src/share/vm/memory/referenceProcessor.cpp

Fri, 10 Jan 2014 09:53:53 +0100

author
pliden
date
Fri, 10 Jan 2014 09:53:53 +0100
changeset 6395
a258f8cb530f
parent 5784
190899198332
child 6397
d60ecdb2773e
permissions
-rw-r--r--

8029255: G1: Reference processing should not enqueue references on the shared SATB queue
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    39 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    40 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    41 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    43 void referenceProcessor_init() {
    44   ReferenceProcessor::init_statics();
    45 }
    47 void ReferenceProcessor::init_statics() {
    48   // We need a monotonically non-deccreasing time in ms but
    49   // os::javaTimeMillis() does not guarantee monotonicity.
    50   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    52   // Initialize the soft ref timestamp clock.
    53   _soft_ref_timestamp_clock = now;
    54   // Also update the soft ref clock in j.l.r.SoftReference
    55   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    57   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    58   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    59                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    60   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    61     vm_exit_during_initialization("Could not allocate reference policy object");
    62   }
    63   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    64             RefDiscoveryPolicy == ReferentBasedDiscovery,
    65             "Unrecongnized RefDiscoveryPolicy");
    66   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    67 }
    69 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    70 #ifdef ASSERT
    71   // Verify that we're not currently discovering refs
    72   assert(!verify_disabled || !_discovering_refs, "nested call?");
    74   if (check_no_refs) {
    75     // Verify that the discovered lists are empty
    76     verify_no_references_recorded();
    77   }
    78 #endif // ASSERT
    80   // Someone could have modified the value of the static
    81   // field in the j.l.r.SoftReference class that holds the
    82   // soft reference timestamp clock using reflection or
    83   // Unsafe between GCs. Unconditionally update the static
    84   // field in ReferenceProcessor here so that we use the new
    85   // value during reference discovery.
    87   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    88   _discovering_refs = true;
    89 }
    91 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    92                                        bool      mt_processing,
    93                                        uint      mt_processing_degree,
    94                                        bool      mt_discovery,
    95                                        uint      mt_discovery_degree,
    96                                        bool      atomic_discovery,
    97                                        BoolObjectClosure* is_alive_non_header,
    98                                        bool      discovered_list_needs_barrier)  :
    99   _discovering_refs(false),
   100   _enqueuing_is_done(false),
   101   _is_alive_non_header(is_alive_non_header),
   102   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   103   _processing_is_mt(mt_processing),
   104   _next_id(0)
   105 {
   106   _span = span;
   107   _discovery_is_atomic = atomic_discovery;
   108   _discovery_is_mt     = mt_discovery;
   109   _num_q               = MAX2(1U, mt_processing_degree);
   110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   114   if (_discovered_refs == NULL) {
   115     vm_exit_during_initialization("Could not allocated RefProc Array");
   116   }
   117   _discoveredSoftRefs    = &_discovered_refs[0];
   118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   122   // Initialize all entries to NULL
   123   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   124     _discovered_refs[i].set_head(NULL);
   125     _discovered_refs[i].set_length(0);
   126   }
   128   setup_policy(false /* default soft ref policy */);
   129 }
   131 #ifndef PRODUCT
   132 void ReferenceProcessor::verify_no_references_recorded() {
   133   guarantee(!_discovering_refs, "Discovering refs?");
   134   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   135     guarantee(_discovered_refs[i].is_empty(),
   136               "Found non-empty discovered list");
   137   }
   138 }
   139 #endif
   141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   142   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   143     if (UseCompressedOops) {
   144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   145     } else {
   146       f->do_oop((oop*)_discovered_refs[i].adr_head());
   147     }
   148   }
   149 }
   151 void ReferenceProcessor::update_soft_ref_master_clock() {
   152   // Update (advance) the soft ref master clock field. This must be done
   153   // after processing the soft ref list.
   155   // We need a monotonically non-deccreasing time in ms but
   156   // os::javaTimeMillis() does not guarantee monotonicity.
   157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   161   NOT_PRODUCT(
   162   if (now < _soft_ref_timestamp_clock) {
   163     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   164             _soft_ref_timestamp_clock, now);
   165   }
   166   )
   167   // The values of now and _soft_ref_timestamp_clock are set using
   168   // javaTimeNanos(), which is guaranteed to be monotonically
   169   // non-decreasing provided the underlying platform provides such
   170   // a time source (and it is bug free).
   171   // In product mode, however, protect ourselves from non-monotonicty.
   172   if (now > _soft_ref_timestamp_clock) {
   173     _soft_ref_timestamp_clock = now;
   174     java_lang_ref_SoftReference::set_clock(now);
   175   }
   176   // Else leave clock stalled at its old value until time progresses
   177   // past clock value.
   178 }
   180 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   181   size_t total = 0;
   182   for (uint i = 0; i < _max_num_q; ++i) {
   183     total += lists[i].length();
   184   }
   185   return total;
   186 }
   188 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   189   BoolObjectClosure*           is_alive,
   190   OopClosure*                  keep_alive,
   191   VoidClosure*                 complete_gc,
   192   AbstractRefProcTaskExecutor* task_executor,
   193   GCTimer*                     gc_timer) {
   194   NOT_PRODUCT(verify_ok_to_handle_reflists());
   196   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   197   // Stop treating discovered references specially.
   198   disable_discovery();
   200   // If discovery was concurrent, someone could have modified
   201   // the value of the static field in the j.l.r.SoftReference
   202   // class that holds the soft reference timestamp clock using
   203   // reflection or Unsafe between when discovery was enabled and
   204   // now. Unconditionally update the static field in ReferenceProcessor
   205   // here so that we use the new value during processing of the
   206   // discovered soft refs.
   208   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   210   bool trace_time = PrintGCDetails && PrintReferenceGC;
   212   // Soft references
   213   size_t soft_count = 0;
   214   {
   215     GCTraceTime tt("SoftReference", trace_time, false, gc_timer);
   216     soft_count =
   217       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   218                                  is_alive, keep_alive, complete_gc, task_executor);
   219   }
   221   update_soft_ref_master_clock();
   223   // Weak references
   224   size_t weak_count = 0;
   225   {
   226     GCTraceTime tt("WeakReference", trace_time, false, gc_timer);
   227     weak_count =
   228       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   229                                  is_alive, keep_alive, complete_gc, task_executor);
   230   }
   232   // Final references
   233   size_t final_count = 0;
   234   {
   235     GCTraceTime tt("FinalReference", trace_time, false, gc_timer);
   236     final_count =
   237       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   238                                  is_alive, keep_alive, complete_gc, task_executor);
   239   }
   241   // Phantom references
   242   size_t phantom_count = 0;
   243   {
   244     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer);
   245     phantom_count =
   246       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   247                                  is_alive, keep_alive, complete_gc, task_executor);
   248   }
   250   // Weak global JNI references. It would make more sense (semantically) to
   251   // traverse these simultaneously with the regular weak references above, but
   252   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   253   // thus use JNI weak references to circumvent the phantom references and
   254   // resurrect a "post-mortem" object.
   255   {
   256     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
   257     if (task_executor != NULL) {
   258       task_executor->set_single_threaded_mode();
   259     }
   260     process_phaseJNI(is_alive, keep_alive, complete_gc);
   261   }
   263   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   264 }
   266 #ifndef PRODUCT
   267 // Calculate the number of jni handles.
   268 uint ReferenceProcessor::count_jni_refs() {
   269   class AlwaysAliveClosure: public BoolObjectClosure {
   270   public:
   271     virtual bool do_object_b(oop obj) { return true; }
   272   };
   274   class CountHandleClosure: public OopClosure {
   275   private:
   276     int _count;
   277   public:
   278     CountHandleClosure(): _count(0) {}
   279     void do_oop(oop* unused)       { _count++; }
   280     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   281     int count() { return _count; }
   282   };
   283   CountHandleClosure global_handle_count;
   284   AlwaysAliveClosure always_alive;
   285   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   286   return global_handle_count.count();
   287 }
   288 #endif
   290 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   291                                           OopClosure*        keep_alive,
   292                                           VoidClosure*       complete_gc) {
   293 #ifndef PRODUCT
   294   if (PrintGCDetails && PrintReferenceGC) {
   295     unsigned int count = count_jni_refs();
   296     gclog_or_tty->print(", %u refs", count);
   297   }
   298 #endif
   299   JNIHandles::weak_oops_do(is_alive, keep_alive);
   300   complete_gc->do_void();
   301 }
   304 template <class T>
   305 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   306                                    AbstractRefProcTaskExecutor* task_executor) {
   308   // Remember old value of pending references list
   309   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   310   T old_pending_list_value = *pending_list_addr;
   312   // Enqueue references that are not made active again, and
   313   // clear the decks for the next collection (cycle).
   314   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   315   // Do the post-barrier on pending_list_addr missed in
   316   // enqueue_discovered_reflist.
   317   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   319   // Stop treating discovered references specially.
   320   ref->disable_discovery();
   322   // Return true if new pending references were added
   323   return old_pending_list_value != *pending_list_addr;
   324 }
   326 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   327   NOT_PRODUCT(verify_ok_to_handle_reflists());
   328   if (UseCompressedOops) {
   329     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   330   } else {
   331     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   332   }
   333 }
   335 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   336                                                     HeapWord* pending_list_addr) {
   337   // Given a list of refs linked through the "discovered" field
   338   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   339   // thus distinguishing them from active References, then
   340   // prepend them to the pending list.
   341   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   342   // the "next" field is used to chain the pending list, not the discovered
   343   // field.
   345   if (TraceReferenceGC && PrintGCDetails) {
   346     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   347                            INTPTR_FORMAT, (address)refs_list.head());
   348   }
   350   oop obj = NULL;
   351   oop next_d = refs_list.head();
   352   if (pending_list_uses_discovered_field()) { // New behaviour
   353     // Walk down the list, self-looping the next field
   354     // so that the References are not considered active.
   355     while (obj != next_d) {
   356       obj = next_d;
   357       assert(obj->is_instanceRef(), "should be reference object");
   358       next_d = java_lang_ref_Reference::discovered(obj);
   359       if (TraceReferenceGC && PrintGCDetails) {
   360         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   361                                (void *)obj, (void *)next_d);
   362       }
   363       assert(java_lang_ref_Reference::next(obj) == NULL,
   364              "Reference not active; should not be discovered");
   365       // Self-loop next, so as to make Ref not active.
   366       // Post-barrier not needed when looping to self.
   367       java_lang_ref_Reference::set_next_raw(obj, obj);
   368       if (next_d == obj) {  // obj is last
   369         // Swap refs_list into pendling_list_addr and
   370         // set obj's discovered to what we read from pending_list_addr.
   371         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   372         // Need post-barrier on pending_list_addr above;
   373         // see special post-barrier code at the end of
   374         // enqueue_discovered_reflists() further below.
   375         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   376         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   377       }
   378     }
   379   } else { // Old behaviour
   380     // Walk down the list, copying the discovered field into
   381     // the next field and clearing the discovered field.
   382     while (obj != next_d) {
   383       obj = next_d;
   384       assert(obj->is_instanceRef(), "should be reference object");
   385       next_d = java_lang_ref_Reference::discovered(obj);
   386       if (TraceReferenceGC && PrintGCDetails) {
   387         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   388                                (void *)obj, (void *)next_d);
   389       }
   390       assert(java_lang_ref_Reference::next(obj) == NULL,
   391              "The reference should not be enqueued");
   392       if (next_d == obj) {  // obj is last
   393         // Swap refs_list into pendling_list_addr and
   394         // set obj's next to what we read from pending_list_addr.
   395         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   396         // Need oop_check on pending_list_addr above;
   397         // see special oop-check code at the end of
   398         // enqueue_discovered_reflists() further below.
   399         if (old == NULL) {
   400           // obj should be made to point to itself, since
   401           // pending list was empty.
   402           java_lang_ref_Reference::set_next(obj, obj);
   403         } else {
   404           java_lang_ref_Reference::set_next(obj, old);
   405         }
   406       } else {
   407         java_lang_ref_Reference::set_next(obj, next_d);
   408       }
   409       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   410     }
   411   }
   412 }
   414 // Parallel enqueue task
   415 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   416 public:
   417   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   418                      DiscoveredList      discovered_refs[],
   419                      HeapWord*           pending_list_addr,
   420                      int                 n_queues)
   421     : EnqueueTask(ref_processor, discovered_refs,
   422                   pending_list_addr, n_queues)
   423   { }
   425   virtual void work(unsigned int work_id) {
   426     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   427     // Simplest first cut: static partitioning.
   428     int index = work_id;
   429     // The increment on "index" must correspond to the maximum number of queues
   430     // (n_queues) with which that ReferenceProcessor was created.  That
   431     // is because of the "clever" way the discovered references lists were
   432     // allocated and are indexed into.
   433     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   434     for (int j = 0;
   435          j < ReferenceProcessor::number_of_subclasses_of_ref();
   436          j++, index += _n_queues) {
   437       _ref_processor.enqueue_discovered_reflist(
   438         _refs_lists[index], _pending_list_addr);
   439       _refs_lists[index].set_head(NULL);
   440       _refs_lists[index].set_length(0);
   441     }
   442   }
   443 };
   445 // Enqueue references that are not made active again
   446 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   447   AbstractRefProcTaskExecutor* task_executor) {
   448   if (_processing_is_mt && task_executor != NULL) {
   449     // Parallel code
   450     RefProcEnqueueTask tsk(*this, _discovered_refs,
   451                            pending_list_addr, _max_num_q);
   452     task_executor->execute(tsk);
   453   } else {
   454     // Serial code: call the parent class's implementation
   455     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   456       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   457       _discovered_refs[i].set_head(NULL);
   458       _discovered_refs[i].set_length(0);
   459     }
   460   }
   461 }
   463 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   464   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   465   oop discovered = java_lang_ref_Reference::discovered(_ref);
   466   assert(_discovered_addr && discovered->is_oop_or_null(),
   467          "discovered field is bad");
   468   _next = discovered;
   469   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   470   _referent = java_lang_ref_Reference::referent(_ref);
   471   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   472          "Wrong oop found in java.lang.Reference object");
   473   assert(allow_null_referent ?
   474              _referent->is_oop_or_null()
   475            : _referent->is_oop(),
   476          "bad referent");
   477 }
   479 void DiscoveredListIterator::remove() {
   480   assert(_ref->is_oop(), "Dropping a bad reference");
   481   oop_store_raw(_discovered_addr, NULL);
   483   // First _prev_next ref actually points into DiscoveredList (gross).
   484   oop new_next;
   485   if (_next == _ref) {
   486     // At the end of the list, we should make _prev point to itself.
   487     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   488     // and _prev will be NULL.
   489     new_next = _prev;
   490   } else {
   491     new_next = _next;
   492   }
   494   if (UseCompressedOops) {
   495     // Remove Reference object from list.
   496     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
   497   } else {
   498     // Remove Reference object from list.
   499     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
   500   }
   501   NOT_PRODUCT(_removed++);
   502   _refs_list.dec_length(1);
   503 }
   505 // Make the Reference object active again.
   506 void DiscoveredListIterator::make_active() {
   507   // For G1 we don't want to use set_next - it
   508   // will dirty the card for the next field of
   509   // the reference object and will fail
   510   // CT verification.
   511   if (UseG1GC) {
   512     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   513     if (UseCompressedOops) {
   514       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   515     } else {
   516       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   517     }
   518     java_lang_ref_Reference::set_next_raw(_ref, NULL);
   519   } else {
   520     java_lang_ref_Reference::set_next(_ref, NULL);
   521   }
   522 }
   524 void DiscoveredListIterator::clear_referent() {
   525   oop_store_raw(_referent_addr, NULL);
   526 }
   528 // NOTE: process_phase*() are largely similar, and at a high level
   529 // merely iterate over the extant list applying a predicate to
   530 // each of its elements and possibly removing that element from the
   531 // list and applying some further closures to that element.
   532 // We should consider the possibility of replacing these
   533 // process_phase*() methods by abstracting them into
   534 // a single general iterator invocation that receives appropriate
   535 // closures that accomplish this work.
   537 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   538 // referents are not alive, but that should be kept alive for policy reasons.
   539 // Keep alive the transitive closure of all such referents.
   540 void
   541 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   542                                    ReferencePolicy*   policy,
   543                                    BoolObjectClosure* is_alive,
   544                                    OopClosure*        keep_alive,
   545                                    VoidClosure*       complete_gc) {
   546   assert(policy != NULL, "Must have a non-NULL policy");
   547   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   548   // Decide which softly reachable refs should be kept alive.
   549   while (iter.has_next()) {
   550     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   551     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   552     if (referent_is_dead &&
   553         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   554       if (TraceReferenceGC) {
   555         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   556                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   557       }
   558       // Remove Reference object from list
   559       iter.remove();
   560       // Make the Reference object active again
   561       iter.make_active();
   562       // keep the referent around
   563       iter.make_referent_alive();
   564       iter.move_to_next();
   565     } else {
   566       iter.next();
   567     }
   568   }
   569   // Close the reachable set
   570   complete_gc->do_void();
   571   NOT_PRODUCT(
   572     if (PrintGCDetails && TraceReferenceGC) {
   573       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   574         "discovered Refs by policy, from list " INTPTR_FORMAT,
   575         iter.removed(), iter.processed(), (address)refs_list.head());
   576     }
   577   )
   578 }
   580 // Traverse the list and remove any Refs that are not active, or
   581 // whose referents are either alive or NULL.
   582 void
   583 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   584                              BoolObjectClosure* is_alive,
   585                              OopClosure*        keep_alive) {
   586   assert(discovery_is_atomic(), "Error");
   587   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   588   while (iter.has_next()) {
   589     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   590     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   591     assert(next == NULL, "Should not discover inactive Reference");
   592     if (iter.is_referent_alive()) {
   593       if (TraceReferenceGC) {
   594         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   595                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   596       }
   597       // The referent is reachable after all.
   598       // Remove Reference object from list.
   599       iter.remove();
   600       // Update the referent pointer as necessary: Note that this
   601       // should not entail any recursive marking because the
   602       // referent must already have been traversed.
   603       iter.make_referent_alive();
   604       iter.move_to_next();
   605     } else {
   606       iter.next();
   607     }
   608   }
   609   NOT_PRODUCT(
   610     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   611       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   612         "Refs in discovered list " INTPTR_FORMAT,
   613         iter.removed(), iter.processed(), (address)refs_list.head());
   614     }
   615   )
   616 }
   618 void
   619 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   620                                                   BoolObjectClosure* is_alive,
   621                                                   OopClosure*        keep_alive,
   622                                                   VoidClosure*       complete_gc) {
   623   assert(!discovery_is_atomic(), "Error");
   624   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   625   while (iter.has_next()) {
   626     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   627     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   628     oop next = java_lang_ref_Reference::next(iter.obj());
   629     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   630          next != NULL)) {
   631       assert(next->is_oop_or_null(), "bad next field");
   632       // Remove Reference object from list
   633       iter.remove();
   634       // Trace the cohorts
   635       iter.make_referent_alive();
   636       if (UseCompressedOops) {
   637         keep_alive->do_oop((narrowOop*)next_addr);
   638       } else {
   639         keep_alive->do_oop((oop*)next_addr);
   640       }
   641       iter.move_to_next();
   642     } else {
   643       iter.next();
   644     }
   645   }
   646   // Now close the newly reachable set
   647   complete_gc->do_void();
   648   NOT_PRODUCT(
   649     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   650       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   651         "Refs in discovered list " INTPTR_FORMAT,
   652         iter.removed(), iter.processed(), (address)refs_list.head());
   653     }
   654   )
   655 }
   657 // Traverse the list and process the referents, by either
   658 // clearing them or keeping them (and their reachable
   659 // closure) alive.
   660 void
   661 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   662                                    bool               clear_referent,
   663                                    BoolObjectClosure* is_alive,
   664                                    OopClosure*        keep_alive,
   665                                    VoidClosure*       complete_gc) {
   666   ResourceMark rm;
   667   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   668   while (iter.has_next()) {
   669     iter.update_discovered();
   670     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   671     if (clear_referent) {
   672       // NULL out referent pointer
   673       iter.clear_referent();
   674     } else {
   675       // keep the referent around
   676       iter.make_referent_alive();
   677     }
   678     if (TraceReferenceGC) {
   679       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   680                              clear_referent ? "cleared " : "",
   681                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   682     }
   683     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   684     iter.next();
   685   }
   686   // Remember to update the next pointer of the last ref.
   687   iter.update_discovered();
   688   // Close the reachable set
   689   complete_gc->do_void();
   690 }
   692 void
   693 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   694   oop obj = NULL;
   695   oop next = refs_list.head();
   696   while (next != obj) {
   697     obj = next;
   698     next = java_lang_ref_Reference::discovered(obj);
   699     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   700   }
   701   refs_list.set_head(NULL);
   702   refs_list.set_length(0);
   703 }
   705 void
   706 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   707   clear_discovered_references(refs_list);
   708 }
   710 void ReferenceProcessor::abandon_partial_discovery() {
   711   // loop over the lists
   712   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   713     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   714       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   715     }
   716     abandon_partial_discovered_list(_discovered_refs[i]);
   717   }
   718 }
   720 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   721 public:
   722   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   723                     DiscoveredList      refs_lists[],
   724                     ReferencePolicy*    policy,
   725                     bool                marks_oops_alive)
   726     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   727       _policy(policy)
   728   { }
   729   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   730                     OopClosure& keep_alive,
   731                     VoidClosure& complete_gc)
   732   {
   733     Thread* thr = Thread::current();
   734     int refs_list_index = ((WorkerThread*)thr)->id();
   735     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   736                                   &is_alive, &keep_alive, &complete_gc);
   737   }
   738 private:
   739   ReferencePolicy* _policy;
   740 };
   742 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   743 public:
   744   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   745                     DiscoveredList      refs_lists[],
   746                     bool                marks_oops_alive)
   747     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   748   { }
   749   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   750                     OopClosure& keep_alive,
   751                     VoidClosure& complete_gc)
   752   {
   753     _ref_processor.process_phase2(_refs_lists[i],
   754                                   &is_alive, &keep_alive, &complete_gc);
   755   }
   756 };
   758 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   759 public:
   760   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   761                     DiscoveredList      refs_lists[],
   762                     bool                clear_referent,
   763                     bool                marks_oops_alive)
   764     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   765       _clear_referent(clear_referent)
   766   { }
   767   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   768                     OopClosure& keep_alive,
   769                     VoidClosure& complete_gc)
   770   {
   771     // Don't use "refs_list_index" calculated in this way because
   772     // balance_queues() has moved the Ref's into the first n queues.
   773     // Thread* thr = Thread::current();
   774     // int refs_list_index = ((WorkerThread*)thr)->id();
   775     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   776     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   777                                   &is_alive, &keep_alive, &complete_gc);
   778   }
   779 private:
   780   bool _clear_referent;
   781 };
   783 void ReferenceProcessor::set_discovered(oop ref, oop value) {
   784   java_lang_ref_Reference::set_discovered_raw(ref, value);
   785   if (_discovered_list_needs_barrier) {
   786     oopDesc::bs()->write_ref_field(ref, value);
   787   }
   788 }
   790 // Balances reference queues.
   791 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   792 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   793 // corresponding to the active workers will be processed.
   794 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   795 {
   796   // calculate total length
   797   size_t total_refs = 0;
   798   if (TraceReferenceGC && PrintGCDetails) {
   799     gclog_or_tty->print_cr("\nBalance ref_lists ");
   800   }
   802   for (uint i = 0; i < _max_num_q; ++i) {
   803     total_refs += ref_lists[i].length();
   804     if (TraceReferenceGC && PrintGCDetails) {
   805       gclog_or_tty->print("%d ", ref_lists[i].length());
   806     }
   807   }
   808   if (TraceReferenceGC && PrintGCDetails) {
   809     gclog_or_tty->print_cr(" = %d", total_refs);
   810   }
   811   size_t avg_refs = total_refs / _num_q + 1;
   812   uint to_idx = 0;
   813   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   814     bool move_all = false;
   815     if (from_idx >= _num_q) {
   816       move_all = ref_lists[from_idx].length() > 0;
   817     }
   818     while ((ref_lists[from_idx].length() > avg_refs) ||
   819            move_all) {
   820       assert(to_idx < _num_q, "Sanity Check!");
   821       if (ref_lists[to_idx].length() < avg_refs) {
   822         // move superfluous refs
   823         size_t refs_to_move;
   824         // Move all the Ref's if the from queue will not be processed.
   825         if (move_all) {
   826           refs_to_move = MIN2(ref_lists[from_idx].length(),
   827                               avg_refs - ref_lists[to_idx].length());
   828         } else {
   829           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   830                               avg_refs - ref_lists[to_idx].length());
   831         }
   833         assert(refs_to_move > 0, "otherwise the code below will fail");
   835         oop move_head = ref_lists[from_idx].head();
   836         oop move_tail = move_head;
   837         oop new_head  = move_head;
   838         // find an element to split the list on
   839         for (size_t j = 0; j < refs_to_move; ++j) {
   840           move_tail = new_head;
   841           new_head = java_lang_ref_Reference::discovered(new_head);
   842         }
   844         // Add the chain to the to list.
   845         if (ref_lists[to_idx].head() == NULL) {
   846           // to list is empty. Make a loop at the end.
   847           set_discovered(move_tail, move_tail);
   848         } else {
   849           set_discovered(move_tail, ref_lists[to_idx].head());
   850         }
   851         ref_lists[to_idx].set_head(move_head);
   852         ref_lists[to_idx].inc_length(refs_to_move);
   854         // Remove the chain from the from list.
   855         if (move_tail == new_head) {
   856           // We found the end of the from list.
   857           ref_lists[from_idx].set_head(NULL);
   858         } else {
   859           ref_lists[from_idx].set_head(new_head);
   860         }
   861         ref_lists[from_idx].dec_length(refs_to_move);
   862         if (ref_lists[from_idx].length() == 0) {
   863           break;
   864         }
   865       } else {
   866         to_idx = (to_idx + 1) % _num_q;
   867       }
   868     }
   869   }
   870 #ifdef ASSERT
   871   size_t balanced_total_refs = 0;
   872   for (uint i = 0; i < _max_num_q; ++i) {
   873     balanced_total_refs += ref_lists[i].length();
   874     if (TraceReferenceGC && PrintGCDetails) {
   875       gclog_or_tty->print("%d ", ref_lists[i].length());
   876     }
   877   }
   878   if (TraceReferenceGC && PrintGCDetails) {
   879     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   880     gclog_or_tty->flush();
   881   }
   882   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   883 #endif
   884 }
   886 void ReferenceProcessor::balance_all_queues() {
   887   balance_queues(_discoveredSoftRefs);
   888   balance_queues(_discoveredWeakRefs);
   889   balance_queues(_discoveredFinalRefs);
   890   balance_queues(_discoveredPhantomRefs);
   891 }
   893 size_t
   894 ReferenceProcessor::process_discovered_reflist(
   895   DiscoveredList               refs_lists[],
   896   ReferencePolicy*             policy,
   897   bool                         clear_referent,
   898   BoolObjectClosure*           is_alive,
   899   OopClosure*                  keep_alive,
   900   VoidClosure*                 complete_gc,
   901   AbstractRefProcTaskExecutor* task_executor)
   902 {
   903   bool mt_processing = task_executor != NULL && _processing_is_mt;
   904   // If discovery used MT and a dynamic number of GC threads, then
   905   // the queues must be balanced for correctness if fewer than the
   906   // maximum number of queues were used.  The number of queue used
   907   // during discovery may be different than the number to be used
   908   // for processing so don't depend of _num_q < _max_num_q as part
   909   // of the test.
   910   bool must_balance = _discovery_is_mt;
   912   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   913       must_balance) {
   914     balance_queues(refs_lists);
   915   }
   917   size_t total_list_count = total_count(refs_lists);
   919   if (PrintReferenceGC && PrintGCDetails) {
   920     gclog_or_tty->print(", %u refs", total_list_count);
   921   }
   923   // Phase 1 (soft refs only):
   924   // . Traverse the list and remove any SoftReferences whose
   925   //   referents are not alive, but that should be kept alive for
   926   //   policy reasons. Keep alive the transitive closure of all
   927   //   such referents.
   928   if (policy != NULL) {
   929     if (mt_processing) {
   930       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   931       task_executor->execute(phase1);
   932     } else {
   933       for (uint i = 0; i < _max_num_q; i++) {
   934         process_phase1(refs_lists[i], policy,
   935                        is_alive, keep_alive, complete_gc);
   936       }
   937     }
   938   } else { // policy == NULL
   939     assert(refs_lists != _discoveredSoftRefs,
   940            "Policy must be specified for soft references.");
   941   }
   943   // Phase 2:
   944   // . Traverse the list and remove any refs whose referents are alive.
   945   if (mt_processing) {
   946     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   947     task_executor->execute(phase2);
   948   } else {
   949     for (uint i = 0; i < _max_num_q; i++) {
   950       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   951     }
   952   }
   954   // Phase 3:
   955   // . Traverse the list and process referents as appropriate.
   956   if (mt_processing) {
   957     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   958     task_executor->execute(phase3);
   959   } else {
   960     for (uint i = 0; i < _max_num_q; i++) {
   961       process_phase3(refs_lists[i], clear_referent,
   962                      is_alive, keep_alive, complete_gc);
   963     }
   964   }
   966   return total_list_count;
   967 }
   969 void ReferenceProcessor::clean_up_discovered_references() {
   970   // loop over the lists
   971   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   972     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   973       gclog_or_tty->print_cr(
   974         "\nScrubbing %s discovered list of Null referents",
   975         list_name(i));
   976     }
   977     clean_up_discovered_reflist(_discovered_refs[i]);
   978   }
   979 }
   981 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   982   assert(!discovery_is_atomic(), "Else why call this method?");
   983   DiscoveredListIterator iter(refs_list, NULL, NULL);
   984   while (iter.has_next()) {
   985     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   986     oop next = java_lang_ref_Reference::next(iter.obj());
   987     assert(next->is_oop_or_null(), "bad next field");
   988     // If referent has been cleared or Reference is not active,
   989     // drop it.
   990     if (iter.referent() == NULL || next != NULL) {
   991       debug_only(
   992         if (PrintGCDetails && TraceReferenceGC) {
   993           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   994             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   995             " and referent: " INTPTR_FORMAT,
   996             (void *)iter.obj(), (void *)next, (void *)iter.referent());
   997         }
   998       )
   999       // Remove Reference object from list
  1000       iter.remove();
  1001       iter.move_to_next();
  1002     } else {
  1003       iter.next();
  1006   NOT_PRODUCT(
  1007     if (PrintGCDetails && TraceReferenceGC) {
  1008       gclog_or_tty->print(
  1009         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1010         iter.removed(), iter.processed());
  1015 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1016   uint id = 0;
  1017   // Determine the queue index to use for this object.
  1018   if (_discovery_is_mt) {
  1019     // During a multi-threaded discovery phase,
  1020     // each thread saves to its "own" list.
  1021     Thread* thr = Thread::current();
  1022     id = thr->as_Worker_thread()->id();
  1023   } else {
  1024     // single-threaded discovery, we save in round-robin
  1025     // fashion to each of the lists.
  1026     if (_processing_is_mt) {
  1027       id = next_id();
  1030   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1032   // Get the discovered queue to which we will add
  1033   DiscoveredList* list = NULL;
  1034   switch (rt) {
  1035     case REF_OTHER:
  1036       // Unknown reference type, no special treatment
  1037       break;
  1038     case REF_SOFT:
  1039       list = &_discoveredSoftRefs[id];
  1040       break;
  1041     case REF_WEAK:
  1042       list = &_discoveredWeakRefs[id];
  1043       break;
  1044     case REF_FINAL:
  1045       list = &_discoveredFinalRefs[id];
  1046       break;
  1047     case REF_PHANTOM:
  1048       list = &_discoveredPhantomRefs[id];
  1049       break;
  1050     case REF_NONE:
  1051       // we should not reach here if we are an InstanceRefKlass
  1052     default:
  1053       ShouldNotReachHere();
  1055   if (TraceReferenceGC && PrintGCDetails) {
  1056     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1058   return list;
  1061 inline void
  1062 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1063                                               oop             obj,
  1064                                               HeapWord*       discovered_addr) {
  1065   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1066   // First we must make sure this object is only enqueued once. CAS in a non null
  1067   // discovered_addr.
  1068   oop current_head = refs_list.head();
  1069   // The last ref must have its discovered field pointing to itself.
  1070   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1072   // Note: In the case of G1, this specific pre-barrier is strictly
  1073   // not necessary because the only case we are interested in
  1074   // here is when *discovered_addr is NULL (see the CAS further below),
  1075   // so this will expand to nothing. As a result, we have manually
  1076   // elided this out for G1, but left in the test for some future
  1077   // collector that might have need for a pre-barrier here, e.g.:-
  1078   // oopDesc::bs()->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1079   assert(!_discovered_list_needs_barrier || UseG1GC,
  1080          "Need to check non-G1 collector: "
  1081          "may need a pre-write-barrier for CAS from NULL below");
  1082   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1083                                                     NULL);
  1084   if (retest == NULL) {
  1085     // This thread just won the right to enqueue the object.
  1086     // We have separate lists for enqueueing, so no synchronization
  1087     // is necessary.
  1088     refs_list.set_head(obj);
  1089     refs_list.inc_length(1);
  1090     if (_discovered_list_needs_barrier) {
  1091       oopDesc::bs()->write_ref_field((void*)discovered_addr, next_discovered);
  1094     if (TraceReferenceGC) {
  1095       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1096                              (void *)obj, obj->klass()->internal_name());
  1098   } else {
  1099     // If retest was non NULL, another thread beat us to it:
  1100     // The reference has already been discovered...
  1101     if (TraceReferenceGC) {
  1102       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1103                              (void *)obj, obj->klass()->internal_name());
  1108 #ifndef PRODUCT
  1109 // Non-atomic (i.e. concurrent) discovery might allow us
  1110 // to observe j.l.References with NULL referents, being those
  1111 // cleared concurrently by mutators during (or after) discovery.
  1112 void ReferenceProcessor::verify_referent(oop obj) {
  1113   bool da = discovery_is_atomic();
  1114   oop referent = java_lang_ref_Reference::referent(obj);
  1115   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1116          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1117                  INTPTR_FORMAT " during %satomic discovery ",
  1118                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1120 #endif
  1122 // We mention two of several possible choices here:
  1123 // #0: if the reference object is not in the "originating generation"
  1124 //     (or part of the heap being collected, indicated by our "span"
  1125 //     we don't treat it specially (i.e. we scan it as we would
  1126 //     a normal oop, treating its references as strong references).
  1127 //     This means that references can't be discovered unless their
  1128 //     referent is also in the same span. This is the simplest,
  1129 //     most "local" and most conservative approach, albeit one
  1130 //     that may cause weak references to be enqueued least promptly.
  1131 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1132 // #1: the reference object may be in any generation (span), but if
  1133 //     the referent is in the generation (span) being currently collected
  1134 //     then we can discover the reference object, provided
  1135 //     the object has not already been discovered by
  1136 //     a different concurrently running collector (as may be the
  1137 //     case, for instance, if the reference object is in CMS and
  1138 //     the referent in DefNewGeneration), and provided the processing
  1139 //     of this reference object by the current collector will
  1140 //     appear atomic to every other collector in the system.
  1141 //     (Thus, for instance, a concurrent collector may not
  1142 //     discover references in other generations even if the
  1143 //     referent is in its own generation). This policy may,
  1144 //     in certain cases, enqueue references somewhat sooner than
  1145 //     might Policy #0 above, but at marginally increased cost
  1146 //     and complexity in processing these references.
  1147 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1148 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1149   // Make sure we are discovering refs (rather than processing discovered refs).
  1150   if (!_discovering_refs || !RegisterReferences) {
  1151     return false;
  1153   // We only discover active references.
  1154   oop next = java_lang_ref_Reference::next(obj);
  1155   if (next != NULL) {   // Ref is no longer active
  1156     return false;
  1159   HeapWord* obj_addr = (HeapWord*)obj;
  1160   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1161       !_span.contains(obj_addr)) {
  1162     // Reference is not in the originating generation;
  1163     // don't treat it specially (i.e. we want to scan it as a normal
  1164     // object with strong references).
  1165     return false;
  1168   // We only discover references whose referents are not (yet)
  1169   // known to be strongly reachable.
  1170   if (is_alive_non_header() != NULL) {
  1171     verify_referent(obj);
  1172     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1173       return false;  // referent is reachable
  1176   if (rt == REF_SOFT) {
  1177     // For soft refs we can decide now if these are not
  1178     // current candidates for clearing, in which case we
  1179     // can mark through them now, rather than delaying that
  1180     // to the reference-processing phase. Since all current
  1181     // time-stamp policies advance the soft-ref clock only
  1182     // at a major collection cycle, this is always currently
  1183     // accurate.
  1184     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1185       return false;
  1189   ResourceMark rm;      // Needed for tracing.
  1191   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1192   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1193   assert(discovered->is_oop_or_null(), "bad discovered field");
  1194   if (discovered != NULL) {
  1195     // The reference has already been discovered...
  1196     if (TraceReferenceGC) {
  1197       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1198                              (void *)obj, obj->klass()->internal_name());
  1200     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1201       // assumes that an object is not processed twice;
  1202       // if it's been already discovered it must be on another
  1203       // generation's discovered list; so we won't discover it.
  1204       return false;
  1205     } else {
  1206       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1207              "Unrecognized policy");
  1208       // Check assumption that an object is not potentially
  1209       // discovered twice except by concurrent collectors that potentially
  1210       // trace the same Reference object twice.
  1211       assert(UseConcMarkSweepGC || UseG1GC,
  1212              "Only possible with a concurrent marking collector");
  1213       return true;
  1217   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1218     verify_referent(obj);
  1219     // Discover if and only if EITHER:
  1220     // .. reference is in our span, OR
  1221     // .. we are an atomic collector and referent is in our span
  1222     if (_span.contains(obj_addr) ||
  1223         (discovery_is_atomic() &&
  1224          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1225       // should_enqueue = true;
  1226     } else {
  1227       return false;
  1229   } else {
  1230     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1231            _span.contains(obj_addr), "code inconsistency");
  1234   // Get the right type of discovered queue head.
  1235   DiscoveredList* list = get_discovered_list(rt);
  1236   if (list == NULL) {
  1237     return false;   // nothing special needs to be done
  1240   if (_discovery_is_mt) {
  1241     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1242   } else {
  1243     // If "_discovered_list_needs_barrier", we do write barriers when
  1244     // updating the discovered reference list.  Otherwise, we do a raw store
  1245     // here: the field will be visited later when processing the discovered
  1246     // references.
  1247     oop current_head = list->head();
  1248     // The last ref must have its discovered field pointing to itself.
  1249     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1251     // As in the case further above, since we are over-writing a NULL
  1252     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1253     // e.g.:- oopDesc::bs()->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1254     assert(discovered == NULL, "control point invariant");
  1255     assert(!_discovered_list_needs_barrier || UseG1GC,
  1256            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
  1257     oop_store_raw(discovered_addr, next_discovered);
  1258     if (_discovered_list_needs_barrier) {
  1259       oopDesc::bs()->write_ref_field((void*)discovered_addr, next_discovered);
  1261     list->set_head(obj);
  1262     list->inc_length(1);
  1264     if (TraceReferenceGC) {
  1265       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1266                                 (void *)obj, obj->klass()->internal_name());
  1269   assert(obj->is_oop(), "Discovered a bad reference");
  1270   verify_referent(obj);
  1271   return true;
  1274 // Preclean the discovered references by removing those
  1275 // whose referents are alive, and by marking from those that
  1276 // are not active. These lists can be handled here
  1277 // in any order and, indeed, concurrently.
  1278 void ReferenceProcessor::preclean_discovered_references(
  1279   BoolObjectClosure* is_alive,
  1280   OopClosure* keep_alive,
  1281   VoidClosure* complete_gc,
  1282   YieldClosure* yield,
  1283   GCTimer* gc_timer) {
  1285   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1287   // Soft references
  1289     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1290               false, gc_timer);
  1291     for (uint i = 0; i < _max_num_q; i++) {
  1292       if (yield->should_return()) {
  1293         return;
  1295       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1296                                   keep_alive, complete_gc, yield);
  1300   // Weak references
  1302     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1303               false, gc_timer);
  1304     for (uint i = 0; i < _max_num_q; i++) {
  1305       if (yield->should_return()) {
  1306         return;
  1308       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1309                                   keep_alive, complete_gc, yield);
  1313   // Final references
  1315     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1316               false, gc_timer);
  1317     for (uint i = 0; i < _max_num_q; i++) {
  1318       if (yield->should_return()) {
  1319         return;
  1321       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1322                                   keep_alive, complete_gc, yield);
  1326   // Phantom references
  1328     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1329               false, gc_timer);
  1330     for (uint i = 0; i < _max_num_q; i++) {
  1331       if (yield->should_return()) {
  1332         return;
  1334       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1335                                   keep_alive, complete_gc, yield);
  1340 // Walk the given discovered ref list, and remove all reference objects
  1341 // whose referents are still alive, whose referents are NULL or which
  1342 // are not active (have a non-NULL next field). NOTE: When we are
  1343 // thus precleaning the ref lists (which happens single-threaded today),
  1344 // we do not disable refs discovery to honour the correct semantics of
  1345 // java.lang.Reference. As a result, we need to be careful below
  1346 // that ref removal steps interleave safely with ref discovery steps
  1347 // (in this thread).
  1348 void
  1349 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1350                                                 BoolObjectClosure* is_alive,
  1351                                                 OopClosure*        keep_alive,
  1352                                                 VoidClosure*       complete_gc,
  1353                                                 YieldClosure*      yield) {
  1354   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1355   while (iter.has_next()) {
  1356     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1357     oop obj = iter.obj();
  1358     oop next = java_lang_ref_Reference::next(obj);
  1359     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1360         next != NULL) {
  1361       // The referent has been cleared, or is alive, or the Reference is not
  1362       // active; we need to trace and mark its cohort.
  1363       if (TraceReferenceGC) {
  1364         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1365                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1367       // Remove Reference object from list
  1368       iter.remove();
  1369       // Keep alive its cohort.
  1370       iter.make_referent_alive();
  1371       if (UseCompressedOops) {
  1372         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1373         keep_alive->do_oop(next_addr);
  1374       } else {
  1375         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1376         keep_alive->do_oop(next_addr);
  1378       iter.move_to_next();
  1379     } else {
  1380       iter.next();
  1383   // Close the reachable set
  1384   complete_gc->do_void();
  1386   NOT_PRODUCT(
  1387     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1388       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1389         "Refs in discovered list " INTPTR_FORMAT,
  1390         iter.removed(), iter.processed(), (address)refs_list.head());
  1395 const char* ReferenceProcessor::list_name(uint i) {
  1396    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1397           "Out of bounds index");
  1399    int j = i / _max_num_q;
  1400    switch (j) {
  1401      case 0: return "SoftRef";
  1402      case 1: return "WeakRef";
  1403      case 2: return "FinalRef";
  1404      case 3: return "PhantomRef";
  1406    ShouldNotReachHere();
  1407    return NULL;
  1410 #ifndef PRODUCT
  1411 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1412   // empty for now
  1414 #endif
  1416 #ifndef PRODUCT
  1417 void ReferenceProcessor::clear_discovered_references() {
  1418   guarantee(!_discovering_refs, "Discovering refs?");
  1419   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1420     clear_discovered_references(_discovered_refs[i]);
  1424 #endif // PRODUCT

mercurial