src/share/vm/runtime/sharedRuntime.cpp

Thu, 27 Dec 2018 11:43:33 +0800

author
aoqi
date
Thu, 27 Dec 2018 11:43:33 +0800
changeset 9448
73d689add964
parent 9417
65409bcab2ad
parent 8856
ac27a9c85bea
child 9572
624a0741915c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/compiledIC.hpp"
    35 #include "code/scopeDesc.hpp"
    36 #include "code/vtableStubs.hpp"
    37 #include "compiler/abstractCompiler.hpp"
    38 #include "compiler/compileBroker.hpp"
    39 #include "compiler/compilerOracle.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/interpreterRuntime.hpp"
    43 #include "memory/gcLocker.inline.hpp"
    44 #include "memory/universe.inline.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "prims/forte.hpp"
    47 #include "prims/jvmtiExport.hpp"
    48 #include "prims/jvmtiRedefineClassesTrace.hpp"
    49 #include "prims/methodHandles.hpp"
    50 #include "prims/nativeLookup.hpp"
    51 #include "runtime/arguments.hpp"
    52 #include "runtime/biasedLocking.hpp"
    53 #include "runtime/handles.inline.hpp"
    54 #include "runtime/init.hpp"
    55 #include "runtime/interfaceSupport.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/vframe.hpp"
    60 #include "runtime/vframeArray.hpp"
    61 #include "utilities/copy.hpp"
    62 #include "utilities/dtrace.hpp"
    63 #include "utilities/events.hpp"
    64 #include "utilities/hashtable.inline.hpp"
    65 #include "utilities/macros.hpp"
    66 #include "utilities/xmlstream.hpp"
    67 #ifdef TARGET_ARCH_x86
    68 # include "nativeInst_x86.hpp"
    69 # include "vmreg_x86.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_sparc
    72 # include "nativeInst_sparc.hpp"
    73 # include "vmreg_sparc.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_zero
    76 # include "nativeInst_zero.hpp"
    77 # include "vmreg_zero.inline.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_arm
    80 # include "nativeInst_arm.hpp"
    81 # include "vmreg_arm.inline.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_ppc
    84 # include "nativeInst_ppc.hpp"
    85 # include "vmreg_ppc.inline.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_mips
    88 # include "nativeInst_mips.hpp"
    89 # include "vmreg_mips.inline.hpp"
    90 #endif
    92 #ifdef COMPILER1
    93 #include "c1/c1_Runtime1.hpp"
    94 #endif
    96 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    98 // Shared stub locations
    99 RuntimeStub*        SharedRuntime::_wrong_method_blob;
   100 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
   101 RuntimeStub*        SharedRuntime::_ic_miss_blob;
   102 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
   103 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
   104 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
   106 DeoptimizationBlob* SharedRuntime::_deopt_blob;
   107 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
   108 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
   109 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
   111 #ifdef COMPILER2
   112 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
   113 #endif // COMPILER2
   116 //----------------------------generate_stubs-----------------------------------
   117 void SharedRuntime::generate_stubs() {
   118   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
   119   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
   120   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
   121   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
   122   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
   123   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
   125 #ifdef COMPILER2
   126   // Vectors are generated only by C2.
   127   if (is_wide_vector(MaxVectorSize)) {
   128     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   129   }
   130 #endif // COMPILER2
   131   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   132   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   134   generate_deopt_blob();
   136 #ifdef COMPILER2
   137   generate_uncommon_trap_blob();
   138 #endif // COMPILER2
   139 }
   141 #include <math.h>
   143 #ifndef USDT2
   144 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   145 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   146                       char*, int, char*, int, char*, int);
   147 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   148                       char*, int, char*, int, char*, int);
   149 #endif /* !USDT2 */
   151 // Implementation of SharedRuntime
   153 #ifndef PRODUCT
   154 // For statistics
   155 int SharedRuntime::_ic_miss_ctr = 0;
   156 int SharedRuntime::_wrong_method_ctr = 0;
   157 int SharedRuntime::_resolve_static_ctr = 0;
   158 int SharedRuntime::_resolve_virtual_ctr = 0;
   159 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   160 int SharedRuntime::_implicit_null_throws = 0;
   161 int SharedRuntime::_implicit_div0_throws = 0;
   162 int SharedRuntime::_throw_null_ctr = 0;
   164 int SharedRuntime::_nof_normal_calls = 0;
   165 int SharedRuntime::_nof_optimized_calls = 0;
   166 int SharedRuntime::_nof_inlined_calls = 0;
   167 int SharedRuntime::_nof_megamorphic_calls = 0;
   168 int SharedRuntime::_nof_static_calls = 0;
   169 int SharedRuntime::_nof_inlined_static_calls = 0;
   170 int SharedRuntime::_nof_interface_calls = 0;
   171 int SharedRuntime::_nof_optimized_interface_calls = 0;
   172 int SharedRuntime::_nof_inlined_interface_calls = 0;
   173 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   174 int SharedRuntime::_nof_removable_exceptions = 0;
   176 int SharedRuntime::_new_instance_ctr=0;
   177 int SharedRuntime::_new_array_ctr=0;
   178 int SharedRuntime::_multi1_ctr=0;
   179 int SharedRuntime::_multi2_ctr=0;
   180 int SharedRuntime::_multi3_ctr=0;
   181 int SharedRuntime::_multi4_ctr=0;
   182 int SharedRuntime::_multi5_ctr=0;
   183 int SharedRuntime::_mon_enter_stub_ctr=0;
   184 int SharedRuntime::_mon_exit_stub_ctr=0;
   185 int SharedRuntime::_mon_enter_ctr=0;
   186 int SharedRuntime::_mon_exit_ctr=0;
   187 int SharedRuntime::_partial_subtype_ctr=0;
   188 int SharedRuntime::_jbyte_array_copy_ctr=0;
   189 int SharedRuntime::_jshort_array_copy_ctr=0;
   190 int SharedRuntime::_jint_array_copy_ctr=0;
   191 int SharedRuntime::_jlong_array_copy_ctr=0;
   192 int SharedRuntime::_oop_array_copy_ctr=0;
   193 int SharedRuntime::_checkcast_array_copy_ctr=0;
   194 int SharedRuntime::_unsafe_array_copy_ctr=0;
   195 int SharedRuntime::_generic_array_copy_ctr=0;
   196 int SharedRuntime::_slow_array_copy_ctr=0;
   197 int SharedRuntime::_find_handler_ctr=0;
   198 int SharedRuntime::_rethrow_ctr=0;
   200 int     SharedRuntime::_ICmiss_index                    = 0;
   201 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   202 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   205 void SharedRuntime::trace_ic_miss(address at) {
   206   for (int i = 0; i < _ICmiss_index; i++) {
   207     if (_ICmiss_at[i] == at) {
   208       _ICmiss_count[i]++;
   209       return;
   210     }
   211   }
   212   int index = _ICmiss_index++;
   213   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   214   _ICmiss_at[index] = at;
   215   _ICmiss_count[index] = 1;
   216 }
   218 void SharedRuntime::print_ic_miss_histogram() {
   219   if (ICMissHistogram) {
   220     tty->print_cr ("IC Miss Histogram:");
   221     int tot_misses = 0;
   222     for (int i = 0; i < _ICmiss_index; i++) {
   223       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   224       tot_misses += _ICmiss_count[i];
   225     }
   226     tty->print_cr ("Total IC misses: %7d", tot_misses);
   227   }
   228 }
   229 #endif // PRODUCT
   230 void SharedRuntime::print_long(long long i) {
   231   tty->print("%llx", i);
   232 }
   234 void SharedRuntime::print_int(int i) {
   235   tty->print("%x", i);
   236 }
   238 void SharedRuntime::print_float(float f) {
   239   tty->print("ld:%ld ", f);
   240   tty->print("lx:%lx ", f);
   241   tty->print("lf:%g ", f);
   242 }
   244 void SharedRuntime::print_double(double f) {
   245   tty->print("%ld ", f);
   246   tty->print("0x%lx ", f);
   247   tty->print("%g ", f);
   248 }
   250 void SharedRuntime::print_str(char *str) {
   251   tty->print("%s", str);
   252 }
   254 void SharedRuntime::print_reg_with_pc(char *reg_name, long i, long pc) {
   255   tty->print_cr("%s: %lx pc: %lx", reg_name, i, pc);
   256 }
   258 #if INCLUDE_ALL_GCS
   260 // G1 write-barrier pre: executed before a pointer store.
   261 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   262   if (orig == NULL) {
   263     assert(false, "should be optimized out");
   264     return;
   265   }
   266   assert(orig->is_oop(true /* ignore mark word */), "Error");
   267   // store the original value that was in the field reference
   268   thread->satb_mark_queue().enqueue(orig);
   269 JRT_END
   271 // G1 write-barrier post: executed after a pointer store.
   272 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   273   thread->dirty_card_queue().enqueue(card_addr);
   274 JRT_END
   276 #endif // INCLUDE_ALL_GCS
   279 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   280   return x * y;
   281 JRT_END
   284 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   285   if (x == min_jlong && y == CONST64(-1)) {
   286     return x;
   287   } else {
   288     return x / y;
   289   }
   290 JRT_END
   293 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   294   if (x == min_jlong && y == CONST64(-1)) {
   295     return 0;
   296   } else {
   297     return x % y;
   298   }
   299 JRT_END
   302 const juint  float_sign_mask  = 0x7FFFFFFF;
   303 const juint  float_infinity   = 0x7F800000;
   304 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   305 const julong double_infinity  = CONST64(0x7FF0000000000000);
   307 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   308 #ifdef _WIN64
   309   // 64-bit Windows on amd64 returns the wrong values for
   310   // infinity operands.
   311   union { jfloat f; juint i; } xbits, ybits;
   312   xbits.f = x;
   313   ybits.f = y;
   314   // x Mod Infinity == x unless x is infinity
   315   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   316        ((ybits.i & float_sign_mask) == float_infinity) ) {
   317     return x;
   318   }
   319 #endif
   320   return ((jfloat)fmod((double)x,(double)y));
   321 JRT_END
   324 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   325 #ifdef _WIN64
   326   union { jdouble d; julong l; } xbits, ybits;
   327   xbits.d = x;
   328   ybits.d = y;
   329   // x Mod Infinity == x unless x is infinity
   330   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   331        ((ybits.l & double_sign_mask) == double_infinity) ) {
   332     return x;
   333   }
   334 #endif
   335   return ((jdouble)fmod((double)x,(double)y));
   336 JRT_END
   338 #ifdef __SOFTFP__
   339 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   340   return x + y;
   341 JRT_END
   343 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   344   return x - y;
   345 JRT_END
   347 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   348   return x * y;
   349 JRT_END
   351 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   352   return x / y;
   353 JRT_END
   355 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   356   return x + y;
   357 JRT_END
   359 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   360   return x - y;
   361 JRT_END
   363 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   364   return x * y;
   365 JRT_END
   367 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   368   return x / y;
   369 JRT_END
   371 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   372   return (jfloat)x;
   373 JRT_END
   375 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   376   return (jdouble)x;
   377 JRT_END
   379 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   380   return (jdouble)x;
   381 JRT_END
   383 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   384   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   385 JRT_END
   387 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   388   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   389 JRT_END
   391 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   392   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   393 JRT_END
   395 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   396   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   397 JRT_END
   399 // Functions to return the opposite of the aeabi functions for nan.
   400 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   401   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   402 JRT_END
   404 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   405   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   406 JRT_END
   408 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   409   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   410 JRT_END
   412 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   413   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   414 JRT_END
   416 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   417   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   418 JRT_END
   420 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   421   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   422 JRT_END
   424 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   425   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   426 JRT_END
   428 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   429   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   430 JRT_END
   432 // Intrinsics make gcc generate code for these.
   433 float  SharedRuntime::fneg(float f)   {
   434   return -f;
   435 }
   437 double SharedRuntime::dneg(double f)  {
   438   return -f;
   439 }
   441 #endif // __SOFTFP__
   443 #if defined(__SOFTFP__) || defined(E500V2)
   444 // Intrinsics make gcc generate code for these.
   445 double SharedRuntime::dabs(double f)  {
   446   return (f <= (double)0.0) ? (double)0.0 - f : f;
   447 }
   449 #endif
   451 #if defined(__SOFTFP__) || defined(PPC32)
   452 double SharedRuntime::dsqrt(double f) {
   453   return sqrt(f);
   454 }
   455 #endif
   457 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   458   if (g_isnan(x))
   459     return 0;
   460   if (x >= (jfloat) max_jint)
   461     return max_jint;
   462   if (x <= (jfloat) min_jint)
   463     return min_jint;
   464   return (jint) x;
   465 JRT_END
   468 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   469   if (g_isnan(x))
   470     return 0;
   471   if (x >= (jfloat) max_jlong)
   472     return max_jlong;
   473   if (x <= (jfloat) min_jlong)
   474     return min_jlong;
   475   return (jlong) x;
   476 JRT_END
   479 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   480   if (g_isnan(x))
   481     return 0;
   482   if (x >= (jdouble) max_jint)
   483     return max_jint;
   484   if (x <= (jdouble) min_jint)
   485     return min_jint;
   486   return (jint) x;
   487 JRT_END
   490 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   491   if (g_isnan(x))
   492     return 0;
   493   if (x >= (jdouble) max_jlong)
   494     return max_jlong;
   495   if (x <= (jdouble) min_jlong)
   496     return min_jlong;
   497   return (jlong) x;
   498 JRT_END
   501 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   502   return (jfloat)x;
   503 JRT_END
   506 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   507   return (jfloat)x;
   508 JRT_END
   511 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   512   return (jdouble)x;
   513 JRT_END
   515 // Exception handling accross interpreter/compiler boundaries
   516 //
   517 // exception_handler_for_return_address(...) returns the continuation address.
   518 // The continuation address is the entry point of the exception handler of the
   519 // previous frame depending on the return address.
   521 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   522   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   523   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
   525   // Reset method handle flag.
   526   thread->set_is_method_handle_return(false);
   528   // The fastest case first
   529   CodeBlob* blob = CodeCache::find_blob(return_address);
   530   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   531   if (nm != NULL) {
   532     // Set flag if return address is a method handle call site.
   533     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   534     // native nmethods don't have exception handlers
   535     assert(!nm->is_native_method(), "no exception handler");
   536     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   537     if (nm->is_deopt_pc(return_address)) {
   538       // If we come here because of a stack overflow, the stack may be
   539       // unguarded. Reguard the stack otherwise if we return to the
   540       // deopt blob and the stack bang causes a stack overflow we
   541       // crash.
   542       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   543       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   544       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
   545       return SharedRuntime::deopt_blob()->unpack_with_exception();
   546     } else {
   547       return nm->exception_begin();
   548     }
   549   }
   551   // Entry code
   552   if (StubRoutines::returns_to_call_stub(return_address)) {
   553     return StubRoutines::catch_exception_entry();
   554   }
   555   // Interpreted code
   556   if (Interpreter::contains(return_address)) {
   557     return Interpreter::rethrow_exception_entry();
   558   }
   560   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   561   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   563 #ifndef PRODUCT
   564   { ResourceMark rm;
   565     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   566     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   567     tty->print_cr("b) other problem");
   568   }
   569 #endif // PRODUCT
   571   ShouldNotReachHere();
   572   return NULL;
   573 }
   576 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   577   return raw_exception_handler_for_return_address(thread, return_address);
   578 JRT_END
   581 address SharedRuntime::get_poll_stub(address pc) {
   582   address stub;
   583   // Look up the code blob
   584   CodeBlob *cb = CodeCache::find_blob(pc);
   586   // Should be an nmethod
   587   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
   589   // Look up the relocation information
   590   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   591     "safepoint polling: type must be poll" );
   593   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   594     "Only polling locations are used for safepoint");
   596   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   597   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   598   if (at_poll_return) {
   599     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   600            "polling page return stub not created yet");
   601     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   602   } else if (has_wide_vectors) {
   603     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   604            "polling page vectors safepoint stub not created yet");
   605     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   606   } else {
   607     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   608            "polling page safepoint stub not created yet");
   609     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   610   }
   611 #ifndef PRODUCT
   612   if( TraceSafepoint ) {
   613     char buf[256];
   614     jio_snprintf(buf, sizeof(buf),
   615                  "... found polling page %s exception at pc = "
   616                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   617                  at_poll_return ? "return" : "loop",
   618                  (intptr_t)pc, (intptr_t)stub);
   619     tty->print_raw_cr(buf);
   620   }
   621 #endif // PRODUCT
   622   return stub;
   623 }
   626 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   627   assert(caller.is_interpreted_frame(), "");
   628   int args_size = ArgumentSizeComputer(sig).size() + 1;
   629   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   630   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   631   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   632   return result;
   633 }
   636 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   637   if (JvmtiExport::can_post_on_exceptions()) {
   638     vframeStream vfst(thread, true);
   639     methodHandle method = methodHandle(thread, vfst.method());
   640     address bcp = method()->bcp_from(vfst.bci());
   641     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   642   }
   643   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   644 }
   646 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   647   Handle h_exception = Exceptions::new_exception(thread, name, message);
   648   throw_and_post_jvmti_exception(thread, h_exception);
   649 }
   651 // The interpreter code to call this tracing function is only
   652 // called/generated when TraceRedefineClasses has the right bits
   653 // set. Since obsolete methods are never compiled, we don't have
   654 // to modify the compilers to generate calls to this function.
   655 //
   656 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   657     JavaThread* thread, Method* method))
   658   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   660   if (method->is_obsolete()) {
   661     // We are calling an obsolete method, but this is not necessarily
   662     // an error. Our method could have been redefined just after we
   663     // fetched the Method* from the constant pool.
   665     // RC_TRACE macro has an embedded ResourceMark
   666     RC_TRACE_WITH_THREAD(0x00001000, thread,
   667                          ("calling obsolete method '%s'",
   668                           method->name_and_sig_as_C_string()));
   669     if (RC_TRACE_ENABLED(0x00002000)) {
   670       // this option is provided to debug calls to obsolete methods
   671       guarantee(false, "faulting at call to an obsolete method.");
   672     }
   673   }
   674   return 0;
   675 JRT_END
   677 // ret_pc points into caller; we are returning caller's exception handler
   678 // for given exception
   679 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   680                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
   681   assert(nm != NULL, "must exist");
   682   ResourceMark rm;
   684   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   685   // determine handler bci, if any
   686   EXCEPTION_MARK;
   688   int handler_bci = -1;
   689   int scope_depth = 0;
   690   if (!force_unwind) {
   691     int bci = sd->bci();
   692     bool recursive_exception = false;
   693     do {
   694       bool skip_scope_increment = false;
   695       // exception handler lookup
   696       KlassHandle ek (THREAD, exception->klass());
   697       methodHandle mh(THREAD, sd->method());
   698       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   699       if (HAS_PENDING_EXCEPTION) {
   700         recursive_exception = true;
   701         // We threw an exception while trying to find the exception handler.
   702         // Transfer the new exception to the exception handle which will
   703         // be set into thread local storage, and do another lookup for an
   704         // exception handler for this exception, this time starting at the
   705         // BCI of the exception handler which caused the exception to be
   706         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   707         // argument to ensure that the correct exception is thrown (4870175).
   708         recursive_exception_occurred = true;
   709         exception = Handle(THREAD, PENDING_EXCEPTION);
   710         CLEAR_PENDING_EXCEPTION;
   711         if (handler_bci >= 0) {
   712           bci = handler_bci;
   713           handler_bci = -1;
   714           skip_scope_increment = true;
   715         }
   716       }
   717       else {
   718         recursive_exception = false;
   719       }
   720       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   721         sd = sd->sender();
   722         if (sd != NULL) {
   723           bci = sd->bci();
   724         }
   725         ++scope_depth;
   726       }
   727     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   728   }
   730   // found handling method => lookup exception handler
   731   int catch_pco = ret_pc - nm->code_begin();
   733   ExceptionHandlerTable table(nm);
   734   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   735   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   736     // Allow abbreviated catch tables.  The idea is to allow a method
   737     // to materialize its exceptions without committing to the exact
   738     // routing of exceptions.  In particular this is needed for adding
   739     // a synthethic handler to unlock monitors when inlining
   740     // synchonized methods since the unlock path isn't represented in
   741     // the bytecodes.
   742     t = table.entry_for(catch_pco, -1, 0);
   743   }
   745 #ifdef COMPILER1
   746   if (t == NULL && nm->is_compiled_by_c1()) {
   747     assert(nm->unwind_handler_begin() != NULL, "");
   748     return nm->unwind_handler_begin();
   749   }
   750 #endif
   752   if (t == NULL) {
   753     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   754     tty->print_cr("   Exception:");
   755     exception->print();
   756     tty->cr();
   757     tty->print_cr(" Compiled exception table :");
   758     table.print();
   759     nm->print_code();
   760     guarantee(false, "missing exception handler");
   761     return NULL;
   762   }
   764   return nm->code_begin() + t->pco();
   765 }
   767 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   768   // These errors occur only at call sites
   769   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   770 JRT_END
   772 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   773   // These errors occur only at call sites
   774   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   775 JRT_END
   777 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   778   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   779 JRT_END
   781 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   782   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   783 JRT_END
   785 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   786   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   787   // cache sites (when the callee activation is not yet set up) so we are at a call site
   788   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   789 JRT_END
   791 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   792   // We avoid using the normal exception construction in this case because
   793   // it performs an upcall to Java, and we're already out of stack space.
   794   Klass* k = SystemDictionary::StackOverflowError_klass();
   795   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   796   Handle exception (thread, exception_oop);
   797   if (StackTraceInThrowable) {
   798     java_lang_Throwable::fill_in_stack_trace(exception);
   799   }
   800   // Increment counter for hs_err file reporting
   801   Atomic::inc(&Exceptions::_stack_overflow_errors);
   802   throw_and_post_jvmti_exception(thread, exception);
   803 JRT_END
   805 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   806                                                            address pc,
   807                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   808 {
   809   address target_pc = NULL;
   811   if (Interpreter::contains(pc)) {
   812 #ifdef CC_INTERP
   813     // C++ interpreter doesn't throw implicit exceptions
   814     ShouldNotReachHere();
   815 #else
   816     switch (exception_kind) {
   817       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   818       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   819       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   820       default:                      ShouldNotReachHere();
   821     }
   822 #endif // !CC_INTERP
   823   } else {
   824     switch (exception_kind) {
   825       case STACK_OVERFLOW: {
   826         // Stack overflow only occurs upon frame setup; the callee is
   827         // going to be unwound. Dispatch to a shared runtime stub
   828         // which will cause the StackOverflowError to be fabricated
   829         // and processed.
   830         // Stack overflow should never occur during deoptimization:
   831         // the compiled method bangs the stack by as much as the
   832         // interpreter would need in case of a deoptimization. The
   833         // deoptimization blob and uncommon trap blob bang the stack
   834         // in a debug VM to verify the correctness of the compiled
   835         // method stack banging.
   836         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
   837         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   838         return StubRoutines::throw_StackOverflowError_entry();
   839       }
   841       case IMPLICIT_NULL: {
   842         if (VtableStubs::contains(pc)) {
   843           // We haven't yet entered the callee frame. Fabricate an
   844           // exception and begin dispatching it in the caller. Since
   845           // the caller was at a call site, it's safe to destroy all
   846           // caller-saved registers, as these entry points do.
   847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   850           if (vt_stub == NULL) return NULL;
   852           if (vt_stub->is_abstract_method_error(pc)) {
   853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   854             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   855             return StubRoutines::throw_AbstractMethodError_entry();
   856           } else {
   857             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   858             return StubRoutines::throw_NullPointerException_at_call_entry();
   859           }
   860         } else {
   861           CodeBlob* cb = CodeCache::find_blob(pc);
   863           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   864           if (cb == NULL) return NULL;
   866           // Exception happened in CodeCache. Must be either:
   867           // 1. Inline-cache check in C2I handler blob,
   868           // 2. Inline-cache check in nmethod, or
   869           // 3. Implict null exception in nmethod
   871           if (!cb->is_nmethod()) {
   872             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   873             if (!is_in_blob) {
   874               cb->print();
   875               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   876             }
   877             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   878             // There is no handler here, so we will simply unwind.
   879             return StubRoutines::throw_NullPointerException_at_call_entry();
   880           }
   882           // Otherwise, it's an nmethod.  Consult its exception handlers.
   883           nmethod* nm = (nmethod*)cb;
   884           if (nm->inlinecache_check_contains(pc)) {
   885             // exception happened inside inline-cache check code
   886             // => the nmethod is not yet active (i.e., the frame
   887             // is not set up yet) => use return address pushed by
   888             // caller => don't push another return address
   889             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   890             return StubRoutines::throw_NullPointerException_at_call_entry();
   891           }
   893           if (nm->method()->is_method_handle_intrinsic()) {
   894             // exception happened inside MH dispatch code, similar to a vtable stub
   895             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   896             return StubRoutines::throw_NullPointerException_at_call_entry();
   897           }
   899 #ifndef PRODUCT
   900           _implicit_null_throws++;
   901 #endif
   902           target_pc = nm->continuation_for_implicit_exception(pc);
   903           // If there's an unexpected fault, target_pc might be NULL,
   904           // in which case we want to fall through into the normal
   905           // error handling code.
   906         }
   908         break; // fall through
   909       }
   912       case IMPLICIT_DIVIDE_BY_ZERO: {
   913         nmethod* nm = CodeCache::find_nmethod(pc);
   914         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   915 #ifndef PRODUCT
   916         _implicit_div0_throws++;
   917 #endif
   918         target_pc = nm->continuation_for_implicit_exception(pc);
   919         // If there's an unexpected fault, target_pc might be NULL,
   920         // in which case we want to fall through into the normal
   921         // error handling code.
   922         break; // fall through
   923       }
   925       default: ShouldNotReachHere();
   926     }
   928     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   930     // for AbortVMOnException flag
   931     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   932     if (exception_kind == IMPLICIT_NULL) {
   933       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   934     } else {
   935       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   936     }
   937     return target_pc;
   938   }
   940   ShouldNotReachHere();
   941   return NULL;
   942 }
   945 /**
   946  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   947  * installed in the native function entry of all native Java methods before
   948  * they get linked to their actual native methods.
   949  *
   950  * \note
   951  * This method actually never gets called!  The reason is because
   952  * the interpreter's native entries call NativeLookup::lookup() which
   953  * throws the exception when the lookup fails.  The exception is then
   954  * caught and forwarded on the return from NativeLookup::lookup() call
   955  * before the call to the native function.  This might change in the future.
   956  */
   957 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   958 {
   959   // We return a bad value here to make sure that the exception is
   960   // forwarded before we look at the return value.
   961   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   962 }
   963 JNI_END
   965 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   966   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   967 }
   970 #ifndef PRODUCT
   971 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   972   const frame f = thread->last_frame();
   973   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   974 #ifndef PRODUCT
   975   methodHandle mh(THREAD, f.interpreter_frame_method());
   976   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   977 #endif // !PRODUCT
   978   return preserve_this_value;
   979 JRT_END
   980 #endif // !PRODUCT
   983 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   984   os::yield_all(attempts);
   985 JRT_END
   988 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   989   assert(obj->is_oop(), "must be a valid oop");
   990   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   991   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   992 JRT_END
   995 jlong SharedRuntime::get_java_tid(Thread* thread) {
   996   if (thread != NULL) {
   997     if (thread->is_Java_thread()) {
   998       oop obj = ((JavaThread*)thread)->threadObj();
   999       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
  1002   return 0;
  1005 /**
  1006  * This function ought to be a void function, but cannot be because
  1007  * it gets turned into a tail-call on sparc, which runs into dtrace bug
  1008  * 6254741.  Once that is fixed we can remove the dummy return value.
  1009  */
  1010 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
  1011   return dtrace_object_alloc_base(Thread::current(), o, size);
  1014 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
  1015   assert(DTraceAllocProbes, "wrong call");
  1016   Klass* klass = o->klass();
  1017   Symbol* name = klass->name();
  1018 #ifndef USDT2
  1019   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
  1020                    name->bytes(), name->utf8_length(), size * HeapWordSize);
  1021 #else /* USDT2 */
  1022   HOTSPOT_OBJECT_ALLOC(
  1023                    get_java_tid(thread),
  1024                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
  1025 #endif /* USDT2 */
  1026   return 0;
  1029 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
  1030     JavaThread* thread, Method* method))
  1031   assert(DTraceMethodProbes, "wrong call");
  1032   Symbol* kname = method->klass_name();
  1033   Symbol* name = method->name();
  1034   Symbol* sig = method->signature();
  1035 #ifndef USDT2
  1036   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
  1037       kname->bytes(), kname->utf8_length(),
  1038       name->bytes(), name->utf8_length(),
  1039       sig->bytes(), sig->utf8_length());
  1040 #else /* USDT2 */
  1041   HOTSPOT_METHOD_ENTRY(
  1042       get_java_tid(thread),
  1043       (char *) kname->bytes(), kname->utf8_length(),
  1044       (char *) name->bytes(), name->utf8_length(),
  1045       (char *) sig->bytes(), sig->utf8_length());
  1046 #endif /* USDT2 */
  1047   return 0;
  1048 JRT_END
  1050 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
  1051     JavaThread* thread, Method* method))
  1052   assert(DTraceMethodProbes, "wrong call");
  1053   Symbol* kname = method->klass_name();
  1054   Symbol* name = method->name();
  1055   Symbol* sig = method->signature();
  1056 #ifndef USDT2
  1057   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1058       kname->bytes(), kname->utf8_length(),
  1059       name->bytes(), name->utf8_length(),
  1060       sig->bytes(), sig->utf8_length());
  1061 #else /* USDT2 */
  1062   HOTSPOT_METHOD_RETURN(
  1063       get_java_tid(thread),
  1064       (char *) kname->bytes(), kname->utf8_length(),
  1065       (char *) name->bytes(), name->utf8_length(),
  1066       (char *) sig->bytes(), sig->utf8_length());
  1067 #endif /* USDT2 */
  1068   return 0;
  1069 JRT_END
  1072 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1073 // for a call current in progress, i.e., arguments has been pushed on stack
  1074 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1075 // vtable updates, etc.  Caller frame must be compiled.
  1076 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1077   ResourceMark rm(THREAD);
  1079   // last java frame on stack (which includes native call frames)
  1080   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1082   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1086 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1087 // for a call current in progress, i.e., arguments has been pushed on stack
  1088 // but callee has not been invoked yet.  Caller frame must be compiled.
  1089 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1090                                               vframeStream& vfst,
  1091                                               Bytecodes::Code& bc,
  1092                                               CallInfo& callinfo, TRAPS) {
  1093   Handle receiver;
  1094   Handle nullHandle;  //create a handy null handle for exception returns
  1096   assert(!vfst.at_end(), "Java frame must exist");
  1098   // Find caller and bci from vframe
  1099   methodHandle caller(THREAD, vfst.method());
  1100   int          bci   = vfst.bci();
  1102   // Find bytecode
  1103   Bytecode_invoke bytecode(caller, bci);
  1104   bc = bytecode.invoke_code();
  1105   int bytecode_index = bytecode.index();
  1107   // Find receiver for non-static call
  1108   if (bc != Bytecodes::_invokestatic &&
  1109       bc != Bytecodes::_invokedynamic &&
  1110       bc != Bytecodes::_invokehandle) {
  1111     // This register map must be update since we need to find the receiver for
  1112     // compiled frames. The receiver might be in a register.
  1113     RegisterMap reg_map2(thread);
  1114     frame stubFrame   = thread->last_frame();
  1115     // Caller-frame is a compiled frame
  1116     frame callerFrame = stubFrame.sender(&reg_map2);
  1118     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1119     if (callee.is_null()) {
  1120       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1122     // Retrieve from a compiled argument list
  1123     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1125     if (receiver.is_null()) {
  1126       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1130   // Resolve method. This is parameterized by bytecode.
  1131   constantPoolHandle constants(THREAD, caller->constants());
  1132   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1133   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1135 #ifdef ASSERT
  1136   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1137   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1138     assert(receiver.not_null(), "should have thrown exception");
  1139     KlassHandle receiver_klass(THREAD, receiver->klass());
  1140     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1141                             // klass is already loaded
  1142     KlassHandle static_receiver_klass(THREAD, rk);
  1143     // Method handle invokes might have been optimized to a direct call
  1144     // so don't check for the receiver class.
  1145     // FIXME this weakens the assert too much
  1146     methodHandle callee = callinfo.selected_method();
  1147     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1148            callee->is_method_handle_intrinsic() ||
  1149            callee->is_compiled_lambda_form(),
  1150            "actual receiver must be subclass of static receiver klass");
  1151     if (receiver_klass->oop_is_instance()) {
  1152       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1153         tty->print_cr("ERROR: Klass not yet initialized!!");
  1154         receiver_klass()->print();
  1156       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1159 #endif
  1161   return receiver;
  1164 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1165   ResourceMark rm(THREAD);
  1166   // We need first to check if any Java activations (compiled, interpreted)
  1167   // exist on the stack since last JavaCall.  If not, we need
  1168   // to get the target method from the JavaCall wrapper.
  1169   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1170   methodHandle callee_method;
  1171   if (vfst.at_end()) {
  1172     // No Java frames were found on stack since we did the JavaCall.
  1173     // Hence the stack can only contain an entry_frame.  We need to
  1174     // find the target method from the stub frame.
  1175     RegisterMap reg_map(thread, false);
  1176     frame fr = thread->last_frame();
  1177     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1178     fr = fr.sender(&reg_map);
  1179     assert(fr.is_entry_frame(), "must be");
  1180     // fr is now pointing to the entry frame.
  1181     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1182     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1183   } else {
  1184     Bytecodes::Code bc;
  1185     CallInfo callinfo;
  1186     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1187     callee_method = callinfo.selected_method();
  1189   assert(callee_method()->is_method(), "must be");
  1190   return callee_method;
  1193 // Resolves a call.
  1194 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1195                                            bool is_virtual,
  1196                                            bool is_optimized, TRAPS) {
  1197   methodHandle callee_method;
  1198   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1199   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1200     int retry_count = 0;
  1201     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1202            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1203       // If has a pending exception then there is no need to re-try to
  1204       // resolve this method.
  1205       // If the method has been redefined, we need to try again.
  1206       // Hack: we have no way to update the vtables of arrays, so don't
  1207       // require that java.lang.Object has been updated.
  1209       // It is very unlikely that method is redefined more than 100 times
  1210       // in the middle of resolve. If it is looping here more than 100 times
  1211       // means then there could be a bug here.
  1212       guarantee((retry_count++ < 100),
  1213                 "Could not resolve to latest version of redefined method");
  1214       // method is redefined in the middle of resolve so re-try.
  1215       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1218   return callee_method;
  1221 // Resolves a call.  The compilers generate code for calls that go here
  1222 // and are patched with the real destination of the call.
  1223 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1224                                            bool is_virtual,
  1225                                            bool is_optimized, TRAPS) {
  1227   ResourceMark rm(thread);
  1228   RegisterMap cbl_map(thread, false);
  1229   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1231   CodeBlob* caller_cb = caller_frame.cb();
  1232   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1233   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1235   // make sure caller is not getting deoptimized
  1236   // and removed before we are done with it.
  1237   // CLEANUP - with lazy deopt shouldn't need this lock
  1238   nmethodLocker caller_lock(caller_nm);
  1240   // determine call info & receiver
  1241   // note: a) receiver is NULL for static calls
  1242   //       b) an exception is thrown if receiver is NULL for non-static calls
  1243   CallInfo call_info;
  1244   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1245   Handle receiver = find_callee_info(thread, invoke_code,
  1246                                      call_info, CHECK_(methodHandle()));
  1247   methodHandle callee_method = call_info.selected_method();
  1249   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1250          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1251          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1252          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1254   assert(caller_nm->is_alive(), "It should be alive");
  1256 #ifndef PRODUCT
  1257   // tracing/debugging/statistics
  1258   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1259                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1260                                (&_resolve_static_ctr);
  1261   Atomic::inc(addr);
  1263   if (TraceCallFixup) {
  1264     ResourceMark rm(thread);
  1265     tty->print("resolving %s%s (%s) call to",
  1266       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1267       Bytecodes::name(invoke_code));
  1268     callee_method->print_short_name(tty);
  1269     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1271 #endif
  1273   // JSR 292 key invariant:
  1274   // If the resolved method is a MethodHandle invoke target, the call
  1275   // site must be a MethodHandle call site, because the lambda form might tail-call
  1276   // leaving the stack in a state unknown to either caller or callee
  1277   // TODO detune for now but we might need it again
  1278 //  assert(!callee_method->is_compiled_lambda_form() ||
  1279 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1281   // Compute entry points. This might require generation of C2I converter
  1282   // frames, so we cannot be holding any locks here. Furthermore, the
  1283   // computation of the entry points is independent of patching the call.  We
  1284   // always return the entry-point, but we only patch the stub if the call has
  1285   // not been deoptimized.  Return values: For a virtual call this is an
  1286   // (cached_oop, destination address) pair. For a static call/optimized
  1287   // virtual this is just a destination address.
  1289   StaticCallInfo static_call_info;
  1290   CompiledICInfo virtual_call_info;
  1292   // Make sure the callee nmethod does not get deoptimized and removed before
  1293   // we are done patching the code.
  1294   nmethod* callee_nm = callee_method->code();
  1295   if (callee_nm != NULL && !callee_nm->is_in_use()) {
  1296     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
  1297     callee_nm = NULL;
  1299   nmethodLocker nl_callee(callee_nm);
  1300 #ifdef ASSERT
  1301   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1302 #endif
  1304   if (is_virtual) {
  1305     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1306     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1307     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1308     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1309                      is_optimized, static_bound, virtual_call_info,
  1310                      CHECK_(methodHandle()));
  1311   } else {
  1312     // static call
  1313     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1316   // grab lock, check for deoptimization and potentially patch caller
  1318     MutexLocker ml_patch(CompiledIC_lock);
  1320     // Lock blocks for safepoint during which both nmethods can change state.
  1322     // Now that we are ready to patch if the Method* was redefined then
  1323     // don't update call site and let the caller retry.
  1324     // Don't update call site if callee nmethod was unloaded or deoptimized.
  1325     // Don't update call site if callee nmethod was replaced by an other nmethod
  1326     // which may happen when multiply alive nmethod (tiered compilation)
  1327     // will be supported.
  1328     if (!callee_method->is_old() &&
  1329         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
  1330 #ifdef ASSERT
  1331       // We must not try to patch to jump to an already unloaded method.
  1332       if (dest_entry_point != 0) {
  1333         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
  1334         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
  1335                "should not call unloaded nmethod");
  1337 #endif
  1338       if (is_virtual) {
  1339         nmethod* nm = callee_nm;
  1340         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1341         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1342         if (inline_cache->is_clean()) {
  1343           inline_cache->set_to_monomorphic(virtual_call_info);
  1345       } else {
  1346         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1347         if (ssc->is_clean()) ssc->set(static_call_info);
  1351   } // unlock CompiledIC_lock
  1353   return callee_method;
  1357 // Inline caches exist only in compiled code
  1358 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1359 #ifdef ASSERT
  1360   RegisterMap reg_map(thread, false);
  1361   frame stub_frame = thread->last_frame();
  1362   assert(stub_frame.is_runtime_frame(), "sanity check");
  1363   frame caller_frame = stub_frame.sender(&reg_map);
  1364   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1365 #endif /* ASSERT */
  1367   methodHandle callee_method;
  1368   JRT_BLOCK
  1369     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1370     // Return Method* through TLS
  1371     thread->set_vm_result_2(callee_method());
  1372   JRT_BLOCK_END
  1373   // return compiled code entry point after potential safepoints
  1374   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1375   return callee_method->verified_code_entry();
  1376 JRT_END
  1379 // Handle call site that has been made non-entrant
  1380 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1381   // 6243940 We might end up in here if the callee is deoptimized
  1382   // as we race to call it.  We don't want to take a safepoint if
  1383   // the caller was interpreted because the caller frame will look
  1384   // interpreted to the stack walkers and arguments are now
  1385   // "compiled" so it is much better to make this transition
  1386   // invisible to the stack walking code. The i2c path will
  1387   // place the callee method in the callee_target. It is stashed
  1388   // there because if we try and find the callee by normal means a
  1389   // safepoint is possible and have trouble gc'ing the compiled args.
  1390   RegisterMap reg_map(thread, false);
  1391   frame stub_frame = thread->last_frame();
  1392   assert(stub_frame.is_runtime_frame(), "sanity check");
  1393   frame caller_frame = stub_frame.sender(&reg_map);
  1395   if (caller_frame.is_interpreted_frame() ||
  1396       caller_frame.is_entry_frame()) {
  1397     Method* callee = thread->callee_target();
  1398     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1399     thread->set_vm_result_2(callee);
  1400     thread->set_callee_target(NULL);
  1401     return callee->get_c2i_entry();
  1404   // Must be compiled to compiled path which is safe to stackwalk
  1405   methodHandle callee_method;
  1406   JRT_BLOCK
  1407     // Force resolving of caller (if we called from compiled frame)
  1408     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1409     thread->set_vm_result_2(callee_method());
  1410   JRT_BLOCK_END
  1411   // return compiled code entry point after potential safepoints
  1412   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1413   return callee_method->verified_code_entry();
  1414 JRT_END
  1416 // Handle abstract method call
  1417 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
  1418   return StubRoutines::throw_AbstractMethodError_entry();
  1419 JRT_END
  1422 // resolve a static call and patch code
  1423 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1424   methodHandle callee_method;
  1425   JRT_BLOCK
  1426     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1427     thread->set_vm_result_2(callee_method());
  1428   JRT_BLOCK_END
  1429   // return compiled code entry point after potential safepoints
  1430   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1431   return callee_method->verified_code_entry();
  1432 JRT_END
  1435 // resolve virtual call and update inline cache to monomorphic
  1436 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1437   methodHandle callee_method;
  1438   JRT_BLOCK
  1439     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1440     thread->set_vm_result_2(callee_method());
  1441   JRT_BLOCK_END
  1442   // return compiled code entry point after potential safepoints
  1443   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1444   return callee_method->verified_code_entry();
  1445 JRT_END
  1448 // Resolve a virtual call that can be statically bound (e.g., always
  1449 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1450 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1451   methodHandle callee_method;
  1452   JRT_BLOCK
  1453     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1454     thread->set_vm_result_2(callee_method());
  1455   JRT_BLOCK_END
  1456   // return compiled code entry point after potential safepoints
  1457   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1458   return callee_method->verified_code_entry();
  1459 JRT_END
  1465 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1466   ResourceMark rm(thread);
  1467   CallInfo call_info;
  1468   Bytecodes::Code bc;
  1470   // receiver is NULL for static calls. An exception is thrown for NULL
  1471   // receivers for non-static calls
  1472   Handle receiver = find_callee_info(thread, bc, call_info,
  1473                                      CHECK_(methodHandle()));
  1474   // Compiler1 can produce virtual call sites that can actually be statically bound
  1475   // If we fell thru to below we would think that the site was going megamorphic
  1476   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1477   // we'd try and do a vtable dispatch however methods that can be statically bound
  1478   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1479   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1480   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1481   // never to miss again. I don't believe C2 will produce code like this but if it
  1482   // did this would still be the correct thing to do for it too, hence no ifdef.
  1483   //
  1484   if (call_info.resolved_method()->can_be_statically_bound()) {
  1485     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1486     if (TraceCallFixup) {
  1487       RegisterMap reg_map(thread, false);
  1488       frame caller_frame = thread->last_frame().sender(&reg_map);
  1489       ResourceMark rm(thread);
  1490       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1491       callee_method->print_short_name(tty);
  1492       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1493       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1495     return callee_method;
  1498   methodHandle callee_method = call_info.selected_method();
  1500   bool should_be_mono = false;
  1502 #ifndef PRODUCT
  1503   Atomic::inc(&_ic_miss_ctr);
  1505   // Statistics & Tracing
  1506   if (TraceCallFixup) {
  1507     ResourceMark rm(thread);
  1508     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1509     callee_method->print_short_name(tty);
  1510     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1513   if (ICMissHistogram) {
  1514     MutexLocker m(VMStatistic_lock);
  1515     RegisterMap reg_map(thread, false);
  1516     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1517     // produce statistics under the lock
  1518     trace_ic_miss(f.pc());
  1520 #endif
  1522   // install an event collector so that when a vtable stub is created the
  1523   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1524   // event can't be posted when the stub is created as locks are held
  1525   // - instead the event will be deferred until the event collector goes
  1526   // out of scope.
  1527   JvmtiDynamicCodeEventCollector event_collector;
  1529   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
  1530   { MutexLocker ml_patch (CompiledIC_lock);
  1531     RegisterMap reg_map(thread, false);
  1532     frame caller_frame = thread->last_frame().sender(&reg_map);
  1533     CodeBlob* cb = caller_frame.cb();
  1534     if (cb->is_nmethod()) {
  1535       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1536       bool should_be_mono = false;
  1537       if (inline_cache->is_optimized()) {
  1538         if (TraceCallFixup) {
  1539           ResourceMark rm(thread);
  1540           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1541           callee_method->print_short_name(tty);
  1542           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1544         should_be_mono = true;
  1545       } else if (inline_cache->is_icholder_call()) {
  1546         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1547         if ( ic_oop != NULL) {
  1549           if (receiver()->klass() == ic_oop->holder_klass()) {
  1550             // This isn't a real miss. We must have seen that compiled code
  1551             // is now available and we want the call site converted to a
  1552             // monomorphic compiled call site.
  1553             // We can't assert for callee_method->code() != NULL because it
  1554             // could have been deoptimized in the meantime
  1555             if (TraceCallFixup) {
  1556               ResourceMark rm(thread);
  1557               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1558               callee_method->print_short_name(tty);
  1559               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1561             should_be_mono = true;
  1566       if (should_be_mono) {
  1568         // We have a path that was monomorphic but was going interpreted
  1569         // and now we have (or had) a compiled entry. We correct the IC
  1570         // by using a new icBuffer.
  1571         CompiledICInfo info;
  1572         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1573         inline_cache->compute_monomorphic_entry(callee_method,
  1574                                                 receiver_klass,
  1575                                                 inline_cache->is_optimized(),
  1576                                                 false,
  1577                                                 info, CHECK_(methodHandle()));
  1578         inline_cache->set_to_monomorphic(info);
  1579       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1580         // Potential change to megamorphic
  1581         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1582         if (!successful) {
  1583           inline_cache->set_to_clean();
  1585       } else {
  1586         // Either clean or megamorphic
  1589   } // Release CompiledIC_lock
  1591   return callee_method;
  1594 //
  1595 // Resets a call-site in compiled code so it will get resolved again.
  1596 // This routines handles both virtual call sites, optimized virtual call
  1597 // sites, and static call sites. Typically used to change a call sites
  1598 // destination from compiled to interpreted.
  1599 //
  1600 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1601   ResourceMark rm(thread);
  1602   RegisterMap reg_map(thread, false);
  1603   frame stub_frame = thread->last_frame();
  1604   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1605   frame caller = stub_frame.sender(&reg_map);
  1607   // Do nothing if the frame isn't a live compiled frame.
  1608   // nmethod could be deoptimized by the time we get here
  1609   // so no update to the caller is needed.
  1611   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1613     address pc = caller.pc();
  1615     // Default call_addr is the location of the "basic" call.
  1616     // Determine the address of the call we a reresolving. With
  1617     // Inline Caches we will always find a recognizable call.
  1618     // With Inline Caches disabled we may or may not find a
  1619     // recognizable call. We will always find a call for static
  1620     // calls and for optimized virtual calls. For vanilla virtual
  1621     // calls it depends on the state of the UseInlineCaches switch.
  1622     //
  1623     // With Inline Caches disabled we can get here for a virtual call
  1624     // for two reasons:
  1625     //   1 - calling an abstract method. The vtable for abstract methods
  1626     //       will run us thru handle_wrong_method and we will eventually
  1627     //       end up in the interpreter to throw the ame.
  1628     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1629     //       call and between the time we fetch the entry address and
  1630     //       we jump to it the target gets deoptimized. Similar to 1
  1631     //       we will wind up in the interprter (thru a c2i with c2).
  1632     //
  1633     address call_addr = NULL;
  1635       // Get call instruction under lock because another thread may be
  1636       // busy patching it.
  1637       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1638       // Location of call instruction
  1639       if (NativeCall::is_call_before(pc)) {
  1640         NativeCall *ncall = nativeCall_before(pc);
  1641         call_addr = ncall->instruction_address();
  1645     // Check for static or virtual call
  1646     bool is_static_call = false;
  1647     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1648     // Make sure nmethod doesn't get deoptimized and removed until
  1649     // this is done with it.
  1650     // CLEANUP - with lazy deopt shouldn't need this lock
  1651     nmethodLocker nmlock(caller_nm);
  1653     if (call_addr != NULL) {
  1654       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1655       int ret = iter.next(); // Get item
  1656       if (ret) {
  1657         assert(iter.addr() == call_addr, "must find call");
  1658         if (iter.type() == relocInfo::static_call_type) {
  1659           is_static_call = true;
  1660         } else {
  1661           assert(iter.type() == relocInfo::virtual_call_type ||
  1662                  iter.type() == relocInfo::opt_virtual_call_type
  1663                 , "unexpected relocInfo. type");
  1665       } else {
  1666         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1669       // Cleaning the inline cache will force a new resolve. This is more robust
  1670       // than directly setting it to the new destination, since resolving of calls
  1671       // is always done through the same code path. (experience shows that it
  1672       // leads to very hard to track down bugs, if an inline cache gets updated
  1673       // to a wrong method). It should not be performance critical, since the
  1674       // resolve is only done once.
  1676       MutexLocker ml(CompiledIC_lock);
  1677       if (is_static_call) {
  1678         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1679         ssc->set_to_clean();
  1680       } else {
  1681         // compiled, dispatched call (which used to call an interpreted method)
  1682         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1683         inline_cache->set_to_clean();
  1689   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1692 #ifndef PRODUCT
  1693   Atomic::inc(&_wrong_method_ctr);
  1695   if (TraceCallFixup) {
  1696     ResourceMark rm(thread);
  1697     tty->print("handle_wrong_method reresolving call to");
  1698     callee_method->print_short_name(tty);
  1699     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1701 #endif
  1703   return callee_method;
  1706 #ifdef ASSERT
  1707 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1708                                                                 const BasicType* sig_bt,
  1709                                                                 const VMRegPair* regs) {
  1710   ResourceMark rm;
  1711   const int total_args_passed = method->size_of_parameters();
  1712   const VMRegPair*    regs_with_member_name = regs;
  1713         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1715   const int member_arg_pos = total_args_passed - 1;
  1716   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1717   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1719   const bool is_outgoing = method->is_method_handle_intrinsic();
  1720   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1722   for (int i = 0; i < member_arg_pos; i++) {
  1723     VMReg a =    regs_with_member_name[i].first();
  1724     VMReg b = regs_without_member_name[i].first();
  1725     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1727   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1729 #endif
  1731 // ---------------------------------------------------------------------------
  1732 // We are calling the interpreter via a c2i. Normally this would mean that
  1733 // we were called by a compiled method. However we could have lost a race
  1734 // where we went int -> i2c -> c2i and so the caller could in fact be
  1735 // interpreted. If the caller is compiled we attempt to patch the caller
  1736 // so he no longer calls into the interpreter.
  1737 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1738   Method* moop(method);
  1740   address entry_point = moop->from_compiled_entry();
  1742   // It's possible that deoptimization can occur at a call site which hasn't
  1743   // been resolved yet, in which case this function will be called from
  1744   // an nmethod that has been patched for deopt and we can ignore the
  1745   // request for a fixup.
  1746   // Also it is possible that we lost a race in that from_compiled_entry
  1747   // is now back to the i2c in that case we don't need to patch and if
  1748   // we did we'd leap into space because the callsite needs to use
  1749   // "to interpreter" stub in order to load up the Method*. Don't
  1750   // ask me how I know this...
  1752   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1753   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1754     return;
  1757   // The check above makes sure this is a nmethod.
  1758   nmethod* nm = cb->as_nmethod_or_null();
  1759   assert(nm, "must be");
  1761   // Get the return PC for the passed caller PC.
  1762   address return_pc = caller_pc + frame::pc_return_offset;
  1764   // There is a benign race here. We could be attempting to patch to a compiled
  1765   // entry point at the same time the callee is being deoptimized. If that is
  1766   // the case then entry_point may in fact point to a c2i and we'd patch the
  1767   // call site with the same old data. clear_code will set code() to NULL
  1768   // at the end of it. If we happen to see that NULL then we can skip trying
  1769   // to patch. If we hit the window where the callee has a c2i in the
  1770   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1771   // and patch the code with the same old data. Asi es la vida.
  1773   if (moop->code() == NULL) return;
  1775   if (nm->is_in_use()) {
  1777     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1778     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1779     if (NativeCall::is_call_before(return_pc)) {
  1780       NativeCall *call = nativeCall_before(return_pc);
  1781       //
  1782       // bug 6281185. We might get here after resolving a call site to a vanilla
  1783       // virtual call. Because the resolvee uses the verified entry it may then
  1784       // see compiled code and attempt to patch the site by calling us. This would
  1785       // then incorrectly convert the call site to optimized and its downhill from
  1786       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1787       // just made a call site that could be megamorphic into a monomorphic site
  1788       // for the rest of its life! Just another racing bug in the life of
  1789       // fixup_callers_callsite ...
  1790       //
  1791       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1792       iter.next();
  1793       assert(iter.has_current(), "must have a reloc at java call site");
  1794       relocInfo::relocType typ = iter.reloc()->type();
  1795       if ( typ != relocInfo::static_call_type &&
  1796            typ != relocInfo::opt_virtual_call_type &&
  1797            typ != relocInfo::static_stub_type) {
  1798         return;
  1800       address destination = call->destination();
  1801       if (destination != entry_point) {
  1802         CodeBlob* callee = CodeCache::find_blob(destination);
  1803         // callee == cb seems weird. It means calling interpreter thru stub.
  1804         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
  1805           // static call or optimized virtual
  1806           if (TraceCallFixup) {
  1807             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1808             moop->print_short_name(tty);
  1809             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1811           call->set_destination_mt_safe(entry_point);
  1812         } else {
  1813           if (TraceCallFixup) {
  1814             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1815             moop->print_short_name(tty);
  1816             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1818           // assert is too strong could also be resolve destinations.
  1819           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1821       } else {
  1822           if (TraceCallFixup) {
  1823             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1824             moop->print_short_name(tty);
  1825             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1830 IRT_END
  1833 // same as JVM_Arraycopy, but called directly from compiled code
  1834 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1835                                                 oopDesc* dest, jint dest_pos,
  1836                                                 jint length,
  1837                                                 JavaThread* thread)) {
  1838 #ifndef PRODUCT
  1839   _slow_array_copy_ctr++;
  1840 #endif
  1841   // Check if we have null pointers
  1842   if (src == NULL || dest == NULL) {
  1843     THROW(vmSymbols::java_lang_NullPointerException());
  1845   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1846   // even though the copy_array API also performs dynamic checks to ensure
  1847   // that src and dest are truly arrays (and are conformable).
  1848   // The copy_array mechanism is awkward and could be removed, but
  1849   // the compilers don't call this function except as a last resort,
  1850   // so it probably doesn't matter.
  1851   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1852                                         (arrayOopDesc*)dest, dest_pos,
  1853                                         length, thread);
  1855 JRT_END
  1857 char* SharedRuntime::generate_class_cast_message(
  1858     JavaThread* thread, const char* objName) {
  1860   // Get target class name from the checkcast instruction
  1861   vframeStream vfst(thread, true);
  1862   assert(!vfst.at_end(), "Java frame must exist");
  1863   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1864   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1865     cc.index(), thread);
  1866   return generate_class_cast_message(objName, targetKlass->external_name());
  1869 char* SharedRuntime::generate_class_cast_message(
  1870     const char* objName, const char* targetKlassName, const char* desc) {
  1871   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1873   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1874   if (NULL == message) {
  1875     // Shouldn't happen, but don't cause even more problems if it does
  1876     message = const_cast<char*>(objName);
  1877   } else {
  1878     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1880   return message;
  1883 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1884   (void) JavaThread::current()->reguard_stack();
  1885 JRT_END
  1888 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1889 #ifndef PRODUCT
  1890 int SharedRuntime::_monitor_enter_ctr=0;
  1891 #endif
  1892 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1893   oop obj(_obj);
  1894 #ifndef PRODUCT
  1895   _monitor_enter_ctr++;             // monitor enter slow
  1896 #endif
  1897   if (PrintBiasedLockingStatistics) {
  1898     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1900   Handle h_obj(THREAD, obj);
  1901   if (UseBiasedLocking) {
  1902     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1903     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1904   } else {
  1905     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1907   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1908 JRT_END
  1910 #ifndef PRODUCT
  1911 int SharedRuntime::_monitor_exit_ctr=0;
  1912 #endif
  1913 // Handles the uncommon cases of monitor unlocking in compiled code
  1914 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1915    oop obj(_obj);
  1916 #ifndef PRODUCT
  1917   _monitor_exit_ctr++;              // monitor exit slow
  1918 #endif
  1919   Thread* THREAD = JavaThread::current();
  1920   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1921   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1922   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1923 #undef MIGHT_HAVE_PENDING
  1924 #ifdef MIGHT_HAVE_PENDING
  1925   // Save and restore any pending_exception around the exception mark.
  1926   // While the slow_exit must not throw an exception, we could come into
  1927   // this routine with one set.
  1928   oop pending_excep = NULL;
  1929   const char* pending_file;
  1930   int pending_line;
  1931   if (HAS_PENDING_EXCEPTION) {
  1932     pending_excep = PENDING_EXCEPTION;
  1933     pending_file  = THREAD->exception_file();
  1934     pending_line  = THREAD->exception_line();
  1935     CLEAR_PENDING_EXCEPTION;
  1937 #endif /* MIGHT_HAVE_PENDING */
  1940     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1941     EXCEPTION_MARK;
  1942     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1945 #ifdef MIGHT_HAVE_PENDING
  1946   if (pending_excep != NULL) {
  1947     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1949 #endif /* MIGHT_HAVE_PENDING */
  1950 JRT_END
  1952 #ifndef PRODUCT
  1954 void SharedRuntime::print_statistics() {
  1955   ttyLocker ttyl;
  1956   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1958   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1959   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1960   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1962   SharedRuntime::print_ic_miss_histogram();
  1964   if (CountRemovableExceptions) {
  1965     if (_nof_removable_exceptions > 0) {
  1966       Unimplemented(); // this counter is not yet incremented
  1967       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1971   // Dump the JRT_ENTRY counters
  1972   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1973   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1974   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1975   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1976   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1977   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1978   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1980   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1981   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1982   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1983   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1984   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1986   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1987   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1988   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1989   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1990   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1991   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1992   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1993   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1994   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1995   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1996   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1997   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1998   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1999   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  2000   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  2001   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  2003   AdapterHandlerLibrary::print_statistics();
  2005   if (xtty != NULL)  xtty->tail("statistics");
  2008 inline double percent(int x, int y) {
  2009   return 100.0 * x / MAX2(y, 1);
  2012 class MethodArityHistogram {
  2013  public:
  2014   enum { MAX_ARITY = 256 };
  2015  private:
  2016   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  2017   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  2018   static int _max_arity;                      // max. arity seen
  2019   static int _max_size;                       // max. arg size seen
  2021   static void add_method_to_histogram(nmethod* nm) {
  2022     Method* m = nm->method();
  2023     ArgumentCount args(m->signature());
  2024     int arity   = args.size() + (m->is_static() ? 0 : 1);
  2025     int argsize = m->size_of_parameters();
  2026     arity   = MIN2(arity, MAX_ARITY-1);
  2027     argsize = MIN2(argsize, MAX_ARITY-1);
  2028     int count = nm->method()->compiled_invocation_count();
  2029     _arity_histogram[arity]  += count;
  2030     _size_histogram[argsize] += count;
  2031     _max_arity = MAX2(_max_arity, arity);
  2032     _max_size  = MAX2(_max_size, argsize);
  2035   void print_histogram_helper(int n, int* histo, const char* name) {
  2036     const int N = MIN2(5, n);
  2037     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2038     double sum = 0;
  2039     double weighted_sum = 0;
  2040     int i;
  2041     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2042     double rest = sum;
  2043     double percent = sum / 100;
  2044     for (i = 0; i <= N; i++) {
  2045       rest -= histo[i];
  2046       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2048     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2049     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2052   void print_histogram() {
  2053     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2054     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2055     tty->print_cr("\nSame for parameter size (in words):");
  2056     print_histogram_helper(_max_size, _size_histogram, "size");
  2057     tty->cr();
  2060  public:
  2061   MethodArityHistogram() {
  2062     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2063     _max_arity = _max_size = 0;
  2064     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2065     CodeCache::nmethods_do(add_method_to_histogram);
  2066     print_histogram();
  2068 };
  2070 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2071 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2072 int MethodArityHistogram::_max_arity;
  2073 int MethodArityHistogram::_max_size;
  2075 void SharedRuntime::print_call_statistics(int comp_total) {
  2076   tty->print_cr("Calls from compiled code:");
  2077   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2078   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2079   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2080   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2081   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2082   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2083   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2084   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2085   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2086   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2087   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2088   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2089   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2090   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2091   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2092   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2093   tty->cr();
  2094   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2095   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2096   tty->print_cr("        %% in nested categories are relative to their category");
  2097   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2098   tty->cr();
  2100   MethodArityHistogram h;
  2102 #endif
  2105 // A simple wrapper class around the calling convention information
  2106 // that allows sharing of adapters for the same calling convention.
  2107 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2108  private:
  2109   enum {
  2110     _basic_type_bits = 4,
  2111     _basic_type_mask = right_n_bits(_basic_type_bits),
  2112     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2113     _compact_int_count = 3
  2114   };
  2115   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2116   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2118   union {
  2119     int  _compact[_compact_int_count];
  2120     int* _fingerprint;
  2121   } _value;
  2122   int _length; // A negative length indicates the fingerprint is in the compact form,
  2123                // Otherwise _value._fingerprint is the array.
  2125   // Remap BasicTypes that are handled equivalently by the adapters.
  2126   // These are correct for the current system but someday it might be
  2127   // necessary to make this mapping platform dependent.
  2128   static int adapter_encoding(BasicType in) {
  2129     switch(in) {
  2130       case T_BOOLEAN:
  2131       case T_BYTE:
  2132       case T_SHORT:
  2133       case T_CHAR:
  2134         // There are all promoted to T_INT in the calling convention
  2135         return T_INT;
  2137       case T_OBJECT:
  2138       case T_ARRAY:
  2139         // In other words, we assume that any register good enough for
  2140         // an int or long is good enough for a managed pointer.
  2141 #ifdef _LP64
  2142         return T_LONG;
  2143 #else
  2144         return T_INT;
  2145 #endif
  2147       case T_INT:
  2148       case T_LONG:
  2149       case T_FLOAT:
  2150       case T_DOUBLE:
  2151       case T_VOID:
  2152         return in;
  2154       default:
  2155         ShouldNotReachHere();
  2156         return T_CONFLICT;
  2160  public:
  2161   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2162     // The fingerprint is based on the BasicType signature encoded
  2163     // into an array of ints with eight entries per int.
  2164     int* ptr;
  2165     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2166     if (len <= _compact_int_count) {
  2167       assert(_compact_int_count == 3, "else change next line");
  2168       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2169       // Storing the signature encoded as signed chars hits about 98%
  2170       // of the time.
  2171       _length = -len;
  2172       ptr = _value._compact;
  2173     } else {
  2174       _length = len;
  2175       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2176       ptr = _value._fingerprint;
  2179     // Now pack the BasicTypes with 8 per int
  2180     int sig_index = 0;
  2181     for (int index = 0; index < len; index++) {
  2182       int value = 0;
  2183       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2184         int bt = ((sig_index < total_args_passed)
  2185                   ? adapter_encoding(sig_bt[sig_index++])
  2186                   : 0);
  2187         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2188         value = (value << _basic_type_bits) | bt;
  2190       ptr[index] = value;
  2194   ~AdapterFingerPrint() {
  2195     if (_length > 0) {
  2196       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2200   int value(int index) {
  2201     if (_length < 0) {
  2202       return _value._compact[index];
  2204     return _value._fingerprint[index];
  2206   int length() {
  2207     if (_length < 0) return -_length;
  2208     return _length;
  2211   bool is_compact() {
  2212     return _length <= 0;
  2215   unsigned int compute_hash() {
  2216     int hash = 0;
  2217     for (int i = 0; i < length(); i++) {
  2218       int v = value(i);
  2219       hash = (hash << 8) ^ v ^ (hash >> 5);
  2221     return (unsigned int)hash;
  2224   const char* as_string() {
  2225     stringStream st;
  2226     st.print("0x");
  2227     for (int i = 0; i < length(); i++) {
  2228       st.print("%08x", value(i));
  2230     return st.as_string();
  2233   bool equals(AdapterFingerPrint* other) {
  2234     if (other->_length != _length) {
  2235       return false;
  2237     if (_length < 0) {
  2238       assert(_compact_int_count == 3, "else change next line");
  2239       return _value._compact[0] == other->_value._compact[0] &&
  2240              _value._compact[1] == other->_value._compact[1] &&
  2241              _value._compact[2] == other->_value._compact[2];
  2242     } else {
  2243       for (int i = 0; i < _length; i++) {
  2244         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2245           return false;
  2249     return true;
  2251 };
  2254 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2255 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2256   friend class AdapterHandlerTableIterator;
  2258  private:
  2260 #ifndef PRODUCT
  2261   static int _lookups; // number of calls to lookup
  2262   static int _buckets; // number of buckets checked
  2263   static int _equals;  // number of buckets checked with matching hash
  2264   static int _hits;    // number of successful lookups
  2265   static int _compact; // number of equals calls with compact signature
  2266 #endif
  2268   AdapterHandlerEntry* bucket(int i) {
  2269     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2272  public:
  2273   AdapterHandlerTable()
  2274     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2276   // Create a new entry suitable for insertion in the table
  2277   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2278     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2279     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2280     return entry;
  2283   // Insert an entry into the table
  2284   void add(AdapterHandlerEntry* entry) {
  2285     int index = hash_to_index(entry->hash());
  2286     add_entry(index, entry);
  2289   void free_entry(AdapterHandlerEntry* entry) {
  2290     entry->deallocate();
  2291     BasicHashtable<mtCode>::free_entry(entry);
  2294   // Find a entry with the same fingerprint if it exists
  2295   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2296     NOT_PRODUCT(_lookups++);
  2297     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2298     unsigned int hash = fp.compute_hash();
  2299     int index = hash_to_index(hash);
  2300     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2301       NOT_PRODUCT(_buckets++);
  2302       if (e->hash() == hash) {
  2303         NOT_PRODUCT(_equals++);
  2304         if (fp.equals(e->fingerprint())) {
  2305 #ifndef PRODUCT
  2306           if (fp.is_compact()) _compact++;
  2307           _hits++;
  2308 #endif
  2309           return e;
  2313     return NULL;
  2316 #ifndef PRODUCT
  2317   void print_statistics() {
  2318     ResourceMark rm;
  2319     int longest = 0;
  2320     int empty = 0;
  2321     int total = 0;
  2322     int nonempty = 0;
  2323     for (int index = 0; index < table_size(); index++) {
  2324       int count = 0;
  2325       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2326         count++;
  2328       if (count != 0) nonempty++;
  2329       if (count == 0) empty++;
  2330       if (count > longest) longest = count;
  2331       total += count;
  2333     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2334                   empty, longest, total, total / (double)nonempty);
  2335     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2336                   _lookups, _buckets, _equals, _hits, _compact);
  2338 #endif
  2339 };
  2342 #ifndef PRODUCT
  2344 int AdapterHandlerTable::_lookups;
  2345 int AdapterHandlerTable::_buckets;
  2346 int AdapterHandlerTable::_equals;
  2347 int AdapterHandlerTable::_hits;
  2348 int AdapterHandlerTable::_compact;
  2350 #endif
  2352 class AdapterHandlerTableIterator : public StackObj {
  2353  private:
  2354   AdapterHandlerTable* _table;
  2355   int _index;
  2356   AdapterHandlerEntry* _current;
  2358   void scan() {
  2359     while (_index < _table->table_size()) {
  2360       AdapterHandlerEntry* a = _table->bucket(_index);
  2361       _index++;
  2362       if (a != NULL) {
  2363         _current = a;
  2364         return;
  2369  public:
  2370   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2371     scan();
  2373   bool has_next() {
  2374     return _current != NULL;
  2376   AdapterHandlerEntry* next() {
  2377     if (_current != NULL) {
  2378       AdapterHandlerEntry* result = _current;
  2379       _current = _current->next();
  2380       if (_current == NULL) scan();
  2381       return result;
  2382     } else {
  2383       return NULL;
  2386 };
  2389 // ---------------------------------------------------------------------------
  2390 // Implementation of AdapterHandlerLibrary
  2391 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2392 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2393 const int AdapterHandlerLibrary_size = 16*K;
  2394 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2396 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2397   // Should be called only when AdapterHandlerLibrary_lock is active.
  2398   if (_buffer == NULL) // Initialize lazily
  2399       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2400   return _buffer;
  2403 void AdapterHandlerLibrary::initialize() {
  2404   if (_adapters != NULL) return;
  2405   _adapters = new AdapterHandlerTable();
  2407   // Create a special handler for abstract methods.  Abstract methods
  2408   // are never compiled so an i2c entry is somewhat meaningless, but
  2409   // throw AbstractMethodError just in case.
  2410   // Pass wrong_method_abstract for the c2i transitions to return
  2411   // AbstractMethodError for invalid invocations.
  2412   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
  2413   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2414                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2415                                                               wrong_method_abstract, wrong_method_abstract);
  2418 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2419                                                       address i2c_entry,
  2420                                                       address c2i_entry,
  2421                                                       address c2i_unverified_entry) {
  2422   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2425 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2426   // Use customized signature handler.  Need to lock around updates to
  2427   // the AdapterHandlerTable (it is not safe for concurrent readers
  2428   // and a single writer: this could be fixed if it becomes a
  2429   // problem).
  2431   // Get the address of the ic_miss handlers before we grab the
  2432   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2433   // was caused by the initialization of the stubs happening
  2434   // while we held the lock and then notifying jvmti while
  2435   // holding it. This just forces the initialization to be a little
  2436   // earlier.
  2437   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2438   assert(ic_miss != NULL, "must have handler");
  2440   ResourceMark rm;
  2442   NOT_PRODUCT(int insts_size);
  2443   AdapterBlob* new_adapter = NULL;
  2444   AdapterHandlerEntry* entry = NULL;
  2445   AdapterFingerPrint* fingerprint = NULL;
  2447     MutexLocker mu(AdapterHandlerLibrary_lock);
  2448     // make sure data structure is initialized
  2449     initialize();
  2451     if (method->is_abstract()) {
  2452       return _abstract_method_handler;
  2455     // Fill in the signature array, for the calling-convention call.
  2456     int total_args_passed = method->size_of_parameters(); // All args on stack
  2458     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2459     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2460     int i = 0;
  2461     if (!method->is_static())  // Pass in receiver first
  2462       sig_bt[i++] = T_OBJECT;
  2463     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2464       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2465       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2466         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2468     assert(i == total_args_passed, "");
  2470     // Lookup method signature's fingerprint
  2471     entry = _adapters->lookup(total_args_passed, sig_bt);
  2473 #ifdef ASSERT
  2474     AdapterHandlerEntry* shared_entry = NULL;
  2475     // Start adapter sharing verification only after the VM is booted.
  2476     if (VerifyAdapterSharing && (entry != NULL)) {
  2477       shared_entry = entry;
  2478       entry = NULL;
  2480 #endif
  2482     if (entry != NULL) {
  2483       return entry;
  2486     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2487     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2489     // Make a C heap allocated version of the fingerprint to store in the adapter
  2490     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2492     // StubRoutines::code2() is initialized after this function can be called. As a result,
  2493     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
  2494     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
  2495     // stub that ensure that an I2C stub is called from an interpreter frame.
  2496     bool contains_all_checks = StubRoutines::code2() != NULL;
  2498     // Create I2C & C2I handlers
  2499     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2500     if (buf != NULL) {
  2501       CodeBuffer buffer(buf);
  2502       short buffer_locs[20];
  2503       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2504                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2506       MacroAssembler _masm(&buffer);
  2507       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2508                                                      total_args_passed,
  2509                                                      comp_args_on_stack,
  2510                                                      sig_bt,
  2511                                                      regs,
  2512                                                      fingerprint);
  2513 #ifdef ASSERT
  2514       if (VerifyAdapterSharing) {
  2515         if (shared_entry != NULL) {
  2516           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
  2517           // Release the one just created and return the original
  2518           _adapters->free_entry(entry);
  2519           return shared_entry;
  2520         } else  {
  2521           entry->save_code(buf->code_begin(), buffer.insts_size());
  2524 #endif
  2526       new_adapter = AdapterBlob::create(&buffer);
  2527       NOT_PRODUCT(insts_size = buffer.insts_size());
  2529     if (new_adapter == NULL) {
  2530       // CodeCache is full, disable compilation
  2531       // Ought to log this but compile log is only per compile thread
  2532       // and we're some non descript Java thread.
  2533       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2534       CompileBroker::handle_full_code_cache();
  2535       return NULL; // Out of CodeCache space
  2537     entry->relocate(new_adapter->content_begin());
  2538 #ifndef PRODUCT
  2539     // debugging suppport
  2540     if (PrintAdapterHandlers || PrintStubCode) {
  2541       ttyLocker ttyl;
  2542       entry->print_adapter_on(tty);
  2543       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2544                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2545                     method->signature()->as_C_string(), insts_size);
  2546       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2547       if (Verbose || PrintStubCode) {
  2548         address first_pc = entry->base_address();
  2549         if (first_pc != NULL) {
  2550           Disassembler::decode(first_pc, first_pc + insts_size);
  2551           tty->cr();
  2555 #endif
  2556     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
  2557     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
  2558     if (contains_all_checks || !VerifyAdapterCalls) {
  2559       _adapters->add(entry);
  2562   // Outside of the lock
  2563   if (new_adapter != NULL) {
  2564     char blob_id[256];
  2565     jio_snprintf(blob_id,
  2566                  sizeof(blob_id),
  2567                  "%s(%s)@" PTR_FORMAT,
  2568                  new_adapter->name(),
  2569                  fingerprint->as_string(),
  2570                  new_adapter->content_begin());
  2571     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
  2573     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2574       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
  2577   return entry;
  2580 address AdapterHandlerEntry::base_address() {
  2581   address base = _i2c_entry;
  2582   if (base == NULL)  base = _c2i_entry;
  2583   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2584   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2585   return base;
  2588 void AdapterHandlerEntry::relocate(address new_base) {
  2589   address old_base = base_address();
  2590   assert(old_base != NULL, "");
  2591   ptrdiff_t delta = new_base - old_base;
  2592   if (_i2c_entry != NULL)
  2593     _i2c_entry += delta;
  2594   if (_c2i_entry != NULL)
  2595     _c2i_entry += delta;
  2596   if (_c2i_unverified_entry != NULL)
  2597     _c2i_unverified_entry += delta;
  2598   assert(base_address() == new_base, "");
  2602 void AdapterHandlerEntry::deallocate() {
  2603   delete _fingerprint;
  2604 #ifdef ASSERT
  2605   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2606 #endif
  2610 #ifdef ASSERT
  2611 // Capture the code before relocation so that it can be compared
  2612 // against other versions.  If the code is captured after relocation
  2613 // then relative instructions won't be equivalent.
  2614 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
  2615   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2616   _saved_code_length = length;
  2617   memcpy(_saved_code, buffer, length);
  2621 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
  2622   if (length != _saved_code_length) {
  2623     return false;
  2626   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
  2628 #endif
  2631 /**
  2632  * Create a native wrapper for this native method.  The wrapper converts the
  2633  * Java-compiled calling convention to the native convention, handles
  2634  * arguments, and transitions to native.  On return from the native we transition
  2635  * back to java blocking if a safepoint is in progress.
  2636  */
  2637 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2638   ResourceMark rm;
  2639   nmethod* nm = NULL;
  2641   assert(method->is_native(), "must be native");
  2642   assert(method->is_method_handle_intrinsic() ||
  2643          method->has_native_function(), "must have something valid to call!");
  2646     // Perform the work while holding the lock, but perform any printing outside the lock
  2647     MutexLocker mu(AdapterHandlerLibrary_lock);
  2648     // See if somebody beat us to it
  2649     nm = method->code();
  2650     if (nm != NULL) {
  2651       return;
  2654     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
  2655     assert(compile_id > 0, "Must generate native wrapper");
  2658     ResourceMark rm;
  2659     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2660     if (buf != NULL) {
  2661       CodeBuffer buffer(buf);
  2662       double locs_buf[20];
  2663       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2664       MacroAssembler _masm(&buffer);
  2666       // Fill in the signature array, for the calling-convention call.
  2667       const int total_args_passed = method->size_of_parameters();
  2669       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2670       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2671       int i=0;
  2672       if( !method->is_static() )  // Pass in receiver first
  2673         sig_bt[i++] = T_OBJECT;
  2674       SignatureStream ss(method->signature());
  2675       for( ; !ss.at_return_type(); ss.next()) {
  2676         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2677         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2678           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2680       assert(i == total_args_passed, "");
  2681       BasicType ret_type = ss.type();
  2683       // Now get the compiled-Java layout as input (or output) arguments.
  2684       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2685       // are just trampolines so the argument registers must be outgoing ones.
  2686       const bool is_outgoing = method->is_method_handle_intrinsic();
  2687       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2689       // Generate the compiled-to-native wrapper code
  2690       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
  2692       if (nm != NULL) {
  2693         method->set_code(method, nm);
  2696   } // Unlock AdapterHandlerLibrary_lock
  2699   // Install the generated code.
  2700   if (nm != NULL) {
  2701     if (PrintCompilation) {
  2702       ttyLocker ttyl;
  2703       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2705     nm->post_compiled_method_load_event();
  2706   } else {
  2707     // CodeCache is full, disable compilation
  2708     CompileBroker::handle_full_code_cache();
  2712 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2713   assert(thread == JavaThread::current(), "must be");
  2714   // The code is about to enter a JNI lazy critical native method and
  2715   // _needs_gc is true, so if this thread is already in a critical
  2716   // section then just return, otherwise this thread should block
  2717   // until needs_gc has been cleared.
  2718   if (thread->in_critical()) {
  2719     return;
  2721   // Lock and unlock a critical section to give the system a chance to block
  2722   GC_locker::lock_critical(thread);
  2723   GC_locker::unlock_critical(thread);
  2724 JRT_END
  2726 #ifdef HAVE_DTRACE_H
  2727 /**
  2728  * Create a dtrace nmethod for this method.  The wrapper converts the
  2729  * Java-compiled calling convention to the native convention, makes a dummy call
  2730  * (actually nops for the size of the call instruction, which become a trap if
  2731  * probe is enabled), and finally returns to the caller. Since this all looks like a
  2732  * leaf, no thread transition is needed.
  2733  */
  2734 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2735   ResourceMark rm;
  2736   nmethod* nm = NULL;
  2738   if (PrintCompilation) {
  2739     ttyLocker ttyl;
  2740     tty->print("---   n  ");
  2741     method->print_short_name(tty);
  2742     if (method->is_static()) {
  2743       tty->print(" (static)");
  2745     tty->cr();
  2749     // perform the work while holding the lock, but perform any printing
  2750     // outside the lock
  2751     MutexLocker mu(AdapterHandlerLibrary_lock);
  2752     // See if somebody beat us to it
  2753     nm = method->code();
  2754     if (nm) {
  2755       return nm;
  2758     ResourceMark rm;
  2760     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2761     if (buf != NULL) {
  2762       CodeBuffer buffer(buf);
  2763       // Need a few relocation entries
  2764       double locs_buf[20];
  2765       buffer.insts()->initialize_shared_locs(
  2766         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2767       MacroAssembler _masm(&buffer);
  2769       // Generate the compiled-to-native wrapper code
  2770       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2773   return nm;
  2776 // the dtrace method needs to convert java lang string to utf8 string.
  2777 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2778   typeArrayOop jlsValue  = java_lang_String::value(src);
  2779   int          jlsOffset = java_lang_String::offset(src);
  2780   int          jlsLen    = java_lang_String::length(src);
  2781   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2782                                            jlsValue->char_at_addr(jlsOffset);
  2783   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2784   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2786 #endif // ndef HAVE_DTRACE_H
  2788 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
  2789   int argcnt = in_args_count;
  2790   if (CCallingConventionRequiresIntsAsLongs) {
  2791     for (int in = 0; in < in_args_count; in++) {
  2792       BasicType bt = in_sig_bt[in];
  2793       switch (bt) {
  2794         case T_BOOLEAN:
  2795         case T_CHAR:
  2796         case T_BYTE:
  2797         case T_SHORT:
  2798         case T_INT:
  2799           argcnt++;
  2800           break;
  2801         default:
  2802           break;
  2805   } else {
  2806     assert(0, "This should not be needed on this platform");
  2809   return argcnt;
  2812 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
  2813                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
  2814   if (CCallingConventionRequiresIntsAsLongs) {
  2815     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
  2816     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  2818     int argcnt = 0;
  2819     for (int in = 0; in < in_args_count; in++, argcnt++) {
  2820       BasicType bt  = in_sig_bt[in];
  2821       VMRegPair reg = in_regs[in];
  2822       switch (bt) {
  2823         case T_BOOLEAN:
  2824         case T_CHAR:
  2825         case T_BYTE:
  2826         case T_SHORT:
  2827         case T_INT:
  2828           // Convert (bt) to (T_LONG,bt).
  2829           new_in_sig_bt[argcnt  ] = T_LONG;
  2830           new_in_sig_bt[argcnt+1] = bt;
  2831           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
  2832           new_in_regs[argcnt  ].set2(reg.first());
  2833           new_in_regs[argcnt+1].set_bad();
  2834           argcnt++;
  2835           break;
  2836         default:
  2837           // No conversion needed.
  2838           new_in_sig_bt[argcnt] = bt;
  2839           new_in_regs[argcnt]   = reg;
  2840           break;
  2843     assert(argcnt == i2l_argcnt, "must match");
  2845     in_regs = new_in_regs;
  2846     in_sig_bt = new_in_sig_bt;
  2847     in_args_count = i2l_argcnt;
  2848   } else {
  2849     assert(0, "This should not be needed on this platform");
  2853 // -------------------------------------------------------------------------
  2854 // Java-Java calling convention
  2855 // (what you use when Java calls Java)
  2857 //------------------------------name_for_receiver----------------------------------
  2858 // For a given signature, return the VMReg for parameter 0.
  2859 VMReg SharedRuntime::name_for_receiver() {
  2860   VMRegPair regs;
  2861   BasicType sig_bt = T_OBJECT;
  2862   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2863   // Return argument 0 register.  In the LP64 build pointers
  2864   // take 2 registers, but the VM wants only the 'main' name.
  2865   return regs.first();
  2868 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2869   // This method is returning a data structure allocating as a
  2870   // ResourceObject, so do not put any ResourceMarks in here.
  2871   char *s = sig->as_C_string();
  2872   int len = (int)strlen(s);
  2873   s++; len--;                   // Skip opening paren
  2875   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2876   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2877   int cnt = 0;
  2878   if (has_receiver) {
  2879     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2882   while( *s != ')' ) {          // Find closing right paren
  2883     switch( *s++ ) {            // Switch on signature character
  2884     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2885     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2886     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2887     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2888     case 'I': sig_bt[cnt++] = T_INT;     break;
  2889     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2890     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2891     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2892     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2893     case 'L':                   // Oop
  2894       while( *s++ != ';'  ) ;   // Skip signature
  2895       sig_bt[cnt++] = T_OBJECT;
  2896       break;
  2897     case '[': {                 // Array
  2898       do {                      // Skip optional size
  2899         while( *s >= '0' && *s <= '9' ) s++;
  2900       } while( *s++ == '[' );   // Nested arrays?
  2901       // Skip element type
  2902       if( s[-1] == 'L' )
  2903         while( *s++ != ';'  ) ; // Skip signature
  2904       sig_bt[cnt++] = T_ARRAY;
  2905       break;
  2907     default : ShouldNotReachHere();
  2911   if (has_appendix) {
  2912     sig_bt[cnt++] = T_OBJECT;
  2915   assert( cnt < 256, "grow table size" );
  2917   int comp_args_on_stack;
  2918   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2920   // the calling convention doesn't count out_preserve_stack_slots so
  2921   // we must add that in to get "true" stack offsets.
  2923   if (comp_args_on_stack) {
  2924     for (int i = 0; i < cnt; i++) {
  2925       VMReg reg1 = regs[i].first();
  2926       if( reg1->is_stack()) {
  2927         // Yuck
  2928         reg1 = reg1->bias(out_preserve_stack_slots());
  2930       VMReg reg2 = regs[i].second();
  2931       if( reg2->is_stack()) {
  2932         // Yuck
  2933         reg2 = reg2->bias(out_preserve_stack_slots());
  2935       regs[i].set_pair(reg2, reg1);
  2939   // results
  2940   *arg_size = cnt;
  2941   return regs;
  2944 // OSR Migration Code
  2945 //
  2946 // This code is used convert interpreter frames into compiled frames.  It is
  2947 // called from very start of a compiled OSR nmethod.  A temp array is
  2948 // allocated to hold the interesting bits of the interpreter frame.  All
  2949 // active locks are inflated to allow them to move.  The displaced headers and
  2950 // active interpeter locals are copied into the temp buffer.  Then we return
  2951 // back to the compiled code.  The compiled code then pops the current
  2952 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2953 // copies the interpreter locals and displaced headers where it wants.
  2954 // Finally it calls back to free the temp buffer.
  2955 //
  2956 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2958 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2960   //
  2961   // This code is dependent on the memory layout of the interpreter local
  2962   // array and the monitors. On all of our platforms the layout is identical
  2963   // so this code is shared. If some platform lays the their arrays out
  2964   // differently then this code could move to platform specific code or
  2965   // the code here could be modified to copy items one at a time using
  2966   // frame accessor methods and be platform independent.
  2968   frame fr = thread->last_frame();
  2969   assert( fr.is_interpreted_frame(), "" );
  2970   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2972   // Figure out how many monitors are active.
  2973   int active_monitor_count = 0;
  2974   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2975        kptr < fr.interpreter_frame_monitor_begin();
  2976        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2977     if( kptr->obj() != NULL ) active_monitor_count++;
  2980   // QQQ we could place number of active monitors in the array so that compiled code
  2981   // could double check it.
  2983   Method* moop = fr.interpreter_frame_method();
  2984   int max_locals = moop->max_locals();
  2985   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2986   int buf_size_words = max_locals + active_monitor_count*2;
  2987   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2989   // Copy the locals.  Order is preserved so that loading of longs works.
  2990   // Since there's no GC I can copy the oops blindly.
  2991   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2992   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2993                        (HeapWord*)&buf[0],
  2994                        max_locals);
  2996   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2997   int i = max_locals;
  2998   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2999        kptr2 < fr.interpreter_frame_monitor_begin();
  3000        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  3001     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  3002       BasicLock *lock = kptr2->lock();
  3003       // Inflate so the displaced header becomes position-independent
  3004       if (lock->displaced_header()->is_unlocked())
  3005         ObjectSynchronizer::inflate_helper(kptr2->obj());
  3006       // Now the displaced header is free to move
  3007       buf[i++] = (intptr_t)lock->displaced_header();
  3008       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  3011   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  3013   return buf;
  3014 JRT_END
  3016 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  3017   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  3018 JRT_END
  3020 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  3021   AdapterHandlerTableIterator iter(_adapters);
  3022   while (iter.has_next()) {
  3023     AdapterHandlerEntry* a = iter.next();
  3024     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  3026   return false;
  3029 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  3030   AdapterHandlerTableIterator iter(_adapters);
  3031   while (iter.has_next()) {
  3032     AdapterHandlerEntry* a = iter.next();
  3033     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  3034       st->print("Adapter for signature: ");
  3035       a->print_adapter_on(tty);
  3036       return;
  3039   assert(false, "Should have found handler");
  3042 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  3043   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  3044                (intptr_t) this, fingerprint()->as_string(),
  3045                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  3049 #ifndef PRODUCT
  3051 void AdapterHandlerLibrary::print_statistics() {
  3052   _adapters->print_statistics();
  3055 #endif /* PRODUCT */

mercurial