src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 542
93b6525e3b82
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // do not include  precompiled  header file
    26 # include "incls/_os_solaris_x86.cpp.incl"
    28 // put OS-includes here
    29 # include <sys/types.h>
    30 # include <sys/mman.h>
    31 # include <pthread.h>
    32 # include <signal.h>
    33 # include <setjmp.h>
    34 # include <errno.h>
    35 # include <dlfcn.h>
    36 # include <stdio.h>
    37 # include <unistd.h>
    38 # include <sys/resource.h>
    39 # include <thread.h>
    40 # include <sys/stat.h>
    41 # include <sys/time.h>
    42 # include <sys/filio.h>
    43 # include <sys/utsname.h>
    44 # include <sys/systeminfo.h>
    45 # include <sys/socket.h>
    46 # include <sys/trap.h>
    47 # include <sys/lwp.h>
    48 # include <pwd.h>
    49 # include <poll.h>
    50 # include <sys/lwp.h>
    51 # include <procfs.h>     //  see comment in <sys/procfs.h>
    53 #ifndef AMD64
    54 // QQQ seems useless at this point
    55 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
    56 #endif // AMD64
    57 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
    60 #define MAX_PATH (2 * K)
    62 // Minimum stack size for the VM.  It's easier to document a constant value
    63 // but it's different for x86 and sparc because the page sizes are different.
    64 #ifdef AMD64
    65 size_t os::Solaris::min_stack_allowed = 224*K;
    66 #define REG_SP REG_RSP
    67 #define REG_PC REG_RIP
    68 #define REG_FP REG_RBP
    69 #else
    70 size_t os::Solaris::min_stack_allowed = 64*K;
    71 #define REG_SP UESP
    72 #define REG_PC EIP
    73 #define REG_FP EBP
    74 // 4900493 counter to prevent runaway LDTR refresh attempt
    76 static volatile int ldtr_refresh = 0;
    77 // the libthread instruction that faults because of the stale LDTR
    79 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
    80                        };
    81 #endif // AMD64
    83 char* os::non_memory_address_word() {
    84   // Must never look like an address returned by reserve_memory,
    85   // even in its subfields (as defined by the CPU immediate fields,
    86   // if the CPU splits constants across multiple instructions).
    87   return (char*) -1;
    88 }
    90 //
    91 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
    92 // There are issues with libthread giving out uc_links for different threads
    93 // on the same uc_link chain and bad or circular links.
    94 //
    95 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
    96   if (valid >= suspect ||
    97       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
    98       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
    99       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
   100     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
   101     return false;
   102   }
   104   if (thread->is_Java_thread()) {
   105     if (!valid_stack_address(thread, (address)suspect)) {
   106       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
   107       return false;
   108     }
   109     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
   110       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
   111       return false;
   112     }
   113   }
   114   return true;
   115 }
   117 // We will only follow one level of uc_link since there are libthread
   118 // issues with ucontext linking and it is better to be safe and just
   119 // let caller retry later.
   120 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
   121   ucontext_t *uc) {
   123   ucontext_t *retuc = NULL;
   125   if (uc != NULL) {
   126     if (uc->uc_link == NULL) {
   127       // cannot validate without uc_link so accept current ucontext
   128       retuc = uc;
   129     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   130       // first ucontext is valid so try the next one
   131       uc = uc->uc_link;
   132       if (uc->uc_link == NULL) {
   133         // cannot validate without uc_link so accept current ucontext
   134         retuc = uc;
   135       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   136         // the ucontext one level down is also valid so return it
   137         retuc = uc;
   138       }
   139     }
   140   }
   141   return retuc;
   142 }
   144 // Assumes ucontext is valid
   145 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
   146   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
   147 }
   149 // Assumes ucontext is valid
   150 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
   151   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   152 }
   154 // Assumes ucontext is valid
   155 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
   156   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   157 }
   159 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   160 // is currently interrupted by SIGPROF.
   161 //
   162 // The difference between this and os::fetch_frame_from_context() is that
   163 // here we try to skip nested signal frames.
   164 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
   165   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   167   assert(thread != NULL, "just checking");
   168   assert(ret_sp != NULL, "just checking");
   169   assert(ret_fp != NULL, "just checking");
   171   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
   172   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
   173 }
   175 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   176                     intptr_t** ret_sp, intptr_t** ret_fp) {
   178   ExtendedPC  epc;
   179   ucontext_t *uc = (ucontext_t*)ucVoid;
   181   if (uc != NULL) {
   182     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   183     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
   184     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
   185   } else {
   186     // construct empty ExtendedPC for return value checking
   187     epc = ExtendedPC(NULL);
   188     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   189     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   190   }
   192   return epc;
   193 }
   195 frame os::fetch_frame_from_context(void* ucVoid) {
   196   intptr_t* sp;
   197   intptr_t* fp;
   198   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   199   return frame(sp, fp, epc.pc());
   200 }
   202 frame os::get_sender_for_C_frame(frame* fr) {
   203   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   204 }
   206 extern "C" intptr_t *_get_previous_fp();  // in .il file.
   208 frame os::current_frame() {
   209   intptr_t* fp = _get_previous_fp();
   210   frame myframe((intptr_t*)os::current_stack_pointer(),
   211                 (intptr_t*)fp,
   212                 CAST_FROM_FN_PTR(address, os::current_frame));
   213   if (os::is_first_C_frame(&myframe)) {
   214     // stack is not walkable
   215     return frame(NULL, NULL, NULL);
   216   } else {
   217     return os::get_sender_for_C_frame(&myframe);
   218   }
   219 }
   221 // This is a simple callback that just fetches a PC for an interrupted thread.
   222 // The thread need not be suspended and the fetched PC is just a hint.
   223 // This one is currently used for profiling the VMThread ONLY!
   225 // Must be synchronous
   226 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
   227   Thread*     thread = args->thread();
   228   ucontext_t* uc     = args->ucontext();
   229   intptr_t* sp;
   231   assert(ProfileVM && thread->is_VM_thread(), "just checking");
   233   ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
   234   _addr = new_addr;
   235 }
   237 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
   238   char lwpstatusfile[PROCFILE_LENGTH];
   239   int lwpfd, err;
   241   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
   242     return (err);
   243   if (*flags == TRS_LWPID) {
   244     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
   245             *lwp);
   246     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
   247       perror("thr_mutator_status: open lwpstatus");
   248       return (EINVAL);
   249     }
   250     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
   251         sizeof (lwpstatus_t)) {
   252       perror("thr_mutator_status: read lwpstatus");
   253       (void) close(lwpfd);
   254       return (EINVAL);
   255     }
   256     (void) close(lwpfd);
   257   }
   258   return (0);
   259 }
   261 #ifndef AMD64
   263 // Detecting SSE support by OS
   264 // From solaris_i486.s
   265 extern "C" bool sse_check();
   266 extern "C" bool sse_unavailable();
   268 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
   269 static int sse_status = SSE_UNKNOWN;
   272 static void  check_for_sse_support() {
   273   if (!VM_Version::supports_sse()) {
   274     sse_status = SSE_NOT_SUPPORTED;
   275     return;
   276   }
   277   // looking for _sse_hw in libc.so, if it does not exist or
   278   // the value (int) is 0, OS has no support for SSE
   279   int *sse_hwp;
   280   void *h;
   282   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
   283     //open failed, presume no support for SSE
   284     sse_status = SSE_NOT_SUPPORTED;
   285     return;
   286   }
   287   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
   288     sse_status = SSE_NOT_SUPPORTED;
   289   } else if (*sse_hwp == 0) {
   290     sse_status = SSE_NOT_SUPPORTED;
   291   }
   292   dlclose(h);
   294   if (sse_status == SSE_UNKNOWN) {
   295     bool (*try_sse)() = (bool (*)())sse_check;
   296     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
   297   }
   299 }
   301 bool os::supports_sse() {
   302   if (sse_status == SSE_UNKNOWN)
   303     check_for_sse_support();
   304   return sse_status == SSE_SUPPORTED;
   305 }
   307 #endif // AMD64
   309 bool os::is_allocatable(size_t bytes) {
   310 #ifdef AMD64
   311   return true;
   312 #else
   314   if (bytes < 2 * G) {
   315     return true;
   316   }
   318   char* addr = reserve_memory(bytes, NULL);
   320   if (addr != NULL) {
   321     release_memory(addr, bytes);
   322   }
   324   return addr != NULL;
   325 #endif // AMD64
   327 }
   329 extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
   331 extern "C" void Fetch32PFI () ;
   332 extern "C" void Fetch32Resume () ;
   333 #ifdef AMD64
   334 extern "C" void FetchNPFI () ;
   335 extern "C" void FetchNResume () ;
   336 #endif // AMD64
   338 int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
   339   ucontext_t* uc = (ucontext_t*) ucVoid;
   341 #ifndef AMD64
   342   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
   343     // the SSE instruction faulted. supports_sse() need return false.
   344     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
   345     return true;
   346   }
   347 #endif // !AMD64
   349   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
   351   SignalHandlerMark shm(t);
   353   if(sig == SIGPIPE || sig == SIGXFSZ) {
   354     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   355       return true;
   356     } else {
   357       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   358         char buf[64];
   359         warning("Ignoring %s - see 4229104 or 6499219",
   360                 os::exception_name(sig, buf, sizeof(buf)));
   362       }
   363       return true;
   364     }
   365   }
   367   JavaThread* thread = NULL;
   368   VMThread* vmthread = NULL;
   370   if (os::Solaris::signal_handlers_are_installed) {
   371     if (t != NULL ){
   372       if(t->is_Java_thread()) {
   373         thread = (JavaThread*)t;
   374       }
   375       else if(t->is_VM_thread()){
   376         vmthread = (VMThread *)t;
   377       }
   378     }
   379   }
   381   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
   383   if (sig == os::Solaris::SIGasync()) {
   384     if(thread){
   385       OSThread::InterruptArguments args(thread, uc);
   386       thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   387       return true;
   388     }
   389     else if(vmthread){
   390       OSThread::InterruptArguments args(vmthread, uc);
   391       vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   392       return true;
   393     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   394       return true;
   395     } else {
   396       // If os::Solaris::SIGasync not chained, and this is a non-vm and
   397       // non-java thread
   398       return true;
   399     }
   400   }
   402   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   403     // can't decode this kind of signal
   404     info = NULL;
   405   } else {
   406     assert(sig == info->si_signo, "bad siginfo");
   407   }
   409   // decide if this trap can be handled by a stub
   410   address stub = NULL;
   412   address pc          = NULL;
   414   //%note os_trap_1
   415   if (info != NULL && uc != NULL && thread != NULL) {
   416     // factor me: getPCfromContext
   417     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   419     // SafeFetch32() support
   420     if (pc == (address) Fetch32PFI) {
   421       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   422       return true ;
   423     }
   424 #ifdef AMD64
   425     if (pc == (address) FetchNPFI) {
   426        uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
   427        return true ;
   428     }
   429 #endif // AMD64
   431     // Handle ALL stack overflow variations here
   432     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
   433       address addr = (address) info->si_addr;
   434       if (thread->in_stack_yellow_zone(addr)) {
   435         thread->disable_stack_yellow_zone();
   436         if (thread->thread_state() == _thread_in_Java) {
   437           // Throw a stack overflow exception.  Guard pages will be reenabled
   438           // while unwinding the stack.
   439           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   440         } else {
   441           // Thread was in the vm or native code.  Return and try to finish.
   442           return true;
   443         }
   444       } else if (thread->in_stack_red_zone(addr)) {
   445         // Fatal red zone violation.  Disable the guard pages and fall through
   446         // to handle_unexpected_exception way down below.
   447         thread->disable_stack_red_zone();
   448         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   449       }
   450     }
   452     if (thread->thread_state() == _thread_in_vm) {
   453       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
   454         stub = StubRoutines::handler_for_unsafe_access();
   455       }
   456     }
   458     if (thread->thread_state() == _thread_in_Java) {
   459       // Support Safepoint Polling
   460       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   461         stub = SharedRuntime::get_poll_stub(pc);
   462       }
   463       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
   464         // BugId 4454115: A read from a MappedByteBuffer can fault
   465         // here if the underlying file has been truncated.
   466         // Do not crash the VM in such a case.
   467         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   468         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   469         if (nm != NULL && nm->has_unsafe_access()) {
   470           stub = StubRoutines::handler_for_unsafe_access();
   471         }
   472       }
   473       else
   474       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
   475         // integer divide by zero
   476         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   477       }
   478 #ifndef AMD64
   479       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
   480         // floating-point divide by zero
   481         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   482       }
   483       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
   484         // The encoding of D2I in i486.ad can cause an exception prior
   485         // to the fist instruction if there was an invalid operation
   486         // pending. We want to dismiss that exception. From the win_32
   487         // side it also seems that if it really was the fist causing
   488         // the exception that we do the d2i by hand with different
   489         // rounding. Seems kind of weird. QQQ TODO
   490         // Note that we take the exception at the NEXT floating point instruction.
   491         if (pc[0] == 0xDB) {
   492             assert(pc[0] == 0xDB, "not a FIST opcode");
   493             assert(pc[1] == 0x14, "not a FIST opcode");
   494             assert(pc[2] == 0x24, "not a FIST opcode");
   495             return true;
   496         } else {
   497             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
   498             assert(pc[-2] == 0x14, "not an flt invalid opcode");
   499             assert(pc[-1] == 0x24, "not an flt invalid opcode");
   500         }
   501       }
   502       else if (sig == SIGFPE ) {
   503         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
   504       }
   505 #endif // !AMD64
   507         // QQQ It doesn't seem that we need to do this on x86 because we should be able
   508         // to return properly from the handler without this extra stuff on the back side.
   510       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   511         // Determination of interpreter/vtable stub/compiled code null exception
   512         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   513       }
   514     }
   516     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   517     // and the heap gets shrunk before the field access.
   518     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   519       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   520       if (addr != (address)-1) {
   521         stub = addr;
   522       }
   523     }
   525     // Check to see if we caught the safepoint code in the
   526     // process of write protecting the memory serialization page.
   527     // It write enables the page immediately after protecting it
   528     // so we can just return to retry the write.
   529     if ((sig == SIGSEGV) &&
   530         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
   531       // Block current thread until the memory serialize page permission restored.
   532       os::block_on_serialize_page_trap();
   533       return true;
   534     }
   535   }
   537   // Execution protection violation
   538   //
   539   // Preventative code for future versions of Solaris which may
   540   // enable execution protection when running the 32-bit VM on AMD64.
   541   //
   542   // This should be kept as the last step in the triage.  We don't
   543   // have a dedicated trap number for a no-execute fault, so be
   544   // conservative and allow other handlers the first shot.
   545   //
   546   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   547   // this si_code is so generic that it is almost meaningless; and
   548   // the si_code for this condition may change in the future.
   549   // Furthermore, a false-positive should be harmless.
   550   if (UnguardOnExecutionViolation > 0 &&
   551       (sig == SIGSEGV || sig == SIGBUS) &&
   552       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
   553     int page_size = os::vm_page_size();
   554     address addr = (address) info->si_addr;
   555     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
   556     // Make sure the pc and the faulting address are sane.
   557     //
   558     // If an instruction spans a page boundary, and the page containing
   559     // the beginning of the instruction is executable but the following
   560     // page is not, the pc and the faulting address might be slightly
   561     // different - we still want to unguard the 2nd page in this case.
   562     //
   563     // 15 bytes seems to be a (very) safe value for max instruction size.
   564     bool pc_is_near_addr =
   565       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   566     bool instr_spans_page_boundary =
   567       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   568                        (intptr_t) page_size) > 0);
   570     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   571       static volatile address last_addr =
   572         (address) os::non_memory_address_word();
   574       // In conservative mode, don't unguard unless the address is in the VM
   575       if (addr != last_addr &&
   576           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   578         // Unguard and retry
   579         address page_start =
   580           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   581         bool res = os::unguard_memory((char*) page_start, page_size);
   583         if (PrintMiscellaneous && Verbose) {
   584           char buf[256];
   585           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   586                        "at " INTPTR_FORMAT
   587                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   588                        page_start, (res ? "success" : "failed"), errno);
   589           tty->print_raw_cr(buf);
   590         }
   591         stub = pc;
   593         // Set last_addr so if we fault again at the same address, we don't end
   594         // up in an endless loop.
   595         //
   596         // There are two potential complications here.  Two threads trapping at
   597         // the same address at the same time could cause one of the threads to
   598         // think it already unguarded, and abort the VM.  Likely very rare.
   599         //
   600         // The other race involves two threads alternately trapping at
   601         // different addresses and failing to unguard the page, resulting in
   602         // an endless loop.  This condition is probably even more unlikely than
   603         // the first.
   604         //
   605         // Although both cases could be avoided by using locks or thread local
   606         // last_addr, these solutions are unnecessary complication: this
   607         // handler is a best-effort safety net, not a complete solution.  It is
   608         // disabled by default and should only be used as a workaround in case
   609         // we missed any no-execute-unsafe VM code.
   611         last_addr = addr;
   612       }
   613     }
   614   }
   616   if (stub != NULL) {
   617     // save all thread context in case we need to restore it
   619     if (thread != NULL) thread->set_saved_exception_pc(pc);
   620     // 12/02/99: On Sparc it appears that the full context is also saved
   621     // but as yet, no one looks at or restores that saved context
   622     // factor me: setPC
   623     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   624     return true;
   625   }
   627   // signal-chaining
   628   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   629     return true;
   630   }
   632 #ifndef AMD64
   633   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
   634   // Handle an undefined selector caused by an attempt to assign
   635   // fs in libthread getipriptr(). With the current libthread design every 512
   636   // thread creations the LDT for a private thread data structure is extended
   637   // and thre is a hazard that and another thread attempting a thread creation
   638   // will use a stale LDTR that doesn't reflect the structure's growth,
   639   // causing a GP fault.
   640   // Enforce the probable limit of passes through here to guard against an
   641   // infinite loop if some other move to fs caused the GP fault. Note that
   642   // this loop counter is ultimately a heuristic as it is possible for
   643   // more than one thread to generate this fault at a time in an MP system.
   644   // In the case of the loop count being exceeded or if the poll fails
   645   // just fall through to a fatal error.
   646   // If there is some other source of T_GPFLT traps and the text at EIP is
   647   // unreadable this code will loop infinitely until the stack is exausted.
   648   // The key to diagnosis in this case is to look for the bottom signal handler
   649   // frame.
   651   if(! IgnoreLibthreadGPFault) {
   652     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
   653       const unsigned char *p =
   654                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
   656       // Expected instruction?
   658       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
   660         Atomic::inc(&ldtr_refresh);
   662         // Infinite loop?
   664         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
   666           // No, force scheduling to get a fresh view of the LDTR
   668           if(poll(NULL, 0, 10) == 0) {
   670             // Retry the move
   672             return false;
   673           }
   674         }
   675       }
   676     }
   677   }
   678 #endif // !AMD64
   680   if (!abort_if_unrecognized) {
   681     // caller wants another chance, so give it to him
   682     return false;
   683   }
   685   if (!os::Solaris::libjsig_is_loaded) {
   686     struct sigaction oldAct;
   687     sigaction(sig, (struct sigaction *)0, &oldAct);
   688     if (oldAct.sa_sigaction != signalHandler) {
   689       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
   690                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
   691       warning("Unexpected Signal %d occured under user-defined signal handler %#lx", sig, (long)sighand);
   692     }
   693   }
   695   if (pc == NULL && uc != NULL) {
   696     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   697   }
   699   // unmask current signal
   700   sigset_t newset;
   701   sigemptyset(&newset);
   702   sigaddset(&newset, sig);
   703   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   705   VMError err(t, sig, pc, info, ucVoid);
   706   err.report_and_die();
   708   ShouldNotReachHere();
   709 }
   711 void os::print_context(outputStream *st, void *context) {
   712   if (context == NULL) return;
   714   ucontext_t *uc = (ucontext_t*)context;
   715   st->print_cr("Registers:");
   716 #ifdef AMD64
   717   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   718   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   719   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   720   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   721   st->cr();
   722   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   723   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   724   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   725   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   726   st->cr();
   727   st->print(", R8=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   728   st->print(", R9=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   729   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   730   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   731   st->print(", R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   732   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   733   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   734   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   735   st->cr();
   736   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   737   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
   738 #else
   739   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
   740   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
   741   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
   742   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
   743   st->cr();
   744   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
   745   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
   746   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
   747   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
   748   st->cr();
   749   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
   750   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
   751 #endif // AMD64
   752   st->cr();
   753   st->cr();
   755   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
   756   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   757   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   758   st->cr();
   760   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   761   // point to garbage if entry point in an nmethod is corrupted. Leave
   762   // this at the end, and hope for the best.
   763   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   764   address pc = epc.pc();
   765   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   766   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
   767 }
   769 #ifdef AMD64
   770 void os::Solaris::init_thread_fpu_state(void) {
   771   // Nothing to do
   772 }
   773 #else
   774 // From solaris_i486.s
   775 extern "C" void fixcw();
   777 void os::Solaris::init_thread_fpu_state(void) {
   778   // Set fpu to 53 bit precision. This happens too early to use a stub.
   779   fixcw();
   780 }
   782 // These routines are the initial value of atomic_xchg_entry(),
   783 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
   784 // until initialization is complete.
   785 // TODO - replace with .il implementation when compiler supports it.
   787 typedef jint  xchg_func_t        (jint,  volatile jint*);
   788 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
   789 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
   790 typedef jint  add_func_t         (jint,  volatile jint*);
   791 typedef void  fence_func_t       ();
   793 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
   794   // try to use the stub:
   795   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
   797   if (func != NULL) {
   798     os::atomic_xchg_func = func;
   799     return (*func)(exchange_value, dest);
   800   }
   801   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   803   jint old_value = *dest;
   804   *dest = exchange_value;
   805   return old_value;
   806 }
   808 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
   809   // try to use the stub:
   810   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
   812   if (func != NULL) {
   813     os::atomic_cmpxchg_func = func;
   814     return (*func)(exchange_value, dest, compare_value);
   815   }
   816   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   818   jint old_value = *dest;
   819   if (old_value == compare_value)
   820     *dest = exchange_value;
   821   return old_value;
   822 }
   824 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
   825   // try to use the stub:
   826   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
   828   if (func != NULL) {
   829     os::atomic_cmpxchg_long_func = func;
   830     return (*func)(exchange_value, dest, compare_value);
   831   }
   832   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   834   jlong old_value = *dest;
   835   if (old_value == compare_value)
   836     *dest = exchange_value;
   837   return old_value;
   838 }
   840 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
   841   // try to use the stub:
   842   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
   844   if (func != NULL) {
   845     os::atomic_add_func = func;
   846     return (*func)(add_value, dest);
   847   }
   848   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   850   return (*dest) += add_value;
   851 }
   853 void os::fence_bootstrap() {
   854   // try to use the stub:
   855   fence_func_t* func = CAST_TO_FN_PTR(fence_func_t*, StubRoutines::fence_entry());
   857   if (func != NULL) {
   858     os::fence_func = func;
   859     (*func)();
   860     return;
   861   }
   862   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   864   // don't have to do anything for a single thread
   865 }
   867 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
   868 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
   869 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
   870 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
   871 fence_func_t*        os::fence_func               = os::fence_bootstrap;
   873 extern "C" _solaris_raw_setup_fpu(address ptr);
   874 void os::setup_fpu() {
   875   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   876   _solaris_raw_setup_fpu(fpu_cntrl);
   877 }
   878 #endif // AMD64

mercurial