src/share/vm/opto/node.hpp

Mon, 28 Apr 2008 08:08:12 -0700

author
rasbold
date
Mon, 28 Apr 2008 08:08:12 -0700
changeset 563
a76240c8b133
parent 557
ec73d88d5b43
parent 561
72f4a668df19
child 603
7793bd37a336
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 class AbstractLockNode;
    31 class AddNode;
    32 class AddPNode;
    33 class AliasInfo;
    34 class AllocateArrayNode;
    35 class AllocateNode;
    36 class Block;
    37 class Block_Array;
    38 class BoolNode;
    39 class BoxLockNode;
    40 class CMoveNode;
    41 class CallDynamicJavaNode;
    42 class CallJavaNode;
    43 class CallLeafNode;
    44 class CallNode;
    45 class CallRuntimeNode;
    46 class CallStaticJavaNode;
    47 class CatchNode;
    48 class CatchProjNode;
    49 class CheckCastPPNode;
    50 class CmpNode;
    51 class CodeBuffer;
    52 class ConstraintCastNode;
    53 class ConNode;
    54 class CountedLoopNode;
    55 class CountedLoopEndNode;
    56 class FastLockNode;
    57 class FastUnlockNode;
    58 class IfNode;
    59 class InitializeNode;
    60 class JVMState;
    61 class JumpNode;
    62 class JumpProjNode;
    63 class LoadNode;
    64 class LoadStoreNode;
    65 class LockNode;
    66 class LoopNode;
    67 class MachCallDynamicJavaNode;
    68 class MachCallJavaNode;
    69 class MachCallLeafNode;
    70 class MachCallNode;
    71 class MachCallRuntimeNode;
    72 class MachCallStaticJavaNode;
    73 class MachIfNode;
    74 class MachNode;
    75 class MachNullCheckNode;
    76 class MachReturnNode;
    77 class MachSafePointNode;
    78 class MachSpillCopyNode;
    79 class MachTempNode;
    80 class Matcher;
    81 class MemBarNode;
    82 class MemNode;
    83 class MergeMemNode;
    84 class MulNode;
    85 class MultiNode;
    86 class MultiBranchNode;
    87 class NeverBranchNode;
    88 class Node;
    89 class Node_Array;
    90 class Node_List;
    91 class Node_Stack;
    92 class NullCheckNode;
    93 class OopMap;
    94 class ParmNode;
    95 class PCTableNode;
    96 class PhaseCCP;
    97 class PhaseGVN;
    98 class PhaseIterGVN;
    99 class PhaseRegAlloc;
   100 class PhaseTransform;
   101 class PhaseValues;
   102 class PhiNode;
   103 class Pipeline;
   104 class ProjNode;
   105 class RegMask;
   106 class RegionNode;
   107 class RootNode;
   108 class SafePointNode;
   109 class SafePointScalarObjectNode;
   110 class StartNode;
   111 class State;
   112 class StoreNode;
   113 class SubNode;
   114 class Type;
   115 class TypeNode;
   116 class UnlockNode;
   117 class VectorSet;
   118 class IfTrueNode;
   119 class IfFalseNode;
   120 typedef void (*NFunc)(Node&,void*);
   121 extern "C" {
   122   typedef int (*C_sort_func_t)(const void *, const void *);
   123 }
   125 // The type of all node counts and indexes.
   126 // It must hold at least 16 bits, but must also be fast to load and store.
   127 // This type, if less than 32 bits, could limit the number of possible nodes.
   128 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   129 typedef unsigned int node_idx_t;
   132 #ifndef OPTO_DU_ITERATOR_ASSERT
   133 #ifdef ASSERT
   134 #define OPTO_DU_ITERATOR_ASSERT 1
   135 #else
   136 #define OPTO_DU_ITERATOR_ASSERT 0
   137 #endif
   138 #endif //OPTO_DU_ITERATOR_ASSERT
   140 #if OPTO_DU_ITERATOR_ASSERT
   141 class DUIterator;
   142 class DUIterator_Fast;
   143 class DUIterator_Last;
   144 #else
   145 typedef uint   DUIterator;
   146 typedef Node** DUIterator_Fast;
   147 typedef Node** DUIterator_Last;
   148 #endif
   150 // Node Sentinel
   151 #define NodeSentinel (Node*)-1
   153 // Unknown count frequency
   154 #define COUNT_UNKNOWN (-1.0f)
   156 //------------------------------Node-------------------------------------------
   157 // Nodes define actions in the program.  They create values, which have types.
   158 // They are both vertices in a directed graph and program primitives.  Nodes
   159 // are labeled; the label is the "opcode", the primitive function in the lambda
   160 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   161 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   162 // the Node's function.  These inputs also define a Type equation for the Node.
   163 // Solving these Type equations amounts to doing dataflow analysis.
   164 // Control and data are uniformly represented in the graph.  Finally, Nodes
   165 // have a unique dense integer index which is used to index into side arrays
   166 // whenever I have phase-specific information.
   168 class Node {
   169   // Lots of restrictions on cloning Nodes
   170   Node(const Node&);            // not defined; linker error to use these
   171   Node &operator=(const Node &rhs);
   173 public:
   174   friend class Compile;
   175   #if OPTO_DU_ITERATOR_ASSERT
   176   friend class DUIterator_Common;
   177   friend class DUIterator;
   178   friend class DUIterator_Fast;
   179   friend class DUIterator_Last;
   180   #endif
   182   // Because Nodes come and go, I define an Arena of Node structures to pull
   183   // from.  This should allow fast access to node creation & deletion.  This
   184   // field is a local cache of a value defined in some "program fragment" for
   185   // which these Nodes are just a part of.
   187   // New Operator that takes a Compile pointer, this will eventually
   188   // be the "new" New operator.
   189   inline void* operator new( size_t x, Compile* C) {
   190     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   191 #ifdef ASSERT
   192     n->_in = (Node**)n; // magic cookie for assertion check
   193 #endif
   194     n->_out = (Node**)C;
   195     return (void*)n;
   196   }
   198   // New Operator that takes a Compile pointer, this will eventually
   199   // be the "new" New operator.
   200   inline void* operator new( size_t x, Compile* C, int y) {
   201     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
   202     n->_in = (Node**)(((char*)n) + x);
   203 #ifdef ASSERT
   204     n->_in[y-1] = n; // magic cookie for assertion check
   205 #endif
   206     n->_out = (Node**)C;
   207     return (void*)n;
   208   }
   210   // Delete is a NOP
   211   void operator delete( void *ptr ) {}
   212   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   213   void destruct();
   215   // Create a new Node.  Required is the number is of inputs required for
   216   // semantic correctness.
   217   Node( uint required );
   219   // Create a new Node with given input edges.
   220   // This version requires use of the "edge-count" new.
   221   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   222   Node( Node *n0 );
   223   Node( Node *n0, Node *n1 );
   224   Node( Node *n0, Node *n1, Node *n2 );
   225   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   226   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   227   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   228   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   229             Node *n4, Node *n5, Node *n6 );
   231   // Clone an inherited Node given only the base Node type.
   232   Node* clone() const;
   234   // Clone a Node, immediately supplying one or two new edges.
   235   // The first and second arguments, if non-null, replace in(1) and in(2),
   236   // respectively.
   237   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   238     Node* nn = clone();
   239     if (in1 != NULL)  nn->set_req(1, in1);
   240     if (in2 != NULL)  nn->set_req(2, in2);
   241     return nn;
   242   }
   244 private:
   245   // Shared setup for the above constructors.
   246   // Handles all interactions with Compile::current.
   247   // Puts initial values in all Node fields except _idx.
   248   // Returns the initial value for _idx, which cannot
   249   // be initialized by assignment.
   250   inline int Init(int req, Compile* C);
   252 //----------------- input edge handling
   253 protected:
   254   friend class PhaseCFG;        // Access to address of _in array elements
   255   Node **_in;                   // Array of use-def references to Nodes
   256   Node **_out;                  // Array of def-use references to Nodes
   258   // Input edges are split into two catagories.  Required edges are required
   259   // for semantic correctness; order is important and NULLs are allowed.
   260   // Precedence edges are used to help determine execution order and are
   261   // added, e.g., for scheduling purposes.  They are unordered and not
   262   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   263   // are required, from _cnt to _max-1 are precedence edges.
   264   node_idx_t _cnt;              // Total number of required Node inputs.
   266   node_idx_t _max;              // Actual length of input array.
   268   // Output edges are an unordered list of def-use edges which exactly
   269   // correspond to required input edges which point from other nodes
   270   // to this one.  Thus the count of the output edges is the number of
   271   // users of this node.
   272   node_idx_t _outcnt;           // Total number of Node outputs.
   274   node_idx_t _outmax;           // Actual length of output array.
   276   // Grow the actual input array to the next larger power-of-2 bigger than len.
   277   void grow( uint len );
   278   // Grow the output array to the next larger power-of-2 bigger than len.
   279   void out_grow( uint len );
   281  public:
   282   // Each Node is assigned a unique small/dense number.  This number is used
   283   // to index into auxiliary arrays of data and bitvectors.
   284   // It is declared const to defend against inadvertant assignment,
   285   // since it is used by clients as a naked field.
   286   const node_idx_t _idx;
   288   // Get the (read-only) number of input edges
   289   uint req() const { return _cnt; }
   290   uint len() const { return _max; }
   291   // Get the (read-only) number of output edges
   292   uint outcnt() const { return _outcnt; }
   294 #if OPTO_DU_ITERATOR_ASSERT
   295   // Iterate over the out-edges of this node.  Deletions are illegal.
   296   inline DUIterator outs() const;
   297   // Use this when the out array might have changed to suppress asserts.
   298   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   299   // Does the node have an out at this position?  (Used for iteration.)
   300   inline bool has_out(DUIterator& i) const;
   301   inline Node*    out(DUIterator& i) const;
   302   // Iterate over the out-edges of this node.  All changes are illegal.
   303   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   304   inline Node*    fast_out(DUIterator_Fast& i) const;
   305   // Iterate over the out-edges of this node, deleting one at a time.
   306   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   307   inline Node*    last_out(DUIterator_Last& i) const;
   308   // The inline bodies of all these methods are after the iterator definitions.
   309 #else
   310   // Iterate over the out-edges of this node.  Deletions are illegal.
   311   // This iteration uses integral indexes, to decouple from array reallocations.
   312   DUIterator outs() const  { return 0; }
   313   // Use this when the out array might have changed to suppress asserts.
   314   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   316   // Reference to the i'th output Node.  Error if out of bounds.
   317   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   318   // Does the node have an out at this position?  (Used for iteration.)
   319   bool has_out(DUIterator i) const { return i < _outcnt; }
   321   // Iterate over the out-edges of this node.  All changes are illegal.
   322   // This iteration uses a pointer internal to the out array.
   323   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   324     Node** out = _out;
   325     // Assign a limit pointer to the reference argument:
   326     max = out + (ptrdiff_t)_outcnt;
   327     // Return the base pointer:
   328     return out;
   329   }
   330   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   331   // Iterate over the out-edges of this node, deleting one at a time.
   332   // This iteration uses a pointer internal to the out array.
   333   DUIterator_Last last_outs(DUIterator_Last& min) const {
   334     Node** out = _out;
   335     // Assign a limit pointer to the reference argument:
   336     min = out;
   337     // Return the pointer to the start of the iteration:
   338     return out + (ptrdiff_t)_outcnt - 1;
   339   }
   340   Node*    last_out(DUIterator_Last i) const  { return *i; }
   341 #endif
   343   // Reference to the i'th input Node.  Error if out of bounds.
   344   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
   345   // Reference to the i'th output Node.  Error if out of bounds.
   346   // Use this accessor sparingly.  We are going trying to use iterators instead.
   347   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   348   // Return the unique out edge.
   349   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   350   // Delete out edge at position 'i' by moving last out edge to position 'i'
   351   void  raw_del_out(uint i) {
   352     assert(i < _outcnt,"oob");
   353     assert(_outcnt > 0,"oob");
   354     #if OPTO_DU_ITERATOR_ASSERT
   355     // Record that a change happened here.
   356     debug_only(_last_del = _out[i]; ++_del_tick);
   357     #endif
   358     _out[i] = _out[--_outcnt];
   359     // Smash the old edge so it can't be used accidentally.
   360     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   361   }
   363 #ifdef ASSERT
   364   bool is_dead() const;
   365 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   366 #endif
   368   // Set a required input edge, also updates corresponding output edge
   369   void add_req( Node *n ); // Append a NEW required input
   370   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   371   void del_req( uint idx ); // Delete required edge & compact
   372   void ins_req( uint i, Node *n ); // Insert a NEW required input
   373   void set_req( uint i, Node *n ) {
   374     assert( is_not_dead(n), "can not use dead node");
   375     assert( i < _cnt, "oob");
   376     assert( !VerifyHashTableKeys || _hash_lock == 0,
   377             "remove node from hash table before modifying it");
   378     Node** p = &_in[i];    // cache this._in, across the del_out call
   379     if (*p != NULL)  (*p)->del_out((Node *)this);
   380     (*p) = n;
   381     if (n != NULL)      n->add_out((Node *)this);
   382   }
   383   // Light version of set_req() to init inputs after node creation.
   384   void init_req( uint i, Node *n ) {
   385     assert( i == 0 && this == n ||
   386             is_not_dead(n), "can not use dead node");
   387     assert( i < _cnt, "oob");
   388     assert( !VerifyHashTableKeys || _hash_lock == 0,
   389             "remove node from hash table before modifying it");
   390     assert( _in[i] == NULL, "sanity");
   391     _in[i] = n;
   392     if (n != NULL)      n->add_out((Node *)this);
   393   }
   394   // Find first occurrence of n among my edges:
   395   int find_edge(Node* n);
   396   int replace_edge(Node* old, Node* neww);
   397   // NULL out all inputs to eliminate incoming Def-Use edges.
   398   // Return the number of edges between 'n' and 'this'
   399   int  disconnect_inputs(Node *n);
   401   // Quickly, return true if and only if I am Compile::current()->top().
   402   bool is_top() const {
   403     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   404     return (_out == NULL);
   405   }
   406   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   407   void setup_is_top();
   409   // Strip away casting.  (It is depth-limited.)
   410   Node* uncast() const;
   412 private:
   413   static Node* uncast_helper(const Node* n);
   415   // Add an output edge to the end of the list
   416   void add_out( Node *n ) {
   417     if (is_top())  return;
   418     if( _outcnt == _outmax ) out_grow(_outcnt);
   419     _out[_outcnt++] = n;
   420   }
   421   // Delete an output edge
   422   void del_out( Node *n ) {
   423     if (is_top())  return;
   424     Node** outp = &_out[_outcnt];
   425     // Find and remove n
   426     do {
   427       assert(outp > _out, "Missing Def-Use edge");
   428     } while (*--outp != n);
   429     *outp = _out[--_outcnt];
   430     // Smash the old edge so it can't be used accidentally.
   431     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   432     // Record that a change happened here.
   433     #if OPTO_DU_ITERATOR_ASSERT
   434     debug_only(_last_del = n; ++_del_tick);
   435     #endif
   436   }
   438 public:
   439   // Globally replace this node by a given new node, updating all uses.
   440   void replace_by(Node* new_node);
   441   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   442   // Find the one non-null required input.  RegionNode only
   443   Node *nonnull_req() const;
   444   // Add or remove precedence edges
   445   void add_prec( Node *n );
   446   void rm_prec( uint i );
   447   void set_prec( uint i, Node *n ) {
   448     assert( is_not_dead(n), "can not use dead node");
   449     assert( i >= _cnt, "not a precedence edge");
   450     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   451     _in[i] = n;
   452     if (n != NULL) n->add_out((Node *)this);
   453   }
   454   // Set this node's index, used by cisc_version to replace current node
   455   void set_idx(uint new_idx) {
   456     const node_idx_t* ref = &_idx;
   457     *(node_idx_t*)ref = new_idx;
   458   }
   459   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   460   void swap_edges(uint i1, uint i2) {
   461     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   462     // Def-Use info is unchanged
   463     Node* n1 = in(i1);
   464     Node* n2 = in(i2);
   465     _in[i1] = n2;
   466     _in[i2] = n1;
   467     // If this node is in the hash table, make sure it doesn't need a rehash.
   468     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   469   }
   471   // Iterators over input Nodes for a Node X are written as:
   472   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   473   // NOTE: Required edges can contain embedded NULL pointers.
   475 //----------------- Other Node Properties
   477   // Generate class id for some ideal nodes to avoid virtual query
   478   // methods is_<Node>().
   479   // Class id is the set of bits corresponded to the node class and all its
   480   // super classes so that queries for super classes are also valid.
   481   // Subclasses of the same super class have different assigned bit
   482   // (the third parameter in the macro DEFINE_CLASS_ID).
   483   // Classes with deeper hierarchy are declared first.
   484   // Classes with the same hierarchy depth are sorted by usage frequency.
   485   //
   486   // The query method masks the bits to cut off bits of subclasses
   487   // and then compare the result with the class id
   488   // (see the macro DEFINE_CLASS_QUERY below).
   489   //
   490   //  Class_MachCall=30, ClassMask_MachCall=31
   491   // 12               8               4               0
   492   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   493   //                                  |   |   |   |
   494   //                                  |   |   |   Bit_Mach=2
   495   //                                  |   |   Bit_MachReturn=4
   496   //                                  |   Bit_MachSafePoint=8
   497   //                                  Bit_MachCall=16
   498   //
   499   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   500   // 12               8               4               0
   501   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   502   //                              |   |   |
   503   //                              |   |   Bit_Region=8
   504   //                              |   Bit_Loop=16
   505   //                              Bit_CountedLoop=32
   507   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   508   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   509   Class_##cl = Class_##supcl + Bit_##cl , \
   510   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   512   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   513   // so that it's values fits into 16 bits.
   514   enum NodeClasses {
   515     Bit_Node   = 0x0000,
   516     Class_Node = 0x0000,
   517     ClassMask_Node = 0xFFFF,
   519     DEFINE_CLASS_ID(Multi, Node, 0)
   520       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   521         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   522           DEFINE_CLASS_ID(CallJava,         Call, 0)
   523             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   524             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   525           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   526             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   527           DEFINE_CLASS_ID(Allocate,         Call, 2)
   528             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   529           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   530             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   531             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   532       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   533         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   534           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   535           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   536         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   537           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   538         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   539       DEFINE_CLASS_ID(Start,       Multi, 2)
   540       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   541         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
   543     DEFINE_CLASS_ID(Mach,  Node, 1)
   544       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   545         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   546           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   547             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   548               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   549               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   550             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   551               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   552       DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
   553       DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
   554       DEFINE_CLASS_ID(MachIf,        Mach, 3)
   555       DEFINE_CLASS_ID(MachTemp,      Mach, 4)
   557     DEFINE_CLASS_ID(Proj,  Node, 2)
   558       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   559       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   560       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   561       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   562       DEFINE_CLASS_ID(Parm,      Proj, 4)
   564     DEFINE_CLASS_ID(Region, Node, 3)
   565       DEFINE_CLASS_ID(Loop, Region, 0)
   566         DEFINE_CLASS_ID(Root,        Loop, 0)
   567         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   569     DEFINE_CLASS_ID(Sub,   Node, 4)
   570       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   571         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   572         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   574     DEFINE_CLASS_ID(Type,  Node, 5)
   575       DEFINE_CLASS_ID(Phi,   Type, 0)
   576       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   577       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   578       DEFINE_CLASS_ID(CMove, Type, 3)
   579       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   581     DEFINE_CLASS_ID(Mem,   Node, 6)
   582       DEFINE_CLASS_ID(Load,  Mem, 0)
   583       DEFINE_CLASS_ID(Store, Mem, 1)
   584       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   586     DEFINE_CLASS_ID(MergeMem, Node, 7)
   587     DEFINE_CLASS_ID(Bool,     Node, 8)
   588     DEFINE_CLASS_ID(AddP,     Node, 9)
   589     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   590     DEFINE_CLASS_ID(Add,      Node, 11)
   591     DEFINE_CLASS_ID(Mul,      Node, 12)
   593     _max_classes  = ClassMask_Mul
   594   };
   595   #undef DEFINE_CLASS_ID
   597   // Flags are sorted by usage frequency.
   598   enum NodeFlags {
   599     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   600     Flag_is_Call             = Flag_is_Copy << 1,
   601     Flag_rematerialize       = Flag_is_Call << 1,
   602     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   603     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   604     Flag_is_Con              = Flag_is_macro << 1,
   605     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   606     Flag_is_Branch           = Flag_is_cisc_alternate << 1,
   607     Flag_is_block_start      = Flag_is_Branch << 1,
   608     Flag_is_Goto             = Flag_is_block_start << 1,
   609     Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
   610     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   611     Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
   612     Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
   613     Flag_is_Vector           = Flag_is_pc_relative << 1,
   614     _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
   615   };
   617 private:
   618   jushort _class_id;
   619   jushort _flags;
   621 protected:
   622   // These methods should be called from constructors only.
   623   void init_class_id(jushort c) {
   624     assert(c <= _max_classes, "invalid node class");
   625     _class_id = c; // cast out const
   626   }
   627   void init_flags(jushort fl) {
   628     assert(fl <= _max_flags, "invalid node flag");
   629     _flags |= fl;
   630   }
   631   void clear_flag(jushort fl) {
   632     assert(fl <= _max_flags, "invalid node flag");
   633     _flags &= ~fl;
   634   }
   636 public:
   637   const jushort class_id() const { return _class_id; }
   639   const jushort flags() const { return _flags; }
   641   // Return a dense integer opcode number
   642   virtual int Opcode() const;
   644   // Virtual inherited Node size
   645   virtual uint size_of() const;
   647   // Other interesting Node properties
   649   // Special case: is_Call() returns true for both CallNode and MachCallNode.
   650   bool is_Call() const {
   651     return (_flags & Flag_is_Call) != 0;
   652   }
   654   CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
   655     assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
   656     return (CallNode*)this;
   657   }
   659   #define DEFINE_CLASS_QUERY(type) \
   660   bool is_##type() const { \
   661     return ((_class_id & ClassMask_##type) == Class_##type); \
   662   } \
   663   type##Node *as_##type() const { \
   664     assert(is_##type(), "invalid node class"); \
   665     return (type##Node*)this; \
   666   }
   668   DEFINE_CLASS_QUERY(AbstractLock)
   669   DEFINE_CLASS_QUERY(Add)
   670   DEFINE_CLASS_QUERY(AddP)
   671   DEFINE_CLASS_QUERY(Allocate)
   672   DEFINE_CLASS_QUERY(AllocateArray)
   673   DEFINE_CLASS_QUERY(Bool)
   674   DEFINE_CLASS_QUERY(BoxLock)
   675   DEFINE_CLASS_QUERY(CallDynamicJava)
   676   DEFINE_CLASS_QUERY(CallJava)
   677   DEFINE_CLASS_QUERY(CallLeaf)
   678   DEFINE_CLASS_QUERY(CallRuntime)
   679   DEFINE_CLASS_QUERY(CallStaticJava)
   680   DEFINE_CLASS_QUERY(Catch)
   681   DEFINE_CLASS_QUERY(CatchProj)
   682   DEFINE_CLASS_QUERY(CheckCastPP)
   683   DEFINE_CLASS_QUERY(ConstraintCast)
   684   DEFINE_CLASS_QUERY(CMove)
   685   DEFINE_CLASS_QUERY(Cmp)
   686   DEFINE_CLASS_QUERY(CountedLoop)
   687   DEFINE_CLASS_QUERY(CountedLoopEnd)
   688   DEFINE_CLASS_QUERY(FastLock)
   689   DEFINE_CLASS_QUERY(FastUnlock)
   690   DEFINE_CLASS_QUERY(If)
   691   DEFINE_CLASS_QUERY(IfFalse)
   692   DEFINE_CLASS_QUERY(IfTrue)
   693   DEFINE_CLASS_QUERY(Initialize)
   694   DEFINE_CLASS_QUERY(Jump)
   695   DEFINE_CLASS_QUERY(JumpProj)
   696   DEFINE_CLASS_QUERY(Load)
   697   DEFINE_CLASS_QUERY(LoadStore)
   698   DEFINE_CLASS_QUERY(Lock)
   699   DEFINE_CLASS_QUERY(Loop)
   700   DEFINE_CLASS_QUERY(Mach)
   701   DEFINE_CLASS_QUERY(MachCall)
   702   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   703   DEFINE_CLASS_QUERY(MachCallJava)
   704   DEFINE_CLASS_QUERY(MachCallLeaf)
   705   DEFINE_CLASS_QUERY(MachCallRuntime)
   706   DEFINE_CLASS_QUERY(MachCallStaticJava)
   707   DEFINE_CLASS_QUERY(MachIf)
   708   DEFINE_CLASS_QUERY(MachNullCheck)
   709   DEFINE_CLASS_QUERY(MachReturn)
   710   DEFINE_CLASS_QUERY(MachSafePoint)
   711   DEFINE_CLASS_QUERY(MachSpillCopy)
   712   DEFINE_CLASS_QUERY(MachTemp)
   713   DEFINE_CLASS_QUERY(Mem)
   714   DEFINE_CLASS_QUERY(MemBar)
   715   DEFINE_CLASS_QUERY(MergeMem)
   716   DEFINE_CLASS_QUERY(Mul)
   717   DEFINE_CLASS_QUERY(Multi)
   718   DEFINE_CLASS_QUERY(MultiBranch)
   719   DEFINE_CLASS_QUERY(Parm)
   720   DEFINE_CLASS_QUERY(PCTable)
   721   DEFINE_CLASS_QUERY(Phi)
   722   DEFINE_CLASS_QUERY(Proj)
   723   DEFINE_CLASS_QUERY(Region)
   724   DEFINE_CLASS_QUERY(Root)
   725   DEFINE_CLASS_QUERY(SafePoint)
   726   DEFINE_CLASS_QUERY(SafePointScalarObject)
   727   DEFINE_CLASS_QUERY(Start)
   728   DEFINE_CLASS_QUERY(Store)
   729   DEFINE_CLASS_QUERY(Sub)
   730   DEFINE_CLASS_QUERY(Type)
   731   DEFINE_CLASS_QUERY(Unlock)
   733   #undef DEFINE_CLASS_QUERY
   735   // duplicate of is_MachSpillCopy()
   736   bool is_SpillCopy () const {
   737     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   738   }
   740   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   741   bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
   742   // The data node which is safe to leave in dead loop during IGVN optimization.
   743   bool is_dead_loop_safe() const {
   744     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   745            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   746             (!is_Proj() || !in(0)->is_Allocate()));
   747   }
   749   // is_Copy() returns copied edge index (0 or 1)
   750   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   752   virtual bool is_CFG() const { return false; }
   754   // If this node is control-dependent on a test, can it be
   755   // rerouted to a dominating equivalent test?  This is usually
   756   // true of non-CFG nodes, but can be false for operations which
   757   // depend for their correct sequencing on more than one test.
   758   // (In that case, hoisting to a dominating test may silently
   759   // skip some other important test.)
   760   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   762   // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
   763   bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
   765   // When building basic blocks, I need to have a notion of block beginning
   766   // Nodes, next block selector Nodes (block enders), and next block
   767   // projections.  These calls need to work on their machine equivalents.  The
   768   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   769   bool is_block_start() const {
   770     if ( is_Region() )
   771       return this == (const Node*)in(0);
   772     else
   773       return (_flags & Flag_is_block_start) != 0;
   774   }
   776   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   777   // Goto and Return.  This call also returns the block ending Node.
   778   virtual const Node *is_block_proj() const;
   780   // The node is a "macro" node which needs to be expanded before matching
   781   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   783   // Value is a vector of primitive values
   784   bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
   786 //----------------- Optimization
   788   // Get the worst-case Type output for this Node.
   789   virtual const class Type *bottom_type() const;
   791   // If we find a better type for a node, try to record it permanently.
   792   // Return true if this node actually changed.
   793   // Be sure to do the hash_delete game in the "rehash" variant.
   794   void raise_bottom_type(const Type* new_type);
   796   // Get the address type with which this node uses and/or defs memory,
   797   // or NULL if none.  The address type is conservatively wide.
   798   // Returns non-null for calls, membars, loads, stores, etc.
   799   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   800   virtual const class TypePtr *adr_type() const { return NULL; }
   802   // Return an existing node which computes the same function as this node.
   803   // The optimistic combined algorithm requires this to return a Node which
   804   // is a small number of steps away (e.g., one of my inputs).
   805   virtual Node *Identity( PhaseTransform *phase );
   807   // Return the set of values this Node can take on at runtime.
   808   virtual const Type *Value( PhaseTransform *phase ) const;
   810   // Return a node which is more "ideal" than the current node.
   811   // The invariants on this call are subtle.  If in doubt, read the
   812   // treatise in node.cpp above the default implemention AND TEST WITH
   813   // +VerifyIterativeGVN!
   814   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   816   // Some nodes have specific Ideal subgraph transformations only if they are
   817   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   818   // for the transformations to happen.
   819   bool has_special_unique_user() const;
   821   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   822   Node* find_exact_control(Node* ctrl);
   824   // Check if 'this' node dominates or equal to 'sub'.
   825   bool dominates(Node* sub, Node_List &nlist);
   827 protected:
   828   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   829 public:
   831   // Idealize graph, using DU info.  Done after constant propagation
   832   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   834   // See if there is valid pipeline info
   835   static  const Pipeline *pipeline_class();
   836   virtual const Pipeline *pipeline() const;
   838   // Compute the latency from the def to this instruction of the ith input node
   839   uint latency(uint i);
   841   // Hash & compare functions, for pessimistic value numbering
   843   // If the hash function returns the special sentinel value NO_HASH,
   844   // the node is guaranteed never to compare equal to any other node.
   845   // If we accidently generate a hash with value NO_HASH the node
   846   // won't go into the table and we'll lose a little optimization.
   847   enum { NO_HASH = 0 };
   848   virtual uint hash() const;
   849   virtual uint cmp( const Node &n ) const;
   851   // Operation appears to be iteratively computed (such as an induction variable)
   852   // It is possible for this operation to return false for a loop-varying
   853   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   854   bool is_iteratively_computed();
   856   // Determine if a node is Counted loop induction variable.
   857   // The method is defined in loopnode.cpp.
   858   const Node* is_loop_iv() const;
   860   // Return a node with opcode "opc" and same inputs as "this" if one can
   861   // be found; Otherwise return NULL;
   862   Node* find_similar(int opc);
   864   // Return the unique control out if only one. Null if none or more than one.
   865   Node* unique_ctrl_out();
   867 //----------------- Code Generation
   869   // Ideal register class for Matching.  Zero means unmatched instruction
   870   // (these are cloned instead of converted to machine nodes).
   871   virtual uint ideal_reg() const;
   873   static const uint NotAMachineReg;   // must be > max. machine register
   875   // Do we Match on this edge index or not?  Generally false for Control
   876   // and true for everything else.  Weird for calls & returns.
   877   virtual uint match_edge(uint idx) const;
   879   // Register class output is returned in
   880   virtual const RegMask &out_RegMask() const;
   881   // Register class input is expected in
   882   virtual const RegMask &in_RegMask(uint) const;
   883   // Should we clone rather than spill this instruction?
   884   bool rematerialize() const;
   886   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   887   virtual JVMState* jvms() const;
   889   // Print as assembly
   890   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   891   // Emit bytes starting at parameter 'ptr'
   892   // Bump 'ptr' by the number of output bytes
   893   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   894   // Size of instruction in bytes
   895   virtual uint size(PhaseRegAlloc *ra_) const;
   897   // Convenience function to extract an integer constant from a node.
   898   // If it is not an integer constant (either Con, CastII, or Mach),
   899   // return value_if_unknown.
   900   jint find_int_con(jint value_if_unknown) const {
   901     const TypeInt* t = find_int_type();
   902     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   903   }
   904   // Return the constant, knowing it is an integer constant already
   905   jint get_int() const {
   906     const TypeInt* t = find_int_type();
   907     guarantee(t != NULL, "must be con");
   908     return t->get_con();
   909   }
   910   // Here's where the work is done.  Can produce non-constant int types too.
   911   const TypeInt* find_int_type() const;
   913   // Same thing for long (and intptr_t, via type.hpp):
   914   jlong get_long() const {
   915     const TypeLong* t = find_long_type();
   916     guarantee(t != NULL, "must be con");
   917     return t->get_con();
   918   }
   919   jlong find_long_con(jint value_if_unknown) const {
   920     const TypeLong* t = find_long_type();
   921     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   922   }
   923   const TypeLong* find_long_type() const;
   925   // These guys are called by code generated by ADLC:
   926   intptr_t get_ptr() const;
   927   intptr_t get_narrowcon() const;
   928   jdouble getd() const;
   929   jfloat getf() const;
   931   // Nodes which are pinned into basic blocks
   932   virtual bool pinned() const { return false; }
   934   // Nodes which use memory without consuming it, hence need antidependences
   935   // More specifically, needs_anti_dependence_check returns true iff the node
   936   // (a) does a load, and (b) does not perform a store (except perhaps to a
   937   // stack slot or some other unaliased location).
   938   bool needs_anti_dependence_check() const;
   940   // Return which operand this instruction may cisc-spill. In other words,
   941   // return operand position that can convert from reg to memory access
   942   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   943   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   945 //----------------- Graph walking
   946 public:
   947   // Walk and apply member functions recursively.
   948   // Supplied (this) pointer is root.
   949   void walk(NFunc pre, NFunc post, void *env);
   950   static void nop(Node &, void*); // Dummy empty function
   951   static void packregion( Node &n, void* );
   952 private:
   953   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   955 //----------------- Printing, etc
   956 public:
   957 #ifndef PRODUCT
   958   Node* find(int idx) const;         // Search the graph for the given idx.
   959   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   960   void dump() const;                 // Print this node,
   961   void dump(int depth) const;        // Print this node, recursively to depth d
   962   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
   963   virtual void dump_req() const;     // Print required-edge info
   964   virtual void dump_prec() const;    // Print precedence-edge info
   965   virtual void dump_out() const;     // Print the output edge info
   966   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
   967   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
   968   void verify() const;               // Check Def-Use info for my subgraph
   969   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
   971   // This call defines a class-unique string used to identify class instances
   972   virtual const char *Name() const;
   974   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
   975   // RegMask Print Functions
   976   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
   977   void dump_out_regmask() { out_RegMask().dump(); }
   978   static int _in_dump_cnt;
   979   static bool in_dump() { return _in_dump_cnt > 0; }
   980   void fast_dump() const {
   981     tty->print("%4d: %-17s", _idx, Name());
   982     for (uint i = 0; i < len(); i++)
   983       if (in(i))
   984         tty->print(" %4d", in(i)->_idx);
   985       else
   986         tty->print(" NULL");
   987     tty->print("\n");
   988   }
   989 #endif
   990 #ifdef ASSERT
   991   void verify_construction();
   992   bool verify_jvms(const JVMState* jvms) const;
   993   int  _debug_idx;                     // Unique value assigned to every node.
   994   int   debug_idx() const              { return _debug_idx; }
   995   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
   997   Node* _debug_orig;                   // Original version of this, if any.
   998   Node*  debug_orig() const            { return _debug_orig; }
   999   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1001   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1002   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1003   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1005   static void init_NodeProperty();
  1007   #if OPTO_DU_ITERATOR_ASSERT
  1008   const Node* _last_del;               // The last deleted node.
  1009   uint        _del_tick;               // Bumped when a deletion happens..
  1010   #endif
  1011 #endif
  1012 };
  1014 //-----------------------------------------------------------------------------
  1015 // Iterators over DU info, and associated Node functions.
  1017 #if OPTO_DU_ITERATOR_ASSERT
  1019 // Common code for assertion checking on DU iterators.
  1020 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1021 #ifdef ASSERT
  1022  protected:
  1023   bool         _vdui;               // cached value of VerifyDUIterators
  1024   const Node*  _node;               // the node containing the _out array
  1025   uint         _outcnt;             // cached node->_outcnt
  1026   uint         _del_tick;           // cached node->_del_tick
  1027   Node*        _last;               // last value produced by the iterator
  1029   void sample(const Node* node);    // used by c'tor to set up for verifies
  1030   void verify(const Node* node, bool at_end_ok = false);
  1031   void verify_resync();
  1032   void reset(const DUIterator_Common& that);
  1034 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1035   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1036 #else
  1037   #define I_VDUI_ONLY(i,x) { }
  1038 #endif //ASSERT
  1039 };
  1041 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1043 // Default DU iterator.  Allows appends onto the out array.
  1044 // Allows deletion from the out array only at the current point.
  1045 // Usage:
  1046 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1047 //    Node* y = x->out(i);
  1048 //    ...
  1049 //  }
  1050 // Compiles in product mode to a unsigned integer index, which indexes
  1051 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1052 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1053 // before continuing the loop.  You must delete only the last-produced
  1054 // edge.  You must delete only a single copy of the last-produced edge,
  1055 // or else you must delete all copies at once (the first time the edge
  1056 // is produced by the iterator).
  1057 class DUIterator : public DUIterator_Common {
  1058   friend class Node;
  1060   // This is the index which provides the product-mode behavior.
  1061   // Whatever the product-mode version of the system does to the
  1062   // DUI index is done to this index.  All other fields in
  1063   // this class are used only for assertion checking.
  1064   uint         _idx;
  1066   #ifdef ASSERT
  1067   uint         _refresh_tick;    // Records the refresh activity.
  1069   void sample(const Node* node); // Initialize _refresh_tick etc.
  1070   void verify(const Node* node, bool at_end_ok = false);
  1071   void verify_increment();       // Verify an increment operation.
  1072   void verify_resync();          // Verify that we can back up over a deletion.
  1073   void verify_finish();          // Verify that the loop terminated properly.
  1074   void refresh();                // Resample verification info.
  1075   void reset(const DUIterator& that);  // Resample after assignment.
  1076   #endif
  1078   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1079     { _idx = 0;                         debug_only(sample(node)); }
  1081  public:
  1082   // initialize to garbage; clear _vdui to disable asserts
  1083   DUIterator()
  1084     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1086   void operator++(int dummy_to_specify_postfix_op)
  1087     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1089   void operator--()
  1090     { VDUI_ONLY(verify_resync());       --_idx; }
  1092   ~DUIterator()
  1093     { VDUI_ONLY(verify_finish()); }
  1095   void operator=(const DUIterator& that)
  1096     { _idx = that._idx;                 debug_only(reset(that)); }
  1097 };
  1099 DUIterator Node::outs() const
  1100   { return DUIterator(this, 0); }
  1101 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1102   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1103 bool Node::has_out(DUIterator& i) const
  1104   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1105 Node*    Node::out(DUIterator& i) const
  1106   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1109 // Faster DU iterator.  Disallows insertions into the out array.
  1110 // Allows deletion from the out array only at the current point.
  1111 // Usage:
  1112 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1113 //    Node* y = x->fast_out(i);
  1114 //    ...
  1115 //  }
  1116 // Compiles in product mode to raw Node** pointer arithmetic, with
  1117 // no reloading of pointers from the original node x.  If you delete,
  1118 // you must perform "--i; --imax" just before continuing the loop.
  1119 // If you delete multiple copies of the same edge, you must decrement
  1120 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1121 class DUIterator_Fast : public DUIterator_Common {
  1122   friend class Node;
  1123   friend class DUIterator_Last;
  1125   // This is the pointer which provides the product-mode behavior.
  1126   // Whatever the product-mode version of the system does to the
  1127   // DUI pointer is done to this pointer.  All other fields in
  1128   // this class are used only for assertion checking.
  1129   Node**       _outp;
  1131   #ifdef ASSERT
  1132   void verify(const Node* node, bool at_end_ok = false);
  1133   void verify_limit();
  1134   void verify_resync();
  1135   void verify_relimit(uint n);
  1136   void reset(const DUIterator_Fast& that);
  1137   #endif
  1139   // Note:  offset must be signed, since -1 is sometimes passed
  1140   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1141     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1143  public:
  1144   // initialize to garbage; clear _vdui to disable asserts
  1145   DUIterator_Fast()
  1146     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1148   void operator++(int dummy_to_specify_postfix_op)
  1149     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1151   void operator--()
  1152     { VDUI_ONLY(verify_resync());       --_outp; }
  1154   void operator-=(uint n)   // applied to the limit only
  1155     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1157   bool operator<(DUIterator_Fast& limit) {
  1158     I_VDUI_ONLY(*this, this->verify(_node, true));
  1159     I_VDUI_ONLY(limit, limit.verify_limit());
  1160     return _outp < limit._outp;
  1163   void operator=(const DUIterator_Fast& that)
  1164     { _outp = that._outp;               debug_only(reset(that)); }
  1165 };
  1167 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1168   // Assign a limit pointer to the reference argument:
  1169   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1170   // Return the base pointer:
  1171   return DUIterator_Fast(this, 0);
  1173 Node* Node::fast_out(DUIterator_Fast& i) const {
  1174   I_VDUI_ONLY(i, i.verify(this));
  1175   return debug_only(i._last=) *i._outp;
  1179 // Faster DU iterator.  Requires each successive edge to be removed.
  1180 // Does not allow insertion of any edges.
  1181 // Usage:
  1182 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1183 //    Node* y = x->last_out(i);
  1184 //    ...
  1185 //  }
  1186 // Compiles in product mode to raw Node** pointer arithmetic, with
  1187 // no reloading of pointers from the original node x.
  1188 class DUIterator_Last : private DUIterator_Fast {
  1189   friend class Node;
  1191   #ifdef ASSERT
  1192   void verify(const Node* node, bool at_end_ok = false);
  1193   void verify_limit();
  1194   void verify_step(uint num_edges);
  1195   #endif
  1197   // Note:  offset must be signed, since -1 is sometimes passed
  1198   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1199     : DUIterator_Fast(node, offset) { }
  1201   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1202   void operator<(int)                              {} // do not use
  1204  public:
  1205   DUIterator_Last() { }
  1206   // initialize to garbage
  1208   void operator--()
  1209     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1211   void operator-=(uint n)
  1212     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1214   bool operator>=(DUIterator_Last& limit) {
  1215     I_VDUI_ONLY(*this, this->verify(_node, true));
  1216     I_VDUI_ONLY(limit, limit.verify_limit());
  1217     return _outp >= limit._outp;
  1220   void operator=(const DUIterator_Last& that)
  1221     { DUIterator_Fast::operator=(that); }
  1222 };
  1224 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1225   // Assign a limit pointer to the reference argument:
  1226   imin = DUIterator_Last(this, 0);
  1227   // Return the initial pointer:
  1228   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1230 Node* Node::last_out(DUIterator_Last& i) const {
  1231   I_VDUI_ONLY(i, i.verify(this));
  1232   return debug_only(i._last=) *i._outp;
  1235 #endif //OPTO_DU_ITERATOR_ASSERT
  1237 #undef I_VDUI_ONLY
  1238 #undef VDUI_ONLY
  1241 //-----------------------------------------------------------------------------
  1242 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1243 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1244 // Note that the constructor just zeros things, and since I use Arena
  1245 // allocation I do not need a destructor to reclaim storage.
  1246 class Node_Array : public ResourceObj {
  1247 protected:
  1248   Arena *_a;                    // Arena to allocate in
  1249   uint   _max;
  1250   Node **_nodes;
  1251   void   grow( uint i );        // Grow array node to fit
  1252 public:
  1253   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1254     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1255     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1256       _nodes[i] = NULL;
  1260   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1261   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1262   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1263   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1264   Node **adr() { return _nodes; }
  1265   // Extend the mapping: index i maps to Node *n.
  1266   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1267   void insert( uint i, Node *n );
  1268   void remove( uint i );        // Remove, preserving order
  1269   void sort( C_sort_func_t func);
  1270   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1271   void clear();                 // Set all entries to NULL, keep storage
  1272   uint Size() const { return _max; }
  1273   void dump() const;
  1274 };
  1276 class Node_List : public Node_Array {
  1277   uint _cnt;
  1278 public:
  1279   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1280   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1281   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1282   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1283   void push( Node *b ) { map(_cnt++,b); }
  1284   void yank( Node *n );         // Find and remove
  1285   Node *pop() { return _nodes[--_cnt]; }
  1286   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1287   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1288   uint size() const { return _cnt; }
  1289   void dump() const;
  1290 };
  1292 //------------------------------Unique_Node_List-------------------------------
  1293 class Unique_Node_List : public Node_List {
  1294   VectorSet _in_worklist;
  1295   uint _clock_index;            // Index in list where to pop from next
  1296 public:
  1297   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1298   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1300   void remove( Node *n );
  1301   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1302   VectorSet &member_set(){ return _in_worklist; }
  1304   void push( Node *b ) {
  1305     if( !_in_worklist.test_set(b->_idx) )
  1306       Node_List::push(b);
  1308   Node *pop() {
  1309     if( _clock_index >= size() ) _clock_index = 0;
  1310     Node *b = at(_clock_index);
  1311     map( _clock_index++, Node_List::pop());
  1312     _in_worklist >>= b->_idx;
  1313     return b;
  1315   Node *remove( uint i ) {
  1316     Node *b = Node_List::at(i);
  1317     _in_worklist >>= b->_idx;
  1318     map(i,Node_List::pop());
  1319     return b;
  1321   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1322   void  clear() {
  1323     _in_worklist.Clear();        // Discards storage but grows automatically
  1324     Node_List::clear();
  1325     _clock_index = 0;
  1328   // Used after parsing to remove useless nodes before Iterative GVN
  1329   void remove_useless_nodes(VectorSet &useful);
  1331 #ifndef PRODUCT
  1332   void print_set() const { _in_worklist.print(); }
  1333 #endif
  1334 };
  1336 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1337 inline void Compile::record_for_igvn(Node* n) {
  1338   _for_igvn->push(n);
  1341 //------------------------------Node_Stack-------------------------------------
  1342 class Node_Stack {
  1343 protected:
  1344   struct INode {
  1345     Node *node; // Processed node
  1346     uint  indx; // Index of next node's child
  1347   };
  1348   INode *_inode_top; // tos, stack grows up
  1349   INode *_inode_max; // End of _inodes == _inodes + _max
  1350   INode *_inodes;    // Array storage for the stack
  1351   Arena *_a;         // Arena to allocate in
  1352   void grow();
  1353 public:
  1354   Node_Stack(int size) {
  1355     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1356     _a = Thread::current()->resource_area();
  1357     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1358     _inode_max = _inodes + max;
  1359     _inode_top = _inodes - 1; // stack is empty
  1362   Node_Stack(Arena *a, int size) : _a(a) {
  1363     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1364     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1365     _inode_max = _inodes + max;
  1366     _inode_top = _inodes - 1; // stack is empty
  1369   void pop() {
  1370     assert(_inode_top >= _inodes, "node stack underflow");
  1371     --_inode_top;
  1373   void push(Node *n, uint i) {
  1374     ++_inode_top;
  1375     if (_inode_top >= _inode_max) grow();
  1376     INode *top = _inode_top; // optimization
  1377     top->node = n;
  1378     top->indx = i;
  1380   Node *node() const {
  1381     return _inode_top->node;
  1383   Node* node_at(uint i) const {
  1384     assert(_inodes + i <= _inode_top, "in range");
  1385     return _inodes[i].node;
  1387   uint index() const {
  1388     return _inode_top->indx;
  1390   void set_node(Node *n) {
  1391     _inode_top->node = n;
  1393   void set_index(uint i) {
  1394     _inode_top->indx = i;
  1396   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1397   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1398   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1399   bool is_empty() const { return (_inode_top < _inodes); }
  1400   void clear() { _inode_top = _inodes - 1; } // retain storage
  1401 };
  1404 //-----------------------------Node_Notes--------------------------------------
  1405 // Debugging or profiling annotations loosely and sparsely associated
  1406 // with some nodes.  See Compile::node_notes_at for the accessor.
  1407 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1408   JVMState* _jvms;
  1410 public:
  1411   Node_Notes(JVMState* jvms = NULL) {
  1412     _jvms = jvms;
  1415   JVMState* jvms()            { return _jvms; }
  1416   void  set_jvms(JVMState* x) {        _jvms = x; }
  1418   // True if there is nothing here.
  1419   bool is_clear() {
  1420     return (_jvms == NULL);
  1423   // Make there be nothing here.
  1424   void clear() {
  1425     _jvms = NULL;
  1428   // Make a new, clean node notes.
  1429   static Node_Notes* make(Compile* C) {
  1430     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1431     nn->clear();
  1432     return nn;
  1435   Node_Notes* clone(Compile* C) {
  1436     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1437     (*nn) = (*this);
  1438     return nn;
  1441   // Absorb any information from source.
  1442   bool update_from(Node_Notes* source) {
  1443     bool changed = false;
  1444     if (source != NULL) {
  1445       if (source->jvms() != NULL) {
  1446         set_jvms(source->jvms());
  1447         changed = true;
  1450     return changed;
  1452 };
  1454 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1455 inline Node_Notes*
  1456 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1457                            int idx, bool can_grow) {
  1458   assert(idx >= 0, "oob");
  1459   int block_idx = (idx >> _log2_node_notes_block_size);
  1460   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1461   if (grow_by >= 0) {
  1462     if (!can_grow)  return NULL;
  1463     grow_node_notes(arr, grow_by + 1);
  1465   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1466   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1469 inline bool
  1470 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1471   if (value == NULL || value->is_clear())
  1472     return false;  // nothing to write => write nothing
  1473   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1474   assert(loc != NULL, "");
  1475   return loc->update_from(value);
  1479 //------------------------------TypeNode---------------------------------------
  1480 // Node with a Type constant.
  1481 class TypeNode : public Node {
  1482 protected:
  1483   virtual uint hash() const;    // Check the type
  1484   virtual uint cmp( const Node &n ) const;
  1485   virtual uint size_of() const; // Size is bigger
  1486   const Type* const _type;
  1487 public:
  1488   void set_type(const Type* t) {
  1489     assert(t != NULL, "sanity");
  1490     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1491     *(const Type**)&_type = t;   // cast away const-ness
  1492     // If this node is in the hash table, make sure it doesn't need a rehash.
  1493     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1495   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1496   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1497     init_class_id(Class_Type);
  1499   virtual const Type *Value( PhaseTransform *phase ) const;
  1500   virtual const Type *bottom_type() const;
  1501   virtual       uint  ideal_reg() const;
  1502 #ifndef PRODUCT
  1503   virtual void dump_spec(outputStream *st) const;
  1504 #endif
  1505 };

mercurial