != NULL ) {
  2952     // Check that this is a constant pointer
  2953     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2954       // Constant
  2955       Form::DataType dtype = op->is_base_constant(globals);
  2956       is_conP = (dtype == Form::idealP);
  2960   return is_conP;
  2964 // Define a MachOper interface methods
  2965 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2966                                      const char *name, const char *encoding) {
  2967   bool emit_position = false;
  2968   int position = -1;
  2970   fprintf(fp,"  virtual int            %s", name);
  2971   // Generate access method for base, index, scale, disp, ...
  2972   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2973     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2974     emit_position = true;
  2975   } else if ( (strcmp(name,"disp") == 0) ) {
  2976     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2977   } else {
  2978     fprintf(fp, "() const {\n");
  2981   // Check for hexadecimal value OR replacement variable
  2982   if( *encoding == '$' ) {
  2983     // Replacement variable
  2984     const char *rep_var = encoding + 1;
  2985     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
  2986     // Lookup replacement variable, rep_var, in operand's component list
  2987     const Component *comp = oper._components.search(rep_var);
  2988     assert( comp != NULL, "Replacement variable not found in components");
  2989     // Lookup operand form for replacement variable's type
  2990     const char      *type = comp->_type;
  2991     Form            *form = (Form*)globals[type];
  2992     assert( form != NULL, "Replacement variable's type not found");
  2993     OperandForm *op = form->is_operand();
  2994     assert( op, "Attempting to emit a non-register or non-constant");
  2995     // Check that this is a register or a constant and generate code:
  2996     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2997       // Register
  2998       int idx_offset = oper.register_position( globals, rep_var);
  2999       position = idx_offset;
  3000       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  3001       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  3002       fprintf(fp,"));\n");
  3003     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  3004       // StackSlot for an sReg comes either from input node or from self, when idx==0
  3005       fprintf(fp,"    if( idx != 0 ) {\n");
  3006       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
  3007       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  3008       fprintf(fp,"    }\n");
  3009       fprintf(fp,"    // Access stack offset (register number) from myself\n");
  3010       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  3011     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  3012       // Constant
  3013       // Check which constant this name maps to: _c0, _c1, ..., _cn
  3014       const int idx = oper.constant_position(globals, comp);
  3015       assert( idx != -1, "Constant component not found in operand");
  3016       // Output code for this constant, type dependent.
  3017       fprintf(fp,"    return (int)" );
  3018       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  3019       fprintf(fp,";\n");
  3020     } else {
  3021       assert( false, "Attempting to emit a non-register or non-constant");
  3024   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  3025     // Hex value
  3026     fprintf(fp,"    return %s;\n", encoding);
  3027   } else {
  3028     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
  3029                          oper._ident, encoding, name);
  3030     assert( false, "Do not support octal or decimal encode constants");
  3032   fprintf(fp,"  }\n");
  3034   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  3035     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  3036     MemInterface *mem_interface = oper._interface->is_MemInterface();
  3037     const char *base = mem_interface->_base;
  3038     const char *disp = mem_interface->_disp;
  3039     if( emit_position && (strcmp(name,"base") == 0)
  3040         && base != NULL && is_regI(base, oper, globals)
  3041         && disp != NULL && is_conP(disp, oper, globals) ) {
  3042       // Found a memory access using a constant pointer for a displacement
  3043       // and a base register containing an integer offset.
  3044       // In this case the base and disp are reversed with respect to what
  3045       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  3046       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  3047       // to correctly compute the access type for alias analysis.
  3048       //
  3049       // See BugId 4796752, operand indOffset32X in i486.ad
  3050       int idx = rep_var_to_constant_index(disp, oper, globals);
  3051       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  3056 //
  3057 // Construct the method to copy _idx, inputs and operands to new node.
  3058 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  3059   fprintf(fp_cpp, "\n");
  3060   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  3061   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  3062   if( !used ) {
  3063     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  3064     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  3065     fprintf(fp_cpp, "}\n");
  3066   } else {
  3067     // New node must use same node index for access through allocator's tables
  3068     fprintf(fp_cpp, "  // New node must use same node index\n");
  3069     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  3070     // Copy machine-independent inputs
  3071     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  3072     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  3073     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  3074     fprintf(fp_cpp, "  }\n");
  3075     // Copy machine operands to new MachNode
  3076     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  3077     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  3078     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  3079     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  3080     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  3081     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  3082     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  3083     fprintf(fp_cpp, "  }\n");
  3084     fprintf(fp_cpp, "}\n");
  3086   fprintf(fp_cpp, "\n");
  3089 //------------------------------defineClasses----------------------------------
  3090 // Define members of MachNode and MachOper classes based on
  3091 // operand and instruction lists
  3092 void ArchDesc::defineClasses(FILE *fp) {
  3094   // Define the contents of an array containing the machine register names
  3095   defineRegNames(fp, _register);
  3096   // Define an array containing the machine register encoding values
  3097   defineRegEncodes(fp, _register);
  3098   // Generate an enumeration of user-defined register classes
  3099   // and a list of register masks, one for each class.
  3100   // Only define the RegMask value objects in the expand file.
  3101   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  3102   declare_register_masks(_HPP_file._fp);
  3103   // build_register_masks(fp);
  3104   build_register_masks(_CPP_EXPAND_file._fp);
  3105   // Define the pipe_classes
  3106   build_pipe_classes(_CPP_PIPELINE_file._fp);
  3108   // Generate Machine Classes for each operand defined in AD file
  3109   fprintf(fp,"\n");
  3110   fprintf(fp,"\n");
  3111   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  3112   // Iterate through all operands
  3113   _operands.reset();
  3114   OperandForm *oper;
  3115   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  3116     // Ensure this is a machine-world instruction
  3117     if ( oper->ideal_only() ) continue;
  3118     // !!!!!
  3119     // The declaration of labelOper is in machine-independent file: machnode
  3120     if ( strcmp(oper->_ident,"label") == 0 ) {
  3121       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3123       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3124       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  3125       fprintf(fp,"}\n");
  3127       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3128               oper->_ident, machOperEnum(oper->_ident));
  3129       // // Currently all XXXOper::Hash() methods are identical (990820)
  3130       // define_hash(fp, oper->_ident);
  3131       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3132       // define_cmp(fp, oper->_ident);
  3133       fprintf(fp,"\n");
  3135       continue;
  3138     // The declaration of methodOper is in machine-independent file: machnode
  3139     if ( strcmp(oper->_ident,"method") == 0 ) {
  3140       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3142       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3143       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  3144       fprintf(fp,"}\n");
  3146       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3147               oper->_ident, machOperEnum(oper->_ident));
  3148       // // Currently all XXXOper::Hash() methods are identical (990820)
  3149       // define_hash(fp, oper->_ident);
  3150       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3151       // define_cmp(fp, oper->_ident);
  3152       fprintf(fp,"\n");
  3154       continue;
  3157     defineIn_RegMask(fp, _globalNames, *oper);
  3158     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  3159     // // Currently all XXXOper::Hash() methods are identical (990820)
  3160     // define_hash(fp, oper->_ident);
  3161     // // Currently all XXXOper::Cmp() methods are identical (990820)
  3162     // define_cmp(fp, oper->_ident);
  3164     // side-call to generate output that used to be in the header file:
  3165     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  3166     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  3171   // Generate Machine Classes for each instruction defined in AD file
  3172   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  3173   // Output the definitions for out_RegMask() // & kill_RegMask()
  3174   _instructions.reset();
  3175   InstructForm *instr;
  3176   MachNodeForm *machnode;
  3177   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3178     // Ensure this is a machine-world instruction
  3179     if ( instr->ideal_only() ) continue;
  3181     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  3184   bool used = false;
  3185   // Output the definitions for expand rules & peephole rules
  3186   _instructions.reset();
  3187   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3188     // Ensure this is a machine-world instruction
  3189     if ( instr->ideal_only() ) continue;
  3190     // If there are multiple defs/kills, or an explicit expand rule, build rule
  3191     if( instr->expands() || instr->needs_projections() ||
  3192         instr->has_temps() ||
  3193         instr->is_mach_constant() ||
  3194         instr->needs_constant_base() ||
  3195         instr->_matrule != NULL &&
  3196         instr->num_opnds() != instr->num_unique_opnds() )
  3197       defineExpand(_CPP_EXPAND_file._fp, instr);
  3198     // If there is an explicit peephole rule, build it
  3199     if ( instr->peepholes() )
  3200       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  3202     // Output code to convert to the cisc version, if applicable
  3203     used |= instr->define_cisc_version(*this, fp);
  3205     // Output code to convert to the short branch version, if applicable
  3206     used |= instr->define_short_branch_methods(*this, fp);
  3209   // Construct the method called by cisc_version() to copy inputs and operands.
  3210   define_fill_new_machnode(used, fp);
  3212   // Output the definitions for labels
  3213   _instructions.reset();
  3214   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3215     // Ensure this is a machine-world instruction
  3216     if ( instr->ideal_only() ) continue;
  3218     // Access the fields for operand Label
  3219     int label_position = instr->label_position();
  3220     if( label_position != -1 ) {
  3221       // Set the label
  3222       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
  3223       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3224               label_position );
  3225       fprintf(fp,"  oper->_label     = label;\n");
  3226       fprintf(fp,"  oper->_block_num = block_num;\n");
  3227       fprintf(fp,"}\n");
  3228       // Save the label
  3229       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
  3230       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3231               label_position );
  3232       fprintf(fp,"  *label = oper->_label;\n");
  3233       fprintf(fp,"  *block_num = oper->_block_num;\n");
  3234       fprintf(fp,"}\n");
  3238   // Output the definitions for methods
  3239   _instructions.reset();
  3240   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3241     // Ensure this is a machine-world instruction
  3242     if ( instr->ideal_only() ) continue;
  3244     // Access the fields for operand Label
  3245     int method_position = instr->method_position();
  3246     if( method_position != -1 ) {
  3247       // Access the method's address
  3248       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  3249       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  3250               method_position );
  3251       fprintf(fp,"}\n");
  3252       fprintf(fp,"\n");
  3256   // Define this instruction's number of relocation entries, base is '0'
  3257   _instructions.reset();
  3258   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3259     // Output the definition for number of relocation entries
  3260     uint reloc_size = instr->reloc(_globalNames);
  3261     if ( reloc_size != 0 ) {
  3262       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
  3263       fprintf(fp,"  return %d;\n", reloc_size);
  3264       fprintf(fp,"}\n");
  3265       fprintf(fp,"\n");
  3268   fprintf(fp,"\n");
  3270   // Output the definitions for code generation
  3271   //
  3272   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  3273   //   // ...  encoding defined by user
  3274   //   return ptr;
  3275   // }
  3276   //
  3277   _instructions.reset();
  3278   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3279     // Ensure this is a machine-world instruction
  3280     if ( instr->ideal_only() ) continue;
  3282     if (instr->_insencode) {
  3283       if (instr->postalloc_expands()) {
  3284         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
  3285         // from code sections in ad file that is dumped to fp.
  3286         define_postalloc_expand(fp, *instr);
  3287       } else {
  3288         defineEmit(fp, *instr);
  3291     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
  3292     if (instr->_size)              defineSize        (fp, *instr);
  3294     // side-call to generate output that used to be in the header file:
  3295     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  3296     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  3299   // Output the definitions for alias analysis
  3300   _instructions.reset();
  3301   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3302     // Ensure this is a machine-world instruction
  3303     if ( instr->ideal_only() ) continue;
  3305     // Analyze machine instructions that either USE or DEF memory.
  3306     int memory_operand = instr->memory_operand(_globalNames);
  3307     // Some guys kill all of memory
  3308     if ( instr->is_wide_memory_kill(_globalNames) ) {
  3309       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3312     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3313       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3314         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3315         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3316       } else {
  3317         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3322   // Get the length of the longest identifier
  3323   int max_ident_len = 0;
  3324   _instructions.reset();
  3326   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3327     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3328       int ident_len = (int)strlen(instr->_ident);
  3329       if( max_ident_len < ident_len )
  3330         max_ident_len = ident_len;
  3334   // Emit specifically for Node(s)
  3335   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3336     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3337   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3338     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3339   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3341   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3342     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3343   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3344     max_ident_len, "MachNode");
  3345   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3347   // Output the definitions for machine node specific pipeline data
  3348   _machnodes.reset();
  3350   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3351     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3352       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3355   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3357   // Output the definitions for instruction pipeline static data references
  3358   _instructions.reset();
  3360   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3361     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3362       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3363       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3364         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3365       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3366         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3372 // -------------------------------- maps ------------------------------------
  3374 // Information needed to generate the ReduceOp mapping for the DFA
  3375 class OutputReduceOp : public OutputMap {
  3376 public:
  3377   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3378     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
  3380   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3381   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3382   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3383                        OutputMap::closing();
  3385   void map(OpClassForm &opc)  {
  3386     const char *reduce = opc._ident;
  3387     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3388     else          fprintf(_cpp, "  0");
  3390   void map(OperandForm &oper) {
  3391     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3392     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3393     // operand stackSlot does not have a match rule, but produces a stackSlot
  3394     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3395     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3396     else          fprintf(_cpp, "  0");
  3398   void map(InstructForm &inst) {
  3399     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3400     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3401     else          fprintf(_cpp, "  0");
  3403   void map(char         *reduce) {
  3404     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3405     else          fprintf(_cpp, "  0");
  3407 };
  3409 // Information needed to generate the LeftOp mapping for the DFA
  3410 class OutputLeftOp : public OutputMap {
  3411 public:
  3412   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3413     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
  3415   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3416   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3417   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3418                        OutputMap::closing();
  3420   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3421   void map(OperandForm &oper) {
  3422     const char *reduce = oper.reduce_left(_globals);
  3423     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3424     else          fprintf(_cpp, "  0");
  3426   void map(char        *name) {
  3427     const char *reduce = _AD.reduceLeft(name);
  3428     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3429     else          fprintf(_cpp, "  0");
  3431   void map(InstructForm &inst) {
  3432     const char *reduce = inst.reduce_left(_globals);
  3433     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3434     else          fprintf(_cpp, "  0");
  3436 };
  3439 // Information needed to generate the RightOp mapping for the DFA
  3440 class OutputRightOp : public OutputMap {
  3441 public:
  3442   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3443     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
  3445   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3446   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3447   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3448                        OutputMap::closing();
  3450   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3451   void map(OperandForm &oper) {
  3452     const char *reduce = oper.reduce_right(_globals);
  3453     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3454     else          fprintf(_cpp, "  0");
  3456   void map(char        *name) {
  3457     const char *reduce = _AD.reduceRight(name);
  3458     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3459     else          fprintf(_cpp, "  0");
  3461   void map(InstructForm &inst) {
  3462     const char *reduce = inst.reduce_right(_globals);
  3463     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3464     else          fprintf(_cpp, "  0");
  3466 };
  3469 // Information needed to generate the Rule names for the DFA
  3470 class OutputRuleName : public OutputMap {
  3471 public:
  3472   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3473     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
  3475   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3476   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3477   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
  3478                        OutputMap::closing();
  3480   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3481   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3482   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3483   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3484 };
  3487 // Information needed to generate the swallowed mapping for the DFA
  3488 class OutputSwallowed : public OutputMap {
  3489 public:
  3490   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3491     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
  3493   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3494   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3495   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3496                        OutputMap::closing();
  3498   void map(OperandForm &oper) { // Generate the entry for this opcode
  3499     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3500     fprintf(_cpp, "  %s", swallowed);
  3502   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3503   void map(char        *name) { fprintf(_cpp, "  false"); }
  3504   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3505 };
  3508 // Information needed to generate the decision array for instruction chain rule
  3509 class OutputInstChainRule : public OutputMap {
  3510 public:
  3511   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3512     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
  3514   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3515   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3516   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3517                        OutputMap::closing();
  3519   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3520   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3521   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3522   void map(InstructForm &inst) { // Check for simple chain rule
  3523     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3524     fprintf(_cpp, "  %s", chain);
  3526 };
  3529 //---------------------------build_map------------------------------------
  3530 // Build  mapping from enumeration for densely packed operands
  3531 // TO result and child types.
  3532 void ArchDesc::build_map(OutputMap &map) {
  3533   FILE         *fp_hpp = map.decl_file();
  3534   FILE         *fp_cpp = map.def_file();
  3535   int           idx    = 0;
  3536   OperandForm  *op;
  3537   OpClassForm  *opc;
  3538   InstructForm *inst;
  3540   // Construct this mapping
  3541   map.declaration();
  3542   fprintf(fp_cpp,"\n");
  3543   map.definition();
  3545   // Output the mapping for operands
  3546   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3547   _operands.reset();
  3548   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3549     // Ensure this is a machine-world instruction
  3550     if ( op->ideal_only() )  continue;
  3552     // Generate the entry for this opcode
  3553     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
  3554     ++idx;
  3555   };
  3556   fprintf(fp_cpp, "  // last operand\n");
  3558   // Place all user-defined operand classes into the mapping
  3559   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3560   _opclass.reset();
  3561   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3562     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
  3563     ++idx;
  3564   };
  3565   fprintf(fp_cpp, "  // last operand class\n");
  3567   // Place all internally defined operands into the mapping
  3568   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3569   _internalOpNames.reset();
  3570   char *name = NULL;
  3571   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3572     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
  3573     ++idx;
  3574   };
  3575   fprintf(fp_cpp, "  // last internally defined operand\n");
  3577   // Place all user-defined instructions into the mapping
  3578   if( map.do_instructions() ) {
  3579     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3580     // Output all simple instruction chain rules first
  3581     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3583       _instructions.reset();
  3584       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3585         // Ensure this is a machine-world instruction
  3586         if ( inst->ideal_only() )  continue;
  3587         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3588         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3590         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3591         ++idx;
  3592       };
  3593       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3594       _instructions.reset();
  3595       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3596         // Ensure this is a machine-world instruction
  3597         if ( inst->ideal_only() )  continue;
  3598         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3599         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3601         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3602         ++idx;
  3603       };
  3604       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3606     // Output all instructions that are NOT simple chain rules
  3608       _instructions.reset();
  3609       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3610         // Ensure this is a machine-world instruction
  3611         if ( inst->ideal_only() )  continue;
  3612         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3613         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3615         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3616         ++idx;
  3617       };
  3618       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3619       _instructions.reset();
  3620       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3621         // Ensure this is a machine-world instruction
  3622         if ( inst->ideal_only() )  continue;
  3623         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3624         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3626         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3627         ++idx;
  3628       };
  3630     fprintf(fp_cpp, "  // last instruction\n");
  3631     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3633   // Finish defining table
  3634   map.closing();
  3635 };
  3638 // Helper function for buildReduceMaps
  3639 char reg_save_policy(const char *calling_convention) {
  3640   char callconv;
  3642   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3643   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3644   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3645   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3646   else                                         callconv = 'Z';
  3648   return callconv;
  3651 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
  3652   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
  3653           _needs_clone_jvms ? "true" : "false");
  3656 //---------------------------generate_assertion_checks-------------------
  3657 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3658   fprintf(fp_cpp, "\n");
  3660   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3661   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3662   globalDefs().print_asserts(fp_cpp);
  3663   fprintf(fp_cpp, "}\n");
  3664   fprintf(fp_cpp, "#endif\n");
  3665   fprintf(fp_cpp, "\n");
  3668 //---------------------------addSourceBlocks-----------------------------
  3669 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3670   if (_source.count() > 0)
  3671     _source.output(fp_cpp);
  3673   generate_adlc_verification(fp_cpp);
  3675 //---------------------------addHeaderBlocks-----------------------------
  3676 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3677   if (_header.count() > 0)
  3678     _header.output(fp_hpp);
  3680 //-------------------------addPreHeaderBlocks----------------------------
  3681 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3682   // Output #defines from definition block
  3683   globalDefs().print_defines(fp_hpp);
  3685   if (_pre_header.count() > 0)
  3686     _pre_header.output(fp_hpp);
  3689 //---------------------------buildReduceMaps-----------------------------
  3690 // Build  mapping from enumeration for densely packed operands
  3691 // TO result and child types.
  3692 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3693   RegDef       *rdef;
  3694   RegDef       *next;
  3696   // The emit bodies currently require functions defined in the source block.
  3698   // Build external declarations for mappings
  3699   fprintf(fp_hpp, "\n");
  3700   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3701   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3702   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3703   fprintf(fp_hpp, "\n");
  3705   // Construct Save-Policy array
  3706   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3707   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3708   _register->reset_RegDefs();
  3709   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3710     next              = _register->iter_RegDefs();
  3711     char policy       = reg_save_policy(rdef->_callconv);
  3712     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3713     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3715   fprintf(fp_cpp, "};\n\n");
  3717   // Construct Native Save-Policy array
  3718   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3719   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3720   _register->reset_RegDefs();
  3721   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3722     next        = _register->iter_RegDefs();
  3723     char policy = reg_save_policy(rdef->_c_conv);
  3724     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3725     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3727   fprintf(fp_cpp, "};\n\n");
  3729   // Construct Register Save Type array
  3730   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3731   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3732   _register->reset_RegDefs();
  3733   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3734     next = _register->iter_RegDefs();
  3735     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3736     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3738   fprintf(fp_cpp, "};\n\n");
  3740   // Construct the table for reduceOp
  3741   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3742   build_map(output_reduce_op);
  3743   // Construct the table for leftOp
  3744   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3745   build_map(output_left_op);
  3746   // Construct the table for rightOp
  3747   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3748   build_map(output_right_op);
  3749   // Construct the table of rule names
  3750   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3751   build_map(output_rule_name);
  3752   // Construct the boolean table for subsumed operands
  3753   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3754   build_map(output_swallowed);
  3755   // // // Preserve in case we decide to use this table instead of another
  3756   //// Construct the boolean table for instruction chain rules
  3757   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3758   //build_map(output_inst_chain);
  3763 //---------------------------buildMachOperGenerator---------------------------
  3765 // Recurse through match tree, building path through corresponding state tree,
  3766 // Until we reach the constant we are looking for.
  3767 static void path_to_constant(FILE *fp, FormDict &globals,
  3768                              MatchNode *mnode, uint idx) {
  3769   if ( ! mnode) return;
  3771   unsigned    position = 0;
  3772   const char *result   = NULL;
  3773   const char *name     = NULL;
  3774   const char *optype   = NULL;
  3776   // Base Case: access constant in ideal node linked to current state node
  3777   // Each type of constant has its own access function
  3778   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3779        && mnode->base_operand(position, globals, result, name, optype) ) {
  3780     if (         strcmp(optype,"ConI") == 0 ) {
  3781       fprintf(fp, "_leaf->get_int()");
  3782     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3783       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3784     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3785       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3786     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
  3787       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
  3788     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3789       fprintf(fp, "_leaf->getf()");
  3790     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3791       fprintf(fp, "_leaf->getd()");
  3792     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3793       fprintf(fp, "_leaf->get_long()");
  3794     } else if ( (strcmp(optype,"Con")==0) ) {
  3795       // !!!!! - Update if adding a machine-independent constant type
  3796       fprintf(fp, "_leaf->get_int()");
  3797       assert( false, "Unsupported constant type, pointer or indefinite");
  3798     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3799       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3800     } else {
  3801       assert( false, "Unsupported constant type");
  3803     return;
  3806   // If constant is in left child, build path and recurse
  3807   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3808   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3809   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3810     fprintf(fp, "_kids[0]->");
  3811     path_to_constant(fp, globals, mnode->_lChild, idx);
  3812     return;
  3814   // If constant is in right child, build path and recurse
  3815   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3816     idx = idx - lConsts;
  3817     fprintf(fp, "_kids[1]->");
  3818     path_to_constant(fp, globals, mnode->_rChild, idx);
  3819     return;
  3821   assert( false, "ShouldNotReachHere()");
  3824 // Generate code that is executed when generating a specific Machine Operand
  3825 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3826                             OperandForm &op) {
  3827   const char *opName         = op._ident;
  3828   const char *opEnumName     = AD.machOperEnum(opName);
  3829   uint        num_consts     = op.num_consts(globalNames);
  3831   // Generate the case statement for this opcode
  3832   fprintf(fp, "  case %s:", opEnumName);
  3833   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3834   // Access parameters for constructor from the stat object
  3835   //
  3836   // Build access to condition code value
  3837   if ( (num_consts > 0) ) {
  3838     uint i = 0;
  3839     path_to_constant(fp, globalNames, op._matrule, i);
  3840     for ( i = 1; i < num_consts; ++i ) {
  3841       fprintf(fp, ", ");
  3842       path_to_constant(fp, globalNames, op._matrule, i);
  3845   fprintf(fp, " );\n");
  3849 // Build switch to invoke "new" MachNode or MachOper
  3850 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3851   int idx = 0;
  3853   // Build switch to invoke 'new' for a specific MachOper
  3854   fprintf(fp_cpp, "\n");
  3855   fprintf(fp_cpp, "\n");
  3856   fprintf(fp_cpp,
  3857           "//------------------------- MachOper Generator ---------------\n");
  3858   fprintf(fp_cpp,
  3859           "// A switch statement on the dense-packed user-defined type system\n"
  3860           "// that invokes 'new' on the corresponding class constructor.\n");
  3861   fprintf(fp_cpp, "\n");
  3862   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3863   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3864   fprintf(fp_cpp, "{\n");
  3865   fprintf(fp_cpp, "\n");
  3866   fprintf(fp_cpp, "  switch(opcode) {\n");
  3868   // Place all user-defined operands into the mapping
  3869   _operands.reset();
  3870   int  opIndex = 0;
  3871   OperandForm *op;
  3872   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3873     // Ensure this is a machine-world instruction
  3874     if ( op->ideal_only() )  continue;
  3876     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3877   };
  3879   // Do not iterate over operand classes for the  operand generator!!!
  3881   // Place all internal operands into the mapping
  3882   _internalOpNames.reset();
  3883   const char *iopn;
  3884   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3885     const char *opEnumName = machOperEnum(iopn);
  3886     // Generate the case statement for this opcode
  3887     fprintf(fp_cpp, "  case %s:", opEnumName);
  3888     fprintf(fp_cpp, "    return NULL;\n");
  3889   };
  3891   // Generate the default case for switch(opcode)
  3892   fprintf(fp_cpp, "  \n");
  3893   fprintf(fp_cpp, "  default:\n");
  3894   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3895   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3896   fprintf(fp_cpp, "    break;\n");
  3897   fprintf(fp_cpp, "  }\n");
  3899   // Generate the closing for method Matcher::MachOperGenerator
  3900   fprintf(fp_cpp, "  return NULL;\n");
  3901   fprintf(fp_cpp, "};\n");
  3905 //---------------------------buildMachNode-------------------------------------
  3906 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3907 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3908   const char *opType  = NULL;
  3909   const char *opClass = inst->_ident;
  3911   // Create the MachNode object
  3912   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3914   if ( (inst->num_post_match_opnds() != 0) ) {
  3915     // Instruction that contains operands which are not in match rule.
  3916     //
  3917     // Check if the first post-match component may be an interesting def
  3918     bool           dont_care = false;
  3919     ComponentList &comp_list = inst->_components;
  3920     Component     *comp      = NULL;
  3921     comp_list.reset();
  3922     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3924     // Insert operands that are not in match-rule.
  3925     // Only insert a DEF if the do_care flag is set
  3926     comp_list.reset();
  3927     while ( comp = comp_list.post_match_iter() ) {
  3928       // Check if we don't care about DEFs or KILLs that are not USEs
  3929       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3930         continue;
  3932       dont_care = true;
  3933       // For each operand not in the match rule, call MachOperGenerator
  3934       // with the enum for the opcode that needs to be built.
  3935       ComponentList clist = inst->_components;
  3936       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
  3937       const char *opcode = machOperEnum(comp->_type);
  3938       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3939       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3942   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3943     // An instruction that chains from a constant!
  3944     // In this case, we need to subsume the constant into the node
  3945     // at operand position, oper_input_base().
  3946     //
  3947     // Fill in the constant
  3948     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3949             inst->oper_input_base(_globalNames));
  3950     // #####
  3951     // Check for multiple constants and then fill them in.
  3952     // Just like MachOperGenerator
  3953     const char *opName = inst->_matrule->_rChild->_opType;
  3954     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3955     // Grab operand form
  3956     OperandForm *op = (_globalNames[opName])->is_operand();
  3957     // Look up the number of constants
  3958     uint num_consts = op->num_consts(_globalNames);
  3959     if ( (num_consts > 0) ) {
  3960       uint i = 0;
  3961       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3962       for ( i = 1; i < num_consts; ++i ) {
  3963         fprintf(fp_cpp, ", ");
  3964         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3967     fprintf(fp_cpp, " );\n");
  3968     // #####
  3971   // Fill in the bottom_type where requested
  3972   if (inst->captures_bottom_type(_globalNames)) {
  3973     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
  3974       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3977   if( inst->is_ideal_if() ) {
  3978     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3979     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3981   if( inst->is_ideal_fastlock() ) {
  3982     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3987 //---------------------------declare_cisc_version------------------------------
  3988 // Build CISC version of this instruction
  3989 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3990   if( AD.can_cisc_spill() ) {
  3991     InstructForm *inst_cisc = cisc_spill_alternate();
  3992     if (inst_cisc != NULL) {
  3993       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3994       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3995       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3996       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  4001 //---------------------------define_cisc_version-------------------------------
  4002 // Build CISC version of this instruction
  4003 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  4004   InstructForm *inst_cisc = this->cisc_spill_alternate();
  4005   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  4006     const char   *name      = inst_cisc->_ident;
  4007     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  4008     OperandForm *cisc_oper = AD.cisc_spill_operand();
  4009     assert( cisc_oper != NULL, "insanity check");
  4010     const char *cisc_oper_name  = cisc_oper->_ident;
  4011     assert( cisc_oper_name != NULL, "insanity check");
  4012     //
  4013     // Set the correct reg_mask_or_stack for the cisc operand
  4014     fprintf(fp_cpp, "\n");
  4015     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  4016     // Lookup the correct reg_mask_or_stack
  4017     const char *reg_mask_name = cisc_reg_mask_name();
  4018     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  4019     fprintf(fp_cpp, "}\n");
  4020     //
  4021     // Construct CISC version of this instruction
  4022     fprintf(fp_cpp, "\n");
  4023     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  4024     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  4025     // Create the MachNode object
  4026     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4027     // Fill in the bottom_type where requested
  4028     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4029       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4032     uint cur_num_opnds = num_opnds();
  4033     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
  4034       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
  4037     fprintf(fp_cpp, "\n");
  4038     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4039     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4040     // Construct operand to access [stack_pointer + offset]
  4041     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  4042     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  4043     fprintf(fp_cpp, "\n");
  4045     // Return result and exit scope
  4046     fprintf(fp_cpp, "  return node;\n");
  4047     fprintf(fp_cpp, "}\n");
  4048     fprintf(fp_cpp, "\n");
  4049     return true;
  4051   return false;
  4054 //---------------------------declare_short_branch_methods----------------------
  4055 // Build prototypes for short branch methods
  4056 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  4057   if (has_short_branch_form()) {
  4058     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  4062 //---------------------------define_short_branch_methods-----------------------
  4063 // Build definitions for short branch methods
  4064 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  4065   if (has_short_branch_form()) {
  4066     InstructForm *short_branch = short_branch_form();
  4067     const char   *name         = short_branch->_ident;
  4069     // Construct short_branch_version() method.
  4070     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  4071     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  4072     // Create the MachNode object
  4073     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4074     if( is_ideal_if() ) {
  4075       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  4076       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  4078     // Fill in the bottom_type where requested
  4079     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4080       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4083     fprintf(fp_cpp, "\n");
  4084     // Short branch version must use same node index for access
  4085     // through allocator's tables
  4086     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4087     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4089     // Return result and exit scope
  4090     fprintf(fp_cpp, "  return node;\n");
  4091     fprintf(fp_cpp, "}\n");
  4092     fprintf(fp_cpp,"\n");
  4093     return true;
  4095   return false;
  4099 //---------------------------buildMachNodeGenerator----------------------------
  4100 // Build switch to invoke appropriate "new" MachNode for an opcode
  4101 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  4103   // Build switch to invoke 'new' for a specific MachNode
  4104   fprintf(fp_cpp, "\n");
  4105   fprintf(fp_cpp, "\n");
  4106   fprintf(fp_cpp,
  4107           "//------------------------- MachNode Generator ---------------\n");
  4108   fprintf(fp_cpp,
  4109           "// A switch statement on the dense-packed user-defined type system\n"
  4110           "// that invokes 'new' on the corresponding class constructor.\n");
  4111   fprintf(fp_cpp, "\n");
  4112   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  4113   fprintf(fp_cpp, "(int opcode, Compile* C)");
  4114   fprintf(fp_cpp, "{\n");
  4115   fprintf(fp_cpp, "  switch(opcode) {\n");
  4117   // Provide constructor for all user-defined instructions
  4118   _instructions.reset();
  4119   int  opIndex = operandFormCount();
  4120   InstructForm *inst;
  4121   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4122     // Ensure that matrule is defined.
  4123     if ( inst->_matrule == NULL ) continue;
  4125     int         opcode  = opIndex++;
  4126     const char *opClass = inst->_ident;
  4127     char       *opType  = NULL;
  4129     // Generate the case statement for this instruction
  4130     fprintf(fp_cpp, "  case %s_rule:", opClass);
  4132     // Start local scope
  4133     fprintf(fp_cpp, " {\n");
  4134     // Generate code to construct the new MachNode
  4135     buildMachNode(fp_cpp, inst, "     ");
  4136     // Return result and exit scope
  4137     fprintf(fp_cpp, "      return node;\n");
  4138     fprintf(fp_cpp, "    }\n");
  4141   // Generate the default case for switch(opcode)
  4142   fprintf(fp_cpp, "  \n");
  4143   fprintf(fp_cpp, "  default:\n");
  4144   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  4145   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  4146   fprintf(fp_cpp, "    break;\n");
  4147   fprintf(fp_cpp, "  };\n");
  4149   // Generate the closing for method Matcher::MachNodeGenerator
  4150   fprintf(fp_cpp, "  return NULL;\n");
  4151   fprintf(fp_cpp, "}\n");
  4155 //---------------------------buildInstructMatchCheck--------------------------
  4156 // Output the method to Matcher which checks whether or not a specific
  4157 // instruction has a matching rule for the host architecture.
  4158 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  4159   fprintf(fp_cpp, "\n\n");
  4160   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  4161   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  4162   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  4163   fprintf(fp_cpp, "}\n\n");
  4165   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  4166   int i;
  4167   for (i = 0; i < _last_opcode - 1; i++) {
  4168     fprintf(fp_cpp, "    %-5s,  // %s\n",
  4169             _has_match_rule[i] ? "true" : "false",
  4170             NodeClassNames[i]);
  4172   fprintf(fp_cpp, "    %-5s   // %s\n",
  4173           _has_match_rule[i] ? "true" : "false",
  4174           NodeClassNames[i]);
  4175   fprintf(fp_cpp, "};\n");
  4178 //---------------------------buildFrameMethods---------------------------------
  4179 // Output the methods to Matcher which specify frame behavior
  4180 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  4181   fprintf(fp_cpp,"\n\n");
  4182   // Stack Direction
  4183   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  4184           _frame->_direction ? "true" : "false");
  4185   // Sync Stack Slots
  4186   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  4187           _frame->_sync_stack_slots);
  4188   // Java Stack Alignment
  4189   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  4190           _frame->_alignment);
  4191   // Java Return Address Location
  4192   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  4193   if (_frame->_return_addr_loc) {
  4194     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4195             _frame->_return_addr);
  4197   else {
  4198     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  4199             _frame->_return_addr);
  4201   // Java Stack Slot Preservation
  4202   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  4203   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  4204   // Top Of Stack Slot Preservation, for both Java and C
  4205   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  4206   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  4207   // varargs C out slots killed
  4208   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  4209   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  4210   // Java Argument Position
  4211   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  4212   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  4213   fprintf(fp_cpp,"}\n\n");
  4214   // Native Argument Position
  4215   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  4216   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  4217   fprintf(fp_cpp,"}\n\n");
  4218   // Java Return Value Location
  4219   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  4220   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  4221   fprintf(fp_cpp,"}\n\n");
  4222   // Native Return Value Location
  4223   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  4224   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  4225   fprintf(fp_cpp,"}\n\n");
  4227   // Inline Cache Register, mask definition, and encoding
  4228   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  4229   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4230           _frame->_inline_cache_reg);
  4231   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  4232   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  4234   // Interpreter's Method Oop Register, mask definition, and encoding
  4235   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  4236   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4237           _frame->_interpreter_method_oop_reg);
  4238   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  4239   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  4241   // Interpreter's Frame Pointer Register, mask definition, and encoding
  4242   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  4243   if (_frame->_interpreter_frame_pointer_reg == NULL)
  4244     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  4245   else
  4246     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4247             _frame->_interpreter_frame_pointer_reg);
  4249   // Frame Pointer definition
  4250   /* CNC - I can not contemplate having a different frame pointer between
  4251      Java and native code; makes my head hurt to think about it.
  4252   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  4253   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4254           _frame->_frame_pointer);
  4255   */
  4256   // (Native) Frame Pointer definition
  4257   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  4258   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4259           _frame->_frame_pointer);
  4261   // Number of callee-save + always-save registers for calling convention
  4262   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  4263   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  4264   RegDef *rdef;
  4265   int nof_saved_registers = 0;
  4266   _register->reset_RegDefs();
  4267   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  4268     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  4269       ++nof_saved_registers;
  4271   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  4272   fprintf(fp_cpp, "};\n\n");
  4278 static int PrintAdlcCisc = 0;
  4279 //---------------------------identify_cisc_spilling----------------------------
  4280 // Get info for the CISC_oracle and MachNode::cisc_version()
  4281 void ArchDesc::identify_cisc_spill_instructions() {
  4283   if (_frame == NULL)
  4284     return;
  4286   // Find the user-defined operand for cisc-spilling
  4287   if( _frame->_cisc_spilling_operand_name != NULL ) {
  4288     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  4289     OperandForm *oper = form ? form->is_operand() : NULL;
  4290     // Verify the user's suggestion
  4291     if( oper != NULL ) {
  4292       // Ensure that match field is defined.
  4293       if ( oper->_matrule != NULL )  {
  4294         MatchRule &mrule = *oper->_matrule;
  4295         if( strcmp(mrule._opType,"AddP") == 0 ) {
  4296           MatchNode *left = mrule._lChild;
  4297           MatchNode *right= mrule._rChild;
  4298           if( left != NULL && right != NULL ) {
  4299             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  4300             const Form *right_op = _globalNames[right->_opType]->is_operand();
  4301             if(  (left_op != NULL && right_op != NULL)
  4302               && (left_op->interface_type(_globalNames) == Form::register_interface)
  4303               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  4304               // Successfully verified operand
  4305               set_cisc_spill_operand( oper );
  4306               if( _cisc_spill_debug ) {
  4307                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  4316   if( cisc_spill_operand() != NULL ) {
  4317     // N^2 comparison of instructions looking for a cisc-spilling version
  4318     _instructions.reset();
  4319     InstructForm *instr;
  4320     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4321       // Ensure that match field is defined.
  4322       if ( instr->_matrule == NULL )  continue;
  4324       MatchRule &mrule = *instr->_matrule;
  4325       Predicate *pred  =  instr->build_predicate();
  4327       // Grab the machine type of the operand
  4328       const char *rootOp = instr->_ident;
  4329       mrule._machType    = rootOp;
  4331       // Find result type for match
  4332       const char *result = instr->reduce_result();
  4334       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4335       bool  found_cisc_alternate = false;
  4336       _instructions.reset2();
  4337       InstructForm *instr2;
  4338       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4339         // Ensure that match field is defined.
  4340         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4341         if ( instr2->_matrule != NULL
  4342             && (instr != instr2 )                // Skip self
  4343             && (instr2->reduce_result() != NULL) // want same result
  4344             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4345           MatchRule &mrule2 = *instr2->_matrule;
  4346           Predicate *pred2  =  instr2->build_predicate();
  4347           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4354 //---------------------------build_cisc_spilling-------------------------------
  4355 // Get info for the CISC_oracle and MachNode::cisc_version()
  4356 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4357   // Output the table for cisc spilling
  4358   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4359   _instructions.reset();
  4360   InstructForm *inst = NULL;
  4361   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4362     // Ensure this is a machine-world instruction
  4363     if ( inst->ideal_only() )  continue;
  4364     const char *inst_name = inst->_ident;
  4365     int   operand   = inst->cisc_spill_operand();
  4366     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4367       InstructForm *inst2 = inst->cisc_spill_alternate();
  4368       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4371   fprintf(fp_cpp, "\n\n");
  4374 //---------------------------identify_short_branches----------------------------
  4375 // Get info for our short branch replacement oracle.
  4376 void ArchDesc::identify_short_branches() {
  4377   // Walk over all instructions, checking to see if they match a short
  4378   // branching alternate.
  4379   _instructions.reset();
  4380   InstructForm *instr;
  4381   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4382     // The instruction must have a match rule.
  4383     if (instr->_matrule != NULL &&
  4384         instr->is_short_branch()) {
  4386       _instructions.reset2();
  4387       InstructForm *instr2;
  4388       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4389         instr2->check_branch_variant(*this, instr);
  4396 //---------------------------identify_unique_operands---------------------------
  4397 // Identify unique operands.
  4398 void ArchDesc::identify_unique_operands() {
  4399   // Walk over all instructions.
  4400   _instructions.reset();
  4401   InstructForm *instr;
  4402   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4403     // Ensure this is a machine-world instruction
  4404     if (!instr->ideal_only()) {
  4405       instr->set_unique_opnds();

mercurial