src/share/vm/adlc/output_c.cpp

Tue, 10 Dec 2013 14:29:43 +0100

author
goetz
date
Tue, 10 Dec 2013 14:29:43 +0100
changeset 6494
492e67693373
parent 6484
318d0622a6d7
child 6499
ad3b94907eed
permissions
-rw-r--r--

8029888: PPC64: (part 219): adl replacement variable CondRegister
Summary: Add support for replacement variable CondRegister in adlc.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
    70     }
    72     // Finish defining enumeration
    73     fprintf(fp,"};\n");
    75     fprintf(fp,"\n");
    76     fprintf(fp,"// An array of character pointers to machine register names.\n");
    77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    78     reg_def = NULL;
    79     next = NULL;
    80     registers->reset_RegDefs();
    81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    82       next = registers->iter_RegDefs();
    83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    85     }
    86     // Finish defining array
    87     fprintf(fp,"\t};\n");
    88     fprintf(fp,"\n");
    90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    92   }
    93 }
    95 // Define an array containing the machine register encoding values
    96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    97   if (registers) {
    98     fprintf(fp,"\n");
    99     fprintf(fp,"// An array of the machine register encode values\n");
   100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   102     // Output the register encoding for each register in the allocation classes
   103     RegDef *reg_def = NULL;
   104     RegDef *next    = NULL;
   105     registers->reset_RegDefs();
   106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
   107       next = registers->iter_RegDefs();
   108       const char* register_encode = reg_def->register_encode();
   109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   110       int encval;
   111       if (!ADLParser::is_int_token(register_encode, encval)) {
   112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
   113       } else {
   114         // Output known constants in hex char format (backward compatibility).
   115         assert(encval < 256, "Exceeded supported width for register encoding");
   116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
   117       }
   118     }
   119     // Finish defining enumeration
   120     fprintf(fp,"};\n");
   122   } // Done defining array
   123 }
   125 // Output an enumeration of register class names
   126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   127   if (registers) {
   128     // Output an enumeration of register class names
   129     fprintf(fp,"\n");
   130     fprintf(fp,"// Enumeration of register class names\n");
   131     fprintf(fp, "enum machRegisterClass {\n");
   132     registers->_rclasses.reset();
   133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
   134       const char * class_name_to_upper = toUpper(class_name);
   135       fprintf(fp,"  %s,\n", class_name_to_upper);
   136       delete[] class_name_to_upper;
   137     }
   138     // Finish defining enumeration
   139     fprintf(fp, "  _last_Mach_Reg_Class\n");
   140     fprintf(fp, "};\n");
   141   }
   142 }
   144 // Declare an enumeration of user-defined register classes
   145 // and a list of register masks, one for each class.
   146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   147   const char  *rc_name;
   149   if (_register) {
   150     // Build enumeration of user-defined register classes.
   151     defineRegClassEnum(fp_hpp, _register);
   153     // Generate a list of register masks, one for each class.
   154     fprintf(fp_hpp,"\n");
   155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   156     _register->_rclasses.reset();
   157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   158       const char *prefix = "";
   159       RegClass *reg_class = _register->getRegClass(rc_name);
   160       assert(reg_class, "Using an undefined register class");
   162       const char* rc_name_to_upper = toUpper(rc_name);
   164       if (reg_class->_user_defined == NULL) {
   165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
   166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   167       } else {
   168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
   169       }
   171       if (reg_class->_stack_or_reg) {
   172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
   173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
   174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   175       }
   176       delete[] rc_name_to_upper;
   178     }
   179   }
   180 }
   182 // Generate an enumeration of user-defined register classes
   183 // and a list of register masks, one for each class.
   184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   185   const char  *rc_name;
   187   if (_register) {
   188     // Generate a list of register masks, one for each class.
   189     fprintf(fp_cpp,"\n");
   190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   191     _register->_rclasses.reset();
   192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   193       const char *prefix = "";
   194       RegClass *reg_class = _register->getRegClass(rc_name);
   195       assert(reg_class, "Using an undefined register class");
   197       if (reg_class->_user_defined != NULL) {
   198         continue;
   199       }
   201       int len = RegisterForm::RegMask_Size();
   202       const char* rc_name_to_upper = toUpper(rc_name);
   203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
   205       {
   206         int i;
   207         for(i = 0; i < len - 1; i++) {
   208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
   209         }
   210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
   211       }
   213       if (reg_class->_stack_or_reg) {
   214         int i;
   215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
   216         for(i = 0; i < len - 1; i++) {
   217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
   218         }
   219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
   220       }
   221       delete[] rc_name_to_upper;
   222     }
   223   }
   224 }
   226 // Compute an index for an array in the pipeline_reads_NNN arrays
   227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   228 {
   229   int templen = 1;
   230   int paramcount = 0;
   231   const char *paramname;
   233   if (pipeclass->_parameters.count() == 0)
   234     return -1;
   236   pipeclass->_parameters.reset();
   237   paramname = pipeclass->_parameters.iter();
   238   const PipeClassOperandForm *pipeopnd =
   239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   241     pipeclass->_parameters.reset();
   243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   244     const PipeClassOperandForm *tmppipeopnd =
   245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   247     if (tmppipeopnd)
   248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   249     else
   250       templen += 19;
   252     paramcount++;
   253   }
   255   // See if the count is zero
   256   if (paramcount == 0) {
   257     return -1;
   258   }
   260   char *operand_stages = new char [templen];
   261   operand_stages[0] = 0;
   262   int i = 0;
   263   templen = 0;
   265   pipeclass->_parameters.reset();
   266   paramname = pipeclass->_parameters.iter();
   267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   269     pipeclass->_parameters.reset();
   271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   272     const PipeClassOperandForm *tmppipeopnd =
   273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   276       (++i < paramcount ? ',' : ' ') );
   277   }
   279   // See if the same string is in the table
   280   int ndx = pipeline_reads.index(operand_stages);
   282   // No, add it to the table
   283   if (ndx < 0) {
   284     pipeline_reads.addName(operand_stages);
   285     ndx = pipeline_reads.index(operand_stages);
   287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   288       ndx+1, paramcount, operand_stages);
   289   }
   290   else
   291     delete [] operand_stages;
   293   return (ndx);
   294 }
   296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   297 static int pipeline_res_stages_initializer(
   298   FILE *fp_cpp,
   299   PipelineForm *pipeline,
   300   NameList &pipeline_res_stages,
   301   PipeClassForm *pipeclass)
   302 {
   303   const PipeClassResourceForm *piperesource;
   304   int * res_stages = new int [pipeline->_rescount];
   305   int i;
   307   for (i = 0; i < pipeline->_rescount; i++)
   308      res_stages[i] = 0;
   310   for (pipeclass->_resUsage.reset();
   311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   313     for (i = 0; i < pipeline->_rescount; i++)
   314       if ((1 << i) & used_mask) {
   315         int stage = pipeline->_stages.index(piperesource->_stage);
   316         if (res_stages[i] < stage+1)
   317           res_stages[i] = stage+1;
   318       }
   319   }
   321   // Compute the length needed for the resource list
   322   int commentlen = 0;
   323   int max_stage = 0;
   324   for (i = 0; i < pipeline->_rescount; i++) {
   325     if (res_stages[i] == 0) {
   326       if (max_stage < 9)
   327         max_stage = 9;
   328     }
   329     else {
   330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   331       if (max_stage < stagelen)
   332         max_stage = stagelen;
   333     }
   335     commentlen += (int)strlen(pipeline->_reslist.name(i));
   336   }
   338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   340   // Allocate space for the resource list
   341   char * resource_stages = new char [templen];
   343   templen = 0;
   344   for (i = 0; i < pipeline->_rescount; i++) {
   345     const char * const resname =
   346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   349       resname, max_stage - (int)strlen(resname) + 1,
   350       (i < pipeline->_rescount-1) ? "," : "",
   351       pipeline->_reslist.name(i));
   352   }
   354   // See if the same string is in the table
   355   int ndx = pipeline_res_stages.index(resource_stages);
   357   // No, add it to the table
   358   if (ndx < 0) {
   359     pipeline_res_stages.addName(resource_stages);
   360     ndx = pipeline_res_stages.index(resource_stages);
   362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   363       ndx+1, pipeline->_rescount, resource_stages);
   364   }
   365   else
   366     delete [] resource_stages;
   368   delete [] res_stages;
   370   return (ndx);
   371 }
   373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   374 static int pipeline_res_cycles_initializer(
   375   FILE *fp_cpp,
   376   PipelineForm *pipeline,
   377   NameList &pipeline_res_cycles,
   378   PipeClassForm *pipeclass)
   379 {
   380   const PipeClassResourceForm *piperesource;
   381   int * res_cycles = new int [pipeline->_rescount];
   382   int i;
   384   for (i = 0; i < pipeline->_rescount; i++)
   385      res_cycles[i] = 0;
   387   for (pipeclass->_resUsage.reset();
   388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   390     for (i = 0; i < pipeline->_rescount; i++)
   391       if ((1 << i) & used_mask) {
   392         int cycles = piperesource->_cycles;
   393         if (res_cycles[i] < cycles)
   394           res_cycles[i] = cycles;
   395       }
   396   }
   398   // Pre-compute the string length
   399   int templen;
   400   int cyclelen = 0, commentlen = 0;
   401   int max_cycles = 0;
   402   char temp[32];
   404   for (i = 0; i < pipeline->_rescount; i++) {
   405     if (max_cycles < res_cycles[i])
   406       max_cycles = res_cycles[i];
   407     templen = sprintf(temp, "%d", res_cycles[i]);
   408     if (cyclelen < templen)
   409       cyclelen = templen;
   410     commentlen += (int)strlen(pipeline->_reslist.name(i));
   411   }
   413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   415   // Allocate space for the resource list
   416   char * resource_cycles = new char [templen];
   418   templen = 0;
   420   for (i = 0; i < pipeline->_rescount; i++) {
   421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   423   }
   425   // See if the same string is in the table
   426   int ndx = pipeline_res_cycles.index(resource_cycles);
   428   // No, add it to the table
   429   if (ndx < 0) {
   430     pipeline_res_cycles.addName(resource_cycles);
   431     ndx = pipeline_res_cycles.index(resource_cycles);
   433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   434       ndx+1, pipeline->_rescount, resource_cycles);
   435   }
   436   else
   437     delete [] resource_cycles;
   439   delete [] res_cycles;
   441   return (ndx);
   442 }
   444 //typedef unsigned long long uint64_t;
   446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   447 static int pipeline_res_mask_initializer(
   448   FILE *fp_cpp,
   449   PipelineForm *pipeline,
   450   NameList &pipeline_res_mask,
   451   NameList &pipeline_res_args,
   452   PipeClassForm *pipeclass)
   453 {
   454   const PipeClassResourceForm *piperesource;
   455   const uint rescount      = pipeline->_rescount;
   456   const uint maxcycleused  = pipeline->_maxcycleused;
   457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   459   int i, j;
   460   int element_count = 0;
   461   uint *res_mask = new uint [cyclemasksize];
   462   uint resources_used             = 0;
   463   uint resources_used_exclusively = 0;
   465   for (pipeclass->_resUsage.reset();
   466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   467     element_count++;
   468   }
   470   // Pre-compute the string length
   471   int templen;
   472   int commentlen = 0;
   473   int max_cycles = 0;
   475   int cyclelen = ((maxcycleused + 3) >> 2);
   476   int masklen = (rescount + 3) >> 2;
   478   int cycledigit = 0;
   479   for (i = maxcycleused; i > 0; i /= 10)
   480     cycledigit++;
   482   int maskdigit = 0;
   483   for (i = rescount; i > 0; i /= 10)
   484     maskdigit++;
   486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
   489   templen = 1 +
   490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   493   // Allocate space for the resource list
   494   char * resource_mask = new char [templen];
   495   char * last_comma = NULL;
   497   templen = 0;
   499   for (pipeclass->_resUsage.reset();
   500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   503     if (!used_mask) {
   504       fprintf(stderr, "*** used_mask is 0 ***\n");
   505     }
   507     resources_used |= used_mask;
   509     uint lb, ub;
   511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   514     if (lb == ub) {
   515       resources_used_exclusively |= used_mask;
   516     }
   518     int formatlen =
   519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   520         pipeline_use_element,
   521         masklen, used_mask,
   522         cycledigit, lb, cycledigit, ub,
   523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   524         pipeline_use_cycle_mask);
   526     templen += formatlen;
   528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   530     int cycles = piperesource->_cycles;
   531     uint stage          = pipeline->_stages.index(piperesource->_stage);
   532     if ((uint)NameList::Not_in_list == stage) {
   533       fprintf(stderr,
   534               "pipeline_res_mask_initializer: "
   535               "semantic error: "
   536               "pipeline stage undeclared: %s\n",
   537               piperesource->_stage);
   538       exit(1);
   539     }
   540     uint upper_limit    = stage + cycles - 1;
   541     uint lower_limit    = stage - 1;
   542     uint upper_idx      = upper_limit >> 5;
   543     uint lower_idx      = lower_limit >> 5;
   544     uint upper_position = upper_limit & 0x1f;
   545     uint lower_position = lower_limit & 0x1f;
   547     uint mask = (((uint)1) << upper_position) - 1;
   549     while (upper_idx > lower_idx) {
   550       res_mask[upper_idx--] |= mask;
   551       mask = (uint)-1;
   552     }
   554     mask -= (((uint)1) << lower_position) - 1;
   555     res_mask[upper_idx] |= mask;
   557     for (j = cyclemasksize-1; j >= 0; j--) {
   558       formatlen =
   559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   560       templen += formatlen;
   561     }
   563     resource_mask[templen++] = ')';
   564     resource_mask[templen++] = ')';
   565     last_comma = &resource_mask[templen];
   566     resource_mask[templen++] = ',';
   567     resource_mask[templen++] = '\n';
   568   }
   570   resource_mask[templen] = 0;
   571   if (last_comma) {
   572     last_comma[0] = ' ';
   573   }
   575   // See if the same string is in the table
   576   int ndx = pipeline_res_mask.index(resource_mask);
   578   // No, add it to the table
   579   if (ndx < 0) {
   580     pipeline_res_mask.addName(resource_mask);
   581     ndx = pipeline_res_mask.index(resource_mask);
   583     if (strlen(resource_mask) > 0)
   584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   585         ndx+1, element_count, resource_mask);
   587     char* args = new char [9 + 2*masklen + maskdigit];
   589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   590       masklen, resources_used,
   591       masklen, resources_used_exclusively,
   592       maskdigit, element_count);
   594     pipeline_res_args.addName(args);
   595   }
   596   else {
   597     delete [] resource_mask;
   598   }
   600   delete [] res_mask;
   601 //delete [] res_masks;
   603   return (ndx);
   604 }
   606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   607   const char *classname;
   608   const char *resourcename;
   609   int resourcenamelen = 0;
   610   NameList pipeline_reads;
   611   NameList pipeline_res_stages;
   612   NameList pipeline_res_cycles;
   613   NameList pipeline_res_masks;
   614   NameList pipeline_res_args;
   615   const int default_latency = 1;
   616   const int non_operand_latency = 0;
   617   const int node_latency = 0;
   619   if (!_pipeline) {
   620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   623     fprintf(fp_cpp, "}\n");
   624     return;
   625   }
   627   fprintf(fp_cpp, "\n");
   628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   632   fprintf(fp_cpp, "    \"undefined\"");
   634   for (int s = 0; s < _pipeline->_stagecnt; s++)
   635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   637   fprintf(fp_cpp, "\n  };\n\n");
   638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   639     _pipeline->_stagecnt);
   640   fprintf(fp_cpp, "}\n");
   641   fprintf(fp_cpp, "#endif\n\n");
   643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   645 #if 0
   646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   649   fprintf(fp_cpp, "  }\n");
   650   fprintf(fp_cpp, "#endif\n\n");
   651 #endif
   652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   654 #if 0
   655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   658   fprintf(fp_cpp, "  }\n");
   659   fprintf(fp_cpp, "#endif\n\n");
   660 #endif
   661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   664   fprintf(fp_cpp, "      continue;\n\n");
   665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   668   fprintf(fp_cpp, "        continue;\n\n");
   669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   673   fprintf(fp_cpp, "          y <<= 1;\n");
   674   fprintf(fp_cpp, "      }\n");
   675   fprintf(fp_cpp, "    }\n");
   676   fprintf(fp_cpp, "  }\n\n");
   677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   678   fprintf(fp_cpp, "  return (start);\n");
   679   fprintf(fp_cpp, "}\n\n");
   680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   688     _pipeline->_maxcycleused+1);
   689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   697   fprintf(fp_cpp, "            y <<= 1;\n");
   698   fprintf(fp_cpp, "        }\n");
   699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   700   fprintf(fp_cpp, "      }\n");
   701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   702   fprintf(fp_cpp, "    }\n");
   703   fprintf(fp_cpp, "    else {\n");
   704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   710   fprintf(fp_cpp, "            y <<= 1;\n");
   711   fprintf(fp_cpp, "        }\n");
   712   fprintf(fp_cpp, "      }\n");
   713   fprintf(fp_cpp, "    }\n");
   714   fprintf(fp_cpp, "  }\n\n");
   715   fprintf(fp_cpp, "  return (delay);\n");
   716   fprintf(fp_cpp, "}\n\n");
   717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   728   fprintf(fp_cpp, "          break;\n");
   729   fprintf(fp_cpp, "        }\n");
   730   fprintf(fp_cpp, "      }\n");
   731   fprintf(fp_cpp, "    }\n");
   732   fprintf(fp_cpp, "    else {\n");
   733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   738   fprintf(fp_cpp, "      }\n");
   739   fprintf(fp_cpp, "    }\n");
   740   fprintf(fp_cpp, "  }\n");
   741   fprintf(fp_cpp, "}\n\n");
   743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   745   fprintf(fp_cpp, "\n");
   746 #if 0
   747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   750   fprintf(fp_cpp, "  }\n");
   751   fprintf(fp_cpp, "#endif\n\n");
   752 #endif
   753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
   754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
   755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   760 #if 0
   761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   764   fprintf(fp_cpp, "  }\n");
   765   fprintf(fp_cpp, "#endif\n\n");
   766 #endif
   767   fprintf(fp_cpp, "\n");
   768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   769   fprintf(fp_cpp, "    return (default_latency);\n");
   770   fprintf(fp_cpp, "\n");
   771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   773 #if 0
   774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   777   fprintf(fp_cpp, "  }\n");
   778   fprintf(fp_cpp, "#endif\n\n");
   779 #endif
   780   fprintf(fp_cpp, "  return (delta);\n");
   781   fprintf(fp_cpp, "}\n\n");
   783   if (!_pipeline)
   784     /* Do Nothing */;
   786   else if (_pipeline->_maxcycleused <=
   787 #ifdef SPARC
   788     64
   789 #else
   790     32
   791 #endif
   792       ) {
   793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   795     fprintf(fp_cpp, "}\n\n");
   796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   798     fprintf(fp_cpp, "}\n\n");
   799   }
   800   else {
   801     uint l;
   802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   805     for (l = 1; l <= masklen; l++)
   806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   807     fprintf(fp_cpp, ");\n");
   808     fprintf(fp_cpp, "}\n\n");
   809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   811     for (l = 1; l <= masklen; l++)
   812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   813     fprintf(fp_cpp, ");\n");
   814     fprintf(fp_cpp, "}\n\n");
   815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   816     for (l = 1; l <= masklen; l++)
   817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   818     fprintf(fp_cpp, "\n}\n\n");
   819   }
   821   /* Get the length of all the resource names */
   822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   823        (resourcename = _pipeline->_reslist.iter()) != NULL;
   824        resourcenamelen += (int)strlen(resourcename));
   826   // Create the pipeline class description
   828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   835     for (int i2 = masklen-1; i2 >= 0; i2--)
   836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   838   }
   839   fprintf(fp_cpp, "};\n\n");
   841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   842     _pipeline->_rescount);
   844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   845     fprintf(fp_cpp, "\n");
   846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   848     int maxWriteStage = -1;
   849     int maxMoreInstrs = 0;
   850     int paramcount = 0;
   851     int i = 0;
   852     const char *paramname;
   853     int resource_count = (_pipeline->_rescount + 3) >> 2;
   855     // Scan the operands, looking for last output stage and number of inputs
   856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   857       const PipeClassOperandForm *pipeopnd =
   858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   859       if (pipeopnd) {
   860         if (pipeopnd->_iswrite) {
   861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   862            int moreinsts = pipeopnd->_more_instrs;
   863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   864             maxWriteStage = stagenum;
   865             maxMoreInstrs = moreinsts;
   866           }
   867         }
   868       }
   870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   871         paramcount++;
   872     }
   874     // Create the list of stages for the operands that are read
   875     // Note that we will build a NameList to reduce the number of copies
   877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   888 #if 0
   889     // Process the Resources
   890     const PipeClassResourceForm *piperesource;
   892     unsigned resources_used = 0;
   893     unsigned exclusive_resources_used = 0;
   894     unsigned resource_groups = 0;
   895     for (pipeclass->_resUsage.reset();
   896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   898       if (used_mask)
   899         resource_groups++;
   900       resources_used |= used_mask;
   901       if ((used_mask & (used_mask-1)) == 0)
   902         exclusive_resources_used |= used_mask;
   903     }
   905     if (resource_groups > 0) {
   906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   907         pipeclass->_num, resource_groups);
   908       for (pipeclass->_resUsage.reset(), i = 1;
   909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   910            i++ ) {
   911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   912         if (used_mask) {
   913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   914         }
   915       }
   916       fprintf(fp_cpp, "};\n\n");
   917     }
   918 #endif
   920     // Create the pipeline class description
   921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   922       pipeclass->_num);
   923     if (maxWriteStage < 0)
   924       fprintf(fp_cpp, "(uint)stage_undefined");
   925     else if (maxMoreInstrs == 0)
   926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   927     else
   928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   930       paramcount,
   931       pipeclass->hasFixedLatency() ? "true" : "false",
   932       pipeclass->fixedLatency(),
   933       pipeclass->InstructionCount(),
   934       pipeclass->hasBranchDelay() ? "true" : "false",
   935       pipeclass->hasMultipleBundles() ? "true" : "false",
   936       pipeclass->forceSerialization() ? "true" : "false",
   937       pipeclass->mayHaveNoCode() ? "true" : "false" );
   938     if (paramcount > 0) {
   939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   940         pipeline_reads_index+1);
   941     }
   942     else
   943       fprintf(fp_cpp, " NULL,");
   944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   945       pipeline_res_stages_index+1);
   946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   947       pipeline_res_cycles_index+1);
   948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   949       pipeline_res_args.name(pipeline_res_mask_index));
   950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   952         pipeline_res_mask_index+1);
   953     else
   954       fprintf(fp_cpp, "NULL");
   955     fprintf(fp_cpp, "));\n");
   956   }
   958   // Generate the Node::latency method if _pipeline defined
   959   fprintf(fp_cpp, "\n");
   960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   962   if (_pipeline) {
   963 #if 0
   964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   967     fprintf(fp_cpp, " }\n");
   968     fprintf(fp_cpp, "#endif\n");
   969 #endif
   970     fprintf(fp_cpp, "  uint j;\n");
   971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   973     fprintf(fp_cpp, "  // verify input is not null\n");
   974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   976       non_operand_latency);
   977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   985       node_latency);
   986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   989       non_operand_latency);
   990     fprintf(fp_cpp, "  // determine which operand this is in\n");
   991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   992     fprintf(fp_cpp, "  int delta = %d;\n\n",
   993       non_operand_latency);
   994     fprintf(fp_cpp, "  uint k;\n");
   995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   997     fprintf(fp_cpp, "    if (i < j)\n");
   998     fprintf(fp_cpp, "      break;\n");
   999     fprintf(fp_cpp, "  }\n");
  1000     fprintf(fp_cpp, "  if (k < n)\n");
  1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
  1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
  1004   else {
  1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
  1006     fprintf(fp_cpp, "  return %d;\n",
  1007       non_operand_latency);
  1009   fprintf(fp_cpp, "}\n\n");
  1011   // Output the list of nop nodes
  1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
  1013   const char *nop;
  1014   int nopcnt = 0;
  1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
  1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
  1018   int i = 0;
  1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
  1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
  1022   fprintf(fp_cpp, "};\n\n");
  1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
  1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
  1026   fprintf(fp_cpp, "    \"\",\n");
  1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
  1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1033   fprintf(fp_cpp, "  };\n\n");
  1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1036   for (i = 0; i < _pipeline->_rescount; i++)
  1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1038   fprintf(fp_cpp, "};\n\n");
  1040   // See if the same string is in the table
  1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1042   fprintf(fp_cpp, "  if (_flags) {\n");
  1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
  1044   fprintf(fp_cpp, "    needs_comma = true;\n");
  1045   fprintf(fp_cpp, "  };\n");
  1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1048   fprintf(fp_cpp, "    needs_comma = true;\n");
  1049   fprintf(fp_cpp, "  };\n");
  1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1051   fprintf(fp_cpp, "  if (r) {\n");
  1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
  1056   fprintf(fp_cpp, "    needs_comma = true;\n");
  1057   fprintf(fp_cpp, "  };\n");
  1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
  1059   fprintf(fp_cpp, "}\n");
  1060   fprintf(fp_cpp, "#endif\n");
  1063 // ---------------------------------------------------------------------------
  1064 //------------------------------Utilities to build Instruction Classes--------
  1065 // ---------------------------------------------------------------------------
  1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1069           node, regMask);
  1072 static void print_block_index(FILE *fp, int inst_position) {
  1073   assert( inst_position >= 0, "Instruction number less than zero");
  1074   fprintf(fp, "block_index");
  1075   if( inst_position != 0 ) {
  1076     fprintf(fp, " - %d", inst_position);
  1080 // Scan the peepmatch and output a test for each instruction
  1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1082   int         parent        = -1;
  1083   int         inst_position = 0;
  1084   const char* inst_name     = NULL;
  1085   int         input         = 0;
  1086   fprintf(fp, "  // Check instruction sub-tree\n");
  1087   pmatch->reset();
  1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1089        inst_name != NULL;
  1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1091     // If this is not a placeholder
  1092     if( ! pmatch->is_placeholder() ) {
  1093       // Define temporaries 'inst#', based on parent and parent's input index
  1094       if( parent != -1 ) {                // root was initialized
  1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1096         fprintf(fp, "  if( ");
  1097         print_block_index(fp, inst_position);
  1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
  1099         print_block_index(fp, inst_position);
  1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1104       // When not the root
  1105       // Test we have the correct instruction by comparing the rule.
  1106       if( parent != -1 ) {
  1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1108                 inst_position, inst_position, inst_name);
  1110     } else {
  1111       // Check that user did not try to constrain a placeholder
  1112       assert( ! pconstraint->constrains_instruction(inst_position),
  1113               "fatal(): Can not constrain a placeholder instruction");
  1118 // Build mapping for register indices, num_edges to input
  1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1120   int         parent        = -1;
  1121   int         inst_position = 0;
  1122   const char* inst_name     = NULL;
  1123   int         input         = 0;
  1124   fprintf(fp, "      // Build map to register info\n");
  1125   pmatch->reset();
  1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1127        inst_name != NULL;
  1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1129     // If this is not a placeholder
  1130     if( ! pmatch->is_placeholder() ) {
  1131       // Define temporaries 'inst#', based on self's inst_position
  1132       InstructForm *inst = globals[inst_name]->is_instruction();
  1133       if( inst != NULL ) {
  1134         char inst_prefix[]  = "instXXXX_";
  1135         sprintf(inst_prefix, "inst%d_",   inst_position);
  1136         char receiver[]     = "instXXXX->";
  1137         sprintf(receiver,    "inst%d->", inst_position);
  1138         inst->index_temps( fp, globals, inst_prefix, receiver );
  1144 // Generate tests for the constraints
  1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1146   fprintf(fp, "\n");
  1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1149   // Build mapping from num_edges to local variables
  1150   build_instruction_index_mapping( fp, globals, pmatch );
  1152   // Build constraint tests
  1153   if( pconstraint != NULL ) {
  1154     fprintf(fp, "      matches = matches &&");
  1155     bool   first_constraint = true;
  1156     while( pconstraint != NULL ) {
  1157       // indentation and connecting '&&'
  1158       const char *indentation = "      ";
  1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1161       // Only have '==' relation implemented
  1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1163         assert( false, "Unimplemented()" );
  1166       // LEFT
  1167       int left_index       = pconstraint->_left_inst;
  1168       const char *left_op  = pconstraint->_left_op;
  1169       // Access info on the instructions whose operands are compared
  1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1171       assert( inst_left, "Parser should guaranty this is an instruction");
  1172       int left_op_base  = inst_left->oper_input_base(globals);
  1173       // Access info on the operands being compared
  1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1175       if( left_op_index == -1 ) {
  1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1177         if( left_op_index == -1 ) {
  1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1182       ComponentList components_left = inst_left->_components;
  1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1188       // RIGHT
  1189       int right_op_index = -1;
  1190       int right_index      = pconstraint->_right_inst;
  1191       const char *right_op = pconstraint->_right_op;
  1192       if( right_index != -1 ) { // Match operand
  1193         // Access info on the instructions whose operands are compared
  1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1195         assert( inst_right, "Parser should guaranty this is an instruction");
  1196         int right_op_base = inst_right->oper_input_base(globals);
  1197         // Access info on the operands being compared
  1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1199         if( right_op_index == -1 ) {
  1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1201           if( right_op_index == -1 ) {
  1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1206         ComponentList components_right = inst_right->_components;
  1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1212       } else {                  // Else match register
  1213         // assert( false, "should be a register" );
  1216       //
  1217       // Check for equivalence
  1218       //
  1219       // fprintf(fp, "phase->eqv( ");
  1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1221       //         left_index,  left_op_base,  left_op_index,  left_op,
  1222       //         right_index, right_op_base, right_op_index, right_op );
  1223       // fprintf(fp, ")");
  1224       //
  1225       switch( left_interface_type ) {
  1226       case Form::register_interface: {
  1227         // Check that they are allocated to the same register
  1228         // Need parameter for index position if not result operand
  1229         char left_reg_index[] = ",instXXXX_idxXXXX";
  1230         if( left_op_index != 0 ) {
  1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1232           // Must have index into operands
  1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
  1234         } else {
  1235           strcpy(left_reg_index, "");
  1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1239         fprintf(fp, " == ");
  1241         if( right_index != -1 ) {
  1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1243           if( right_op_index != 0 ) {
  1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1245             // Must have index into operands
  1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
  1247           } else {
  1248             strcpy(right_reg_index, "");
  1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1252         } else {
  1253           fprintf(fp, "%s_enc", right_op );
  1255         fprintf(fp,")");
  1256         break;
  1258       case Form::constant_interface: {
  1259         // Compare the '->constant()' values
  1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1261                 left_index,  left_op_index,  left_index, left_op );
  1262         fprintf(fp, " == ");
  1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1264                 right_index, right_op, right_index, right_op_index );
  1265         break;
  1267       case Form::memory_interface: {
  1268         // Compare 'base', 'index', 'scale', and 'disp'
  1269         // base
  1270         fprintf(fp, "( \n");
  1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1273         fprintf(fp, " == ");
  1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1276         // index
  1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1279         fprintf(fp, " == ");
  1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1282         // scale
  1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1284                 left_index,  left_op_index,  left_index, left_op );
  1285         fprintf(fp, " == ");
  1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1287                 right_index, right_op, right_index, right_op_index );
  1288         // disp
  1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1291         fprintf(fp, " == ");
  1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1294         fprintf(fp, ") \n");
  1295         break;
  1297       case Form::conditional_interface: {
  1298         // Compare the condition code being tested
  1299         assert( false, "Unimplemented()" );
  1300         break;
  1302       default: {
  1303         assert( false, "ShouldNotReachHere()" );
  1304         break;
  1308       // Advance to next constraint
  1309       pconstraint = pconstraint->next();
  1310       first_constraint = false;
  1313     fprintf(fp, ";\n");
  1317 // // EXPERIMENTAL -- TEMPORARY code
  1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1319 //   int op_index = instr->operand_position(op_name, Component::USE);
  1320 //   if( op_index == -1 ) {
  1321 //     op_index = instr->operand_position(op_name, Component::DEF);
  1322 //     if( op_index == -1 ) {
  1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1324 //     }
  1325 //   }
  1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1327 //
  1328 //   ComponentList components_right = instr->_components;
  1329 //   char *right_comp_type = components_right.at(op_index)->_type;
  1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1332 //
  1333 //   return;
  1334 // }
  1336 // Construct the new sub-tree
  1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1338   fprintf(fp, "      // IF instructions and constraints matched\n");
  1339   fprintf(fp, "      if( matches ) {\n");
  1340   fprintf(fp, "        // generate the new sub-tree\n");
  1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1342   if( preplace != NULL ) {
  1343     // Get the root of the new sub-tree
  1344     const char *root_inst = NULL;
  1345     preplace->next_instruction(root_inst);
  1346     InstructForm *root_form = globals[root_inst]->is_instruction();
  1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1350     int         inst_num;
  1351     const char *op_name;
  1352     int         opnds_index = 0;            // define result operand
  1353     // Then install the use-operands for the new sub-tree
  1354     // preplace->reset();             // reset breaks iteration
  1355     for( preplace->next_operand( inst_num, op_name );
  1356          op_name != NULL;
  1357          preplace->next_operand( inst_num, op_name ) ) {
  1358       InstructForm *inst_form;
  1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1360       assert( inst_form, "Parser should guaranty this is an instruction");
  1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1362       if( inst_op_num == NameList::Not_in_list )
  1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1365       // find the name of the OperandForm from the local name
  1366       const Form *form   = inst_form->_localNames[op_name];
  1367       OperandForm  *op_form = form->is_operand();
  1368       if( opnds_index == 0 ) {
  1369         // Initial setup of new instruction
  1370         fprintf(fp, "        // ----- Initial setup -----\n");
  1371         //
  1372         // Add control edge for this node
  1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1374         // Add unmatched edges from root of match tree
  1375         int op_base = root_form->oper_input_base(globals);
  1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1378                                           inst_num, unmatched_edge);
  1380         // If new instruction captures bottom type
  1381         if( root_form->captures_bottom_type(globals) ) {
  1382           // Get bottom type from instruction whose result we are replacing
  1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1385         // Define result register and result operand
  1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1391       } else {
  1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1393           // Do not have ideal edges for constants after matching
  1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1395                   inst_op_num, inst_num, inst_op_num,
  1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1398                   inst_num, inst_op_num );
  1399         } else {
  1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1403                 opnds_index, inst_num, inst_op_num );
  1405       ++opnds_index;
  1407   }else {
  1408     // Replacing subtree with empty-tree
  1409     assert( false, "ShouldNotReachHere();");
  1412   // Return the new sub-tree
  1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1414   fprintf(fp, "        return root;  // return new root;\n");
  1415   fprintf(fp, "      }\n");
  1419 // Define the Peephole method for an instruction node
  1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1421   // Generate Peephole function header
  1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1423   fprintf(fp, "  bool  matches = true;\n");
  1425   // Identify the maximum instruction position,
  1426   // generate temporaries that hold current instruction
  1427   //
  1428   //   MachNode  *inst0 = NULL;
  1429   //   ...
  1430   //   MachNode  *instMAX = NULL;
  1431   //
  1432   int max_position = 0;
  1433   Peephole *peep;
  1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1435     PeepMatch *pmatch = peep->match();
  1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1439   for( int i = 0; i <= max_position; ++i ) {
  1440     if( i == 0 ) {
  1441       fprintf(fp, "  MachNode *inst0 = this;\n");
  1442     } else {
  1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1447   // For each peephole rule in architecture description
  1448   //   Construct a test for the desired instruction sub-tree
  1449   //   then check the constraints
  1450   //   If these match, Generate the new subtree
  1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1452     int         peephole_number = peep->peephole_number();
  1453     PeepMatch      *pmatch      = peep->match();
  1454     PeepConstraint *pconstraint = peep->constraints();
  1455     PeepReplace    *preplace    = peep->replacement();
  1457     // Root of this peephole is the current MachNode
  1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1459             "root of PeepMatch does not match instruction");
  1461     // Make each peephole rule individually selectable
  1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1463     fprintf(fp, "    matches = true;\n");
  1464     // Scan the peepmatch and output a test for each instruction
  1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1467     // Check constraints and build replacement inside scope
  1468     fprintf(fp, "    // If instruction subtree matches\n");
  1469     fprintf(fp, "    if( matches ) {\n");
  1471     // Generate tests for the constraints
  1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1474     // Construct the new sub-tree
  1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1477     // End of scope for this peephole's constraints
  1478     fprintf(fp, "    }\n");
  1479     // Closing brace '}' to make each peephole rule individually selectable
  1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1481     fprintf(fp, "\n");
  1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1485   fprintf(fp, "}\n");
  1486   fprintf(fp, "\n");
  1489 // Define the Expand method for an instruction node
  1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1491   unsigned      cnt  = 0;          // Count nodes we have expand into
  1492   unsigned      i;
  1494   // Generate Expand function header
  1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  1496   fprintf(fp, "  Compile* C = Compile::current();\n");
  1497   // Generate expand code
  1498   if( node->expands() ) {
  1499     const char   *opid;
  1500     int           new_pos, exp_pos;
  1501     const char   *new_id   = NULL;
  1502     const Form   *frm      = NULL;
  1503     InstructForm *new_inst = NULL;
  1504     OperandForm  *new_oper = NULL;
  1505     unsigned      numo     = node->num_opnds() +
  1506                                 node->_exprule->_newopers.count();
  1508     // If necessary, generate any operands created in expand rule
  1509     if (node->_exprule->_newopers.count()) {
  1510       for(node->_exprule->_newopers.reset();
  1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1512         frm = node->_localNames[new_id];
  1513         assert(frm, "Invalid entry in new operands list of expand rule");
  1514         new_oper = frm->is_operand();
  1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1516         if (tmp == NULL) {
  1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1518                   cnt, new_oper->_ident);
  1520         else {
  1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1522                   cnt, new_oper->_ident, tmp);
  1526     cnt = 0;
  1527     // Generate the temps to use for DAG building
  1528     for(i = 0; i < numo; i++) {
  1529       if (i < node->num_opnds()) {
  1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1532       else {
  1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1536     // Build mapping from num_edges to local variables
  1537     fprintf(fp,"  unsigned num0 = 0;\n");
  1538     for( i = 1; i < node->num_opnds(); i++ ) {
  1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1542     // Build a mapping from operand index to input edges
  1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1545     // The order in which the memory input is added to a node is very
  1546     // strange.  Store nodes get a memory input before Expand is
  1547     // called and other nodes get it afterwards or before depending on
  1548     // match order so oper_input_base is wrong during expansion.  This
  1549     // code adjusts it so that expansion will work correctly.
  1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
  1551     if (has_memory_edge) {
  1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
  1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1554       fprintf(fp,"  }\n");
  1557     for( i = 0; i < node->num_opnds(); i++ ) {
  1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1559               i+1,i,i);
  1562     // Declare variable to hold root of expansion
  1563     fprintf(fp,"  MachNode *result = NULL;\n");
  1565     // Iterate over the instructions 'node' expands into
  1566     ExpandRule  *expand       = node->_exprule;
  1567     NameAndList *expand_instr = NULL;
  1568     for(expand->reset_instructions();
  1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1570       new_id = expand_instr->name();
  1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1574       if (!expand_instruction) {
  1575         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
  1576                              node->_ident, new_id);
  1577         continue;
  1580       if (expand_instruction->has_temps()) {
  1581         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1582                              node->_ident, new_id);
  1585       // Build the node for the instruction
  1586       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1587       // Add control edge for this node
  1588       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1589       // Build the operand for the value this node defines.
  1590       Form *form = (Form*)_globalNames[new_id];
  1591       assert( form, "'new_id' must be a defined form name");
  1592       // Grab the InstructForm for the new instruction
  1593       new_inst = form->is_instruction();
  1594       assert( new_inst, "'new_id' must be an instruction name");
  1595       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1596         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1597         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1600       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1601         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1604       // Fill in the bottom_type where requested
  1605       if (node->captures_bottom_type(_globalNames) &&
  1606           new_inst->captures_bottom_type(_globalNames)) {
  1607         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
  1610       const char *resultOper = new_inst->reduce_result();
  1611       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1612               cnt, machOperEnum(resultOper));
  1614       // get the formal operand NameList
  1615       NameList *formal_lst = &new_inst->_parameters;
  1616       formal_lst->reset();
  1618       // Handle any memory operand
  1619       int memory_operand = new_inst->memory_operand(_globalNames);
  1620       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1621         int node_mem_op = node->memory_operand(_globalNames);
  1622         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1623                 "expand rule member needs memory but top-level inst doesn't have any" );
  1624         if (has_memory_edge) {
  1625           // Copy memory edge
  1626           fprintf(fp,"  if (mem != (Node*)1) {\n");
  1627           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1628           fprintf(fp,"  }\n");
  1632       // Iterate over the new instruction's operands
  1633       int prev_pos = -1;
  1634       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1635         // Use 'parameter' at current position in list of new instruction's formals
  1636         // instead of 'opid' when looking up info internal to new_inst
  1637         const char *parameter = formal_lst->iter();
  1638         if (!parameter) {
  1639           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
  1640                                " no equivalent in new instruction %s.",
  1641                                opid, node->_ident, new_inst->_ident);
  1642           assert(0, "Wrong expand");
  1645         // Check for an operand which is created in the expand rule
  1646         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1647           new_pos = new_inst->operand_position(parameter,Component::USE);
  1648           exp_pos += node->num_opnds();
  1649           // If there is no use of the created operand, just skip it
  1650           if (new_pos != NameList::Not_in_list) {
  1651             //Copy the operand from the original made above
  1652             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1653                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1654             // Check for who defines this operand & add edge if needed
  1655             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1656             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1659         else {
  1660           // Use operand name to get an index into instruction component list
  1661           // ins = (InstructForm *) _globalNames[new_id];
  1662           exp_pos = node->operand_position_format(opid);
  1663           assert(exp_pos != -1, "Bad expand rule");
  1664           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1665             // For the add_req calls below to work correctly they need
  1666             // to added in the same order that a match would add them.
  1667             // This means that they would need to be in the order of
  1668             // the components list instead of the formal parameters.
  1669             // This is a sort of hidden invariant that previously
  1670             // wasn't checked and could lead to incorrectly
  1671             // constructed nodes.
  1672             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1673                        node->_ident, new_inst->_ident);
  1675           prev_pos = exp_pos;
  1677           new_pos = new_inst->operand_position(parameter,Component::USE);
  1678           if (new_pos != -1) {
  1679             // Copy the operand from the ExpandNode to the new node
  1680             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1681                     cnt, new_pos, exp_pos, opid);
  1682             // For each operand add appropriate input edges by looking at tmp's
  1683             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1684             // Grab corresponding edges from ExpandNode and insert them here
  1685             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1686             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1687             fprintf(fp,"    }\n");
  1688             fprintf(fp,"  }\n");
  1689             // This value is generated by one of the new instructions
  1690             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1694         // Update the DAG tmp's for values defined by this instruction
  1695         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1696         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1697         // If this operand is a definition in either an effects rule
  1698         // or a match rule
  1699         if((eform) && (is_def(eform->_use_def))) {
  1700           // Update the temp associated with this operand
  1701           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1703         else if( new_def_pos != -1 ) {
  1704           // Instruction defines a value but user did not declare it
  1705           // in the 'effect' clause
  1706           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1708       } // done iterating over a new instruction's operands
  1710       // Invoke Expand() for the newly created instruction.
  1711       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
  1712       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1713     } // done iterating over new instructions
  1714     fprintf(fp,"\n");
  1715   } // done generating expand rule
  1717   // Generate projections for instruction's additional DEFs and KILLs
  1718   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1719     // Get string representing the MachNode that projections point at
  1720     const char *machNode = "this";
  1721     // Generate the projections
  1722     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1724     // Examine each component to see if it is a DEF or KILL
  1725     node->_components.reset();
  1726     // Skip the first component, if already handled as (SET dst (...))
  1727     Component *comp = NULL;
  1728     // For kills, the choice of projection numbers is arbitrary
  1729     int proj_no = 1;
  1730     bool declared_def  = false;
  1731     bool declared_kill = false;
  1733     while( (comp = node->_components.iter()) != NULL ) {
  1734       // Lookup register class associated with operand type
  1735       Form        *form = (Form*)_globalNames[comp->_type];
  1736       assert( form, "component type must be a defined form");
  1737       OperandForm *op   = form->is_operand();
  1739       if (comp->is(Component::TEMP)) {
  1740         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1741         if (!declared_def) {
  1742           // Define the variable "def" to hold new MachProjNodes
  1743           fprintf(fp, "  MachTempNode *def;\n");
  1744           declared_def = true;
  1746         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1747           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1748                   machOperEnum(op->_ident));
  1749           fprintf(fp,"  add_req(def);\n");
  1750           // The operand for TEMP is already constructed during
  1751           // this mach node construction, see buildMachNode().
  1752           //
  1753           // int idx  = node->operand_position_format(comp->_name);
  1754           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1755           //         idx, machOperEnum(op->_ident));
  1756         } else {
  1757           assert(false, "can't have temps which aren't registers");
  1759       } else if (comp->isa(Component::KILL)) {
  1760         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1762         if (!declared_kill) {
  1763           // Define the variable "kill" to hold new MachProjNodes
  1764           fprintf(fp, "  MachProjNode *kill;\n");
  1765           declared_kill = true;
  1768         assert( op, "Support additional KILLS for base operands");
  1769         const char *regmask    = reg_mask(*op);
  1770         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1772         if (!op->is_bound_register()) {
  1773           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1774                      node->_ident, comp->_type, comp->_name);
  1777         fprintf(fp,"  kill = ");
  1778         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1779                 machNode, proj_no++, regmask, ideal_type);
  1780         fprintf(fp,"  proj_list.push(kill);\n");
  1785   if( !node->expands() && node->_matrule != NULL ) {
  1786     // Remove duplicated operands and inputs which use the same name.
  1787     // Seach through match operands for the same name usage.
  1788     uint cur_num_opnds = node->num_opnds();
  1789     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1790       Component *comp = NULL;
  1791       // Build mapping from num_edges to local variables
  1792       fprintf(fp,"  unsigned num0 = 0;\n");
  1793       for( i = 1; i < cur_num_opnds; i++ ) {
  1794         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
  1795         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
  1797       // Build a mapping from operand index to input edges
  1798       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1799       for( i = 0; i < cur_num_opnds; i++ ) {
  1800         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1801                 i+1,i,i);
  1804       uint new_num_opnds = 1;
  1805       node->_components.reset();
  1806       // Skip first unique operands.
  1807       for( i = 1; i < cur_num_opnds; i++ ) {
  1808         comp = node->_components.iter();
  1809         if (i != node->unique_opnds_idx(i)) {
  1810           break;
  1812         new_num_opnds++;
  1814       // Replace not unique operands with next unique operands.
  1815       for( ; i < cur_num_opnds; i++ ) {
  1816         comp = node->_components.iter();
  1817         uint j = node->unique_opnds_idx(i);
  1818         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1819         if( j != node->unique_opnds_idx(j) ) {
  1820           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1821                   new_num_opnds, i, comp->_name);
  1822           // delete not unique edges here
  1823           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1824           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1825           fprintf(fp,"  }\n");
  1826           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1827           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1828           new_num_opnds++;
  1831       // delete the rest of edges
  1832       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1833       fprintf(fp,"    del_req(i);\n");
  1834       fprintf(fp,"  }\n");
  1835       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1836       assert(new_num_opnds == node->num_unique_opnds(), "what?");
  1840   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  1841   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  1842   // There are nodes that don't use $constantablebase, but still require that it
  1843   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
  1844   if (node->is_mach_constant() || node->needs_constant_base()) {
  1845     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
  1848   fprintf(fp,"\n");
  1849   if( node->expands() ) {
  1850     fprintf(fp,"  return result;\n");
  1851   } else {
  1852     fprintf(fp,"  return this;\n");
  1854   fprintf(fp,"}\n");
  1855   fprintf(fp,"\n");
  1859 //------------------------------Emit Routines----------------------------------
  1860 // Special classes and routines for defining node emit routines which output
  1861 // target specific instruction object encodings.
  1862 // Define the ___Node::emit() routine
  1863 //
  1864 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1865 // (2)   // ...  encoding defined by user
  1866 // (3)
  1867 // (4) }
  1868 //
  1870 class DefineEmitState {
  1871 private:
  1872   enum reloc_format { RELOC_NONE        = -1,
  1873                       RELOC_IMMEDIATE   =  0,
  1874                       RELOC_DISP        =  1,
  1875                       RELOC_CALL_DISP   =  2 };
  1876   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1877                        LITERAL_SEEN      = 1,
  1878                        LITERAL_ACCESSED  = 2,
  1879                        LITERAL_OUTPUT    = 3 };
  1880   // Temporaries that describe current operand
  1881   bool          _cleared;
  1882   OpClassForm  *_opclass;
  1883   OperandForm  *_operand;
  1884   int           _operand_idx;
  1885   const char   *_local_name;
  1886   const char   *_operand_name;
  1887   bool          _doing_disp;
  1888   bool          _doing_constant;
  1889   Form::DataType _constant_type;
  1890   DefineEmitState::literal_status _constant_status;
  1891   DefineEmitState::literal_status _reg_status;
  1892   bool          _doing_emit8;
  1893   bool          _doing_emit_d32;
  1894   bool          _doing_emit_d16;
  1895   bool          _doing_emit_hi;
  1896   bool          _doing_emit_lo;
  1897   bool          _may_reloc;
  1898   reloc_format  _reloc_form;
  1899   const char *  _reloc_type;
  1900   bool          _processing_noninput;
  1902   NameList      _strings_to_emit;
  1904   // Stable state, set by constructor
  1905   ArchDesc     &_AD;
  1906   FILE         *_fp;
  1907   EncClass     &_encoding;
  1908   InsEncode    &_ins_encode;
  1909   InstructForm &_inst;
  1911 public:
  1912   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1913                   InsEncode &ins_encode, InstructForm &inst)
  1914     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1915       clear();
  1918   void clear() {
  1919     _cleared       = true;
  1920     _opclass       = NULL;
  1921     _operand       = NULL;
  1922     _operand_idx   = 0;
  1923     _local_name    = "";
  1924     _operand_name  = "";
  1925     _doing_disp    = false;
  1926     _doing_constant= false;
  1927     _constant_type = Form::none;
  1928     _constant_status = LITERAL_NOT_SEEN;
  1929     _reg_status      = LITERAL_NOT_SEEN;
  1930     _doing_emit8   = false;
  1931     _doing_emit_d32= false;
  1932     _doing_emit_d16= false;
  1933     _doing_emit_hi = false;
  1934     _doing_emit_lo = false;
  1935     _may_reloc     = false;
  1936     _reloc_form    = RELOC_NONE;
  1937     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1938     _strings_to_emit.clear();
  1941   // Track necessary state when identifying a replacement variable
  1942   // @arg rep_var: The formal parameter of the encoding.
  1943   void update_state(const char *rep_var) {
  1944     // A replacement variable or one of its subfields
  1945     // Obtain replacement variable from list
  1946     if ( (*rep_var) != '$' ) {
  1947       // A replacement variable, '$' prefix
  1948       // check_rep_var( rep_var );
  1949       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1950         // No state needed.
  1951         assert( _opclass == NULL,
  1952                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1954       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
  1955                (strcmp(rep_var, "constantoffset")    == 0) ||
  1956                (strcmp(rep_var, "constantaddress")   == 0)) {
  1957         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
  1958           _AD.syntax_err(_encoding._linenum,
  1959                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
  1960                          rep_var, _encoding._name);
  1963       else {
  1964         // Lookup its position in (formal) parameter list of encoding
  1965         int   param_no  = _encoding.rep_var_index(rep_var);
  1966         if ( param_no == -1 ) {
  1967           _AD.syntax_err( _encoding._linenum,
  1968                           "Replacement variable %s not found in enc_class %s.\n",
  1969                           rep_var, _encoding._name);
  1972         // Lookup the corresponding ins_encode parameter
  1973         // This is the argument (actual parameter) to the encoding.
  1974         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1975         if (inst_rep_var == NULL) {
  1976           _AD.syntax_err( _ins_encode._linenum,
  1977                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1978                           rep_var, _encoding._name, _inst._ident);
  1981         // Check if instruction's actual parameter is a local name in the instruction
  1982         const Form  *local     = _inst._localNames[inst_rep_var];
  1983         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1984         // Note: assert removed to allow constant and symbolic parameters
  1985         // assert( opc, "replacement variable was not found in local names");
  1986         // Lookup the index position iff the replacement variable is a localName
  1987         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1989         if ( idx != -1 ) {
  1990           // This is a local in the instruction
  1991           // Update local state info.
  1992           _opclass        = opc;
  1993           _operand_idx    = idx;
  1994           _local_name     = rep_var;
  1995           _operand_name   = inst_rep_var;
  1997           // !!!!!
  1998           // Do not support consecutive operands.
  1999           assert( _operand == NULL, "Unimplemented()");
  2000           _operand = opc->is_operand();
  2002         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2003           // Instruction provided a constant expression
  2004           // Check later that encoding specifies $$$constant to resolve as constant
  2005           _constant_status   = LITERAL_SEEN;
  2007         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2008           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  2009           // Check later that encoding specifies $$$constant to resolve as constant
  2010           _constant_status   = LITERAL_SEEN;
  2012         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2013           // Instruction provided a literal register name for this parameter
  2014           // Check that encoding specifies $$$reg to resolve.as register.
  2015           _reg_status        = LITERAL_SEEN;
  2017         else {
  2018           // Check for unimplemented functionality before hard failure
  2019           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2020           assert( false, "ShouldNotReachHere()");
  2022       } // done checking which operand this is.
  2023     } else {
  2024       //
  2025       // A subfield variable, '$$' prefix
  2026       // Check for fields that may require relocation information.
  2027       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  2028       //
  2029       if ( strcmp(rep_var,"$disp") == 0 ) {
  2030         _doing_disp = true;
  2031         assert( _opclass, "Must use operand or operand class before '$disp'");
  2032         if( _operand == NULL ) {
  2033           // Only have an operand class, generate run-time check for relocation
  2034           _may_reloc    = true;
  2035           _reloc_form   = RELOC_DISP;
  2036           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2037         } else {
  2038           // Do precise check on operand: is it a ConP or not
  2039           //
  2040           // Check interface for value of displacement
  2041           assert( ( _operand->_interface != NULL ),
  2042                   "$disp can only follow memory interface operand");
  2043           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2044           assert( mem_interface != NULL,
  2045                   "$disp can only follow memory interface operand");
  2046           const char *disp = mem_interface->_disp;
  2048           if( disp != NULL && (*disp == '$') ) {
  2049             // MemInterface::disp contains a replacement variable,
  2050             // Check if this matches a ConP
  2051             //
  2052             // Lookup replacement variable, in operand's component list
  2053             const char *rep_var_name = disp + 1; // Skip '$'
  2054             const Component *comp = _operand->_components.search(rep_var_name);
  2055             assert( comp != NULL,"Replacement variable not found in components");
  2056             const char      *type = comp->_type;
  2057             // Lookup operand form for replacement variable's type
  2058             const Form *form = _AD.globalNames()[type];
  2059             assert( form != NULL, "Replacement variable's type not found");
  2060             OperandForm *op = form->is_operand();
  2061             assert( op, "Attempting to emit a non-register or non-constant");
  2062             // Check if this is a constant
  2063             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2064               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2065               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2066               // assert( idx != -1, "Constant component not found in operand");
  2067               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2068               if ( dtype == Form::idealP ) {
  2069                 _may_reloc    = true;
  2070                 // No longer true that idealP is always an oop
  2071                 _reloc_form   = RELOC_DISP;
  2072                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2076             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2077               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2078               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2079               _may_reloc   = false;
  2080             } else {
  2081               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2084         } // finished with precise check of operand for relocation.
  2085       } // finished with subfield variable
  2086       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2087         _doing_constant = true;
  2088         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2089           // Check operand for type of constant
  2090           assert( _operand, "Must use operand before '$$constant'");
  2091           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2092           _constant_type = dtype;
  2093           if ( dtype == Form::idealP ) {
  2094             _may_reloc    = true;
  2095             // No longer true that idealP is always an oop
  2096             // // _must_reloc   = true;
  2097             _reloc_form   = RELOC_IMMEDIATE;
  2098             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2099           } else {
  2100             // No relocation information needed
  2102         } else {
  2103           // User-provided literals may not require relocation information !!!!!
  2104           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2107       else if ( strcmp(rep_var,"$label") == 0 ) {
  2108         // Calls containing labels require relocation
  2109         if ( _inst.is_ideal_call() )  {
  2110           _may_reloc    = true;
  2111           // !!!!! !!!!!
  2112           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2116       // literal register parameter must be accessed as a 'reg' field.
  2117       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2118         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2119         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2120           _reg_status  = LITERAL_ACCESSED;
  2121         } else {
  2122           _AD.syntax_err(_encoding._linenum,
  2123                          "Invalid access to literal register parameter '%s' in %s.\n",
  2124                          rep_var, _encoding._name);
  2125           assert( false, "invalid access to literal register parameter");
  2128       // literal constant parameters must be accessed as a 'constant' field
  2129       if (_constant_status != LITERAL_NOT_SEEN) {
  2130         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2131         if (strcmp(rep_var,"$constant") == 0) {
  2132           _constant_status = LITERAL_ACCESSED;
  2133         } else {
  2134           _AD.syntax_err(_encoding._linenum,
  2135                          "Invalid access to literal constant parameter '%s' in %s.\n",
  2136                          rep_var, _encoding._name);
  2139     } // end replacement and/or subfield
  2143   void add_rep_var(const char *rep_var) {
  2144     // Handle subfield and replacement variables.
  2145     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2146       // Check for emit prefix, '$$emit32'
  2147       assert( _cleared, "Can not nest $$$emit32");
  2148       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2149         _doing_emit_d32 = true;
  2151       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2152         _doing_emit_d16 = true;
  2154       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2155         _doing_emit_hi  = true;
  2157       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2158         _doing_emit_lo  = true;
  2160       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2161         _doing_emit8    = true;
  2163       else {
  2164         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2165         assert( false, "fatal();");
  2168     else {
  2169       // Update state for replacement variables
  2170       update_state( rep_var );
  2171       _strings_to_emit.addName(rep_var);
  2173     _cleared  = false;
  2176   void emit_replacement() {
  2177     // A replacement variable or one of its subfields
  2178     // Obtain replacement variable from list
  2179     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2180     const char *rep_var;
  2181     _strings_to_emit.reset();
  2182     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2184       if ( (*rep_var) == '$' ) {
  2185         // A subfield variable, '$$' prefix
  2186         emit_field( rep_var );
  2187       } else {
  2188         if (_strings_to_emit.peek() != NULL &&
  2189             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
  2190           fprintf(_fp, "Address::make_raw(");
  2192           emit_rep_var( rep_var );
  2193           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
  2195           _reg_status = LITERAL_ACCESSED;
  2196           emit_rep_var( rep_var );
  2197           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
  2199           _reg_status = LITERAL_ACCESSED;
  2200           emit_rep_var( rep_var );
  2201           fprintf(_fp,"->scale(), ");
  2203           _reg_status = LITERAL_ACCESSED;
  2204           emit_rep_var( rep_var );
  2205           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2206           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2207             fprintf(_fp,"->disp(ra_,this,0), ");
  2208           } else {
  2209             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
  2212           _reg_status = LITERAL_ACCESSED;
  2213           emit_rep_var( rep_var );
  2214           fprintf(_fp,"->disp_reloc())");
  2216           // skip trailing $Address
  2217           _strings_to_emit.iter();
  2218         } else {
  2219           // A replacement variable, '$' prefix
  2220           const char* next = _strings_to_emit.peek();
  2221           const char* next2 = _strings_to_emit.peek(2);
  2222           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
  2223               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
  2224             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
  2225             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
  2226             fprintf(_fp, "as_Register(");
  2227             // emit the operand reference
  2228             emit_rep_var( rep_var );
  2229             rep_var = _strings_to_emit.iter();
  2230             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
  2231             // handle base or index
  2232             emit_field(rep_var);
  2233             rep_var = _strings_to_emit.iter();
  2234             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
  2235             // close up the parens
  2236             fprintf(_fp, ")");
  2237           } else {
  2238             emit_rep_var( rep_var );
  2241       } // end replacement and/or subfield
  2245   void emit_reloc_type(const char* type) {
  2246     fprintf(_fp, "%s", type)
  2251   void emit() {
  2252     //
  2253     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2254     //
  2255     // Emit the function name when generating an emit function
  2256     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2257       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2258       // In general, relocatable isn't known at compiler compile time.
  2259       // Check results of prior scan
  2260       if ( ! _may_reloc ) {
  2261         // Definitely don't need relocation information
  2262         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2263         emit_replacement(); fprintf(_fp, ")");
  2265       else {
  2266         // Emit RUNTIME CHECK to see if value needs relocation info
  2267         // If emitting a relocatable address, use 'emit_d32_reloc'
  2268         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2269         assert( (_doing_disp || _doing_constant)
  2270                 && !(_doing_disp && _doing_constant),
  2271                 "Must be emitting either a displacement or a constant");
  2272         fprintf(_fp,"\n");
  2273         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
  2274                 _operand_idx, disp_constant);
  2275         fprintf(_fp,"  ");
  2276         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
  2277         emit_replacement();             fprintf(_fp,", ");
  2278         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
  2279                 _operand_idx, disp_constant);
  2280         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2281         fprintf(_fp,"\n");
  2282         fprintf(_fp,"} else {\n");
  2283         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2284         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2287     else if ( _doing_emit_d16 ) {
  2288       // Relocation of 16-bit values is not supported
  2289       fprintf(_fp,"emit_d16(cbuf, ");
  2290       emit_replacement(); fprintf(_fp, ")");
  2291       // No relocation done for 16-bit values
  2293     else if ( _doing_emit8 ) {
  2294       // Relocation of 8-bit values is not supported
  2295       fprintf(_fp,"emit_d8(cbuf, ");
  2296       emit_replacement(); fprintf(_fp, ")");
  2297       // No relocation done for 8-bit values
  2299     else {
  2300       // Not an emit# command, just output the replacement string.
  2301       emit_replacement();
  2304     // Get ready for next state collection.
  2305     clear();
  2308 private:
  2310   // recognizes names which represent MacroAssembler register types
  2311   // and return the conversion function to build them from OptoReg
  2312   const char* reg_conversion(const char* rep_var) {
  2313     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2314     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2315 #if defined(IA32) || defined(AMD64)
  2316     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2317 #endif
  2318     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
  2319     return NULL;
  2322   void emit_field(const char *rep_var) {
  2323     const char* reg_convert = reg_conversion(rep_var);
  2325     // A subfield variable, '$$subfield'
  2326     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2327       // $reg form or the $Register MacroAssembler type conversions
  2328       assert( _operand_idx != -1,
  2329               "Must use this subfield after operand");
  2330       if( _reg_status == LITERAL_NOT_SEEN ) {
  2331         if (_processing_noninput) {
  2332           const Form  *local     = _inst._localNames[_operand_name];
  2333           OperandForm *oper      = local->is_operand();
  2334           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2335           if (reg_convert != NULL) {
  2336             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2337           } else {
  2338             fprintf(_fp, "%s_enc", first->_regname);
  2340         } else {
  2341           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2342           // Add parameter for index position, if not result operand
  2343           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2344           fprintf(_fp,")");
  2345           fprintf(_fp, "/* %s */", _operand_name);
  2347       } else {
  2348         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2349         // Register literal has already been sent to output file, nothing more needed
  2352     else if ( strcmp(rep_var,"$base") == 0 ) {
  2353       assert( _operand_idx != -1,
  2354               "Must use this subfield after operand");
  2355       assert( ! _may_reloc, "UnImplemented()");
  2356       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2358     else if ( strcmp(rep_var,"$index") == 0 ) {
  2359       assert( _operand_idx != -1,
  2360               "Must use this subfield after operand");
  2361       assert( ! _may_reloc, "UnImplemented()");
  2362       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2364     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2365       assert( ! _may_reloc, "UnImplemented()");
  2366       fprintf(_fp,"->scale()");
  2368     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2369       assert( ! _may_reloc, "UnImplemented()");
  2370       fprintf(_fp,"->ccode()");
  2372     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2373       if( _constant_status == LITERAL_NOT_SEEN ) {
  2374         if ( _constant_type == Form::idealD ) {
  2375           fprintf(_fp,"->constantD()");
  2376         } else if ( _constant_type == Form::idealF ) {
  2377           fprintf(_fp,"->constantF()");
  2378         } else if ( _constant_type == Form::idealL ) {
  2379           fprintf(_fp,"->constantL()");
  2380         } else {
  2381           fprintf(_fp,"->constant()");
  2383       } else {
  2384         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2385         // Constant literal has already been sent to output file, nothing more needed
  2388     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2389       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2390       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2391         fprintf(_fp,"->disp(ra_,this,0)");
  2392       } else {
  2393         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2396     else if ( strcmp(rep_var,"$label") == 0 ) {
  2397       fprintf(_fp,"->label()");
  2399     else if ( strcmp(rep_var,"$method") == 0 ) {
  2400       fprintf(_fp,"->method()");
  2402     else {
  2403       printf("emit_field: %s\n",rep_var);
  2404       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
  2405                            rep_var, _inst._ident);
  2406       assert( false, "UnImplemented()");
  2411   void emit_rep_var(const char *rep_var) {
  2412     _processing_noninput = false;
  2413     // A replacement variable, originally '$'
  2414     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2415       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2416         // Missing opcode
  2417         _AD.syntax_err( _inst._linenum,
  2418                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2419                         rep_var, _inst._ident, _encoding._name);
  2422     else if (strcmp(rep_var, "constanttablebase") == 0) {
  2423       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
  2425     else if (strcmp(rep_var, "constantoffset") == 0) {
  2426       fprintf(_fp, "constant_offset()");
  2428     else if (strcmp(rep_var, "constantaddress") == 0) {
  2429       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
  2431     else {
  2432       // Lookup its position in parameter list
  2433       int   param_no  = _encoding.rep_var_index(rep_var);
  2434       if ( param_no == -1 ) {
  2435         _AD.syntax_err( _encoding._linenum,
  2436                         "Replacement variable %s not found in enc_class %s.\n",
  2437                         rep_var, _encoding._name);
  2439       // Lookup the corresponding ins_encode parameter
  2440       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2442       // Check if instruction's actual parameter is a local name in the instruction
  2443       const Form  *local     = _inst._localNames[inst_rep_var];
  2444       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2445       // Note: assert removed to allow constant and symbolic parameters
  2446       // assert( opc, "replacement variable was not found in local names");
  2447       // Lookup the index position iff the replacement variable is a localName
  2448       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2449       if( idx != -1 ) {
  2450         if (_inst.is_noninput_operand(idx)) {
  2451           // This operand isn't a normal input so printing it is done
  2452           // specially.
  2453           _processing_noninput = true;
  2454         } else {
  2455           // Output the emit code for this operand
  2456           fprintf(_fp,"opnd_array(%d)",idx);
  2458         assert( _operand == opc->is_operand(),
  2459                 "Previous emit $operand does not match current");
  2461       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2462         // else check if it is a constant expression
  2463         // Removed following assert to allow primitive C types as arguments to encodings
  2464         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2465         fprintf(_fp,"(%s)", inst_rep_var);
  2466         _constant_status = LITERAL_OUTPUT;
  2468       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2469         // else check if "primary", "secondary", "tertiary"
  2470         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2471         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2472           // Missing opcode
  2473           _AD.syntax_err( _inst._linenum,
  2474                           "Missing $%s opcode definition in %s\n",
  2475                           rep_var, _inst._ident);
  2478         _constant_status = LITERAL_OUTPUT;
  2480       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2481         // Instruction provided a literal register name for this parameter
  2482         // Check that encoding specifies $$$reg to resolve.as register.
  2483         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2484         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2485         _reg_status = LITERAL_OUTPUT;
  2487       else {
  2488         // Check for unimplemented functionality before hard failure
  2489         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2490         assert( false, "ShouldNotReachHere()");
  2492       // all done
  2496 };  // end class DefineEmitState
  2499 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2501   //(1)
  2502   // Output instruction's emit prototype
  2503   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2504           inst._ident);
  2506   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2508   //(2)
  2509   // Print the size
  2510   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2512   // (3) and (4)
  2513   fprintf(fp,"}\n\n");
  2516 // Emit late expand function.
  2517 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
  2518   InsEncode *ins_encode = inst._insencode;
  2520   // Output instruction's postalloc_expand prototype.
  2521   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
  2522           inst._ident);
  2524   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
  2526   // Output each operand's offset into the array of registers.
  2527   inst.index_temps(fp, _globalNames);
  2529   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
  2530   // for each parameter <par_name> specified in the encoding.
  2531   ins_encode->reset();
  2532   const char *ec_name = ins_encode->encode_class_iter();
  2533   assert(ec_name != NULL, "late expand must specify an encoding");
  2535   EncClass *encoding = _encode->encClass(ec_name);
  2536   if (encoding == NULL) {
  2537     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2538     abort();
  2540   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2541     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2542                          inst._ident, ins_encode->current_encoding_num_args(),
  2543                          ec_name, encoding->num_args());
  2546   fprintf(fp, "  // Access to ins and operands for late expand.\n");
  2547   const int buflen = 2000;
  2548   char idxbuf[buflen]; char *ib = idxbuf; sprintf(ib, "");
  2549   char nbuf  [buflen]; char *nb = nbuf;   sprintf(nb, "");
  2550   char opbuf [buflen]; char *ob = opbuf;  sprintf(ob, "");
  2552   encoding->_parameter_type.reset();
  2553   encoding->_parameter_name.reset();
  2554   const char *type = encoding->_parameter_type.iter();
  2555   const char *name = encoding->_parameter_name.iter();
  2556   int param_no = 0;
  2557   for (; (type != NULL) && (name != NULL);
  2558        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
  2559     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
  2560     int idx = inst.operand_position_format(arg_name);
  2561     if (strcmp(arg_name, "constanttablebase") == 0) {
  2562       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
  2563                     name, type, arg_name);
  2564       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2565       // There is no operand for the constanttablebase.
  2566     } else if (inst.is_noninput_operand(idx)) {
  2567       globalAD->syntax_err(inst._linenum,
  2568                            "In %s: you can not pass the non-input %s to a late expand encoding.\n",
  2569                            inst._ident, arg_name);
  2570     } else {
  2571       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
  2572                     name, idx, type, arg_name);
  2573       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2574       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
  2576     param_no++;
  2578   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
  2580   fprintf(fp, "%s", idxbuf);
  2581   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
  2582   fprintf(fp, "%s%s", nbuf, opbuf);
  2583   fprintf(fp, "  Compile *C = ra_->C;\n");
  2585   // Output this instruction's encodings.
  2586   fprintf(fp, "  {");
  2587   const char *ec_code    = NULL;
  2588   const char *ec_rep_var = NULL;
  2589   assert(encoding == _encode->encClass(ec_name), "");
  2591   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
  2592   encoding->_code.reset();
  2593   encoding->_rep_vars.reset();
  2594   // Process list of user-defined strings,
  2595   // and occurrences of replacement variables.
  2596   // Replacement Vars are pushed into a list and then output.
  2597   while ((ec_code = encoding->_code.iter()) != NULL) {
  2598     if (! encoding->_code.is_signal(ec_code)) {
  2599       // Emit pending code.
  2600       pending.emit();
  2601       pending.clear();
  2602       // Emit this code section.
  2603       fprintf(fp, "%s", ec_code);
  2604     } else {
  2605       // A replacement variable or one of its subfields.
  2606       // Obtain replacement variable from list.
  2607       ec_rep_var = encoding->_rep_vars.iter();
  2608       pending.add_rep_var(ec_rep_var);
  2611   // Emit pending code.
  2612   pending.emit();
  2613   pending.clear();
  2614   fprintf(fp, "  }\n");
  2616   fprintf(fp, "}\n\n");
  2618   ec_name = ins_encode->encode_class_iter();
  2619   assert(ec_name == NULL, "Late expand may only have one encoding.");
  2622 // defineEmit -----------------------------------------------------------------
  2623 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  2624   InsEncode* encode = inst._insencode;
  2626   // (1)
  2627   // Output instruction's emit prototype
  2628   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
  2630   // If user did not define an encode section,
  2631   // provide stub that does not generate any machine code.
  2632   if( (_encode == NULL) || (encode == NULL) ) {
  2633     fprintf(fp, "  // User did not define an encode section.\n");
  2634     fprintf(fp, "}\n");
  2635     return;
  2638   // Save current instruction's starting address (helps with relocation).
  2639   fprintf(fp, "  cbuf.set_insts_mark();\n");
  2641   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  2642   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
  2643     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  2646   // Output each operand's offset into the array of registers.
  2647   inst.index_temps(fp, _globalNames);
  2649   // Output this instruction's encodings
  2650   const char *ec_name;
  2651   bool        user_defined = false;
  2652   encode->reset();
  2653   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2654     fprintf(fp, "  {\n");
  2655     // Output user-defined encoding
  2656     user_defined           = true;
  2658     const char *ec_code    = NULL;
  2659     const char *ec_rep_var = NULL;
  2660     EncClass   *encoding   = _encode->encClass(ec_name);
  2661     if (encoding == NULL) {
  2662       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2663       abort();
  2666     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2667       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2668                            inst._ident, encode->current_encoding_num_args(),
  2669                            ec_name, encoding->num_args());
  2672     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2673     encoding->_code.reset();
  2674     encoding->_rep_vars.reset();
  2675     // Process list of user-defined strings,
  2676     // and occurrences of replacement variables.
  2677     // Replacement Vars are pushed into a list and then output
  2678     while ((ec_code = encoding->_code.iter()) != NULL) {
  2679       if (!encoding->_code.is_signal(ec_code)) {
  2680         // Emit pending code
  2681         pending.emit();
  2682         pending.clear();
  2683         // Emit this code section
  2684         fprintf(fp, "%s", ec_code);
  2685       } else {
  2686         // A replacement variable or one of its subfields
  2687         // Obtain replacement variable from list
  2688         ec_rep_var  = encoding->_rep_vars.iter();
  2689         pending.add_rep_var(ec_rep_var);
  2692     // Emit pending code
  2693     pending.emit();
  2694     pending.clear();
  2695     fprintf(fp, "  }\n");
  2696   } // end while instruction's encodings
  2698   // Check if user stated which encoding to user
  2699   if ( user_defined == false ) {
  2700     fprintf(fp, "  // User did not define which encode class to use.\n");
  2703   // (3) and (4)
  2704   fprintf(fp, "}\n\n");
  2707 // defineEvalConstant ---------------------------------------------------------
  2708 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  2709   InsEncode* encode = inst._constant;
  2711   // (1)
  2712   // Output instruction's emit prototype
  2713   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
  2715   // For ideal jump nodes, add a jump-table entry.
  2716   if (inst.is_ideal_jump()) {
  2717     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  2720   // If user did not define an encode section,
  2721   // provide stub that does not generate any machine code.
  2722   if ((_encode == NULL) || (encode == NULL)) {
  2723     fprintf(fp, "  // User did not define an encode section.\n");
  2724     fprintf(fp, "}\n");
  2725     return;
  2728   // Output this instruction's encodings
  2729   const char *ec_name;
  2730   bool        user_defined = false;
  2731   encode->reset();
  2732   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2733     fprintf(fp, "  {\n");
  2734     // Output user-defined encoding
  2735     user_defined           = true;
  2737     const char *ec_code    = NULL;
  2738     const char *ec_rep_var = NULL;
  2739     EncClass   *encoding   = _encode->encClass(ec_name);
  2740     if (encoding == NULL) {
  2741       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2742       abort();
  2745     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2746       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2747                            inst._ident, encode->current_encoding_num_args(),
  2748                            ec_name, encoding->num_args());
  2751     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2752     encoding->_code.reset();
  2753     encoding->_rep_vars.reset();
  2754     // Process list of user-defined strings,
  2755     // and occurrences of replacement variables.
  2756     // Replacement Vars are pushed into a list and then output
  2757     while ((ec_code = encoding->_code.iter()) != NULL) {
  2758       if (!encoding->_code.is_signal(ec_code)) {
  2759         // Emit pending code
  2760         pending.emit();
  2761         pending.clear();
  2762         // Emit this code section
  2763         fprintf(fp, "%s", ec_code);
  2764       } else {
  2765         // A replacement variable or one of its subfields
  2766         // Obtain replacement variable from list
  2767         ec_rep_var  = encoding->_rep_vars.iter();
  2768         pending.add_rep_var(ec_rep_var);
  2771     // Emit pending code
  2772     pending.emit();
  2773     pending.clear();
  2774     fprintf(fp, "  }\n");
  2775   } // end while instruction's encodings
  2777   // Check if user stated which encoding to user
  2778   if (user_defined == false) {
  2779     fprintf(fp, "  // User did not define which encode class to use.\n");
  2782   // (3) and (4)
  2783   fprintf(fp, "}\n");
  2786 // ---------------------------------------------------------------------------
  2787 //--------Utilities to build MachOper and MachNode derived Classes------------
  2788 // ---------------------------------------------------------------------------
  2790 //------------------------------Utilities to build Operand Classes------------
  2791 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2792   uint num_edges = oper.num_edges(globals);
  2793   if( num_edges != 0 ) {
  2794     // Method header
  2795     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2796             oper._ident);
  2798     // Assert that the index is in range.
  2799     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2800             num_edges);
  2802     // Figure out if all RegMasks are the same.
  2803     const char* first_reg_class = oper.in_reg_class(0, globals);
  2804     bool all_same = true;
  2805     assert(first_reg_class != NULL, "did not find register mask");
  2807     for (uint index = 1; all_same && index < num_edges; index++) {
  2808       const char* some_reg_class = oper.in_reg_class(index, globals);
  2809       assert(some_reg_class != NULL, "did not find register mask");
  2810       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2811         all_same = false;
  2815     if (all_same) {
  2816       // Return the sole RegMask.
  2817       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2818         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2819       } else {
  2820         const char* first_reg_class_to_upper = toUpper(first_reg_class);
  2821         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
  2822         delete[] first_reg_class_to_upper;
  2824     } else {
  2825       // Build a switch statement to return the desired mask.
  2826       fprintf(fp,"  switch (index) {\n");
  2828       for (uint index = 0; index < num_edges; index++) {
  2829         const char *reg_class = oper.in_reg_class(index, globals);
  2830         assert(reg_class != NULL, "did not find register mask");
  2831         if( !strcmp(reg_class, "stack_slots") ) {
  2832           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2833         } else {
  2834           const char* reg_class_to_upper = toUpper(reg_class);
  2835           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
  2836           delete[] reg_class_to_upper;
  2839       fprintf(fp,"  }\n");
  2840       fprintf(fp,"  ShouldNotReachHere();\n");
  2841       fprintf(fp,"  return NULL;\n");
  2844     // Method close
  2845     fprintf(fp, "}\n\n");
  2849 // generate code to create a clone for a class derived from MachOper
  2850 //
  2851 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2852 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2853 // (2)  }
  2854 //
  2855 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2856   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
  2857   // Check for constants that need to be copied over
  2858   const int  num_consts    = oper.num_consts(globalNames);
  2859   const bool is_ideal_bool = oper.is_ideal_bool();
  2860   if( (num_consts > 0) ) {
  2861     fprintf(fp,"  return new (C) %sOper(", oper._ident);
  2862     // generate parameters for constants
  2863     int i = 0;
  2864     fprintf(fp,"_c%d", i);
  2865     for( i = 1; i < num_consts; ++i) {
  2866       fprintf(fp,", _c%d", i);
  2868     // finish line (1)
  2869     fprintf(fp,");\n");
  2871   else {
  2872     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2873     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
  2875   // finish method
  2876   fprintf(fp,"}\n");
  2879 // Helper functions for bug 4796752, abstracted with minimal modification
  2880 // from define_oper_interface()
  2881 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2882   OperandForm *op = NULL;
  2883   // Check for replacement variable
  2884   if( *encoding == '$' ) {
  2885     // Replacement variable
  2886     const char *rep_var = encoding + 1;
  2887     // Lookup replacement variable, rep_var, in operand's component list
  2888     const Component *comp = oper._components.search(rep_var);
  2889     assert( comp != NULL, "Replacement variable not found in components");
  2890     // Lookup operand form for replacement variable's type
  2891     const char      *type = comp->_type;
  2892     Form            *form = (Form*)globals[type];
  2893     assert( form != NULL, "Replacement variable's type not found");
  2894     op = form->is_operand();
  2895     assert( op, "Attempting to emit a non-register or non-constant");
  2898   return op;
  2901 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2902   int idx = -1;
  2903   // Check for replacement variable
  2904   if( *encoding == '$' ) {
  2905     // Replacement variable
  2906     const char *rep_var = encoding + 1;
  2907     // Lookup replacement variable, rep_var, in operand's component list
  2908     const Component *comp = oper._components.search(rep_var);
  2909     assert( comp != NULL, "Replacement variable not found in components");
  2910     // Lookup operand form for replacement variable's type
  2911     const char      *type = comp->_type;
  2912     Form            *form = (Form*)globals[type];
  2913     assert( form != NULL, "Replacement variable's type not found");
  2914     OperandForm *op = form->is_operand();
  2915     assert( op, "Attempting to emit a non-register or non-constant");
  2916     // Check that this is a constant and find constant's index:
  2917     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2918       idx  = oper.constant_position(globals, comp);
  2922   return idx;
  2925 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2926   bool is_regI = false;
  2928   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2929   if( op != NULL ) {
  2930     // Check that this is a register
  2931     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2932       // Register
  2933       const char* ideal  = op->ideal_type(globals);
  2934       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2938   return is_regI;
  2941 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2942   bool is_conP = false;
  2944   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2945   if( op != NULL ) {
  2946     // Check that this is a constant pointer
  2947     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2948       // Constant
  2949       Form::DataType dtype = op->is_base_constant(globals);
  2950       is_conP = (dtype == Form::idealP);
  2954   return is_conP;
  2958 // Define a MachOper interface methods
  2959 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2960                                      const char *name, const char *encoding) {
  2961   bool emit_position = false;
  2962   int position = -1;
  2964   fprintf(fp,"  virtual int            %s", name);
  2965   // Generate access method for base, index, scale, disp, ...
  2966   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2967     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2968     emit_position = true;
  2969   } else if ( (strcmp(name,"disp") == 0) ) {
  2970     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2971   } else {
  2972     fprintf(fp, "() const {\n");
  2975   // Check for hexadecimal value OR replacement variable
  2976   if( *encoding == '$' ) {
  2977     // Replacement variable
  2978     const char *rep_var = encoding + 1;
  2979     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
  2980     // Lookup replacement variable, rep_var, in operand's component list
  2981     const Component *comp = oper._components.search(rep_var);
  2982     assert( comp != NULL, "Replacement variable not found in components");
  2983     // Lookup operand form for replacement variable's type
  2984     const char      *type = comp->_type;
  2985     Form            *form = (Form*)globals[type];
  2986     assert( form != NULL, "Replacement variable's type not found");
  2987     OperandForm *op = form->is_operand();
  2988     assert( op, "Attempting to emit a non-register or non-constant");
  2989     // Check that this is a register or a constant and generate code:
  2990     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2991       // Register
  2992       int idx_offset = oper.register_position( globals, rep_var);
  2993       position = idx_offset;
  2994       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  2995       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  2996       fprintf(fp,"));\n");
  2997     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  2998       // StackSlot for an sReg comes either from input node or from self, when idx==0
  2999       fprintf(fp,"    if( idx != 0 ) {\n");
  3000       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
  3001       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  3002       fprintf(fp,"    }\n");
  3003       fprintf(fp,"    // Access stack offset (register number) from myself\n");
  3004       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  3005     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  3006       // Constant
  3007       // Check which constant this name maps to: _c0, _c1, ..., _cn
  3008       const int idx = oper.constant_position(globals, comp);
  3009       assert( idx != -1, "Constant component not found in operand");
  3010       // Output code for this constant, type dependent.
  3011       fprintf(fp,"    return (int)" );
  3012       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  3013       fprintf(fp,";\n");
  3014     } else {
  3015       assert( false, "Attempting to emit a non-register or non-constant");
  3018   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  3019     // Hex value
  3020     fprintf(fp,"    return %s;\n", encoding);
  3021   } else {
  3022     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
  3023                          oper._ident, encoding, name);
  3024     assert( false, "Do not support octal or decimal encode constants");
  3026   fprintf(fp,"  }\n");
  3028   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  3029     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  3030     MemInterface *mem_interface = oper._interface->is_MemInterface();
  3031     const char *base = mem_interface->_base;
  3032     const char *disp = mem_interface->_disp;
  3033     if( emit_position && (strcmp(name,"base") == 0)
  3034         && base != NULL && is_regI(base, oper, globals)
  3035         && disp != NULL && is_conP(disp, oper, globals) ) {
  3036       // Found a memory access using a constant pointer for a displacement
  3037       // and a base register containing an integer offset.
  3038       // In this case the base and disp are reversed with respect to what
  3039       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  3040       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  3041       // to correctly compute the access type for alias analysis.
  3042       //
  3043       // See BugId 4796752, operand indOffset32X in i486.ad
  3044       int idx = rep_var_to_constant_index(disp, oper, globals);
  3045       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  3050 //
  3051 // Construct the method to copy _idx, inputs and operands to new node.
  3052 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  3053   fprintf(fp_cpp, "\n");
  3054   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  3055   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  3056   if( !used ) {
  3057     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  3058     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  3059     fprintf(fp_cpp, "}\n");
  3060   } else {
  3061     // New node must use same node index for access through allocator's tables
  3062     fprintf(fp_cpp, "  // New node must use same node index\n");
  3063     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  3064     // Copy machine-independent inputs
  3065     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  3066     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  3067     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  3068     fprintf(fp_cpp, "  }\n");
  3069     // Copy machine operands to new MachNode
  3070     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  3071     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  3072     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  3073     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  3074     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  3075     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  3076     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  3077     fprintf(fp_cpp, "  }\n");
  3078     fprintf(fp_cpp, "}\n");
  3080   fprintf(fp_cpp, "\n");
  3083 //------------------------------defineClasses----------------------------------
  3084 // Define members of MachNode and MachOper classes based on
  3085 // operand and instruction lists
  3086 void ArchDesc::defineClasses(FILE *fp) {
  3088   // Define the contents of an array containing the machine register names
  3089   defineRegNames(fp, _register);
  3090   // Define an array containing the machine register encoding values
  3091   defineRegEncodes(fp, _register);
  3092   // Generate an enumeration of user-defined register classes
  3093   // and a list of register masks, one for each class.
  3094   // Only define the RegMask value objects in the expand file.
  3095   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  3096   declare_register_masks(_HPP_file._fp);
  3097   // build_register_masks(fp);
  3098   build_register_masks(_CPP_EXPAND_file._fp);
  3099   // Define the pipe_classes
  3100   build_pipe_classes(_CPP_PIPELINE_file._fp);
  3102   // Generate Machine Classes for each operand defined in AD file
  3103   fprintf(fp,"\n");
  3104   fprintf(fp,"\n");
  3105   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  3106   // Iterate through all operands
  3107   _operands.reset();
  3108   OperandForm *oper;
  3109   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  3110     // Ensure this is a machine-world instruction
  3111     if ( oper->ideal_only() ) continue;
  3112     // !!!!!
  3113     // The declaration of labelOper is in machine-independent file: machnode
  3114     if ( strcmp(oper->_ident,"label") == 0 ) {
  3115       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3117       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3118       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  3119       fprintf(fp,"}\n");
  3121       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3122               oper->_ident, machOperEnum(oper->_ident));
  3123       // // Currently all XXXOper::Hash() methods are identical (990820)
  3124       // define_hash(fp, oper->_ident);
  3125       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3126       // define_cmp(fp, oper->_ident);
  3127       fprintf(fp,"\n");
  3129       continue;
  3132     // The declaration of methodOper is in machine-independent file: machnode
  3133     if ( strcmp(oper->_ident,"method") == 0 ) {
  3134       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3136       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3137       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  3138       fprintf(fp,"}\n");
  3140       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3141               oper->_ident, machOperEnum(oper->_ident));
  3142       // // Currently all XXXOper::Hash() methods are identical (990820)
  3143       // define_hash(fp, oper->_ident);
  3144       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3145       // define_cmp(fp, oper->_ident);
  3146       fprintf(fp,"\n");
  3148       continue;
  3151     defineIn_RegMask(fp, _globalNames, *oper);
  3152     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  3153     // // Currently all XXXOper::Hash() methods are identical (990820)
  3154     // define_hash(fp, oper->_ident);
  3155     // // Currently all XXXOper::Cmp() methods are identical (990820)
  3156     // define_cmp(fp, oper->_ident);
  3158     // side-call to generate output that used to be in the header file:
  3159     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  3160     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  3165   // Generate Machine Classes for each instruction defined in AD file
  3166   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  3167   // Output the definitions for out_RegMask() // & kill_RegMask()
  3168   _instructions.reset();
  3169   InstructForm *instr;
  3170   MachNodeForm *machnode;
  3171   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3172     // Ensure this is a machine-world instruction
  3173     if ( instr->ideal_only() ) continue;
  3175     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  3178   bool used = false;
  3179   // Output the definitions for expand rules & peephole rules
  3180   _instructions.reset();
  3181   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3182     // Ensure this is a machine-world instruction
  3183     if ( instr->ideal_only() ) continue;
  3184     // If there are multiple defs/kills, or an explicit expand rule, build rule
  3185     if( instr->expands() || instr->needs_projections() ||
  3186         instr->has_temps() ||
  3187         instr->is_mach_constant() ||
  3188         instr->needs_constant_base() ||
  3189         instr->_matrule != NULL &&
  3190         instr->num_opnds() != instr->num_unique_opnds() )
  3191       defineExpand(_CPP_EXPAND_file._fp, instr);
  3192     // If there is an explicit peephole rule, build it
  3193     if ( instr->peepholes() )
  3194       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  3196     // Output code to convert to the cisc version, if applicable
  3197     used |= instr->define_cisc_version(*this, fp);
  3199     // Output code to convert to the short branch version, if applicable
  3200     used |= instr->define_short_branch_methods(*this, fp);
  3203   // Construct the method called by cisc_version() to copy inputs and operands.
  3204   define_fill_new_machnode(used, fp);
  3206   // Output the definitions for labels
  3207   _instructions.reset();
  3208   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3209     // Ensure this is a machine-world instruction
  3210     if ( instr->ideal_only() ) continue;
  3212     // Access the fields for operand Label
  3213     int label_position = instr->label_position();
  3214     if( label_position != -1 ) {
  3215       // Set the label
  3216       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
  3217       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3218               label_position );
  3219       fprintf(fp,"  oper->_label     = label;\n");
  3220       fprintf(fp,"  oper->_block_num = block_num;\n");
  3221       fprintf(fp,"}\n");
  3222       // Save the label
  3223       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
  3224       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3225               label_position );
  3226       fprintf(fp,"  *label = oper->_label;\n");
  3227       fprintf(fp,"  *block_num = oper->_block_num;\n");
  3228       fprintf(fp,"}\n");
  3232   // Output the definitions for methods
  3233   _instructions.reset();
  3234   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3235     // Ensure this is a machine-world instruction
  3236     if ( instr->ideal_only() ) continue;
  3238     // Access the fields for operand Label
  3239     int method_position = instr->method_position();
  3240     if( method_position != -1 ) {
  3241       // Access the method's address
  3242       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  3243       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  3244               method_position );
  3245       fprintf(fp,"}\n");
  3246       fprintf(fp,"\n");
  3250   // Define this instruction's number of relocation entries, base is '0'
  3251   _instructions.reset();
  3252   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3253     // Output the definition for number of relocation entries
  3254     uint reloc_size = instr->reloc(_globalNames);
  3255     if ( reloc_size != 0 ) {
  3256       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
  3257       fprintf(fp,"  return %d;\n", reloc_size);
  3258       fprintf(fp,"}\n");
  3259       fprintf(fp,"\n");
  3262   fprintf(fp,"\n");
  3264   // Output the definitions for code generation
  3265   //
  3266   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  3267   //   // ...  encoding defined by user
  3268   //   return ptr;
  3269   // }
  3270   //
  3271   _instructions.reset();
  3272   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3273     // Ensure this is a machine-world instruction
  3274     if ( instr->ideal_only() ) continue;
  3276     if (instr->_insencode) {
  3277       if (instr->postalloc_expands()) {
  3278         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
  3279         // from code sections in ad file that is dumped to fp.
  3280         define_postalloc_expand(fp, *instr);
  3281       } else {
  3282         defineEmit(fp, *instr);
  3285     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
  3286     if (instr->_size)              defineSize        (fp, *instr);
  3288     // side-call to generate output that used to be in the header file:
  3289     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  3290     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  3293   // Output the definitions for alias analysis
  3294   _instructions.reset();
  3295   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3296     // Ensure this is a machine-world instruction
  3297     if ( instr->ideal_only() ) continue;
  3299     // Analyze machine instructions that either USE or DEF memory.
  3300     int memory_operand = instr->memory_operand(_globalNames);
  3301     // Some guys kill all of memory
  3302     if ( instr->is_wide_memory_kill(_globalNames) ) {
  3303       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3306     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3307       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3308         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3309         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3310       } else {
  3311         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3316   // Get the length of the longest identifier
  3317   int max_ident_len = 0;
  3318   _instructions.reset();
  3320   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3321     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3322       int ident_len = (int)strlen(instr->_ident);
  3323       if( max_ident_len < ident_len )
  3324         max_ident_len = ident_len;
  3328   // Emit specifically for Node(s)
  3329   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3330     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3331   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3332     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3333   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3335   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3336     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3337   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3338     max_ident_len, "MachNode");
  3339   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3341   // Output the definitions for machine node specific pipeline data
  3342   _machnodes.reset();
  3344   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3345     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3346       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3349   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3351   // Output the definitions for instruction pipeline static data references
  3352   _instructions.reset();
  3354   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3355     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3356       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3357       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3358         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3359       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3360         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3366 // -------------------------------- maps ------------------------------------
  3368 // Information needed to generate the ReduceOp mapping for the DFA
  3369 class OutputReduceOp : public OutputMap {
  3370 public:
  3371   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3372     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
  3374   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3375   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3376   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3377                        OutputMap::closing();
  3379   void map(OpClassForm &opc)  {
  3380     const char *reduce = opc._ident;
  3381     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3382     else          fprintf(_cpp, "  0");
  3384   void map(OperandForm &oper) {
  3385     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3386     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3387     // operand stackSlot does not have a match rule, but produces a stackSlot
  3388     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3389     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3390     else          fprintf(_cpp, "  0");
  3392   void map(InstructForm &inst) {
  3393     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3394     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3395     else          fprintf(_cpp, "  0");
  3397   void map(char         *reduce) {
  3398     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3399     else          fprintf(_cpp, "  0");
  3401 };
  3403 // Information needed to generate the LeftOp mapping for the DFA
  3404 class OutputLeftOp : public OutputMap {
  3405 public:
  3406   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3407     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
  3409   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3410   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3411   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3412                        OutputMap::closing();
  3414   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3415   void map(OperandForm &oper) {
  3416     const char *reduce = oper.reduce_left(_globals);
  3417     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3418     else          fprintf(_cpp, "  0");
  3420   void map(char        *name) {
  3421     const char *reduce = _AD.reduceLeft(name);
  3422     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3423     else          fprintf(_cpp, "  0");
  3425   void map(InstructForm &inst) {
  3426     const char *reduce = inst.reduce_left(_globals);
  3427     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3428     else          fprintf(_cpp, "  0");
  3430 };
  3433 // Information needed to generate the RightOp mapping for the DFA
  3434 class OutputRightOp : public OutputMap {
  3435 public:
  3436   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3437     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
  3439   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3440   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3441   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3442                        OutputMap::closing();
  3444   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3445   void map(OperandForm &oper) {
  3446     const char *reduce = oper.reduce_right(_globals);
  3447     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3448     else          fprintf(_cpp, "  0");
  3450   void map(char        *name) {
  3451     const char *reduce = _AD.reduceRight(name);
  3452     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3453     else          fprintf(_cpp, "  0");
  3455   void map(InstructForm &inst) {
  3456     const char *reduce = inst.reduce_right(_globals);
  3457     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3458     else          fprintf(_cpp, "  0");
  3460 };
  3463 // Information needed to generate the Rule names for the DFA
  3464 class OutputRuleName : public OutputMap {
  3465 public:
  3466   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3467     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
  3469   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3470   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3471   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
  3472                        OutputMap::closing();
  3474   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3475   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3476   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3477   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3478 };
  3481 // Information needed to generate the swallowed mapping for the DFA
  3482 class OutputSwallowed : public OutputMap {
  3483 public:
  3484   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3485     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
  3487   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3488   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3489   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3490                        OutputMap::closing();
  3492   void map(OperandForm &oper) { // Generate the entry for this opcode
  3493     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3494     fprintf(_cpp, "  %s", swallowed);
  3496   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3497   void map(char        *name) { fprintf(_cpp, "  false"); }
  3498   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3499 };
  3502 // Information needed to generate the decision array for instruction chain rule
  3503 class OutputInstChainRule : public OutputMap {
  3504 public:
  3505   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3506     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
  3508   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3509   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3510   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3511                        OutputMap::closing();
  3513   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3514   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3515   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3516   void map(InstructForm &inst) { // Check for simple chain rule
  3517     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3518     fprintf(_cpp, "  %s", chain);
  3520 };
  3523 //---------------------------build_map------------------------------------
  3524 // Build  mapping from enumeration for densely packed operands
  3525 // TO result and child types.
  3526 void ArchDesc::build_map(OutputMap &map) {
  3527   FILE         *fp_hpp = map.decl_file();
  3528   FILE         *fp_cpp = map.def_file();
  3529   int           idx    = 0;
  3530   OperandForm  *op;
  3531   OpClassForm  *opc;
  3532   InstructForm *inst;
  3534   // Construct this mapping
  3535   map.declaration();
  3536   fprintf(fp_cpp,"\n");
  3537   map.definition();
  3539   // Output the mapping for operands
  3540   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3541   _operands.reset();
  3542   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3543     // Ensure this is a machine-world instruction
  3544     if ( op->ideal_only() )  continue;
  3546     // Generate the entry for this opcode
  3547     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
  3548     ++idx;
  3549   };
  3550   fprintf(fp_cpp, "  // last operand\n");
  3552   // Place all user-defined operand classes into the mapping
  3553   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3554   _opclass.reset();
  3555   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3556     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
  3557     ++idx;
  3558   };
  3559   fprintf(fp_cpp, "  // last operand class\n");
  3561   // Place all internally defined operands into the mapping
  3562   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3563   _internalOpNames.reset();
  3564   char *name = NULL;
  3565   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3566     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
  3567     ++idx;
  3568   };
  3569   fprintf(fp_cpp, "  // last internally defined operand\n");
  3571   // Place all user-defined instructions into the mapping
  3572   if( map.do_instructions() ) {
  3573     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3574     // Output all simple instruction chain rules first
  3575     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3577       _instructions.reset();
  3578       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3579         // Ensure this is a machine-world instruction
  3580         if ( inst->ideal_only() )  continue;
  3581         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3582         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3584         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3585         ++idx;
  3586       };
  3587       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3588       _instructions.reset();
  3589       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3590         // Ensure this is a machine-world instruction
  3591         if ( inst->ideal_only() )  continue;
  3592         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3593         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3595         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3596         ++idx;
  3597       };
  3598       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3600     // Output all instructions that are NOT simple chain rules
  3602       _instructions.reset();
  3603       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3604         // Ensure this is a machine-world instruction
  3605         if ( inst->ideal_only() )  continue;
  3606         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3607         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3609         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3610         ++idx;
  3611       };
  3612       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3613       _instructions.reset();
  3614       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3615         // Ensure this is a machine-world instruction
  3616         if ( inst->ideal_only() )  continue;
  3617         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3618         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3620         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3621         ++idx;
  3622       };
  3624     fprintf(fp_cpp, "  // last instruction\n");
  3625     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3627   // Finish defining table
  3628   map.closing();
  3629 };
  3632 // Helper function for buildReduceMaps
  3633 char reg_save_policy(const char *calling_convention) {
  3634   char callconv;
  3636   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3637   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3638   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3639   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3640   else                                         callconv = 'Z';
  3642   return callconv;
  3645 //---------------------------generate_assertion_checks-------------------
  3646 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3647   fprintf(fp_cpp, "\n");
  3649   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3650   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3651   globalDefs().print_asserts(fp_cpp);
  3652   fprintf(fp_cpp, "}\n");
  3653   fprintf(fp_cpp, "#endif\n");
  3654   fprintf(fp_cpp, "\n");
  3657 //---------------------------addSourceBlocks-----------------------------
  3658 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3659   if (_source.count() > 0)
  3660     _source.output(fp_cpp);
  3662   generate_adlc_verification(fp_cpp);
  3664 //---------------------------addHeaderBlocks-----------------------------
  3665 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3666   if (_header.count() > 0)
  3667     _header.output(fp_hpp);
  3669 //-------------------------addPreHeaderBlocks----------------------------
  3670 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3671   // Output #defines from definition block
  3672   globalDefs().print_defines(fp_hpp);
  3674   if (_pre_header.count() > 0)
  3675     _pre_header.output(fp_hpp);
  3678 //---------------------------buildReduceMaps-----------------------------
  3679 // Build  mapping from enumeration for densely packed operands
  3680 // TO result and child types.
  3681 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3682   RegDef       *rdef;
  3683   RegDef       *next;
  3685   // The emit bodies currently require functions defined in the source block.
  3687   // Build external declarations for mappings
  3688   fprintf(fp_hpp, "\n");
  3689   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3690   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3691   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3692   fprintf(fp_hpp, "\n");
  3694   // Construct Save-Policy array
  3695   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3696   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3697   _register->reset_RegDefs();
  3698   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3699     next              = _register->iter_RegDefs();
  3700     char policy       = reg_save_policy(rdef->_callconv);
  3701     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3702     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3704   fprintf(fp_cpp, "};\n\n");
  3706   // Construct Native Save-Policy array
  3707   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3708   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3709   _register->reset_RegDefs();
  3710   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3711     next        = _register->iter_RegDefs();
  3712     char policy = reg_save_policy(rdef->_c_conv);
  3713     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3714     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3716   fprintf(fp_cpp, "};\n\n");
  3718   // Construct Register Save Type array
  3719   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3720   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3721   _register->reset_RegDefs();
  3722   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3723     next = _register->iter_RegDefs();
  3724     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3725     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3727   fprintf(fp_cpp, "};\n\n");
  3729   // Construct the table for reduceOp
  3730   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3731   build_map(output_reduce_op);
  3732   // Construct the table for leftOp
  3733   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3734   build_map(output_left_op);
  3735   // Construct the table for rightOp
  3736   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3737   build_map(output_right_op);
  3738   // Construct the table of rule names
  3739   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3740   build_map(output_rule_name);
  3741   // Construct the boolean table for subsumed operands
  3742   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3743   build_map(output_swallowed);
  3744   // // // Preserve in case we decide to use this table instead of another
  3745   //// Construct the boolean table for instruction chain rules
  3746   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3747   //build_map(output_inst_chain);
  3752 //---------------------------buildMachOperGenerator---------------------------
  3754 // Recurse through match tree, building path through corresponding state tree,
  3755 // Until we reach the constant we are looking for.
  3756 static void path_to_constant(FILE *fp, FormDict &globals,
  3757                              MatchNode *mnode, uint idx) {
  3758   if ( ! mnode) return;
  3760   unsigned    position = 0;
  3761   const char *result   = NULL;
  3762   const char *name     = NULL;
  3763   const char *optype   = NULL;
  3765   // Base Case: access constant in ideal node linked to current state node
  3766   // Each type of constant has its own access function
  3767   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3768        && mnode->base_operand(position, globals, result, name, optype) ) {
  3769     if (         strcmp(optype,"ConI") == 0 ) {
  3770       fprintf(fp, "_leaf->get_int()");
  3771     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3772       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3773     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3774       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3775     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
  3776       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
  3777     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3778       fprintf(fp, "_leaf->getf()");
  3779     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3780       fprintf(fp, "_leaf->getd()");
  3781     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3782       fprintf(fp, "_leaf->get_long()");
  3783     } else if ( (strcmp(optype,"Con")==0) ) {
  3784       // !!!!! - Update if adding a machine-independent constant type
  3785       fprintf(fp, "_leaf->get_int()");
  3786       assert( false, "Unsupported constant type, pointer or indefinite");
  3787     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3788       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3789     } else {
  3790       assert( false, "Unsupported constant type");
  3792     return;
  3795   // If constant is in left child, build path and recurse
  3796   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3797   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3798   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3799     fprintf(fp, "_kids[0]->");
  3800     path_to_constant(fp, globals, mnode->_lChild, idx);
  3801     return;
  3803   // If constant is in right child, build path and recurse
  3804   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3805     idx = idx - lConsts;
  3806     fprintf(fp, "_kids[1]->");
  3807     path_to_constant(fp, globals, mnode->_rChild, idx);
  3808     return;
  3810   assert( false, "ShouldNotReachHere()");
  3813 // Generate code that is executed when generating a specific Machine Operand
  3814 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3815                             OperandForm &op) {
  3816   const char *opName         = op._ident;
  3817   const char *opEnumName     = AD.machOperEnum(opName);
  3818   uint        num_consts     = op.num_consts(globalNames);
  3820   // Generate the case statement for this opcode
  3821   fprintf(fp, "  case %s:", opEnumName);
  3822   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3823   // Access parameters for constructor from the stat object
  3824   //
  3825   // Build access to condition code value
  3826   if ( (num_consts > 0) ) {
  3827     uint i = 0;
  3828     path_to_constant(fp, globalNames, op._matrule, i);
  3829     for ( i = 1; i < num_consts; ++i ) {
  3830       fprintf(fp, ", ");
  3831       path_to_constant(fp, globalNames, op._matrule, i);
  3834   fprintf(fp, " );\n");
  3838 // Build switch to invoke "new" MachNode or MachOper
  3839 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3840   int idx = 0;
  3842   // Build switch to invoke 'new' for a specific MachOper
  3843   fprintf(fp_cpp, "\n");
  3844   fprintf(fp_cpp, "\n");
  3845   fprintf(fp_cpp,
  3846           "//------------------------- MachOper Generator ---------------\n");
  3847   fprintf(fp_cpp,
  3848           "// A switch statement on the dense-packed user-defined type system\n"
  3849           "// that invokes 'new' on the corresponding class constructor.\n");
  3850   fprintf(fp_cpp, "\n");
  3851   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3852   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3853   fprintf(fp_cpp, "{\n");
  3854   fprintf(fp_cpp, "\n");
  3855   fprintf(fp_cpp, "  switch(opcode) {\n");
  3857   // Place all user-defined operands into the mapping
  3858   _operands.reset();
  3859   int  opIndex = 0;
  3860   OperandForm *op;
  3861   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3862     // Ensure this is a machine-world instruction
  3863     if ( op->ideal_only() )  continue;
  3865     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3866   };
  3868   // Do not iterate over operand classes for the  operand generator!!!
  3870   // Place all internal operands into the mapping
  3871   _internalOpNames.reset();
  3872   const char *iopn;
  3873   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3874     const char *opEnumName = machOperEnum(iopn);
  3875     // Generate the case statement for this opcode
  3876     fprintf(fp_cpp, "  case %s:", opEnumName);
  3877     fprintf(fp_cpp, "    return NULL;\n");
  3878   };
  3880   // Generate the default case for switch(opcode)
  3881   fprintf(fp_cpp, "  \n");
  3882   fprintf(fp_cpp, "  default:\n");
  3883   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3884   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3885   fprintf(fp_cpp, "    break;\n");
  3886   fprintf(fp_cpp, "  }\n");
  3888   // Generate the closing for method Matcher::MachOperGenerator
  3889   fprintf(fp_cpp, "  return NULL;\n");
  3890   fprintf(fp_cpp, "};\n");
  3894 //---------------------------buildMachNode-------------------------------------
  3895 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3896 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3897   const char *opType  = NULL;
  3898   const char *opClass = inst->_ident;
  3900   // Create the MachNode object
  3901   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3903   if ( (inst->num_post_match_opnds() != 0) ) {
  3904     // Instruction that contains operands which are not in match rule.
  3905     //
  3906     // Check if the first post-match component may be an interesting def
  3907     bool           dont_care = false;
  3908     ComponentList &comp_list = inst->_components;
  3909     Component     *comp      = NULL;
  3910     comp_list.reset();
  3911     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3913     // Insert operands that are not in match-rule.
  3914     // Only insert a DEF if the do_care flag is set
  3915     comp_list.reset();
  3916     while ( comp = comp_list.post_match_iter() ) {
  3917       // Check if we don't care about DEFs or KILLs that are not USEs
  3918       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3919         continue;
  3921       dont_care = true;
  3922       // For each operand not in the match rule, call MachOperGenerator
  3923       // with the enum for the opcode that needs to be built.
  3924       ComponentList clist = inst->_components;
  3925       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
  3926       const char *opcode = machOperEnum(comp->_type);
  3927       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3928       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3931   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3932     // An instruction that chains from a constant!
  3933     // In this case, we need to subsume the constant into the node
  3934     // at operand position, oper_input_base().
  3935     //
  3936     // Fill in the constant
  3937     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3938             inst->oper_input_base(_globalNames));
  3939     // #####
  3940     // Check for multiple constants and then fill them in.
  3941     // Just like MachOperGenerator
  3942     const char *opName = inst->_matrule->_rChild->_opType;
  3943     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3944     // Grab operand form
  3945     OperandForm *op = (_globalNames[opName])->is_operand();
  3946     // Look up the number of constants
  3947     uint num_consts = op->num_consts(_globalNames);
  3948     if ( (num_consts > 0) ) {
  3949       uint i = 0;
  3950       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3951       for ( i = 1; i < num_consts; ++i ) {
  3952         fprintf(fp_cpp, ", ");
  3953         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3956     fprintf(fp_cpp, " );\n");
  3957     // #####
  3960   // Fill in the bottom_type where requested
  3961   if (inst->captures_bottom_type(_globalNames)) {
  3962     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
  3963       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3966   if( inst->is_ideal_if() ) {
  3967     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3968     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3970   if( inst->is_ideal_fastlock() ) {
  3971     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3976 //---------------------------declare_cisc_version------------------------------
  3977 // Build CISC version of this instruction
  3978 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3979   if( AD.can_cisc_spill() ) {
  3980     InstructForm *inst_cisc = cisc_spill_alternate();
  3981     if (inst_cisc != NULL) {
  3982       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3983       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3984       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3985       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  3990 //---------------------------define_cisc_version-------------------------------
  3991 // Build CISC version of this instruction
  3992 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  3993   InstructForm *inst_cisc = this->cisc_spill_alternate();
  3994   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  3995     const char   *name      = inst_cisc->_ident;
  3996     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  3997     OperandForm *cisc_oper = AD.cisc_spill_operand();
  3998     assert( cisc_oper != NULL, "insanity check");
  3999     const char *cisc_oper_name  = cisc_oper->_ident;
  4000     assert( cisc_oper_name != NULL, "insanity check");
  4001     //
  4002     // Set the correct reg_mask_or_stack for the cisc operand
  4003     fprintf(fp_cpp, "\n");
  4004     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  4005     // Lookup the correct reg_mask_or_stack
  4006     const char *reg_mask_name = cisc_reg_mask_name();
  4007     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  4008     fprintf(fp_cpp, "}\n");
  4009     //
  4010     // Construct CISC version of this instruction
  4011     fprintf(fp_cpp, "\n");
  4012     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  4013     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  4014     // Create the MachNode object
  4015     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4016     // Fill in the bottom_type where requested
  4017     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4018       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4021     uint cur_num_opnds = num_opnds();
  4022     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
  4023       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
  4026     fprintf(fp_cpp, "\n");
  4027     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4028     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4029     // Construct operand to access [stack_pointer + offset]
  4030     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  4031     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  4032     fprintf(fp_cpp, "\n");
  4034     // Return result and exit scope
  4035     fprintf(fp_cpp, "  return node;\n");
  4036     fprintf(fp_cpp, "}\n");
  4037     fprintf(fp_cpp, "\n");
  4038     return true;
  4040   return false;
  4043 //---------------------------declare_short_branch_methods----------------------
  4044 // Build prototypes for short branch methods
  4045 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  4046   if (has_short_branch_form()) {
  4047     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  4051 //---------------------------define_short_branch_methods-----------------------
  4052 // Build definitions for short branch methods
  4053 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  4054   if (has_short_branch_form()) {
  4055     InstructForm *short_branch = short_branch_form();
  4056     const char   *name         = short_branch->_ident;
  4058     // Construct short_branch_version() method.
  4059     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  4060     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  4061     // Create the MachNode object
  4062     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4063     if( is_ideal_if() ) {
  4064       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  4065       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  4067     // Fill in the bottom_type where requested
  4068     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4069       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4072     fprintf(fp_cpp, "\n");
  4073     // Short branch version must use same node index for access
  4074     // through allocator's tables
  4075     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4076     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4078     // Return result and exit scope
  4079     fprintf(fp_cpp, "  return node;\n");
  4080     fprintf(fp_cpp, "}\n");
  4081     fprintf(fp_cpp,"\n");
  4082     return true;
  4084   return false;
  4088 //---------------------------buildMachNodeGenerator----------------------------
  4089 // Build switch to invoke appropriate "new" MachNode for an opcode
  4090 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  4092   // Build switch to invoke 'new' for a specific MachNode
  4093   fprintf(fp_cpp, "\n");
  4094   fprintf(fp_cpp, "\n");
  4095   fprintf(fp_cpp,
  4096           "//------------------------- MachNode Generator ---------------\n");
  4097   fprintf(fp_cpp,
  4098           "// A switch statement on the dense-packed user-defined type system\n"
  4099           "// that invokes 'new' on the corresponding class constructor.\n");
  4100   fprintf(fp_cpp, "\n");
  4101   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  4102   fprintf(fp_cpp, "(int opcode, Compile* C)");
  4103   fprintf(fp_cpp, "{\n");
  4104   fprintf(fp_cpp, "  switch(opcode) {\n");
  4106   // Provide constructor for all user-defined instructions
  4107   _instructions.reset();
  4108   int  opIndex = operandFormCount();
  4109   InstructForm *inst;
  4110   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4111     // Ensure that matrule is defined.
  4112     if ( inst->_matrule == NULL ) continue;
  4114     int         opcode  = opIndex++;
  4115     const char *opClass = inst->_ident;
  4116     char       *opType  = NULL;
  4118     // Generate the case statement for this instruction
  4119     fprintf(fp_cpp, "  case %s_rule:", opClass);
  4121     // Start local scope
  4122     fprintf(fp_cpp, " {\n");
  4123     // Generate code to construct the new MachNode
  4124     buildMachNode(fp_cpp, inst, "     ");
  4125     // Return result and exit scope
  4126     fprintf(fp_cpp, "      return node;\n");
  4127     fprintf(fp_cpp, "    }\n");
  4130   // Generate the default case for switch(opcode)
  4131   fprintf(fp_cpp, "  \n");
  4132   fprintf(fp_cpp, "  default:\n");
  4133   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  4134   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  4135   fprintf(fp_cpp, "    break;\n");
  4136   fprintf(fp_cpp, "  };\n");
  4138   // Generate the closing for method Matcher::MachNodeGenerator
  4139   fprintf(fp_cpp, "  return NULL;\n");
  4140   fprintf(fp_cpp, "}\n");
  4144 //---------------------------buildInstructMatchCheck--------------------------
  4145 // Output the method to Matcher which checks whether or not a specific
  4146 // instruction has a matching rule for the host architecture.
  4147 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  4148   fprintf(fp_cpp, "\n\n");
  4149   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  4150   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  4151   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  4152   fprintf(fp_cpp, "}\n\n");
  4154   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  4155   int i;
  4156   for (i = 0; i < _last_opcode - 1; i++) {
  4157     fprintf(fp_cpp, "    %-5s,  // %s\n",
  4158             _has_match_rule[i] ? "true" : "false",
  4159             NodeClassNames[i]);
  4161   fprintf(fp_cpp, "    %-5s   // %s\n",
  4162           _has_match_rule[i] ? "true" : "false",
  4163           NodeClassNames[i]);
  4164   fprintf(fp_cpp, "};\n");
  4167 //---------------------------buildFrameMethods---------------------------------
  4168 // Output the methods to Matcher which specify frame behavior
  4169 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  4170   fprintf(fp_cpp,"\n\n");
  4171   // Stack Direction
  4172   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  4173           _frame->_direction ? "true" : "false");
  4174   // Sync Stack Slots
  4175   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  4176           _frame->_sync_stack_slots);
  4177   // Java Stack Alignment
  4178   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  4179           _frame->_alignment);
  4180   // Java Return Address Location
  4181   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  4182   if (_frame->_return_addr_loc) {
  4183     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4184             _frame->_return_addr);
  4186   else {
  4187     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  4188             _frame->_return_addr);
  4190   // Java Stack Slot Preservation
  4191   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  4192   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  4193   // Top Of Stack Slot Preservation, for both Java and C
  4194   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  4195   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  4196   // varargs C out slots killed
  4197   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  4198   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  4199   // Java Argument Position
  4200   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  4201   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  4202   fprintf(fp_cpp,"}\n\n");
  4203   // Native Argument Position
  4204   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  4205   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  4206   fprintf(fp_cpp,"}\n\n");
  4207   // Java Return Value Location
  4208   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  4209   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  4210   fprintf(fp_cpp,"}\n\n");
  4211   // Native Return Value Location
  4212   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  4213   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  4214   fprintf(fp_cpp,"}\n\n");
  4216   // Inline Cache Register, mask definition, and encoding
  4217   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  4218   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4219           _frame->_inline_cache_reg);
  4220   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  4221   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  4223   // Interpreter's Method Oop Register, mask definition, and encoding
  4224   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  4225   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4226           _frame->_interpreter_method_oop_reg);
  4227   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  4228   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  4230   // Interpreter's Frame Pointer Register, mask definition, and encoding
  4231   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  4232   if (_frame->_interpreter_frame_pointer_reg == NULL)
  4233     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  4234   else
  4235     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4236             _frame->_interpreter_frame_pointer_reg);
  4238   // Frame Pointer definition
  4239   /* CNC - I can not contemplate having a different frame pointer between
  4240      Java and native code; makes my head hurt to think about it.
  4241   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  4242   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4243           _frame->_frame_pointer);
  4244   */
  4245   // (Native) Frame Pointer definition
  4246   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  4247   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4248           _frame->_frame_pointer);
  4250   // Number of callee-save + always-save registers for calling convention
  4251   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  4252   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  4253   RegDef *rdef;
  4254   int nof_saved_registers = 0;
  4255   _register->reset_RegDefs();
  4256   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  4257     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  4258       ++nof_saved_registers;
  4260   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  4261   fprintf(fp_cpp, "};\n\n");
  4267 static int PrintAdlcCisc = 0;
  4268 //---------------------------identify_cisc_spilling----------------------------
  4269 // Get info for the CISC_oracle and MachNode::cisc_version()
  4270 void ArchDesc::identify_cisc_spill_instructions() {
  4272   if (_frame == NULL)
  4273     return;
  4275   // Find the user-defined operand for cisc-spilling
  4276   if( _frame->_cisc_spilling_operand_name != NULL ) {
  4277     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  4278     OperandForm *oper = form ? form->is_operand() : NULL;
  4279     // Verify the user's suggestion
  4280     if( oper != NULL ) {
  4281       // Ensure that match field is defined.
  4282       if ( oper->_matrule != NULL )  {
  4283         MatchRule &mrule = *oper->_matrule;
  4284         if( strcmp(mrule._opType,"AddP") == 0 ) {
  4285           MatchNode *left = mrule._lChild;
  4286           MatchNode *right= mrule._rChild;
  4287           if( left != NULL && right != NULL ) {
  4288             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  4289             const Form *right_op = _globalNames[right->_opType]->is_operand();
  4290             if(  (left_op != NULL && right_op != NULL)
  4291               && (left_op->interface_type(_globalNames) == Form::register_interface)
  4292               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  4293               // Successfully verified operand
  4294               set_cisc_spill_operand( oper );
  4295               if( _cisc_spill_debug ) {
  4296                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  4305   if( cisc_spill_operand() != NULL ) {
  4306     // N^2 comparison of instructions looking for a cisc-spilling version
  4307     _instructions.reset();
  4308     InstructForm *instr;
  4309     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4310       // Ensure that match field is defined.
  4311       if ( instr->_matrule == NULL )  continue;
  4313       MatchRule &mrule = *instr->_matrule;
  4314       Predicate *pred  =  instr->build_predicate();
  4316       // Grab the machine type of the operand
  4317       const char *rootOp = instr->_ident;
  4318       mrule._machType    = rootOp;
  4320       // Find result type for match
  4321       const char *result = instr->reduce_result();
  4323       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4324       bool  found_cisc_alternate = false;
  4325       _instructions.reset2();
  4326       InstructForm *instr2;
  4327       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4328         // Ensure that match field is defined.
  4329         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4330         if ( instr2->_matrule != NULL
  4331             && (instr != instr2 )                // Skip self
  4332             && (instr2->reduce_result() != NULL) // want same result
  4333             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4334           MatchRule &mrule2 = *instr2->_matrule;
  4335           Predicate *pred2  =  instr2->build_predicate();
  4336           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4343 //---------------------------build_cisc_spilling-------------------------------
  4344 // Get info for the CISC_oracle and MachNode::cisc_version()
  4345 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4346   // Output the table for cisc spilling
  4347   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4348   _instructions.reset();
  4349   InstructForm *inst = NULL;
  4350   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4351     // Ensure this is a machine-world instruction
  4352     if ( inst->ideal_only() )  continue;
  4353     const char *inst_name = inst->_ident;
  4354     int   operand   = inst->cisc_spill_operand();
  4355     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4356       InstructForm *inst2 = inst->cisc_spill_alternate();
  4357       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4360   fprintf(fp_cpp, "\n\n");
  4363 //---------------------------identify_short_branches----------------------------
  4364 // Get info for our short branch replacement oracle.
  4365 void ArchDesc::identify_short_branches() {
  4366   // Walk over all instructions, checking to see if they match a short
  4367   // branching alternate.
  4368   _instructions.reset();
  4369   InstructForm *instr;
  4370   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4371     // The instruction must have a match rule.
  4372     if (instr->_matrule != NULL &&
  4373         instr->is_short_branch()) {
  4375       _instructions.reset2();
  4376       InstructForm *instr2;
  4377       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4378         instr2->check_branch_variant(*this, instr);
  4385 //---------------------------identify_unique_operands---------------------------
  4386 // Identify unique operands.
  4387 void ArchDesc::identify_unique_operands() {
  4388   // Walk over all instructions.
  4389   _instructions.reset();
  4390   InstructForm *instr;
  4391   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4392     // Ensure this is a machine-world instruction
  4393     if (!instr->ideal_only()) {
  4394       instr->set_unique_opnds();

mercurial