src/share/vm/runtime/sharedRuntime.cpp

Thu, 24 May 2018 18:41:44 +0800

author
aoqi
date
Thu, 24 May 2018 18:41:44 +0800
changeset 8856
ac27a9c85bea
parent 8773
1eaa9a72d705
parent 8604
04d83ba48607
child 9448
73d689add964
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/compiledIC.hpp"
    35 #include "code/scopeDesc.hpp"
    36 #include "code/vtableStubs.hpp"
    37 #include "compiler/abstractCompiler.hpp"
    38 #include "compiler/compileBroker.hpp"
    39 #include "compiler/compilerOracle.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/interpreterRuntime.hpp"
    43 #include "memory/gcLocker.inline.hpp"
    44 #include "memory/universe.inline.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "prims/forte.hpp"
    47 #include "prims/jvmtiExport.hpp"
    48 #include "prims/jvmtiRedefineClassesTrace.hpp"
    49 #include "prims/methodHandles.hpp"
    50 #include "prims/nativeLookup.hpp"
    51 #include "runtime/arguments.hpp"
    52 #include "runtime/biasedLocking.hpp"
    53 #include "runtime/handles.inline.hpp"
    54 #include "runtime/init.hpp"
    55 #include "runtime/interfaceSupport.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/vframe.hpp"
    60 #include "runtime/vframeArray.hpp"
    61 #include "utilities/copy.hpp"
    62 #include "utilities/dtrace.hpp"
    63 #include "utilities/events.hpp"
    64 #include "utilities/hashtable.inline.hpp"
    65 #include "utilities/macros.hpp"
    66 #include "utilities/xmlstream.hpp"
    67 #ifdef TARGET_ARCH_x86
    68 # include "nativeInst_x86.hpp"
    69 # include "vmreg_x86.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_sparc
    72 # include "nativeInst_sparc.hpp"
    73 # include "vmreg_sparc.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_zero
    76 # include "nativeInst_zero.hpp"
    77 # include "vmreg_zero.inline.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_arm
    80 # include "nativeInst_arm.hpp"
    81 # include "vmreg_arm.inline.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_ppc
    84 # include "nativeInst_ppc.hpp"
    85 # include "vmreg_ppc.inline.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_mips
    88 # include "nativeInst_mips.hpp"
    89 # include "vmreg_mips.inline.hpp"
    90 #endif
    92 #ifdef COMPILER1
    93 #include "c1/c1_Runtime1.hpp"
    94 #endif
    96 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    98 // Shared stub locations
    99 RuntimeStub*        SharedRuntime::_wrong_method_blob;
   100 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
   101 RuntimeStub*        SharedRuntime::_ic_miss_blob;
   102 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
   103 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
   104 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
   106 DeoptimizationBlob* SharedRuntime::_deopt_blob;
   107 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
   108 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
   109 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
   111 #ifdef COMPILER2
   112 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
   113 #endif // COMPILER2
   116 //----------------------------generate_stubs-----------------------------------
   117 void SharedRuntime::generate_stubs() {
   118   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
   119   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
   120   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
   121   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
   122   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
   123   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
   125 #ifdef COMPILER2
   126   // Vectors are generated only by C2.
   127   if (is_wide_vector(MaxVectorSize)) {
   128     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   129   }
   130 #endif // COMPILER2
   131   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   132   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   134   generate_deopt_blob();
   136 #ifdef COMPILER2
   137   generate_uncommon_trap_blob();
   138 #endif // COMPILER2
   139 }
   141 #include <math.h>
   143 #ifndef USDT2
   144 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   145 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   146                       char*, int, char*, int, char*, int);
   147 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   148                       char*, int, char*, int, char*, int);
   149 #endif /* !USDT2 */
   151 // Implementation of SharedRuntime
   153 #ifndef PRODUCT
   154 // For statistics
   155 int SharedRuntime::_ic_miss_ctr = 0;
   156 int SharedRuntime::_wrong_method_ctr = 0;
   157 int SharedRuntime::_resolve_static_ctr = 0;
   158 int SharedRuntime::_resolve_virtual_ctr = 0;
   159 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   160 int SharedRuntime::_implicit_null_throws = 0;
   161 int SharedRuntime::_implicit_div0_throws = 0;
   162 int SharedRuntime::_throw_null_ctr = 0;
   164 int SharedRuntime::_nof_normal_calls = 0;
   165 int SharedRuntime::_nof_optimized_calls = 0;
   166 int SharedRuntime::_nof_inlined_calls = 0;
   167 int SharedRuntime::_nof_megamorphic_calls = 0;
   168 int SharedRuntime::_nof_static_calls = 0;
   169 int SharedRuntime::_nof_inlined_static_calls = 0;
   170 int SharedRuntime::_nof_interface_calls = 0;
   171 int SharedRuntime::_nof_optimized_interface_calls = 0;
   172 int SharedRuntime::_nof_inlined_interface_calls = 0;
   173 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   174 int SharedRuntime::_nof_removable_exceptions = 0;
   176 int SharedRuntime::_new_instance_ctr=0;
   177 int SharedRuntime::_new_array_ctr=0;
   178 int SharedRuntime::_multi1_ctr=0;
   179 int SharedRuntime::_multi2_ctr=0;
   180 int SharedRuntime::_multi3_ctr=0;
   181 int SharedRuntime::_multi4_ctr=0;
   182 int SharedRuntime::_multi5_ctr=0;
   183 int SharedRuntime::_mon_enter_stub_ctr=0;
   184 int SharedRuntime::_mon_exit_stub_ctr=0;
   185 int SharedRuntime::_mon_enter_ctr=0;
   186 int SharedRuntime::_mon_exit_ctr=0;
   187 int SharedRuntime::_partial_subtype_ctr=0;
   188 int SharedRuntime::_jbyte_array_copy_ctr=0;
   189 int SharedRuntime::_jshort_array_copy_ctr=0;
   190 int SharedRuntime::_jint_array_copy_ctr=0;
   191 int SharedRuntime::_jlong_array_copy_ctr=0;
   192 int SharedRuntime::_oop_array_copy_ctr=0;
   193 int SharedRuntime::_checkcast_array_copy_ctr=0;
   194 int SharedRuntime::_unsafe_array_copy_ctr=0;
   195 int SharedRuntime::_generic_array_copy_ctr=0;
   196 int SharedRuntime::_slow_array_copy_ctr=0;
   197 int SharedRuntime::_find_handler_ctr=0;
   198 int SharedRuntime::_rethrow_ctr=0;
   200 int     SharedRuntime::_ICmiss_index                    = 0;
   201 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   202 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   205 void SharedRuntime::trace_ic_miss(address at) {
   206   for (int i = 0; i < _ICmiss_index; i++) {
   207     if (_ICmiss_at[i] == at) {
   208       _ICmiss_count[i]++;
   209       return;
   210     }
   211   }
   212   int index = _ICmiss_index++;
   213   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   214   _ICmiss_at[index] = at;
   215   _ICmiss_count[index] = 1;
   216 }
   218 void SharedRuntime::print_ic_miss_histogram() {
   219   if (ICMissHistogram) {
   220     tty->print_cr ("IC Miss Histogram:");
   221     int tot_misses = 0;
   222     for (int i = 0; i < _ICmiss_index; i++) {
   223       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   224       tot_misses += _ICmiss_count[i];
   225     }
   226     tty->print_cr ("Total IC misses: %7d", tot_misses);
   227   }
   228 }
   229 #endif // PRODUCT
   230 void SharedRuntime::print_long(long long i) {
   231   tty->print("%llx", i);
   232 }
   234 void SharedRuntime::print_int(int i) {
   235   tty->print("%x", i);
   236 }
   238 void SharedRuntime::print_float(float f) {
   239   tty->print("ld:%ld ", f);
   240   tty->print("lx:%lx ", f);
   241   tty->print("lf:%g ", f);
   242 }
   244 void SharedRuntime::print_double(double f) {
   245   tty->print("%ld ", f);
   246   tty->print("0x%lx ", f);
   247   tty->print("%g ", f);
   248 }
   250 void SharedRuntime::print_str(char *str) {
   251   tty->print("%s", str);
   252 }
   254 void SharedRuntime::print_reg_with_pc(char *reg_name, long i, long pc) {
   255   tty->print_cr("%s: %lx pc: %lx", reg_name, i, pc);
   256 }
   258 #if INCLUDE_ALL_GCS
   260 // G1 write-barrier pre: executed before a pointer store.
   261 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   262   if (orig == NULL) {
   263     assert(false, "should be optimized out");
   264     return;
   265   }
   266   assert(orig->is_oop(true /* ignore mark word */), "Error");
   267   // store the original value that was in the field reference
   268   thread->satb_mark_queue().enqueue(orig);
   269 JRT_END
   271 // G1 write-barrier post: executed after a pointer store.
   272 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   273   thread->dirty_card_queue().enqueue(card_addr);
   274 JRT_END
   276 #endif // INCLUDE_ALL_GCS
   279 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   280   return x * y;
   281 JRT_END
   284 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   285   if (x == min_jlong && y == CONST64(-1)) {
   286     return x;
   287   } else {
   288     return x / y;
   289   }
   290 JRT_END
   293 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   294   if (x == min_jlong && y == CONST64(-1)) {
   295     return 0;
   296   } else {
   297     return x % y;
   298   }
   299 JRT_END
   302 const juint  float_sign_mask  = 0x7FFFFFFF;
   303 const juint  float_infinity   = 0x7F800000;
   304 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   305 const julong double_infinity  = CONST64(0x7FF0000000000000);
   307 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   308 #ifdef _WIN64
   309   // 64-bit Windows on amd64 returns the wrong values for
   310   // infinity operands.
   311   union { jfloat f; juint i; } xbits, ybits;
   312   xbits.f = x;
   313   ybits.f = y;
   314   // x Mod Infinity == x unless x is infinity
   315   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   316        ((ybits.i & float_sign_mask) == float_infinity) ) {
   317     return x;
   318   }
   319 #endif
   320   return ((jfloat)fmod((double)x,(double)y));
   321 JRT_END
   324 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   325 #ifdef _WIN64
   326   union { jdouble d; julong l; } xbits, ybits;
   327   xbits.d = x;
   328   ybits.d = y;
   329   // x Mod Infinity == x unless x is infinity
   330   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   331        ((ybits.l & double_sign_mask) == double_infinity) ) {
   332     return x;
   333   }
   334 #endif
   335   return ((jdouble)fmod((double)x,(double)y));
   336 JRT_END
   338 #ifdef __SOFTFP__
   339 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   340   return x + y;
   341 JRT_END
   343 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   344   return x - y;
   345 JRT_END
   347 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   348   return x * y;
   349 JRT_END
   351 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   352   return x / y;
   353 JRT_END
   355 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   356   return x + y;
   357 JRT_END
   359 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   360   return x - y;
   361 JRT_END
   363 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   364   return x * y;
   365 JRT_END
   367 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   368   return x / y;
   369 JRT_END
   371 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   372   return (jfloat)x;
   373 JRT_END
   375 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   376   return (jdouble)x;
   377 JRT_END
   379 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   380   return (jdouble)x;
   381 JRT_END
   383 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   384   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   385 JRT_END
   387 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   388   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   389 JRT_END
   391 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   392   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   393 JRT_END
   395 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   396   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   397 JRT_END
   399 // Functions to return the opposite of the aeabi functions for nan.
   400 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   401   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   402 JRT_END
   404 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   405   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   406 JRT_END
   408 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   409   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   410 JRT_END
   412 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   413   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   414 JRT_END
   416 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   417   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   418 JRT_END
   420 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   421   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   422 JRT_END
   424 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   425   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   426 JRT_END
   428 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   429   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   430 JRT_END
   432 // Intrinsics make gcc generate code for these.
   433 float  SharedRuntime::fneg(float f)   {
   434   return -f;
   435 }
   437 double SharedRuntime::dneg(double f)  {
   438   return -f;
   439 }
   441 #endif // __SOFTFP__
   443 #if defined(__SOFTFP__) || defined(E500V2)
   444 // Intrinsics make gcc generate code for these.
   445 double SharedRuntime::dabs(double f)  {
   446   return (f <= (double)0.0) ? (double)0.0 - f : f;
   447 }
   449 #endif
   451 #if defined(__SOFTFP__) || defined(PPC32)
   452 double SharedRuntime::dsqrt(double f) {
   453   return sqrt(f);
   454 }
   455 #endif
   457 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   458   if (g_isnan(x))
   459     return 0;
   460   if (x >= (jfloat) max_jint)
   461     return max_jint;
   462   if (x <= (jfloat) min_jint)
   463     return min_jint;
   464   return (jint) x;
   465 JRT_END
   468 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   469   if (g_isnan(x))
   470     return 0;
   471   if (x >= (jfloat) max_jlong)
   472     return max_jlong;
   473   if (x <= (jfloat) min_jlong)
   474     return min_jlong;
   475   return (jlong) x;
   476 JRT_END
   479 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   480   if (g_isnan(x))
   481     return 0;
   482   if (x >= (jdouble) max_jint)
   483     return max_jint;
   484   if (x <= (jdouble) min_jint)
   485     return min_jint;
   486   return (jint) x;
   487 JRT_END
   490 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   491   if (g_isnan(x))
   492     return 0;
   493   if (x >= (jdouble) max_jlong)
   494     return max_jlong;
   495   if (x <= (jdouble) min_jlong)
   496     return min_jlong;
   497   return (jlong) x;
   498 JRT_END
   501 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   502   return (jfloat)x;
   503 JRT_END
   506 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   507   return (jfloat)x;
   508 JRT_END
   511 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   512   return (jdouble)x;
   513 JRT_END
   515 // Exception handling accross interpreter/compiler boundaries
   516 //
   517 // exception_handler_for_return_address(...) returns the continuation address.
   518 // The continuation address is the entry point of the exception handler of the
   519 // previous frame depending on the return address.
   521 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   522   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   523   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
   525   // Reset method handle flag.
   526   thread->set_is_method_handle_return(false);
   528   // The fastest case first
   529   CodeBlob* blob = CodeCache::find_blob(return_address);
   530   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   531   if (nm != NULL) {
   532     // Set flag if return address is a method handle call site.
   533     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   534     // native nmethods don't have exception handlers
   535     assert(!nm->is_native_method(), "no exception handler");
   536     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   537     if (nm->is_deopt_pc(return_address)) {
   538       // If we come here because of a stack overflow, the stack may be
   539       // unguarded. Reguard the stack otherwise if we return to the
   540       // deopt blob and the stack bang causes a stack overflow we
   541       // crash.
   542       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   543       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   544       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
   545       return SharedRuntime::deopt_blob()->unpack_with_exception();
   546     } else {
   547       return nm->exception_begin();
   548     }
   549   }
   551   // Entry code
   552   if (StubRoutines::returns_to_call_stub(return_address)) {
   553     return StubRoutines::catch_exception_entry();
   554   }
   555   // Interpreted code
   556   if (Interpreter::contains(return_address)) {
   557     return Interpreter::rethrow_exception_entry();
   558   }
   560   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   561   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   563 #ifndef PRODUCT
   564   { ResourceMark rm;
   565     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   566     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   567     tty->print_cr("b) other problem");
   568   }
   569 #endif // PRODUCT
   571   ShouldNotReachHere();
   572   return NULL;
   573 }
   576 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   577   return raw_exception_handler_for_return_address(thread, return_address);
   578 JRT_END
   581 address SharedRuntime::get_poll_stub(address pc) {
   582   address stub;
   583   // Look up the code blob
   584   CodeBlob *cb = CodeCache::find_blob(pc);
   586   // Should be an nmethod
   587   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
   589   // Look up the relocation information
   590   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   591     "safepoint polling: type must be poll" );
   593   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   594     "Only polling locations are used for safepoint");
   596   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   597   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   598   if (at_poll_return) {
   599     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   600            "polling page return stub not created yet");
   601     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   602   } else if (has_wide_vectors) {
   603     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   604            "polling page vectors safepoint stub not created yet");
   605     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   606   } else {
   607     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   608            "polling page safepoint stub not created yet");
   609     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   610   }
   611 #ifndef PRODUCT
   612   if( TraceSafepoint ) {
   613     char buf[256];
   614     jio_snprintf(buf, sizeof(buf),
   615                  "... found polling page %s exception at pc = "
   616                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   617                  at_poll_return ? "return" : "loop",
   618                  (intptr_t)pc, (intptr_t)stub);
   619     tty->print_raw_cr(buf);
   620   }
   621 #endif // PRODUCT
   622   return stub;
   623 }
   626 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   627   assert(caller.is_interpreted_frame(), "");
   628   int args_size = ArgumentSizeComputer(sig).size() + 1;
   629   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   630   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   631   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   632   return result;
   633 }
   636 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   637   if (JvmtiExport::can_post_on_exceptions()) {
   638     vframeStream vfst(thread, true);
   639     methodHandle method = methodHandle(thread, vfst.method());
   640     address bcp = method()->bcp_from(vfst.bci());
   641     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   642   }
   643   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   644 }
   646 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   647   Handle h_exception = Exceptions::new_exception(thread, name, message);
   648   throw_and_post_jvmti_exception(thread, h_exception);
   649 }
   651 // The interpreter code to call this tracing function is only
   652 // called/generated when TraceRedefineClasses has the right bits
   653 // set. Since obsolete methods are never compiled, we don't have
   654 // to modify the compilers to generate calls to this function.
   655 //
   656 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   657     JavaThread* thread, Method* method))
   658   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   660   if (method->is_obsolete()) {
   661     // We are calling an obsolete method, but this is not necessarily
   662     // an error. Our method could have been redefined just after we
   663     // fetched the Method* from the constant pool.
   665     // RC_TRACE macro has an embedded ResourceMark
   666     RC_TRACE_WITH_THREAD(0x00001000, thread,
   667                          ("calling obsolete method '%s'",
   668                           method->name_and_sig_as_C_string()));
   669     if (RC_TRACE_ENABLED(0x00002000)) {
   670       // this option is provided to debug calls to obsolete methods
   671       guarantee(false, "faulting at call to an obsolete method.");
   672     }
   673   }
   674   return 0;
   675 JRT_END
   677 // ret_pc points into caller; we are returning caller's exception handler
   678 // for given exception
   679 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   680                                                     bool force_unwind, bool top_frame_only) {
   681   assert(nm != NULL, "must exist");
   682   ResourceMark rm;
   684   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   685   // determine handler bci, if any
   686   EXCEPTION_MARK;
   688   int handler_bci = -1;
   689   int scope_depth = 0;
   690   if (!force_unwind) {
   691     int bci = sd->bci();
   692     bool recursive_exception = false;
   693     do {
   694       bool skip_scope_increment = false;
   695       // exception handler lookup
   696       KlassHandle ek (THREAD, exception->klass());
   697       methodHandle mh(THREAD, sd->method());
   698       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   699       if (HAS_PENDING_EXCEPTION) {
   700         recursive_exception = true;
   701         // We threw an exception while trying to find the exception handler.
   702         // Transfer the new exception to the exception handle which will
   703         // be set into thread local storage, and do another lookup for an
   704         // exception handler for this exception, this time starting at the
   705         // BCI of the exception handler which caused the exception to be
   706         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   707         // argument to ensure that the correct exception is thrown (4870175).
   708         exception = Handle(THREAD, PENDING_EXCEPTION);
   709         CLEAR_PENDING_EXCEPTION;
   710         if (handler_bci >= 0) {
   711           bci = handler_bci;
   712           handler_bci = -1;
   713           skip_scope_increment = true;
   714         }
   715       }
   716       else {
   717         recursive_exception = false;
   718       }
   719       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   720         sd = sd->sender();
   721         if (sd != NULL) {
   722           bci = sd->bci();
   723         }
   724         ++scope_depth;
   725       }
   726     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   727   }
   729   // found handling method => lookup exception handler
   730   int catch_pco = ret_pc - nm->code_begin();
   732   ExceptionHandlerTable table(nm);
   733   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   734   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   735     // Allow abbreviated catch tables.  The idea is to allow a method
   736     // to materialize its exceptions without committing to the exact
   737     // routing of exceptions.  In particular this is needed for adding
   738     // a synthethic handler to unlock monitors when inlining
   739     // synchonized methods since the unlock path isn't represented in
   740     // the bytecodes.
   741     t = table.entry_for(catch_pco, -1, 0);
   742   }
   744 #ifdef COMPILER1
   745   if (t == NULL && nm->is_compiled_by_c1()) {
   746     assert(nm->unwind_handler_begin() != NULL, "");
   747     return nm->unwind_handler_begin();
   748   }
   749 #endif
   751   if (t == NULL) {
   752     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   753     tty->print_cr("   Exception:");
   754     exception->print();
   755     tty->cr();
   756     tty->print_cr(" Compiled exception table :");
   757     table.print();
   758     nm->print_code();
   759     guarantee(false, "missing exception handler");
   760     return NULL;
   761   }
   763   return nm->code_begin() + t->pco();
   764 }
   766 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   767   // These errors occur only at call sites
   768   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   769 JRT_END
   771 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   772   // These errors occur only at call sites
   773   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   774 JRT_END
   776 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   777   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   778 JRT_END
   780 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   781   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   782 JRT_END
   784 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   785   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   786   // cache sites (when the callee activation is not yet set up) so we are at a call site
   787   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   788 JRT_END
   790 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   791   // We avoid using the normal exception construction in this case because
   792   // it performs an upcall to Java, and we're already out of stack space.
   793   Klass* k = SystemDictionary::StackOverflowError_klass();
   794   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   795   Handle exception (thread, exception_oop);
   796   if (StackTraceInThrowable) {
   797     java_lang_Throwable::fill_in_stack_trace(exception);
   798   }
   799   throw_and_post_jvmti_exception(thread, exception);
   800 JRT_END
   802 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   803                                                            address pc,
   804                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   805 {
   806   address target_pc = NULL;
   808   if (Interpreter::contains(pc)) {
   809 #ifdef CC_INTERP
   810     // C++ interpreter doesn't throw implicit exceptions
   811     ShouldNotReachHere();
   812 #else
   813     switch (exception_kind) {
   814       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   815       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   816       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   817       default:                      ShouldNotReachHere();
   818     }
   819 #endif // !CC_INTERP
   820   } else {
   821     switch (exception_kind) {
   822       case STACK_OVERFLOW: {
   823         // Stack overflow only occurs upon frame setup; the callee is
   824         // going to be unwound. Dispatch to a shared runtime stub
   825         // which will cause the StackOverflowError to be fabricated
   826         // and processed.
   827         // Stack overflow should never occur during deoptimization:
   828         // the compiled method bangs the stack by as much as the
   829         // interpreter would need in case of a deoptimization. The
   830         // deoptimization blob and uncommon trap blob bang the stack
   831         // in a debug VM to verify the correctness of the compiled
   832         // method stack banging.
   833         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
   834         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   835         return StubRoutines::throw_StackOverflowError_entry();
   836       }
   838       case IMPLICIT_NULL: {
   839         if (VtableStubs::contains(pc)) {
   840           // We haven't yet entered the callee frame. Fabricate an
   841           // exception and begin dispatching it in the caller. Since
   842           // the caller was at a call site, it's safe to destroy all
   843           // caller-saved registers, as these entry points do.
   844           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   846           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   847           if (vt_stub == NULL) return NULL;
   849           if (vt_stub->is_abstract_method_error(pc)) {
   850             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   851             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   852             return StubRoutines::throw_AbstractMethodError_entry();
   853           } else {
   854             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   855             return StubRoutines::throw_NullPointerException_at_call_entry();
   856           }
   857         } else {
   858           CodeBlob* cb = CodeCache::find_blob(pc);
   860           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   861           if (cb == NULL) return NULL;
   863           // Exception happened in CodeCache. Must be either:
   864           // 1. Inline-cache check in C2I handler blob,
   865           // 2. Inline-cache check in nmethod, or
   866           // 3. Implict null exception in nmethod
   868           if (!cb->is_nmethod()) {
   869             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   870             if (!is_in_blob) {
   871               cb->print();
   872               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   873             }
   874             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   875             // There is no handler here, so we will simply unwind.
   876             return StubRoutines::throw_NullPointerException_at_call_entry();
   877           }
   879           // Otherwise, it's an nmethod.  Consult its exception handlers.
   880           nmethod* nm = (nmethod*)cb;
   881           if (nm->inlinecache_check_contains(pc)) {
   882             // exception happened inside inline-cache check code
   883             // => the nmethod is not yet active (i.e., the frame
   884             // is not set up yet) => use return address pushed by
   885             // caller => don't push another return address
   886             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   887             return StubRoutines::throw_NullPointerException_at_call_entry();
   888           }
   890           if (nm->method()->is_method_handle_intrinsic()) {
   891             // exception happened inside MH dispatch code, similar to a vtable stub
   892             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   893             return StubRoutines::throw_NullPointerException_at_call_entry();
   894           }
   896 #ifndef PRODUCT
   897           _implicit_null_throws++;
   898 #endif
   899           target_pc = nm->continuation_for_implicit_exception(pc);
   900           // If there's an unexpected fault, target_pc might be NULL,
   901           // in which case we want to fall through into the normal
   902           // error handling code.
   903         }
   905         break; // fall through
   906       }
   909       case IMPLICIT_DIVIDE_BY_ZERO: {
   910         nmethod* nm = CodeCache::find_nmethod(pc);
   911         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   912 #ifndef PRODUCT
   913         _implicit_div0_throws++;
   914 #endif
   915         target_pc = nm->continuation_for_implicit_exception(pc);
   916         // If there's an unexpected fault, target_pc might be NULL,
   917         // in which case we want to fall through into the normal
   918         // error handling code.
   919         break; // fall through
   920       }
   922       default: ShouldNotReachHere();
   923     }
   925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   927     // for AbortVMOnException flag
   928     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   929     if (exception_kind == IMPLICIT_NULL) {
   930       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   931     } else {
   932       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   933     }
   934     return target_pc;
   935   }
   937   ShouldNotReachHere();
   938   return NULL;
   939 }
   942 /**
   943  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   944  * installed in the native function entry of all native Java methods before
   945  * they get linked to their actual native methods.
   946  *
   947  * \note
   948  * This method actually never gets called!  The reason is because
   949  * the interpreter's native entries call NativeLookup::lookup() which
   950  * throws the exception when the lookup fails.  The exception is then
   951  * caught and forwarded on the return from NativeLookup::lookup() call
   952  * before the call to the native function.  This might change in the future.
   953  */
   954 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   955 {
   956   // We return a bad value here to make sure that the exception is
   957   // forwarded before we look at the return value.
   958   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   959 }
   960 JNI_END
   962 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   963   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   964 }
   967 #ifndef PRODUCT
   968 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   969   const frame f = thread->last_frame();
   970   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   971 #ifndef PRODUCT
   972   methodHandle mh(THREAD, f.interpreter_frame_method());
   973   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   974 #endif // !PRODUCT
   975   return preserve_this_value;
   976 JRT_END
   977 #endif // !PRODUCT
   980 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   981   os::yield_all(attempts);
   982 JRT_END
   985 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   986   assert(obj->is_oop(), "must be a valid oop");
   987   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   988   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   989 JRT_END
   992 jlong SharedRuntime::get_java_tid(Thread* thread) {
   993   if (thread != NULL) {
   994     if (thread->is_Java_thread()) {
   995       oop obj = ((JavaThread*)thread)->threadObj();
   996       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   997     }
   998   }
   999   return 0;
  1002 /**
  1003  * This function ought to be a void function, but cannot be because
  1004  * it gets turned into a tail-call on sparc, which runs into dtrace bug
  1005  * 6254741.  Once that is fixed we can remove the dummy return value.
  1006  */
  1007 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
  1008   return dtrace_object_alloc_base(Thread::current(), o, size);
  1011 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
  1012   assert(DTraceAllocProbes, "wrong call");
  1013   Klass* klass = o->klass();
  1014   Symbol* name = klass->name();
  1015 #ifndef USDT2
  1016   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
  1017                    name->bytes(), name->utf8_length(), size * HeapWordSize);
  1018 #else /* USDT2 */
  1019   HOTSPOT_OBJECT_ALLOC(
  1020                    get_java_tid(thread),
  1021                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
  1022 #endif /* USDT2 */
  1023   return 0;
  1026 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
  1027     JavaThread* thread, Method* method))
  1028   assert(DTraceMethodProbes, "wrong call");
  1029   Symbol* kname = method->klass_name();
  1030   Symbol* name = method->name();
  1031   Symbol* sig = method->signature();
  1032 #ifndef USDT2
  1033   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
  1034       kname->bytes(), kname->utf8_length(),
  1035       name->bytes(), name->utf8_length(),
  1036       sig->bytes(), sig->utf8_length());
  1037 #else /* USDT2 */
  1038   HOTSPOT_METHOD_ENTRY(
  1039       get_java_tid(thread),
  1040       (char *) kname->bytes(), kname->utf8_length(),
  1041       (char *) name->bytes(), name->utf8_length(),
  1042       (char *) sig->bytes(), sig->utf8_length());
  1043 #endif /* USDT2 */
  1044   return 0;
  1045 JRT_END
  1047 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
  1048     JavaThread* thread, Method* method))
  1049   assert(DTraceMethodProbes, "wrong call");
  1050   Symbol* kname = method->klass_name();
  1051   Symbol* name = method->name();
  1052   Symbol* sig = method->signature();
  1053 #ifndef USDT2
  1054   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1055       kname->bytes(), kname->utf8_length(),
  1056       name->bytes(), name->utf8_length(),
  1057       sig->bytes(), sig->utf8_length());
  1058 #else /* USDT2 */
  1059   HOTSPOT_METHOD_RETURN(
  1060       get_java_tid(thread),
  1061       (char *) kname->bytes(), kname->utf8_length(),
  1062       (char *) name->bytes(), name->utf8_length(),
  1063       (char *) sig->bytes(), sig->utf8_length());
  1064 #endif /* USDT2 */
  1065   return 0;
  1066 JRT_END
  1069 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1070 // for a call current in progress, i.e., arguments has been pushed on stack
  1071 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1072 // vtable updates, etc.  Caller frame must be compiled.
  1073 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1074   ResourceMark rm(THREAD);
  1076   // last java frame on stack (which includes native call frames)
  1077   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1079   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1083 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1084 // for a call current in progress, i.e., arguments has been pushed on stack
  1085 // but callee has not been invoked yet.  Caller frame must be compiled.
  1086 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1087                                               vframeStream& vfst,
  1088                                               Bytecodes::Code& bc,
  1089                                               CallInfo& callinfo, TRAPS) {
  1090   Handle receiver;
  1091   Handle nullHandle;  //create a handy null handle for exception returns
  1093   assert(!vfst.at_end(), "Java frame must exist");
  1095   // Find caller and bci from vframe
  1096   methodHandle caller(THREAD, vfst.method());
  1097   int          bci   = vfst.bci();
  1099   // Find bytecode
  1100   Bytecode_invoke bytecode(caller, bci);
  1101   bc = bytecode.invoke_code();
  1102   int bytecode_index = bytecode.index();
  1104   // Find receiver for non-static call
  1105   if (bc != Bytecodes::_invokestatic &&
  1106       bc != Bytecodes::_invokedynamic &&
  1107       bc != Bytecodes::_invokehandle) {
  1108     // This register map must be update since we need to find the receiver for
  1109     // compiled frames. The receiver might be in a register.
  1110     RegisterMap reg_map2(thread);
  1111     frame stubFrame   = thread->last_frame();
  1112     // Caller-frame is a compiled frame
  1113     frame callerFrame = stubFrame.sender(&reg_map2);
  1115     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1116     if (callee.is_null()) {
  1117       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1119     // Retrieve from a compiled argument list
  1120     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1122     if (receiver.is_null()) {
  1123       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1127   // Resolve method. This is parameterized by bytecode.
  1128   constantPoolHandle constants(THREAD, caller->constants());
  1129   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1130   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1132 #ifdef ASSERT
  1133   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1134   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1135     assert(receiver.not_null(), "should have thrown exception");
  1136     KlassHandle receiver_klass(THREAD, receiver->klass());
  1137     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1138                             // klass is already loaded
  1139     KlassHandle static_receiver_klass(THREAD, rk);
  1140     // Method handle invokes might have been optimized to a direct call
  1141     // so don't check for the receiver class.
  1142     // FIXME this weakens the assert too much
  1143     methodHandle callee = callinfo.selected_method();
  1144     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1145            callee->is_method_handle_intrinsic() ||
  1146            callee->is_compiled_lambda_form(),
  1147            "actual receiver must be subclass of static receiver klass");
  1148     if (receiver_klass->oop_is_instance()) {
  1149       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1150         tty->print_cr("ERROR: Klass not yet initialized!!");
  1151         receiver_klass()->print();
  1153       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1156 #endif
  1158   return receiver;
  1161 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1162   ResourceMark rm(THREAD);
  1163   // We need first to check if any Java activations (compiled, interpreted)
  1164   // exist on the stack since last JavaCall.  If not, we need
  1165   // to get the target method from the JavaCall wrapper.
  1166   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1167   methodHandle callee_method;
  1168   if (vfst.at_end()) {
  1169     // No Java frames were found on stack since we did the JavaCall.
  1170     // Hence the stack can only contain an entry_frame.  We need to
  1171     // find the target method from the stub frame.
  1172     RegisterMap reg_map(thread, false);
  1173     frame fr = thread->last_frame();
  1174     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1175     fr = fr.sender(&reg_map);
  1176     assert(fr.is_entry_frame(), "must be");
  1177     // fr is now pointing to the entry frame.
  1178     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1179     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1180   } else {
  1181     Bytecodes::Code bc;
  1182     CallInfo callinfo;
  1183     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1184     callee_method = callinfo.selected_method();
  1186   assert(callee_method()->is_method(), "must be");
  1187   return callee_method;
  1190 // Resolves a call.
  1191 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1192                                            bool is_virtual,
  1193                                            bool is_optimized, TRAPS) {
  1194   methodHandle callee_method;
  1195   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1196   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1197     int retry_count = 0;
  1198     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1199            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1200       // If has a pending exception then there is no need to re-try to
  1201       // resolve this method.
  1202       // If the method has been redefined, we need to try again.
  1203       // Hack: we have no way to update the vtables of arrays, so don't
  1204       // require that java.lang.Object has been updated.
  1206       // It is very unlikely that method is redefined more than 100 times
  1207       // in the middle of resolve. If it is looping here more than 100 times
  1208       // means then there could be a bug here.
  1209       guarantee((retry_count++ < 100),
  1210                 "Could not resolve to latest version of redefined method");
  1211       // method is redefined in the middle of resolve so re-try.
  1212       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1215   return callee_method;
  1218 // Resolves a call.  The compilers generate code for calls that go here
  1219 // and are patched with the real destination of the call.
  1220 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1221                                            bool is_virtual,
  1222                                            bool is_optimized, TRAPS) {
  1224   ResourceMark rm(thread);
  1225   RegisterMap cbl_map(thread, false);
  1226   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1228   CodeBlob* caller_cb = caller_frame.cb();
  1229   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1230   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1232   // make sure caller is not getting deoptimized
  1233   // and removed before we are done with it.
  1234   // CLEANUP - with lazy deopt shouldn't need this lock
  1235   nmethodLocker caller_lock(caller_nm);
  1237   // determine call info & receiver
  1238   // note: a) receiver is NULL for static calls
  1239   //       b) an exception is thrown if receiver is NULL for non-static calls
  1240   CallInfo call_info;
  1241   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1242   Handle receiver = find_callee_info(thread, invoke_code,
  1243                                      call_info, CHECK_(methodHandle()));
  1244   methodHandle callee_method = call_info.selected_method();
  1246   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1247          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1248          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1249          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1251   assert(caller_nm->is_alive(), "It should be alive");
  1253 #ifndef PRODUCT
  1254   // tracing/debugging/statistics
  1255   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1256                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1257                                (&_resolve_static_ctr);
  1258   Atomic::inc(addr);
  1260   if (TraceCallFixup) {
  1261     ResourceMark rm(thread);
  1262     tty->print("resolving %s%s (%s) call to",
  1263       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1264       Bytecodes::name(invoke_code));
  1265     callee_method->print_short_name(tty);
  1266     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1268 #endif
  1270   // JSR 292 key invariant:
  1271   // If the resolved method is a MethodHandle invoke target, the call
  1272   // site must be a MethodHandle call site, because the lambda form might tail-call
  1273   // leaving the stack in a state unknown to either caller or callee
  1274   // TODO detune for now but we might need it again
  1275 //  assert(!callee_method->is_compiled_lambda_form() ||
  1276 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1278   // Compute entry points. This might require generation of C2I converter
  1279   // frames, so we cannot be holding any locks here. Furthermore, the
  1280   // computation of the entry points is independent of patching the call.  We
  1281   // always return the entry-point, but we only patch the stub if the call has
  1282   // not been deoptimized.  Return values: For a virtual call this is an
  1283   // (cached_oop, destination address) pair. For a static call/optimized
  1284   // virtual this is just a destination address.
  1286   StaticCallInfo static_call_info;
  1287   CompiledICInfo virtual_call_info;
  1289   // Make sure the callee nmethod does not get deoptimized and removed before
  1290   // we are done patching the code.
  1291   nmethod* callee_nm = callee_method->code();
  1292   if (callee_nm != NULL && !callee_nm->is_in_use()) {
  1293     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
  1294     callee_nm = NULL;
  1296   nmethodLocker nl_callee(callee_nm);
  1297 #ifdef ASSERT
  1298   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1299 #endif
  1301   if (is_virtual) {
  1302     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1303     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1304     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1305     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1306                      is_optimized, static_bound, virtual_call_info,
  1307                      CHECK_(methodHandle()));
  1308   } else {
  1309     // static call
  1310     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1313   // grab lock, check for deoptimization and potentially patch caller
  1315     MutexLocker ml_patch(CompiledIC_lock);
  1317     // Lock blocks for safepoint during which both nmethods can change state.
  1319     // Now that we are ready to patch if the Method* was redefined then
  1320     // don't update call site and let the caller retry.
  1321     // Don't update call site if callee nmethod was unloaded or deoptimized.
  1322     // Don't update call site if callee nmethod was replaced by an other nmethod
  1323     // which may happen when multiply alive nmethod (tiered compilation)
  1324     // will be supported.
  1325     if (!callee_method->is_old() &&
  1326         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
  1327 #ifdef ASSERT
  1328       // We must not try to patch to jump to an already unloaded method.
  1329       if (dest_entry_point != 0) {
  1330         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
  1331         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
  1332                "should not call unloaded nmethod");
  1334 #endif
  1335       if (is_virtual) {
  1336         nmethod* nm = callee_nm;
  1337         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1338         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1339         if (inline_cache->is_clean()) {
  1340           inline_cache->set_to_monomorphic(virtual_call_info);
  1342       } else {
  1343         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1344         if (ssc->is_clean()) ssc->set(static_call_info);
  1348   } // unlock CompiledIC_lock
  1350   return callee_method;
  1354 // Inline caches exist only in compiled code
  1355 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1356 #ifdef ASSERT
  1357   RegisterMap reg_map(thread, false);
  1358   frame stub_frame = thread->last_frame();
  1359   assert(stub_frame.is_runtime_frame(), "sanity check");
  1360   frame caller_frame = stub_frame.sender(&reg_map);
  1361   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1362 #endif /* ASSERT */
  1364   methodHandle callee_method;
  1365   JRT_BLOCK
  1366     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1367     // Return Method* through TLS
  1368     thread->set_vm_result_2(callee_method());
  1369   JRT_BLOCK_END
  1370   // return compiled code entry point after potential safepoints
  1371   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1372   return callee_method->verified_code_entry();
  1373 JRT_END
  1376 // Handle call site that has been made non-entrant
  1377 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1378   // 6243940 We might end up in here if the callee is deoptimized
  1379   // as we race to call it.  We don't want to take a safepoint if
  1380   // the caller was interpreted because the caller frame will look
  1381   // interpreted to the stack walkers and arguments are now
  1382   // "compiled" so it is much better to make this transition
  1383   // invisible to the stack walking code. The i2c path will
  1384   // place the callee method in the callee_target. It is stashed
  1385   // there because if we try and find the callee by normal means a
  1386   // safepoint is possible and have trouble gc'ing the compiled args.
  1387   RegisterMap reg_map(thread, false);
  1388   frame stub_frame = thread->last_frame();
  1389   assert(stub_frame.is_runtime_frame(), "sanity check");
  1390   frame caller_frame = stub_frame.sender(&reg_map);
  1392   if (caller_frame.is_interpreted_frame() ||
  1393       caller_frame.is_entry_frame()) {
  1394     Method* callee = thread->callee_target();
  1395     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1396     thread->set_vm_result_2(callee);
  1397     thread->set_callee_target(NULL);
  1398     return callee->get_c2i_entry();
  1401   // Must be compiled to compiled path which is safe to stackwalk
  1402   methodHandle callee_method;
  1403   JRT_BLOCK
  1404     // Force resolving of caller (if we called from compiled frame)
  1405     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1406     thread->set_vm_result_2(callee_method());
  1407   JRT_BLOCK_END
  1408   // return compiled code entry point after potential safepoints
  1409   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1410   return callee_method->verified_code_entry();
  1411 JRT_END
  1413 // Handle abstract method call
  1414 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
  1415   return StubRoutines::throw_AbstractMethodError_entry();
  1416 JRT_END
  1419 // resolve a static call and patch code
  1420 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1421   methodHandle callee_method;
  1422   JRT_BLOCK
  1423     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1424     thread->set_vm_result_2(callee_method());
  1425   JRT_BLOCK_END
  1426   // return compiled code entry point after potential safepoints
  1427   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1428   return callee_method->verified_code_entry();
  1429 JRT_END
  1432 // resolve virtual call and update inline cache to monomorphic
  1433 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1434   methodHandle callee_method;
  1435   JRT_BLOCK
  1436     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1437     thread->set_vm_result_2(callee_method());
  1438   JRT_BLOCK_END
  1439   // return compiled code entry point after potential safepoints
  1440   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1441   return callee_method->verified_code_entry();
  1442 JRT_END
  1445 // Resolve a virtual call that can be statically bound (e.g., always
  1446 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1447 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1448   methodHandle callee_method;
  1449   JRT_BLOCK
  1450     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1451     thread->set_vm_result_2(callee_method());
  1452   JRT_BLOCK_END
  1453   // return compiled code entry point after potential safepoints
  1454   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1455   return callee_method->verified_code_entry();
  1456 JRT_END
  1462 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1463   ResourceMark rm(thread);
  1464   CallInfo call_info;
  1465   Bytecodes::Code bc;
  1467   // receiver is NULL for static calls. An exception is thrown for NULL
  1468   // receivers for non-static calls
  1469   Handle receiver = find_callee_info(thread, bc, call_info,
  1470                                      CHECK_(methodHandle()));
  1471   // Compiler1 can produce virtual call sites that can actually be statically bound
  1472   // If we fell thru to below we would think that the site was going megamorphic
  1473   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1474   // we'd try and do a vtable dispatch however methods that can be statically bound
  1475   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1476   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1477   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1478   // never to miss again. I don't believe C2 will produce code like this but if it
  1479   // did this would still be the correct thing to do for it too, hence no ifdef.
  1480   //
  1481   if (call_info.resolved_method()->can_be_statically_bound()) {
  1482     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1483     if (TraceCallFixup) {
  1484       RegisterMap reg_map(thread, false);
  1485       frame caller_frame = thread->last_frame().sender(&reg_map);
  1486       ResourceMark rm(thread);
  1487       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1488       callee_method->print_short_name(tty);
  1489       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1490       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1492     return callee_method;
  1495   methodHandle callee_method = call_info.selected_method();
  1497   bool should_be_mono = false;
  1499 #ifndef PRODUCT
  1500   Atomic::inc(&_ic_miss_ctr);
  1502   // Statistics & Tracing
  1503   if (TraceCallFixup) {
  1504     ResourceMark rm(thread);
  1505     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1506     callee_method->print_short_name(tty);
  1507     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1510   if (ICMissHistogram) {
  1511     MutexLocker m(VMStatistic_lock);
  1512     RegisterMap reg_map(thread, false);
  1513     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1514     // produce statistics under the lock
  1515     trace_ic_miss(f.pc());
  1517 #endif
  1519   // install an event collector so that when a vtable stub is created the
  1520   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1521   // event can't be posted when the stub is created as locks are held
  1522   // - instead the event will be deferred until the event collector goes
  1523   // out of scope.
  1524   JvmtiDynamicCodeEventCollector event_collector;
  1526   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
  1527   { MutexLocker ml_patch (CompiledIC_lock);
  1528     RegisterMap reg_map(thread, false);
  1529     frame caller_frame = thread->last_frame().sender(&reg_map);
  1530     CodeBlob* cb = caller_frame.cb();
  1531     if (cb->is_nmethod()) {
  1532       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1533       bool should_be_mono = false;
  1534       if (inline_cache->is_optimized()) {
  1535         if (TraceCallFixup) {
  1536           ResourceMark rm(thread);
  1537           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1538           callee_method->print_short_name(tty);
  1539           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1541         should_be_mono = true;
  1542       } else if (inline_cache->is_icholder_call()) {
  1543         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1544         if ( ic_oop != NULL) {
  1546           if (receiver()->klass() == ic_oop->holder_klass()) {
  1547             // This isn't a real miss. We must have seen that compiled code
  1548             // is now available and we want the call site converted to a
  1549             // monomorphic compiled call site.
  1550             // We can't assert for callee_method->code() != NULL because it
  1551             // could have been deoptimized in the meantime
  1552             if (TraceCallFixup) {
  1553               ResourceMark rm(thread);
  1554               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1555               callee_method->print_short_name(tty);
  1556               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1558             should_be_mono = true;
  1563       if (should_be_mono) {
  1565         // We have a path that was monomorphic but was going interpreted
  1566         // and now we have (or had) a compiled entry. We correct the IC
  1567         // by using a new icBuffer.
  1568         CompiledICInfo info;
  1569         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1570         inline_cache->compute_monomorphic_entry(callee_method,
  1571                                                 receiver_klass,
  1572                                                 inline_cache->is_optimized(),
  1573                                                 false,
  1574                                                 info, CHECK_(methodHandle()));
  1575         inline_cache->set_to_monomorphic(info);
  1576       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1577         // Potential change to megamorphic
  1578         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1579         if (!successful) {
  1580           inline_cache->set_to_clean();
  1582       } else {
  1583         // Either clean or megamorphic
  1586   } // Release CompiledIC_lock
  1588   return callee_method;
  1591 //
  1592 // Resets a call-site in compiled code so it will get resolved again.
  1593 // This routines handles both virtual call sites, optimized virtual call
  1594 // sites, and static call sites. Typically used to change a call sites
  1595 // destination from compiled to interpreted.
  1596 //
  1597 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1598   ResourceMark rm(thread);
  1599   RegisterMap reg_map(thread, false);
  1600   frame stub_frame = thread->last_frame();
  1601   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1602   frame caller = stub_frame.sender(&reg_map);
  1604   // Do nothing if the frame isn't a live compiled frame.
  1605   // nmethod could be deoptimized by the time we get here
  1606   // so no update to the caller is needed.
  1608   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1610     address pc = caller.pc();
  1612     // Default call_addr is the location of the "basic" call.
  1613     // Determine the address of the call we a reresolving. With
  1614     // Inline Caches we will always find a recognizable call.
  1615     // With Inline Caches disabled we may or may not find a
  1616     // recognizable call. We will always find a call for static
  1617     // calls and for optimized virtual calls. For vanilla virtual
  1618     // calls it depends on the state of the UseInlineCaches switch.
  1619     //
  1620     // With Inline Caches disabled we can get here for a virtual call
  1621     // for two reasons:
  1622     //   1 - calling an abstract method. The vtable for abstract methods
  1623     //       will run us thru handle_wrong_method and we will eventually
  1624     //       end up in the interpreter to throw the ame.
  1625     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1626     //       call and between the time we fetch the entry address and
  1627     //       we jump to it the target gets deoptimized. Similar to 1
  1628     //       we will wind up in the interprter (thru a c2i with c2).
  1629     //
  1630     address call_addr = NULL;
  1632       // Get call instruction under lock because another thread may be
  1633       // busy patching it.
  1634       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1635       // Location of call instruction
  1636       if (NativeCall::is_call_before(pc)) {
  1637         NativeCall *ncall = nativeCall_before(pc);
  1638         call_addr = ncall->instruction_address();
  1642     // Check for static or virtual call
  1643     bool is_static_call = false;
  1644     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1645     // Make sure nmethod doesn't get deoptimized and removed until
  1646     // this is done with it.
  1647     // CLEANUP - with lazy deopt shouldn't need this lock
  1648     nmethodLocker nmlock(caller_nm);
  1650     if (call_addr != NULL) {
  1651       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1652       int ret = iter.next(); // Get item
  1653       if (ret) {
  1654         assert(iter.addr() == call_addr, "must find call");
  1655         if (iter.type() == relocInfo::static_call_type) {
  1656           is_static_call = true;
  1657         } else {
  1658           assert(iter.type() == relocInfo::virtual_call_type ||
  1659                  iter.type() == relocInfo::opt_virtual_call_type
  1660                 , "unexpected relocInfo. type");
  1662       } else {
  1663         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1666       // Cleaning the inline cache will force a new resolve. This is more robust
  1667       // than directly setting it to the new destination, since resolving of calls
  1668       // is always done through the same code path. (experience shows that it
  1669       // leads to very hard to track down bugs, if an inline cache gets updated
  1670       // to a wrong method). It should not be performance critical, since the
  1671       // resolve is only done once.
  1673       MutexLocker ml(CompiledIC_lock);
  1674       if (is_static_call) {
  1675         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1676         ssc->set_to_clean();
  1677       } else {
  1678         // compiled, dispatched call (which used to call an interpreted method)
  1679         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1680         inline_cache->set_to_clean();
  1686   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1689 #ifndef PRODUCT
  1690   Atomic::inc(&_wrong_method_ctr);
  1692   if (TraceCallFixup) {
  1693     ResourceMark rm(thread);
  1694     tty->print("handle_wrong_method reresolving call to");
  1695     callee_method->print_short_name(tty);
  1696     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1698 #endif
  1700   return callee_method;
  1703 #ifdef ASSERT
  1704 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1705                                                                 const BasicType* sig_bt,
  1706                                                                 const VMRegPair* regs) {
  1707   ResourceMark rm;
  1708   const int total_args_passed = method->size_of_parameters();
  1709   const VMRegPair*    regs_with_member_name = regs;
  1710         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1712   const int member_arg_pos = total_args_passed - 1;
  1713   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1714   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1716   const bool is_outgoing = method->is_method_handle_intrinsic();
  1717   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1719   for (int i = 0; i < member_arg_pos; i++) {
  1720     VMReg a =    regs_with_member_name[i].first();
  1721     VMReg b = regs_without_member_name[i].first();
  1722     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1724   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1726 #endif
  1728 // ---------------------------------------------------------------------------
  1729 // We are calling the interpreter via a c2i. Normally this would mean that
  1730 // we were called by a compiled method. However we could have lost a race
  1731 // where we went int -> i2c -> c2i and so the caller could in fact be
  1732 // interpreted. If the caller is compiled we attempt to patch the caller
  1733 // so he no longer calls into the interpreter.
  1734 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1735   Method* moop(method);
  1737   address entry_point = moop->from_compiled_entry();
  1739   // It's possible that deoptimization can occur at a call site which hasn't
  1740   // been resolved yet, in which case this function will be called from
  1741   // an nmethod that has been patched for deopt and we can ignore the
  1742   // request for a fixup.
  1743   // Also it is possible that we lost a race in that from_compiled_entry
  1744   // is now back to the i2c in that case we don't need to patch and if
  1745   // we did we'd leap into space because the callsite needs to use
  1746   // "to interpreter" stub in order to load up the Method*. Don't
  1747   // ask me how I know this...
  1749   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1750   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1751     return;
  1754   // The check above makes sure this is a nmethod.
  1755   nmethod* nm = cb->as_nmethod_or_null();
  1756   assert(nm, "must be");
  1758   // Get the return PC for the passed caller PC.
  1759   address return_pc = caller_pc + frame::pc_return_offset;
  1761   // There is a benign race here. We could be attempting to patch to a compiled
  1762   // entry point at the same time the callee is being deoptimized. If that is
  1763   // the case then entry_point may in fact point to a c2i and we'd patch the
  1764   // call site with the same old data. clear_code will set code() to NULL
  1765   // at the end of it. If we happen to see that NULL then we can skip trying
  1766   // to patch. If we hit the window where the callee has a c2i in the
  1767   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1768   // and patch the code with the same old data. Asi es la vida.
  1770   if (moop->code() == NULL) return;
  1772   if (nm->is_in_use()) {
  1774     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1775     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1776     if (NativeCall::is_call_before(return_pc)) {
  1777       NativeCall *call = nativeCall_before(return_pc);
  1778       //
  1779       // bug 6281185. We might get here after resolving a call site to a vanilla
  1780       // virtual call. Because the resolvee uses the verified entry it may then
  1781       // see compiled code and attempt to patch the site by calling us. This would
  1782       // then incorrectly convert the call site to optimized and its downhill from
  1783       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1784       // just made a call site that could be megamorphic into a monomorphic site
  1785       // for the rest of its life! Just another racing bug in the life of
  1786       // fixup_callers_callsite ...
  1787       //
  1788       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1789       iter.next();
  1790       assert(iter.has_current(), "must have a reloc at java call site");
  1791       relocInfo::relocType typ = iter.reloc()->type();
  1792       if ( typ != relocInfo::static_call_type &&
  1793            typ != relocInfo::opt_virtual_call_type &&
  1794            typ != relocInfo::static_stub_type) {
  1795         return;
  1797       address destination = call->destination();
  1798       if (destination != entry_point) {
  1799         CodeBlob* callee = CodeCache::find_blob(destination);
  1800         // callee == cb seems weird. It means calling interpreter thru stub.
  1801         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
  1802           // static call or optimized virtual
  1803           if (TraceCallFixup) {
  1804             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1805             moop->print_short_name(tty);
  1806             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1808           call->set_destination_mt_safe(entry_point);
  1809         } else {
  1810           if (TraceCallFixup) {
  1811             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1812             moop->print_short_name(tty);
  1813             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1815           // assert is too strong could also be resolve destinations.
  1816           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1818       } else {
  1819           if (TraceCallFixup) {
  1820             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1821             moop->print_short_name(tty);
  1822             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1827 IRT_END
  1830 // same as JVM_Arraycopy, but called directly from compiled code
  1831 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1832                                                 oopDesc* dest, jint dest_pos,
  1833                                                 jint length,
  1834                                                 JavaThread* thread)) {
  1835 #ifndef PRODUCT
  1836   _slow_array_copy_ctr++;
  1837 #endif
  1838   // Check if we have null pointers
  1839   if (src == NULL || dest == NULL) {
  1840     THROW(vmSymbols::java_lang_NullPointerException());
  1842   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1843   // even though the copy_array API also performs dynamic checks to ensure
  1844   // that src and dest are truly arrays (and are conformable).
  1845   // The copy_array mechanism is awkward and could be removed, but
  1846   // the compilers don't call this function except as a last resort,
  1847   // so it probably doesn't matter.
  1848   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1849                                         (arrayOopDesc*)dest, dest_pos,
  1850                                         length, thread);
  1852 JRT_END
  1854 char* SharedRuntime::generate_class_cast_message(
  1855     JavaThread* thread, const char* objName) {
  1857   // Get target class name from the checkcast instruction
  1858   vframeStream vfst(thread, true);
  1859   assert(!vfst.at_end(), "Java frame must exist");
  1860   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1861   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1862     cc.index(), thread);
  1863   return generate_class_cast_message(objName, targetKlass->external_name());
  1866 char* SharedRuntime::generate_class_cast_message(
  1867     const char* objName, const char* targetKlassName, const char* desc) {
  1868   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1870   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1871   if (NULL == message) {
  1872     // Shouldn't happen, but don't cause even more problems if it does
  1873     message = const_cast<char*>(objName);
  1874   } else {
  1875     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1877   return message;
  1880 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1881   (void) JavaThread::current()->reguard_stack();
  1882 JRT_END
  1885 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1886 #ifndef PRODUCT
  1887 int SharedRuntime::_monitor_enter_ctr=0;
  1888 #endif
  1889 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1890   oop obj(_obj);
  1891 #ifndef PRODUCT
  1892   _monitor_enter_ctr++;             // monitor enter slow
  1893 #endif
  1894   if (PrintBiasedLockingStatistics) {
  1895     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1897   Handle h_obj(THREAD, obj);
  1898   if (UseBiasedLocking) {
  1899     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1900     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1901   } else {
  1902     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1904   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1905 JRT_END
  1907 #ifndef PRODUCT
  1908 int SharedRuntime::_monitor_exit_ctr=0;
  1909 #endif
  1910 // Handles the uncommon cases of monitor unlocking in compiled code
  1911 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1912    oop obj(_obj);
  1913 #ifndef PRODUCT
  1914   _monitor_exit_ctr++;              // monitor exit slow
  1915 #endif
  1916   Thread* THREAD = JavaThread::current();
  1917   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1918   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1919   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1920 #undef MIGHT_HAVE_PENDING
  1921 #ifdef MIGHT_HAVE_PENDING
  1922   // Save and restore any pending_exception around the exception mark.
  1923   // While the slow_exit must not throw an exception, we could come into
  1924   // this routine with one set.
  1925   oop pending_excep = NULL;
  1926   const char* pending_file;
  1927   int pending_line;
  1928   if (HAS_PENDING_EXCEPTION) {
  1929     pending_excep = PENDING_EXCEPTION;
  1930     pending_file  = THREAD->exception_file();
  1931     pending_line  = THREAD->exception_line();
  1932     CLEAR_PENDING_EXCEPTION;
  1934 #endif /* MIGHT_HAVE_PENDING */
  1937     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1938     EXCEPTION_MARK;
  1939     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1942 #ifdef MIGHT_HAVE_PENDING
  1943   if (pending_excep != NULL) {
  1944     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1946 #endif /* MIGHT_HAVE_PENDING */
  1947 JRT_END
  1949 #ifndef PRODUCT
  1951 void SharedRuntime::print_statistics() {
  1952   ttyLocker ttyl;
  1953   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1955   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1956   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1957   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1959   SharedRuntime::print_ic_miss_histogram();
  1961   if (CountRemovableExceptions) {
  1962     if (_nof_removable_exceptions > 0) {
  1963       Unimplemented(); // this counter is not yet incremented
  1964       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1968   // Dump the JRT_ENTRY counters
  1969   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1970   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1971   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1972   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1973   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1974   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1975   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1977   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1978   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1979   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1980   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1981   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1983   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1984   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1985   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1986   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1987   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1988   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1989   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1990   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1991   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1992   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1993   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1994   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1995   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1996   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1997   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1998   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  2000   AdapterHandlerLibrary::print_statistics();
  2002   if (xtty != NULL)  xtty->tail("statistics");
  2005 inline double percent(int x, int y) {
  2006   return 100.0 * x / MAX2(y, 1);
  2009 class MethodArityHistogram {
  2010  public:
  2011   enum { MAX_ARITY = 256 };
  2012  private:
  2013   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  2014   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  2015   static int _max_arity;                      // max. arity seen
  2016   static int _max_size;                       // max. arg size seen
  2018   static void add_method_to_histogram(nmethod* nm) {
  2019     Method* m = nm->method();
  2020     ArgumentCount args(m->signature());
  2021     int arity   = args.size() + (m->is_static() ? 0 : 1);
  2022     int argsize = m->size_of_parameters();
  2023     arity   = MIN2(arity, MAX_ARITY-1);
  2024     argsize = MIN2(argsize, MAX_ARITY-1);
  2025     int count = nm->method()->compiled_invocation_count();
  2026     _arity_histogram[arity]  += count;
  2027     _size_histogram[argsize] += count;
  2028     _max_arity = MAX2(_max_arity, arity);
  2029     _max_size  = MAX2(_max_size, argsize);
  2032   void print_histogram_helper(int n, int* histo, const char* name) {
  2033     const int N = MIN2(5, n);
  2034     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2035     double sum = 0;
  2036     double weighted_sum = 0;
  2037     int i;
  2038     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2039     double rest = sum;
  2040     double percent = sum / 100;
  2041     for (i = 0; i <= N; i++) {
  2042       rest -= histo[i];
  2043       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2045     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2046     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2049   void print_histogram() {
  2050     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2051     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2052     tty->print_cr("\nSame for parameter size (in words):");
  2053     print_histogram_helper(_max_size, _size_histogram, "size");
  2054     tty->cr();
  2057  public:
  2058   MethodArityHistogram() {
  2059     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2060     _max_arity = _max_size = 0;
  2061     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2062     CodeCache::nmethods_do(add_method_to_histogram);
  2063     print_histogram();
  2065 };
  2067 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2068 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2069 int MethodArityHistogram::_max_arity;
  2070 int MethodArityHistogram::_max_size;
  2072 void SharedRuntime::print_call_statistics(int comp_total) {
  2073   tty->print_cr("Calls from compiled code:");
  2074   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2075   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2076   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2077   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2078   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2079   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2080   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2081   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2082   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2083   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2084   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2085   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2086   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2087   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2088   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2089   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2090   tty->cr();
  2091   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2092   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2093   tty->print_cr("        %% in nested categories are relative to their category");
  2094   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2095   tty->cr();
  2097   MethodArityHistogram h;
  2099 #endif
  2102 // A simple wrapper class around the calling convention information
  2103 // that allows sharing of adapters for the same calling convention.
  2104 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2105  private:
  2106   enum {
  2107     _basic_type_bits = 4,
  2108     _basic_type_mask = right_n_bits(_basic_type_bits),
  2109     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2110     _compact_int_count = 3
  2111   };
  2112   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2113   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2115   union {
  2116     int  _compact[_compact_int_count];
  2117     int* _fingerprint;
  2118   } _value;
  2119   int _length; // A negative length indicates the fingerprint is in the compact form,
  2120                // Otherwise _value._fingerprint is the array.
  2122   // Remap BasicTypes that are handled equivalently by the adapters.
  2123   // These are correct for the current system but someday it might be
  2124   // necessary to make this mapping platform dependent.
  2125   static int adapter_encoding(BasicType in) {
  2126     switch(in) {
  2127       case T_BOOLEAN:
  2128       case T_BYTE:
  2129       case T_SHORT:
  2130       case T_CHAR:
  2131         // There are all promoted to T_INT in the calling convention
  2132         return T_INT;
  2134       case T_OBJECT:
  2135       case T_ARRAY:
  2136         // In other words, we assume that any register good enough for
  2137         // an int or long is good enough for a managed pointer.
  2138 #ifdef _LP64
  2139         return T_LONG;
  2140 #else
  2141         return T_INT;
  2142 #endif
  2144       case T_INT:
  2145       case T_LONG:
  2146       case T_FLOAT:
  2147       case T_DOUBLE:
  2148       case T_VOID:
  2149         return in;
  2151       default:
  2152         ShouldNotReachHere();
  2153         return T_CONFLICT;
  2157  public:
  2158   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2159     // The fingerprint is based on the BasicType signature encoded
  2160     // into an array of ints with eight entries per int.
  2161     int* ptr;
  2162     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2163     if (len <= _compact_int_count) {
  2164       assert(_compact_int_count == 3, "else change next line");
  2165       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2166       // Storing the signature encoded as signed chars hits about 98%
  2167       // of the time.
  2168       _length = -len;
  2169       ptr = _value._compact;
  2170     } else {
  2171       _length = len;
  2172       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2173       ptr = _value._fingerprint;
  2176     // Now pack the BasicTypes with 8 per int
  2177     int sig_index = 0;
  2178     for (int index = 0; index < len; index++) {
  2179       int value = 0;
  2180       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2181         int bt = ((sig_index < total_args_passed)
  2182                   ? adapter_encoding(sig_bt[sig_index++])
  2183                   : 0);
  2184         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2185         value = (value << _basic_type_bits) | bt;
  2187       ptr[index] = value;
  2191   ~AdapterFingerPrint() {
  2192     if (_length > 0) {
  2193       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2197   int value(int index) {
  2198     if (_length < 0) {
  2199       return _value._compact[index];
  2201     return _value._fingerprint[index];
  2203   int length() {
  2204     if (_length < 0) return -_length;
  2205     return _length;
  2208   bool is_compact() {
  2209     return _length <= 0;
  2212   unsigned int compute_hash() {
  2213     int hash = 0;
  2214     for (int i = 0; i < length(); i++) {
  2215       int v = value(i);
  2216       hash = (hash << 8) ^ v ^ (hash >> 5);
  2218     return (unsigned int)hash;
  2221   const char* as_string() {
  2222     stringStream st;
  2223     st.print("0x");
  2224     for (int i = 0; i < length(); i++) {
  2225       st.print("%08x", value(i));
  2227     return st.as_string();
  2230   bool equals(AdapterFingerPrint* other) {
  2231     if (other->_length != _length) {
  2232       return false;
  2234     if (_length < 0) {
  2235       assert(_compact_int_count == 3, "else change next line");
  2236       return _value._compact[0] == other->_value._compact[0] &&
  2237              _value._compact[1] == other->_value._compact[1] &&
  2238              _value._compact[2] == other->_value._compact[2];
  2239     } else {
  2240       for (int i = 0; i < _length; i++) {
  2241         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2242           return false;
  2246     return true;
  2248 };
  2251 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2252 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2253   friend class AdapterHandlerTableIterator;
  2255  private:
  2257 #ifndef PRODUCT
  2258   static int _lookups; // number of calls to lookup
  2259   static int _buckets; // number of buckets checked
  2260   static int _equals;  // number of buckets checked with matching hash
  2261   static int _hits;    // number of successful lookups
  2262   static int _compact; // number of equals calls with compact signature
  2263 #endif
  2265   AdapterHandlerEntry* bucket(int i) {
  2266     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2269  public:
  2270   AdapterHandlerTable()
  2271     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2273   // Create a new entry suitable for insertion in the table
  2274   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2275     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2276     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2277     return entry;
  2280   // Insert an entry into the table
  2281   void add(AdapterHandlerEntry* entry) {
  2282     int index = hash_to_index(entry->hash());
  2283     add_entry(index, entry);
  2286   void free_entry(AdapterHandlerEntry* entry) {
  2287     entry->deallocate();
  2288     BasicHashtable<mtCode>::free_entry(entry);
  2291   // Find a entry with the same fingerprint if it exists
  2292   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2293     NOT_PRODUCT(_lookups++);
  2294     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2295     unsigned int hash = fp.compute_hash();
  2296     int index = hash_to_index(hash);
  2297     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2298       NOT_PRODUCT(_buckets++);
  2299       if (e->hash() == hash) {
  2300         NOT_PRODUCT(_equals++);
  2301         if (fp.equals(e->fingerprint())) {
  2302 #ifndef PRODUCT
  2303           if (fp.is_compact()) _compact++;
  2304           _hits++;
  2305 #endif
  2306           return e;
  2310     return NULL;
  2313 #ifndef PRODUCT
  2314   void print_statistics() {
  2315     ResourceMark rm;
  2316     int longest = 0;
  2317     int empty = 0;
  2318     int total = 0;
  2319     int nonempty = 0;
  2320     for (int index = 0; index < table_size(); index++) {
  2321       int count = 0;
  2322       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2323         count++;
  2325       if (count != 0) nonempty++;
  2326       if (count == 0) empty++;
  2327       if (count > longest) longest = count;
  2328       total += count;
  2330     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2331                   empty, longest, total, total / (double)nonempty);
  2332     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2333                   _lookups, _buckets, _equals, _hits, _compact);
  2335 #endif
  2336 };
  2339 #ifndef PRODUCT
  2341 int AdapterHandlerTable::_lookups;
  2342 int AdapterHandlerTable::_buckets;
  2343 int AdapterHandlerTable::_equals;
  2344 int AdapterHandlerTable::_hits;
  2345 int AdapterHandlerTable::_compact;
  2347 #endif
  2349 class AdapterHandlerTableIterator : public StackObj {
  2350  private:
  2351   AdapterHandlerTable* _table;
  2352   int _index;
  2353   AdapterHandlerEntry* _current;
  2355   void scan() {
  2356     while (_index < _table->table_size()) {
  2357       AdapterHandlerEntry* a = _table->bucket(_index);
  2358       _index++;
  2359       if (a != NULL) {
  2360         _current = a;
  2361         return;
  2366  public:
  2367   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2368     scan();
  2370   bool has_next() {
  2371     return _current != NULL;
  2373   AdapterHandlerEntry* next() {
  2374     if (_current != NULL) {
  2375       AdapterHandlerEntry* result = _current;
  2376       _current = _current->next();
  2377       if (_current == NULL) scan();
  2378       return result;
  2379     } else {
  2380       return NULL;
  2383 };
  2386 // ---------------------------------------------------------------------------
  2387 // Implementation of AdapterHandlerLibrary
  2388 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2389 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2390 const int AdapterHandlerLibrary_size = 16*K;
  2391 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2393 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2394   // Should be called only when AdapterHandlerLibrary_lock is active.
  2395   if (_buffer == NULL) // Initialize lazily
  2396       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2397   return _buffer;
  2400 void AdapterHandlerLibrary::initialize() {
  2401   if (_adapters != NULL) return;
  2402   _adapters = new AdapterHandlerTable();
  2404   // Create a special handler for abstract methods.  Abstract methods
  2405   // are never compiled so an i2c entry is somewhat meaningless, but
  2406   // throw AbstractMethodError just in case.
  2407   // Pass wrong_method_abstract for the c2i transitions to return
  2408   // AbstractMethodError for invalid invocations.
  2409   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
  2410   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2411                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2412                                                               wrong_method_abstract, wrong_method_abstract);
  2415 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2416                                                       address i2c_entry,
  2417                                                       address c2i_entry,
  2418                                                       address c2i_unverified_entry) {
  2419   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2422 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2423   // Use customized signature handler.  Need to lock around updates to
  2424   // the AdapterHandlerTable (it is not safe for concurrent readers
  2425   // and a single writer: this could be fixed if it becomes a
  2426   // problem).
  2428   // Get the address of the ic_miss handlers before we grab the
  2429   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2430   // was caused by the initialization of the stubs happening
  2431   // while we held the lock and then notifying jvmti while
  2432   // holding it. This just forces the initialization to be a little
  2433   // earlier.
  2434   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2435   assert(ic_miss != NULL, "must have handler");
  2437   ResourceMark rm;
  2439   NOT_PRODUCT(int insts_size);
  2440   AdapterBlob* new_adapter = NULL;
  2441   AdapterHandlerEntry* entry = NULL;
  2442   AdapterFingerPrint* fingerprint = NULL;
  2444     MutexLocker mu(AdapterHandlerLibrary_lock);
  2445     // make sure data structure is initialized
  2446     initialize();
  2448     if (method->is_abstract()) {
  2449       return _abstract_method_handler;
  2452     // Fill in the signature array, for the calling-convention call.
  2453     int total_args_passed = method->size_of_parameters(); // All args on stack
  2455     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2456     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2457     int i = 0;
  2458     if (!method->is_static())  // Pass in receiver first
  2459       sig_bt[i++] = T_OBJECT;
  2460     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2461       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2462       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2463         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2465     assert(i == total_args_passed, "");
  2467     // Lookup method signature's fingerprint
  2468     entry = _adapters->lookup(total_args_passed, sig_bt);
  2470 #ifdef ASSERT
  2471     AdapterHandlerEntry* shared_entry = NULL;
  2472     // Start adapter sharing verification only after the VM is booted.
  2473     if (VerifyAdapterSharing && (entry != NULL)) {
  2474       shared_entry = entry;
  2475       entry = NULL;
  2477 #endif
  2479     if (entry != NULL) {
  2480       return entry;
  2483     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2484     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2486     // Make a C heap allocated version of the fingerprint to store in the adapter
  2487     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2489     // StubRoutines::code2() is initialized after this function can be called. As a result,
  2490     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
  2491     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
  2492     // stub that ensure that an I2C stub is called from an interpreter frame.
  2493     bool contains_all_checks = StubRoutines::code2() != NULL;
  2495     // Create I2C & C2I handlers
  2496     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2497     if (buf != NULL) {
  2498       CodeBuffer buffer(buf);
  2499       short buffer_locs[20];
  2500       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2501                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2503       MacroAssembler _masm(&buffer);
  2504       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2505                                                      total_args_passed,
  2506                                                      comp_args_on_stack,
  2507                                                      sig_bt,
  2508                                                      regs,
  2509                                                      fingerprint);
  2510 #ifdef ASSERT
  2511       if (VerifyAdapterSharing) {
  2512         if (shared_entry != NULL) {
  2513           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
  2514           // Release the one just created and return the original
  2515           _adapters->free_entry(entry);
  2516           return shared_entry;
  2517         } else  {
  2518           entry->save_code(buf->code_begin(), buffer.insts_size());
  2521 #endif
  2523       new_adapter = AdapterBlob::create(&buffer);
  2524       NOT_PRODUCT(insts_size = buffer.insts_size());
  2526     if (new_adapter == NULL) {
  2527       // CodeCache is full, disable compilation
  2528       // Ought to log this but compile log is only per compile thread
  2529       // and we're some non descript Java thread.
  2530       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2531       CompileBroker::handle_full_code_cache();
  2532       return NULL; // Out of CodeCache space
  2534     entry->relocate(new_adapter->content_begin());
  2535 #ifndef PRODUCT
  2536     // debugging suppport
  2537     if (PrintAdapterHandlers || PrintStubCode) {
  2538       ttyLocker ttyl;
  2539       entry->print_adapter_on(tty);
  2540       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2541                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2542                     method->signature()->as_C_string(), insts_size);
  2543       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2544       if (Verbose || PrintStubCode) {
  2545         address first_pc = entry->base_address();
  2546         if (first_pc != NULL) {
  2547           Disassembler::decode(first_pc, first_pc + insts_size);
  2548           tty->cr();
  2552 #endif
  2553     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
  2554     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
  2555     if (contains_all_checks || !VerifyAdapterCalls) {
  2556       _adapters->add(entry);
  2559   // Outside of the lock
  2560   if (new_adapter != NULL) {
  2561     char blob_id[256];
  2562     jio_snprintf(blob_id,
  2563                  sizeof(blob_id),
  2564                  "%s(%s)@" PTR_FORMAT,
  2565                  new_adapter->name(),
  2566                  fingerprint->as_string(),
  2567                  new_adapter->content_begin());
  2568     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
  2570     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2571       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
  2574   return entry;
  2577 address AdapterHandlerEntry::base_address() {
  2578   address base = _i2c_entry;
  2579   if (base == NULL)  base = _c2i_entry;
  2580   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2581   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2582   return base;
  2585 void AdapterHandlerEntry::relocate(address new_base) {
  2586   address old_base = base_address();
  2587   assert(old_base != NULL, "");
  2588   ptrdiff_t delta = new_base - old_base;
  2589   if (_i2c_entry != NULL)
  2590     _i2c_entry += delta;
  2591   if (_c2i_entry != NULL)
  2592     _c2i_entry += delta;
  2593   if (_c2i_unverified_entry != NULL)
  2594     _c2i_unverified_entry += delta;
  2595   assert(base_address() == new_base, "");
  2599 void AdapterHandlerEntry::deallocate() {
  2600   delete _fingerprint;
  2601 #ifdef ASSERT
  2602   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2603 #endif
  2607 #ifdef ASSERT
  2608 // Capture the code before relocation so that it can be compared
  2609 // against other versions.  If the code is captured after relocation
  2610 // then relative instructions won't be equivalent.
  2611 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
  2612   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2613   _saved_code_length = length;
  2614   memcpy(_saved_code, buffer, length);
  2618 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
  2619   if (length != _saved_code_length) {
  2620     return false;
  2623   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
  2625 #endif
  2628 /**
  2629  * Create a native wrapper for this native method.  The wrapper converts the
  2630  * Java-compiled calling convention to the native convention, handles
  2631  * arguments, and transitions to native.  On return from the native we transition
  2632  * back to java blocking if a safepoint is in progress.
  2633  */
  2634 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2635   ResourceMark rm;
  2636   nmethod* nm = NULL;
  2638   assert(method->is_native(), "must be native");
  2639   assert(method->is_method_handle_intrinsic() ||
  2640          method->has_native_function(), "must have something valid to call!");
  2643     // Perform the work while holding the lock, but perform any printing outside the lock
  2644     MutexLocker mu(AdapterHandlerLibrary_lock);
  2645     // See if somebody beat us to it
  2646     nm = method->code();
  2647     if (nm != NULL) {
  2648       return;
  2651     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
  2652     assert(compile_id > 0, "Must generate native wrapper");
  2655     ResourceMark rm;
  2656     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2657     if (buf != NULL) {
  2658       CodeBuffer buffer(buf);
  2659       double locs_buf[20];
  2660       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2661       MacroAssembler _masm(&buffer);
  2663       // Fill in the signature array, for the calling-convention call.
  2664       const int total_args_passed = method->size_of_parameters();
  2666       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2667       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2668       int i=0;
  2669       if( !method->is_static() )  // Pass in receiver first
  2670         sig_bt[i++] = T_OBJECT;
  2671       SignatureStream ss(method->signature());
  2672       for( ; !ss.at_return_type(); ss.next()) {
  2673         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2674         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2675           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2677       assert(i == total_args_passed, "");
  2678       BasicType ret_type = ss.type();
  2680       // Now get the compiled-Java layout as input (or output) arguments.
  2681       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2682       // are just trampolines so the argument registers must be outgoing ones.
  2683       const bool is_outgoing = method->is_method_handle_intrinsic();
  2684       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2686       // Generate the compiled-to-native wrapper code
  2687       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
  2689       if (nm != NULL) {
  2690         method->set_code(method, nm);
  2693   } // Unlock AdapterHandlerLibrary_lock
  2696   // Install the generated code.
  2697   if (nm != NULL) {
  2698     if (PrintCompilation) {
  2699       ttyLocker ttyl;
  2700       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2702     nm->post_compiled_method_load_event();
  2703   } else {
  2704     // CodeCache is full, disable compilation
  2705     CompileBroker::handle_full_code_cache();
  2709 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2710   assert(thread == JavaThread::current(), "must be");
  2711   // The code is about to enter a JNI lazy critical native method and
  2712   // _needs_gc is true, so if this thread is already in a critical
  2713   // section then just return, otherwise this thread should block
  2714   // until needs_gc has been cleared.
  2715   if (thread->in_critical()) {
  2716     return;
  2718   // Lock and unlock a critical section to give the system a chance to block
  2719   GC_locker::lock_critical(thread);
  2720   GC_locker::unlock_critical(thread);
  2721 JRT_END
  2723 #ifdef HAVE_DTRACE_H
  2724 /**
  2725  * Create a dtrace nmethod for this method.  The wrapper converts the
  2726  * Java-compiled calling convention to the native convention, makes a dummy call
  2727  * (actually nops for the size of the call instruction, which become a trap if
  2728  * probe is enabled), and finally returns to the caller. Since this all looks like a
  2729  * leaf, no thread transition is needed.
  2730  */
  2731 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2732   ResourceMark rm;
  2733   nmethod* nm = NULL;
  2735   if (PrintCompilation) {
  2736     ttyLocker ttyl;
  2737     tty->print("---   n  ");
  2738     method->print_short_name(tty);
  2739     if (method->is_static()) {
  2740       tty->print(" (static)");
  2742     tty->cr();
  2746     // perform the work while holding the lock, but perform any printing
  2747     // outside the lock
  2748     MutexLocker mu(AdapterHandlerLibrary_lock);
  2749     // See if somebody beat us to it
  2750     nm = method->code();
  2751     if (nm) {
  2752       return nm;
  2755     ResourceMark rm;
  2757     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2758     if (buf != NULL) {
  2759       CodeBuffer buffer(buf);
  2760       // Need a few relocation entries
  2761       double locs_buf[20];
  2762       buffer.insts()->initialize_shared_locs(
  2763         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2764       MacroAssembler _masm(&buffer);
  2766       // Generate the compiled-to-native wrapper code
  2767       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2770   return nm;
  2773 // the dtrace method needs to convert java lang string to utf8 string.
  2774 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2775   typeArrayOop jlsValue  = java_lang_String::value(src);
  2776   int          jlsOffset = java_lang_String::offset(src);
  2777   int          jlsLen    = java_lang_String::length(src);
  2778   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2779                                            jlsValue->char_at_addr(jlsOffset);
  2780   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2781   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2783 #endif // ndef HAVE_DTRACE_H
  2785 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
  2786   int argcnt = in_args_count;
  2787   if (CCallingConventionRequiresIntsAsLongs) {
  2788     for (int in = 0; in < in_args_count; in++) {
  2789       BasicType bt = in_sig_bt[in];
  2790       switch (bt) {
  2791         case T_BOOLEAN:
  2792         case T_CHAR:
  2793         case T_BYTE:
  2794         case T_SHORT:
  2795         case T_INT:
  2796           argcnt++;
  2797           break;
  2798         default:
  2799           break;
  2802   } else {
  2803     assert(0, "This should not be needed on this platform");
  2806   return argcnt;
  2809 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
  2810                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
  2811   if (CCallingConventionRequiresIntsAsLongs) {
  2812     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
  2813     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  2815     int argcnt = 0;
  2816     for (int in = 0; in < in_args_count; in++, argcnt++) {
  2817       BasicType bt  = in_sig_bt[in];
  2818       VMRegPair reg = in_regs[in];
  2819       switch (bt) {
  2820         case T_BOOLEAN:
  2821         case T_CHAR:
  2822         case T_BYTE:
  2823         case T_SHORT:
  2824         case T_INT:
  2825           // Convert (bt) to (T_LONG,bt).
  2826           new_in_sig_bt[argcnt  ] = T_LONG;
  2827           new_in_sig_bt[argcnt+1] = bt;
  2828           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
  2829           new_in_regs[argcnt  ].set2(reg.first());
  2830           new_in_regs[argcnt+1].set_bad();
  2831           argcnt++;
  2832           break;
  2833         default:
  2834           // No conversion needed.
  2835           new_in_sig_bt[argcnt] = bt;
  2836           new_in_regs[argcnt]   = reg;
  2837           break;
  2840     assert(argcnt == i2l_argcnt, "must match");
  2842     in_regs = new_in_regs;
  2843     in_sig_bt = new_in_sig_bt;
  2844     in_args_count = i2l_argcnt;
  2845   } else {
  2846     assert(0, "This should not be needed on this platform");
  2850 // -------------------------------------------------------------------------
  2851 // Java-Java calling convention
  2852 // (what you use when Java calls Java)
  2854 //------------------------------name_for_receiver----------------------------------
  2855 // For a given signature, return the VMReg for parameter 0.
  2856 VMReg SharedRuntime::name_for_receiver() {
  2857   VMRegPair regs;
  2858   BasicType sig_bt = T_OBJECT;
  2859   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2860   // Return argument 0 register.  In the LP64 build pointers
  2861   // take 2 registers, but the VM wants only the 'main' name.
  2862   return regs.first();
  2865 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2866   // This method is returning a data structure allocating as a
  2867   // ResourceObject, so do not put any ResourceMarks in here.
  2868   char *s = sig->as_C_string();
  2869   int len = (int)strlen(s);
  2870   s++; len--;                   // Skip opening paren
  2872   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2873   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2874   int cnt = 0;
  2875   if (has_receiver) {
  2876     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2879   while( *s != ')' ) {          // Find closing right paren
  2880     switch( *s++ ) {            // Switch on signature character
  2881     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2882     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2883     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2884     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2885     case 'I': sig_bt[cnt++] = T_INT;     break;
  2886     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2887     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2888     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2889     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2890     case 'L':                   // Oop
  2891       while( *s++ != ';'  ) ;   // Skip signature
  2892       sig_bt[cnt++] = T_OBJECT;
  2893       break;
  2894     case '[': {                 // Array
  2895       do {                      // Skip optional size
  2896         while( *s >= '0' && *s <= '9' ) s++;
  2897       } while( *s++ == '[' );   // Nested arrays?
  2898       // Skip element type
  2899       if( s[-1] == 'L' )
  2900         while( *s++ != ';'  ) ; // Skip signature
  2901       sig_bt[cnt++] = T_ARRAY;
  2902       break;
  2904     default : ShouldNotReachHere();
  2908   if (has_appendix) {
  2909     sig_bt[cnt++] = T_OBJECT;
  2912   assert( cnt < 256, "grow table size" );
  2914   int comp_args_on_stack;
  2915   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2917   // the calling convention doesn't count out_preserve_stack_slots so
  2918   // we must add that in to get "true" stack offsets.
  2920   if (comp_args_on_stack) {
  2921     for (int i = 0; i < cnt; i++) {
  2922       VMReg reg1 = regs[i].first();
  2923       if( reg1->is_stack()) {
  2924         // Yuck
  2925         reg1 = reg1->bias(out_preserve_stack_slots());
  2927       VMReg reg2 = regs[i].second();
  2928       if( reg2->is_stack()) {
  2929         // Yuck
  2930         reg2 = reg2->bias(out_preserve_stack_slots());
  2932       regs[i].set_pair(reg2, reg1);
  2936   // results
  2937   *arg_size = cnt;
  2938   return regs;
  2941 // OSR Migration Code
  2942 //
  2943 // This code is used convert interpreter frames into compiled frames.  It is
  2944 // called from very start of a compiled OSR nmethod.  A temp array is
  2945 // allocated to hold the interesting bits of the interpreter frame.  All
  2946 // active locks are inflated to allow them to move.  The displaced headers and
  2947 // active interpeter locals are copied into the temp buffer.  Then we return
  2948 // back to the compiled code.  The compiled code then pops the current
  2949 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2950 // copies the interpreter locals and displaced headers where it wants.
  2951 // Finally it calls back to free the temp buffer.
  2952 //
  2953 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2955 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2957   //
  2958   // This code is dependent on the memory layout of the interpreter local
  2959   // array and the monitors. On all of our platforms the layout is identical
  2960   // so this code is shared. If some platform lays the their arrays out
  2961   // differently then this code could move to platform specific code or
  2962   // the code here could be modified to copy items one at a time using
  2963   // frame accessor methods and be platform independent.
  2965   frame fr = thread->last_frame();
  2966   assert( fr.is_interpreted_frame(), "" );
  2967   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2969   // Figure out how many monitors are active.
  2970   int active_monitor_count = 0;
  2971   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2972        kptr < fr.interpreter_frame_monitor_begin();
  2973        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2974     if( kptr->obj() != NULL ) active_monitor_count++;
  2977   // QQQ we could place number of active monitors in the array so that compiled code
  2978   // could double check it.
  2980   Method* moop = fr.interpreter_frame_method();
  2981   int max_locals = moop->max_locals();
  2982   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2983   int buf_size_words = max_locals + active_monitor_count*2;
  2984   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2986   // Copy the locals.  Order is preserved so that loading of longs works.
  2987   // Since there's no GC I can copy the oops blindly.
  2988   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2989   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2990                        (HeapWord*)&buf[0],
  2991                        max_locals);
  2993   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2994   int i = max_locals;
  2995   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2996        kptr2 < fr.interpreter_frame_monitor_begin();
  2997        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2998     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2999       BasicLock *lock = kptr2->lock();
  3000       // Inflate so the displaced header becomes position-independent
  3001       if (lock->displaced_header()->is_unlocked())
  3002         ObjectSynchronizer::inflate_helper(kptr2->obj());
  3003       // Now the displaced header is free to move
  3004       buf[i++] = (intptr_t)lock->displaced_header();
  3005       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  3008   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  3010   return buf;
  3011 JRT_END
  3013 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  3014   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  3015 JRT_END
  3017 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  3018   AdapterHandlerTableIterator iter(_adapters);
  3019   while (iter.has_next()) {
  3020     AdapterHandlerEntry* a = iter.next();
  3021     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  3023   return false;
  3026 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  3027   AdapterHandlerTableIterator iter(_adapters);
  3028   while (iter.has_next()) {
  3029     AdapterHandlerEntry* a = iter.next();
  3030     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  3031       st->print("Adapter for signature: ");
  3032       a->print_adapter_on(tty);
  3033       return;
  3036   assert(false, "Should have found handler");
  3039 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  3040   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  3041                (intptr_t) this, fingerprint()->as_string(),
  3042                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  3046 #ifndef PRODUCT
  3048 void AdapterHandlerLibrary::print_statistics() {
  3049   _adapters->print_statistics();
  3052 #endif /* PRODUCT */

mercurial