src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

changeset 435
a61af66fc99e
child 542
93b6525e3b82
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,878 @@
     1.4 +/*
     1.5 + * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +// do not include  precompiled  header file
    1.29 +# include "incls/_os_solaris_x86.cpp.incl"
    1.30 +
    1.31 +// put OS-includes here
    1.32 +# include <sys/types.h>
    1.33 +# include <sys/mman.h>
    1.34 +# include <pthread.h>
    1.35 +# include <signal.h>
    1.36 +# include <setjmp.h>
    1.37 +# include <errno.h>
    1.38 +# include <dlfcn.h>
    1.39 +# include <stdio.h>
    1.40 +# include <unistd.h>
    1.41 +# include <sys/resource.h>
    1.42 +# include <thread.h>
    1.43 +# include <sys/stat.h>
    1.44 +# include <sys/time.h>
    1.45 +# include <sys/filio.h>
    1.46 +# include <sys/utsname.h>
    1.47 +# include <sys/systeminfo.h>
    1.48 +# include <sys/socket.h>
    1.49 +# include <sys/trap.h>
    1.50 +# include <sys/lwp.h>
    1.51 +# include <pwd.h>
    1.52 +# include <poll.h>
    1.53 +# include <sys/lwp.h>
    1.54 +# include <procfs.h>     //  see comment in <sys/procfs.h>
    1.55 +
    1.56 +#ifndef AMD64
    1.57 +// QQQ seems useless at this point
    1.58 +# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
    1.59 +#endif // AMD64
    1.60 +# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
    1.61 +
    1.62 +
    1.63 +#define MAX_PATH (2 * K)
    1.64 +
    1.65 +// Minimum stack size for the VM.  It's easier to document a constant value
    1.66 +// but it's different for x86 and sparc because the page sizes are different.
    1.67 +#ifdef AMD64
    1.68 +size_t os::Solaris::min_stack_allowed = 224*K;
    1.69 +#define REG_SP REG_RSP
    1.70 +#define REG_PC REG_RIP
    1.71 +#define REG_FP REG_RBP
    1.72 +#else
    1.73 +size_t os::Solaris::min_stack_allowed = 64*K;
    1.74 +#define REG_SP UESP
    1.75 +#define REG_PC EIP
    1.76 +#define REG_FP EBP
    1.77 +// 4900493 counter to prevent runaway LDTR refresh attempt
    1.78 +
    1.79 +static volatile int ldtr_refresh = 0;
    1.80 +// the libthread instruction that faults because of the stale LDTR
    1.81 +
    1.82 +static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
    1.83 +                       };
    1.84 +#endif // AMD64
    1.85 +
    1.86 +char* os::non_memory_address_word() {
    1.87 +  // Must never look like an address returned by reserve_memory,
    1.88 +  // even in its subfields (as defined by the CPU immediate fields,
    1.89 +  // if the CPU splits constants across multiple instructions).
    1.90 +  return (char*) -1;
    1.91 +}
    1.92 +
    1.93 +//
    1.94 +// Validate a ucontext retrieved from walking a uc_link of a ucontext.
    1.95 +// There are issues with libthread giving out uc_links for different threads
    1.96 +// on the same uc_link chain and bad or circular links.
    1.97 +//
    1.98 +bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
    1.99 +  if (valid >= suspect ||
   1.100 +      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
   1.101 +      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
   1.102 +      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
   1.103 +    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
   1.104 +    return false;
   1.105 +  }
   1.106 +
   1.107 +  if (thread->is_Java_thread()) {
   1.108 +    if (!valid_stack_address(thread, (address)suspect)) {
   1.109 +      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
   1.110 +      return false;
   1.111 +    }
   1.112 +    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
   1.113 +      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
   1.114 +      return false;
   1.115 +    }
   1.116 +  }
   1.117 +  return true;
   1.118 +}
   1.119 +
   1.120 +// We will only follow one level of uc_link since there are libthread
   1.121 +// issues with ucontext linking and it is better to be safe and just
   1.122 +// let caller retry later.
   1.123 +ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
   1.124 +  ucontext_t *uc) {
   1.125 +
   1.126 +  ucontext_t *retuc = NULL;
   1.127 +
   1.128 +  if (uc != NULL) {
   1.129 +    if (uc->uc_link == NULL) {
   1.130 +      // cannot validate without uc_link so accept current ucontext
   1.131 +      retuc = uc;
   1.132 +    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   1.133 +      // first ucontext is valid so try the next one
   1.134 +      uc = uc->uc_link;
   1.135 +      if (uc->uc_link == NULL) {
   1.136 +        // cannot validate without uc_link so accept current ucontext
   1.137 +        retuc = uc;
   1.138 +      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   1.139 +        // the ucontext one level down is also valid so return it
   1.140 +        retuc = uc;
   1.141 +      }
   1.142 +    }
   1.143 +  }
   1.144 +  return retuc;
   1.145 +}
   1.146 +
   1.147 +// Assumes ucontext is valid
   1.148 +ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
   1.149 +  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
   1.150 +}
   1.151 +
   1.152 +// Assumes ucontext is valid
   1.153 +intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
   1.154 +  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   1.155 +}
   1.156 +
   1.157 +// Assumes ucontext is valid
   1.158 +intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
   1.159 +  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   1.160 +}
   1.161 +
   1.162 +// For Forte Analyzer AsyncGetCallTrace profiling support - thread
   1.163 +// is currently interrupted by SIGPROF.
   1.164 +//
   1.165 +// The difference between this and os::fetch_frame_from_context() is that
   1.166 +// here we try to skip nested signal frames.
   1.167 +ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
   1.168 +  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   1.169 +
   1.170 +  assert(thread != NULL, "just checking");
   1.171 +  assert(ret_sp != NULL, "just checking");
   1.172 +  assert(ret_fp != NULL, "just checking");
   1.173 +
   1.174 +  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
   1.175 +  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
   1.176 +}
   1.177 +
   1.178 +ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   1.179 +                    intptr_t** ret_sp, intptr_t** ret_fp) {
   1.180 +
   1.181 +  ExtendedPC  epc;
   1.182 +  ucontext_t *uc = (ucontext_t*)ucVoid;
   1.183 +
   1.184 +  if (uc != NULL) {
   1.185 +    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   1.186 +    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
   1.187 +    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
   1.188 +  } else {
   1.189 +    // construct empty ExtendedPC for return value checking
   1.190 +    epc = ExtendedPC(NULL);
   1.191 +    if (ret_sp) *ret_sp = (intptr_t *)NULL;
   1.192 +    if (ret_fp) *ret_fp = (intptr_t *)NULL;
   1.193 +  }
   1.194 +
   1.195 +  return epc;
   1.196 +}
   1.197 +
   1.198 +frame os::fetch_frame_from_context(void* ucVoid) {
   1.199 +  intptr_t* sp;
   1.200 +  intptr_t* fp;
   1.201 +  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   1.202 +  return frame(sp, fp, epc.pc());
   1.203 +}
   1.204 +
   1.205 +frame os::get_sender_for_C_frame(frame* fr) {
   1.206 +  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   1.207 +}
   1.208 +
   1.209 +extern "C" intptr_t *_get_previous_fp();  // in .il file.
   1.210 +
   1.211 +frame os::current_frame() {
   1.212 +  intptr_t* fp = _get_previous_fp();
   1.213 +  frame myframe((intptr_t*)os::current_stack_pointer(),
   1.214 +                (intptr_t*)fp,
   1.215 +                CAST_FROM_FN_PTR(address, os::current_frame));
   1.216 +  if (os::is_first_C_frame(&myframe)) {
   1.217 +    // stack is not walkable
   1.218 +    return frame(NULL, NULL, NULL);
   1.219 +  } else {
   1.220 +    return os::get_sender_for_C_frame(&myframe);
   1.221 +  }
   1.222 +}
   1.223 +
   1.224 +// This is a simple callback that just fetches a PC for an interrupted thread.
   1.225 +// The thread need not be suspended and the fetched PC is just a hint.
   1.226 +// This one is currently used for profiling the VMThread ONLY!
   1.227 +
   1.228 +// Must be synchronous
   1.229 +void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
   1.230 +  Thread*     thread = args->thread();
   1.231 +  ucontext_t* uc     = args->ucontext();
   1.232 +  intptr_t* sp;
   1.233 +
   1.234 +  assert(ProfileVM && thread->is_VM_thread(), "just checking");
   1.235 +
   1.236 +  ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
   1.237 +  _addr = new_addr;
   1.238 +}
   1.239 +
   1.240 +static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
   1.241 +  char lwpstatusfile[PROCFILE_LENGTH];
   1.242 +  int lwpfd, err;
   1.243 +
   1.244 +  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
   1.245 +    return (err);
   1.246 +  if (*flags == TRS_LWPID) {
   1.247 +    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
   1.248 +            *lwp);
   1.249 +    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
   1.250 +      perror("thr_mutator_status: open lwpstatus");
   1.251 +      return (EINVAL);
   1.252 +    }
   1.253 +    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
   1.254 +        sizeof (lwpstatus_t)) {
   1.255 +      perror("thr_mutator_status: read lwpstatus");
   1.256 +      (void) close(lwpfd);
   1.257 +      return (EINVAL);
   1.258 +    }
   1.259 +    (void) close(lwpfd);
   1.260 +  }
   1.261 +  return (0);
   1.262 +}
   1.263 +
   1.264 +#ifndef AMD64
   1.265 +
   1.266 +// Detecting SSE support by OS
   1.267 +// From solaris_i486.s
   1.268 +extern "C" bool sse_check();
   1.269 +extern "C" bool sse_unavailable();
   1.270 +
   1.271 +enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
   1.272 +static int sse_status = SSE_UNKNOWN;
   1.273 +
   1.274 +
   1.275 +static void  check_for_sse_support() {
   1.276 +  if (!VM_Version::supports_sse()) {
   1.277 +    sse_status = SSE_NOT_SUPPORTED;
   1.278 +    return;
   1.279 +  }
   1.280 +  // looking for _sse_hw in libc.so, if it does not exist or
   1.281 +  // the value (int) is 0, OS has no support for SSE
   1.282 +  int *sse_hwp;
   1.283 +  void *h;
   1.284 +
   1.285 +  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
   1.286 +    //open failed, presume no support for SSE
   1.287 +    sse_status = SSE_NOT_SUPPORTED;
   1.288 +    return;
   1.289 +  }
   1.290 +  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
   1.291 +    sse_status = SSE_NOT_SUPPORTED;
   1.292 +  } else if (*sse_hwp == 0) {
   1.293 +    sse_status = SSE_NOT_SUPPORTED;
   1.294 +  }
   1.295 +  dlclose(h);
   1.296 +
   1.297 +  if (sse_status == SSE_UNKNOWN) {
   1.298 +    bool (*try_sse)() = (bool (*)())sse_check;
   1.299 +    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
   1.300 +  }
   1.301 +
   1.302 +}
   1.303 +
   1.304 +bool os::supports_sse() {
   1.305 +  if (sse_status == SSE_UNKNOWN)
   1.306 +    check_for_sse_support();
   1.307 +  return sse_status == SSE_SUPPORTED;
   1.308 +}
   1.309 +
   1.310 +#endif // AMD64
   1.311 +
   1.312 +bool os::is_allocatable(size_t bytes) {
   1.313 +#ifdef AMD64
   1.314 +  return true;
   1.315 +#else
   1.316 +
   1.317 +  if (bytes < 2 * G) {
   1.318 +    return true;
   1.319 +  }
   1.320 +
   1.321 +  char* addr = reserve_memory(bytes, NULL);
   1.322 +
   1.323 +  if (addr != NULL) {
   1.324 +    release_memory(addr, bytes);
   1.325 +  }
   1.326 +
   1.327 +  return addr != NULL;
   1.328 +#endif // AMD64
   1.329 +
   1.330 +}
   1.331 +
   1.332 +extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
   1.333 +
   1.334 +extern "C" void Fetch32PFI () ;
   1.335 +extern "C" void Fetch32Resume () ;
   1.336 +#ifdef AMD64
   1.337 +extern "C" void FetchNPFI () ;
   1.338 +extern "C" void FetchNResume () ;
   1.339 +#endif // AMD64
   1.340 +
   1.341 +int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
   1.342 +  ucontext_t* uc = (ucontext_t*) ucVoid;
   1.343 +
   1.344 +#ifndef AMD64
   1.345 +  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
   1.346 +    // the SSE instruction faulted. supports_sse() need return false.
   1.347 +    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
   1.348 +    return true;
   1.349 +  }
   1.350 +#endif // !AMD64
   1.351 +
   1.352 +  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
   1.353 +
   1.354 +  SignalHandlerMark shm(t);
   1.355 +
   1.356 +  if(sig == SIGPIPE || sig == SIGXFSZ) {
   1.357 +    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   1.358 +      return true;
   1.359 +    } else {
   1.360 +      if (PrintMiscellaneous && (WizardMode || Verbose)) {
   1.361 +        char buf[64];
   1.362 +        warning("Ignoring %s - see 4229104 or 6499219",
   1.363 +                os::exception_name(sig, buf, sizeof(buf)));
   1.364 +
   1.365 +      }
   1.366 +      return true;
   1.367 +    }
   1.368 +  }
   1.369 +
   1.370 +  JavaThread* thread = NULL;
   1.371 +  VMThread* vmthread = NULL;
   1.372 +
   1.373 +  if (os::Solaris::signal_handlers_are_installed) {
   1.374 +    if (t != NULL ){
   1.375 +      if(t->is_Java_thread()) {
   1.376 +        thread = (JavaThread*)t;
   1.377 +      }
   1.378 +      else if(t->is_VM_thread()){
   1.379 +        vmthread = (VMThread *)t;
   1.380 +      }
   1.381 +    }
   1.382 +  }
   1.383 +
   1.384 +  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
   1.385 +
   1.386 +  if (sig == os::Solaris::SIGasync()) {
   1.387 +    if(thread){
   1.388 +      OSThread::InterruptArguments args(thread, uc);
   1.389 +      thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   1.390 +      return true;
   1.391 +    }
   1.392 +    else if(vmthread){
   1.393 +      OSThread::InterruptArguments args(vmthread, uc);
   1.394 +      vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   1.395 +      return true;
   1.396 +    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   1.397 +      return true;
   1.398 +    } else {
   1.399 +      // If os::Solaris::SIGasync not chained, and this is a non-vm and
   1.400 +      // non-java thread
   1.401 +      return true;
   1.402 +    }
   1.403 +  }
   1.404 +
   1.405 +  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   1.406 +    // can't decode this kind of signal
   1.407 +    info = NULL;
   1.408 +  } else {
   1.409 +    assert(sig == info->si_signo, "bad siginfo");
   1.410 +  }
   1.411 +
   1.412 +  // decide if this trap can be handled by a stub
   1.413 +  address stub = NULL;
   1.414 +
   1.415 +  address pc          = NULL;
   1.416 +
   1.417 +  //%note os_trap_1
   1.418 +  if (info != NULL && uc != NULL && thread != NULL) {
   1.419 +    // factor me: getPCfromContext
   1.420 +    pc = (address) uc->uc_mcontext.gregs[REG_PC];
   1.421 +
   1.422 +    // SafeFetch32() support
   1.423 +    if (pc == (address) Fetch32PFI) {
   1.424 +      uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   1.425 +      return true ;
   1.426 +    }
   1.427 +#ifdef AMD64
   1.428 +    if (pc == (address) FetchNPFI) {
   1.429 +       uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
   1.430 +       return true ;
   1.431 +    }
   1.432 +#endif // AMD64
   1.433 +
   1.434 +    // Handle ALL stack overflow variations here
   1.435 +    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
   1.436 +      address addr = (address) info->si_addr;
   1.437 +      if (thread->in_stack_yellow_zone(addr)) {
   1.438 +        thread->disable_stack_yellow_zone();
   1.439 +        if (thread->thread_state() == _thread_in_Java) {
   1.440 +          // Throw a stack overflow exception.  Guard pages will be reenabled
   1.441 +          // while unwinding the stack.
   1.442 +          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   1.443 +        } else {
   1.444 +          // Thread was in the vm or native code.  Return and try to finish.
   1.445 +          return true;
   1.446 +        }
   1.447 +      } else if (thread->in_stack_red_zone(addr)) {
   1.448 +        // Fatal red zone violation.  Disable the guard pages and fall through
   1.449 +        // to handle_unexpected_exception way down below.
   1.450 +        thread->disable_stack_red_zone();
   1.451 +        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   1.452 +      }
   1.453 +    }
   1.454 +
   1.455 +    if (thread->thread_state() == _thread_in_vm) {
   1.456 +      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
   1.457 +        stub = StubRoutines::handler_for_unsafe_access();
   1.458 +      }
   1.459 +    }
   1.460 +
   1.461 +    if (thread->thread_state() == _thread_in_Java) {
   1.462 +      // Support Safepoint Polling
   1.463 +      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   1.464 +        stub = SharedRuntime::get_poll_stub(pc);
   1.465 +      }
   1.466 +      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
   1.467 +        // BugId 4454115: A read from a MappedByteBuffer can fault
   1.468 +        // here if the underlying file has been truncated.
   1.469 +        // Do not crash the VM in such a case.
   1.470 +        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   1.471 +        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   1.472 +        if (nm != NULL && nm->has_unsafe_access()) {
   1.473 +          stub = StubRoutines::handler_for_unsafe_access();
   1.474 +        }
   1.475 +      }
   1.476 +      else
   1.477 +      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
   1.478 +        // integer divide by zero
   1.479 +        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   1.480 +      }
   1.481 +#ifndef AMD64
   1.482 +      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
   1.483 +        // floating-point divide by zero
   1.484 +        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   1.485 +      }
   1.486 +      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
   1.487 +        // The encoding of D2I in i486.ad can cause an exception prior
   1.488 +        // to the fist instruction if there was an invalid operation
   1.489 +        // pending. We want to dismiss that exception. From the win_32
   1.490 +        // side it also seems that if it really was the fist causing
   1.491 +        // the exception that we do the d2i by hand with different
   1.492 +        // rounding. Seems kind of weird. QQQ TODO
   1.493 +        // Note that we take the exception at the NEXT floating point instruction.
   1.494 +        if (pc[0] == 0xDB) {
   1.495 +            assert(pc[0] == 0xDB, "not a FIST opcode");
   1.496 +            assert(pc[1] == 0x14, "not a FIST opcode");
   1.497 +            assert(pc[2] == 0x24, "not a FIST opcode");
   1.498 +            return true;
   1.499 +        } else {
   1.500 +            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
   1.501 +            assert(pc[-2] == 0x14, "not an flt invalid opcode");
   1.502 +            assert(pc[-1] == 0x24, "not an flt invalid opcode");
   1.503 +        }
   1.504 +      }
   1.505 +      else if (sig == SIGFPE ) {
   1.506 +        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
   1.507 +      }
   1.508 +#endif // !AMD64
   1.509 +
   1.510 +        // QQQ It doesn't seem that we need to do this on x86 because we should be able
   1.511 +        // to return properly from the handler without this extra stuff on the back side.
   1.512 +
   1.513 +      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   1.514 +        // Determination of interpreter/vtable stub/compiled code null exception
   1.515 +        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   1.516 +      }
   1.517 +    }
   1.518 +
   1.519 +    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   1.520 +    // and the heap gets shrunk before the field access.
   1.521 +    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   1.522 +      address addr = JNI_FastGetField::find_slowcase_pc(pc);
   1.523 +      if (addr != (address)-1) {
   1.524 +        stub = addr;
   1.525 +      }
   1.526 +    }
   1.527 +
   1.528 +    // Check to see if we caught the safepoint code in the
   1.529 +    // process of write protecting the memory serialization page.
   1.530 +    // It write enables the page immediately after protecting it
   1.531 +    // so we can just return to retry the write.
   1.532 +    if ((sig == SIGSEGV) &&
   1.533 +        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
   1.534 +      // Block current thread until the memory serialize page permission restored.
   1.535 +      os::block_on_serialize_page_trap();
   1.536 +      return true;
   1.537 +    }
   1.538 +  }
   1.539 +
   1.540 +  // Execution protection violation
   1.541 +  //
   1.542 +  // Preventative code for future versions of Solaris which may
   1.543 +  // enable execution protection when running the 32-bit VM on AMD64.
   1.544 +  //
   1.545 +  // This should be kept as the last step in the triage.  We don't
   1.546 +  // have a dedicated trap number for a no-execute fault, so be
   1.547 +  // conservative and allow other handlers the first shot.
   1.548 +  //
   1.549 +  // Note: We don't test that info->si_code == SEGV_ACCERR here.
   1.550 +  // this si_code is so generic that it is almost meaningless; and
   1.551 +  // the si_code for this condition may change in the future.
   1.552 +  // Furthermore, a false-positive should be harmless.
   1.553 +  if (UnguardOnExecutionViolation > 0 &&
   1.554 +      (sig == SIGSEGV || sig == SIGBUS) &&
   1.555 +      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
   1.556 +    int page_size = os::vm_page_size();
   1.557 +    address addr = (address) info->si_addr;
   1.558 +    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
   1.559 +    // Make sure the pc and the faulting address are sane.
   1.560 +    //
   1.561 +    // If an instruction spans a page boundary, and the page containing
   1.562 +    // the beginning of the instruction is executable but the following
   1.563 +    // page is not, the pc and the faulting address might be slightly
   1.564 +    // different - we still want to unguard the 2nd page in this case.
   1.565 +    //
   1.566 +    // 15 bytes seems to be a (very) safe value for max instruction size.
   1.567 +    bool pc_is_near_addr =
   1.568 +      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   1.569 +    bool instr_spans_page_boundary =
   1.570 +      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   1.571 +                       (intptr_t) page_size) > 0);
   1.572 +
   1.573 +    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   1.574 +      static volatile address last_addr =
   1.575 +        (address) os::non_memory_address_word();
   1.576 +
   1.577 +      // In conservative mode, don't unguard unless the address is in the VM
   1.578 +      if (addr != last_addr &&
   1.579 +          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   1.580 +
   1.581 +        // Unguard and retry
   1.582 +        address page_start =
   1.583 +          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   1.584 +        bool res = os::unguard_memory((char*) page_start, page_size);
   1.585 +
   1.586 +        if (PrintMiscellaneous && Verbose) {
   1.587 +          char buf[256];
   1.588 +          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   1.589 +                       "at " INTPTR_FORMAT
   1.590 +                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   1.591 +                       page_start, (res ? "success" : "failed"), errno);
   1.592 +          tty->print_raw_cr(buf);
   1.593 +        }
   1.594 +        stub = pc;
   1.595 +
   1.596 +        // Set last_addr so if we fault again at the same address, we don't end
   1.597 +        // up in an endless loop.
   1.598 +        //
   1.599 +        // There are two potential complications here.  Two threads trapping at
   1.600 +        // the same address at the same time could cause one of the threads to
   1.601 +        // think it already unguarded, and abort the VM.  Likely very rare.
   1.602 +        //
   1.603 +        // The other race involves two threads alternately trapping at
   1.604 +        // different addresses and failing to unguard the page, resulting in
   1.605 +        // an endless loop.  This condition is probably even more unlikely than
   1.606 +        // the first.
   1.607 +        //
   1.608 +        // Although both cases could be avoided by using locks or thread local
   1.609 +        // last_addr, these solutions are unnecessary complication: this
   1.610 +        // handler is a best-effort safety net, not a complete solution.  It is
   1.611 +        // disabled by default and should only be used as a workaround in case
   1.612 +        // we missed any no-execute-unsafe VM code.
   1.613 +
   1.614 +        last_addr = addr;
   1.615 +      }
   1.616 +    }
   1.617 +  }
   1.618 +
   1.619 +  if (stub != NULL) {
   1.620 +    // save all thread context in case we need to restore it
   1.621 +
   1.622 +    if (thread != NULL) thread->set_saved_exception_pc(pc);
   1.623 +    // 12/02/99: On Sparc it appears that the full context is also saved
   1.624 +    // but as yet, no one looks at or restores that saved context
   1.625 +    // factor me: setPC
   1.626 +    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   1.627 +    return true;
   1.628 +  }
   1.629 +
   1.630 +  // signal-chaining
   1.631 +  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   1.632 +    return true;
   1.633 +  }
   1.634 +
   1.635 +#ifndef AMD64
   1.636 +  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
   1.637 +  // Handle an undefined selector caused by an attempt to assign
   1.638 +  // fs in libthread getipriptr(). With the current libthread design every 512
   1.639 +  // thread creations the LDT for a private thread data structure is extended
   1.640 +  // and thre is a hazard that and another thread attempting a thread creation
   1.641 +  // will use a stale LDTR that doesn't reflect the structure's growth,
   1.642 +  // causing a GP fault.
   1.643 +  // Enforce the probable limit of passes through here to guard against an
   1.644 +  // infinite loop if some other move to fs caused the GP fault. Note that
   1.645 +  // this loop counter is ultimately a heuristic as it is possible for
   1.646 +  // more than one thread to generate this fault at a time in an MP system.
   1.647 +  // In the case of the loop count being exceeded or if the poll fails
   1.648 +  // just fall through to a fatal error.
   1.649 +  // If there is some other source of T_GPFLT traps and the text at EIP is
   1.650 +  // unreadable this code will loop infinitely until the stack is exausted.
   1.651 +  // The key to diagnosis in this case is to look for the bottom signal handler
   1.652 +  // frame.
   1.653 +
   1.654 +  if(! IgnoreLibthreadGPFault) {
   1.655 +    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
   1.656 +      const unsigned char *p =
   1.657 +                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
   1.658 +
   1.659 +      // Expected instruction?
   1.660 +
   1.661 +      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
   1.662 +
   1.663 +        Atomic::inc(&ldtr_refresh);
   1.664 +
   1.665 +        // Infinite loop?
   1.666 +
   1.667 +        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
   1.668 +
   1.669 +          // No, force scheduling to get a fresh view of the LDTR
   1.670 +
   1.671 +          if(poll(NULL, 0, 10) == 0) {
   1.672 +
   1.673 +            // Retry the move
   1.674 +
   1.675 +            return false;
   1.676 +          }
   1.677 +        }
   1.678 +      }
   1.679 +    }
   1.680 +  }
   1.681 +#endif // !AMD64
   1.682 +
   1.683 +  if (!abort_if_unrecognized) {
   1.684 +    // caller wants another chance, so give it to him
   1.685 +    return false;
   1.686 +  }
   1.687 +
   1.688 +  if (!os::Solaris::libjsig_is_loaded) {
   1.689 +    struct sigaction oldAct;
   1.690 +    sigaction(sig, (struct sigaction *)0, &oldAct);
   1.691 +    if (oldAct.sa_sigaction != signalHandler) {
   1.692 +      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
   1.693 +                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
   1.694 +      warning("Unexpected Signal %d occured under user-defined signal handler %#lx", sig, (long)sighand);
   1.695 +    }
   1.696 +  }
   1.697 +
   1.698 +  if (pc == NULL && uc != NULL) {
   1.699 +    pc = (address) uc->uc_mcontext.gregs[REG_PC];
   1.700 +  }
   1.701 +
   1.702 +  // unmask current signal
   1.703 +  sigset_t newset;
   1.704 +  sigemptyset(&newset);
   1.705 +  sigaddset(&newset, sig);
   1.706 +  sigprocmask(SIG_UNBLOCK, &newset, NULL);
   1.707 +
   1.708 +  VMError err(t, sig, pc, info, ucVoid);
   1.709 +  err.report_and_die();
   1.710 +
   1.711 +  ShouldNotReachHere();
   1.712 +}
   1.713 +
   1.714 +void os::print_context(outputStream *st, void *context) {
   1.715 +  if (context == NULL) return;
   1.716 +
   1.717 +  ucontext_t *uc = (ucontext_t*)context;
   1.718 +  st->print_cr("Registers:");
   1.719 +#ifdef AMD64
   1.720 +  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   1.721 +  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   1.722 +  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   1.723 +  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   1.724 +  st->cr();
   1.725 +  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   1.726 +  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   1.727 +  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   1.728 +  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   1.729 +  st->cr();
   1.730 +  st->print(", R8=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   1.731 +  st->print(", R9=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   1.732 +  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   1.733 +  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   1.734 +  st->print(", R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   1.735 +  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   1.736 +  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   1.737 +  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   1.738 +  st->cr();
   1.739 +  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   1.740 +  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
   1.741 +#else
   1.742 +  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
   1.743 +  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
   1.744 +  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
   1.745 +  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
   1.746 +  st->cr();
   1.747 +  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
   1.748 +  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
   1.749 +  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
   1.750 +  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
   1.751 +  st->cr();
   1.752 +  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
   1.753 +  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
   1.754 +#endif // AMD64
   1.755 +  st->cr();
   1.756 +  st->cr();
   1.757 +
   1.758 +  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
   1.759 +  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   1.760 +  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   1.761 +  st->cr();
   1.762 +
   1.763 +  // Note: it may be unsafe to inspect memory near pc. For example, pc may
   1.764 +  // point to garbage if entry point in an nmethod is corrupted. Leave
   1.765 +  // this at the end, and hope for the best.
   1.766 +  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   1.767 +  address pc = epc.pc();
   1.768 +  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   1.769 +  print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
   1.770 +}
   1.771 +
   1.772 +#ifdef AMD64
   1.773 +void os::Solaris::init_thread_fpu_state(void) {
   1.774 +  // Nothing to do
   1.775 +}
   1.776 +#else
   1.777 +// From solaris_i486.s
   1.778 +extern "C" void fixcw();
   1.779 +
   1.780 +void os::Solaris::init_thread_fpu_state(void) {
   1.781 +  // Set fpu to 53 bit precision. This happens too early to use a stub.
   1.782 +  fixcw();
   1.783 +}
   1.784 +
   1.785 +// These routines are the initial value of atomic_xchg_entry(),
   1.786 +// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
   1.787 +// until initialization is complete.
   1.788 +// TODO - replace with .il implementation when compiler supports it.
   1.789 +
   1.790 +typedef jint  xchg_func_t        (jint,  volatile jint*);
   1.791 +typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
   1.792 +typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
   1.793 +typedef jint  add_func_t         (jint,  volatile jint*);
   1.794 +typedef void  fence_func_t       ();
   1.795 +
   1.796 +jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
   1.797 +  // try to use the stub:
   1.798 +  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
   1.799 +
   1.800 +  if (func != NULL) {
   1.801 +    os::atomic_xchg_func = func;
   1.802 +    return (*func)(exchange_value, dest);
   1.803 +  }
   1.804 +  assert(Threads::number_of_threads() == 0, "for bootstrap only");
   1.805 +
   1.806 +  jint old_value = *dest;
   1.807 +  *dest = exchange_value;
   1.808 +  return old_value;
   1.809 +}
   1.810 +
   1.811 +jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
   1.812 +  // try to use the stub:
   1.813 +  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
   1.814 +
   1.815 +  if (func != NULL) {
   1.816 +    os::atomic_cmpxchg_func = func;
   1.817 +    return (*func)(exchange_value, dest, compare_value);
   1.818 +  }
   1.819 +  assert(Threads::number_of_threads() == 0, "for bootstrap only");
   1.820 +
   1.821 +  jint old_value = *dest;
   1.822 +  if (old_value == compare_value)
   1.823 +    *dest = exchange_value;
   1.824 +  return old_value;
   1.825 +}
   1.826 +
   1.827 +jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
   1.828 +  // try to use the stub:
   1.829 +  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
   1.830 +
   1.831 +  if (func != NULL) {
   1.832 +    os::atomic_cmpxchg_long_func = func;
   1.833 +    return (*func)(exchange_value, dest, compare_value);
   1.834 +  }
   1.835 +  assert(Threads::number_of_threads() == 0, "for bootstrap only");
   1.836 +
   1.837 +  jlong old_value = *dest;
   1.838 +  if (old_value == compare_value)
   1.839 +    *dest = exchange_value;
   1.840 +  return old_value;
   1.841 +}
   1.842 +
   1.843 +jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
   1.844 +  // try to use the stub:
   1.845 +  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
   1.846 +
   1.847 +  if (func != NULL) {
   1.848 +    os::atomic_add_func = func;
   1.849 +    return (*func)(add_value, dest);
   1.850 +  }
   1.851 +  assert(Threads::number_of_threads() == 0, "for bootstrap only");
   1.852 +
   1.853 +  return (*dest) += add_value;
   1.854 +}
   1.855 +
   1.856 +void os::fence_bootstrap() {
   1.857 +  // try to use the stub:
   1.858 +  fence_func_t* func = CAST_TO_FN_PTR(fence_func_t*, StubRoutines::fence_entry());
   1.859 +
   1.860 +  if (func != NULL) {
   1.861 +    os::fence_func = func;
   1.862 +    (*func)();
   1.863 +    return;
   1.864 +  }
   1.865 +  assert(Threads::number_of_threads() == 0, "for bootstrap only");
   1.866 +
   1.867 +  // don't have to do anything for a single thread
   1.868 +}
   1.869 +
   1.870 +xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
   1.871 +cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
   1.872 +cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
   1.873 +add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
   1.874 +fence_func_t*        os::fence_func               = os::fence_bootstrap;
   1.875 +
   1.876 +extern "C" _solaris_raw_setup_fpu(address ptr);
   1.877 +void os::setup_fpu() {
   1.878 +  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   1.879 +  _solaris_raw_setup_fpu(fpu_cntrl);
   1.880 +}
   1.881 +#endif // AMD64

mercurial